
ACTIVE APPEARANCE
MODELS

Theory, Extensions & Cases

2nd edition

Mikkel Bille Stegmann

LYNGBY 2000

Master Thesis IMM-EKS-2000-25

IMM
c© Copyright 2000 by Mikkel Bille Stegmann (mikkel@stegmann.dk)

Printed by IMM, Technical University of Denmark

3

Preface

This thesis has been prepared over six months at the Section for Image
Analysis, Department of Mathematical Modelling, IMM, at The Technical
University of Denmark, DTU, in partial fulfillment of the requirements for
the degree Master of Science in Engineering, M.Sc.Eng.

To supplement this thesis refer to the produced web-site on Active Appear-
ance Models at http://www.imm.dtu.dk/∼aam/
It is assumed that the reader has a basic knowledge in the areas of statistics
and image analysis.

Lyngby, August 2000

2nd edition preface

Minor errors in grammar and mathematical notation have been corrected.
Further has the notation regarding pose-transfomations in the regression
and optimization part been clarified a bit. Thanks to Hans Henrik Thod-
berg for drawing my attention to this.

Lyngby, September 2000

Mikkel Bille Stegmann
[email: mikkel@stegmann.dk]

4

5

Acknowledgements

Though this thesis is done by a one-man-band, the result would never have
been the same without the support, encouragement and assistance from
the following people.

Hans Henrik Thodberg, Pronosco A/S for establishing a partly sponsorship
during the thesis period, with which I could fully concentrate on my thesis
and without which my sparetime would have been somewhat less colorful.
I would also like to thank Hans Henrik for his interest and fruitful discus-
sions during the thesis period. Pronosco A/S digitized and annotated the
metacarpal radiographs.

Cardiac MRIs were provided and annotated by M.D. Jens Christian Nils-
son and M.D. Bjørn A. Grønning, H:S Hvidovre Hospital. They are also
both thanked for their exciting discussions and good comments on my the-
sis work in general. M.Sc. Torben Lund is also gratefully acknowledged for
providing the initial contact and all his practical help during the collabo-
ration.

Cross-section images of pork carcasses were provided by the Danish Slaugh-
ter-Houses and annotated by M.Sc. Rune Fisker, DTU and clustered by
M.Sc. Nicolae Duta, Michigan State University.

M.D. Lars Hyldstrup, H:S Hvidovre Hospital provided all metacarpal ra-
diographs.

Home ground thanks goes out to my academic advisors, Ph.d. student
Rune Fisker and Dr. Bjarne K. Ersbøll, without whom I wouldn’t have
done my master thesis in image analysis and with whom it has become
magnitudes better due to your huge encouragement and support. Thank
you.

6

Further more I would like to thank the whole image analysis section for
providing a pleasant and inspiring atmosphere. In particular I would like
to thank my office-mate Klaus Baggesen Hilger for all his help and fruitful
discussions, Dr. Rasmus Larsen for being substitute advisor during the hol-
idays of Dr. Bjarne K. Ersbøll, Lars Pedersen for lending me his computer
during his stay at Yale. Finally Henrik Aanæs is thanked for proofreading
my manuscript.

Hans P. Palbøl for proofreading and for doing courses and projects with
me for the bulk part of my years at DTU. It has been great fun studying
with you.

The indirect support of Karlheinz Brandenburg and Justin Frankel is also
gratefully acknowledged. Keep up the good work.

My family for all your love, support and encouragement. I am sorry that
my thesis work coincided with your wish to move to another place. Help is
outstanding :-)

A heartfelt thanks goes out to my girlfriend Katharina for all your love,
support and patience when I was only thinking about strange formulas.

At last, I would like to thank Poul Rose for your initial encouragement to
do mathematical-based research.

Mikkel Bille Stegmann

7

Abstract

This thesis presents a general approach towards image segmentation using
the learning-based deformable model Active Appearance Model (AAM)
proposed by Cootes et al. The primary advantage of AAMs is that a pri-
ori knowledge is learned through observation of both shape and texture
variation in a training set. From this, a compact object class description
is derived, which can be used to rapidly search images for new object in-
stances.

A thorough treatment and discussion of the theory behind AAMs is given,
followed by several extensions to the basic AAM, which constitutes the ma-
jor contribution of this thesis. Extensions include automatic initialization
and unification of finite element models and AAMs. All of these have been
implemented in a structured and fast C++ framework; the AAM-API.

Finally, case studies based on radiographs of metacarpals, cardiovascular
magnetic resonance images and perspective images of pork carcass are pre-
sented. Herein the performance of the basic AAM and the developed ex-
tensions are assessment using leave-one-out evaluation.

It is concluded that AAMs – as a data-driven and fully automated method
– successfully can perform object segmentation in challenging and very dif-
ferent image modalities with very high accuracy. In two of three cases
subpixel accuracy were obtained w.r.t. object segmentation.

Keywords: Deformable Template Models, Snakes, Principal Component
Analysis, Shape Analysis, Non-Rigid Object Segmentation, Non-Rigid Ob-
ject Detection, Initialization, Optimization, Finite Element Models.

8

9

Resumé

I denne afhandling præsenteres en general metode til segmentering af bil-
leder; den indlæringsbaserede deformable template model Active Appear-
ance Model (AAM), introduceret ved Cootes et al. Hovedbidraget i AAM
metoden er, at forh̊andsviden omkring form og tekstur er indlært igen-
nem et givent træningssæt. Fra dette opbygges en kompakt beskrivelse
af den klasse af objekter modellen repræsenterer. Beskrivelsen anvendes
efterfølgende til at gennemsøge nye billeder for forekomster af objekttypen.

Der gives en grundig beskrivelse og diskussion af det matematiske fun-
dament for AAM metoden, efterfulgt af adskillige udvidelser af AAM-
formuleringen. Dette udgør det væsentlige bidrag i denne afhandling.
Blandt de udformede udvidelser er automatisk initialisering samt en kom-
binering af AAM og finit-element metoder. Alt arbejde er udført som et
struktureret og effektivt C++ bibliotek (AAM-API).

Afslutningsvis præsenteres case-studier af røntgenbilleder af mellemh̊ands-
knogler, magnetisk resonans billeder af det menneskelige hjerte samt per-
spektiviske billeder af svinekød. Baseret p̊a disse, er der udført en grundig
evaluering af AAM metodens præcision vha. leave-one-out evaluering.

Det er konkluderet at AAM – som en fuldautomatisk og data-drevet metode
– succesfuldt og med høj præcision, kan udføre segmentering i endog meget
udfordrende og forskelligartede billed-modaliteter. I to af de tre cases er
der opn̊aedet subpixel præcision mht. objektsegmentering.

Nøgleord: Deformable Template Models, Snakes, Principal komponent
analyse, Formanalyse, Ikke-rigid object segmentering, Ikke-rigid objekt de-
tektion, Initialisering, Optimering, Finit-element modeller.

10

11

Contents

1 Introduction 14

1.1 Motivation and Objectives 14

1.2 Thesis Overview . 15

1.3 Mathematical Notation . 15

1.4 Nomenclature . 16

2 Background 17

I Statistical Models of Shape and Texture 18

3 Introduction 19

4 Shape Model Formulation 20

4.1 Overview . 20

4.2 Shapes and Landmarks . 20

4.3 Obtaining Landmarks . 21

4.4 Shape Alignment . 23

4.4.1 The Procrustes Shape Distance Metric 23

4.4.2 Aligning a Set of Shapes 24

12 CONTENTS

4.5 Modelling Shape Variation 25

4.5.1 Reducing Non-linearity 29

4.5.2 Improving Specificity in the PDM 30

4.6 Summary . 31

5 Texture Model Formulation 32

5.1 Overview . 32

5.2 Object Texture . 32

5.3 Image Warping . 32

5.3.1 Piece-wise Affine . 33

5.3.2 Pixel Interpolation 34

5.4 Acquiring Texture in Practice 35

5.5 Photometric Normalization 35

5.6 Modelling Texture Variation 36

5.6.1 Reduction of Dimensions in the PCA 37

5.7 Summary . 38

6 Combined Model Formulation 39

6.1 Overview . 39

6.2 Combining Models of Shape and Texture 39

6.2.1 Comparing Pixel-distances and Intensity 40

6.3 Choosing Modes of Variation 40

6.4 Summary . 41

II Active Appearance Models 42

7 Basic Active Appearance Models 43

7.1 Solving Parameter Optimization Off-line 43

CONTENTS 13

7.1.1 Details on Multivariate Linear Regression 46

7.2 Iterative Model Optimization 48

7.3 Summary . 49

8 Discussion of Basic AAMs 50

8.1 Overview . 50

8.2 Forces . 50

8.3 Drawbacks . 50

8.4 Hidden Benefits . 51

8.5 AAMs Posed in a Bayesian Setting 51

9 Extensions of the Basic AAM 53

9.1 Overview . 53

9.2 Enhanced Shape Representation 53

9.3 Increasing Texture Specificity 54

9.4 Border AAMs . 55

9.5 Constrained AAM Search 56

9.6 Initialization . 56

9.7 Fine-tuning the Model Fit 57

9.8 Robust Similarity Measures 58

9.9 Summary . 60

10 Unification of AAMs and Finite Element Models 61

10.1 Overview . 61

10.2 Motivation . 61

10.3 The Basic Idea . 62

10.4 Finite Element Models . 62

10.5 Integration into AAMs . 63

10.6 Results . 65

10.7 Conclusion . 65

14 CONTENTS

III Implementation 66

11 The AAM-API 67

11.1 Overview . 67

11.2 Requirements . 67

11.3 The API at a Glance . 68

11.4 API Extension by Inheritance 68

11.5 Console interface . 69

11.6 File I/O . 69

IV Experimental Results 70

12 Experimental Design 71

12.1 Methodology . 71

12.2 Performance Assessment . 71

12.2.1 Comparison to Ground Truth 71

12.2.2 Self-contained Validation 72

12.3 Summary . 73

13 Radiographs of Metacarpals 74

13.1 Overview . 74

13.2 Results . 74

13.3 Summary . 76

14 Cardiac MRIs 78

14.1 Results . 79

14.2 Summary . 80

CONTENTS 15

15 Cross-sections of Pork Carcass 82

15.1 Results . 82

15.2 Summary . 82

V Discussion 84

16 Propositions for Further Work 85

16.1 Overview . 85

16.2 Robust Model Building . 85

16.3 Active Texture Weighting 85

16.4 Relaxation of Shape Constraints 86

16.5 Scale-Space Extension . 86

17 Perspectives of AAMs 87

17.1 AAMs in 3D . 87

17.2 Multivariate Imagery . 87

18 Discussion 89

18.1 Summary of Main Contributions 89

18.2 Conclusion . 89

Bibliography 90

Index 93

A Detailed Model Information 97

A.1 Radiographs of Metacarpals 97

A.2 Cardiac MRIs – Set 1 B-Slices 101

A.3 Cross-sections of Pork Carcasses 105

16 CONTENTS

B Active Appearance Models: Theory and Cases 109

B.1 Introduction . 110

B.2 Active Appearance Models 110

B.2.1 Shape & Landmarks 110

B.2.2 Shape Formulation 111

B.2.3 Texture Formulation 111

B.2.4 Optimization . 112

B.2.5 Initialization . 113

B.3 Implementation . 114

B.4 Experimental Results . 114

B.4.1 Radiographs of Metacarpals 114

B.4.2 Cardiac MRIs . 115

B.5 Discussion & Conclusions 116

B.6 Acknowledgements . 118

B.7 Illustrated Cardiac AAM 118

C The AAM Web-site 120

D Source Code Documentation 121

E AAM-API File Format Examples 123

E.1 AMF – AAM Model File . 123

E.2 ACF – AAM Config File . 124

E.3 ASF – AAM Shape File . 124

E.4 AOF – AAM Optimization File 125

F AAM-API Console Interface Usage 126

G ASF – AAM Shape Format Specification 129

17

List of Tables

9.1 Mean fit results using general-purpose optimization methods for

fine-tuning. 58

12.1 Result tabular. 73

13.1 Leave-one-out test results for the metacarpal AAMs. 75

14.1 Leave-one-out test results for the 14 A-slices of Set 1. 79

14.2 Leave-one-out test results for the 14 B-slices of Set 1. 79

14.3 Leave-one-out test results for the 10 A-slices of Set 2. 79

14.4 Leave-one-out test results for the 7 B-slices of Set 2. 79

15.1 Leave-one-out test results for the pork carcass AAM. 82

18 LIST OF TABLES

19

List of Figures

1.1 Image interpretation using a priori knowledge. What is depicted

here? Courtesy of Preece et al. [56]. 14

3.1 The three steps of handling shape and texture in AAMs. 19

4.1 Four exact copies of the same shape, but under different euclidean

transformations. 20

4.2 A hand annotated using 11 anatomical landmarks and 17 pseudo-

landmarks. 21

4.3 Metacarpal-2 annotated using 50 landmarks. 22

4.4 The Procrustes distance. 24

4.5 A set of 24 unaligned shapes. Notice the position-outlier to the

right. 25

4.6 (a) The PDM of 24 aligned shapes. (b) Ellipsis fitted to the single

point distribution of figure (a). 25

4.7 Principal axis. 2D example. 26

4.8 Shape covariance matrix. Black, grey & white maps to negative,

none & positive covariance. 27

4.9 Shape correlation matrix. Black, white maps to low, high corre-

lation. 27

4.10 (a) Mean shape and deformation vectors of the 1st eigenvector.

(b) Mean shape, deformation vectors of the 1st eigenvector and

deformed shape. 28

20 LIST OF FIGURES

4.11 Mean shape deformation using 1st, 2nd and 3rd principal mode.

bi = −3
√

λi, bi = 0, bi = 3
√

λi. 28

4.12 Shape eigenvalues in descending order. 29

4.13 PC1 (bs,1) vs. PC2 (bs,2) in the shape PCA. 29

4.14 Training set of 100 unaligned artificially generated rectangles con-

taining 16 points each. 30

4.15 Point cloud from aligned rectangles sized to unit scale, |x| = 1.

The mean shape is fully shown. 30

4.16 Point-cloud from aligned rectangles sized to unit scale, |x| = 1,

and transformed into tangent space. The mean shape is fully shown. 30

4.17 Tadpole example of a PCA breakdown. Notice in mode 1, how the

head size and length is correlated with the bending. This is easily

seen in the scatter plot of PCA parameter 1 vs. 3 (lower right),

where b3 has a simple non-linear dependency of b1. Adapted from

[64]. 31

5.1 Image warping. 33

5.2 Circumcircle of a triangle satisfying the Delaunay property. . . . 33

5.3 Delaunay triangulation of the mean shape. 33

5.4 Problem of the piece-wise affine warping. Straight lines will usu-

ally be kinked across triangle boundaries. 34

5.5 Bilinear interpolation. The intensity at ε is interpolated from the

four neighboring pixels, α, β, γ and ϕ. 35

5.6 PC1 (bg,1) versus PC2 (bg,2) in the texture PCA. 36

5.7 Texture eigenvalues in descending order. 37

6.1 Three largest combined metacarpal modes from top to bottom;

ci = −3
√

λi, ci = 0, ci = 3
√

λi. 40

6.2 Combined eigenvalues. 41

7.1 Displacement plots for a series of model predictions versus the

actual displacement. Error bars are equal to 1 std.dev. 45

LIST OF FIGURES 21

7.2 AAM Optimization. Upper left: The initial model. Upper right:

The AAM after 2 iterations. Lower left: The converged AAM (7

iterations). Lower right: The original image. 49

9.1 Removal of unwanted triangles resulting from the Delaunay tri-

angulation of concave shapes. 53

9.2 (a) Concave shape with convex triangles. (b) Concave shape with

convex triangles removed. 53

9.3 The shrinking problem. 54

9.4 Shape neighborhood added using an artificial border placed along

the normals. 54

9.5 (a) Shape annotated using 150 landmarks. (b) Shape with a

neighborhood region added resulting in 2× 150 = 300 landmarks. 55

9.6 ASM-like AAM generated by adding shape neighborhood and a

hole. 55

9.7 (a) Shape annotated using 83 landmarks. (b) Border shape with

3× 83 = 249 landmarks. 56

9.8 Example of AAM search and Simulated Annealing fine-tuning,

without (left) and with (right) the use of a robust similarity mea-

sure (Lorentzian error norm). Landmark error decreased from 7.0

to 2.4 pixels (pt.-to-crv. error). 60

10.1 A shape, a, with a blob, b, inside that is hard to annotate. . . . 62

10.2 A finite element model interpreted as a set of point masses inter-

connected by springs. 62

10.3 High frequency FEM-modes of a square surface modelled by 25

unit masses. 63

10.4 Warp modification by FEMs. 64

10.5 Warp modification by FEMs using piece-wise affine warps. . . . 64

10.6 A square shape deformed by adding FEM-deformed AIPs and

fixating the original outer shape points. 65

12.1 Left: Point to point (pt.pt.) error. Right: Point to associated

border (pt.crv.) error. 72

22 LIST OF FIGURES

12.2 The effect of using the Mahalanobis distance in two dimensions.

Model instance B is valid, while model instance A is classified

illegal . 73

13.1 Hand anatomy. Metacarpals numbered at the fingertips. 74

13.2 The mismath at metacarpal 3, 4, 5 instead of 2, 3, 4. in test 1. . 75

13.3 Point to curve histograms for radiograph AAMs. Bin size = .25

pixel. 75

13.4 Mean point to point deviation from the ground truth annotation

of each metacarpal. Low location accuracy is observed at the

distal and proximal ends. 76

13.5 Test 3: (a) Worst model fit, 1.01 pixels (pt.crv.). (b) Best model

fit, 0.53 pixels (pt.crv.). 76

13.6 (a) AAM after automatic initialization. (b) Optimized AAM.

Both cropped to show details. 77

14.1 Left: Set 1 Cardiac A-slice with papillary muscles. Right: Set

1 Cardiac B-slice without papillary muscles. Both cropped and

stretched to enhance features. 78

14.2 Left: Set 2 Cardiac A-slice with papillary muscles. Right: Set

2 Cardiac B-slice without papillary muscles. Both cropped and

stretched to enhance features. 79

14.3 Test 1 on B-slices of Set 1: (a) Worst model fit, 2.43 pixels

(pt.crv.). (b) Best model fit, 0.65 pixels (pt.crv.). 80

14.4 Point to curve histograms for the AAMs built on A-slices from

Set 1. Bin size = .5 pixel. 80

14.5 Point to curve histograms for the AAMs built on B-slices from

Set 1. Bin size = .5 pixel. 81

14.6 Point to curve histograms for the AAMs built on A- and B-slices

from Set 2. Bin size = .5 pixel. 81

14.7 A: AAM after automatic initialization. B: Optimized AAM. Both

cropped to show details. 81

LIST OF FIGURES 23

15.1 Point to curve histograms for different pork carcass AAMs. Bin

size = .25 pixel. 83

15.2 Test 3: (a) Worst model fit, 1.34 pixels (pt.crv.). (b) Best model

fit, 0.60 pixels (pt.crv.). 83

A.1 Point cloud of the unaligned annotations. 97

A.2 Point cloud of the aligned annotations with mean shape fully drawn. 97

A.3 Delaunay triangulation of the mean shape. 98

A.4 Independent principal component analysis of each model point. . 98

A.5 Mean shape deformation using 1st, 2nd and 3rd principal mode.

bi = −3
√

λi, bi = 0, bi = 3
√

λi. 98

A.6 Shape eigenvalues in descending order. 99

A.7 PC1 (bs,1) vs. PC2 (bs,2) in the shape PCA. 99

A.8 Texture eigenvalues in descending order. 99

A.9 PC1 (bg,1) versus PC2 (bg,2) in the texture PCA. 99

A.10 Correlation matrix of the annotations. 100

A.11 Texture variance, black corresponds to high variance. 100

A.12 Combined eigenvalues. 100

A.13 Point cloud of the unaligned annotations. 101

A.14 Point cloud of the aligned annotations with mean shape fully drawn.101

A.15 Delaunay triangulation of the mean shape. 102

A.16 Independent principal component analysis of each model point. . 102

A.17 Mean shape deformation using 1st, 2nd and 3rd principal mode.

bi = −3
√

λi, bi = 0, bi = 3
√

λi. 102

A.18 Shape eigenvalues in descending order. 103

A.19 PC1 (bs,1) vs. PC2 (bs,2) in the shape PCA. 103

A.20 Texture eigenvalues in descending order. 103

A.21 PC1 (bg,1) versus PC2 (bg,2) in the texture PCA. 103

A.22 Correlation matrix of the annotations. 104

24 LIST OF FIGURES

A.23 Texture variance, black corresponds to high variance. 104

A.24 Combined eigenvalues. 104

A.25 Point cloud of the unaligned annotations. 105

A.26 Point cloud of the aligned annotations with mean shape fully drawn.105

A.27 Delaunay triangulation of the mean shape. 105

A.28 Independent principal component analysis of each model point. . 105

A.29 Mean shape deformation using 1st, 2nd and 3rd principal mode.

bi = −3
√

λi, bi = 0, bi = 3
√

λi. 106

A.30 Shape eigenvalues in descending order. 106

A.31 PC1 (bs,1) vs. PC2 (bs,2) in the shape PCA. 106

A.32 Texture eigenvalues in descending order. 107

A.33 PC1 (bg,1) versus PC2 (bg,2) in the texture PCA. 107

A.34 Correlation matrix of the annotations. 107

A.35 Texture variance, black corresponds to high variance. 107

A.36 Combined eigenvalues. 108

B.1 Displacement plot for a series of y-pose parameter displacements.

Actual displacement versus model prediction. Error bars are 1

std.dev. 113

B.2 Model border after automated initialization (cropped). 115

B.3 Optimized model border. 115

B.4 AAM after automated initialization (cropped). 115

B.5 Optimized AAM (cropped). 116

B.6 Mean point to point deviation from the ground truth annotation

of each metacarpal. Low location accuracy is observed at the

distal and proximal ends. 116

B.7 Model border after automated initialization. 117

B.8 Optimized model border. 117

B.9 AAM after automated initialization (cropped). 117

LIST OF FIGURES 25

B.10 Optimized AAM (cropped). 117

B.11 Original image (cropped). 118

B.12 Point cloud of four unaligned heart chamber annotations. 118

B.13 Point cloud of four aligned heart chamber annotations with mean

shape fully drawn. 118

B.14 Correlation matrix of the four annotations. Observe the obvious

point correlations. 118

B.15 Delanay triangulation of the mean shape. 119

B.16 Point variation of the four annotations; radius = σx +σy. Notice

the large point variation to the lower left. 119

B.17 The first eigenvector plotted as displacement vectors. Notice that

the large point variation observed in figure B.16 is point variation

along the contour, which only contributes to a less compact model

contrary to explaining actual shape variation. 119

B.18 Mean shape and shape deformed by the first eigenvector. Notice

that this emphasizes the point above; that a lot of the deformation

energy does not contribute to any actual shape changes. 119

26 LIST OF FIGURES

27

Chapter 1

Introduction

This thesis deals with a core problem within computer vision research,
namely the segmentation of non-rigid objects in digital images.

Several decades of research in computer vision and pattern recognition
have resulted in fast, robust and accurate methods for the detection of
rigid objects. However, until about a decade ago most methods would fail
in presence of objects with great variability regarding shape and appear-
ance. Nevertheless humans would have no problems in classifying these
into equivalence classes – i.e. faces, hands, fish etc.

To overcome these limitations a whole family of methods is spun off to
address the problem of variability. Many of these also address the problems
of partial image evidence, occlusion and severe noise. This family is called
the deformable template models.1

A novel and fairly sophisticated deformable template model – of which this
thesis is dedicated to – is the learning-based Active Appearance Model [10].

The constructivist theorists of cognitive psychology believe that the process
of seeing is an active process in which our world is constructed from both the
retinal view and prior knowledge [56]. This constitutes the motivation of
all learning-based computer vision methods such as the Active Appearance
Models (AAMs). To stress this point try to see what is depicted at figure
1.1 without reading the upside-down caption.

1Alternatively: deformable templates or deformable models.

28 Chapter 1. Introduction

Figure 1.1: Image interpretation using a priori knowledge. What is depicted
here? Courtesy of Preece et al. [56].

Tip: TrylookingforaDalmatiandogsniffingleavesinapark.

Without a priori knowledge, it would never have been possible to decipher
the black blobs of figure 1.1. This is the main assumption behind the
constructivist approach [56]. Namely, that visual perception involves the
intervention of representations and memories such as ”dog”, ”park” etc.
Mundy [53] also stress this point (pp. 1213, l. 5-8):

”. . .This process of recognition, literally to RE-cognize, permits
an aggregation of experience and the evolution of relationships
between objects based on a series of observations.”

These thoughts are essential to fully grasp the motivation and design of
learning-based models in computer vision.

1.1 Motivation and Objectives

The Active Appearance Model was proposed by Cootes et al. [10] in 1998
as one of the more sophisticated deformable template models. This is

1.2 Thesis Overview 29

primarily due to a unique and effective combination of techniques that
enables searching of images with a flexible, compact and complete model
representation feasible in the millisecond range.

To our knowledge only one group beside Cootes’ namely the vision group
at University of Iowa, has published work on AAMs [52]. Due to this
fact and the overall elegance of AAMs, work in this area constituted a
suitable relevant and challenging topic for a master thesis. Thus, the main
objectives set forth was:

• Discuss, document and explore the basic AAM.
• Design general extensions to the AAM approach.
• Evaluate AAMs through a set of relevant and varying cases.

An additional aim was to provide a platform for further development on
AAMs through an open, free and well-documented application program-
mers interface (API).

1.2 Thesis Overview

The thesis is structured into five parts where each part requires knowledge
from the preceding parts.

Part I: Statistical Models of Shape and Texture Presents the statis-
tical and mathematical foundations for AAMs.

Part II: Active Appearance Models Combines the statistical models
into performance effective AAMs and presents various extensions to
the basic AAM.

Part III: Implementation Introduces the developed application program-
mers interface on AAMs.

Part IV: Experimental Results Assess AAM performance and prob-
lems on real-life cases.

Part V: Discussion Proposes ideas for further work on AAMs and draws
conclusions from the thesis work.

30 Chapter 1. Introduction

Some of the techniques and preliminary results can be found in abbrevi-
ated form in a paper prepared during the thesis period [67]. The paper is
attached as appendix B.

1.3 Mathematical Notation

To ease reading and understanding; the used notation conventions are enu-
merated below.

Vectors are viewed upon as column vectors and typeset in non-italic lower-
case boldface using commas to separate elements: v = [a, b, c]T

Vector functions are typeset in non-italic boldface: f(v) = v + v

Matrices are typeset in non-italic boldface capitals as:

M =
[

a b
c c

]

Matrix diagonals are manipulated using the diag(a) operator. If a is a
vector of lenght n an n × n diagonal matrix is produced. If a is an
n× n matrix the diagonal is extracted into a vector of lenght n.

Dot-product operator is typeset as: a · b =
∑
i

aibi

Sets are typeset using curly braces: {α β γ}

”Unit vectors” are typeset as: 1 = [1 · · · 1]T

Unit matrices are typeset as:

I =

1 · · · 0
...

. . .
...

0 · · · 1

1.4 Nomenclature 31

1.4 Nomenclature

Variables used without an explicit denotation conform to the nomenclature
below.

I An image (or the unit matrix).
E The error energy in model to image fit.
k The number of Euclidean dimensions. In the planar case k = 2.
n The number of points on a shape.
N The number of shapes in a training set.
m The number of texture samples inside a shape.
x A normal vector, or a planar shape.
Σ The covariance matrix (also called the dispersion matrix).
Λ A diagonal matrix of eigenvalues.
Φ A matrix of eigenvector columns.
λi The ith eigenvalue.
φφi The ith eigenvector.
θ A 2D shape rotation given in radians.

32 Chapter 1. Introduction

33

Chapter 2

Background

In recent years, the model-based approach towards image interpretation
named deformable template models has proven very successful. This is es-
pecially true in the case of images containing objects with large variability.

As the precise definition of a deformable template model we will use the
one of Fisker [26]:

Definition 1: A deformable template model can be character-
ized as a model, which under an implicit or explicit optimization
criterion, deforms a shape to match a known object in a given
image.

Among the earliest and most well known deformable template models is
the Active Contour Model – known as Snakes proposed by Kass et al.
[46]. Snakes represent objects as a set of outline landmarks upon which a
correlation structure is forced to constrain local shape changes. In order
to improve specificity, many attempts at hand crafting a priori knowledge
into a deformable template model have been carried out. These include
Yuille’s et al. [73] parameterization of a human eye using ellipses and arcs.

In a more general approach, while preserving specificity Cootes et al. [15]
proposed the Active Shape Models (ASM) where shape variability is learned
through observation. In practice, this is accomplished by a training set of
annotated examples followed by a Procrustes analysis [35] combined with
a principal component analysis.

34 Chapter 2. Background

A direct extension of the ASM approach has lead to the Active Appearance
Models [10]. Besides shape information, the textual information, i.e. the
pixel intensities across the object, is included into the model. The AAM
has been further developed in [13, 14, 22].

Jain et al. [44, 45] classifies deformable template models as either being free
form or parametric where the former denotes model deformation dependent
on local constraints on the shape and the latter global shape constraints. By
building statistical models of shape and texture variation from a training
set, AAM qualifies as being a parametric deformable template model.

Quite similar to AAMs and developed in parallel herewith, Sclaroff &
Isidoro proposed the Active Blob approach [43, 58]. Active Blobs is a
real-time tracking technique, which captures shape and textual informa-
tion from a prototype image using a finite element model (FEM) to model
shape variation. Compared to AAMs, Active Blobs deform a static texture,
whereas AAMs change both texture and shape during the optimization.

Also based on a prototype – and a finite element framework using Galerkin
interpolants – is the Modal Matching technique proposed by Sclaroff &
Pentland [59]. Objects are matched using the strain energy of the FEM.
A major advantage is that the objects can have an unequal number of
landmarks and it easily copes with large rotations.

For further information on deformable template models, the reader is re-
ferred to the surveys given in [26, 4, 44, 51].

Part I

Statistical Models of
Shape and Texture

35

37

Chapter 3

Introduction

This part provides an in-depth treatment and discussion of how Active
Appearance Models build its statistical models of shape and texture and
how these are combined into one unified model.

The notation, treatment and even some parts of the algorithms is occa-
sionally somewhat different from the treatment by the inventors of AAMs
[10, 14]. However, the overall ideas are the same.

Figure 3.1: The three steps of handling shape and texture in AAMs.

The handling of shape and texture can be viewed as dual processes.1 The
setup of these processes is quite similar to other data handling processes
though the composition of techniques is quite unique.

The first step is the data acquisition. Hereafter follows a suitable normal-
ization after which the data are ready to be analyzed and described in terms
of statistical models. The process setup is given as a flow chart on figure 3.1.

1Though the texture mode in reality is defined in terms of the shape model.

38 Chapter 3. Introduction

To stress the coherence between shape and texture handling the steps are
specified below.

Capture
Shape Captured by defining a finite number of points on the contour

of the object in question.
Texture Captured by sampling in a suitable image warping function

(e.g. a piece-wise affine, thin-plate or another warp function).

Normalization
Shape Brought into a normalized frame by aligning shapes w.r.t.

position, scale and orientation using a Procrustes analysis.
Texture Removing global linear illumination effects by standardiza-

tion.

Statistical Analysis
Shape & Texture Principal Component Analysis is performed to

achieve a constrained and compact description.

The level of detail in the following chapters is adjusted so that the current
implementation can be understood and/or redone solely upon this descrip-
tion.

39

Chapter 4

Shape Model Formulation

4.1 Overview

The following chapter provides the fundamental concepts and techniques
needed to understand the statistical models of shape used in AAMs. First
the concept of a shape is defined, next – the basis of the mathematical
framework – the concept of landmarks is treated. The chapter is concluded
by demonstrating how shape variation can be efficiently modeled using
principal component analysis.

Effort has been put into making the treatment rich on examples and refer-
ences to further treatment of the topics.

4.2 Shapes and Landmarks

The first matter to clarify is: What do we actually understand by the term
shape? A starting point could be the few definitions given below:

”A collection of corresponding border points.” [62]

”The characteristic surface configuration of a thing;
an outline or a contour.” [1]

40 Chapter 4. Shape Model Formulation

”Something distinguished from its surroundings by its outline.”
[1]

Though the above captures the characteristics of the term shape fairly well;
this thesis will adapt the definition by D.G. Kendall [20] and define shape
as:

Definition 2: Shape is all the geometrical information that
remains when location, scale and rotational effects are filtered
out from an object.

The term shape is – in other words – invariant to Euclidean transforma-
tions. This is reflected in figure 4.1.

The next question that naturally arises is: How should one describe a
shape? In everyday conversation, unknown shapes are often described as
references to known shapes – e.g. ”Italy has the shape of a boot”. Such de-
scriptions can obviously not easily be utilized in an algorithmic framework.

Figure 4.1: Four exact copies of the same shape, but under different euclidean
transformations.

One way to describe a shape is by locating a finite number of points on the
outline. Consequently, the concept of a landmark is adapted [20]:

Definition 3: A landmark is a point of correspondence on
each object that matches between and within populations.

4.2 Shapes and Landmarks 41

Dryden & Mardia further more discriminates landmarks into three sub-
groups [20]:

• Anatomical landmarks Points assigned by an expert that corre-
sponds between organisms in some biologically meaningful way.

• Mathematical landmarks Points located on an object according
to some mathematical or geometrical property, i.e. high curvature or
an extremum point.

• Pseudo-landmarks Constructed points on an object either around
the outline or between landmarks.

Figure 4.2: A hand annotated using 11 anatomical landmarks and 17 pseudo-
landmarks.

Synonyms for landmarks include homologous points, nodes, vertices, anchor
points, fiducial markers, model points, markers, key points etc.

A mathematical representation of an n-point shape in k dimensions could
be to concatenate each dimension into a kn-vector.

In the following only 2D shapes are considered, all though most of the
results in the remaining part of the thesis extend directly to 3D – and
often even higher dimensionalities. Hence k = 2.

The vector representation for planar shapes would then be:

x = [x1, x2, . . . , xn, y1, y2, . . . , yn]T (4.1)

42 Chapter 4. Shape Model Formulation

Notice that the above representation does not contain any explicit infor-
mation about the point connectivity.

4.3 Obtaining Landmarks

Although the concept of landmarks conceptually is very useful – the ac-
quisition of such can be very cumbersome. For 2D images the process
could involve manually placing of hundreds of points including constantly
comparing to other annotations to ensure correspondence.

It should be needless to mention that this approach becomes substantially
more tedious and cumbersome in the 3D (x, y, z) and 4D (x, y, z, time) case.

To ease the burden effort has been put into the development of automatic
and semi-automatic placement of landmarks.

One could claim that solving the problem of automatic placement of land-
marks equals solving the general correspondence problem in computer vi-
sion. Myriads of attempts have been done regarding that matter. If it
successfully could be done one would only need to annotate one ”gold”
image of the object in question, and the solution to the correspondence
problem could solve the object segmentation in this bottom-up fashion.

This is – in general – unfortunately not possible. For that reason we need
to constrain the solution space somewhat. Defining these constraints – and
handling outliers – constitutes the major part of all work in the field of
computer vision.

One way to constrain the solution space, is to use a manual trained sparse
model to initially place the landmark points. If necessary, the points can
be corrected manually. Notice however – in the case of basic AAMs – if no
adjustments of the points are done, then the training example only adds
new texture variation to the model, since the shape itself is a superposition
of known shapes.

Regarding semi-automatic placement of landmarks several successful at-
tempts have been done. Most of these assume that a dense sampling of the
object outline is given beforehand.

One example is that of Sclaroff & Pentland [59] where a finite element
model (FEM) using Galerkin interpolants is built over the set of shape

4.3 Obtaining Landmarks 43

points1. The correspondence of a single point to another set of points is
determined by comparing the displacement vectors of the point as given by
the finite element model. In this way the point set is described in terms
of generalized symmetries (i.e. the objects FEM-eigenmodes). One major
advantage hereof is that the two point sets can be of unequal sizes.

Another example include the work of Duta et al. [21] where k-means clus-
tering of the training shapes is performed and followed by a Procrustes
analysis of each cluster. Each shape is trimmed into a sparse represen-
tation and compared to a dense representation of the remaining shapes.
Comparisons are collected into a pair wise mean alignment matrix which
is used to determine the best point correspondences. Point connectivity is
used to increase robustness.

Another example of using connectivity information while establishing point
correspondences is the work by Andresen & Nielsen [2] where 3D registra-
tion solutions is constrained to a surface and an assumption of a non-folding
displacement field. This method is called Geometry-Constrained Diffusion.

Efford [25] identifies landmarks from a dense object contour by estimating
the curvature using a gaussian smoothing of the contour representation to
obtain robustness from contour noise. Mathematical landmarks are conse-
quently identified as extremums in the curvature function. Semi-landmarks
are interpolated as uniformly spaced points between the mathematical land-
marks.

Quite recently2 Walker et al. [71] proposed an iterative algorithm for deter-
mine point correspondence. This was accomplished using feature vectors
for each pixel inside a manually drawn region of interest (ROI) of each
training image. Feature vectors were first and second order normalized
Gaussian partial derivatives. It was shown that AAMs trained on the au-
tomatically generated training set could be of higher quality than AAMs
built on hand annotated training sets.

However, since AAMs consider both shape and texture as object class de-
scriptors we suggest that the point correspondence determination should
not solely rely on changes in curvature or direction of FEM-eigenmode dis-
placement vectors. Solutions should further be constrained by including

1Can be either sparse or dense.
2ECCV, Dublin, June 2000.

44 Chapter 4. Shape Model Formulation

information of the textural variation around the points. This will lead to
better models.

Figure 4.3: Metacarpal-2 annotated using 50 landmarks.

Another substantial problem in obtaining landmarks is that some object
classes lack points, which can be classified as corresponding across exam-
ples. This is especially true for many biological shapes and is treated in
depth by Bookstein [6]. Another source for this type of problems is occlu-
sions in the 3D to 2D projections in perspective images. Annihilation of
points can also be observed in malformation of organic shapes.

All examples in the remains of this part of the thesis are based on anno-
tations of a bone in the human hand. The image modality is radiographs
and the precise name of the bone is metacarpal-2. An example of such
an annotation is given in fig. 4.3. For further information on AAMs on
metacarpals, refer to the experimental part of this thesis.

As a concluding remark, one should remember that annotations by hu-
man experts itself contains errors. This is the core problem in obtaining
the so-called gold standards to evaluate medical image analysis3 techniques
against. To evaluate this type of noise, annotations are often done several
times by several graders to assess the between grader and within grader
variation. This is also known as the reproducibility and repeatability.

3And all other learning-based image analysis techniques for that matter.

4.4 Shape Alignment 45

4.4 Shape Alignment

To obtain a true shape representation – according to our definition – loca-
tion, scale and rotational effects need to be filtered out. This is carried out
by establishing a coordinate reference – w.r.t. position, scale and rotation,
commonly known as pose – to which all shapes are aligned.

Some literature also operates with the concept of pre-shape as introduced
by Kendall [20]. Pre-shape is the last step toward true shape – rotational
effects still need to be filtered out.

Below an alignment procedure for obtaining such a coordinate reference is
described. This is commonly known as Procrustes analysis4 [6, 14, 20, 35].

To aid the understanding and handling of a set of shapes from the same ob-
ject class the term shape space is introduced. Adapted to our nomenclature
from [20] this is defined as:

Definition 4: The Shape Space is the set of all possible
shapes of the object in question. Formally, the shape space Σn

k

is the orbit shape of the non-coincident n point set configura-
tions in the IRk under the action of the Euclidean similarity
transformations.

If k denotes the Euclidean dimensions and n denotes the number of land-
marks, the dimension of the shape space, follows from the above definition:

M = kn− k − 1− k(k − 1)
2

(4.2)

Proof Initially we have kn dimensions. The translation re-
moves k dimensions, the uniform scaling one dimension and the
rotation 1

2k(k − 1) dimensions.

4As a curiosity Procrustes was the nickname of a robber in Greek mythology called
Damastes, who lived by the road from Eleusis to Athens. He offered travelers hospitality
on a magical bed that would fit any guest. His humor was to stretch the ones who were
too short to fit the bed – until they died – or, if they were too tall, to cut off as
much of their limbs as would make them short enough. This rather unpleasant practice
continued until Damastes was killed by Theseus, son of Æthra and the Athenian king
Ægeus. Another nickname for Damastes was The one who stretches.

The term Procrustes Analysis was coined by Hurley & Cattell in 1962 [20].

46 Chapter 4. Shape Model Formulation

If a relationship between the distance in shape space and Euclidean distance
in the original plane can be established, the set of shapes actually forms a
Riemannian manifold containing the object class in question. This is also
denoted as the Kendall shape space [6]. This relationship is called a shape
metric.

Often used shape metrics include the Hausdorff distance [42], the strain
energy [59] and the Procrustes distance [21, 20, 6, 14]. Where the two
former compare shapes with unequal amount of points, the latter requiring
corresponding point sets. In the following, the Procrustes distance is used.

4.4.1 The Procrustes Shape Distance Metric

The Procrustes distance is a least-squares type shape metric that requires
shapes with one-to-one point correspondence.

To determine the Procrustes distance between two shapes involves four
steps:

1. Compute the centroid of each shape.
2. Re-scale each shape to have equal size.
3. Align w.r.t. position the two shapes at their centroids.
4. Align w.r.t. orientation by rotation.

The rotational step and the graphic interpretation of the Procrustes dis-
tance can be seen on fig. 4.4.

Mathematically the squared Procrustes distance between two shapes, x1

and x2, is the sum of the squared point distances after alignment:

P 2
d =

n∑

j=1

[(xj1 − xj2)
2 + (yj1 − yj2)

2] (4.3)

The centroid of a shape can be interpreted as center of mass of the physical
system consisting of unit masses at each landmark. Thus to compute the
centroid:

(x, y) =

 1

n

n∑

j=1

xj ,
1
n

n∑

j=1

yj

 (4.4)

4.4 Shape Alignment 47

Figure 4.4: The Procrustes distance.

To perform step 2 we obviously need to establish a size metric:

Definition 5: A shape size metric S(x) is any positive real
valued function of the shape vector that fulfils the following prop-
erty:

S(ax) = aS(x)

In the following the Frobenius norm is used as a shape size metric:

S(x) =

√√√√
n∑

j=1

[(xj − x)2 + (yj − y)2] (4.5)

Another often used scale metric is the centroid size5:

S(x) =
n∑

j=1

√
(xj − x)2 + (yj − y)2 (4.6)

5This metric also posses the interesting property that 2nS(x)2 equals the sum of the
inter-landmark distances [20].

48 Chapter 4. Shape Model Formulation

To filter out the rotational effects the following singular value decomposition
technique is used as suggested by Bookstein [6]:

1. Arrange the size and position aligned x1 and x2 as n× k matrices6.
2. Calculate the SVD, UDVT, of xT

1 x2

3. Then the rotation matrix needed to optimally superimpose x1 upon
x2 is VUT. In the planar case:

VUT =
[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]
(4.7)

As an alternative Cootes et al. suggest a variation on Procrustes distance-
based alignment by minimizing the closed form of |T(x1) − x2|2 where T
in the Euclidean case is:

T

(
x
y

)
=

[
a −b
b a

] [
x
y

]
+

[
tx
ty

]
(4.8)

The term |T(x1)−x2|2 is then simply differentiated w.r.t. (a, b, tx, ty). The
solution to alignment using the affine transformation is also given. Notice
however that this transformation changes the actual shape. Refer to [14]
for the calculations.

This concludes the topic of how to provide a consistent metric in shape
space and how to align two shapes.

4.4.2 Aligning a Set of Shapes

All though an analytic solution exists [41] to the alignment of a set of
shapes the following simple iterative approach suggested by Bookstein et
al. [6, 14] will suffice.

1. Choose the first shape as an estimate of the mean shape.
2. Align all the remaining shapes to the mean shape.
3. Re-calculate the estimate of the mean from the aligned shapes
4. If the mean estimate has changed return to step 2.
6In the planar case k = 2.

4.4 Shape Alignment 49

Convergence if thus declared when the mean shape does not change sig-
nificantly within an iteration. Bookstein notes that two iterations of the
above should be sufficient in most cases.

The remaining question is how to obtain an estimate of the mean shape?7

The most frequently used is the Procrustes mean shape or just the Pro-
crustes mean: If N denotes the number of shapes:

x =
1
N

N∑

i=1

xi (4.9)

This is also referred to as the Frechét mean.

Figure 4.5: A set of 24 unaligned shapes. Notice the position-outlier to the right.

As an example figure 4.5 shows the landmarks of a set of 24 unaligned
shapes. The result of the shape alignment can be seen as a scatter plot on
figure 4.6 (a) where the mean shape is superimposed as a fully drawn shape.
This is called the point distribution model (PDM) of our shapes. How to
model the variation within the PDM is the topic of the forthcoming section.

7Also called the shape prototype.

50 Chapter 4. Shape Model Formulation

To give a more clear impression of the point variation over the set of shapes,
an ellipsis has been fitted to each mean model point in figure 4.6 (b). 8

4.5 Modelling Shape Variation

As the previous sections have considered the definition and handling of
shapes, this section will demonstrate how intra-class shape variation can
be described consistently and efficiently.

The fact alone that equivalence classes of shapes can be established – e.g.
”We have a collection of shapes formed as leaves.” – hint us in the direction

8Where the major and minor axes are the eigenvectors of the point covariance matrix
(scaled to 3 std.dev.). More about this technique used on the complete set of points in
the following chapter.

(a) (b)

Figure 4.6: (a) The PDM of 24 aligned shapes. (b) Ellipsis fitted to the single
point distribution of figure (a).

4.5 Modelling Shape Variation 51

that there must be some sort of inter-point correlation present. Naturally,
as this actually is the only degrees of freedom left to constitute the percep-
tion of a shape, since – according to the definition of shape – all position,
scale and rotational effects are filtered out.

A classical statistical method of dealing with such redundancy in multi-
variate data is the linear orthogonal transformation; principal component
analysis (PCA). Based on work by Karl Pearson the principal component
analysis method was introduced by Harold Hotelling in 1933 [54]. The prin-
cipal component analysis is also known as the Karhunen-Loeve transform.

Figure 4.7: Principal axis. 2D example.

Conceptually the PCA performs a a variance maximizing rotation of the
original variable space. Furthermore, it delivers the new axes ordered ac-
cording to their variance. This is most easily understood graphically. In
figure 4.7 the two principal axes of a two dimensional data set is plotted
and scaled according to the amount of variation that each axis explains.

Hence, the PCA can be used as a dimensionality reduction method by pro-
ducing a projection of a set of multivariate samples into a subspace con-
strained to explain a certain amount of the variation in the original samples.
One application of this is visualization of multidimensional data.9 In con-
nection to the example in figure 4.7 one could choose to discard the second

9However – one should also consider the multidimensional scaling – MDS technique
for this special purpose.

52 Chapter 4. Shape Model Formulation

principal axis, and visualize the samples by the orthogonal projection of
the point upon the first (and largest) axis.

Another application of PCA is to determine any underlying variables or to
identify intra-class clustering or outliers.

In our application of describing shape variation by using PCA a shape of
n points is considered a data point in a 2nth dimensional space. But as
stated above it is assumed that this space is populated more sparsely than
the original 2n dimensions. It has been seen in eq. (4.2) that the reduction
should be at least k − 1− 1

2k(k − 1) due to the alignment process.

In practice the PCA is performed as an eigenanalysis of the covariance
matrix of the aligned shapes. The latter is also denoted the dispersion
matrix.

It is assumed that the set of shapes constitute some ellipsoid structure of
which the centroid can be estimated10:

x =
1
N

N∑

i=1

xi (4.10)

The maximum likelihood (ML) estimate of the covariance matrix can thus
be given as:

Σs =
1
N

N∑

i=1

(xi − x)(xi − x)T (4.11)

To prove the assumption of point correlation right, the correlation matrix
of the training set of 24 metacarpal-2 bones is shown in figure 4.8. In the
case of completely uncorrelated variables, the matrix would be uniformly
gray except along its diagonal. Clearly, this is not the case.

The point correlation effect can be emphasized by normalizing the covari-
ance matrix by the variance. Hence the correlation matrix, Γ, is obtained.

V = diag(
1√

diag(Σ)
) =

1
σ1

· · · 0
...

. . .
...

0 · · · 1
σn

 (4.12)

10Notice that this estimate naturally equals the mean shape.

4.5 Modelling Shape Variation 53

Shape covariance matrix

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

Figure 4.8: Shape covariance matrix. Black, grey & white maps to negative,
none & positive covariance.

Γ = VΣVT (4.13)

Recalling the shape vector structure; xxyy; it is from figure 4.9 – not
surprisingly – seen that the x- and y-component of each point is somewhat
correlated.

The principal axes of the 2nth dimensional shape ellipsoid are now given
as the eigenvectors, Φs, of the covariance matrix.

ΣsΦs = ΦsΛs (4.14)

Where Λs denotes a diagonal matrix of eigenvalues

Λs =

λi

. . .
λ2n

 (4.15)

corresponding to the eigenvectors in the columns of Φs.

54 Chapter 4. Shape Model Formulation

Shape correlation matrix

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

Figure 4.9: Shape correlation matrix. Black, white maps to low, high correlation.

Φs =

φφ1 · · · φφ2n

(4.16)

A shape instance can then be generated by deforming the mean shape by
a linear combination of eigenvectors:

x = x + Φsbs (4.17)

where bs is shape model parameters. Essentially the point or nodal repre-
sentation of shape has now been transformed into a modal representation
where modes are ordered according to their deformation energy – i.e. the
percentage of variation that they explains.

Notice that an eigenvector is a set of displacement vectors, along which the
mean shape is deformed. To stress this point, the first eigenvector has been
plotted on the mean shape in figure 4.10 (a). The resulting deformation of
the mean shape can be seen in figure 4.10 (b).

4.5 Modelling Shape Variation 55

As a further example of such modal deformations, the first three – most
significant – eigenvectors are used to deform the mean metacarpal shape in
figure 4.11.

What remains is to determine how many modes to retain. This leads to a
trade-off between the accuracy and the compactness of the model. However,
it is safe to consider small-scale variation as noise. It can be shown that
the variance along the axis corresponding to the ith eigenvalue equals the
eigenvalue itself, λi. Thus to retain p percent of the variation in the training
set, t modes can be chosen satisfying:

t∑

i=1

λi ≥ p

100

2n∑

i=1

λi (4.18)

Notice that this step basically is a regularization of the solution space.

In the metacarpal case 95% of the shape variation can be modeled using 12
parameters. A rather substantial reduction since the shape space originally
had a dimensionality of 2n = 2 × 50 = 100. To give an idea of the decay

(a) (b)

Figure 4.10: (a) Mean shape and deformation vectors of the 1st eigenvector. (b)
Mean shape, deformation vectors of the 1st eigenvector and deformed shape.

56 Chapter 4. Shape Model Formulation

(a)

b1 = −3
√

λ1

(b) b1 = 0 (c)

b1 = +3
√

λ1

(d) b2 = −3
√

λ2 (e) b2 = 0 (f) b2 = +3
√

λ2

(g) b3 = −3
√

λ3 (h) b3 = 0 (i) b3 = +3
√

λ3

Figure 4.11: Mean shape deformation using 1st, 2nd and 3rd principal mode.
bi = −3

√
λi, bi = 0, bi = 3

√
λi.

4.5 Modelling Shape Variation 57

rate of the eigenvalues a percentage plot is shown in figure 4.12.

0 5 10 15 20 25
0

5

10

15

20

25

30

35

Eigenvalue

V
ar

ia
nc

e
ex

pl
an

at
io

n
fa

ct
or

 (
pe

rc
en

t)

Shape eigenvalues

Figure 4.12: Shape eigenvalues in descending order.

To further investigate the distribution of the bs-parameters in the metacar-
pal training set bs,2 is plotted as a function of bs,1 in figure 4.13. These are
easily obtained due to the linear structure of (4.17) and since the columns
of Φs are inherently orthogonal.

bs = Φ−1
s (x− x) = ΦT

s (x− x) (4.19)

No clear structure is observed in figure 4.13, thus concluding that the vari-
ation of the metacarpal shapes can be meaningfully described by the linear
PCA transform. This however is not a general result for organic shapes
due to the highly non-linear relationships observed in nature.

An inherently problem with PCA is that it is linear, and can thus only
handle data with linear behavior. An often seen problem with data given
to a PCA is the so-called horse-shoe effect, where pc1 and pc2 is distributed
as a horse-shoe pointing either upwards or downwards11. This simple non-
linearity in data – which can be interpreted as a parabola bending of the
hyper ellipsoid – causes the PCA to fail in describing the data in a compact

11Since the PCA chooses its signs on the axes arbitrary.

58 Chapter 4. Shape Model Formulation

−4 −3 −2 −1 0 1 2 3 4

x 10
−3

−4

−3

−2

−1

0

1

2

3
x 10

−3

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

PC1

P
C

2

PC1 versus PC2 in the shape PCA

Figure 4.13: PC1 (bs,1) vs. PC2 (bs,2) in the shape PCA.

and consistent way, since the data structure can not be recovered using
linear transformations only. This topic is treated in depth later on.

This section is concluded by remarking that the use of the PCA as a statis-
tical reparametrisation of the shape space provides a compact and conve-
nient way to deform a mean shape in a controlled manner similar to what
is observed in a set of training shapes. Hence the shape variation has been
modeled by obtaining a compact shape representation.

Furthermore the PCA provides a simple way to compare a new shape to the
training set by performing the orthogonal transformation into b-parameter
space and evaluating the probability of such a shape deformation. This
topic is treated in depth in section 12.2 – Performance Assessment.

4.5.1 Reducing Non-linearity

One source of non-linearity in the shape model is the alignment proce-
dure. In the alignment procedure described earlier the shapes were size-
normalized by scaling to unit scale using 1/S(x). In this way, the corners
of a set of aligned rectangles with varying aspect ratio forms a unit circle
(see fig. 4.15, the unaligned shapes are shown on fig. 4.14). Due to this
non-linearity the PCA on the shapes must use two parameters to span the
shape space: λ1 = 99.6%, λ2 = 0.4% even though variation only exists on

4.5 Modelling Shape Variation 59

one parameter (the aspect ratio). A closer look at figure 4.15 also shows
that the overlaid mean shape does not correspond to an actual shape in
the training set.

To avoid this non-linearity in the aligned training set the shape can be
projected into tangent space by scaling by 1/(x · x) [12, 14].

Figure 4.14: Training set of 100 unaligned artificially generated rectangles con-
taining 16 points each.

Figure 4.15: Point cloud from aligned rectangles sized to unit scale, |x| = 1.
The mean shape is fully shown.

The projection into tangent space align all rectangles with corners on

60 Chapter 4. Shape Model Formulation

straight lines (see fig. 4.16) thus enabling modeling of the training set
using only linear displacements.

Notice how the mean shape is contained in the training set since the PCA
now only uses one parameter, λ1 = 100%, to model the change in aspect
ratio.

In this way, the distribution of PCA-parameters can be kept more compact
and non-linearities can be reduced. This leads to better and simpler models.

Figure 4.16: Point-cloud from aligned rectangles sized to unit scale, |x| = 1, and
transformed into tangent space. The mean shape is fully shown.

4.5.2 Improving Specificity in the PDM

Aside the alignment procedure, several factors can contribute to the break-
down of the PCA, due to non-linearites.

• Articulated shapes Shapes with pivotal rotations around one or
more points are inherently non-linear.

• Bad landmarks Manually placed landmarks can easily cause non-
linearies.

4.5 Modelling Shape Variation 61

• Bending Can also be interpreted as a piece-wise rotation.

Examples of the breakdown includes the tadpoles, watch model and chro-
mosomes of Sozou et al. [63, 64]. Chromosomes also constituted the original
example of a PDM breakdown in [15]. Examples of the tadpole model are
given in figure 4.17. Here a clear non-linear dependency between b1 and
b3 (lower right) is seen, which also is clearly reflected in the deformations
given by the principal modes (upper left). This behavior has been coined
the horse-shoe effect, and serves as an example on structure that can’t be
decomposed by the linear PCA, namely one of the most simple non-linear
dependencies one can think one; the quadratic.

Figure 4.17: Tadpole example of a PCA breakdown. Notice in mode 1, how
the head size and length is correlated with the bending. This is easily seen in
the scatter plot of PCA parameter 1 vs. 3 (lower right), where b3 has a simple
non-linear dependency of b1. Adapted from [64].

Another way to view the problem, is that the PCA-approach is based on
the assumption, that all shapes of the class ends on the same manifold.
More precisely as a hyper ellipsoid cluster in the new basis spanned by the
PCA. However when dealing with non-linearity the ellipsoid changes into

62 Chapter 4. Shape Model Formulation

a more structured form. Dealing with objects with discreetized behavior12

for example, also changes the ellipsoid, here into a clustered distribution
of PCA parameters. To accommodate this, it is proposed to approximate
the distribution with a mixture of gaussian blobs in shape parameter space
[12] thus avoiding illegal shapes in the PDM. This is accomplished using
expectation maximization to fit the blobs to the shape parameters of the
training set. The problem of implausible shapes in non-linear shapes has
also been addressed by Heap & Hogg [38] using polar coordinates in the
PDM without loss of computational performance. The algorithm automat-
ically classifies landmarks into either the Cartesian or polar domain.

One of the early attempts include Sozou et al. where polynomial regression
(PRPDM) was used to fit higher order polynomials to the non-linear axis
of the training set – see figure 4.17. Later Sozou et al. out-performed
the PRPDM by using a back propagation neural network13 to perform
non-linear principal component analysis (MLPPDM). The downside to this
approach is a substantial increase in the – off-line – computation of the
PDM.

The bottom line of all this is – if your shape parameters lie in more than
one cluster or if dependencies between shape parameters exist – then the
standard PDM is not specific enough. This can lead to more or less serious
artifacts.

4.6 Summary

Throughout this chapter, a complete mathematical framework and the nec-
essary set of definitions and concepts have been introduced to the extent
that an efficient treatment of shape and shape modeling can be done. Fur-
ther more selected topics have been discussed to increase the understanding
of the AAM framework.

Emphasis has been put on the application in the Active Appearance Models
though the methods presented are applicable in a wide range of situations.

12For example if certain parts of an object, only can reside in certain positions. Think
of the second hand on a quarts watch.

13A multi-layer perceptron to be precise.

63

Chapter 5

Texture Model
Formulation

5.1 Overview

To form a complete model of appearance one must not only consider shape.
To stress this point observe that shape is only well defined by inferring
from knowledge of the pixel neighborhood. One must also consider the
information constituted by pixels themselves.

In the following a complete scheme for capturing pixel information, using
image warping, and modeling pixel variation, using principal component
analysis, is described.

In the shape case, the data acquisition is straightforward because the land-
marks in the shape vector constitute the data itself. In the texture case one
needs a consistent method for collecting the texture information between
the landmarks, i.e. an image warping function needs to be established.
This can be done in several ways. Here, a piece-wise affine warp based
on the Delaunay triangulation of the mean shape is used. Thus to obtain
texture information from the training set, each shape is warped to a ref-
erence shape1 and sampled. Hereafter a photometric normalization of the

1Here the mean shape is used as reference shape.

64 Chapter 5. Texture Model Formulation

obtained textures is done to remove influence from global linear changes in
pixel intensities. Hereafter, the analysis is identical to that of the shapes.
Hence, a compact PCA representation is derived to deform the texture in
a manner similar to what is observed in the training set.

5.2 Object Texture

Contrary to the prevalent understanding of the term texture in the com-
puter vision community, this concept shall be used somewhat differently
below. The main reason for this is that most literature on AAMs uses this
definition of texture, probably due to the close resemblance of some of the
AAM-techniques to techniques in computer graphics.

In computer graphics the term texture relates directly to the pixels mapped
onto virtual 2D and 3D surfaces. Thus, we derive at the following definition:

Definition 3: Texture is the pixel intensities across the
object in question (if necessary after a suitable normalization).

In the shape case, the actual data capture was straightforward because the
landmarks in the shape vector constituted the data itself. In the texture
case one needs a consistent method of collecting the texture information
between the landmarks.

This method is called image warping and is described in detail in the forth-
coming section.

As mathematical representation of the texture of an object, a vector is
chosen:

g = [g1, g2, . . . , gm]T (5.1)

Here m denotes the number of pixel samples over the object surface.

5.3 Image Warping

Image warping is a simple matter of transforming one spatial configuration
of an image into another. Hence, a simple translation of an image can be

5.3 Image Warping 65

considered an image warp. Formally: I ∈ IRk 7→ I′ ∈ IRk and pictorial in
the planar case, k = 2, in figure 5.1.

Figure 5.1: Image warping.

For a survey on warping techniques refer to Glasbey & Mardia [33]. Since
AAMs are landmark-based we shall use the class of image warping methods
that considers the mapping of one arbitrary point set {x1 . . . xn} into an-
other {x′1 . . . x′n} where each point is represented as x = [x, y]T. Formally
written as a continuous vector valued mapping function such that:

f(xi) = x′i ∀ i = 1 . . . n (5.2)

5.3.1 Piece-wise Affine

The most simple construction of an n-point based warp is to assume that f
is locally linear. To utilize this in a planar framework such as 2D AAMs one
need to define the term locally more tightly. One approach is to partition
the convex hull of the points, using a suitable triangulation such as the
Delaunay triangulation.

The Delaunay triangulation connects an irregular point set by a mesh of
triangle’s each satisfying the Delaunay property. This means that no tri-
angle has any points inside its circumcircle, which is the unique circle that
contains all three points (vertices) of the triangle – see figure 5.2. The
Delaunay triangulation of the mean metacarpal from previous is given in
figure 5.3. Notice that due to the concave nature of the metacarpal the
Delaunay triangulation produce triangles outside the actual shape.

For a thorough treatment of planar triangulation and mesh representation,
refer to [60].

Whereas dimensionality is of concern, the Delaunay triangulation extents
to 3D2, though its complexity increases drastically [69].

2Here the circumcircle becomes a ”circumsphere”.

66 Chapter 5. Texture Model Formulation

Figure 5.2: Circumcircle of a triangle satisfying the Delaunay property.

Figure 5.3: Delaunay triangulation of the mean shape.

The warp is now realized by applying the triangular mesh of the first point
set in I to the second point set in I′. In that each point on each triangle
can be uniquely mapped upon the corresponding triangle of the second
point set by an affine transformation, which basically consist of scaling,
translation and skewing. If x1,x2 and x3 denotes the vertices of a triangle
in I any internal point can be written as superposition:

x = x1 + β(x2 − x1) + γ(x3 − x1)
= αx1 + βx2 + γx3 (5.3)

5.3 Image Warping 67

Thus α = 1 − (β + γ) giving α + β + γ = 1. To constrain x inside the
triangle we must have 0 ≤ α, β, γ ≤ 1. Warping is now given by using the
relative position within the triangle given by α, β and γ on the triangle in
I′:

x′ = f(x) = αx′1 + βx′2 + γx′3 (5.4)

Given the three points of a triangle it is trivial to determine α, β and γ by
solving the system of the two linear equations given by (5.3) for a known
point, x = [x, y]T:

α = 1− (β + γ)

β =
yx3 − x1y − x3y1 − y3x + x1y3 + xy1

−x2y3 + x2y1 + x1y3 + x3y2 − x3y1 − x1y2
(5.5)

γ =
xy2 − xy1 − x1y2 − x2y + x2y1 + x1y

−x2y3 + x2y1 + x1y3 + x3y2 − x3y1 − x1y2

With implementation in mind, one should notice the common denominator.
In pseudo-code the piece-wise affine warp can then be written as:

1. For each pixel x = [x, y]T inside the convex hull of {x′1 . . . x′n}
2. Determine the triangle, t, that x belongs to
3. Find the reative postion of x given by (5.5) inside t
4. Use (5.4) to obtain the position inside t′

5. Set I′(x) = I(f(x))
6. End

The naive solution to step 2 is to run through all triangles until 0 ≤
α, β, γ ≤ 1. A small enhancement to this is to perform a relative quick
bounding box test beforehand. An ad hoc speed-up of this step would be
to test the triangle from the previous point first. However, one needs not
to rely on ad hoc methods since the problems of searching efficiently in
spatial data has been of great concern with the community of computa-
tional geometry. The binary search tree exist for 1D data, and for planar
data quadtrees [32] can be used. As an alternative the generalization of
binary trees, the so-called k-d trees [55] can be used. Other tree structure

68 Chapter 5. Texture Model Formulation

for spatially searching / distance measuring includes octrees and binary
space-partitioning trees (BSP-trees), both 3D [32].

To conclude this section on piece-wise affine warping, notice that even f
produces a continuous deformation, the deformation field is not smooth.
This is reflected in figure 5.4. To overcome this limitation thin plate splines
[5] could be used instead, since they guarantee a smooth deformation field.
The drawback to this is an increase in the number of calculations per warp.

Figure 5.4: Problem of the piece-wise affine warping. Straight lines will usually
be kinked across triangle boundaries.

Another flaw of piece-wise affine warping is that it will not detect singu-
larities in the deformation field in the form of folding triangles. This can
however be detected by a simple test on the triangle face normals.

5.3.2 Pixel Interpolation

Since equation (5.4) will inherently not produce positions on the integer
pixel lattice of I some sort of pixel interpolation scheme is needed.

The traditional solution to this is to use bilinear interpolation, which con-
sists of two consecutive linear interpolations using the four neighboring
pixels. The graphical interpretation of this is given in figure in 5.5. Using
this notation, the bilinear interpolation can be written as:

ε = a(bγ + (1− b)ϕ) + (1− a)(bβ + (1− b)α) (5.6)

As alternative a second order approximation using bicubic interpolation
could be used, involving 16 neighboring pixels. The current implementation
uses the computational more feasible first order approximation.

5.4 Acquiring Texture in Practice 69

Figure 5.5: Bilinear interpolation. The intensity at ε is interpolated from the
four neighboring pixels, α, β, γ and ϕ.

5.4 Acquiring Texture in Practice

Though the previous sections provided a firm basis for acquiring texture,
some important observations still needs to be underlined. These should
increase understanding in general and in specific ease the implementation
and execution substantially.

All texture handling in AAMs happens in the normalized frame of the
reference shape.3 As mentioned earlier the mean shape is a good choice of
such. This means that all warps in the shape modeling part (and in the
later optimization) have a common source shape to sample in. Only the
destination (the actual training shape) shape changes. Hence, substantially
parts of the warp-calculations can be avoided using dynamic programming.
This means that step 2 and 3 of the piece-wise warp pseudo code can be
cached. This is done in the current implementation.

The second observation is useful in the optimization part. Tests has shown
that in the current implementation approx. 30% of the total optimization
time was spent doing bilinear interpolation. However, since the image being
interpolated never changes during the optimization, these calculations can

3An exception to this, is when one wants to back-project the AAM texture onto the
image, which is a pretty tedious task requiring two warps (and great care).

70 Chapter 5. Texture Model Formulation

be cached if a certain discreet representation of the interpolation is allowed.
If a resolution of n× n inside each pixel is chosen, this is accomplished by
allocating a new image, Ibip, of n times the size of the original image, I.
Then I is interpolated into Ibip. Here forth bilinear interpolation in I is
performed by lookup’s in Ibip – i.e.:

I(x, y) = Ibip(Round(xn),Round(yn)) (5.7)

5.5 Photometric Normalization

As we previous filtered out the pose from the object to obtain the true
shape, one would like the texture model to be invariant to global changes
in illumination. Effects that cause such changes include usage of different
film media, different exposure times, external lightning or shadows etc.

Below we will compensate for linear changes by applying a scaling of α and
an offset of β. If gimage denotes the actual pixel values sampled in the
image:

gnorm =
gimage − β1

α
(5.8)

In practice each texture vector of m pixels is aligned to the standardized
mean texture, g, by offsetting it to zero mean:

gzm = g − g1 , g =
1
m

m∑

i=1

gi =
1
m

g · 1 (5.9)

and scale it to unit variance:

g =
1
σ
gzm , σ2 =

1
m

m∑

i=1

(gi − g)2 (5.10)

Notice that the variance estimate simplifies to σ2 = 1
m

∑m
i=1 g2

i since gzm

has a zero mean. α and β can thus be written as:

α = gimage · g (5.11)

5.6 Modelling Texture Variation 71

β =
gimage · 1

m
(5.12)

Since α is defined in terms of the mean, an iterative approach must be
taken. In pseudo code this is:

1. Do
2. Estimate mean of all texture vectors, ĝ
3. Standardize ĝ
4. For each texture vector, gimage

5. α = gimage · ĝ
6. β = (gimage · 1)/m
7. Normalize gimage using (5.8)
8. End
9. Until g is stable

Alternative to the above is the approach used in Active Blobs [58], where
two bilinear functions of x and y were used to obtain α and β thus providing
a locally photometric compensation.

5.6 Modelling Texture Variation

As a starting point for the texture variation modeling the term digital image
needs a discussion. The core of digital images is a set of spatially samples.
In the thesis – and almost everywhere else – raster images is considered.
This merely means that the samples are arranged in a uniformly spaced
spatially grid. In the term spatially lies that the ordering of the samples
becomes crucial. This suggests some sort of correlation between samples
leading to data redundancy as in the case of shapes. Hence, it is natural to
adapt the PCA approach for the texture variation also. Refer to the shape
section for a more detailed description of the PCA.

The maximum-likelihood (ML) estimate of the mean texture of N normal-
ized texture vectors is given as:

g =
1
N

N∑

i=1

gi (5.13)

72 Chapter 5. Texture Model Formulation

The maximum-likelihood (ML) estimate of the covariance matrix can then
be written as:

Σg =
1
N

N∑

i=1

(gi − g)(gi − g)T (5.14)

The principal axes of the mth dimensional point cloud of textures are now
given as the eigenvectors, Φg, of the covariance matrix.

ΣgΦg = ΦgΛg (5.15)

Where Λg is a diagonal matrix of eigenvalues. A texture instance can then
be generated by deforming the mean texture by a linear combination of
eigenvectors:

g = g + Φgbg (5.16)

Where bg are the texture model parameters. To further investigate the
distribution of the bg-parameters in the metacarpal training set bs,2 is
plotted as a function of bs,1 in figure 5.6.

−3 −2 −1 0 1 2 3 4

x 10
−3

−3

−2

−1

0

1

2

3

4

5

6
x 10

−3

 1

 2

 3

 4

 5

 6
 7

 8

 9 10

 11 12

 13

 14

 15

 16

 17

 18

 19

 20

 21
 22

 23

PC1

P
C

2

PC1 versus PC2 in the texture PCA

Figure 5.6: PC1 (bg,1) versus PC2 (bg,2) in the texture PCA.

5.6 Modelling Texture Variation 73

These are easily obtained due to the linear structure of (5.16) and since the
columns of Φg are inherently orthogonal.

bg = Φ−1
g (g − g) = ΦT

g (g − g) (5.17)

To give an idea of the decay rate of the eigenvalues a percentage plot is
shown in figure 5.7.

0 5 10 15 20 25
0

2

4

6

8

10

12

14

16

18

Eigenvalue

V
ar

ia
nc

e
ex

pl
an

at
io

n
fa

ct
or

 (
pe

rc
en

t)

Texture eigenvalues

Figure 5.7: Texture eigenvalues in descending order.

To conclude this section remember the point regarding spatially correla-
tion in digital images. PCA treats observations as vectors and thus misses
this important feature. It is therefore suggested using orthogonal trans-
formations taking the spatial nature of the data into account, such as the
Min/Max Autocorrelation Factors (MAFs) [54] etc. This topic is somewhat
outside the scope of this master thesis, but pose an interesting topic for
further improvements to AAMs.

5.6.1 Reduction of Dimensions in the PCA

Due to size of the texture vectors – and the workload in manual annotation
– it is safe to assume that there always is more dimensions (pixels) in the

74 Chapter 5. Texture Model Formulation

samples than observations (training objects) in the texture case.4

This leads to rank deficiency of the covariance matrix Σg thus enabling use
of the following efficient computation of the eigenanalysis.

First, remove the mean from the N texture vectors:

G =

(g1 − g) · · · (gN − g)

(5.18)

In matrix notation the (rather large) covariance matrix of G can thus
written as:

Σl =
1
s
GGT (5.19)

Consider instead the smaller matrix:

Σs =
1
s
GTG (5.20)

It can then be shown that the non-zero eigenvalues of the matrices are
equal:

Λl = Λs (5.21)

Let Φl be given as:

Φl = GΦs (5.22)

Where Φs is the eigenvectors of Σs. Finally normalize the columns of Φl

by letting ϕl,i denote the ith column of Φl:

4This is usually also the case for shape models, but not always. Consider the training
set of Cootes et al. [14] using 400 faces each annotated using 122 landmarks which equals
a dimensionality of 244 and 400 observations.

5.7 Summary 75

ϕl,i =
1√
λl,i

ϕl,i (5.23)

Now Φl hold the eigenvectors of the texture samples. This is proved using
the Eckart-Young Theorem. Consult a textbook in statistics for the proof.

Notice that this gives a substantial speed up since the eigenvector decom-
position goes as the cube of the size of covariance matrix [14]. Further more
it results in a considerable reduction of the memory requirements during
the eigenanalysis.

We stress that without this method only very small texture models would
be feasible.

5.7 Summary

Throughout this chapter, a consistent method for sampling the intensities
across an object (texture) has been given using image warping. To model
the texture variation the use of a PCA has been described while giving usage
examples from the metacarpal case. Furthermore, it has been demonstrated
how the computational load of the texture PCA can be eased substantially.

76 Chapter 5. Texture Model Formulation

77

Chapter 6

Combined Model
Formulation

6.1 Overview

How to unify the presented shape and texture models into one complete
compact appearance model is the topic of this chapter. It is also shown
how this model representation can be regularized and further compressed
by truncation of the model parameters (eigenmodes).

6.2 Combining Models of Shape and Texture

From the previous chapter it was seen that an object instance can be con-
structed using the two set of model parameters of shape, bs, and texture,
bg.

To remove correlation between shape and texture model parameters – and
to make the model representation more compact – a 3rd PCA is performed
on the concatenated shape and texture parameters, b, of the training set
to obtain the combined model parameters, c:

b = Φcc (6.1)

78 Chapter 6. Combined Model Formulation

where Φc denotes a set of eigenvectors. The concatenated shape and tex-
ture parameters are easily obtained due to the linear nature of the model:

b =
(

Wsbs

bg

)
=

(
WsΦT

s (x− x)
ΦT

g (g − g)

)
(6.2)

Notice that a suitable weighting between pixel distances and pixel inten-
sities is done through the diagonal matrix Ws. How to obtain Ws is the
topic of the next section.

Now – using simple linear algebra – a complete model instance including
shape, x and texture, g, can be generated using the model parameters, c.

x = x + ΦsW−1
s Φc,sc (6.3)

g = g + ΦgΦc,gc (6.4)

Where

Φc =
(

Φc,s

Φc,g

)
(6.5)

Combined modal deformations of the metacarpal from, the first three –
most significant – eigenvectors can be seen in figure 6.1.

Regarding the compression of the model parameters one should notice that
the rank of Φc will never exceed the number of examples in the training
set.

Observe that another feasible method to obtain the combined model is to
concatenate both shape points and texture samples into one observation
vector from the start and then perform PCA on the correlation matrix of
these observations.

We regard the reason for the two separate PCAs as being partly histori-
cal. Active Appearance Models is the direct continuation of the work with
Active Shape Models (ASM) by Cootes et al. Basic ASMs did not include
an explicit texture model but modeled the shape variation only – using
an identical approach to that of AAMs – i.e. PCA. Another motivation is
the need to discriminate object instances purely based upon the shape or
texture characteristics alone. An example of this is the work of Edwards
et al. [24] where an AAM model was utilized to identify faces.

6.2 Combining Models of Shape and Texture 79

Figure 6.1: Three largest combined metacarpal modes from top to bottom;
ci = −3

√
λi, ci = 0, ci = 3

√
λi.

80 Chapter 6. Combined Model Formulation

6.2.1 Comparing Pixel-distances and Intensity

Since the shape parameters, bs, has units of pixel distance and the texture
parameters has units of pixel intensity they will obviously not commensu-
rate without the weighting of Ws.

A simple method to estimate Ws devised in [14] is to weight uniformly
with the ratio, r, of the total variance in shape and texture as seen in the
training set. Remembering that the variance of parameter bi equals λi we
have:

Ws = rI =

r . . . 0
...

. . .
...

0 . . . r

 (6.6)

r =
λg

λs
, λg =

∑
λgi , λs =

∑
λsi (6.7)

An alternative, is to do the shape and texture PCAs based on the correla-
tion matrix as opposed to the covariance matrix.

6.3 Choosing Modes of Variation

As in the shape PCA case, we can compress the combined model repre-
sentation further by removing the smallest eigenmodes. Again, it is safe
to consider small-scale variation as noise. Thus to retain p percent of the
combined variation in the training set, t modes can be chosen satisfying:

t∑

i=1

λi ≥ p

100

2n∑

i=1

λi (6.8)

In the metacarpal case 95% of the combined variation can be modeled using
18 parameters. This is a rather substantial reduction since the original
space had a dimensionality of 50 points × 2+ ∼ 9400 pixels ≈ 9500. The
decay rate of the combined eigenvalues is given in figure 6.2.

Again, we stress that this step basically is a regularization of the solution
space.

6.4 Summary 81

0 5 10 15 20 25
0

5

10

15

20

25

Eigenvalue

V
ar

ia
nc

e
ex

pl
an

at
io

n
fa

ct
or

 (
pe

rc
en

t)

Combined eigenvalues

Figure 6.2: Combined eigenvalues.

6.4 Summary

In this chapter, a unified appearance model of shape and texture has been
described.

Examples have been given that this model can generate near photo-realistic
images of the object class that it represents. Using only a few parameters
this model can be deformed w.r.t. shape and texture in a manner similar
to what is observed in a training set.

82 Chapter 6. Combined Model Formulation

Part II

Active Appearance
Models

83

85

Chapter 7

Basic Active Appearance
Models

One of the pleasant properties of the statistical models of shape and texture
– as presented in the previous chapters – is that it is possible to use these to
search images for new instances of the class of objects that they represent.
Further more this can be done in a fast and robust manner. This is called
the Active Appearance Models.

In the following, we will emphasize on the customized search algorithm of
AAMs in such detail that an implementation can be understood and/or
made solely upon this description.

The foundation of the AAM search is to treat the search as an optimization
problem in which the difference between the synthesized object delivered
by the AAM and an actual image is to be minimized. Formally this can be
written as the difference vector δI:

δI = Iimage − Imodel (7.1)

In this way the fit can be enhanced by adjusting the model and pose pa-
rameters to fit the image in the best possible way. Since the following will
be based on normalized texture vectors, δI will be denoted as δg.

86 Chapter 7. Basic Active Appearance Models

Though we have seen that the parameterization of the object class in ques-
tion can be compacted tremendously by the principal component analysis
it is far from an easy task to optimize a system of the dimensionalities
that we have seen in the earlier chapters. This is not only computationally
cumbersome but also theoretically challenging – optimization theory-wise –
since we are in no way guaranteed that the hyperspace sought in is smooth.

Methods of solving the optimization problem of deformable models include
general optimization techniques such as gradient based methods like steep-
est descent and Marquardt-Levenberg [58], random sampling methods like
simulated annealing [29] and genetic algorithms [39, 37].

AAMs circumvent these potential problems in a rather untraditional fash-
ion. The key observation is that each model search constitutes what we
call a prototype search – the search path and the optimal model parameters
will be unique in each search where the initial and final model configuration
matches this configuration. Or as expressed by Cootes et al. ([14] pp. 43,
l. 6):

”We note, however, that each attempt to match the model to a
new image is actually a similar optimization problem. We pro-
pose to learn something about how to solve this class of problems
in advance.”

All this is of course within certain limitations – for example background
handling – of which we will get back to.

These prototype searches can then be made at model building time; thus
saving computationally expensive high-dimensional optimization. Below is
described how to collect these prototype searches and how to utilize them
into a run-time efficient model search of an image.

7.1 Solving Parameter Optimization Off-line

It is proposed that the spatial pattern in δg can predict the needed ad-
justments in the model and pose parameters to minimize δg. The simplest
model we can arrive at constitutes a linear relationship:

δc = Rδg (7.2)

7.1 Solving Parameter Optimization Off-line 87

Cootes et al. show that this crude approximation suffices to produce good
results in their work with AAMs [10, 14, 17, 22, 9]. Sclaroff & Isidoro
have also had success in using the very similar difference decomposition
approach in their work with Active Blobs and Active Voodoo Dolls [43].
The difference decomposition was originally proposed by Gleicher [34].

To determine a suitable R in equation (7.2) a set of experiments are con-
ducted which is fed into a multivariate linear regression framework. The
multivariate linear regression is described in detail in the next section.

Each experiment consists of displacing a set of ground truth parameters by
a known amount and measuring the difference between the model and the
part of the image below the model.

The parameters considered here is the model parameters c and the pose
parameters t. To ensure linearity and equilibrium at zero we represent pose
as:

t = (sx, sy, tx, tx)T (7.3)

where the mapping from the usual pose parameters (tx, ty, s, θ) are:

sx : combined scaling and rotation: sx = s cos(θ)− 1
sy : combined scaling and rotation: sy = s sin(θ)
tx : translation in the x direction
ty : translation in the y direction

In pseudo-code the jth experiment can then be expressed as:

1. Displace a model by a known amount in (either) the pose parameters
t and(or) the model parameters c.

2. Update the current model parameters: c = δc + c0

3. Update the current pose to t, that is: first by δt then by t0

4. Generate a new model instance by generation of a new texture gm

and a new shape x
5. Obtain the shape in image coordinates, ximage, by aligning the shape

x to fit the pose given in t
6. Sample the image below ximage into the texture vector gimage.
7. Normalize the texture samples in gimage to obtain gi.
8. Form the normalized texture difference δg = gi − gm

9. Write δt and δc into the experiment matrices T and C – each in the
jth column.

88 Chapter 7. Basic Active Appearance Models

10. Write δg into the jth column of G

Based on the matrices T, C, G and the relations:

C = RcG , T = RtG (7.4)

multivariate regression will then build the relationships between pixel dif-
ferences and pose/model parameter displacements:

δc = Rcδg (7.5)

δt = Rtδg (7.6)

Though the above description seems beautiful in all its simplicity – several
crucial questions remain unanswered – such as:

• How many displacements should we use?
• How large should the displacements be?
• Should all parameters be displaced at once or separately?
• Should the displacements be done in a deterministic or random fash-

ion?
• Do we tie the model to the background seen in the training set?

Regarding the first and second matter, a vague guideline would be that
there should be enough displacements to span the parameter space in which
the linearity assumption holds true. This assures that the sensitivity to-
wards good initialization is minimized since this is also maximizing the
ranges from which the model can safely predict its deformations1.

Cootes et al. [14] suggest that the optimum perturbation of the model
parameters is within 0.5 std. dev. over the training set. Pose parameters
were about 10% in scale, ±3 pixel in x and y. Nothing is noted about the
perturbation in the rotation parameter.

In the current work, the training scheme below has been used with great
success.

1This is shape/texture changes in the model parameter case and position, scale and
orientation in the pose case.

7.1 Solving Parameter Optimization Off-line 89

Displacement Training Scheme

• Pose parameter displacements

tx: ±6,±3,±1 (pixels)

ty: ±6,±3,±1 (pixels)

s: 95%, 97%, 99%, 101%, 103%, 105%

θ: ±5,±3,±1 (degrees)

• Model parameter displacements

±0.5σi, ±0.25σi for each parameter over the training set

Notice the concentration of experiments around zero and 100% for the
pose parameters. This is done to give the linear regression more weight
towards equilibrium, thus potentially leading to a more accurate fit in the
optimization.

Each parameter was displaced separately and the corresponding texture
difference was measured. This leads to a total number of displacements, n,
of:

n = m(4k + 24) (7.7)

Where m denotes the number of examples in the training set and k the
number of parameters in the model.
•
As an evaluation of the assumption of a linear relationship between the
model and pose parameters and the observed texture differences fig. 7.1
shows the actual and the predicted displacement from a number of dis-
placements. The error bars correspond to one standard deviation. From
these it is seen that an iterative scheme using this regression matrix should
converge within a limited range, even when the prediction diverges from
the line y = x. As long as it preserves the right sign it will converge.

The nature of this figure points in the direction that the linear assumption
can be used with success – though this type of performance assessment

90 Chapter 7. Basic Active Appearance Models

is limited in its use. Partly because this type of figures only evaluates
the ability of the regression to predict displacement in one parameter at
a time – implicitly assuming that all other parameters are at their equi-
librium/optimum. Almost a utopia in real-life examples. Similar plots
have been made for c-parameters displacements which also show a linear
relationship within a limited range.

−25 −20 −15 −10 −5 0 5 10 15 20 25
−20

−15

−10

−5

0

5

10

15

20
Quality of x−displacement prediction.

actual dx (pixels)

pr
ed

ic
te

d
dx

 (
pi

xe
ls

)

(a) X-parameter displacement.

−25 −20 −15 −10 −5 0 5 10 15 20 25
−20

−15

−10

−5

0

5

10

15

20
Quality of y−displacement prediction.

actual dy (pixels)

pr
ed

ic
te

d
dy

 (
pi

xe
ls

)

(b) Y-parameter displacement.

0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25
Quality of scale prediction.

actual s
pr

ed
ic

te
d

s

(c) Scale-parameter displacement.

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
Quality of rotation prediction.

actual theta

pr
ed

ic
te

d
th

et
a

(d) Theta-parameter displacement.

Figure 7.1: Displacement plots for a series of model predictions versus the actual
displacement. Error bars are equal to 1 std.dev.

7.1 Solving Parameter Optimization Off-line 91

7.1.1 Details on Multivariate Linear Regression

This section focus on the details of the multivariate linear regression used
in AAMs. The method described below is by no means unique to the AAM
approach and can thus be read by any with interest in prediction using
experiments based on assumptions of linear behavior.

By necessity, this treatment is somewhat technical. The hasty reader may
– without loss of continuity – proceed to section 7.2. The notation below
roughly follows [14].

The basic idea behind multivariate linear regression is to assume linear
dependency between two sets of variables. In the AAM case we assume
that there is a linear relation between the measured normalized texture
differences, δg, stored in the matrix G, and a set of model displacement
parameters2 stored in the matrix V.

To determine the assumed linear relationship a series of s experiments are
conducted. In each experiment the t model parameters are displaced by
known amounts and the corresponding m pixel differences3 is measured as
mentioned in the previous section.

Expressed as matrix algebra this looks like:

v11

...
v1t

 · · ·

vs1

...
vst

 = R

g11

...

g1m

· · ·

gs1

...

gsm

(7.8)

Or in the short form:

V = RG (7.9)

Hence V is a t × s matrix, R is a t ×m matrix and finally G: an m × s
matrix.

2In this case it’s the displacement of the c-model parameters, δc, and the pose dis-
placement parameters, δt.

3Thus m equals the number of texture samples in the model.

92 Chapter 7. Basic Active Appearance Models

In the case of AAMs it should be safe to assume that m À s > t which
makes (7.9) with R as the unknown; a hopelessly underdetermined system.

A feasible path towards solving (7.9) can luckily be obtained by projecting
the rather large G-matrix into a k-dimensional subspace4 which captures
the major part of the variation in G. This is called principal component
regression or reduced rank multivariate linear regression. For more details
on this topic refer to [57].

Let the k eigenvectors of the texture difference product GTG corresponding
to the k largest eigenvalues {λ1 . . . λk} be denoted Φk and let Λk be equal
to diag(λ1 . . . λk). Thus the following identity holds true:

GTGΦk = ΦkΛk (7.10)

It can now be seen that the transpose of the eigenvectors is a projection of
the columns of G into a k-dimensional subspace:

Bk = ΦT
k = (Λ−1

k ΦT
k GT)G (7.11)

Since the rows of Bk are orthogonal another property is fulfilled:

BkBT
k = I (7.12)

Consider then an equation similar to (7.9) using an identical V:

V = R′
kBk ⇒ (7.13)

RkG = R′
kBk

If R′
k is a solution to (7.13), then using (7.11) yields:

Rk = R′
k(Λ−1

k ΦT
k GT) (7.14)

Using (7.12) the equation (7.13) can be rearranged to:

4Where k ≥ t since choosing a k < t would not make R span the whole space of V.

7.1 Solving Parameter Optimization Off-line 93

R′
k = VBT

k (7.15)

Then by applying (7.14) Rk is given as:

Rk = VBT
k (Λ−1

k ΦT
k GT) (7.16)

What remains now is to determine the value of k. Since GTG is an s× s
matrix, and R must span the whole space of V the limits on k is t ≤ k ≤ s.

Basically the k-estimation can be viewed upon as a matter of determine
when the linear regression is fitting to noise. Hence, we will use a leave-
one-out approach.

Optimal choice of k

We shall now devise a way to determine k based on [14] with further com-
ments and calculations.

The brute force way is to leave out one column of V – and the corre-
sponding column in G – estimate Rk and use this to measure the error in
predicting the error in estimating vj from xj . However – due to the often
large amount of experiments conducted5 – this can be a rather infeasible
approach computationally-wise.

An efficient way to circumvent this, is instead to leave out each column
of Bk in turn. If Bk with its jth column missing is denoted Bk/j – size
k × (s− 1) – the following is given (partly due to (7.12)):

Bk/jBT
k/j = BkBT

k − bkjbT
kj

= I− bkjbT
kj (7.17)

It can then be shown that [14]:

(I− bT
kjbkj)−1 = (I + fkjbT

kjbkj) (7.18)

5Obviously since a large number of experiments, constitutes a better prediction
model.

94 Chapter 7. Basic Active Appearance Models

where fkj is given as:

fkj =
{ 1

1−αkj
|1− αkj | ≥ ε

0 |1− αkj | < ε
(7.19)

and αkj = |bkj |2. The constant ε is a precision dependent value to avoid
singularities (i.e. numerical unstability).

Similar to Bk/j we denote V with its jth column missing; V/j . If then
R′

k/j is a solution to:

V/j = R′
k/jBk/j (7.20)

Then – by using (7.17) and (7.18) – (7.20) yields:

R′
k/jBk/j = V/j

R′
k/jBk/jBT

k/j = V/jBT
k/j

R′
k/j = V/jBT

k/j(Bk/jBT
k/j)

−1

R′
k/j = V/jBT

k/j(I− bkjbT
kj)

−1

R′
k/j = V/jBT

k/j(I + fkjbkjbT
kj) (7.21)

Then to estimate vj from bkj the error is given by

δvkj = R′
k/jbkj − vj (7.22)

By insertion of (7.21) the error is given by:

δvkj = V/jBT
k/j(I + fkjbkjbT

kj)bkj − vj

= V/jBT
k/j(bkj + fkjbkjαkj)− vj

= fkjV/jBT
k/jbkj − vj (7.23)

7.2 Iterative Model Optimization 95

Since BT
k/jbkj is equal to BT

k bkj with the jth element, αkj missing the
above can be rearranged further:

δvkj = fkj(VBT
k bkj − αkjvj)− vj

=
{ 1

1−αkj
(VBT

k bkj − vj) |1− αkj | ≥ ε

−vj |1− αkj | < ε
(7.24)

Thus to estimate the total leave-one-out error for k modes, one must do
the following summation:

Ek =
s∑

j=1

|δvkj |2 (7.25)

In this way it is possible to pose the k-estimation as a standard minimiza-
tion of the above summation.

A way to calculate Ek is to compute:

δV = VBT
k Bk −V (7.26)

If δvj then denotes the jth column of δV – the error measure Ek is given
as:

Ek =
s∑

j=1

{
f2

kj |δvj |2 |1− αkj | ≥ ε

|vj |2 |1− αkj | < ε
(7.27)

7.2 Iterative Model Optimization

The previous sections of this chapter have established a firm foundation for
the optimization process in AAMs. This section will focus on the details
in using the linear regression predictor in what is coined the AAM search.

The outline is to place the model in an initial state w.r.t. pose and model
parameters, c0 – given by some prior initialization step – over the image,
and obtain a normalized image sample below the model. Based on the

96 Chapter 7. Basic Active Appearance Models

image sample and the model instance the difference vector, δg, can be
calculated and thus used to predict a set of parameters to make the model
fit better to the image. This is done iteratively until no improvement is
observed in the model fit.

A small refinement to the above is that if a prediction fails to improve the
fit, the prediction is amplified/damped over some runs to see if that should
improve the fit. This will compensate somewhat for overshooting and the
opposite as experienced in the section on linear regression.

The procedure given in pseudo-code is:

1. Intialize the damping vector k = [1.5, 0.5, 0.25, 0.125, 0.0625]T

2. Intialize the model within the reach of the parameter prediction range.
3. Generate the normalized texture vector from the model, gm

4. Sample the image below the model shape, ximage, into gimage

5. Normalized gimage into gi.
6. Evaluate the error vector δg0 = gi − gm

7. Evaluate the error Eo = |δg0|
8. Predict the displacements in pose δt = Rtδg0

9. Predict the displacements in model parameters δc = Rtδg0

10. Set i=1
11. Update model parameters c = c− kiδc
12. Transform the shape to invert the δt transformation.
13. Repeat step 3-6 to form a new error Ei

14. If Ei > E0 set i = i + 1 and go to step 10
15. Save the resulting error E = Ei

16. If no improvement is done in E from the last iteration, declare con-
vergence. If not go to step 3.

Notice that when the algorithm terminates it is by no means certain that a
valid model fit is obtained but merely an indication that the linear regres-
sion has given up in improving further on the fit. How to validate the final
fit will be treated in depth in the section on Performance assessment.

An example of an AAM optimization is given in figure 7.2. In this example,
the model converged after 7 iterations. In comparison with the original im-
age, the AAM is somewhat blurrier because of the texture approximation.

Notice that the search could be sped up substantially by searching in a
multi-resolution (pyramidal) framework.

7.2 Iterative Model Optimization 97

Figure 7.2: AAM Optimization. Upper left: The initial model. Upper right:
The AAM after 2 iterations. Lower left: The converged AAM (7 iterations).
Lower right: The original image.

98 Chapter 7. Basic Active Appearance Models

7.3 Summary

This chapter concludes the description of the basic AAM. In this and the
previous, it has been shown how to derive compact statistical models of
shape and texture using principal component analysis. Furthermore, have
these been combined into one unified model and an efficient optimization
method based on multivariate linear regression has been described. This
constitutes what is known as an Active Appearance Model.

99

Chapter 8

Discussion of Basic AAMs

8.1 Overview

This chapter provides a brief discussion of the Active Appearance Models
approach as presented in the previous chapters. The forces and weaknesses
of this approach are summarized and a number of secondary properties
of AAMs are emphasized. Finally, for those comfortable with the Bayes
paradigm, AAMs are posed in a Bayesian setting.

8.2 Forces

The AAM approach possess several pleasant properties:

General AAMs are general in the sense that any distinct shape and tex-
ture class can be modeled. Consequently, AAMs have been applied
to a wide range of segmentation problems within computer vision:

• Cardiac MRIs [52] (chapter 14).
• Cross-sections of pork carcasses (chapter 15).
• Human faces [9, 10, 23, 24, 16, 17, 49, 14, 48, 18].
• MRIs of the human brain: [8, 10, 17, 14, 72].
• MRIs of the human knee: [10, 14].
• Radiographs of metacarpals (chapter 13).

100 Chapter 8. Discussion of Basic AAMs

Specific By capturing both shape and texture from a training set the
AAM approach is highly specific to the segmentation task given.

Fast After a suitable initialization, the AAM search can be performed in
the millisecond range using a standard PC.

Non-parametric Contrary to many other deformable models [26] the
AAM has no parameters, which needs to be selected by an expert
prior to each new segmentation problem. This makes the AAM ap-
proach truly data-driven.

Complete AAMs can synthesize near photo-realistic images of the object
class learned from the training set.

Robust AAM segmentation usually succeeds in even cluttered images.

Captures domain knowledge A well-implemented AAM framework can
be used by domain experts (medical doctors, radiologists etc.) with
no need for assistance from image analysis experts.

8.3 Drawbacks

Below is listed a set of potential problems of basic AAMs with references
to further descriptions and possible solutions (in no particular order):

Distinct features AAMs are designed to handle distinct shapes with rec-
ognizable features. Amorphous objects1 such as clouds, trees, blood
vessels (fundus images), cities & roads (remote sensing) etc. are not
suitable. In other words; it must be possible to obtain a training set
of representative examples.

Training set The cumbersome manual annotation of training sets is the
Achilles’ heel of AAMs. Several attempts have been done to address
this drawback. Refer to section 4.3 for further treatment.

1Objects lacking a definite form.

8.4 Hidden Benefits 101

Representation Shape variation may be over-constrained by a small train-
ing set (or a larger with insufficient variation) due to the PCA com-
pression. However, this problem has been addressed for ASMs [11].

Point correspondence A fundamental assumption in AAMs is that of
point correspondence. If training examples are available with a vary-
ing amount of model points (e.g. due annihilation and such) prepro-
cessing is needed prior to AAM usage. Refer to section 4.3.

Initialization As mentioned earlier, AAMs are inherently dependent on
a good initialization. This problem has later been addressed in [22].
Refer also to section 9.6.

Occlusions Due to the design of the AAM search – which performs pa-
rameter predictions based on pixel differences – outliers stemming
from occlusions may cause the predictions to fail leading to optimiza-
tion failure. This problem has been addressed in [22]. Refer also to
section 9.8.

Homogeneous convex objects Convex objects with a low amount of
texture variation may also pose a problem to basic AAMs. Refer to
section 9.3.

Large-scale texture noise Heterogeneous objects with large-scale tex-
ture noise inside may pose a problem to basic AAMs, due to the
PCA modeling of texture variation. Refer to section 9.4.

8.4 Hidden Benefits

Several techniques used in AAMs have previously been used in other ap-
plications. A far from exhaustive selection is given below. This should
inspire to a creative use of AAMs contrary to a blackbox use, by using the
secondary properties of AAMs:

Registration One of the purposes of using segmentation algorithms such
as AAMs is to perform a subsequent image warping into some refer-
ence space of the object in question. This is especially true in many

102 Chapter 8. Discussion of Basic AAMs

medical applications. Fortunately – as seen in chapter 5 – registra-
tion is an inherent property of AAMs.

Analyses of Variance In group studies or longitudinal studies as for ex-
ample biological studies, the goal is often to depict or describe the
morphological changes [20]. For this, the shape PCA is very use-
ful. Furthermore, the user is provided with a texture analysis and
an analysis of the correlation between shape and texture through the
combined PCA.

Classification/Interpretation The model parameters (also called the
PCA scores) of either/or the shape-, texture- and combined-PCA
can be used for classification and interpretation purposes. Edwards
et al. [24] use this property to separate identity from variation in
expression, pose and lightning in an AAM built upon faces.

8.5 AAMs Posed in a Bayesian Setting

For those comfortable with the Bayes paradigm of computer vision, we will
pose AAMs in a Bayesian setting. This section is largely based on the
general treatment of deformable template models in [26].

A Bayesian formulation of a vision problem is in general attractive, since it
gives a natural separation of the model and image contribution to a given
solution. In a probabilistic framework these are given as a prior and a
likelihood probability distribution, respectively.

Prior – P (v|θ) where v ∈ Ωv denotes the model parameters, c, and the
pose parameters, and θ denotes the mean shape, mean texture and
their corresponding covariance structures. θ is thus obtained from
the training set.

Likelihood – P (I|v, θ) where I ∈ ΩI denotes the image being searched in,
and again θ denotes the mean shape, mean texture and their corre-
sponding covariance structures. θ is thus obtained from the training
set.

8.5 AAMs Posed in a Bayesian Setting 103

The prior and likelihood distribution are then combined to form the poste-
rior distribution, P (v|I, θ), by use of Bayes theorem:

P (v|I, θ) =
P (v|θ)P (I|v, θ)

P (I|θ)

∝ P (v|θ)P (I|v, θ) (8.1)

The Bayes formulation is then utilized (in e.g. segmentation) for making
inference2 about v. The maximum a posteriori (MAP) of v is:

v̂ = max
v

P (v|I, θ) (8.2)

The first thing to observe is that Active Appearance Models do not have
an explicit prior model – i.e. the prior distribution is uniform. Implicitly
however, the prior is an inherent property of an AAM since the training set
only allows shape and texture to be within a certain subspace of the shape
and texture space, due the (truncated) change of basis caused by the PCA.

The second thing to observe is that our optimization method in section 7.2
is formulated as an energy minimization rather than a probability maxi-
mization as in (8.2). Fortunately – under the weak assumption that the
posterior distribution is Gibbs distributed – equation (8.1) can be expanded
to [26]:

P (v|I, θ) =
1
z
e−U(v,I,θ) (8.3)

where U(v, I, θ) : Ωv → IR is the energy function – i.e. the similarity
measure function used in AAMs. And z is a normalizing constant which
ensure a proper distribution.3 Due to dimensionality of Ωv and especially
ΩI it is highly infeasible to determine the value of z. However, since z is a
constant this is of no importance to energy optimization.

By this (8.2) can be formulated as an energy minimization in the AAM
case:

2The act or process of deriving logical conclusions from premises known or assumed
to be true.

3I.e.
R
Ωv,ΩI

P (v|I, θ)dvdI = 1.

104 Chapter 8. Discussion of Basic AAMs

v̂ = max
v

P (v|I, θ)
= max

v
−U(v, I, θ)− log(z)

= min
v

U(v, I, θ) (8.4)

This concludes the topic of how AAMs can be interpreted in a Bayesian
setting.

105

Chapter 9

Extensions of the Basic
AAM

9.1 Overview

Though the previous chapters have provided a description and discussion
of AAMs, extensions can still be done of the basic AAM.

The major contribution of this thesis is – aside from the discussion and
documentation of AAMs – represented by the ideas and work described in
this and the following chapter.

Other extensions to the basic AAM are the work of Cootes et al. [22, 13, 14],
Walker et al. [71], Wolstenholme et al. [72], Mitchell et al. [52]. Some of
these extensions will be surveyed in chapter 17.

9.2 Enhanced Shape Representation

Basic AAMs using the piece-wise affine warping, relies on the Delaunay
triangulation of the shape points. This results in a triangular mesh covering
the convex hull of the point set.

106 Chapter 9. Extensions of the Basic AAM

For concave shapes this might not be the optimal solution. For example
there could be substantial texture noise in the area outside the shape – but
still inside the convex hull – thus leading to a less compact model.

To avoid this we suggest removing the triangles outside the shape. This
is trivial to accomplish. Simply traverse the triangles; test if the triangle
centroid should be outside the shape polygon. If so, remove the triangle.

See figure 9.1 for a pictorial of the problem. To test if a point is inside
the shape polygon several approaches could be taken. The current imple-
mentation utilizes the geometrical fact that, if a line from the point, p, to
infinity crosses the polygon an odd number of times, then the point p is
inside the polygon.

Figure 9.1: Removal of unwanted triangles resulting from the Delaunay trian-
gulation of concave shapes.

(a) (b)

Figure 9.2: (a) Concave shape with convex triangles. (b) Concave shape with
convex triangles removed.

Though the above method adds flexibility to the choice of the AAM shape
structure, one can still think of problems where even greater shape flexi-
bility is required. Objects can contain areas where the texture variation

9.3 Increasing Texture Specificity 107

might be considered noise. One might want to exclude such areas due to
arguments similar to the above given. Another situation is that of hav-
ing several structured objects, but in between those, the texture is highly
unstructured.

Features to accommodate such situations are implemented in the current
AAM framework. Shapes are defined in terms of paths, which is a subset
of the shape points with a given point connectivity. Each path can have a
combination the following properties:

• Open/closed path – Open path: a path where all points are con-
nected to two points each.

• Inner/outer path – Outer path: a path where only the inside is
included into the shape surface.

• Original/artificial path – Artificial path: a path added after the
original annotation.

• Hole/non-hole – Hole: a path where the inside is excluded from the
shape surface.

This provides the builder of an AAM with a high degree of freedom, re-
sulting in a more optimal AAM representation of the given problem. For
further details of the representation, refer to appendix G.

9.3 Increasing Texture Specificity

While the enhanced shape representation of the previous section gave great
flexibility it also increased the risk of what we coin the shrinking problem.

During matching of objects with a relative homogeneous surface – such as
the metacarpals – matches sometimes tends to lie inside the real object as
illustrated on figure 9.3. This is due to the fact that the AAM evaluates
the fit on the object texture only.

To avoid this shortcoming we suggest including some neighboring region of
the object. This will usually lead to more texture contrast in the model,

108 Chapter 9. Extensions of the Basic AAM

Figure 9.3: The shrinking problem.

since objects (often) are identified as something that stands out from its
surroundings.

This neighborhood adding must be done carefully to preserve compactness
of the AAM. Clearly, the texture PCA will suffer since the goal is to add
new information, namely background pixels, of which one could expect a
substantially higher degree of variation than across the object. However,
regarding the shape PCA, points can be added without adding new shape
information, thus retaining the eigenvalue distribution of the shape PCA.
This is accomplished by generating new shape points correlated with the
old ones, by adding new points on the normals of the original points in a
distance proportional to the relative size of the shape. See figure 9.4.

Figure 9.4: Shape neighborhood added using an artificial border placed along
the normals.

9.3 Increasing Texture Specificity 109

In pseudo-code this is:

1. Choose an artificial point distance, dmean = n pixels, relative
to the mean shape.

2. Calculate the mean size of all n shapes, smean = 1
n

∑n
i=1 S(xi).

3. For each shape [1 . . . n]
4. For each outer path
5. For each model point
6. Calculate the normal of the point
7. d = dmean

S(xi)
smean

8. Add an artificial point d pixels along the point normal
9. End

10. End
11. End

(a) (b)

Figure 9.5: (a) Shape annotated using 150 landmarks. (b) Shape with a neigh-
borhood region added resulting in 2× 150 = 300 landmarks.

Refer to the experimental section for results on using this rationale. The
metacarpals in figure 9.5 serves a good example of a shape with a relative

110 Chapter 9. Extensions of the Basic AAM

homogeneous surface. By adding neighborhood the texture in 9.5 (b) is
substantially more specific than the shape without, figure 9.5 (a).

9.4 Border AAMs

As earlier stated the AAM approach is a direct extension of the Active
Shape Models [15]. A major force of ASMs is the handling of objects
with heterogeneity inside shapes, in the meaning of inside areas with high
texture variation that is not possible to capture by annotation.

Since ASMs only model the texture variation in a local neighborhood
around the landmarks, the heterogeneity issue never arises.

To incorporate this force of ASMs into AAMs, the enhanced shape rep-
resentation has been used to provide the current implementation with the
feature of Border AAMs – i.e. AAMs that only capture texture information
on the border of the object in question. Border AAMs can be thought of
as ASMs with very closely spaced landmarks.

Figure 9.6: ASM-like AAM generated by adding shape neighborhood and a hole.

A Border AAM is achieved by adding an interior path, which defines a
hole and by adding an outer path as described in the previous section. A
schematic example on a Border AAM is given figure 9.6.

By using this rationale AAMs can be made insensitive to large-scale texture
noise inside the shapes, which otherwise would lead to a poor texture fit
and a low landmark accuracy.

9.5 Constrained AAM Search 111

(a) (b)

Figure 9.7: (a) Shape annotated using 83 landmarks. (b) Border shape with
3× 83 = 249 landmarks.

The pork carcasses of figure 9.7 constitutes a good example of this situation,
due to the heterogeneity of the structure of fat and meat from one training
example to another.

To conclude this section, we stress that Border AAMs also should be sub-
stantially faster than basic AAMs, since only a fraction of the original pixels
is considered.

9.5 Constrained AAM Search

This section is merely a documentation of considerations for the AAM
search, rather than an actual extension. However, this is included here
because no accurate description exists to our knowledge.

As described in section 7.2 the optimization is accomplished using a com-
bination of pose and model parameter predictions. As seen earlier these
predictions are only valid within some range. Consequently, it would make
good sense to constrain the predictions within these ranges. For pose pa-
rameters we define the bounds as being a function of the training range
[−α; α]:

pose parameter bound : [−κα; κα] (9.1)

For the model parameters we assume that these are independently normal
distributed over the training set, thus making the bound proportional to

112 Chapter 9. Extensions of the Basic AAM

the standard deviation over the training set – i.e.
√

λi. The bounds for the
ith model parameter is then:

model parameter bound : [−ν
√

λi; ν
√

λi] (9.2)

The current implementation uses κ = 2 and ν = 3.

Another – and theoretically better – approach could be to calculate the
Mahalanobis distance of the model parameters and do a test in the χ2-
distribution. If this would fail, the model parameters are then projected
onto the closest point of the hyper ellipsoid constituted by the Mahalanobis
distance. Refer to the later section on Performance Assessment for a further
treatment.

9.6 Initialization

The basic AAM optimization scheme is inherently dependent on good ini-
tialization. To accommodate this, we devise the following search-based
scheme thus making the use of AAMs fully automated. The technique
is inspired by the work of Cootes et al. [22] who uses a pixel difference
evaluation criteria and a threshold estimation for detecting multiple object
instances.

The fact that the AAMs are self-contained is exploited in the initialization
– i.e. they can fully synthesize (near) photo-realistic objects of the class
that they represent concerning shape and textural appearance. Hence, the
model, without any additional data, can be used to perform the initializa-
tion.

The idea is to exploit an inherent property of the AAM-optimization –
i.e. convergence within some range from the optimum. This is utilized
to narrow down an exhaustive search from a dense to a sparse population
of the hyperspace spanned by pose- and c-parameters. In other words,
normal AAM-optimizations are performed sparsely over the image using
perturbations of the pose and model parameters.

This has proven to be both feasible and robust. A set of relevant search
configuration ranges is established and the sampling within this set is done
as sparsely as possible.

9.6 Initialization 113

Consider the graph given in figure 7.1, which demonstrates that it should
be safe to sample the y-parameter with a frequency of at least 10 pixels.
One could also claim that as long as the prediction preserves the right sign
it is only a matter of a sufficient number of iterations.

To evaluate the fit, the normal similarity measure of AAMs is used:

Efit = |δg|2 =
∑

(gi,model − gi,image)2 (9.3)

As in the normal optimization, this could easily be improved by using more
elaborate error measures.

The crucial add-on to this algorithm is somewhat inspired from the class
of Genetic Algorithms1 (GA) which is based on the natural selection of
the Darwinian theory. The total set of search configurations constitutes
the initial population. From this we let the n fittest survive. These are
then reproduced into more evolved guesses. From these the best is drawn
and deemed the initial configuration. This is sometimes referred to as a
multiple hypotheses technique.

In pseudo-code, the initialization scheme for detecting one object per image
is:

1. Set m to a suitable low number (we use m = 3)
2. Allocate room for a candidate set, {c}, containing n result entries
3. Obtain application specific search ranges within each parameter (e.g.
−σ1 ≤ c1 ≤ σ1, xmin ≤ x ≤ xmax, etc.)

4. Populate the space spanned by the ranges – as sparsely as the linear
regression allows – by a set of search configurations V = {v1, . . . ,vn}.

5. For each vector in V
6. Do AAM optimization (max m iterations)
7. Calculate the fit, Efit = |δg|2
8. If Efit < max

Efit

{c} add (Vi, Efit) and remove the element max
Efit

{c}
9. End

10. For each element in {c}
11. Do AAM optimization (max k iterations, k > m)
12. Calculate the fit, Efit = |δg|2
13. Update Efit of the current entry
14. End
1Notice however, while GAs are probabilistic, our technique is deterministic. Further

more are the aspects of mutation and crossover in GAs not utilized here.

114 Chapter 9. Extensions of the Basic AAM

The element in {c} with the minimum Efit will now hold the initial con-
figuration.

Notice that the application specific search ranges in step 3 is merely a help
to increase initialization speed and robustness than it is a requirement. If
nothing is known beforehand, step 3 is eliminated and an exhaustive search
is performed.

This scheme is readily extended into more than one object per image by
a clustering of the candidate set using overlap tests. The approach in
general can be accelerated substantially by searching in a multi-resolution
(pyramidal) representation of the image.

Another example on search-based initialization of deformable models is [45].
Also [27, 29, 28] featured search-based initialization where multiple rigid
template matching using the convolution theorem2 for a FFT formulation
was utilized.

9.7 Fine-tuning the Model Fit

Though the AAM search provides a fast way of optimizing the AAM using
prior knowledge this might not lead to the optimal solution, primarily due
to weakness in the assumption that the optimization problems in an AAM
search is strictly similar to those observed in a training set.

Therefore, it is suggested to fine-tune the model fit by using a general-
purpose optimization method. This approach is feasible since it is rea-
sonable to assume that we are close to the optimum after the traditional
AAM search. Hence the optimization fine-tuning should be possible in an
reasonable amount of time.

Though one is not guaranteed that the hyperspace is totally smooth at the
position where the AAM search has converged, it is still more probable that
we are near a well-behaved manifold in the hyperspace.

2I.e. F(f∗g) = F(f)F(g), where f , g are two signals, F denotes the Fourier transform
and ∗ the convolution operator.

9.7 Fine-tuning the Model Fit 115

The considered optimization methods are:

• Gradient based methods:

– Steepest descent (SD)
– Conjugate gradient with Fletcher-Reeves update (CG) [31]
– Quasi-Newton (BFGS)

• Non-gradient based methods:

– Pattern search (PS) [40]

• Random-sampling based methods:

– Simulated annealing (SA) [7, 47]

Another noteworthy random-sampling technique is the Genetic algorithms
which has proven successful and efficient in applications of other defor-
mable models (e.g. [39]). However, this not considered in the following.
Other popular optimization methods used in deformable models include
Marquardt-Levenberg as used in the Active Blobs framework [58] as a sup-
plemental to difference decomposition [34].

Conjugate Gradient and BFGS are well known optimization methods (see
e.g. [19]), which should have better properties than Steepest Descent. Pat-
tern Search is a non-gradient based optimization algorithm, which has re-
ceived increasing interest in the optimization community. Finally Simu-
lated Annealing borrows ideas from a physical procedure called annealing
where a substance is melted and then slowly cooled down in search of a
low energy configuration. In a similar manner, probabilistic optimization is
performed with a decreasing temperature that determines how greedy the
procedure is in the search for a global minimum. However, since a detailed
discussion of optimization methods is somewhat outside the scope of this
thesis, the reader is referred to [19, 31, 61].

To assess the effect of such fine-tuning an AAM has been built upon 20
metacarpal images (238×272×8bit) where metacarpals 2, 3 & 4 were an-
notated using 50 points each. A model neighborhood of four mean shape
pixels was added. The texture model consisted of approx. 13.000 pixels.
Here after the model has been used to search four unseen images with a
ground truth annotation using the automatic initialization approach de-
vised previously. Results reported in table 9.7 are the mean of the four

116 Chapter 9. Extensions of the Basic AAM

Type Pt.-Crv. Pixel error
(pixels) (intensity)

None 0.92 5.7
BGFS 0.89 5.5
SD 0.88 5.5
CG 0.87 5.5
PS 0.87 5.3
SA 0.89 5.4

Table 9.1: Mean fit results using general-purpose optimization methods for fine-
tuning.

experiments. For a definition of pt. to crv., refer to the later section on
Performance Assessment.

This investigation is not conclusive. Nevertheless, the presented results
indicate clearly that a fine-tuning of the AAM fit can be accomplished
successfully using general-purpose optimization techniques.

In the current case the simple method Pattern Search yielded the best re-
sults, reaching a 5 % improvement over the point accuracy and 7 % over
the pixel error. However, since the performance of these methods is quite
sensitive to configuration parameters – i.e. step sizes, standard deviations,
stop criteria – we stress that this might not be generally true. In agreement
with this, the random-sampling optimization technique Simulated Anneal-
ing is chosen in the experimental chapters over the better Pattern Search
in the example. This decision is motivated by the observation that our
objective function – i.e. |δg|2 – most likely is non-convex. Thus determin-
istic optimization techniques has a high risk of getting caught in spurious
minimas, whereas random-sampling techniques are more likely to escape.

9.8 Robust Similarity Measures

As mentioned earlier the basic AAM optimization is driven by texture
differences. More accurately the square length of the normalized texture
difference vector, |δg|2 is used. The measure with which the optimization
evaluates itself with, is here forth named the similarity measure. This
constitutes the essence of what one want: evaluate how similar the model
is to the image.

9.8 Robust Similarity Measures 117

However, the term similar is inherently vague in a mathematical sense. The
term |δg|2 is thus only one interpretation of what similar actually means.

In this section, we will dwell on other interpretations of the term simi-
lar. Namely, the one that mimics the human ability of compensating for
small numbers of gross errors, and thus achieving robustness in recognition.
These are called robust similarity measures and stems from an increasingly
popular statistical discipline in vision named robust statistics, where the
term robust refer to the insensitivity to outliers. The notation and treat-
ment below is somewhat based on the work of Black and Rangarajan [3].

Cootes et al. [22] has previously extended the basic AAM with learning-
based matching to obtain robustness. This is achieved using a threshold
for each element in δg estimated from the training set.

We suggest using robust similarity measures. To formalize the model fitting
problem, a set of parameters, c = [c1, . . . , cp]T, are adjusted to fit a set
of measurements (e.g. an image), g = [g1, . . . , gm]T. This is done by a
minimization of the residuals:

E =
m∑

i=1

ρ(gi − u(i, c), σs) =
m∑

i=1

ρ(ei, σs) (9.4)

where u is a function that returns the model reconstruction of the ith

measurement and σs is the scale parameter that determines what should
be deemed outliers.

The ρ-function determines the weighting of the residuals, and is also called
the error norm. The most common error norm is least squares or the
quadratic norm:

ρ(ei) = e2
i (9.5)

This is often referred to as the L2 norm. Basic AAMs uses the quadratic
norm (or simply the 2-norm) without any normalization:

E =
m∑

i=1

(gmodel − gimage)2 =
m∑

i=1

δ(gi)2 = |δg|2 (9.6)

118 Chapter 9. Extensions of the Basic AAM

It is however easily seen, that the quadratic norm is notoriously sensitive
to outliers, since these will contribute highly to the overall solution due the
rapid growth of the x2 function. To quote [3] pp. 62:

”... an estimator must be more forgiving about outlying mea-
surements ...”

A straightforward approach is to put an upper bound on the accepted
residual. This is called the truncated quadratic norm:

ρ(ei, σs) =
{

e2
i ei ≤ √

σs

σs ei >
√

σs
(9.7)

Another approach is to make the residual growth linear above a certain
threshold. This results in the so-called Huber’s minimax estimator:

ρ(ei, σs) =

{
e2

i

2σs
+ σs

2 ei ≤ σs

|ei| ei > σs

(9.8)

Another smooth norm – which falls off faster than the Huber norm – is the
Lorentzian estimator as used by Sclaroff and Pentland in the Active Blob
framework [58]3:

ρ(ei, σs) = log(1 +
e2
i

2σ2
s

) (9.9)

Finally we suggest to use a similarity measure with closed connection to
the Mahalanobis distance, since it takes the variance of the training set
into account and thus makes the similarity measure less sensitive to large
residuals in areas of high variance (as observed in the training set). Instead
of using the dependent Mahalanobis distance:

ρ(ei) = (g − g)TΣ−1(g − g) (9.10)

3To achieve performance the log-function was implemented using precomputed look-
up tables.

9.8 Robust Similarity Measures 119

where Σ is the texture difference covariance matrix, we are compelled to
assume independence4 between pixels, due to the length of the pixel vectors
which makes the computation of (9.10) infeasible. This reaches a form
similar to the Mahalanobis distance norm of:

ρ(ei) =
e2
i

σ2
i

(9.11)

where σ2
i is the maximum likelihood estimate of the variance of the ith

pixel. Notice however, that this is not the Mahalanobis distance since σ2
i

should be the variance of the difference to be so.

Of the above similarity measures the Lorentzian and the ”Mahalanobis” dis-
tance have been integrated into the basic AAM to supplement the quadratic
norm of Cootes et al. Thereby robustness to outliers in the unseen image
has been obtained. An example of this could be to detect the complete bone
structure of human hands in radiographs. Since radiographs are 2D projec-
tions of density, people wearing finger rings will have high-white outliers on
one or more phalanges. Other examples include highlights in perspective
images and absence of interior parts (for example due to partial occlusion).

However, one should notice that even though the AAM search evaluate its
predictions using a robust measure, the predictions themselves are done
using the pixel differences. To address this problem Cootes et al. [22]
performs a thresholding of the texture vector before the prediction. This
could be viewed upon as a robust preprocessment. The threshold limit is
estimated from the training set.

Consequently, to evaluate the proposed similarity measures the fine-tuning
optimization was included in all experiments.

To show the effect of robust error norm usage, an AAM search with fine-
tuning using Simulated Annealing has been done with and without a robust
similarity measure. In the case given in figure 9.8 the Lorentzian error
norm was used. To simulate outliers the radiograph searched in has been
manipulated so that it appears as if the metacarpal is wearing a finger

4Unfortunately dependence is the fundamental characteristic of the concept of an
image.

120 Chapter 9. Extensions of the Basic AAM

Figure 9.8: Example of AAM search and Simulated Annealing fine-tuning, with-
out (left) and with (right) the use of a robust similarity measure (Lorentzian error
norm). Landmark error decreased from 7.0 to 2.4 pixels (pt.-to-crv. error).

ring.5 While not perfect, the robust AAM provides a substantially better
fit compared to that of the basic AAM.

Through preliminary experiments, it was observed that the Lorentzian error
norm performed best. Hence, this is the only norm used in the experimental
chapter.

For a further treatment of robust error norms and line processes in vision
refer to [3].

9.9 Summary

In this chapter several ideas for extending the basic AAM have been pro-
posed and implemented. Each one addressing potential problems in certain
cases of the basic AAM. Preliminary experiments have been conducted to
1) demonstrate the effect of these and 2) to form a basis for the selection
of extensions in the experimental part.

5Though this is highly unlikely since the metacarpals is situated in the middle of the
hand.

121

Chapter 10

Unification of AAMs and
Finite Element Models

10.1 Overview

In conjunction with the previous chapter, this chapter constitutes the pri-
mary contribution of this thesis.

An idea for extending the AAM framework is presented conceptually and
followed by an algorithmic formulation, which can be readily implemented
in an AAM system. This has been done and preliminary results and obser-
vations hereof are presented.

The treatment of finite element models (FEM) is partly inspired from the
work with extending shape flexibility in ASMs by Cootes et al. [11] and the
Active Blob / Active Voodoo Doll models of Sclaroff and Isidoro [43, 58].

Quite recently1 Cootes et al. proposed a combination of elastic and statis-
tical models of appearance [13], which should not be confused with the con-
tribution below. In [13] elasticity was obtained using so-called local AAMs
– i.e. AAM-blobs around each landmark with a smoothness constraint,
thus providing a free-form-like deformable model extension of AAMs.

1ECCV, Dublin, June 2000.

122 Chapter 10. Unification of AAMs and Finite Element Models

10.2 Motivation

The Basic AAM is inherently driven by texture differences. Thus AAMs
will favor texture fit at the expense of landmark precision. This is quite
acceptable since the texture fit is the only part that is explicitly known at
the optimization time.

The predecessor to AAMs, Active Shape Models (ASM) model texture us-
ing a local neighborhood around each landmark2. This makes the ASM
approach less sensitive to texture abnormalities in the middle of the shape,
but also less specific and less complete. In agreement with this, a compar-
ative study between ASMs and AAMs [17] concludes that ASMs achieves
more accurate landmark location than AAMs, but AAMs gives a better
texture match.

This chapter devises a method to enhance the texture fit without sacrificing
landmark accuracy.

To fully understand the source of the problem look at the synthetic exam-
ple in figure 10.1. Here an object, a, in an image with a high background
intensity (light gray) is depicted. Inside a there is an area that is hard to
place landmarks upon. In this example this is represented by the radial
blob, b. Imagine that the blob, b is roughly on the same spot on a across
the whole training set. If one then supplies a new image to search in, where
b is displaced, the AAM will sacrifice the edge accuracy to accommodate
the displacement of b. Which is due to the fact that there is far less contrast
in the edge area than in the blob, b. This makes it ”cheaper” to accept the
erroneous edge fit, since the only way to modify the inside of the model is
by moving the outside points.

To solve this situation one could include the example where the blob has
moved, into the training set. This would however make the compactness
of the texture model suffer. Another approach could be to annotate the
blob in all training images, thus retaining the compactness of the texture
model. Unfortunately, this approach is not always feasible since objects
can contain structures within that are very hard to annotate, due to ar-
bitrarily absence or structures with no well defined extends. Furthermore,
the manual definition of landmarks is the Achilles’ heel of AAMs, which

2Although any neighborhood could be used, a 1-pixel wide profile at each landmark
normal is used.

10.3 The Basic Idea 123

Figure 10.1: A shape, a, with a blob, b, inside that is hard to annotate.

makes such an approach undesirable in general. We need to minimize the
need for additional landmarks.

To increase the quality of the texture model and the robustness [10], Cootes
et al. annotated well defined – but varying – structures such as the nose
and the eyebrows in their face model.

10.3 The Basic Idea

To accommodate the above-mentioned flaws it is proposed to make the
inside of AAMs more flexible. In this way the inside could be deformed to
fit the blob of the above example without sacrificing the precision at the
border.

To obtain such flexibility we suggest enforcing a physical model of a rubber-
like material over the inside of the AAM. The class of models called finite
element models (FEM) is chosen to accomplish this task.

Using FEMs, a compact parameterization can be obtained to deform the
inside of the model. These parameters can then be used as a part of the
AAM optimization to provide greater flexibility.

124 Chapter 10. Unification of AAMs and Finite Element Models

10.4 Finite Element Models

A simple conceptual model for an FEM, is to model an elastic body as
a set of point masses mutually interconnected by springs. The material
properties are then given by the masses, the spring constant and the rest
length. See figure 10.2.

Figure 10.2: A finite element model interpreted as a set of point masses inter-
connected by springs.

To represent the position of the masses a vector similar to the shape vector
is used. Thus having n masses:

x = [x1, x2, . . . , xn, y1, y2, . . . , yn]T (10.1)

Formally, a finite element model can be written as a generalized eigenprob-
lem. If M denotes a mass matrix and K stiffness matrix (containing the
spring constants and rest lengths) this is [11]:

KΦFEM = MΦFEMΩ2 (10.2)

where ΦFEM is a matrix of eigenvectors:

ΦFEM =

φ1 · · · φ2n

(10.3)

10.4 Finite Element Models 125

representing the modes of vibration and Ω2 is a diagonal matrix of eigen-
values:

Ω2 =

ω2
i

. . .
ω2

2n

 (10.4)

associated with each eigenvector.

If x denotes the equilibrium configuration – i.e. the non-deformed mate-
rial, then a deformed version, x can be obtained by a weighted sum of
eigenvectors given by the vector, u:

x = x + ΦFEMu (10.5)

Henceforth u is called the FEM deformation parameters. The energy of
the deformation in the ith parameter is proportional to ω2

i .

A simple FEM can be obtained by assuming unit masses and rest length
of the springs equal to the distance between the points. This makes M the
identity matrix and the stiffness matrix becomes:

K =
[

Kxx Kyx

Kxy Kyy

]
(10.6)

where Kxy = KT
yx = Kyx, all size n × n with off-diagonal elements given

by:

kxxij =
(xi − xj)2

(xi − xj)2 + (yi − yj)2
(10.7)

kyyij =
(yi − yj)2

(xi − xj)2 + (yi − yj)2
, (10.8)

kxyij =
(xi − xj)(yi − yj)

(xi − xj)2 + (yi − yj)2
(10.9)

and diagonal elements:

126 Chapter 10. Unification of AAMs and Finite Element Models

kxxii = kyyii = 1 , kxyii = 0 (10.10)

ΦFEM is now easily obtained through an eigenvalue decomposition of K.

One should notice the striking similarity with the PCA approach. Instead
of modes of variation the FEM provide modes of vibration as controlled by
the FEM deformation parameters, u.

(a) (b)

(c) (d)

Figure 10.3: High frequency FEM-modes of a square surface modelled by 25
unit masses.

As mentioned above, FEM has an ordering of the eigenvectors correspond-
ing to the amount of deformation and to the frequency of deformation. For
simple shapes the first, low-frequency modes will correspond to rigid body
changes and more intuitive deformations – i.e. bending etc. Whereas the
high frequency modes contain more complex localized deformations [11, 59].
The effect of deforming a square surface modeled by 25 unit masses using
high frequency modes can be seen in figure 10.3.

10.5 Integration into AAMs

As the above section introduced the basics of FEMs this section will demon-
strate how to utilize an FEM in the AAM framework.

10.5 Integration into AAMs 127

The first thing to notice is that the FEM deformations described in the
previous chapter displaced all points on the surface. In AAMs we are
interested in deforming the interior of a shape rather than the whole shape.
Consequently the concept of artificial interior points, (AIP) is introduced.
AIPs are generated using a given point generating function, q(x), and a
shape, x. The generated AIPs are then deformed using an FEM, to increase
the AAM fit.

Formally this can be viewed upon as the normal shape vector, xs being
augmented with the AIPs, xa into the combined shape vector xc. Thus,
the deformations can now be written as:

xc =
[

xs

xa

]
=

[
x
0

]
+

[
Φs

0

]
W−1

s Φc,sc + h
([

0
ΦFEM

]
u, c,q(x)

)

(10.11)

where 0 denotes the zero vector and matrix respectively and h is a function
that warps the deformed AIPs to match the current shape (as defined by
c).

As an alternative to use (10.11) directly, the technique can also be inter-
preted as a way of manipulating the warp function to act as if the interior
of a shape has been deformed. In pseudo-code this would be:

1. Generate AIPs using the mean shape, x.
2. Concatenate the AIPs and the mean shape into a warp shape xwarp,c

3. Deform the AIPs using a FEM into the point set p.
4. Obtain the PCA-deformed shape xs.
5. Establish a warp, f(), between xs and x
6. Warp each deformed AIP in p using f() into the point set pwarp

7. Concatenate the AIPs in pwarp and xs into xs,c

8. Establish a warp, g(), between xs,c and xwarp,c

9. Use g() to obtain the texture for the shape xs.

The pseudo-code is also expressed graphically in figure 10.4. The case of a
triangular mean shape is used to keep it simple.

It now remains to define a suitable point generating function to obtain the
AIPs. Since the current AAM implementation uses a piece-wise affine warp

128 Chapter 10. Unification of AAMs and Finite Element Models

Figure 10.4: Warp modification by FEMs.

it seems natural to choose the AIPs as the centroid of each triangle. The
FEM modification of this type of warp function is given in figure 10.5. An
appealing alternative to this, is the constrained Delaunay triangulation of
Shewchuk [60] which easily could be used to generate AIPs.

Figure 10.5: Warp modification by FEMs using piece-wise affine warps.

For small FEM deformations, the above description will work out-of-the-
box, but for large deformations, one needs to consider the situation where
the AIPs are deformed outside the shape (or just outside the corresponding
triangle). Then the warp function will break down due to the folding of the
surface. To constrain the movements of the AIPs several approaches can be

10.5 Integration into AAMs 129

adapted. The theoretically most pleasing is to include the original shape
points into the FEM and giving them a mass of infinity. In the current
implementation however, the following approach was taken, the original
shape points were included in the FEM with unit mass, the FEM deforma-
tion was done and the deformed AIPs were extracted. See figure 10.6. In
practice, this method has proven successfully since large deformations never
increased the overall fit of the AAM, and consequently were not performed.

Figure 10.6: A square shape deformed by adding FEM-deformed AIPs and
fixating the original outer shape points.

Regarding the integration into the optimization process, several approaches
have been tested. First the FEM-parameter adjustment was trained using
a multivariate linear regression (MLG) similar to that of the basic AAM.
Unfortunately it was discovered that the three MLGs – model parame-
ters, pose parameters and FEM parameters – could not co-exist since the
introduction of the FEM parameter prediction made the pose and model
parameter predictions erroneous. It is hard to explain why this happens.
Its equally hard to explain why the pose and model parameter predictions
can co-exist ”peacefully”, since they were trained in an exact similar man-
ner. This could be caused by the global behavior of the pose predictions in
contrast to the local behavior of the model parameter prediction and the
FEM parameter prediction.

130 Chapter 10. Unification of AAMs and Finite Element Models

Consequently, the FEM deformation was integrated into the general-purpose
optimization framework instead.

10.6 Results

To assess the effect of the described FEM-modification, an AAM has been
built upon 20 metacarpal images (238×272×8bit) with metacarpal 2 an-
notated using 50 points. A model neighborhood of four mean shape pixels
was added.

This model was subsequently used to search four unseen images with a
ground truth annotation using automatic initialization. The overall per-
formance was as expected. Using Simulated Annealing (SA) the landmark
error decreased from 0.83 pixels to 0.78 pixels (both with SA, but with-
out/with FEM) . The texture error decreased from 4.9 intensities to 4.7
intensities.

While further investigations are required to be conclusive, the results point
towards that greater flexibility leads to a better fit.

10.7 Conclusion

The basic AAM has been augmented with a method providing deformation
of the inside of a shape without compromising the landmark accuracy of
the outer border. The method is based on a finite element framework and
integrated into the general-purpose optimization of AAMs (as described in
the previous chapter). More work could be done in finding the optimal
integration into AAMs. Preliminary experiments showed that using multi-
variate linear regression prediction in conjunction with the standard AAM
search yielded undesirable behavior. In conjunction with a general-purpose
optimization method (Simulated Annealing) higher landmark accuracy and
improved texture fit, was obtained as a result of increased model flexibility.

Part III

Implementation

131

133

Chapter 11

The AAM-API

11.1 Overview

This section emphasizes on the details of the AAM implementation. All
experiments, illustrations etc. is done by developing an Active Appear-
ance Models Application Programmers Interface (AAM-API) in the C++
language.

The primary motivation for developing a ready-to-use API in C++ contrary
to a test bench done in some mathematical framework (i.e. Matlab) is
partly due to an agreement with the partial sponsor1 of this thesis work
and partly due to:

Performance Due to the inherent design of AAMs feasible performance
could be achieved using C++.

Structure Though the description of AAMs can be done rather brief, an
actual implementation requires a substantial amount of machinery.
This is proven by the more than 15.000 lines of code in the AAM-
API2. Consequently, it was of the utmost importance to realize the
AAM framework in an environment providing suitable tools for a
clear structure of the code.

1The Danish company Pronosco A/S.
2This is without any 3rd party libraries or auto-generated code.

134 Chapter 11. The AAM-API

Reusability Since many of the techniques (warping, shape handling etc.)
is of general interest, means of reusability was also set forth as a goal.
One of the original design criteria of C++ was reusability.

It was further more the intention to bring the documentation objective
to effect right down to source code level by providing the AAM-API as
open source. This basically means that other freely can download, use
and elaborate on the AAM-API with no additional cost as long as the
original author is credited and no headers are removed from the source
code. This also motivates the choice of a language which afford extension
and modification by inheritance.

To provide a consistent and complete documentation all source code has
been augmented with special tags. Within these tags structured code doc-
umentation has been written and subsequently extracted by a suitable pro-
gram3 into a printable PostScript version and a cross-referenced HTML
version. Both of these and further information on the AAM-API can be
downloaded in full from the AAM site4. Refer to appendix D for further
information on the documentation including an exhaustive class listing.

Below the requirements for the AAM-API are given followed by a brief
introduction to the most important classes.

11.2 Requirements

The AAM-API is targeted at the Windows NT/9x platform and developed
in Microsoft Visual C++ 6.0. Additional functionality was provided by
integration of the following 3rd party libraries:

• BLAS Fast matrix and vector multiplication.
• LAPACK Matrix inversion, eigenvalue decomposition.
• Intel Math Kernel Library SIMD implementation of BLAS.
• VisionSDK Image, vector and matrix handling etc.
• DIVA Image handling, image i/o, vector and matrix handling etc.
• ImageMagick Image i/o.

3Doc++ [http://www.linuxsupportline.com/∼doc++/].
4At http://www.imm.dtu.dk/∼aam/

11.3 The API at a Glance 135

These libraries are freely available and needed by the AAM-API5. To use
AAMC, only VisionSDK DLLs are needed.

11.3 The API at a Glance

Below is enumerated the most important classes of the AAM-API together
with a brief introduction. Consult the documentation for a complete and
thorough treatment of all classes.

CAAMCore Core functionality of the AAM framework. Includes model
building, principal component analysis, linear regression experiments,
i/o etc.

CAAMShape Shape container. Path manipulation. Shape expansion
and contraction, i/o. Pose transformations. Inside tests. AIP func-
tion etc.

CAAMShapeCollection Shape collection container and shape alignment
using Procrustes analysis, i/o etc.

CAAMDelaunay Delaunay Triangulator. This is merely a conversion in-
terface to the free Delaunay Triangulator by Steven Fortune. Copy-
right (c) 1994 by AT&T Bell Laboratories. AT&T, Bell Laboratories.

CAAMLinearReg General multi-variate linear regression on a set of ex-
periments using principal component regression.

CAAMFEMDeform Finite element framework for deforming a set of
points, using unit masses. Eigenanalysis is done using LAPACK.

CAAMOptimize General-purpose optimization of the AAM. Interprets
the pose and model parameters such that optimization using Steepest
Descent, Conjugate Gradient, BFGS, Pattern Search and Simulated
Annealing can be accomplished.

CAAMMesh 2D triangular mesh container including hit test, i/o etc.

5At least in binary form with header files and stub libraries.

136 Chapter 11. The AAM-API

CAAMTriangle Triangle container with built-in hit test.

CAAMWarp Base class of 2D warp classes. Warps are defined in terms
of the CAAMShape instances.

CAAMWarpLinear Piece-wise affine warping between two shapes using
Delaunay triangulation. Provide optional speed-ups using dynamic
programming (caching of warps).

11.4 API Extension by Inheritance

The AAM-API was designed to accommodate extension by inheritance. A
natural choice since the API is implemented in the object-oriented language
C++. Below is given a simple example of changing functionality of the
API, while retaining the possibility of updating core functionality without
breaking existing code.

Example: Changing the shape-to-pixel weights

One could desire to change the way that the shape-to-pixel weights are
estimated (as mentioned in section 6.2).

class CAAMMyCore : public CAAMCore {

public:
virtual void CalcPixel2ShapeWeights();

};

void CAAMMyCore::CalcPixel2ShapeWeights() {

// your implementation
}

One should however pay attention to the common pitfalls of extension by
inheritance such as name collisions in multiple inheritance etc. Consult a
textbook in C++ programming for further details.

11.5 Console interface 137

11.5 Console interface

As an example usage of the AAM-API, a console interface, AAMC, has
been provided. Most of the experiments, illustrations etc. were produced
using AAMC. This approach has also the advantage of being capable of
scripting AAM-API operations using any high-level script-language. As an
example has the leave-one-out testing been implemented using the script
language provided by command.com in Windows NT and AAMC without
any modifications. This has proven to be a highly flexible and fast interface
for doing a large number of experiments.

However, it should be simple to provide a graphical user interface on top
of the AAM-API, showing eigenmodes etc. with real-time interaction.

11.6 File I/O

As of now much interfacing to the AAM-API consist of files:

AMF – AAM Model File Binary model description containing eigen-
values, eigenvectors, mean shape, mean texture etc. All .amf files has
a human-readable equivalent (.txt) providing information about the
model.

ACF – AAM Config File ASCII configuration file for setting up the
properties of an AAM. Given to the model building process.

ASF – AAM Shape File ACSII representation of a shape including path
information etc. The format is tab-separated and can thus be read-
ily converted into virtually any data processing program (Matlab,
S-Plus, Excel etc.).

Refer to appendix E for examples on the file formats and appendix G for
a detailed format specification of the shape format (.asf).

138 Chapter 11. The AAM-API

Part IV

Experimental Results

139

141

Chapter 12

Experimental Design

12.1 Methodology

As evaluation of the basic AAM and the proposed enhancements, several
training sets were obtained. To prove the alleged generality of AAMs em-
phasis was put on gathering very different image modalities with objects
of very different appearance. This resulted in the following training cases:

• Radiographs of Metacarpals – 24 images/annotations.

• Cardiovascular Magnetic Resonance Images – 45 images/annotations.

• Perspective images of Pork Carcass – 14 images/annotations.

To obtain the best possible evaluation leave-one-out1 experiments was con-
ducted on all training sets. The substantial increment in workload herein
is justified by the removal of all uncertainties caused by dividing the cases
into a training set and an evaluation set. Further more, this methodology
yield better models due to the capture of almost all variation in each of the
three cases; all with a limited amount of images.

1Model building where each training example is missed out in turn and evaluated
upon.

142 Chapter 12. Experimental Design

12.2 Performance Assessment

To assess performance at least two approaches can be adapted. The first
approach is to compare the optimized model to a known ground truth,
as given by experts. For a survey of this topic, refer to [26]. Secondly,
the result could be validated by using the distribution of the training set,
which constitutes a very interesting property of AAMs which we will call
self-contained validation in the following.

12.2.1 Comparison to Ground Truth

Using a ground truth given by a finite set of landmarks for each example
performance can easily be assessed. In a leave-one-out setting this could
be the same landmarks used for building the models. This calls out for
a distance measure, D(xgt,x), that gives a scalar interpretation of the fit
between the two shapes, the ground truth, xgt, and the optimized shape,
x.

To assess the performance using landmarks two distance measures could
be considered.

• Point to point error Defined as the Euclidean distance between
each corresponding landmark. Mean pt.pt. error is thus:

Dpt.pt.(xgt,x) =
1
n

n∑

i=1

√
(xi − xgt,i)2 + (yi − ygt,i)2 (12.1)

• Point to associated border error/Point to curve error De-
fined as the Euclidean distance between a landmark of the fitted
shape, x, to the closest point on the border given as the linear spline,
r(t) = (rx(t), ry(t)) , t ∈ [0; 1], of the landmarks from the ground
truth, xgt. Mean point to associated border error is thus:

Dpt.crv.(xgt,x) =
1
n

n∑

i=1

min
t

√
(xi − ry(t))2 + (yi − rx(t))2 (12.2)

12.2 Performance Assessment 143

This distance measure is here forth abbreviated to the point to curve
error (pt.crv.).

The graphical interpretation of these two distance measures is given in fig-
ure 12.1.

Figure 12.1: Left: Point to point (pt.pt.) error. Right: Point to associated
border (pt.crv.) error.

Due to a (common) interest in knowing the outline of the objects rather
than the exactly position of landmarks, these were allowed to slide some-
what along the contour of the ground truth in all of the cases. Consequently,
only the latter (pt.crv.) distance measure is used in the following.

12.2.2 Self-contained Validation

The term self-contained validation covers the technique of assessing perfor-
mance using prior knowledge only. In the following, we suggest using the
texture error and perform tests in the model parameters.

Texture Error

As in [22] the texture of the optimized model is subtracted from the (nor-
malized) image below and de-normalized. If g and gd denotes normalized
and de-normalized texture vectors respectively, the mean de-normalized
texture error is:

144 Chapter 12. Experimental Design

te(g,gd) =
1
m

m∑

i=1

|gd,model,i − gd,image,i|

=
1
m

m∑

i=1

|(αgmodel,i − β)− (αgimage,i − β)|

=
1
m

m∑

i=1

α|gmodel,i − gimage,i| (12.3)

Units are of intensity. This measure is called the mean intensity error (mie)
and is used extensively in the following to evaluate the texture fit.

Model Deformity

By using prior knowledge from the training set, a probability model for the
model parameter configuration can be obtained.

One way to determine if a model parameter configuration is plausible
is to impose hard limits on the model parameters, c, under the model-
assumption that the c-parameters are independent gaussian distributed
with zero mean. Since the variance, σ2

i , of ith principal component equals
λi – and 99.73% of distribution of ci is covered in the range ±3σi – the
limits can be chosen as:

−3
√

λi ≤ ci ≤ 3
√

λi (12.4)

Due to this simple hyper cube restriction every c-parameter is allowed si-
multaneously to take the value of ±3

√
λi which is highly unlikely.

To avoid this the c-parameters can be restricted to a hyper ellipsoid using
the Mahalanobis distance.

D2
m =

t∑

i=1

c2
i

λi
≤ D2

max (12.5)

such that a Dm is smaller than a suitable Dmax corresponds to a plausible
model instance. As a suitable value for Dmax, 3.0 could be used.

12.3 Summary 145

Figure 12.2: The effect of using the Mahalanobis distance in two dimensions.
Model instance B is valid, while model instance A is classified illegal

An even better way to determine this, is to perform a test in the χ2-
distribution, since (12.5) is χ2(t) distributed.

12.3 Summary

It was decided to assess AAM performance using leave-one-out evaluation
on a set of training examples. For each test the point to curve error, a, the
texture error, b and the number of failures c are to be recorded in a table
similar to 12.1.

Type Pt.-Crv. Texture Failures
(pixels) (pixels) (mie)

a b c

Table 12.1: Result tabular.

The point to curve error, a, is calculated as the mean of, N experiments
each giving the mean point to curve error using shapes with n landmarks:

a =
1
N

N∑

i=1

Dpt.crv.(xgt,i,xi) (12.6)

146 Chapter 12. Experimental Design

Likewise the texture error is given as the mean intensity error (mie), b, of
texture vectors of length m stemming from N experiments:

b =
1
N

N∑

i=1

te(gi,gd,i) (12.7)

Failure, c, was declared when the point to curve error exceeded 10 pixels.

c =
1
N

N∑

i=1

[Dpt.crv.(xgt,i,xi) > 10.0 ? 1 : 0] (12.8)

Here formalized using the ’?’ operator, e ? a : b, that evaluates the
boolean expression, e, and returns a on true and b on false.

Due to the rather small training sets, the uncertainty on the distribution
estimations were deemed too high to perform any deformity validation as
described in section 12.2.2.

147

Chapter 13

Radiographs of
Metacarpals

13.1 Overview

Radiographs (x-rays) constitute an important image modality in medical
imaging. This section focuses on radiographs of hands, from which many
medical analyses can be done in a fast and non-invasive manner. These
include 1) assessment of skeletal maturity and 2) assessment of bone quality
using the bone mineral density (BMD) estimate.1

Recently image analysis has been applied to estimate BMD and two cor-
rective factors in the BMD calculation namely the porosity and striation.
To accomplish this, segmentation of the metacarpals is required. Refer to
figure 13.1 for an atlas of hand anatomy.

However, segmentation in radiographs (x-rays) pose a difficult problem due
to large shape variability in human bones and the inherent ambiguity of
radiographs. This forms a suitable challenge for an AAM. Other attempts
to perform segmentation in radiographs include the work of Efford [25] and
Stegmann et al. [66] where the ASM approach was used.

Twenty-four radiographs of different human hands were obtained and three
metacarpal bones were annotated using 50 points on each. The annotation

1Which is used in the diagnosis of osteoporosis.

148 Chapter 13. Radiographs of Metacarpals

distal

proximal

medial lateral

phalanges

carpals

radiusulna

metacarpals

I

III

V

Figure 13.1: Hand anatomy. Metacarpals numbered at the fingertips.

of metacarpals 2, 3 and 4 was concatenated into a 150-point model. Land-
marks were extracted from a dense outline representation of the metacarpals
using a proprietary algorithm from Pronosco A/S.

13.2 Results

Using leave-one-out and automatic initialization AAM performance has
been assessed on radiographs. The 24 images were subsampled to 240×275
pixel to obtain a manageable size, due to the large number of models re-
quired in the leave-one-out evaluation. To motivate this decision, each
model used approx. 2000 experiments in the linear regression – i.e. 96.000
experiments were conducted to obtain the results below.

Mean results are given in table 13.1 using combinations of the developed
enhancements.

The single failure in test one was caused by an erroneous match at meta-
carpal 3, 4, 5 instead of 2, 3, 4. This was removed before the calculation
in table 13.1. One method to resolve this issue would be to include all four

13.2 Results 149

Type Pt.-Crv. Texture Failures
(pixels) (pixels) (mie)

1 Basic AAM 0.88 4.9 1
2 1+Neighborhood 0.84 5.2 0
3 2+SA 0.82 5.0 0
4 3+Lorentzian 0.83 5.0 0

Table 13.1: Leave-one-out test results for the metacarpal AAMs.

Figure 13.2: The mismath at metacarpal 3, 4, 5 instead of 2, 3, 4. in test 1.

metacarpals in the model. Notice however that the fit is rather short in
the distal end in figure 13.2. This is a typical example of the previous (in
section 9.3) mentioned shrinking problem. Consequently, a neighborhood of
4 pixels around the outer border was added to increase texture specificity
(test 2 in table 13.1). The result was an overall point accuracy increase of
5 % and elimination of the mismatch. As expected, the texture fit suffered.

The basic AAMs consisted of 150 shape points and approx. 11.000 pixels.
Neighborhood AAMs consisted of 300 shape points and approx. 13.000
pixels. In both models, 18 parameters were used to explain 95% of the
variation in the training set.

Since test three explicitly optimizes the texture fit, the error was decreased.

150 Chapter 13. Radiographs of Metacarpals

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pt.−Crv. error (pixels)

F
re

qu
en

cy
 (

%
)

1 Basic AAM
2 Neighborhood
3 Neighborhood+SA
4 Neighborhood+SA+Lorenz

Figure 13.3: Point to curve histograms for radiograph AAMs. Bin size = .25
pixel.

While this was not guaranteed, the landmark accuracy also improved from
0.84 to 0.82. Finally, the Lorenztian error norm was applied in test 4,
without any noteworthy improvement. As there were no explicit outliers
incorporated into the training images, this result is quite acceptable.

To give a more comprehensive – yet compact – impression of the distri-
bution of the point to curve error of each test, frequency histogram-plots
are given in figure 13.3. The outcome of each experiment was subsequent
separated into bins, where each covered an error range of .5 pixels. The
histogram shows a rather good precision over all leave-one-out experiments
without any noteworthy outliers.

To assess the performance within points, the mean point to point distance
is plotted for a set of evaluations in figure 13.4. Not surprisingly, problems
arise in the distal and proximal end of the metacarpals due the large shape
variability and the ambiguous nature of radiographs in regions of overlap.

13.2 Results 151

Figure 13.4: Mean point to point deviation from the ground truth annotation of
each metacarpal. Low location accuracy is observed at the distal and proximal
ends.

152 Chapter 13. Radiographs of Metacarpals

(a) (b)

Figure 13.5: Test 3: (a) Worst model fit, 1.01 pixels (pt.crv.). (b) Best model
fit, 0.53 pixels (pt.crv.).

Further more to give an impression of the error range, the worst and the
best model fit – w.r.t. to landmark accuracy – are given in figure 13.5.
Notice a fairly good fit even in the distal (upper) and proximal (lower) end
of the metacarpals where radiographs are rather ambiguous. An example
showing the full AAM model fit is given in figure 13.6.

For a detailed pictorial documentation of this case, refer to appendix A.

13.3 Summary

The AAM approach has successfully been used to segment metacarpals
in radiographs of human hands. By increasing texture specificity using a
model neighborhood and a fine-tuning the fit using simulated annealing,
leave-one-out evaluation reached a landmark accuracy of 0.82 pixels and a
texture error of 5.0 intensities. The automatic initialization method used

13.3 Summary 153

(a) (b)

Figure 13.6: (a) AAM after automatic initialization. (b) Optimized AAM. Both
cropped to show details.

154 Chapter 13. Radiographs of Metacarpals

yielded one failure in the case of models without neighborhood added. No
initialization failures were observed when using model neighborhood.

155

Chapter 14

Cardiac MRIs

Cardiovascular Magnetic Resonance scanning is a very flexible image modal-
ity to assess cardiac function in a non-invasive manner. Particularly, multi-
slice multi-phase short-axis image views have shown highly useful to exam-
ine global and regional cardiac function [52]. To accomplish this, a segmen-
tation of the left-ventricular endocardial and epicardial borders is required.
Due to the massive amount of data produced from the 4D Cardiovascular
MRIs, automated segmentation is highly desirable. Unfortunately, seg-
mentation in MRIs has shown a very challenging task. This constitutes the
primary motivation for applying AAMs to this problem.

Four training sets were obtained using 2D extracts from the original 4D
data. Each slice had the resolution of 256×256. The pixel depth was 8
bits. To obtain temporal registration relative to the heart cycle, the image
acquisition was triggered by ECG. The endocardial and epicardial contour
of the left ventricle were annotated by experts and organized as follows:

Set 1 – Normal hearts
Contain two sets of corresponding slices, from the same heart but at
two different spatial locations. The sets were annotated by M.D. Jens
Christian Nilsson, H:S Hvidovre Hospital.

A-Slices 14 images, 66-points. Contain papillary muscles, which are
small muscles inside the ventricle.

156 Chapter 14. Cardiac MRIs

B-Slices 14 images, 66-points. No papillary muscles present.

Set 2 – Abnormal hearts
Contain two sets of corresponding slices, again from the same heart
but at two different spatial locations. The sets were annotated by
M.D. Bjørn A. Grønning, H:S Hvidovre Hospital.

A-Slices 10 images, 66-points. The slices contain papillary muscles.

B-Slices 7 images, 66-points. No papillary muscles present.

An example of the differences between A and B-slices is given in figure 14.1.
Both were taken from Set 1. Due to the large variability and weak image
evidence in Set 2 this poses a substantially more challenging task. A se-
vere example showing two different hearts from Set 2 is given in figure 14.2.

Beforehand it was clear that the papillary muscles of the A-slices, posed
a challenging problem since their positions seemed rather arbitrarily. This
indicates that a free-form deformable template model might perform better
given a good initialization. This could for example stem from an AAM.

Figure 14.1: Left: Set 1 Cardiac A-slice with papillary muscles. Right: Set
1 Cardiac B-slice without papillary muscles. Both cropped and stretched to
enhance features.

AAM segmentation of 2D cardiac MRIs has previously been done by Mitchell
et al. [52]. A total of 102 images were used for the training set reaching a

14.1 Results 157

Figure 14.2: Left: Set 2 Cardiac A-slice with papillary muscles. Right: Set
2 Cardiac B-slice without papillary muscles. Both cropped and stretched to
enhance features.

mean point accuracy of approx. 1 pixel on the endocardial and epicardial
contour. Annotated structures were the right ventricle and endocardial and
epicardial contours. Contrary to the following, the model was initialized
manually.

14.1 Results

AAMs were built on each of the two set of slices in Set 1 and Set 2 and tested
separately using leave-one-out evaluation and automatic initialization on
the resulting four models.

The B-slice AAM from Set 1 (here forth 1B) consisted of approx. 2200
pixels. More than 95% of the combined variation was explained using
10 model parameters. As comparison consisted the 1B-model including 3
pixels of neighborhood of approx. 2800 pixels.

The optimization results in given in table 14.1 - 14.4. Neighborhood con-
sisted of adding 3 pixels around the outer border as described in section
9.3.

Not surprisingly, the neighborhood only yielded better results in one of the
models in Set 1. This is due to two circumstances. 1) substantial texture
variation are already present inside the original shapes and 2) due to the

158 Chapter 14. Cardiac MRIs

Type Pt.-Crv. Texture Failures
(pixels) (pixels) (mie)

1 Basic AAM 1.38 9.8 0
2 1+Neighborhood 1.21 10.4 0
3 1+SA 1.37 7.8 0
4 3+Lorentzian 1.32 7.5 0

Table 14.1: Leave-one-out test results for the 14 A-slices of Set 1.

Type Pt.-Crv. Texture Failures
(pixels) (pixels) (mie)

1 Basic AAM 1.18 7.1 0
2 1+Neighborhood 1.73 7.5 0
3 1+SA 1.06 5.9 0
4 3+Lorentzian 1.13 6.0 0

Table 14.2: Leave-one-out test results for the 14 B-slices of Set 1.

Type Pt.-Crv. Texture Failures
(pixels) (pixels) (mie)

1 Basic AAM 3.27 12.1 1

Table 14.3: Leave-one-out test results for the 10 A-slices of Set 2.

Type Pt.-Crv. Texture Failures
(pixels) (pixels) (mie)

1 Basic AAM 3.52 9.1 1

Table 14.4: Leave-one-out test results for the 7 B-slices of Set 2.

14.1 Results 159

varying nature of the MRIs around the ventricle1 neighborhood adding
rather confuses the texture model than making it more specific.

As in the metacarpal case fine-tuning the model fit not only yielded a better
texture fit, but also a higher landmark accuracy.

Using the Lorentzian error norm as similarity measure yielded higher land-
mark accuracy on the A-slices of Set 1, where papillary muscles were
present. However lower landmark accuracy was obtained on the B-slices of
Set 1, where no papillary muscles were present. Hence when no outliers are
present the Lorentzian error norm, yielded lower performance w.r.t. land-
mark accuracy. This fact suggest that the scale parameter of the robust
error norm needs adjustment.

To give an impression of the error range, the worst and the best model
fit – w.r.t. to landmark accuracy – are given in figure 14.3. An example
showing the full AAM model fit is given in figure 14.7.

(a) (b)

Figure 14.3: Test 1 on B-slices of Set 1: (a) Worst model fit, 2.43 pixels (pt.crv.).
(b) Best model fit, 0.65 pixels (pt.crv.).

As in the metacarpal section, a more comprehensive impression of distribu-
1This could for example be hearts where the epicardial boundary is embedded in

fatty tissue.

160 Chapter 14. Cardiac MRIs

tion of the point to curve error of each model, is given as histogram-plots
in figure 14.4, 14.5 and 14.6. However, the rather crude resolution due to
small number of experiments, it should still be possible to assess the rela-
tive performance. As expected the plots shows that the performance of Set
1 images is significantly higher than that of Set 2 images. The two outliers
of Set 2 were discarded before assessment.

For a detailed pictorial documentation of this case, refer to appendix A.

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pt.−Crv. error (pixels)

F
re

qu
en

cy
 (

%
)

1 Basic AAM
2 Neighborhood
3 SA
4 SA+Lorenztian

Figure 14.4: Point to curve histograms for the AAMs built on A-slices from Set
1. Bin size = .5 pixel.

14.2 Summary

AAMs have been applied successfully on Cardiac MRIs of normal hearts
(Set 1) using automatic initialization. Fine-tuning of the model fit us-
ing simulated annealing increased both texture fit and landmark accuracy
yielding a mean landmark accuracy of 1.37 pixels and a mean texture error
of 7.8 for slices with papillary muscles. For slices without papillary muscles,
a landmark accuracy of 1.02 pixels and a texture error of 5.9 were yielded.

14.2 Summary 161

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pt.−Crv. error (pixels)

F
re

qu
en

cy
 (

%
)

1 Basic AAM
2 Neighborhood
3 SA
4 SA+Lorentzian

Figure 14.5: Point to curve histograms for the AAMs built on B-slices from Set
1. Bin size = .5 pixel.

0 1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Pt.−Crv. error (pixels)

F
re

qu
en

cy
 (

%
)

Set 2 − A−slices
Set 2 − B−slices

Figure 14.6: Point to curve histograms for the AAMs built on A- and B-slices
from Set 2. Bin size = .5 pixel.

162 Chapter 14. Cardiac MRIs

(a) (b)

Figure 14.7: A: AAM after automatic initialization. B: Optimized AAM. Both
cropped to show details.

No initialization failures were observed on the 28 images.

In Cardiac MRIs of abnormal hearts, the basic AAMs yielded a landmark
accuracy of 3.27/3.52 pixels and a texture error of 12.1/9.1, respectively on
slices with and without papillary muscles. In this case, the initialization
failed twice on the 17 images given.

163

Chapter 15

Cross-sections of Pork
Carcass

As the final case study, perspective images of pork carcass cross-sections
are presented. This case is chosen due to the difference in image modality
and object behavior. Since this type of meat contains a complex structure
of fat and pure meat, these images made a fine contrast to the previous
cases. Furthermore, the very flexible nature of the meat-slices gave rise to
a substantially higher degree of shape variation than seen in the previously
presented radiographs and MRIs.

A training set of 14 images was annotated by a dense outline and 83 land-
marks were extracted using the technique of Duta et al. [21]. The image
size was 256×191 pixels.

Previous results using this training set have been reported by Fisker et
al. [30]. Using the Grenander Model [36] on this set reached a landmark
accuracy of 1.02 pixels (pt.crv.).

15.1 Results

Mean results are given in table 15.1 using combinations of the developed en-
hancements. All experiments were done using leave-one-out and automatic
initialization.

164 Chapter 15. Cross-sections of Pork Carcass

Type Pt.-Crv. Texture Failures
(pixels) (pixels) (mie)

1 Basic AAM 1.12 13.2 0
2 1+Neighborhood 0.91 13.9 0
3 2+SA 0.89 13.6 0
4 3+Lorentzian 0.91 13.6 0
5 Border AAM 0.86 23.5 0

Table 15.1: Leave-one-out test results for the pork carcass AAM.

To reduce the penalty from the large-scale texture noise inside the shapes a
Border AAM was applied in test 5. This increased the landmark accuracy
by 23% over the accuracy of basic AAMs. Notice that the texture error
of 23.5 intensities is not comparable to the other texture errors, since a
completely different texture model was used.

The basic AAMs consisted of 83 shape points and approx. 13.000 pixels.
Neighborhood AAMs consisted of 166 shape points and approx. 15.000
pixels. The Border AAM consisted of 249 points and approx. 3500 pixels.
In all models 11 parameters explained more than 95% of the variation in
the training set.

Point to curve frequency histogram-plots of all five tests are given in figure
15.1. From this, the increased landmark accuracy of the Border AAMs
stands out.

Furthermore, to give an impression of the error range, the worst and the
best model fit – w.r.t. to landmark accuracy – are given in figure 15.2.

For a detailed pictorial documentation of this case, refer to appendix A.

15.2 Summary

AAMs has successfully been used to segment pork carcass. By removing
large-scale texture noise inside shapes using a Border AAM leave-one-out
evaluation reached a landmark accuracy of 0.86 pixel. This was an incre-
ment of 23% over basic AAMs. The texture error for basic AAMs was 13.2
intensities. The automatic initialization method yielded no failures in any
of the 14 images.

15.2 Summary 165

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pt.−Crv. error (pixels)

F
re

qu
en

cy
 (

%
)

1 Basic AAM
2 Neighborhood
3 Neighborhood+SA
4 Neighborhood+SA+Lorentzian
5 Border AAM

Figure 15.1: Point to curve histograms for different pork carcass AAMs. Bin
size = .25 pixel.

(a) (b)

Figure 15.2: Test 3: (a) Worst model fit, 1.34 pixels (pt.crv.). (b) Best model
fit, 0.60 pixels (pt.crv.).

166 Chapter 15. Cross-sections of Pork Carcass

Part V

Discussion

167

169

Chapter 16

Propositions for Further
Work

16.1 Overview

The following chapter serves as an appetizer, discussing ideas developed
during this six month master thesis work, that either were out of the scope
or out of reach within the given time span.

16.2 Robust Model Building

Taking the ideas presented in section 9.8 further, one could think of many
steps in the model building process, where robust statistics could be uti-
lized.

Notice however that AAMs are built upon a selection of representative
examples, which makes the use of robust methods less crucial in the model.
Human outlier rejections have so to speak already been done. Robust
methods probably will – nevertheless – still increase the quality of the
model.

170 Chapter 16. Propositions for Further Work

Alignment using the Procrustes Distance

Recall that minimizing the Procrustes Distance basically is a least-squares
adjustment – i.e. a quadratic norm is used. Alignment using robust norms
could be used here instead. This would enable handling of point annihila-
tion if redescending estimators1 [3] are used.

For a short survey of attempts using robust estimators in the shape align-
ment, refer to Dryden and Mardia [20].

Mean Shape Estimation

Estimation of the mean shape is currently accomplished by finding the
shape that minimizes the summed square distance to all shapes. This could
also be improved by robust statistics. On a per-point basis as mentioned
above and on a per-shape basis.

16.3 Active Texture Weighting

Given a texture model used in AAMs one could desire means of controlling
the importance of each pixel in the model. This could for example be due
to prior or estimated knowledge about the reliability of each pixel – i.e. the
pixel-quality used in a similarity driven setup such as AAMs. Therefore we
propose to include a weighting vector, wp into the texture model. In this
way each incoming texture sample, g, would be included into the model as
gw. This is done both in the model building phase and in the optimization.
If m denotes the number of texture samples this is:

gw =

wp,1 0
. . .

0 wp,m

g (16.1)

What weights to use are rather application specific. Example usage’s in-
clude:

1Error norms where the first derivative – the so-called influence function [3] – goes
to zero for gross errors.

16.4 Relaxation of Shape Constraints 171

• Enhanced shape flexibility using the weight vector wp to partially or
totally include exclude areas in the shape. Think of defining wp as
drawing an semi-transparent or opaque mask in a drawing program
using an airbrush-like tool.

• Exclusion of regions with large variability which only lead to less com-
pact texture models. This could be accomplished by down-weighting
pixel with high variance. Any function could be designed to take care
of this. For suitable flexibility we suggest using:

wi = f(σ2
i) =

1 , σ2
i < β

cosα(x− β) , β ≤ σ2
i ≤ π

2 + β
0 , σ2

i > π
2 + β

(16.2)

where σ2
i denotes the variance of the ith pixel over the training set

and β controls where the down weighting should begin and α controls
the rate of decay. Hard thresholds at β could then be obtained using
a high value for α.

We anticipate that active texture weighting would improve flexibility and
lead to better texture models.

16.4 Relaxation of Shape Constraints

This section is merely a reminder to the fact, that a similar approach to
the one of Cootes et al. [11] applied on ASMs, could be used if the shape
variation in AAMs is over-constrained by a small or non-representative
training set.

The shape covariance structure is simply augmented with a covariance
structure obtained from a finite element model.2 This provides a more
flexible model – yet still globally constrained as opposed to Snakes [46].

Quite recently3 however, a more Snake-like approach has been proposed
as an extension to AAMs [13]. In [13] this was obtained using so-called

2Using a suitable weighting – e.g. a function of the number of examples in the training
set.

3ECCV Dublin, June 2000.

172 Chapter 16. Propositions for Further Work

local AAMs – i.e. AAM-blobs around each landmark which could deform
semi-separately under a smoothness constraint w.r.t. position.

16.5 Scale-Space Extension

Cootes et al. [14] suggest to use a multi-resolution pyramidal framework for
representing AAMs thus gaining speed and robustness in the AAM search.

This should however not be confused with a scale-space [50] implementation
of AAMs. In scale-space each image is extended by the scale parameter,
t, that controls the variance of a gaussian kernel which is convoluted with
the image. Formally, for any k-dimensional signal, f : IRk → IR, its scale
space representation L : IRk × IR+ → IR is defined by:

L(x; t) =
∫

ξ∈IRk

f(x− ξ)g(ξ, t)dξ (16.3)

where g : IRk × IR+ → denotes the Gaussian kernel:

g(x; t) =
1

(2πt)
1
2 k

e−
x2
1+···+x2

k
2t (16.4)

This approach has several interesting mathematical properties. [50] stress
that an inherent property of real-world objects, is that they only exists
as meaningful entities over a certain range of scale. Further more has the
use of scale-space a substantially damping effect on the problems stemming
from the discreet nature of digital images – i.e. it justifies the use of many
assumptions from continuous mathematics.

In the AAM case, scale-space would for example increase the smoothness of
the search space, and thus substantially ease the optimizations of AAMs.

Consequently it would be interesting to build AAMs for varying t’s and
combine them into one scale-space AAM.

173

Chapter 17

Perspectives of AAMs

17.1 AAMs in 3D

As the techniques used in AAMs extends to 3D we would anticipate to see
future work in this direction since acquisition of 3D images is an interesting
and rapidly growing field. As pointed out by Jain et al. [44] 3D deformable
models are becoming increasingly popular in medical applications due to
the many 3D imaging modalities such as MRI, fMRI, CT and recently;
3D-ultrasound scanning.

The simple version of extending AAMs into 3D is to treat each 2D slice as
an independent model, thereby concatenating the result of each 2D AAM
into a 3D result. However, this basically disregards all coherent information
across slices, which can be used to regularize the model substantially, which
would lead to better models. The alignment and PCA shape framework is
– if not readily, then through minor modifications – extendable to 3D. Re-
garding the texture model, has the Delaunay triangulation been generalized
into n-dimensions, though the generation is somewhat more cumbersome
[69]. Therefore, although the practical circumstances may make the im-
plementation and acquisition of landmarks semi-infeasible, the theoretical
framework should be present to extend AAMs into 3D.

Initial work on extending AAMs to 3D has been done by Wolstenholme et
al. [72], where it was shown that wavelet compression successfully could

174 Chapter 17. Perspectives of AAMs

be used to reduce the memory requirements without noteworthy loss of
quality. The texture PCA was simply performed on wavelet coefficients
instead of the raw pixels. Reliable image interpretation was obtained at a
compression ratio of 20:1.1 We emphasize that a 3D AAM has not been
built, but rather important preliminary work in making 3D AAMs feasible
was done.

During two talks given by Professor Milan Sonka in spring and summer
20002, it was indicated that his group at University of Iowa are working
toward 3D AAMs. Their work on 2D Cardiac AAMs by Mitchell et al. is
described in [52].

When extending AAMs to 3D one should be aware of the close connection
between deformable models and image registration. Especially many 3D-
image registration techniques applied on medical problems could serve as
inspiration.

For a survey on 3D-image segmentation using deformable models, refer to
McInerney and Terzopoulos [51].

17.2 Multivariate Imagery

The trend in image acquisition as of now, is that both the spatial, temporal
and radiometric3 resolution increases. On top of that the spectral resolu-
tion also starts to increase – i.e. the number of spectral bands per image
increases towards a full electromagnetic spectrum for each pixel. The most
well known transition is that of the single-band gray scale to the three-band
RGB.

In [22] it is shown how AAMs can accommodate such increments in the
spectral structure of input data. Specificity is increased in the texture
model by incorporating color. Each band is simply concatenated in the
texture vector as:

g = (gr,1, gr,2, . . . , gr,m,
gg,1, gg,2, . . . , gg,m,
gb,1, gb,2, . . . , gb,m)T

(17.1)

1On top of this; the spatial filtering of wavelets is also quite desirable in multi-
resolution frameworks such as the AAMs.

2At Herlev Hospital and IMM, DTU respectively.
3The amplitude accuracy – i.e. number of bits per pixel in digital imagery.

17.2 Multivariate Imagery 175

where gr,i, gg,i, gb,i denotes the intensities of red, green and blue respec-
tively. Here forth the texture analysis proceeds unchanged.

The above technique can thus be used to incorporate any number of bands
stemming from either multivariate imagery or the addition of artificial fea-
ture bands. Such feature bands could for example be the output of linear
filters such as Sobel, Laplacian etc. or non-linear methods such as mathe-
matical morphology operations, Canny edge detection etc.

176 Chapter 17. Perspectives of AAMs

177

Chapter 18

Discussion

18.1 Summary of Main Contributions

The main objectives set forth was:

• Discuss, document and explore the basic AAM.
• Design general extensions to the AAM approach.
• Evaluate AAMs through a set of relevant and varying cases.

In this thesis, the Active Appearance Models have been described in detail.
It has been intended to make this treatment as rich as possible on discus-
sions, illustrative examples and references for further investigation. Thus
fulfilling the first of the three major objectives of this thesis.

Regarding the second objective – design of extensions of general use, several
have been proposed. Among these are:

• Enhanced shape representation.
• Handling of homogeneous objects.
• Handling of heterogeneous objects.
• General and robust automated initialization.
• Fine-tuning of the model fit using Simulated Annealing etc.
• Applying robust statistics to the optimization.
• Unification of Finite Element Models and AAMs.

178 Chapter 18. Discussion

All of the proposed extensions have been shown to have a positive effect
on both landmark accuracy and the texture fit. Though the unification of
finite element models and AAMs yielded improved accuracy, more work is
needed to find the optimal integration into AAMs.

The third objective concerned validation of Active Appearance Models in
general and the designed extensions in specific. To fulfil this objective an
evaluation methodology for AAMs has been designed and applied on three
cases with largely varying segmentation problems and image modalities:

• Radiographs of Metacarpals.
• Cardiovascular Magnetic Resonance Images.
• Perspective images of Pork Carcasses.

In two of the three cases subpixel landmark accuracy was obtained using
the designed extensions. In the pork carcass case, use of the designed
extensions increased landmark accuracy by 23%.

Finally, a structured, high performance, open source implementation of
AAMs (and the designed extensions) has been developed. This is named
the AAM-API. The motivation for this work was to ensure further devel-
opment on AAMs by providing an open and well-documented platform for
education and research.

As concluding remark the need for ”gold standard” implementations and
”gold standard” training sets, can not be stressed too much. This is the
utmost fastest way to make progress in the field of image segmentation. As
in many other fields for that matter. This thesis represents introductory
work towards this situation as all material produced have been made pub-
licly available.

18.2 Conclusion

Computer vision spans a wide range of problems. This calls out for general
solutions – i.e. techniques that span the largest possible subspace of all
problems known.

18.2 Conclusion 179

In this thesis, a general model-based vision technique has been presented.
In agreement with the constructivist theorists of cognitive psychology it
learns through observation.

The technique has been thoroughly studied, documented and extended.
Subsequently it has been presented with real-world observations in the form
of training sets. This produced a set of models capturing the presented
knowledge of shape and texture, which subsequently have been applied to
unseen problems of the same class.

Using a developed initialization technique and a combination of the pro-
posed extensions, subpixel accuracy was obtained in two of three cases
w.r.t. object segmentation.

All proposed extensions yielded higher segmentation accuracy, when ap-
plied to the type of problems that they addressed. Both landmark accuracy
and texture fit were increased using the proposed extensions.

The objects in the three cases were, human bones (metacarpals), human
hearts (left ventricle) and slices of meat (pork carcass).

It has been shown that Active Appearance Models with the developed
extensions – as a fully automated and data-driven model – can perform
segmentation in challenging image modalities. A thorough evaluation has
shown that this can be done with very high accuracy.

180 Chapter 18. Discussion

181

Bibliography

[1] The American Heritage Dictionary of the English Language, 3rd Edi-
tion.

[2] P. R. Andresen and M. Nielsen. Non-rigid registration by geometry-
constrained diffusion. Lecture Notes in Computer Science, 1679:533–
543, 1999.

[3] M. J. Black and A. Rangarajan. On the unification of line processes,
outlier rejection, and robust statistics with applications in early vision.
Int. Journal of Computer Vision, 19(1):57–92, 1996.

[4] A. Blake and M. Isard. Active Contours. Springer, 1998.
[5] F. L. Bookstein. Principal warps: thin-plate splines and the decom-

position of deformations. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 11(6):567–85, 1989.

[6] F. L. Bookstein. Landmark methods for forms without landmarks:
localizing group differences in outline shape. Medical Image Analysis,
1(3):225–244, 1997.

[7] V. Cerny. Thermodynamical approach to the traveling salesman prob-
lem: an efficient simulation algorithm. Jour. of Optimization Theory
and Applications, 45:41–51, 1985.

[8] T. F. Cootes, C. Beeston, G.J. Edwards, and C. J. Taylor. A unified
framework for atlas matching using active appearance models. In In-
formation Processing in Medical Imaging. 16th Int. Conf., IPMI’99.
Proc., pages 322–33. Springer-Verlag, 1999.

[9] T. F. Cootes, G. Edwards, and C. J. Taylor. A comparative evaluation
of active appearance model algorithms. In BMVC 98. Proc.of the
Ninth British Machine Vision Conf., volume 2, pages 680–689. Univ.
Southampton, 1998.

[10] T. F. Cootes, G. J. Edwards, and C. J. Taylor. Active appearance

182 BIBLIOGRAPHY

models. In Proc. European Conf. on Computer Vision, volume 2, pages
484–498. Springer, 1998.

[11] T. F. Cootes and C. J. Taylor. Combining point distribution models
with shape models based on finite element analysis. Image and Vision
Computing, 13(5):403–9, 1995.

[12] T. F. Cootes and C. J. Taylor. A mixture model for representing shape
variation. Image and Vision Computing, 17(8):567–574, 1999.

[13] T. F. Cootes and C. J. Taylor. Combining elastic and statistical models
of appearance variation. In Proc. European Conf. on Computer Vision,
volume 1, pages 149–163, 2000.

[14] T. F. Cootes and C. J Taylor. Statistical Models of Appearance
for Computer Vision. Tech. Report , University of Manchester,
http://www.isbe.man.ac.uk/∼bim/, Feb. 2000.

[15] T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham. Active
shape models - their training and application. Computer Vision and
Image Understanding, 61(1):38–59, 1995.

[16] T. F. Cootes, K. Walker, and C. J. Taylor. View-based active appear-
ance models. In Proc. 4th IEEE Int. Conf. on Automatic Face and
Gesture Recognition, pages 227–32. IEEE Comput. Soc, 2000.

[17] T.F. Cootes, G. J. Edwards, and C. J. Taylor. Comparing active
shape models with active appearance models. In Proc. British Machine
Vision Conf., pages 173–182, 1999.

[18] N. Costen, T. Cootes, G. Edwards, and C. Taylor. Simultaneous ex-
traction of functional face subspaces. In Proc. of the IEEE Computer
Society Conf. on Computer Vision and Pattern Recognition, volume 1,
pages 492–497. IEEE, 1999.

[19] J. E. Dennis and R. B. Schnabel. Numerical Methods For Uncon-
strained Optimization and Nonlinear equations. Prentice-Hall, 1983.

[20] I. L. Dryden and K. V. Mardia. Statistical Shape Analysis. John Wiley
& Sons, 1998.

[21] N. Duta, A. K. Jain, and M.-P. Dubuisson-Jolly. Learning 2D shape
models. In Proc. Conf. on Computer Vision and Pattern Recognition,
volume 2, pages 8–14, 1999.

[22] G. J. Edwards, T.F. Cootes, and C. J. Taylor. Advances in active
appearance models. In Proc. Int. Conf. on Computer Vision, pages
137–142, 1999.

[23] G.J. Edwards, C. J. Taylor, and T. F. Cootes. Interpreting face images
using active appearance models. In Proc. 3rd IEEE Int. Conf. on
Automatic Face and Gesture Recognition, pages 300–5. IEEE Comput.

BIBLIOGRAPHY 183

Soc, 1998.
[24] G.J. Edwards, C. J. Taylor, and T. F. Cootes. Learning to identify

and track faces in image sequences. In 6th Int. Conf. on Computer
Vision, pages 317–22. Narosa Publishing House, 1998.

[25] N. D. Efford. Knowledge-Based Segmentation and Feature analysis of
Hand Wrist Radiographs. Tech. Report, University of Leeds, 1994.

[26] R. Fisker. Making Deformable Template Models Operational. PhD
thesis, Department of Mathematical Modelling, Technical University
of Denmark, Lyngby, 2000.

[27] R. Fisker, J. M. Carstensen, M.F. Hansen, F. Bødker, and S. Mørup.
Estimation of nanoparticle size distributions by image analysis. Jour.
of Nanoparticle Research. To appear.

[28] R. Fisker, J. M. Carstensen, and K. Madsen. Initialization and opti-
mization of deformable models. In Proc. 11th. Scandinavian Conf. on
Image Analysis, pages 295–302, 1999.

[29] R. Fisker, N. Schultz, N. Duta, and J. M. Carstensen. A general scheme
for training and optimization of the Grenander deformable template
model. In Proc. Conf. on Computer Vision and Pattern Recognition,
volume I, pages 698–705, 2000.

[30] R. Fisker, N. Schultz, N. Duta, and J. M. Carstensen. The grenander
deformable template model: A general scheme. 2000. Submitted.

[31] R. Fletcher. Practical Methods of Optimization. John Wiley & Sons,
1987.

[32] J. D. Foley, A. Dam, S. K. Feiner, and J. F. Hughes, editors. Computer
Graphics: Principles and Practice, 2. Edition. Addison-Wesley, 1992.

[33] C. A. Glasbey and K. V. Mardia. A review of image-warping methods.
Journal of Applied Statistics, 25(2):155–172, 1998.

[34] M. Gleicher. Projective registration with difference decomposition. In
Proc. 1997 Conf. on Computer Vision and Pattern Recognition, pages
331–337. IEEE Comput. Soc, 1997.

[35] C. Goodall. Procrustes methods in the statistical analysis of shape.
Jour. Royal Statistical Society, Series B, 53:285–339, 1991.

[36] U. Grenander, Y. Chow, and D. M. Keenan. Hands: A Pattern The-
oretic Study of Biological Shapes. Springer, 1991.

[37] T. Heap and Samaria F. Real-time hand tracking and gesture recogni-
tion using smart snakes. Technical Report, Olivetti Research Limited,
Cambridge CB2 1QA, UK, 1995.

[38] T. Heap and D. Hogg. Extending the point distribution model using
polar coordinates. pages 130–7. Springer-Verlag, 1995.

184 BIBLIOGRAPHY

[39] A. Hill, T. F. Cootes, and C. J. Taylor. A generic system for image
interpretation using flexible templates. In BMVC92. Proceedings of the
British Machine Vision Conference, pages 276–85. Springer-Verlag,
1992.

[40] R. Hooke and T. A. Jeeves. Direct search: solution of numerical and
statistical problems. Jour. Assoc. Comput., 8(212-229), 1961.

[41] B.K.P. Horn. Closed-form solution of absolute orientation using unit
quaternions. Journal of the Optical Society of America A (Optics and
Image Science), 4(4):629–42, 1987.

[42] D. P. Huttenlocher, G. A. Klanderman, and W. J. Rucklidge. Com-
paring images using the Hausdorff distance. IEEE Trans. on Pattern
Analysis and Machine Intelligence, 15(9):850–863, 1993.

[43] J. Isidoro and S. Sclaroff. Active voodoo dolls: a vision based input
device for nonrigid control. In Proc. Computer Animation ’98, pages
137–143. IEEE Comput. Soc, 1998.

[44] A. K. Jain, Y. Zhong, and M.-P. Dubuisson-Jolly. Deformable template
models: A review. Signal Processing, 71(2):109–129, 1998.

[45] A. K. Jain, Y. Zhong, and S. Lakshmanan. Object matching using
deformable templates. IEEE Trans. on Pattern Analysis and Machine
Intelligence, 18(3):267–278, 1996.

[46] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour
models. Int. Jour. of Computer Vision, 8(2):321–331, 1988.

[47] S. Kirkpatrick, C. D. Gellant, and M. P. Vecchi. Optimization by
simulated annealing. Science, 220:671–680, 1983.

[48] A. Lanitis, C. J. Taylor, and T. Cootes. Automatic interpretation and
coding of face images using flexible models. IEEE Trans. of Pattern
recognition and Machine Intelligence, 19(7):743–756, 1997.

[49] A. Lanitis, C. J. Taylor, and T. F. Cootes. Modeling the process of
ageing in face images. In Proceedings of the Seventh IEEE Interna-
tional Conference on Computer Vision, volume 1, pages 131–6. IEEE
Comput. Soc., 1999.

[50] T. Lindeberg. Scale-space: A framework for handling image structures
at multiple scales. In CERN School of Computing. Proceedings. CERN,
1996.

[51] T. McInerney and D. Terzopoulos. Deformable models in medical
image analysis: a survey. Medical Image Analysis, 2(1):91–108, 1996.

[52] S. Mitchell, B. Lelieveldt, R. Geest, J. Schaap, J. Reiber, and
M. Sonka. Segmentation of cardiac mr images: An active appear-
ance model approach. In Medical Imaging 2000: Image Processing,

BIBLIOGRAPHY 185

San Diego CA, SPIE, volume 1. SPIE, 2000.
[53] J.L. Mundy. Object recognition based on geometry: Progress over

three decades. Philosophical Transactions of the Royal Society Lon-
don, Series A (Mathematical, Physical and Engineering Sciences),
356(1740):1213–1231, 1998.

[54] A. A. Nielsen. Analysis of Regularly and Irregularly Sampled Spatial,
Multivariate, and Multi-temporal Data. PhD thesis, Institute of Math-
ematical Modelling, Technical University of Denmark, Lyngby, 1994.

[55] F. Preparata and Shamos M. Computational Geometry. Springer,
1986.

[56] J. Price, Y. Rogers, H. Sharp, D. Benyon, S. Holland, and T. Carey,
editors. Human-Computer Interaction. Addison-Wesley, 1994.

[57] J. O. Rawlings. Applied Regression Analysis. Wadsworth &
Brooks/Cole, 1988.

[58] S. Sclaroff and J. Isidoro. Active blobs. Proc. of the Int. Conf. on
Comput. Vision, pages 1146–1153, 1998.

[59] S. Sclaroff and A. P. Pentland. Modal matching for correspondence
and recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 17(7):545–61, 1995.

[60] J.R. Shewchuk. Triangle: engineering a 2D quality mesh generator and
Delaunay triangulator. In Applied Computational Geometry. FCRC’96
Workshop., pages 203–222. Springer-Verlag, 1996.

[61] M. Sonka, V. Hlavac, and R. Boyle. Image processing, analysis and
machine vision. Chapman & Hall, 1993.

[62] Milan Sonka. Lecture given at Herlev Hospital May 30th, 2000.
[63] P. D. Sozou, T. F. Cootes, C. J. Taylor, E. C. Di Mauro, and A. Lanitis.

Non-linear point distribution modelling using a multi-layer perceptron.
Image and Vision Computing, 15(6):457–63, 1997.

[64] P.D. Sozou, T.F. Cootes, C.J. Taylor, and E.C. Di Mauro. Non-linear
generalization of point distribution models using polynomial regres-
sion. Image and Vision Computing, 13(5):451–7, 1995.

[65] M. B. Stegmann. Active appearance models: Theory, exten-
sions and cases. Master’s thesis, Informatics and Mathemati-
cal Modelling, Technical University of Denmark, Lyngby, 2000.
http://www.imm.dtu.dk/∼aam/.

[66] M. B. Stegmann, R. Fisker, and B. K. Ersbøll. On Properties of Active
Shape Models. Informatics and Mathematical Modelling, Technical
University of Denmark, 2000.

[67] M. B. Stegmann, R. Fisker, B. K. Ersbø ll, H. H. Thodberg, and

L. Hyldstrup. Active appearance models: Theory and cases. In Proc.
9th Danish Conference on Pattern Recognition and Image Analysis,
Aalborg, Denmark, volume 1, pages 49–57. AUC, 2000.

[68] C. Studholme, D. L. G. Hill, and D. J. Hawkes. An overlap invariant
entropy measure of 3D medical image alignment. Pattern Recognition,
32(1):71–86, 1999.

[69] K Sugihara and H. Inagaki. Why is the 3d delaunay triangulation
difficult to construct? Information Processing Letters, 54(5):275–280,
1995.

[70] P. Viola and W. M. Wells III. Alignment by maximization of mutual
information. International Journal of Computer Vision, 24(2):137–
154, 1997.

[71] K.N. Walker, T. F. Cootes, and C. J. Taylor. Determining correspon-
dences for statistical models of facial appearance. In Proc. Fourth
IEEE Int. Conf. on Automatic Face and Gesture Recognition, pages
271–6. IEEE Comput. Soc, 2000.

[72] C.B.H. Wolstenholme and C.J. Taylor. Wavelet compression of ac-
tive appearance models. In Medical Image Computing and Computer-
Assisted Intervention - MICCAI’99, pages 544–554, 1999.

[73] A. L. Yuille, P. W. Hallinan, and D. S. Cohen. Feature extraction
from faces using deformable templates. Int. Jour. of Computer Vision,
8(2):99–111, 1992.

186

Index

L2 norm, 118
χ2-distribution, 114, 147
k-means clustering, 43
2-norm, 118
2D slice, 175
3D

AAMs, 175
Delaunay triangulation, 175
ultrasound scanning, 175

3rd party libraries, 136

a priori knowledge, 28
AAM search, 98
Active Blobs, 34, 89
Active Contour Model, 33
Active Shape Models, 33, 112
Active Voodoo Dolls, 89
affine transformation, 48, 68
alignment, 45
amorphous objects, 102
anchor points, 41

Bayes theorem, 105
Bayesian formulation, 104
bicubic interpolation, 70
bilinear interpolation, 70, 71
binary search tree, 69
binary space-partitioning trees, 70
blackbox, 103
BLAS, 136
blood vessels, 102

BMD, 149
bone mineral density, 149
boolean expression, 148
Border AAM, 166
Border AAMs, 112
BSP-trees, 70

cardiac MRIs, 101
center of mass, 47
centroid size, 48
chromosomes, 61
circumcircle, 67
classification, 104
clockwise, 262
closely spaced landmarks, 112
clouds, 102
cluttered images, 102
cognitive psychology, 27
computer graphics, 66
concave shapes, 108
conjugate gradient, 117
constrained Delaunay triangula-

tion, 130
constructivist theorists, 27
convex hull, 67, 107, 262
convolution operator, 116
convolution theorem, 116
correlation matrix, 53, 82
covariance matrix, 52, 74, 82, 223
CT, 175

187

curvature, 43

Dalmatian dog, 28
Damastes, 45
Darwinian theory, 115
data-driven, 102
definition

deformable template models,
33

landmarks, 40, 222
shape, 40, 222
shape size metric, 47
shape space, 45

deformable template models, 27,
33

free form, 34
parametric, 34

Delaunay
property, 67
triangulation, 67

Delaunay triangulation, 67, 107
difference decomposition, 89
dispersion matrix, 52
distance measures, 144
DIVA, 136
dynamic programming, 71, 138

Eckart-Young Theorem, 77
eigenmodes, 79
elastic body, 126
equilibrium configuration, 127
error

point to associated border, 144
point to curve, 144
point to point, 144
texture, 145

Euclidean similarity transforms, 45
Euclidean transformations, 40
exhaustive search, 116
expectation maximization, 62

faces, 104
fat, 113
feature bands, 177
FEM, 34
FFT, 116
fiducial markers, 41
finite element models, 34, 43, 125
fMRI, 175
Fourier transform, 116
fourth quadrant, 262
Frechét mean, 49
free-form deformable model, 123
Frobenius norm, 47
fundus images, 102

Galerkin interpolants, 34, 43
gaussian blobs, 62
genetic algorithms, 115, 117
Geometry-Constrained Diffusion,

43
Gibbs distributed, 105
global behavior, 132
gross errors, 119

hand anatomy, 149
Hausdorff distance, 46
heterogeneity, 112, 113
heterogeneous objects, 103
homogeneous convex objects, 103
homogeneous surface, 109
homologous points, 41
horse-shoe effect, 61
Hotelling, Harold, 50
Huber’s minimax estimator, 120
human brain, 101
human faces, 101
human knee, 101
hyper ellipsoid, 146

identity, 104

188

image registration, 176
image warping, 66
ImageMagick, 136
influence function, 172
inheritance, 136
initialization, 116
Intel Math Kernel Library, 136
interpretation, 104
intra-class

clustering, 51
shape variation, 50

k-d trees, 70
Karhunen-Loeve transform, 50
Kendall shape space, 46

landmarks
anatomical, 41
definition, 40, 222, 224
mathematical, 41
pseudo, 41

LAPACK, 136
large rotations, 34
large-scale texture noise, 103, 112
least squares, 119
leave-one-out, 143
likelihood probability distribution,

104
line processes , 122
linear orthogonal transformation,

50, 223
linear regression, 93
local behavior, 132
Lorentzian estimator, 120
Lorenztian error norm, 118

m-estimator, 118
MAF, 76
Mahalanobis distance, 118, 121,

146

main objectives, 29, 179
manifold, 61, 116
MAP, 105
Marquardt-Levenberg, 117
mathematical morphology, 177
maximum a posteriori, 105
mean

Frechét, 49
shape, 49
texture, 74

mean intensity error, 146, 148
meaningful entities, 174
meat, 113
medical applications, 104
mesh, 68
metacarpals, 101, 149
methodology, 143
mie, 146
Min/Max Autocorrelation Factors,

76
MLPPDM, 63
Modal Matching, 34
MRI, 175
multi-resolution framework, 99, 174,

176
multiple hypotheses, 115
multivariate imagery, 177
multivariate linear regression, 93

name collisions, 138
nodes, 41
non-rigid objects, 27
norm, 119

L2, 118
2-norm, 118
Lorenztian, 118
m-estimator, 118
Mahalanobis distance, 118
quadratic, 118

189

truncated quadratic, 118
notation conventions, 30
numerical unstability, 96

occlusion, 103, 121
octrees, 70
orthogonal transformation, 50, 223
osteoporosis, 149

papillary muscles, 157, 158
pattern search, 117
Pearson, Karl, 50
pertubation

of the model parameters, 90
phalanges, 121
photo-realistic images, 102
physical model, 125
pixel interpolation scheme, 70
point annihilation, 172
point correspondence, 42, 103
point distribution model, 49
point to associated border error,

144
point to curve error, 144
point to point error, 144
polar coordinates, 62
polynomial regression, 62
pork, 165
pork carcasses, 101
porosity, 149
pose, 45
posterior distribution, 105
pre-shape, 45
principal component analysis, 50,

223
principal component regression, 94
prior distribution

uniform, 105
prior knowledge, 145
prior probability distribution, 104

Procrustes analysis, 45, 137
Procrustes distance, 46
Procrustes mean, 49
prototype, 49
PRPDM, 62
pyramidal framework, 99, 174

quadratic norm, 118, 119
quadtrees, 69

radiographs, 149
reduced rank multivariate linear

regression, 94
reference shape, 65
registration, 104
regularization, 55, 83
regularized, 79
remote sensing, 102
repeatability, 45
reproducibility, 45
rest length, 126
retinal view, 27
Riemannian manifold, 46
rigid objects, 27
rigid template matching, 116
robust error norms, 122
robust statistics, 119
rubber-like material, 125

scale-space, 174
self-contained validation, 144, 145
shape

definition, 40, 222
mean, 49
metrics, 46
prototype, 34
size metric definition, 47

shape metric, 46
shape space, 45
shrinking problem, 109, 151

190

similarity measure, 118
simulated annealing, 117
singular value decomposition, 48
Snakes, 33
Sobel, 177
spring constant, 126
steepest descent, 117
stop criteria, 118
strain energy, 46
striation, 149
subpixel landmark accuracy, 180

tadpoles, 61
tangent space, 59
texture

definition, 66
texture definition, 66
texture error, 145
thin plate splines, 70
trees, 102
truncated quadratic norm, 118, 120

uniform
prior distribution, 105

ventricle, 157
vertices, 41
VisionSDK, 136
visual perception, 28

warping, 66
watch model, 61
wavelet compression, 175

x-rays, 149

191

192 BIBLIOGRAPHY

193

Appendix A

Detailed Model
Information

In the following pages, one model per case is documented by plots of:

• Point cloud of the unaligned annotations.
• Point cloud of the aligned annotations.
• Delaunay triangulation of the mean shape.
• Independent principal component analysis of each model point.
• Mean shape deformation using 1st, 2nd and 3rd principal mode.
• Shape eigenvalues in descending order.
• PC1 (bs,1) vs. PC2 (bs,2) in the shape PCA.
• Texture eigenvalues in descending order.
• PC1 (bg,1) versus PC2 (bg,2) in the texture PCA.
• Correlation matrix of the annotations.
• Texture variance.
• Combined eigenvalues.

This is done to give a complete pictorial impression of the annotations and
the subsequent shape and texture analysis. This appendix should be useful
for both education as well as for further research.

194 Appendix A. Detailed Model Information

A.1 Radiographs of Metacarpals

Figure A.1: Point cloud of the unaligned annotations.

Figure A.2: Point cloud of the aligned annotations with mean shape fully drawn.

A.1 Radiographs of Metacarpals 195

Figure A.3: Delaunay triangulation of the mean shape.

Figure A.4: Independent principal component analysis of each model point.

196 Appendix A. Detailed Model Information

(a) b1 = −3
√

λ1 (b) b1 = 0 (c) b1 = +3
√

λ1

(d) b2 = −3
√

λ2 (e) b2 = 0 (f) b2 = +3
√

λ2

(g) b3 = −3
√

λ3 (h) b3 = 0 (i) b3 = +3
√

λ3

Figure A.5: Mean shape deformation using 1st, 2nd and 3rd principal mode.
bi = −3

√
λi, bi = 0, bi = 3

√
λi.

A.1 Radiographs of Metacarpals 197

0 5 10 15 20 25
0

5

10

15

20

25

30

35

40

Eigenvalue

V
ar

ia
nc

e
ex

pl
an

at
io

n
fa

ct
or

 (
pe

rc
en

t)

Shape eigenvalues

Figure A.6: Shape eigenvalues in descending order.

−4 −3 −2 −1 0 1 2 3 4

x 10
−3

−3

−2

−1

0

1

2

3
x 10

−3

 1

 2

 3
 4

 5

 6

 7

 8

 9

 10

 11
 12

 13

 14

 15

 16

 17

 18

 19 20

 21

 22

 23

 24

PC1

P
C

2

PC1 versus PC2 in the shape PCA

Figure A.7: PC1 (bs,1) vs. PC2 (bs,2) in the shape PCA.

198 Appendix A. Detailed Model Information

0 5 10 15 20 25
0

5

10

15

Eigenvalue

V
ar

ia
nc

e
ex

pl
an

at
io

n
fa

ct
or

 (
pe

rc
en

t)

Texture eigenvalues

Figure A.8: Texture eigenvalues in descending order.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2

x 10
−3

−3

−2

−1

0

1

2

3
x 10

−3

 1

 2
 3

 4

 5

 6

 7

 8
 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

PC1

P
C

2

PC1 versus PC2 in the texture PCA

Figure A.9: PC1 (bg,1) versus PC2 (bg,2) in the texture PCA.

A.1 Radiographs of Metacarpals 199

Shape correlation matrix

50 100 150 200 250 300

50

100

150

200

250

300

Figure A.10: Correlation matrix of the annotations.

Figure A.11: Texture variance, black corresponds to high variance.

200 Appendix A. Detailed Model Information

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

Eigenvalue

V
ar

ia
nc

e
ex

pl
an

at
io

n
fa

ct
or

 (
pe

rc
en

t)

Combined eigenvalues

Figure A.12: Combined eigenvalues.

A.2 Cardiac MRIs – Set 1 B-Slices 201

A.2 Cardiac MRIs – Set 1 B-Slices

Figure A.13: Point cloud of the unaligned annotations.

202 Appendix A. Detailed Model Information

Figure A.14: Point cloud of the aligned annotations with mean shape fully
drawn.

A.2 Cardiac MRIs – Set 1 B-Slices 203

Figure A.15: Delaunay triangulation of the mean shape.

Figure A.16: Independent principal component analysis of each model point.

204 Appendix A. Detailed Model Information

(a) b1 = −3
√

λ1 (b) b1 = 0 (c) b1 = +3
√

λ1

(d) b2 = −3
√

λ2 (e) b2 = 0 (f) b2 = +3
√

λ2

(g) b3 = −3
√

λ3 (h) b3 = 0 (i) b3 = +3
√

λ3

Figure A.17: Mean shape deformation using 1st, 2nd and 3rd principal mode.
bi = −3

√
λi, bi = 0, bi = 3

√
λi.

A.2 Cardiac MRIs – Set 1 B-Slices 205

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

5

10

15

20

25

30

Eigenvalue

V
ar

ia
nc

e
ex

pl
an

at
io

n
fa

ct
or

 (
pe

rc
en

t)

Shape eigenvalues

Figure A.18: Shape eigenvalues in descending order.

−0.01 −0.008 −0.006 −0.004 −0.002 0 0.002 0.004 0.006 0.008 0.01
−8

−6

−4

−2

0

2

4

6

8
x 10

−3

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11 12

 13

 14

PC1

P
C

2

PC1 versus PC2 in the shape PCA

Figure A.19: PC1 (bs,1) vs. PC2 (bs,2) in the shape PCA.

206 Appendix A. Detailed Model Information

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

5

10

15

20

25

30

Eigenvalue

V
ar

ia
nc

e
ex

pl
an

at
io

n
fa

ct
or

 (
pe

rc
en

t)

Texture eigenvalues

Figure A.20: Texture eigenvalues in descending order.

−14 −12 −10 −8 −6 −4 −2 0 2 4 6

x 10
−3

−5

−4

−3

−2

−1

0

1

2

3

4
x 10

−3

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

PC1

P
C

2

PC1 versus PC2 in the texture PCA

Figure A.21: PC1 (bg,1) versus PC2 (bg,2) in the texture PCA.

A.2 Cardiac MRIs – Set 1 B-Slices 207

Shape correlation matrix

20 40 60 80 100 120

20

40

60

80

100

120

Figure A.22: Correlation matrix of the annotations.

Figure A.23: Texture variance, black corresponds to high variance.

208 Appendix A. Detailed Model Information

1 2 3 4 5 6 7 8 9 10 11
0

5

10

15

20

25

Eigenvalue

V
ar

ia
nc

e
ex

pl
an

at
io

n
fa

ct
or

 (
pe

rc
en

t)

Combined eigenvalues

Figure A.24: Combined eigenvalues.

A.3 Cross-sections of Pork Carcasses 209

A.3 Cross-sections of Pork Carcasses

Figure A.25: Point cloud of the unaligned annotations.

Figure A.26: Point cloud of the aligned annotations with mean shape fully
drawn.

210 Appendix A. Detailed Model Information

Figure A.27: Delaunay triangulation of the mean shape.

Figure A.28: Independent principal component analysis of each model point.

A.3 Cross-sections of Pork Carcasses 211

(a) b1 = −3
√

λ1 (b) b1 = 0 (c) b1 = +3
√

λ1

(d) b2 = −3
√

λ2 (e) b2 = 0 (f) b2 = +3
√

λ2

(g) b3 = −3
√

λ3 (h) b3 = 0 (i) b3 = +3
√

λ3

Figure A.29: Mean shape deformation using 1st, 2nd and 3rd principal mode.
bi = −3

√
λi, bi = 0, bi = 3

√
λi.

212 Appendix A. Detailed Model Information

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

5

10

15

20

25

30

35

40

Eigenvalue

V
ar

ia
nc

e
ex

pl
an

at
io

n
fa

ct
or

 (
pe

rc
en

t)

Shape eigenvalues

Figure A.30: Shape eigenvalues in descending order.

−2 −1 0 1 2 3 4

x 10
−3

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

−3

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13
 14

PC1

P
C

2

PC1 versus PC2 in the shape PCA

Figure A.31: PC1 (bs,1) vs. PC2 (bs,2) in the shape PCA.

A.3 Cross-sections of Pork Carcasses 213

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

2

4

6

8

10

12

14

16

18

Eigenvalue

V
ar

ia
nc

e
ex

pl
an

at
io

n
fa

ct
or

 (
pe

rc
en

t)

Texture eigenvalues

Figure A.32: Texture eigenvalues in descending order.

−1.5 −1 −0.5 0 0.5 1 1.5 2

x 10
−3

−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−3

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

PC1

P
C

2

PC1 versus PC2 in the texture PCA

Figure A.33: PC1 (bg,1) versus PC2 (bg,2) in the texture PCA.

214 Appendix A. Detailed Model Information

Shape correlation matrix

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160

Figure A.34: Correlation matrix of the annotations.

Figure A.35: Texture variance, black corresponds to high variance.

A.3 Cross-sections of Pork Carcasses 215

1 2 3 4 5 6 7 8 9 10 11 12
0

5

10

15

20

25

30

Eigenvalue

V
ar

ia
nc

e
ex

pl
an

at
io

n
fa

ct
or

 (
pe

rc
en

t)

Combined eigenvalues

Figure A.36: Combined eigenvalues.

216 Appendix A. Detailed Model Information

217

Appendix B

Active Appearance
Models: Theory and
Cases

During the six months master thesis period, a paper was prepared and
submitted to the 9th Danish Conference on Pattern Recognition and Im-
age Analysis (DANKOMB). As documentation of the workload herein, the
paper is reprinted below in one-column format.

Since the paper was prepared in the middle of the thesis term, results may
not be directly comparable to those reported in this thesis, due to changes
in training set, implementation, evaluation methods and such. The nomen-
clature deviates also slightly from this thesis.

218 Appendix B. Active Appearance Models: Theory and Cases

Active Appearance Models: Theory and Cases

M. B. Stegmann1,1, R. Fisker1, B. K. Ersbøll1,
H. H. Thodberg2, L. Hyldstrup3

1Department of Mathematical Modelling
Technical University of Denmark
DTU Building 321, DK-2800 Lyngby, Denmark

2Pronosco A/S, Kohavevej 5, DK-2950 Vedbæk, Denmark
3H:S Hvidovre Hospital, Ketteg̊ard Allé 30, DK-2650 Hvidovre, Denmark

Abstract

In this paper, we present a general approach towards image segmentation
using the deformable model Active Appearance Model (AAM) as proposed
by Cootes et al. A priori knowledge is learned through observation of shape
and texture variation in a training set and is used to obtain a compact object
class description, which can be used to rapidly search images for new object
instances. An overview of the theory behind AAMs is given followed by
an improved initialization scheme, thus making the AAMs fully automated.
Finally, two cases are presented. It is demonstrated that AAMs can success-
fully segment bone structures in radiographs of human hands and structures
of the human heart in 2D extracts of 4D cardiovascular magnetic resonance
images. The observed mean point location accuracy was 1.0 and 1.3 pixels,
respectively.

Keywords: Deformable Models, Snakes, Principal Component Analysis,
Shape Analysis, Non-Rigid Object Segmentation, Initialization, Metacar-
pal Radiographs, Cardiovascular Magnetic Resonance Imaging.

1Corresponding author: aam@imm.dtu.dk

B.1 Introduction 219

B.1 Introduction

In recent years, the model-based approach towards image interpretation
named deformable models has proven very successful. This is especially
true in the case of images containing objects with large variability.

Among the earliest and most well known deformable models is the Active
Contour Model – known as Snakes proposed by Kass et al. [46]. Snakes
represent objects as a set of outline landmarks upon which a correlation
structure is forced to constrain local shape changes. In order to improve
specificity, many attempts at hand crafting a priori knowledge into a de-
formable model have been carried out. These include Yuille’s et al. [73]
parameterization of a human eye using ellipsis and arcs.

In a more general approach, while preserving specificity Cootes et al. [15]
proposed the Active Shape Models (ASM) where shape variability is learned
through observation. In practice this is accomplished by a training set of
annotated examples followed by a Procrustes analysis combined with a
principal component analysis.

A direct extension of the ASM approach has lead to the Active Appearance
Models [10]. Besides shape information, the textual information, i.e. the
pixel intensities across the object, is included into the model. AAMs has
been further developed in [14, 22, 13].

Quite similar to AAMs and developed in parallel herewith, Sclaroff &
Isidoro suggested the Active Blob approach [58, 43]. Active Blobs is a
real-time tracking technique, which captures shape and textual informa-
tion from a prototype image using a finite element model (FEM) to model
shape variation. Compared to AAMs, Active Blobs deform a static texture,
whereas AAMs change both texture and shape during the optimization.

For further information on deformable models, refer to the surveys given
in [44, 51].

B.2 Active Appearance Models

Below we describe the outline of the Active Appearance Model approach.
AAMs distinguish themselves in the sense that segmentation can be car-
ried out using the approach as a black box. We need only provide with

220 Appendix B. Active Appearance Models: Theory and Cases

domain knowledge in the form of a training set annotated by specialists
(e.g. radiologists etc.).

Described is the training of the model, the modelling of shape and texture
variation and the optimization of the model. Finally, an improved method
for automated initialization of AAMs is devised.

For a commented pictorial elaboration on the sections below – including
the alignment process – refer to appendix A.

B.2.1 Shape & Landmarks

The first matter to clarify is: What do we actually understand by the term
shape? This paper will adapt the definition by D.G. Kendall [20]:

Definition 6: Shape is all the geometrical information that
remains when location, scale and rotational effects are filtered
out from an object.

The next question that naturally arises is: How should one describe a
shape? In everyday conversation unknown shapes are often described by
referring to well-known shapes – e.g. ”Italy has the shape of a boot”. Such
descriptions can obviously not be utilized in an algorithmic framework.

One way of representing shape is by locating a finite number of points on
the outline. Consequently the concept of a landmark is adapted [20]:

Definition 7: A landmark is a point of correspondence on
each object that matches between and within populations.

A mathematical representation of an n-point shape in k dimensions could
be concatenating each dimension in a kn-vector. The vector representation
for planar shapes would then be:

x = (x1, x2, . . . , xn, y1, y2, . . . , yn)T (B.1)

Notice that the above representation does not contain any explicit infor-
mation about the point connectivity.

B.2 Active Appearance Models 221

B.2.2 Shape Formulation

A classical statistical method for dealing with redundancy in multivariate
data – such as shapes – is the linear orthogonal transformation; principal
component analysis (PCA).

In our application for describing shape variation by PCA – a shape of n
points is considered one data point in a 2nth dimensional space.

In practice the PCA is performed as an eigenanalysis of the covariance
matrix of the shapes aligned w.r.t. position, scale and rotation, i.e. the
shape analysis is performed on the true shapes according to the definition.
As shape metric in the alignment the Procrustes distance [35] is used. Other
shape metrics such as the Hausdorff distance [42] could also be considered.

Consequently it is assumed that the set of N shapes constitutes some ellip-
soid structure of which the centroid – the mean shape – can be estimated
as:

x =
1
N

N∑

i=1

xi (B.2)

The maximum likelihood estimate of the covariance matrix can thus be
given as:

Σ =
1
N

N∑

i=1

(xi − x)(xi − x)T (B.3)

The principal axis of the 2nth dimensional shape ellipsoid are now given as
the eigenvectors, Φs, of the covariance matrix.

ΣΦs = Φsλλs (B.4)

A new shape instance can then be generated by deforming the mean shape
by a linear combination of eigenvectors, weighted by bs, also called the
modal deformation parameters.

x = x + Φsbs (B.5)

222 Appendix B. Active Appearance Models: Theory and Cases

Essentially, the point or nodal representation of shape has now been trans-
formed into a modal representation where modes are ordered according to
their deformation energy – i.e. the percentage of variation that they ex-
plain.

What remains is to determine how many modes to retain. This leads to a
trade off between the accuracy and the compactness of the model. However,
it is safe to consider small-scale variation as noise. It can be shown that
the variance across the axis corresponding to the ith eigenvalue equals the
eigenvalue itself, λi. Thus to retain p percent of the variation in the training
set, t modes can be chosen satisfying:

t∑

i=1

λi ≥ p

100

2n∑

i=1

λi (B.6)

B.2.3 Texture Formulation

Contrary to the prevalent understanding of the term texture in the com-
puter vision community, this concept will be used somewhat differently
below. The main reason for this is that most literature on AAMs uses this
definition of texture, probably due to the close resemblance of some of the
AAM techniques to techniques in computer graphics.

In computer graphics, the term texture relates directly to the pixels mapped
upon virtual 2D and 3D surfaces. Thus, we derive the following definition:

Definition 3: Texture is the pixel intensities across the
object in question (if necessary after a suitable normalization).

A vector is chosen, as the mathematical representation of texture, where
m denotes the number of pixel samples over the object surface:

g = (g1, . . . , gm)T (B.7)

In the shape case, the data acquisition is straightforward because the land-
marks in the shape vector constitute the data itself. In the texture case one
needs a consistent method for collecting the texture information between
the landmarks, i.e. an image warping function needs to be established.
This can be done in several ways. Here, a piece-wise affine warp based on

B.2 Active Appearance Models 223

the Delaunay triangulation of the mean shape is used. Another, theoret-
ically better, approach might be to use thin-plate splines as proposed by
Bookstein [5]. For details on the Delaunay triangulation and image warping
refer to [33, 60].

Following the warp sampling of pixels, a photometric normalization of the
g-vectors of the training set is done to avoid the influence from global linear
changes in pixel intensities. Hereafter, the analysis is identical to that of
the shapes. Hence a compact PCA representation is derived to deform the
texture in a manner similar to what is observed in the training set:

g = g + Φgbg (B.8)

Where g is the mean texture; Φg represents the eigenvectors of the covari-
ance matrix and finally bg are the modal texture deformation parameters.

Notice that there will always be far more dimensions in the samples than ob-
servations thus leading to rank deficiency in the covariance matrix. Hence,
to efficiently compute the eigenvectors of the covariance matrix one must
reduce the problem through use of the Eckart-Young theorem. Consult
[14, 65] or a textbook in statistics for the details.

Combined Model Formulation

To remove correlation between shape and texture model parameters – and
to make the model representation more compact – a 3rd PCA is performed
on the shape and texture PCA scores of the training set, b to obtain the
combined model parameters, c:

b = Qc (B.9)

The PCA scores are easily obtained due to the linear nature of the model:

b =
(

Wsbs

bg

)
=

(
WsΦT

s (x− x)
ΦT

g (g − g)

)
(B.10)

– where a suitable weighting between pixel distances and pixel intensities is
obtained through the diagonal matrix Ws. An alternative approach is to

224 Appendix B. Active Appearance Models: Theory and Cases

perform the two initial PCAs based on the correlation matrix as opposed
to the covariance matrix.

Now – using simple linear algebra – a complete model instance including
shape, x and texture, g, is generated using the c-model parameters.

x = x + ΦsW−1
s Qsc (B.11)

g = g + ΦgQgc (B.12)

Regarding the compression of the model parameters, one should notice that
the rank of Q will never exceed the number of examples in the training set.

Observe that another feasible method to obtain the combined model is to
concatenate both shape points and texture information into one observation
vector from the start and then perform PCA on the correlation matrix of
these observations.

B.2.4 Optimization

In AAMs the search is treated as an optimization problem in which the
difference between the synthesized object delivered by the AAM and an
actual image is to be minimized.

In this way by adjusting the AAM-parameters (c and pose) the model can
deform to fit the image in the best possible way.

Though we have seen that the parameterization of the object class in ques-
tion can be compacted markedly by the principal component analysis it is
far from an easy task to optimize the system. This is not only computation-
ally cumbersome but also theoretically challenging – optimization theory-
wise – since it is not guaranteed that the search-hyperspace is smooth and
convex.

However, AAMs circumvent these potential problems in a rather untradi-
tional fashion. The key observation is that each model search constitutes
what we call a prototype search – the search path and the optimal model
parameters are unique in each search where the final model configuration
matches this configuration.

B.2 Active Appearance Models 225

These prototype searches can be performed at model building time; thus
saving the computationally expensive high-dimensional optimization. Be-
low is described how to collect these prototype searches and how to utilizes
them into a run-time efficient model search of an image.

It should be noticed that the Active Blobs approach is optimized using a
method quite similar to that of AAMs named difference decomposition as
introduced by Gleicher [34].

Solving Parameter Optimization Off-line

It is proposed that the spatial pattern in δI can predict the needed adjust-
ments in the model and pose parameters to minimize the difference between
the synthesized object delivered by the AAM and an actual image, δI:

δI = Iimage − Imodel (B.13)

The simplest model we can arrive at constitutes a linear relationship:

δc = RδI (B.14)

To determine a suitable R in equation (B.14), a set of experiments are
conducted, the results of which are fed into a multivariate linear regres-
sion using principal component regression due to the dimensionality of the
texture vectors. Each experiment displaces the parameters in question by
a known amount and measuring the difference between the model and the
image-part covered by the model.

As evaluation of the assumption of a linear relationship between the model
and pose parameters and the observed texture differences, figure B.1 shows
the actual and the mean predicted displacement from a number of displace-
ments. The error bars correspond to one standard deviation.

Hence, the optimization is performed as a set of iterations, where the linear
model, in each iteration, predicts a set of changes in the pose and model
parameters leading to a better model to image fit. Convergence is declared
when an error measure is below a suitable threshold.

As error measure, we use the squared L2 norm of the texture difference,
|δg|2. To gain a higher degree of robustness, one might consider using the

226 Appendix B. Active Appearance Models: Theory and Cases

−25 −20 −15 −10 −5 0 5 10 15 20 25
−20

−15

−10

−5

0

5

10

15

20
Quality of y−displacement prediction.

actual dy (pixels)

pr
ed

ic
te

d
dy

 (
pi

xe
ls

)

Figure B.1: Displacement plot for a series of y-pose parameter displacements.
Actual displacement versus model prediction. Error bars are 1 std.dev.

Mahalanobis distance or a robust norm such as the Lorentzian error norm
[58]. Fitness functions allowing for global non-linear transformations such
as the mutual information [68, 70] measure might also be considered.

B.2.5 Initialization

The optimization scheme described above is inherently sensitive to a good
initialization. To accommodate this, we devise the following search-based
scheme thus making the use of AAMs fully automated. The technique is
somewhat inspired by the work of Cootes et al. [22].

The fact that the AAMs are self-contained or generative is exploited in the
initialization – i.e. they can fully synthesize (near) photo-realistic objects of
the class that they represent with regard to shape and textural appearance.
Hence, the model, without any additional data, is used to perform the
initialization.

The idea is to use the inherent properties of the AAM-optimization – i.e.
convergence within some range from the optimum. This is utilized to nar-
row an exhaustive search from a dense to sparse population of the hyper-

B.2 Active Appearance Models 227

space spanned by pose- and c-parameters. In other words, normal AAM-
optimizations are performed sparsely over the image using perturbations
of the model parameters.

This has proven to be both feasible and robust. A set of relevant search
configuration ranges is established and the sampling within this is done as
sparsely as possible.

Consider the graph given in figure B.1, which demonstrates that it should
be safe to sample the y-parameter with a frequency of at least 10 pixels.
One could also claim that as long the prediction preserves the right sign it
is only a matter of sufficient iteration.

To achieve sensitivity to pixel outliers we use the variance of the square
difference vector between the model and the image as error measure:

efit = V [δg2] (B.15)

As in the optimization this could easily be improved by using more elabo-
rate error measures. In pseudo-code, the initialization scheme for detecting
one object per image is:

1. Set emin = ∞ and m to a suitable low number (we use m = 3)
2. Obtain application specific search ranges within each parameter (e.g.
−σ ≤ c1 ≤ σ etc.)

3. Populate the space spanned by the ranges – as sparsely as the linear
regression allows – by a set of sampling vectors V = {v1, . . . ,vn}.

4. For each vector in V
5. Do AAM optimization (max m iterations)
6. Calulate the fit, efit, as given by (B.15)
7. If efit < emin Then emin = efit, vfit = vn

8. End

The vector vfit will now hold the initial configuration.

Notice that the application specific search ranges in step 2 is merely a help
to increase initialization speed and robustness than it is a requirement. If
nothing is known beforehand, step 2 is eliminated and an exhaustive search
is performed.

This approach can be accelerated substantially by searching in a multi-
resolution (pyramidal) representation of the image.

228 Appendix B. Active Appearance Models: Theory and Cases

B.3 Implementation

All experiments, illustrations etc. have been made using the Active Appear-
ance Models Application Programmers Interface (AAM-API) developed in
the C++ language and based on the Windows NT platform. This API will
be released under the open source initiative in Autumn 20002, which means
that other freely can download, use and elaborate on the AAM-API.

The foundation for the AAM-API is the Intel Math Kernel Library for
fast MMX implementation of BLAS, MS VisionSDK for image handling,
ImageMagick for image I/O and finally DIVA for image processing and
matrix handling.

AAM-API performance compares to that of Cootes et al. As an example,
the MRI optimizations took each 200 ms on average on a PII 350 MHz.
Much effort has been put into providing documentation and educational
features such as movies of the modes of variation, model search etc.

Further info on AAMs, the AAM-API and full source code documentation
can be obtained at the AAM-site.3

B.4 Experimental Results

Segmentation in medical images has always posed a difficult problem due to
the special image modalities (CT, MRI, PET etc.) and the large biological
variability. To assess the performance of AAMs in such environments, our
implementation has been tested upon radiographs of human hands and
cardiac MRIs.

B.4.1 Radiographs of Metacarpals

Segmentation in radiographs (x-rays) pose a difficult problem due to large
shape variability and inherent ambiguity of radiographs. This forms a
suitable challenge. Other attempts to perform segmentation in radiographs
include the work of Efford [25], where ASMs and other methods were used.

2Probably under the GNU Public License.
3http://www.imm.dtu.dk/∼aam/

B.4 Experimental Results 229

Twenty radiographs of the human hand were obtained and three meta-
carpal bones were annotated using 50 points on each. The annotation of
metacarpals 2,3 and 4 were concatenated into a 150-point model. To incor-
porate a more substantial texture contrast into the model, additional 150
points were placed along the normal of each model point, thus arriving at
a 300-point shape model. The texture model consisted of approx. 10.000
pixels. Using 16 model parameters, 95% of the variation in the training set
were explained.

Automated initialization of the model followed by optimization reached a
mean location accuracy of 0.98 pixels (point to associated border [9, 17])
when testing on four unseen images with ground truth annotations. The
mean texture error was approx. 7 gray levels (input images were in the
byte range).

Examples of initialization and optimization are given in the figures B.2-B.5.
Notice a fairly good fit even in the distal (upper) and proximal (lower) end
of the metacarpals where radiographs are rather ambiguous.

To asses the performance within points, the mean point to point distance
is plotted in figure B.6. Not surprisingly, problems arise in the distal and
proximal end of the metacarpals due the large shape variability and the
ambiguous nature of radiographs in regions of overlap.

Figure B.2: Model border after automated initialization (cropped).

230 Appendix B. Active Appearance Models: Theory and Cases

Figure B.3: Optimized model border.

Figure B.4: AAM after automated initialization (cropped).

B.4.2 Cardiac MRIs

Another application in medical imaging is locating structures of 4D (space,
time) cardiovascular magnetic resonance images. Temporal registration

B.4 Experimental Results 231

Figure B.5: Optimized AAM (cropped).

Figure B.6: Mean point to point deviation from the ground truth annotation of
each metacarpal. Low location accuracy is observed at the distal and proximal
ends.

232 Appendix B. Active Appearance Models: Theory and Cases

relative to the heart cycle has been done using ECG-triggered image ac-
quisition. The pixel depth was 8 bits.

An AAM has been built upon only four – spatially and temporally corre-
sponding – 2D slices of four different hearts. The endocardial and epicardial
contour have been annotated using 30 points each. The resolution of the
2D slices was 256x256 pixels resulting in a texture model of approx. 2600
pixels. The combined PCA explains 84 % of the variation in the training
set using two model parameters.

The cardiac AAM was then used to search in a unseen image spatially and
temporally similar to those in the training set. The described initialization
technique reached the result seen in figures B.7 and B.9. A final opti-
mization reached a mean point accuracy of 1.7 pixels (point to associated
border). The result can be seen in figures B.8 and B.10. The mean texture
error was approx. 11 gray levels. By incorporating a model neighborhood
similar to the metacarpal model the mean point accuracy was increased to
1.3 pixels.

Future work on the cardiac AAM will include models built upon extracts
differing spatially and temporally, thus leading to a somewhat unified AAM
of a larger subspace from the original 4D. For a commented pictorial of the
cardiac AAM, refer to appendix A.

AAM segmentation of 2D cardiac MRIs has previously been done by Mitchell
et al. [52]. A total of 102 images were used for the training set reaching a
mean point accuracy of approx. 1 pixel on the endocardial and epicardial
contour. Annotated structures were the right ventricle and endocardial and
epicardial contours. The model was initialized manually.

B.5 Discussion & Conclusions

In this paper we have presented the basic theory of AAMs and devised a
method providing sufficient initialization of AAMs.

The performance of AAMs has been assessed on two different image modali-
ties - i.e. radiographs and magnetic resonance images reaching a mean point
location accuracy of 1.0 and 1.3 pixels, respectively. In both cases the loca-
tion accuracy was noteworthy increased by adding a suitable neighborhood
to the outer contours of the model, thus enhancing textual contrast.

B.5 Discussion & Conclusions 233

Figure B.7: Model border after automated initialization.

Figure B.8: Optimized model border.

In the MRI case, we have shown that even with a training set as small as
four examples, very good segmentation results can be obtained. This leads
towards the straightforward assumption that the less variation observed
in the object class in question, the smaller the training set one can allow.
However – more than four images would probably still be desirable.

The two cases stress the fact that the AAM approach is a example of a gen-
eral vision technique that capture domain knowledge through observation.
Contrary to this the bulk part of model-based vision techniques has hand

234 Appendix B. Active Appearance Models: Theory and Cases

Figure B.9: AAM after automated initialization (cropped).

Figure B.10: Optimized AAM (cropped).

crafted a priori knowledge by design and programming. Furthermore, we
have experienced the AAM approach to be data-driven (non-parametric),
self-contained and fast. We also notice that AAMs extend to multivariate
imaging and higher spatial dimensions - i.e. into 3D models etc.

More information on AAMs, papers, presentations, movies of model searches
etc. can be obtained at the AAM-site at http://www.imm.dtu.dk/∼aam/.
A more comprehensive treatment of the work of M. B. Stegmann can be
found in [65].

B.6 Acknowledgements 235

Figure B.11: Original image (cropped).

B.6 Acknowledgements

Cardiac MRIs were provided and annotated by M.D. Jens Christian Nilsson
and M.D. Bjørn A. Grønning, H:S Hvidovre Hospital. M.Sc.Eng. Torben
Lund provided the annotation tool.

Dr. Rasmus Larsen, M.D. Jens Christian Nilsson and M.D. Bjørn A.
Grønning is acknowledged for their very useful comments on the manuscript.

The work of M. B. Stegmann is in part supported by a grant from Pronosco
A/S.

B.7 Illustrated Cardiac AAM

236 Appendix B. Active Appearance Models: Theory and Cases

Figure B.12: Point cloud of four unaligned heart chamber annotations.

Figure B.13: Point cloud of four aligned heart chamber annotations with mean
shape fully drawn.

Shape correlation matrix

20 40 60 80 100 120

20

40

60

80

100

120

Figure B.14: Correlation matrix of the four annotations. Observe the obvious
point correlations.

B.7 Illustrated Cardiac AAM 237

Figure B.15: Delanay triangulation of the mean shape.

Figure B.16: Point variation of the four annotations; radius = σx + σy. Notice
the large point variation to the lower left.

238 Appendix B. Active Appearance Models: Theory and Cases

Figure B.17: The first eigenvector plotted as displacement vectors. Notice that
the large point variation observed in figure B.16 is point variation along the
contour, which only contributes to a less compact model contrary to explaining
actual shape variation.

Figure B.18: Mean shape and shape deformed by the first eigenvector. Notice
that this emphasizes the point above; that a lot of the deformation energy does
not contribute to any actual shape changes.

239

Appendix C

The AAM Web-site

As supplementary documentation on the thesis work, a web-site has been
produced. The primary motivation was to:

• Provide a high quality, interactive way to view the produced results
since major parts of the results is very well (educational-wise) pre-
sented as movies.

• Provide long-term easy public access to this thesis work in a man-
ner similar to other university projects this thesis work has benefited
from.

Among the featured contents are:

Model search movies Follow the optimization using shape and textural
deformation through a movie sequence.

Modes of variation Deform an AAM in real-time using the principal
components of shape, texture and combined variation.

Source code documentation Cross-referenced and downloadable in HTML,
PS & PDF format.

240 Appendix C. The AAM Web-site

Additional documentation The thesis itself, papers, slide presentations
etc.

The web-site can be reached at:

http://www.imm.dtu.dk/∼aam/

241

Appendix D

Source Code
Documentation

All source code developed during this master thesis work has been anno-
tated with special tags for the purpose of performing automatically extrac-
tion of relevant source code documentation. In this way, it is simple and
fast to obtain an updated documentation in perfect synchronization with
the actual code.

The tool used – Doc++1 – provided methods for generating cross-referenced
HTML and LATEX/PDF output. Both of these can be viewed online or
printed2 from the AAM-site:

http://www.imm.dtu.dk/∼aam/

Full Class Listening

Below is listed all classes of the AAM-API. On top of that comes the
classes developed for the console interface, AAMC, which is excluded from
the documentation.

1Doc++ resides at http://www.linuxsupportline.com/∼doc++/
2In the PostScript and PDF format.

242 Appendix D. Source Code Documentation

CAAMCore
Core Active Appearance Model functionality

CAAMDelaunay
Delaunay Triangulator.

CAAMFEMDeform
Shape deformation using a finite element model.

CAAMInitEntry
Container for initialization results.

CAAMInitCandidates
Initialization candidate container.

CAAMInitialize
Abstract base class for all AAM initialization classes.

CAAMInitializeStegmann
Implementation of the Stegmann intialization method.

CAAMLinearReg
Performs multi-variate linear regression on a set of experiments.

CAAMPoint
Point container.

CAAMTriangle
Triangle container with built-in hit test.

CAAMMesh
2D triangular mesh container.

CAAMMovie
Handling and manipulation of AVI movie files.

CAAMOptRes
Calculates and stores optimization results.

CAAMOptimize

243

General purpose optimization of the AAM.

CAAMShapePointInfo
Auxiliary point data.

CAAMShape
Shape container.

CAAMShapeCollection
Shape collection container and shape-aligner.

CAAMUtil
Utility methods for the AAM project.

CAAMPropsReader
Simple lo-fi property reader.

CAAMWarp
Base class for 2D warp classes.

CAAMWarpLinearCacheEntry
Cache entry class used by CAAMWarpLinear.

CAAMWarpLinear
Piece-wise affine warping between two shapes.

CAAMWarpLFEM
Piece-wise linar warp class using FEM deformation.

244 Appendix D. Source Code Documentation

245

Appendix E

AAM-API File Format
Examples

E.1 AMF – AAM Model File

##

Active Appearance Model File

Written : Friday July 21 - 2000 [15:58]

Format version : 0.92

Images : 13

Shape points : 166

Texture samples : 14959

Model reduction : 3

Add Shape Extents : 3

Convex hull used : Yes

Additional doc. : No

Tangent space used : Yes

246 Appendix E. AAM-API File Format Examples

Learning Method : 0

Variance Exp. Level: 95

Parameters used : 11

FEM used : No

Image names :

.\F1011flb.HIPS

.\F1019flb.HIPS

.\F1031flb.HIPS

.\F1051flb.HIPS

.\F1053flb.HIPS

.\F1059flb.HIPS

.\F1064flb.HIPS

.\F1079flb.HIPS

.\F1083flb.HIPS

.\F1096flb.HIPS

.\F1101flb.HIPS

.\F1102flb.HIPS

.\F1103flb.HIPS

Combined mode variation :

1 26.89% (26.89%)

2 16.99% (43.88%)

3 8.40% (52.29%)

4 7.70% (59.99%)

5 7.34% (67.32%)

6 6.63% (73.96%)

7 5.76% (79.71%)

8 5.36% (85.07%)

9 4.28% (89.35%)

10 3.86% (93.21%)

11 3.51% (96.72%)

Shape mode variation :

1 38.77% (38.77%)

2 23.62% (62.38%)

3 7.74% (70.13%)

4 6.49% (76.62%)

5 5.66% (82.28%)

6 3.95% (86.23%)

7 3.86% (90.09%)

8 2.80% (92.88%)

9 2.19% (95.08%)

10 1.88% (96.96%)

11 1.73% (98.69%)

E.2 ACF – AAM Config File 247

12 1.31% (100.00%)

Texture mode variation :

1 18.61% (18.61%)

2 12.33% (30.93%)

3 10.66% (41.59%)

4 8.73% (50.32%)

5 8.56% (58.88%)

6 7.54% (66.42%)

7 7.35% (73.77%)

8 6.24% (80.01%)

9 5.69% (85.70%)

10 4.99% (90.69%)

11 4.85% (95.54%)

12 4.46% (100.00%)

13 0.00% (100.00%)

##

E.2 ACF – AAM Config File

###

#

Active Appearance Model Builder Configuration File

#

Best viewed with tabsize==4

#

###

3 # Model reduction [1-n] (reduction factor = 1/x)

3 # Model expansion [0-n] (pixels along the

model point normal)

1 # Use convex hull [0|1] (off/on)

0 # Verbose mode [0|1] (off/on)

1 # Write registration movie [0|1] (off/on)

1 # Write variance image [0|1] (off/on)

1 # Produce model documentation [0|1] (off/on)

1 # Use tangent space projection [0|1] (off/on)

248 Appendix E. AAM-API File Format Examples

0 # Learning method (0=single displace,1=multiple displace)

95 # Variance explanation level [100-1] (percent)

E.3 ASF – AAM Shape File

###

#

AAM Shape File - written: 14-Jul-2000 19:44:17

#

###

#

number of model points

#

66

#

model points

#

format: <path#> <type> <x rel.> <y rel.> <point#> <connects from> <connects to>

#

0 1 0.518718 0.370570 0 32 1

0 1 0.532763 0.369818 1 0 2

0 1 0.550159 0.376979 2 1 3

0 1 0.550243 0.385660 3 2 4

0 1 0.543755 0.401262 4 3 5

0 1 0.556200 0.415997 5 4 6

0 1 0.575146 0.422829 6 5 7

0 1 0.581374 0.415047 7 6 8

0 1 0.592347 0.419907 8 7 9

0 1 0.599675 0.436490 9 8 10

0 1 0.605776 0.449764 10 9 11

0 1 0.597277 0.465434 11 10 12

0 1 0.589506 0.480103 12 11 13

0 1 0.574186 0.487015 13 12 14

0 1 0.572306 0.493672 14 13 15

0 1 0.565832 0.499288 15 14 16

0 1 0.552905 0.508478 16 15 17

0 1 0.540465 0.501954 17 16 18

0 1 0.524880 0.501810 18 17 19

0 1 0.521895 0.514605 19 18 20

0 1 0.537654 0.518689 20 19 21

0 1 0.516845 0.521957 21 20 22

0 1 0.495800 0.516490 22 21 23

0 1 0.479226 0.509700 23 22 24

0 1 0.464311 0.496042 24 23 25

E.4 AOF – AAM Optimization File 249

0 1 0.449038 0.482457 25 24 26

0 1 0.442961 0.465572 26 25 27

0 1 0.441553 0.444790 27 26 28

0 1 0.441644 0.425711 28 27 29

0 1 0.446147 0.410962 29 28 30

0 1 0.457776 0.391605 30 29 31

0 1 0.477158 0.377265 31 30 32

0 1 0.498719 0.375223 32 31 0

1 0 0.527584 0.347407 33 65 34

1 0 0.540823 0.350820 34 33 35

1 0 0.554225 0.355885 35 34 36

1 0 0.571020 0.365448 36 35 37

1 0 0.584007 0.374006 37 36 38

1 0 0.597431 0.383626 38 37 39

1 0 0.609678 0.395252 39 38 40

1 0 0.621089 0.409628 40 39 41

1 0 0.626961 0.422494 41 40 42

1 0 0.628915 0.437005 42 41 43

1 0 0.628104 0.450329 43 42 44

1 0 0.623325 0.466479 44 43 45

1 0 0.615272 0.479872 45 44 46

1 0 0.604699 0.492765 46 45 47

1 0 0.589989 0.507293 47 46 48

1 0 0.576942 0.517555 48 47 49

1 0 0.563292 0.526087 49 48 50

1 0 0.544622 0.534137 50 49 51

1 0 0.528754 0.537687 51 50 52

1 0 0.521873 0.539179 52 51 53

1 0 0.519447 0.538970 53 52 54

1 0 0.513286 0.538763 54 53 55

1 0 0.489473 0.534848 55 54 56

1 0 0.469023 0.528177 56 55 57

1 0 0.450248 0.513003 57 56 58

1 0 0.433815 0.493809 58 57 59

1 0 0.424770 0.473959 59 58 60

1 0 0.422778 0.446886 60 59 61

1 0 0.422572 0.419639 61 60 62

1 0 0.428038 0.399094 62 61 63

1 0 0.449634 0.384622 63 62 64

1 0 0.469204 0.359666 64 63 65

1 0 0.496774 0.347135 65 64 33

E.4 AOF – AAM Optimization File

###

#

250 Appendix E. AAM-API File Format Examples

Active Appearance Model Optimization File

#

Best viewed with tabsize==4

#

###

##########################

pose search parameters

##########################

0 0 0 0 # search region; format "x1 x2 y1 y2"

to use the whole image supply "0 0 0 0"

10 5 # size search; format "deviation steps"

hence "10 5" would search the image using

the following sizes 90% 95%, 100%, 105%, 110%

.1 3 # rotation search; format "deviation steps"

hence "10 5" would search the image using

the following rotations of the mean shape

-0.1pi, 0, 0.1pi

##########################

model search parameters

##########################

3 7 # pc1-parameter search; format "deviation steps"

hence "3 7" will derform the model using

pc1 = -3, -2, -1, 0, 1, 2, 3 (std.dev.)

251

Appendix F

AAM-API Console
Interface Usage

AAMC - Active Appearance Model Console Interface - version 0.8.32

Copyright (c) Mikkel B. Stegmann 2000 - aam@imm.dtu.dk. All rights reserved.

For further information see http://www.imm.dtu.dk/~aam/

USAGE:

aamc <b|c|e|m|r|s|t|w|sm|d> [additional mode arguments]

MODES:

aamc b <input dir> <extension> <out model> [acf file]

aamc c <input image> <output image> [reduction factor]

aamc e <model> <dir> <ext> [still|movie|both|none*] [pseudo|auto*]

[sm] [ft]

aamc m <model.amf> <type: all|shape|texture|combined> [#modes] [#frames]

aamc r <model.amf> <input dir> <extension>

aamc s <input model.amf> <input image> [movie filename]

aamc t <model.amf> <input movie>

aamc w <input image> <reduction factor>

aamc sm <input movie> [output extension]

aamc d

For futher help write: ’aam -help’, ’aam -full’ or ’aam <modename> -help’

The tool ’aamc’ is the console interface to the AAM-API.

MODE: b - Builds an Active Appearance Model.

252 Appendix F. AAM-API Console Interface Usage

USAGE:

aamc b <input dir> <extension> <out model> [acf file]

DESCRIPTION:

Builds an Active Appearance Model.

In this mode the principal component analysis, parameter optimization training

etc. are done.

input dir : Directory containing images and annotations.

extension : Image extension used. Ex. ’bmp’, ’hips’ etc.

out model : Filename (and path) of the output model file. Ex. ’model42’.

acf file : AAM configuration file.

MODE: c - Image conversion with optional reduction.

USAGE:

aamc c <input image> <output image> [reduction factor]

DESCRIPTION:

Image conversion with optional reduction.

Example usage:

aamc c meta.tif meta.bmp

MODE: e - Evaluates an Active Appearance Model.

USAGE:

aamc e <model> <dir> <ext> [still|movie|both|none*] [pseudo|auto*]

[sm] [ft]

DESCRIPTION:

Evaluates an Active Appearance Model.

model : The model .amf that should be evaluated.

dir : Directory containing images and ground truth annotations.

ext : Image extension used. Ex. ’bmp’, ’hips’ etc.

253

[still|movie|both] : Write stills of the initial and optimized model

and/or movies of the complete optimization.

[pseudo|auto*] : Initialization method.

[sm] : Similarity measure used in the optimization:

0 = Non-normalized L_2 norm*

1 = The Mahalanobis distance

2 = The Lorentzian error norm

[ft] : Fine tuning of the optimization:

0 = None*

1 = Steepest Descent

2 = Conjugate Gradient

3 = Quasi-Newton, BFGS

4 = Pattern search

5 = Simulated annealing

Output is written in the input dir in the file ’results.txt’

Default settings are marked with an asterisk (*)

MODE: m - Writes Active Appearance Model movies.

USAGE:

aamc m <model.amf> <type: all|shape|texture|combined> [#modes] [#frames]

DESCRIPTION:

Writes Active Appearance Model movies.

This mode documents the given AAM by generating movies showing

the shape, texture and combined variation resulting from the PCA.

Output is written in current dir.

MODE: r - Tests the regression prediction in an AAM.

USAGE:

aamc r <model.amf> <input dir> <extension>

DESCRIPTION:

Tests the regression prediction in an AAM.

Output is written in the input dir in matlab format.

254 Appendix F. AAM-API Console Interface Usage

MODE: s - Active Appearance Model search.

USAGE:

aamc s <input model.amf> <input image> [movie filename]

DESCRIPTION:

Active Appearance Model search.

Search output is written in the input dir.

Automatic initialization is performed.

MODE: t - Performs tracking in a movie file (.avi).

USAGE:

aamc t <model.amf> <input movie>

DESCRIPTION:

Performs tracking in a movie file (.avi).

This mode performs a through initialization of the AAM in the first frame

and uses the convergence position as initial pose in the next frame

(and so on...).

Example usage:

aamc t hand.avi

MODE: w - Plots an annotation into a given image.

USAGE:

aamc w <input image> <reduction factor>

DESCRIPTION:

Plots an annotation into a given image.

Image input format : .bmp .hips

Annotation input format : .m

255

An annotation file is expected to be placed in the

same directory as the image.

E.g.: ’c:\scan42.bmp’ and ’c:\scan42.m’

MODE: sm - Split movie file (.avi) into frames.

USAGE:

aamc sm <input movie> [output extension]

DESCRIPTION:

Split movie file (.avi) into frames.

Example usage:

aamc sm shape01.avi bmp

MODE: d - Debug/Test console mode. Don’t use!

USAGE:

aamc d

DESCRIPTION:

Debug/Test console mode. Don’t use!

256 Appendix F. AAM-API Console Interface Usage

257

Appendix G

ASF – AAM Shape
Format Specification

Since the extended shape representation constitutes one of the contribu-
tions a thorough description of it is features is given below.

An ASF file is structured as a set of lines separated by a CR character.
Anywhere in the file, comments can be added by starting a line with the
percentage character. Line 1 contains the total number of points, n, in the
shape. Line 1 to n+1 contains the point information (one line per point)
such as the point location, type, connectivity. The format philosophy is
that quick and simple access is preferred over data compactness (thus:
data redundancy is allowed).

The precise format of a point definition is:

point := ¡path#¿ ¡type¿ ¡rel. point x¿ ¡rel. point y¿ ¡point#¿
¡connects from¿ ¡connects to¿

Each field is seperated by space(s) or tab(s).

¡path#¿ The path that the point belongs to. Point from different paths
must not be interchanged (in the line order).

¡type¿ A bitmapped field that defines the type of point:
• Bit 1: Outer edge point/Inside point

258 Appendix G. ASF – AAM Shape Format Specification

• Bit 2: Original annotated point/Artificial point
• Bit 3: Closed path point/Open path point
• Bit 4: Non-hole/Hole point

Remaining bits should be set to zero. An inside artificial point which
is a part of an closed hole, has thus the type: (1 << 1) + (1 <<
2) + (1 << 4) = 1 + 2 + 4 = 7.

¡rel. point x¿ The relative x-position of the point – i.e. pixel x = 47 in
a 256 pixel wide image has the position 47/256 = 0.18359375.

¡rel. point y¿ The relative y-position of the point – i.e. pixel y = 47 in
a 256 pixel tall image has the position 47/256 = 0.18359375.

¡point#¿ The point number. First point is zero. This is merely a service
to the human reader since the real point number is implicitly given
by the line at where the point occurs.

¡connects from¿ The previous point on this path. If none ¡connects
from¿ == ¡point#¿ can be used.

¡connects to¿ The next point on this path. If none ¡connects from¿ ==
¡point#¿ can be used.

Path points are assumed to be defined clockwise. That is; the outside
normal is defined to be on left of the point in the clockwise direction. Hole
is thus defined counter-clockwise.

Points are defined in the fourth quadrant – i.e. row, column notation (0,0)
= upper left corner.

Isolated points are signaled using ¡connects from¿ == ¡connects to¿ ==
¡point#¿.

A shape must have at least one outer edge. If the outer edge is open, the
convex hull is used to determine the interior of the shape.

Refer to appendix E for an example ASF file.

