
A Pizza Compiler For
.NET

Morten Sylvest Olsen

IMM-THESIS-2002-20

IMM

Trykt af IMM, DTU

Foreword

This report is the result of a masters project titled “A Pizza Compiler for
.NET”, with work being done from October 2001 through March 2002 un-
der the supervision of Associate Professor Jørgen Steensgaard-Madsen at
the section of Computer Science and Engineering (CSE), part of the depart-
ment of Informatics and Mathematical Modelling (IMM) at the Technical
University of Denmark (DTU).

I would like to thank my supervisor, Jørgen Steensgaard-Madsen, for his
help in guiding me in the right direction. I would also like to thank my
parents for support and encouragement.

April 2nd 2002

Morten Sylvest Olsen

Abstract

The notion of abstract virtual machines is introduced. Overviews of the
Microsoft .NET Common Language Runtime, and the Pizza language, are
given. The design and implementation of a new back-end for the Pizza
compiler that emits code for the Microsoft .NET runtime is shown. Tests
that compare code size and performance between the Java Virtual Machine
and the .NET Common Language Runtime are performed. Some further
possible work on the Pizza compiler is laid out, and the suitability of using
the .NET runtime, as target for Pizza, is discussed.

Keywords

portability, virtual machines, Pizza, Java, JVM, .NET, Common Language
Runtime, code generation, compiler bootstrap

v

Contents

1 Preface 1

1.1 Executive summary . 1

1.2 Prerequisites . 2

1.3 Typographical conventions 2

1.4 Terminology . 2

1.5 Organization . 2

2 Introduction 5

2.1 The purpose of the project 5

2.2 The Pizza compiler . 5

2.3 .NET Common Language Runtime 6

2.4 Related work . 7

2.5 Portability . 7

2.5.1 Portability . 7

2.6 Portability through virtual machines 8

2.6.1 Virtual machine architectures 9

2.6.2 Summary . 11

vi CONTENTS

3 The .NET Common Language Runtime 13

3.1 Motivation . 13

3.2 Overview . 14

3.3 Types . 14

3.4 Execution environment . 16

3.4.1 Return handle . 17

3.4.2 Local variables . 17

3.4.3 Incoming arguments 17

3.4.4 Evaluation stack . 18

3.5 Instruction set . 18

3.5.1 Basic opcodes . 19

3.5.2 Control flow . 20

3.5.3 Function calls . 20

3.5.4 Objects . 20

3.5.5 Arrays . 21

3.5.6 Exception handling 21

3.5.7 Pointers . 22

3.5.8 Unsafe instructions 22

3.6 CIL assembler . 22

4 The Pizza Compiler 25

4.1 Pizza . 25

4.2 The Pizza extensions . 26

4.2.1 Generics . 26

4.2.2 First-class functions 27

4.2.3 Algebraic datatypes 28

4.2.4 Tail recursion . 29

CONTENTS vii

5 Design 31

5.1 Overview . 31

5.2 CLR assembly files . 32

5.2.1 Name resolution . 32

5.2.2 Scoping . 33

5.2.3 Symbolic references 33

5.3 Basic types . 33

5.4 Reference types . 34

5.4.1 The current solution 36

5.5 Arrays . 37

5.5.1 Creation . 37

5.5.2 Array covariance . 38

5.6 Classes . 40

5.6.1 Inner classes . 40

5.6.2 Object creation . 41

5.6.3 Methods . 42

5.7 Constants . 43

5.7.1 Numeric . 43

5.7.2 Strings . 44

5.8 Arithmetic instructions . 45

5.9 Local variables . 48

5.10 Exception handling . 49

5.11 Modifiers . 54

5.12 Synchronization . 56

5.12.1 Synchronized methods 57

5.12.2 Syncronized blocks 57

5.13 Entry-point . 57

viii CONTENTS

5.14 Class library . 58

5.15 Bootstrap . 58

5.15.1 Self hosting on the CLR 60

5.16 Static initializers . 61

5.17 Unsolved issues . 62

5.17.1 Finalizers . 62

5.17.2 Volatile variables . 63

6 Implementation 65

6.1 General . 65

6.2 Structure of the Pizza compiler 66

6.3 The back-end . 66

6.3.1 AssemblyWriter . 67

6.3.2 CILBasic . 67

6.3.3 CILCode . 67

6.3.4 CILCodeGen . 67

6.3.5 CILGen . 68

6.3.6 CILItem . 68

6.3.7 MetaData . 68

6.3.8 Other . 68

6.4 Bootstrap . 69

7 Tests 71

7.1 Correctness . 71

7.1.1 Verifiable CIL . 71

7.1.2 Verification of pizzacil 72

7.2 Bootstrap test . 73

7.3 Test suite . 74

CONTENTS ix

7.4 Performance tests . 75

7.4.1 Floating point performance 75

7.4.2 Bootstrap . 76

7.5 Code size . 76

7.6 Local variable optimization 78

8 Status 79

8.1 Evaluation of the CLR . 79

8.1.1 Portability of the CLR 81

8.2 Further work . 82

8.3 Pizza language related . 83

8.3.1 Tail-calls . 83

8.3.2 Boxing of basic types 84

8.3.3 Generic CLR . 84

8.3.4 ILX . 84

8.4 Further projects . 85

8.4.1 Assembly toolkit . 85

8.4.2 Java class library re-implementation 85

9 Conclusion 87

9.1 Status . 87

9.2 The project . 88

9.3 The future . 89

A Project description 95

x CONTENTS

B User manual 97

B.1 Getting the code . 97

B.2 Necessary prerequisites . 97

B.3 Structure . 98

B.4 Installing Pizza . 98

B.5 Bootstrapping the compiler 99

B.6 Using the compiler . 99

B.7 Miscellaneous . 99

C Assembler format 101

C.0.1 Class definitions . 101

C.0.2 Field definitions . 102

C.0.3 Method definitions 102

D Codeexample 105

E Bugs in Pizza 111

xi

List of Figures

3.1 The Common Language Runtime focus 14

3.2 Layers of CIL . 15

3.3 Local variables (and evaluation stack) in the CLR 18

5.1 T-diagrams example . 59

5.2 Bootstrap of pizzacil on the CLR 59

5.3 Loading classes in Pizza . 60

7.1 Performing the bootstrap test 74

xii LIST OF FIGURES

xiii

List of Tables

3.1 CLR types . 16

5.1 Mapping of basic types from JVM to CLR. 34

5.2 Mapping from java.lang.Object to System.Object 35

5.3 Arithmetic instructions . 45

5.4 Accessibility modifiers . 56

5.5 Other modifiers . 56

7.1 Linpack benchmark . 75

7.2 Bootstrap benchmark . 76

7.3 Code sizes of resulting executables in kilobytes. 77

7.4 Reuse of local variable slots. 78

xiv LIST OF TABLES

1

Chapter 1

Preface

1.1 Executive summary

In this report I document the design and construction of a new back-end
for the Pizza compiler. The new back-end generates code for the Microsoft
.NET Common Language Runtime (CLR).

I start by introducing the notion of portability and abstract virtual ma-
chines. Since the .NET runtime is new, and probably unfamiliar to most
readers, I have devoted a chapter to a short description. I then introduce
the Pizza language extensions to Java.

Then the design of the new back-end is specified; this involves mapping the
dynamic semantics of the Java Virtual Machine onto the Common Lan-
guage Runtime. The actual implementation is described. The correctness
of the compiler is established, and some tests are performed.

From the experience gained with the new back-end I compare the JVM
with the CLR, and conclude that the CLR is well suited for supporting the
Pizza (and by extension, the Java) language, even surpassing the JVM in
some respects.

2 Chapter 1. Preface

1.2 Prerequisites

In this report I presume knowledge of the Java language, and some knowl-
edge of the underlying Java Virtual Machine. Although the Pizza compiler
extends the Java language, these extensions should all be familiar from
functional programming. Some knowledge of compiler construction will
also be assumed. No prior knowledge of .NET is assumed.

1.3 Typographical conventions

Italic is used for class names.
Verbatim is used for virtual machine instructions and identifiers.
Boldface is used for Java keywords.

1.4 Terminology

Throughout this report I will refer to the modified Pizza compiler with the
new back-end as pizzacil.

Unfortunately this report contains many acronyms, these are the most
important.

CIL Common Intermediate Language.
CLR Common Language Runtime. The .NET virtual machine.
JVM Java Virtual Machine.
JLS Java Language Specification.
JIT Just-In-Time compiler.
IL Intermediate Language.

1.5 Organization

• Chapter 1 introduces portability, Pizza, .NET and abstract virtual
machines.

• Chapter 2 gives an overview of the .NET CLR.

1.5 Organization 3

• Chapter 3 briefly explains the Pizza extensions to Java.
• Chapter 4 explains the design of the new back-end. This involves

mapping Java/JVM operations onto the .NET CLR.
• Chapter 5 shows the structure of the implementation of the back-end.
• Chapter 6 shows how correctness of the back-end can be validated,

and gives some test results.
• Chapter 7 summarizes the current status and possible future work.
• Chapter 8 contains the conclusion.

The report has the following appendices:

• Appendix A contains the project description.
• Appendix B includes a short manual on how to get, install and use

the pizzacil compiler.
• Appendix C has a very condensed description and incomplete gram-

mar of the syntax for CIL assembler, hopefully enough to understand
this report.

• Appendix D lists an example of code generated by the new back-end.
• Appendix E is a list of bugs found in the Pizza compiler unrelated to

the back-end.

4 Chapter 1. Preface

5

Chapter 2

Introduction

This chapter contains a short description of Pizza and .NET. It also defines
the notion of portability, and abstract virtual machines.

2.1 The purpose of the project

Portability of programs is an important issue. In recent years Java, and the
Java Virtual Machine, has shown that cross-platform binary compatibility
is feasible. While the Java language has changed over the years, the JVM
has not. Presumably the .NET Common Language Runtime has been build
on the experiences learned from the JVM, and should have improved on
some areas of it.

The purpose of the project was to compare the properties of the Java
Virtual Machine to the .NET CLR. A practical goal was to map the dy-
namic semantics of the Pizza language onto the CLR, and construct a new
back-end for the Pizza compiler to make it possible to run Pizza programs
unmodified and transparently on the .NET runtime.

2.2 The Pizza compiler

The Pizza compiler was written by Martin Odersky and Philip Wadler,
as part of a project to research extensions to the Java language [OW97],

6 Chapter 2. Introduction

[ORW98].

It was then released as open source, and is now maintained by Nick Fortes-
cue et al. as a SourceForge project. 1

Pizza extends Java with concepts from functional programming languages,
namely:

• Generics.
• Algebraic types.
• First-class functions.
• Tail recursion.

Pizza was chosen as the basis for this project because it is freely available
and of high quality.

2.3 .NET Common Language Runtime

.NET is a recent product from Microsoft, that overlaps somewhat with the
goals of Java. Probably for marketing reasons, many of their products has
now been renamed to include the term “.NET”, but in the scope of this
project the essential parts are:

• A new language named C#. C# is a modern statically typed object-
oriented language, that shares much syntax and semantics with Java.
It also contains ideas from Visual Basic, C++ and Delphi. Like Java,
C# does not support multiple inheritance, but unlike Java it allows
the programmer to step out of the restricted environment and use
unsafe operations like pointer arithmetic.

• The definition of a virtual machine architecture, the Common Lan-
guage Runtime, or CLR.

• A comprehensive class library.

Parts of .NET has been submitted for standardization by ECMA. I will
refer to the standards documentation throughout this report. A short in-
troduction to the runtime itself can be found in [MG01].

1http://pizzacompiler.sourceforge.net/

http://pizzacompiler.sourceforge.net/

2.4 Related work 7

2.4 Related work

Microsoft has released a .NET version of their J++ compiler, called J#.
This is a Java compiler targeting the .NET Common Language Runtime. A
beta version has been made available. I have used their re-implementation
of the Java class library in my project.

2.5 Portability

With the release of the Java language, and the Java Virtual Machine in
1994, much attention was directed at the notion of using a virtual machine
to achieve portability over a range of architectures and platforms. This
idea was not new though, but stems back from the 60’s, if not before.

2.5.1 Portability

One definition of portability is given in [Moo97]:

A software unit is portable (exhibits portability) across a
class of environments, to the degree that the cost to transport
and adapt it to the new environment in the class, is less than
the cost of redevelopment

Many factors can impede portability. Low-level hardware architecture dif-
ferences are the basic differences between platforms:

• Instruction set.
• Basic word size.
• Endiannes.
• Alignment requirements for code and data.
• Memory model
• Data representation.

Then there are differences in operating system and other external interfaces.

Portability is usually something that is given as a desired quality of a soft-
ware project, but rarely is much work done on specifying the requirements
for it. Source portability depends on compilers existing on all the target
platforms, and that external interfaces are compatible. In under-specified

8 Chapter 2. Introduction

languages, like C, achieving source portability is an art of deep magic. Op-
erating system dependencies needs to be abstracted, and compiler differ-
ences needs to be taken into account, this usually leads to massive amounts
of #ifdefs and incomprehensible code.

This report does not treat the area of source portability. Instead the focus
is on binary portability.

2.6 Portability through virtual machines

The idea of using a virtual machine stems from the problem of writing
portable compilers. If one desires to create compilers for a number of
source languages, N , and want to emit code for a number of hardware
architectures, M , then N ∗M compilers needs to be created.

If instead the problem is re-factored into a frontend that parses the source
language, and emits an intermediate language (IL), and a back-end that
consumes the IL and generates code for a specific platform, the problem
has been reduced, so that only N +M compilers are needed.

This was first formulated in [SWT+58] where the idea of an UNCOL (UNi-
versal Computer Oriented Language) was presented. The purpose was to
create a universal IL that could be used for every possible source language
and every possible target architecture. This has been one of the “holy
grails” of compiler technology since, but no IL has been able to gain uni-
versal acceptance. In theory any Turing-complete language would suffice,
but the problem is that it should be easy and efficient to translate. It
should be easy to translate to, from the source language, and it should be
efficient to translate to the target architecture.

One of the first intermediate languages to be widely used was P-Code,
which was invented as the IL for the Pascal-P compiler by Niclaus Wirth
at ETH. It was then noted, that not only could it be used as input to a
back-end, but an interpreter for the abstract virtual machine defined by the
semantics of P-Code could be used to run the program.

It is easier to build a portable interpreter than a code generator, which is
one of the reasons Pascal-P became popular over a range of platforms.

2.6 Portability through virtual machines 9

2.6.1 Virtual machine architectures

Many different intermediate languages and virtual machines has been de-
fined through the years. Some are higher level, because the try to “bridge
the semantic gap” between a very abstract source language and the real
hardware. An example is the Warren Abstract Machine (WAM) used in
logic programming systems. Others are more general abstractions of exist-
ing hardware architectures. An important feature of an IL is, that it should
be placed at a level of abstraction where it is both easy to generate in the
front-end, and where translation to optimized native code in the back-end
is possible.

Register Transfer Lists

RTL, or Register Transfer Lists, is the IL used in the GNU Compiler Col-
lection (GCC). During configuration of the compiler for a specific architec-
ture, hardware specific instructions for the desired target architecture are
included into the RTL, from a machine description table. When compiling,
the IL nodes contain both symbolic information needed for optimization,
and textual representations of the machine instructions to emit.

GCC only compiles a basic block at a time into RTL, a full representa-
tion of the source program never exists. This intermediate representation
originally stems from the Very Portable Optimizer (VPO) in [DF80].

ANDF

Architecture Neutral Distribution Format (ANDF), is a largely failed at-
tempt from the Open Software Foundation (OSF)2 in 1989, to create a
standard format usable for portable software distribution, between the mul-
titude of Unix platforms that existed at the time. ANDF is basically a
binary encoding of the abstract syntax tree of the source program. The
idea was that when the software was installed, it would be compiled to
native code. Interpretation was not considered at all. The ability to gener-
ate code from ANDF, that was as optimized as that generated by a target
dependent optimizing C compiler, was a major design parameter.

2Now The Open Group

10 Chapter 2. Introduction

Today ANDF is only used very few places, one as the IL for the Ada com-
piler at DDCI [Bun95]. ANDF failed for several reasons. It was designed
with the C language in mind, and one goal was to be able to install on ev-
erything from a plain 32-bit RISC CPU to something completely different
like the iAPX-432, which does not use a linear memory model [DER95].
This means that no assumptions on the size of any structure, or the offsets
of fields within it, can be made at compilation time, which makes code
generation for ANDF complicated, because all references have to be made
using “token pointers”. Whether it makes sense to worry about support
for very “weird” architectures still is also questionable.

Stack-based

Many intermediate languages have been based on a stack architecture. One
that was already mentioned, is P-Code. But the most recent, and most
commercially used one, is the Java Virtual Machine. The most important
features that separate the JVM from earlier attempts are:

• An object-oriented memory model, including garbage collection.
• All references to objects, fields and methods are made symbolically.

This means that portability can be achieved, without the problems
that makes ANDF unwieldy.

• The IL contain enough type information, so that a program can be
verified for memory safety before execution.

• The virtual machine strictly defines the environment separate from
the underlying operating system. This includes thread support, mem-
ory management and I/O.

Tree-based

There is no reason why an IL should necessarily resemble real hardware
architectures. Actually those linear representations are not optimal, be-
cause they destroy information about the program structure. Slim Binaries
[KF99] is a IL based on a tree structure, used in the Juice language, that
grew out of a dissertation on Semantic Dictionary Encoding and its use as
an IL in an Oberon compiler [Fra94].

They argue that these Slim Binaries are both much more compact than
Java Byte Code, and that better native code can be generated from them,

2.6 Portability through virtual machines 11

because control and data flow of the original source are preserved in the IL.
One of the major problems of JIT compilers for the JVM is reconstruction
of this information, to be able to perform many optimizations.

2.6.2 Summary

Stack architectures in hardware, with the notable exception of the Sun
picoJava, has gone the way of the dinosaur, but as virtual machines they
seem to have been successful.

Register-based architectures reign in hardware, but they are not well-suited
for an IL:

• Usually they will fit badly with the target hardware. For example
the three-address, register-architecture virtual machine MMIX [Knu]
has 256 general purpose registers. Most real architectures have less,
and even if the target architecture is a three-address architecture,
like the PowerPC or MIPS, it would probably not be a one-to-one
match. A very common architecture, the Intel x86 would be a very
bad fit indeed. In most cases this would mean that a JIT compiler
would need to recompute the register assignment. Also instruction
scheduling and cache issues means that there is little or no benefit
compared to starting from a stack-machine.

• A register IL is not well suited for interpretation. Whereas in hard-
ware the register decoding comes “for free”, in an interpreter this is
costly [Ert96].

Stack architectures on the other hand have several nice properties:

• It is relatively easy to generate code for a stack machine from most
imperative languages.

• Since argument addressing is implicit, efficient interpreters can be
easily build.

Lately the emphasis has not been on interpretation. Interpreters execute
at least an order of magnitude slower than compiled code. To achieve the
portability of using virtual machines, without the overhead, much research
has gone into Just In Time (JIT) compilers. Instead of interpretation, the
IL is translated to native code on the architecture, at execution time. This
is usually complicated by a need to support mixed-mode execution, where

12 Chapter 2. Introduction

some functions are executed natively, while others, in the same program,
are interpreted.

For fast optimized code generation, stack based IL has some drawbacks.
Much code- and data-flow information from the original source is lost. This
makes the task of the JIT compiler much harder, or at least very different,
from traditional optimizing compilers.

Both the JVM and the .NET CLR are stack-based virtual machines. In
the next chapter I will describe the CLR in more detail.

13

Chapter 3

The .NET Common
Language Runtime

This chapter gives an overview of the .NET Common Language Runtime,
or CLR, necessary to understand the following chapters. Readers familiar
with the .NET virtual machine should be able to skip this chapter.

3.1 Motivation

The CLR is touted more for its capabilities as an inter-language platform,
than its use for portability. More weight has been placed at the ability to
compile from more source languages, than the possibility to run on more
platforms. Although there are many compilers that target the Java Virtual
Machine, most of them do not integrate with each other at all [pro]. It is
not possible to extend a class, defined in language A translated into Java
Byte Code, in another language B.

One of the stated goals of the CLR is this ability. For example to write
a class in C# and use it in a Visual Basic program, without having to
marshal calls through a foreign function interface, or COM/Corba.

14 Chapter 3. The .NET Common Language Runtime

VB

C#

Java
Linux

x86

x86

Sparc

Windows

Solaris

CLR

Figure 3.1: The Common Language Runtime focus

3.2 Overview

The architecture of the CLR is a stack machine with locals. In many ways
it is similar to the JVM, but there are many differences as well.

To be able to support a larger class of source languages, the CLR supports
many things that has no equivalents in the JVM, including pointer arith-
metic. This makes it possible to translate, for example, ANSI C to the
CLR without having to resort to inefficient hacks. A subset of the CLR
can be statically verified to be type-safe, like the JVM.

The language of the CLR is known as the Common Intermediate Language
or CIL. Figure 3.2 shows the layers of CIL. A program can be type-safe,
even though it is not verifiable. The type-unsafe valid CIL can be as pow-
erful as real native machine language. For mobile or Internet applications
only the verifiable subset will usually be acceptable.

3.3 Types

When a constant is loaded on the stack, or an array element is referenced,
the type of the value need to be specified. For each possible type, a different
instruction is used. For example to load a one byte constant on the stack
the ldc.i1 instruction shall be used. Truncating conversion instructions
exists to convert between the types.

3.3 Types 15

���
���
���
���

�������
�������
�������
�������

Syntactically correct CIL

Valid CIL

Type−safe CIL

Verifiable CIL
JVM

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	

Figure 3.2: Layers of CIL

There are two levels of the basic types:

1. The types that the runtime operates on.
2. The types that can be specified in CIL

The types that are can be used when generating code are listed in table 3.1.
The first column shows the name of the type, the second the mnemonic used
in the instruction set to specify type. The last column is the corresponding
type in pseudo-Java.1

As the table shows, some CIL types are just aliases. The boolean type is
equal to int8 and char to uint16. The unsigned types are also in reality
aliases to their signed counterparts. No distinction is made between stack
locations, instead special instructions exists for unsigned arithmetic.2

The runtime actually only operates on these types:

• int32, int64
• Hardware dependent floating-point, F
• Hardware dependent integer, natural int
• Object reference

Smaller integer values are sign-extended to int32 when loaded on the stack.
1Because Java does not have unsigned types
2For the operations where it makes a difference!

16 Chapter 3. The .NET Common Language Runtime

Name Opcode type T Type name

int8 i1 byte
int16 i2 short
int32 i4 int
int64 i8 long
uint8 u1 “unsigned” byte
uint16 u2 “unsigned” short
uint32 u4 “unsigned” int
uint64 u8 “unsigned” long
natural int i Hardware dependent
object ref Reference
float32 r4 float
float64 r8 double
char u2 char (Unicode)
boolean i1 boolean

Table 3.1: CLR types

The CLR allows floating point calculations to be made with machine de-
pendent precision. This is probably due to the fact that the Intel x86 uses
a 80-bit internal representation. Strict IEEE754 compliance, where all cal-
culations needs to be rounded to 64-bit precision, can only be achieved on
the x86 by doing a register to memory transfer after each operation.

3.4 Execution environment

At method invocation a new activation record is allocated. It contains the
following elements:

• The return handle, used to restore the callers activation record.
• A local variable array. A zero-based array of locals that can be ref-

erenced within the current method.
• An argument array. A zero-based array of incoming arguments. If

the method is non-static, the first argument will be a self reference.
• An evaluation stack. This is used when performing computations.

3.4 Execution environment 17

Method definitions cannot be nested, and methods cannot reference local
variables in other methods, so there is no static link in the activation record.

3.4.1 Return handle

The return address is saved outside the evaluation stack by the runtime.
To return from a method the ret instruction is issued. If the return type of
the method is non-void, a value will be popped from the evaluation stack.

3.4.2 Local variables

A method can have up to 65535 local variables. They are numbered from
0 to 65534. Instructions for accessing locals are:

ldloc(.s) indx Loads the local variable to the top of stack.
ldloc.indx Compact encoding for 0 <= indx < 4.
stloc(.s) indx Stores to top of stack in local variable.
stloc.indx As for ldloc.

In the JVM each local variable slot can contain one value of 32-bit size.
This means that values of larger sizes (eg. a double) takes up two slots.

In the CLR each value takes up only one slot. This is regardless of whether
it is an int, long or double. It can even be structured data of arbitrary size,
a value-type.

3.4.3 Incoming arguments

The arguments are placed separately from the local variables. This is unlike
the JVM, which places incoming arguments in the first local variable slots.
The argument array is abstract in the same way as the local variables.
Instructions for manipulation of this array are:

ldarg indx Load argument number indx to the top of stack.
ldarg.indx Compact encoding for 0 <= indx < 4.
starg indx Store top of stack in argument slot indx.

18 Chapter 3. The .NET Common Language Runtime

���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������

struct {
 int32 i;
 int64 l;
}

float32

float64

int32 0

1

2

3

Figure 3.3: Local variables (and evaluation stack) in the CLR

3.4.4 Evaluation stack

Like the two arrays, argument and locals, the evaluation stack is also ab-
stracted. This means that, regardless of type, a value takes up one stack
element. When an element is loaded onto the stack, the instruction speci-
fies the type of the element. Subsequent operations (for example arithmetic
or logical instructions) does not have to specify their argument types. Of
course the two operands to for example an add instruction needs to be of
the same type. The verifier will be able to check this.

When invoking a method the arguments are placed on the evaluation stack.
If the method called is not static, the first argument shall be an object
reference to an object of the correct type. The rest of the arguments, if
any, are placed in the order of their formals.

3.5 Instruction set

This is a short overview of the instruction set of the CLR. I have not shown
stack transitions, or all arguments. For the full specification see [gT01c].

Some opcodes have special short versions, specified by a .s suffix. Some
instructions need to specify the type of the element that they operate on,
this is signified with a T , which can be any one from table 3.1.

3.5 Instruction set 19

Instructions that reference classes, methods, fields and other symbolic in-
formation take a token argument, ¡T¿. This is a 32-bit value that indexes
into the metadata tables. These token values will not be consecutive in-
tegers, as they are divided into different classes. Method references start
with hexadecimal value 0x06000000, class references with 0x02000000 and
so on. See [gT01b].

The instruction set can be divided into two parts:

• The basic set which is powerful enough that any language could be
implemented. The instructions include function calls, control flow,
arithmetic, pointers and so on.

• The object model instructions. These are specially tailored to im-
plement certain languages that follow the Common Language Sub-
set. This subset defines a class based, object oriented language with
single inheritance, multiple implementation, exception handling and
garbage collection very much like C# or Java.

3.5.1 Basic opcodes

These instructions, together with the load and store operations shown ear-
lier, make up the basic part of the instruction set. Some arithmetic in-
structions have special versions for operations on unsigned types The in-
structions where special unsigned versions exists are marked with a .un in
parenthesis.

add,sub,mul,div(.un),rem(.un),neg Polymorphic arithmetic instructions.
Works on both floating-point and integer types. Both arguments (for
binary operations) need to be of the same type.

add.ovf(.un),sub.ovf(.un),mul.ovf(.un) Integer arithmetic with over-
flow detection.

and,or,xor,not,shl,shr(.un) Logical operations. Can be used on values
of type int32, int64 and natural int.

conv.T , conv.ovf.T Convert the top-of-stack to the given type, with or
without overflow detection.

chkfinite Check whether a floating point value is finite.
ldc.T ,ldc.i4.X Load a constant on the stack. The instruction need to

specify the type of the constant, T . The constant is stored “inline” in
the instruction stream following the instruction. A special compact

20 Chapter 3. The .NET Common Language Runtime

encoding exists in the case where the constant is an integer in the
range: −1 <= X <= 8.

dup,pop Duplicate or drop top-of-stack element.
ceq,cgt(.un),clt(.un) Compare two values.
volatile. This instruction can be prefixed load or store instructions. Spec-

ifies that the value should be accessed with volatile semantics.

3.5.2 Control flow

All the following branch instructions come in two flavors. The ones shown
below which accepts a 32-bit (signed) offset, and a short version which only
takes an 8-bit offset.

br Branch unconditionally.
ble(.un),blt(.un),bge(.un),bgt(.un),bne.un,beq Compare two topmost

values, and branch accordingly.
brtrue,brfalse Compare top-of-stack and branch.
switch Branch according to offsets following instruction, chosen by the

top-of-stack value.

3.5.3 Function calls

These are the basic instructions for implementing functions. They are
independent of the object model. For each method there will

call ¡T¿ Invoke method referenced by token.
ret Return from method.
tail. A prefix instruction. If placed before a call specify that a tail-call is

desired.

Actual arguments to a function shall be loaded on the evaluation stack
before issuing call. They are then moved from the stack to the argument
array of the callee by the runtime.

3.5.4 Objects

These instructions are part of the extended instruction set that specifies an
object model for the CLR.

3.5 Instruction set 21

ldnull Load a null reference on the stack.
ldstr ¡T¿ Load a literal string.
ldtoken ¡T¿ Load a runtime handle representing type ¡T¿ on the stack.
newobj ¡T¿ Create and initialize object. Token should be a reference to

an object constructor.
castclass ¡T¿ Attempt to cast object on stack to class given by token.
ldfld ¡T¿,stfld ¡T Load or store field.
ldsfld ¡T¿¿,stsfld ¡T¿ Load or store static field.
callvirt ¡T¿ Call a virtual method. Which method to call is determined

at runtime from the type of the object reference on the stack.
box ¡T¿,unbox ¡T¿ Box/unbox a simple- (integer, long,...) or value-type

inside an object of reference type.

3.5.5 Arrays

Only single-dimensional arrays are directly supported by the virtual ma-
chine. When storing or loading elements in an array, it is necessary to
specify the type of the element. T can be any one of the types in table 3.1.

newarr ¡T¿ Allocates a zero-based, one-dimensional array.
ldlen Load length of array on stack.
ldelem.T , stelem.T Load or store an element of type T in array.

3.5.6 Exception handling

Exception handlers specify a range of instructions that are to be protected,
and a range of instructions that contains the given handler.

Instructions that deal with exceptions are:

throw Throw an exception.
rethrow Within an exception handler, rethrow the exception.
leave(.s) Leave protected block.
endfinally Mark end of a finally exception handler.
endfilter Mark end of an exception filter block.

22 Chapter 3. The .NET Common Language Runtime

3.5.7 Pointers

The CLR operates with three different kinds of pointers. Pointer operations
can operate on any of those three. A subset of the pointer operations
are, somewhat surprisingly, verifiable. Full use of pointer arithmetic is, of
course, not.

transient A transient pointer points to local variables and arguments.
These are only valid in the scope of the current method.

managed Managed pointers can point to data on the garbage collected
heap. There are some restrictions on them, for example they cannot
be null. If the garbage collector moves objects around when com-
pacting the heap, these pointers are updated.

unmanaged An unmanaged pointer is equivalent to an integer of hard-
ware dependent size, as in ANSI C. There are no restrictions on op-
eration on these pointers.

ldloca(.s), ldarga(.s) Load address of local or argument.
ldflda ¡T¿, ldsflda ¡T¿ Load address of object field, instance or static.
ldelema Load address of array element.
ldind.T , stind.T Load/store value indirect through address obtained ear-

lier.
ldftn ¡T¿,ldvirtftn ¡T¿ Load address of (virtual) method.
calli ¡T¿ Call method indirect through pointer.

3.5.8 Unsafe instructions

Some instructions are inherently unsafe. They are necessary to implement
traditional languages, like C.

localloc Allocate space on local stack, similar to C alloca.
cpblk,initblk Copy or initialize an arbitrary block of memory.
arglist Used to implement C like varargs.
jmp ¡T¿ Jump to method specified by token.

3.6 CIL assembler

In this report, and in the back-end, I use the assembler format defined for
CIL in the ECMA standards. The complete syntax in the form of a YACC

3.6 CIL assembler 23

grammer is specified in [gT01d]. The semantics of the single instructions
are defined in [gT01c], and the meaning of attributes related to class and
method definitions are defined in [gT01b].

A short overview of the syntax is given in appendix C.

24 Chapter 3. The .NET Common Language Runtime

25

Chapter 4

The Pizza Compiler

In this chapter I give an overview of the Pizza compiler, and the extensions
that it implements over Java.

4.1 Pizza

The Pizza compiler extends the pure Java language with some concepts
known from functional programming. It supports Java version 1.3, compli-
ant with the most recent Java Language Specification.

Consisting of about 30000 lines of code, the compiler is itself written in
Pizza. Apart from constant folding and dead code elimination, it does not
implement any optimizations.

The Pizza extensions are:

• Parametric polymorphism or generics.
• First-class functions.
• Algebraic types.
• Tail recursion.

The Pizza compiler can emit both (pure) Java source code, or compile
straight to JVM byte-code, no extensions to the JVM are used to implement
the Pizza constructions.

26 Chapter 4. The Pizza Compiler

The generics part of Pizza, with some simplifications, has been selected
to become part of the official Sun Java standard, known as Generic Java
[Jav].

4.2 The Pizza extensions

Using examples, I will briefly introduce the Pizza concepts. As the imple-
mentation of the compiler uses these, it is necessary to know them, to be
able to understand the source. Although the transformations from Pizza
into straight Java are very interesting, I will not go into very deep details
about them. They are performed on the abstract syntax tree before code
generation, and so are not directly relevant for the back-end. If interested
please refer to [ORW98].

4.2.1 Generics

In Pizza generic classes can be instantiated with both reference and basic
types.

An example of a generic class is the Pair class from the Pizza source.

public class Pair<A, B> {

public A fst;
public B snd;

public Pair(A fst, B snd) {
this. fst = fst ;
this.snd = snd;

}
}

This defines a class that contains two objects of generic type. Instances of
this class are instantiated by specifying the types of A and B.

Pair<int,String> p = new Pair();

Notice that the type parameters are only specified on the type, not the
constructor.

4.2 The Pizza extensions 27

The Pizza distribution contains generic classes for hashtables, sets, vectors
and more. In the implementation of the compiler generic classes are used,
among other things, for the symbol table and for environments used during
attribution and code generation.

The parametric types are translated into Java by type erasure. In [ORW98]
they name this their homogenous translation, in opposition to their hetero-
geneous translation which works by specialization of the classes at runtime,
using a modified class loader. The current Pizza compiler only implements
the homogeneous translation, which has some drawbacks. Because type
information is not preserved in the resulting code, using Reflection1 on
Pizza classes does not give meaningful results. Also simple types has to
be encapsulated within a corresponding reference type, which incurs some
overhead.2

4.2.2 First-class functions

In Pizza functions can be used as values. A function type can be declared
as:

(argtype , ..., argtype) throws exception , ..., exception −> resulttype

It is also possible to create anonymous functions. The following example
shows a higher-order map function, which demonstrates all of the above.

// this method takes a function as argument
public Object[] map ((Object) −> Object f, Object[] a) {

Object newa = new Object[a.length]
for (int i = 0; i<a.length; i++) {

newa[i] = f(a[i]);
}
}

...

...
Object [] list = new Object[10];

// This is a variable of function type

1Reflection is the ability at runtime to retrieve names and types of fields and methods
of a class.

2This is usually known as boxing

28 Chapter 4. The Pizza Compiler

(Object) −> Object f;

// Which is now bound to a anoymous
// function
f = fun (Object o) −> Object {

if (o==null)
return new Boolean(0);

else
return new Boolean(1);

}

// Which is then used in the call to map
map (f, list);

Anonymous functions are used in the compiler to implement lazy loading
of class information, and to emit code for return statements.

4.2.3 Algebraic datatypes

Algebraic datatypes should be well known from functional programming,
the Pizza syntax being the only difference. In ML one could write:

datatype AST = Package of AST
| DoLoop of AST ∗ AST
| NewArray of AST ∗ AST list
...

In Pizza this would be declared in the following way:

public class AST {
public case Package(AST qualid);
public case DoLoop(AST cond, AST body);
public case NewArray(AST elemtype, AST [] dims);
...
}

Pattern matching on values of algebraic type is then done using a (modified)
switch statement. This is used many places in the Pizza compiler for
operations on the abstract syntax tree (from where the above example is
taken).

4.2 The Pizza extensions 29

...
static void genStat(AST tree, ...) {

switch(tree) {
case Package():
break;
case DoLoop(AST cond, AST body):

// emit loop
// locals “ cond” and “body” are bound in
// this scope

break;
....

}

Note that it is necessary to specify the types in the pattern even though
this could in theory be inferred from the selector.

4.2.4 Tail recursion

Tail recursion is not used anywhere in the compiler, and is included in
Pizza mostly for reasons of completeness. It is implemented using the “tiny
interpreter” transformation from [Jon92], and therefore not very efficient.
The special case, where the function is self-recursive, could in theory be
optimized and implemented using a jump with the goto bytecode, but this
is not done in Pizza.

A tail recursive method is declared with the continue modifier. The re-
cursive call is the specified using a special return goto expression. The
following piece of Pizza demonstrates this with the classic iterative imple-
mentation of the factorial function:

continue int itfac(int n, int m) {
if (n == 0)

return m;
else return goto itfac(n−1, n∗m);

30 Chapter 4. The Pizza Compiler

31

Chapter 5

Design

In this chapter I will look at what code should be emitted for the CLR.
The goal is to make the change as transparently as possible, to make sure
that a program running on the CLR would behave identical to the program
running on the JVM.

5.1 Overview

The style of the discussion in this chapter is somewhat informal. The Java
language specification is large and complicated, but the required dynamic
semantics are captured in the JVM. Therefore in the attempt to figure out
how to do the translation, I have looked at how it is translated for the JVM,
and how a corresponding translation can be made for the CLR. Some parts
warrant more discussion than others. Also on some exotic parts of Java
I will lay out a possible solution, even though its implementation will be
deferred.

I this chapter I do not care about the Pizza extensions, but only looks at the
core Java language. This is sufficient, since the Pizza extensions are reduced
to this. The JVM has no defined assembler syntax, but when necessary, I
will use the “de-facto standard” as defined by the jasmin assembler and
its corresponding book [MD97].

32 Chapter 5. Design

5.2 CLR assembly files

An assembly is a file containing an executable for the CLR. It corresponds
to one or more JVM class files, because one assembly can contain definitions
of more than one class. The actual file format of assemblies are a lot more
complicated than class files, so I will not attempt to generate them directly
in the first iteration of the back-end. Instead the back-end shall generate
assemblies in textual form, and then let the details of the file format be
handled by the ilasm assembler included in the .NET SDK.

It would probably be beneficial to look the example given in appendix D
to get an overview of how the assembler files look, and how fields, methods
and classes are defined and referenced. All the following discussions will
use this syntax.

5.2.1 Name resolution

Java classes are normally resolved from their fully qualified name which
consists of the package they belong to, and the classname. For example the
class System in the package java.lang are refered to as java.lang.System in
the source. For symbolic references in the class files, this is then converted
into “java/lang/System”. When the classloader needs to load this class, it
looks for this class in the filesystem using the path java/lang/.

In the CLR class names are not resolved this way. For references to symbols
that are not defined in the same assembly, it is necessary to know the
name of the assembly containing the class. So if the java.lang.System class
is defined in an assembly named “BJLIB.dll”, references to it needs to
include this assembly reference as:

[BJLIB]java.lang.System

This maps poorly from the Java method of resolution based on the fully
qualified class name relative to a classpath.

An intermediate solution during the bootstrap phase of the compiler is to
simply force all external references to either BJLIB, the J# clss library.

5.3 Basic types 33

5.2.2 Scoping

The fully qualified name of a Java class includes the package name, if any.
As an example the fully qualified name of the following class:

package tests;

public class testbranch {
...
}

is tests.testbranch. This will be translated using the .namespace keyword.
So the above class would be defined in CIL as follows.

.namespace tests
{

. class testbranch ...
{

..
}
}

5.2.3 Symbolic references

In the JVM all references to constants, class and method references and
so on, are encoded as an integer offset into the constant pool of the class.
In the CLR the references are not directly offsets into the metadata, but
Tokens, as explained in chapter 3.

As long as the back-end does not create assemblies directly, I need not
worry too much about this, since the generation of correct tokens are taken
care of by the assembler. Instead all references need to be written out in
their canonical text form.

5.3 Basic types

The CLR supports a wider range of types than does the JVM. Since the
Java language only uses signed integer types, the JVM only operates on

34 Chapter 5. Design

signed values, except for Unicode characters. How the JVM types are
mapped to the CLR are shown in table 5.1.

JVM Type CLR Type

byte int8
boolean bool (int8)
short int16
char char (uint16)
int int32
long int64
float float32
double float64

Table 5.1: Mapping of basic types from JVM to CLR.

There are really no surprises here. The CLR types are sufficient to support
Java without any problems or conversions necessary.

5.4 Reference types

Java programs expects that java.lang.Object to be top of the class hierarchy.
This means that any other type, excluding basic types, is a subclass of it,
and values of any type can be assigned to locations of type Object.

In works similarly in the CLR but it has System.Object at the top of the
hierarchy. The solution depends on:

• Whether we want Java programs to be able to directly access CLR
types.

• Or whether they are just to be kept within their Java “solitary con-
finement”.

If we really want Java programs to integrate properly, then we need to
convert all instances of java.lang.Object to System.Object. If not, then we
could in theory just ignore it, and define java.lang.Object as just another
class. This would work, because all other Java classes that we could define
in a Java program would inherit from it. A small part of the class library
would look like this (in CIL assembler):

5.4 Reference types 35

.namespace java.lang {
. class Object extends System.Object {

. field ...

.method hashCode () { .. }
}

}

But there is a problem with this approach. Some classes get special treat-
ment by the runtime. When compiling for the JVM we expect that:

• Arrays can be treated as subclasses of Object.
• Literal strings are instances of String, which is a subclass of Object.
• All exceptions inherits from java.lang.Throwable.

The problems with strings and exceptions will be treated in later sections.

For Object the best solution would be to transparently substitute it with
System.Object. When doing this we would just need to make sure that the
public interface is preserved.

Static methods do not necessarily present a problem. If they cannot be
directly mapped onto the CLR type, then methods in an extra hidden
class could be created to perform their function. Virtual methods on the
other hand need some consideration, because they might be overridden
in a subclass. But in the case of java.lang.Object this is not a problem,
since it only has five virtual methods, and they can all be mapped 1:1 on
System.Object, as shown in table 5.2.

java.lang.Object System.Object

int hashCode() int32 GetHashCode()
boolean equals(Object) bool Equals(Object)
String toString() string ToString()
Object clone() object MemberWiseClone()
void finalize() void Finalize()

Table 5.2: Mapping from java.lang.Object to System.Object

36 Chapter 5. Design

5.4.1 The current solution

To be able to use the class library from J# I have been forced to use their
solution to this problem, which is the first solution from above. What this
means for exceptions and strings is explained later. The major problem is
arrays. We would like to be able to do:

Object o;
o = new int[10] // but an array is subtype of Object

To do this we define a method getJavaObjectFromSystemObject as:

method public hidebysig static class [BJLIB]java.lang.Object
getJavaObjectFromSystemObject(object o) cil managed

{
.maxstack 1
IL 0000: ldarg .0 // load object on stack
IL 0001: ret // and return it as different type
}

Using this unsafe method, we are able to cheat the verifier into believing
that its all-right to do the assignment. It is now possible to compile the
above Java code as:

. local ([BJLIB]java.lang.Object ’o’)

ldc . s 10
newarr int32 // this is a System.Object
call [BJLIB]java.lang.Object getJavaObjectFromSystemObject

([mscorlib] System.Object) // but now its a java.lang.Object!
stloc ’o ’ // and it will work.

Because the method that performs the unsafe type “conversion” is placed
in a local library, it is not part of the verification process, and the runtime
will believe that the code is now type-safe. This is of course an illusion,
and it only works because the class library always checks the runtime-type
of arguments, to determine the real type, and acts accordingly.

5.5 Arrays 37

5.5 Arrays

5.5.1 Creation

The JVM has three instructions for creating arrays: newarray, multianewarray
and anewarray.

These three instructions are used to handle three different cases correspond-
ingly:

1. Single-dimensional array of simple values (int, long, float, double):
long[] l = new long[10].

2. Single-dimensional array of reference type. This could either be:
Object[] oa = new Object[10] or implicitly as in long[][] la =
new long[10][].

3. Multi-dimensional arrays: int[][] = new int[10][20].

The CLR instruction set only deals with single dimensional arrays (called
vectors in the documentation!) Creating a one-dimensional array (of any
type, both value and reference) is done with newarr. The first case is easily
handled:

. locals (int64 [] ’ l ’)
...
ldc . s 10
newarr int64
stloc ’ l ’

Arrays of reference types in the second case, does not need special treat-
ment, whether the type is some class, or another array.

. locals (class [BJLIB]java.lang.Object [] ’oa ’,
int64 [][] ’ la ’)

...
ldc . s 10
newarr [BJLIB]java.lang.Object
stloc ’oa’
ldc . s 10
newarr int64 []
stloc ’ la ’

38 Chapter 5. Design

Multidimensional rectangular arrays in the CLR are supported through
the library by the System.Array class. It has methods to create and access
array elements, although these would probably be inlined by an optimizing
JIT compiler.

In Java multidimensional arrays are really arrays of arrays, and I need to
implement this so I cannot use the library support. A Java program would
do:

int e1,e2 = ...
int [][] a = new int[e1][e2];

Which actually means:

int e1,e2 = ...
int [][] a = new int[e1][];
for (int k=0;k<e1; k++) a[k] = new int[e2];

and the back-end needs to generate code to do this inline. This is com-
plicated by the fact that the dimension sizes need not be compile-time
constants. The code generator needs to handle arrays of up to 255 dimen-
sion. These initializers could either be generated as ASTs first or emitted
directly. The latter approach will be used in the back-end.

5.5.2 Array covariance

Array covariance presents a particular problem in the chosen design of
trying to pretend java.lang.Object is still at the top of the class hierarchy.
If T1 is a subtype of T , then a location of type T1[] is considered to be
assignment compatible with another of type T []:

Object[] o = new Object[10];
String [] s = new String[10];

o = s // legal : String extends Object
s = o // illegal

Because of this, the runtime need to check the dynamic type of the element
at each array access, and throw an exception if they are incompatible. This

5.5 Arrays 39

is the case for both the JVM and the CLR. This means, that we cannot
just use the previous solution to cheat the runtime to think that the types
are compatible. A sneaky Java program might try to do something like the
following, because arrays are supposed to be subclasses of java.lang.Object.

// We think we can put anything in this array
Object[] o = new Object[10];
// including arrays ...
o[1] = new int[20];

Which would then be compiled into:

// This does not work
. locals (class [BJLIB]java.lang.Object [] ’o’)
...
ldloc . s ’o’
ldc . s 1
ldc . s 20
newarr int32
stelem. ref // exception, not compatible

This would fail with an ArrayTypeMisMatch exception at runtime, because
the runtime performs the check of the dynamic type at array accesses.

In theory there are two solutions to this problem. A solution would be to
box all CLR arrays inside a Java type. This solution is undesirable because
it would incur overhead at every array access.

The solution is to substitute the element type. So when the Java pro-
gram allocates an array of Object, what it will really get is an array of
System.Object.

// This works
. locals (class [BJLIB]System.Object[] ’o’)
ldc . s 10
newarr [mscorlib]System.Object
stloc . s ’o’
...
ldloc . s ’o’
ldc . s 1
ldc . s 10
newarr int32

40 Chapter 5. Design

stelem. ref // OK, int32[] subtype of System.Object

Now things will work as expected, because the element type really is the
top of the class hierarchy.

5.6 Classes

When defining a class in an assembly, there is a number of attributes. In
CIL assembler syntax, it looks like the following:

. class <modifiers> <type> auto beforefieldinit <name>
extends <classname>
implements <interfacename>{,<interfacename>}
{

// methods and fields
}

The modifiers are explained in a later section. The type of a class can only
be either empty or:

interface This is an interface. It will only contain public abstract virtual
methods and static fields.

If the interface type is not present, it is a real class. The auto keyword
signifies that layout of instances of this class can be determined by the
runtime. This is the case for all classes when translating Java. The be-
forefieldinit keyword will be explained later. A class can extend another
class, and implement a number of interfaces.

5.6.1 Inner classes

Inner classes was introduced with Java version 1.1, after the specification of
the JVM was already set in stone. The implementation of inner classes was
therefore done without requiring any extra runtime functionality. There is
three kinds of inner classes: “nested top-level”, “member” and “local”.

Since the JVM does not directly support any of these, they have been
implemented by creation of auxiliary classes with mangled names, and in

5.6 Classes 41

the case of local and member classes, an extra hidden field in the class used
to reference the enclosing class.

The CLR directly supports the definition of “nested top-level” classes and
interfaces. The definition of a class can be nested within another:

. class private Test extends java.lang.Object {
. field int32 i
. class nested assembly NestedClass extends java.lang.Object {

. field float f

.method
}

}

But there is no support for the other two types of inner classes that Java
needs. 1

Since not all of the necessary infrastructure to directly support all types of
inner classes is present, it does not seem beneficial to make any changes in
the current scheme of “flattening” inner classes.

5.6.2 Object creation

Object creation in the JVM is handled in two steps. First the space for
the object is created by issuing the new opcode. Then one of the class
constructors are called using invokespecial. This partition of the object
creation process has several nasty implications for the verification of legal
JVM code. The following must always be true:

• An object must not be used before it has been initialized
• Only a constructor from the class itself is allowed to initialize the

class. (Specifically, a constructor from a superclass cannot be used)
• An object must only be initialized once.
• If exceptions are thrown by the constructor, the object must not be

used, since it might not be initialized.

This is explained very briefly in [LY97], and researched thoroughly in
[DD00] and [FM99]. There seems to be no good reason for the design

1C# does not support inner classes, instead “delegates” are supposed to implement
the same functionality

42 Chapter 5. Design

of splitting up object creation up in this way. The CLR avoids this com-
plexity by doing it in one step. The opcode newobj takes a token argument
that specifies both the desired class of the new object, and the constructor
that must be called. The arguments, if any, must have been pushed on the
stack prior to this.

Since it is illegal to use or depend on the object before the constructor has
been called, this change does not matter for the semantics of the translated
code.

The Java code:

StringBuffer b = new StringBuffer(10)

will then be translated into CIL assembler as:

ldc . s 10
newobj java.lang.StringBuffer ::. ctor(int32)
stloc “ b ”
...

where .ctor is the name reserved for constructors in the CLR, correspond-
ing to <init> in Java. Luckily Java identifiers cannot contain . so there
are no problems with name clashes due to the different reserved names.
Currently there is a problem, because the compiler reads class files, where
constructors are named <init> and this is used during the type check.
The conversion of the constructor names need to be deferred until the last
moment.

5.6.3 Methods

When defining methods, they have a number of attributes. Shown in CIL
assembler syntax, a method header has the following components:

.method <modifiers> <method−type> hidebysig <return−type> <name>
({<arguments>}) cil managed

{
// method body
}

5.6 Classes 43

The different modifiers will be dealt with later.

There are four method-type modifiers that are relevant when compiling Java
programs.

static The method is static.
instance The method is an instance method. This is only the case for

constructors in Java.
virtual The method is virtual. All methods that are not either static, or

an instance method, shall be virtual.
abstract The method is abstract. The body must be empty.

The hidebysig modifier is ignored by the runtime, but is a directive to
tools, that overriding of methods in subclasses is determined by the com-
bination of method name and types of arguments. The cil managed
modifiers at the end of the header signify, that this method is not a native
method. How to implement Java native methods will not be considered.

Unlike the JVM which has 4 different byte-codes to invoke methods, de-
pending on whether the method is from an interface, is a constructor or
a virtual method, the CLR only has two different instructions for method
invocation.

call Can be used to call any type of method. If the method is a virtual
method, which method to call is determined by the static type of
method reference, not the dynamic type of the object. This instruc-
tion shall be used where invokestatic and invokespecial is used
for the JVM.

callvirt Call a virtual method, regardless of whether it is a class or inter-
face method. This is used where invokevirtual and invokeinterface
would be used when compiling for the JVM.

Before emitting the call instruction the arguments should have been placed
on the evaluation stack. If the method is virtual, the first argument should
be a this reference, the rest of the arguments should be placed in order of
appearance of the formals.

44 Chapter 5. Design

5.7 Constants

5.7.1 Numeric

In the JVM all constants are placed in the constant pool, and each class has
its own pool. With the exception of those frequently used small numbers
that have special instructions to load, all constants have to be fetched from
the constant pool.

To load an integer, float or String the ldc bytecode is used. The ldc w
takes as argument a 16-bit constant pool offset. Constants that occupy
two words of storage are fetched using the ldc2 w bytecode.

In the CLR numerical constants are treated more like in normal hardware
architectures, so constant operands follow the opcode in the instruction
sequence. To load a constant on the stack one of the ldc.T instructions
are used, depending on the type T .

For integer constants in the range from -128 to 127, a special short instruc-
tion is available: ldc.i4.s. If a 64-bit long value can be represented in
32-bit, it should be loaded as:

ldc . i4 <32−bit value>
conv.i8

5.7.2 Strings

Literal strings are placed in the metadata part of an assembly. To load
a string the ldstr instruction, with a token argument pointing into the
metadata, is used.

A Java program expects literal strings to behave as subclasses of Object.
One would, for example, want to call the method equals (inherited from
Object) on a string:

String s = “ World Hello’’ ;

if (“ Hello World’’.equals(s)) {
// do stuff
}

5.8 Arithmetic instructions 45

There is two solutions to the problem:

1. All literal strings are converted from System.String to java.lang.String
when they are loaded onto the stack.

2. Or java.lang.String is transparently changed to System.String in the
same way as java.lang.Object could be.

Although it would be possible to map the methods of the Java string type
to the CLR string type, it will be easier just to use the first method. Since
literal strings are only encountered as result of a ldstr, it is simply a
matter of issuing a call to a method to convert it after each.

If we desire to ease inter-operability with other languages, then it would
be necessary to use the second approach so that, for example, a C# class
would be able to call Java methods using the native string type. But this
issue has not been considered.

5.8 Arithmetic instructions

The existing JVM back-end needs to keep track of types on the evaluation
stack, to be able to issue the right instruction. CLR arithmetic instructions
does not care about the types of its operands, but we still need to keep track
of the types, because both operands need to match.

In table 5.3 is a list of Java operators, and the corresponding CIL operation.
There are no major surprises in the choices.

Floating point operations in the CLR are specified to follow IEEE754 con-
ventions. Integer division and remainder are defined identically for both
the JVM and the CLR, with “round towards zero” semantics.

Strict floating-point

Java since version 1.3 supports the strictfp modifier for classes, interfaces
and methods. When present, it indicates that all floating-point operations
shall have the strict IEEE754 semantics. This was default behavior earlier,
but was reversed due to performance considerations on Intel.

The CLR does not directly support this. Using explicit insertion of the
conversion instructions (conv.r4 and conv.r8) it would be possible to
emulate it. Conversions need to be placed after each operation.

46 Chapter 5. Design

Java operator CIL instruction Description

+ add addition
- sub subtraction

mul multiplication
/ div division
% rem remainder
& and bitwise and
— or bitwise or
ˆ xor bitwise xor
˜ not bitwise complement
>> shr shift right with sign extension
<< shl shift left
>>> shr.un shift right with zero extension

Table 5.3: Arithmetic instructions

Compound operators

The JVM has many instructions for stack manipulation, some of which are:

dup2 Duplicates the two top stack elements.
dup x2 Duplicates top of stack, and stores it beneath the third element.
swap Swaps the two top elements

These are rarely used, but can be very convenient when implementing com-
pound or post-increment or decrement operators (where it is important that
the operand is only evaluated once). For example:

int i = 2, j ;
j = i++;

can be compiled into the following JVM code: (presuming i resides in local
variable slot 1 and j in slot 2)

iload 1 // stack : ...2
dup // stack : ...2 2
iconst 1 // stack : ...2 2 1
iadd // stack : ...2 3
istore 1 // stack : ...2

5.8 Arithmetic instructions 47

istore 2 // stack : ...

Equivalent code could be generated for the CLR, since it also has dup and
pop instructions. But the problem arises when operating on array elements,
because the element reference takes up two stack elements, one element for
the array reference, and one for the index. The following code gives an
example:

int a [] = {2,0};
a[1] = a[0]++;

This will translate nicely using stack manipulation into:

aload 0 // stack : ... a
iconst 1 // stack : ... a 1
aload 0 // stack : ... a 1 a
iconst 0 // stack : ... a 1 a 0
dup2 // stack : ... a 1 a 0 a 0
iaload // stack : ... a 1 a 0 2
dup x2 // stack : ... a 1 2 a 0 2
iconst 1 // stack : ... a 1 2 a 0 2 1
iadd // stack : ... a 1 2 a 0 3
iastore // stack : ... a 1 2
iastore // stack : ...

The CLR does not have instructions equivalent to the dup2 and dup x2
necessary to do this. Instead it is necessary to use temporary variables to
store intermediates, which makes the code rather unwieldy.

ldloc .0 // ... a
ldc . i4 .1 // ... a 1
ldloc .0 // ... a 1 a
ldc . i4 .0 // ... a 1 a 0
stloc . s 5 // ... a 1 a
stloc . s 4 // ... a 1
ldloc . s 4 // ... a 1 a
ldloc . s 5 // ... a 1 a 0
ldloc . s 4 // ... a 1 a 0 a
ldloc . s 5 // ... a 1 a 0 a 0
ldelem.i4 // ... a 1 a 0 2
dup // ... a 1 a 0 2 2

48 Chapter 5. Design

stloc . s 6 // ... a 1 a 0 2
ldc . i4 .1 // ... a 1 a 0 2 1
add // ... a 1 a 0 3
stelem.i4 // ... a 1
ldloc . s 6 // ... a 1 2
stelem.i4 // ...

In [Gou02] a solution for the CLR using transient pointers is shown. A
transient pointer to the array element can be obtained, and then the ele-
ment reference only uses one stack slot, and the first idiom shown above
can be used again, without using any temporaries.

5.9 Local variables

The CLR does not have the irregular design of the JVM where all variable
slots are 32 bit in size, so that wide types like long and double occupies
two slots.

Slots can be reused, but only for storing values of the same type. This is
because the CLR depends on the declared types of the locals to track the
types on the stack for verification and code generation. In the following
example, the variable j goes out of scope before k is allocated.

{
int i=1;
...
{

int j=2;
...

}
int k=3;

}

When generating code from the above Java, it is possible to use only two
local variables.

. locals (int32 V 0,
int32 V 1)

ldc . i4 .1

5.10 Exception handling 49

stloc .0
...
ldc . i4 .2
stloc .1
...
ldc . i4 .3
stloc .1

Because locals in the CLR has a declared type, full type information have to
be carried around during code generation all the way to the final assembly
generation.

5.10 Exception handling

The CLR supports structured exception handling. An entry in the excep-
tion handler table for a method is defined by the following:

• The offset of the first protected instruction in the protected block.
• The offset after the last protected instruction in the block.
• The offset of the first instruction in the exception handler.
• The offset after the last instruction in the handler.
• A token that specify the class of the exception that is handled.

The protected block corresponds to the block enclosed in the try, and the
handler block can be either a catch or finally block.

The following Java program:

try {
throw new Exception
}
catch (Exception) { // catch it }

shall be translated into CIL as:

. try
{
lab1 : newobj [BJLIB]java.lang.Exception

throw
lab2:

50 Chapter 5. Design

} catch [BJLIB]java.lang.Exception
{
// catch it
}

This syntax is accepted by ilasm, but the equivalent, and easier for the
compiler to generate, is:

lab1 : newobj [BJLIB]java.lang.Exception
throw

lab2:
//catch it

lab3:
.try lab1 to lab2 catch [BJLIB]java.lang.Exception handler lab2 to lab3

The CLR runtime, unlike the JVM, does not have any restrictions on the
classes of objects that can be thrown. So any class could in theory be
thrown by the throw opcode. But it is highly discouraged to make ex-
ceptions that are not subclasses of System.Exception, if for example inter-
operability with C# is desired.

There are some restrictions placed on flow of control in and out of protected
and catch-handler blocks in the CLR. For the code to be verifiable, these
must be obeyed:

• A protected block can only be entered at the first instruction, no
branches must transfer control into the middle of it.

• Once inside a protected block, it must only be left in one of these
three ways:

– By falling through the bottom of the block.
– By throwing an exception.
– Or by transferring control outside the block using the leave

instruction.

This has consequences for code generation for break, continue and return
statements, which will be handled later.

The CLR treats finally-handlers in the same way as catch-handlers. When
a finally handler has been defined, it will be executed by the runtime at
the exit of a block, whether the exit is normal or abnormal through an
exception. This is what we require for Java.

5.10 Exception handling 51

Each handler only handles one exception, or a finally, so several protected
blocks must be defined if more than one handler is present. For example:

try {
// something
}
catch (IOException e) { // catch 1}
catch (Exception e) { // catch 2}
finally { // finally }

This shall result in three protected blocks being defined, with the range of
protected instructions being the same for the two catch handlers, but with
the ranges of the handlers themselves being disjunct. The finally handler
shall span the catch blocks also:

lab1:
// something

lab2:
// catch 1

lab3:
// catch 2

lab4:
// finally
endfinally // this ins signifies the end of the handler

lab5:

.try lab1 to lab2 catch [BJLIB]java.lang.IOException handler lab2 to lab3

.try lab1 to lab2 catch [BJLIB]java.lang.Exception handler lab3 to lab4

.try lab1 to lab3 finally handler lab4 to lab5

Virtual machine exceptions

For exceptions that are thrown by explicit throw statements, it does not
matter how class library support has been implemented. A problem arises
only in exceptions thrown by the system, as the following example shows:

int mightBeZero = 0;
try {

int i = 1/mightBeZero;
}

52 Chapter 5. Design

catch (ArithmeticException e) { ... }

The ArithmeticException would be thrown by the virtual machine itself,
as response to a hardware condition. When running on the CLR it would
throw the System.DivideByZeroException, from the .NET class library, but
the generated code would expect to catch ArithmeticException. For this to
work as expected there are two solutions:

• A “filter” block before the exception handler.
• Mapping of JVM system exceptions onto the CLR ditto.

The CLR allows the compiler to insert a filter handler. This is a block
of arbitrary code that, for example, could convert the CLR exception into
an equivalent JVM one, before transferring control to the desired catch
handler. This is the way it is done in the J# class library.

A better solution would be to map from Java to CLR exceptions. So when
the Java program tries to catch java.lang.ClassCastException, the back-end
would emit code that tried to catch System.InvalidCastException instead.

This mapping is not as straightforward as is the case with Object unfortu-
nately. There is no direct equivalent in the CLR type to the fillInStackTrace
method of Throwable, and a workaround would need to be devised.

It is not possible to conserve exception timing fully. Exceptions that relate
to loading of classes, ie. TypeLoadException may typically, according to
[gT01c], be thrown at initial load time when the IL is converted into native
code. Whereas in the JVM these exceptions would be thrown by the class-
loader at any time during execution, when a reference to a class is resolved.
This is a very minor issue, though.

break/continue

Java does not have goto statements, but allows break and continue state-
ments with or without labels. These are used to either terminate the en-
closing statement, or to skip an iteration, in the case of continue. When
generating code for these statements, a branch outside the enclosing state-
ment will be issued. In code as the following:

for (int i = 0; ; i++) {
// if some condition c1

5.10 Exception handling 53

break;
// rest of loop
}

This would be translated as:

top :...
<c1>
br end
... // rest of loop

br top
end:

While this would normally work, the problem arises when exceptions are
involved. It is not allowed to transfer control out of protected block, with
anything else than the leave instruction. So in the following case we have a
problem, because the branch transfers control outside the protected block.

for (int i = 0; ; i++) {
try {

// if some condition
break;

}
catch (Exception e) { .. }
}

Fortunately the solution is simple. Instead of the br instruction a leave
should be emitted. According to [gT01c] leave can be used outside pro-
tected blocks also, in which case it just functions as a normal branch. So
the back-end can use leave when translating any break or continue state-
ments, whether inside a protected block or not.

Return

For return statements a similar problem arises when encountered within a
protected or handler block. For example:

int test () {
...
try {

54 Chapter 5. Design

if (something)
return 1;

else
return 2;

}
catch (Exception e) { ... }

}

Because it is not allowed to return from within a protected block, the return
statements needs to be “lifted” outside of it. The same is the case with
return statements within catch clauses or finally blocks.

This mean that when generating code for return statements, it is necessary
to determine whether the statement is placed within a protected block. If
not, a ret instruction can simply be emitted at the current position. If
we are within a protected block, then it is deferred, and instead a leave
instruction is emitted. If a value need to be returned, then a local variable
is first allocated, and the value stored in this.

When the end of the protected block is reached, then any pending return
clauses are emitted, and the leave instructions within the block have their
target adjusted so that they jump to the correct clause.

This is complicated by the fact that protected blocks might be nested,
so the return statements need to be lifted all the way out of a number of
environments. In the example shown above, code like this would be created:

. try {
// if something
...
ldc . i4 .1 // store return value
stloc .0 // in local slot 0
leave lab1
ldc . i4 .2 // store return value
stloc .1 // in slot 1
leave lab2
}
catch Exception {

// catch block
}
lab1 : ldloc .0 // retrieve return value

ret // from correct slot , and return
lab2 : ldloc .1 // do

5.11 Modifiers 55

ret

5.11 Modifiers

Modifiers are attributes on classes, methods and fields, that restrict access
to, or specify certain properties.

Accessibility

Methods and fields in Java can have four different accessibility modifiers,
here listed in order of wider access.

private The member can only be accessed from instances of the specific
class.

default (package protected) This is the default modifier, if no other
modifier is present. The member can be accessed from classes in the
same package.

protected The member is accessible from subclasses, and from other classes
in the same package.

public The member can be accessed by all classes.

Classes in Java can have one of two different visibility modifiers:

public A public class is visible in all packages.
default A class without modifier has default visibility. The class is only

visible within the same package.

In the CLR the granularity of access modifiers are at the assembly level,
which fits poorly with Java, where it is at packages. Because pizzacil will
compile several packages into one assembly, it is not possible to obtain
exactly the same meaning as in the original Java source.

Classes in the CLR can only have either private or public visibility. The
CLR does not allow interfaces or abstract classes to be declared private, so
for those it is necessary to widen the default visibility into public. To keep
things consistent, normal classes with default visibility will also be declared
public.

56 Chapter 5. Design

Java modifier CIL modifier

Classes public public
default public

Members public public
private private
default assembly
protected famorassem

Table 5.4: Accessibility modifiers

The default modifier is translated into assembly accessibility. This will
most likely be too wide, because more than one Java package has been
translated into one assembly. The famorassem CLR modifier allows access
to classes in the same assembly, or subclasses. Again this is wider than
desirable, but it is the closest possible to protected.

Other modifiers

The rest of the Java modifiers that can be used are listed in table 5.5.
Java uses the final modifier on fields, methods and classes with different
meaning. A final field (that is not a compile time constant) is one that can
only be assigned a value in the constructor. A final method is a virtual
method that cannot be overridden in a subclass and a final class is one
that cannot be subclassed. The CLR has different modifiers with identical
semantics for these three cases.

Volatile variables are a special problem, which will be dealt with later.
Native methods will not be considered currently.

5.12 Synchronization

In Java thread critical sections comes in two flavors, both declared using
the synchronized keyword. It is possible to define an entire method to
be a critical section by adding the synchronized modifier. The other
possibility is to lock a given block of code:

5.12 Synchronization 57

Java modifier CIL modifier

Methods synchronized synchronized
native n/a
final final

Fields volatile n/a
transient notserialized
final initonly

Classes final sealed

Table 5.5: Other modifiers

Object o = new Object();

synchronized (o) {
// Critical section
}

5.12.1 Synchronized methods

In the JVM synchronized methods are simply compiled into regular meth-
ods, with an extra modifier. Mutual exclusion is then ensured by the run-
time. The CLR has a similar modifier, and it is defined analogous.

5.12.2 Syncronized blocks

Synchronized blocks are a bit more complicated to implement. When
compiling the above example, the code in the critical section is encap-
sulated within a try-finally block. It is necessary to do this, to make
sure that the monitor is exited, if the code in the critical section throws
an exception. No explicit instructions exists in the CLR to implement
synchronization, instead methods in the CLR class library can be used
for the same purpose. Before entering the critical section, a call to the
method System.Threading.Monitor.Enter (Object o) is issued where
a monitorenter instruction would be placed for the JVM. In the finally

58 Chapter 5. Design

block, where a monitorexit instruction would be issued, we instead invoke
System.Threading.Monitor.Exit (Object o) for the CLR.

5.13 Entry-point

Java defines the entry-point of a class to be a method with name main,
being defined as public static and taking an array of strings as argument.
A collection of classes being compiled can have any number of entry-points
defined.

When compiling an executable for the CLR one, and only one, specific
method must be designated as the entry-point. Furthermore the entry-
point that the CLR expects is a method taking an array of System.String
elements, while the Java entrypoint of course expects the elements to be of
type java.lang.String.

To accomplish this, a synthetic method designated as the entrypoint should
be added. This method should convert the incoming arguments, and invoke
the real Java main method. Because Java programs may have any number
of main methods, it might be necessary for the programmer to specify to
the compiler, which one should be the chosen entrypoint.

5.14 Class library

Without the support of the libraries in the java. hierarchy, the compiled
code cannot really do anything. Since most of the class library is normally
written in Java, it would seem the best way to do it. To make this work,
support for native calls and a way to call the CLR libraries from a Java
program would be necessary. A starting point for the class library would
be to base it on the Classpath project [cla].

In the scope of this project, it has been necessary to use the class li-
brary from the Microsoft J# compiler. Included with the compiler is a
re-implementation of parts of the Java class libraries, unfortunately only
JDK1.02.2

2The beta 1 version, a newer beta supporting JDK1.1.4 was released just before
deadline.

5.15 Bootstrap 59

5.15 Bootstrap

Using the class library discussed in the previous section, the goal is to be
able to bootstrap the compiler on the CLR. Keeping track of the different
part of a bootstrap can be a bit confusing. I will use the notation of T-
diagrams from [ES70] to illustrate. An example is shown in figure 5.1. In
this case it is a compiler from the source language SL, to the target language
TL. The compiler is created in the auxiliary language XL. A “machine”
running programs in some language M is represented by a triangle.

M

SL TL

XL

Figure 5.1: T-diagrams example

In the case of pizzacil, the auxiliary language is equal to the source lan-
guage, namely Pizza. Luckily a pre-compiled binary (for the JVM) is in-
cluded in the Pizza distribution, which can be used for the first compilation.
The process of bootstrapping pizzacil is shown in figure 5.2.

PIZZA CIL

PIZZA

PIZZA

PIZZA

JVM

JVMPIZZA

JVM

PIZZA CIL

JVM

PIZZA CIL

PIZZA

JVM

JVM

1

2

PIZZA

CIL

CIL

The bootstrap compiler
givenThe original

compiler

Is modified with
a new back−end

And the result is a compiler
running on the CLR

Figure 5.2: Bootstrap of pizzacil on the CLR

60 Chapter 5. Design

The signatures of methods and fields are read from Java class files, and used
during the type check. An assembly for the CLR is then created. When
the runtime executes this, the library code that gets executed is contained
in the J# DLL file. Because these are not synchronized, inconsistencies are
possible. The process is shown in figure 5.3.

pizzacil

CLR .DLL libraries

ilasm

.class files

loads classes from

.dll

.il

.java source files

.exe

textual assembler

files

files

reads type information from

binary CIL

If self−hosting
reads type info
directly from .dll

Figure 5.3: Loading classes in Pizza

5.15.1 Self hosting on the CLR

The compiler still needs Java class files for the type check. Apart from
a way to actually read the assemblies, some extensions to them are also
necessary, if self hosting is desired.

Custom attributes

There is no way in the CLR to specify what exceptions a method might
throw. All exceptions are “unchecked”. If the compiler are to become
independent of class files, there need to be a way to specify exceptions

5.16 Static initializers 61

of methods in assembly files. This can be implemented using custom at-
tributes. These are defined as classes that inherit from the System.Attribute
class, and can be attached to other CIL declarations. So we could defined
a class ExceptionAttribute3, to contain information about the exceptions
that a method throws.

class ExceptionAttribute : System.Attribute {
private string exc;

// A “constructor ” that takes a string of
// exception names seperated by commas,
public ExceptionAttribute(string s) { ... }
}

Objects of this class can then be attached to method declarations, to specify
exceptions.

.method public static test () cil managed {
.custom instance void ExceptionAttribute::.ctor(string)

= (42 23 03 ...) // The string “ IOException” in hex binary
...
}

This way pizzacil could add exception declarations to methods in CIL. The
attributes will be ignored by the CLR, but can be read by pizzacil from the
assembly files and used to check exception declarations. Since self-hosting
is not going to be attempted, attributes will not be implemented.

5.16 Static initializers

Static initializers or class constructors are implicitly created when static
variables have initial values assigned.

class teststaticinit {
static int f = 1;
static double d1 = Math.cos(f);

3By convention, attribute classes end in Attribute

62 Chapter 5. Design

static {
System.out.println(

”In static initializer ”);
}

}

In the above source, the statement in the static {} block, and the initial-
izers for the fields f and d1 together, are the static initializer for this class.
In the CLR static initializers shall have the name .cctor.

The JVM spec defines the semantics of static initializers in section 2.17.4.
The static initializer for a class should be called in the following circum-
stances:

• An instance of the class is created.
• A static method of the class is invoked.
• A static (non-final) field is referenced.

Before an initializer is executed, the superclass must be initialized. The
semantics for class initializers in the CLR are specified in [gT01a] p.50. In
the CLR it is, for performance reasons, possible per class to relax the timing
constraints on when the initializer should run. The strict semantics, using
the beforefieldinit modifier on a class, will Unlike the JVM, the CLR
does not automatically invoke static initializers for superclasses.

There are two ways to solve this:

• Adding a synthetic field to the base class and refer to this in the
subclass, thereby triggering execution of its initializer.

• Invoke the System.Runtime.CompilerServices.RunClassConstructor method
from the .NET core library on the base class.

Of the two, the second is probably the better solution, but it is complicated
to use without proper support in pizzacil for loading of CLR assemblies. I
will ignore the problem of automatic base class initialization for the time
being. It does not seem likely that many programs depend on it.

5.17 Unsolved issues

These are some more exotic parts of the Java language. I will describe the
problem, and possible solutions, but actual implementation of these will be
deferred, and I will argue that it should not matter for most programs.

5.17 Unsolved issues 63

5.17.1 Finalizers

In Java a finalizer for an object can be defined. A finalizer is like a destruc-
tor in C++, but because there is no explicit freeing of memory in Java,
the exact timing of the invocation of finalizers cannot be depended on.

A finalizer is defined by overriding the virtual method, void finalize (),
which is defined in java.lang.Object Finalization in the CLR is defined in
[gT01a] section 7.9.6.7.

Informally the JVM and CLR behaviors are identically defined as far as
the timing of the invocation of finalizers, and the resurrection of objects
containing finalizers are concerned. In the proper design of the class library,
finalizers would be handled by simply mapping them to Finalize. But
currently they have had to be ignored.

5.17.2 Volatile variables

Variables in the JVM can be declared volatile. This means that certain
restrictions are set on how they behave, with regards to coherency between
threads. Unfortunately the original specification of the Java memory model
was apparently not very well thought out, and is currently being revised
[Pug99b].

The current coherency semantics of the JVM volatile modifier is not
equal to the CLR. Also the JVM spec section 8.4 guarantees that 64-bit
volatile variables will be accessed atomically, even on architectures with
smaller native word size. Volatile accesses in the CLR does not guarantee
this.

I will therefore simply ignore volatile modifiers. This should not be a major
problem though: According to [LP00] all existing JVM implementations
break most of the specification. Only the Solaris JVM supported atomic
accesses for 64-bit values, most of them failed to avoid optimization of
redundant loads, and none of them ensured sequential consistency. Since
Java programs cannot depend on existing JVM implementations, it should
not be a problem to ignore it on the CLR.

64 Chapter 5. Design

65

Chapter 6

Implementation

In this chapter I will give a short overview of the implementation of the
back-end. Major parts of the source-code can be found in the addendum
to this report.

6.1 General

I decided to modify Pizza “destructively”, so as not to complicate the
implementation by trying to have both the old and new back-ends coexists
in the same source. I did try to isolate the changes enough, that it should
be relatively easy to re-factor the implementation, and integrate it together
with the old back-end.

The core architecture of both the CLR and the JVM are quite similar, most
of all they are both based on a stack architecture, so laziness dictated that
I based my implementation on the old back-end, instead of reinventing the
wheel.

I will try here to give an overview of the classes that make up the back-end.
Instructions on how to build and use the compiler can be found in appendix
B. A full elaboration on how to translate the individual AST nodes is not
included, as this would become too repetitive, and code generation for stack
machines is well known.

66 Chapter 6. Implementation

6.2 Structure of the Pizza compiler

A full overview of the source tree is given in appendix B. The main
parts of the compiler resides in the net/sf/pizzacompiler/compiler di-
rectory. The auxiliary classes for the Pizza to Java translation is located
in pizza/support.

The front-end of the compiler is the Main class. It parses commandline pa-
rameters and drives the rest of the compiler. This happens in the process
method. It performs the following steps:

1. Parse each source file given on the commandline into an abstract
syntax tree, of type AST. Each file is represented by a separate tree,
anchored at a TopLevel node.

2. Add all classes referenced in import statements, and all defined
classes to the symbol table.

3. Perform attribution on the tree and fold constants.
4. If the source files use any of the Pizza extension, transform them into

Java. First any algebraic datatypes, then closures and finally any
generic classes.

5. Either output the resulting AST as Java source, or:
6. Call the back-end on each TopLevel node. The main entrypoint for

the back-end is the method generate in CILCodeGen.

6.3 The back-end

The new back-end consists of these classes:

• AssemblyWriter
• CILBasic
• CILCode
• CILCodeGen
• CILConstants
• CILGen
• CILItem
• Metadata
• Modifiers

6.3 The back-end 67

I will just give a short explanation of what each class does. There are
no deep architectural issues or smart class hierarchies that need to be ex-
plained.

6.3.1 AssemblyWriter

This class contains methods for writing the generated code into a file. The
code generator emits binary code into an array, which is then disassembled
back into CIL assembler in text format by this class. The idea was, that this
class should later be replaced by one that generates executables directly.

6.3.2 CILBasic

This class contains tables of the instructions, their mnemonics, how they
influence the stack and how bytes of arguments follows each instruction.
Some of this have been extracted from the file opcode.def, which is in-
cluded in the .NET SDK.

6.3.3 CILCode

This class is an abstraction of the body for one method. It contains the
following information:

• The maximal stack height.
• Whether this method is the program entrypoint.
• The exception table of the method.
• The number, and types, of all local variables.
• The method body as an array of bytes.

6.3.4 CILCodeGen

This is the main part of the back-end, and contains methods that traverse
the AST, emitting CIL instructions.

68 Chapter 6. Implementation

6.3.5 CILGen

This class contains auxiliary methods that are used by the code generator.
It contain methods for:

• Local variable allocation and reuse.
• Type coercion.
• Back-patching of branch offsets.
• Definite assignment analysis.

6.3.6 CILItem

A CILItem is a generalized placeholder for the result of code generated for
any expression. This way the difference between, for example, a value on
the evaluation stack, a local variable or a static field is abstracted, during
code generation.

6.3.7 MetaData

This class contain a hashtable of the symbols that need to go into the
metadata part of an assembly. Every time a symbol is used during code
generation, it is inserted into the metadata, and a token value is returned
as reference.

6.3.8 Other

To integrate the new back-end into the compiler, some of the other parts
had to be modified, a short summary is given here:

ClassReader When reading classes assign them to an assembly.
ConstantFolder Folding of constants rely on the arithmetic opcodes, and

therefore needed to be changed to support the operators of the CLR.
Main Some commandline arguments have been added.
Symbol Additional information about assembly membership need to be

carried in the symbols for classes.
Symtab Symbols representing operators in the AST contain the opcode

itself.

6.4 Bootstrap 69

6.4 Bootstrap

After the initial implementation I proceeded with the attempt to success-
fully bootstrap the compiler using the class library from J#. Modifications
had to be made to accommodate the limitations of the library.

During code generation floating point constants are converted into a byte
stream using methods from java.lang.Double. In the J# class library only
the doubleToLongBits and floatToIntBits methods are available. These
methods collapse different NaN values into the same bit pattern, but unfor-
tunately the accurate methods doubleToRawLongBits and floatToRawIntBits,
were not available in JDK1.02.

Some classes in the compiler used java.util.Map and java.util.Set and others
used methods on StringBuffer and Vector that were all introduced recently.
Workarounds were made to remove these dependencies on JDK 1.2.

The J# libraries has no support for jar or zip files. To support class loading
ClassReader was modified to not depend on the two classes ZippedFile and
ZipFileDirectory that had to be removed. As a result the jar file with the
class library needs to be un-archived first for pizzacil to work.

70 Chapter 6. Implementation

71

Chapter 7

Tests

In this chapter I will argue the correctness of the back-end. I will then
show the results of some benchmarks.

7.1 Correctness

It is necessary to somehow validate that the generated code, running on
the CLR, implements the correct Pizza semantics. I have taken three steps
in doing this:

1. Verify that the back-end generates valid and verifiable CIL.
2. Show that the compiler passes the bootstrap test.
3. Perform Java compatibility tests.

7.1.1 Verifiable CIL

As shown in figure 3.2 it is possible to create sequences of CIL, that al-
though allowed by the syntax, are invalid. It is also possible to generate
code that is unverifiable, even though it is type-safe. The CLR can accept
code that is unverifiable, subject to user settable security settings. When
translating Pizza, it should be possible to only generate code that is both
type-safe and verifiable, because no unsafe operations are allowed by the

72 Chapter 7. Tests

source language. To verify the generated code, the peverify tool from the
.NET SDK is very useful. During development verification errors was a
great help in pinpointing bugs in the back-end.

7.1.2 Verification of pizzacil

The generated code is valid, but not verifiable. The problem is a combina-
tion of two: Exception handling and the choice of not mapping Object to
a CLR type.

Exceptions

Because the class library has defined java.lang.Exception as a subclass of
the CLR type System.Exception, it is no longer a subclass of java.lang.Object,
as a Java program would expect, and unverifiable code is the result. The
following example is taken from readClassFile in class ClassReader :

try {
..
// Something that might throw an exception
}

catch (RuntimeException ex) {
throw new IOException(”bad class file (” + ex + ”)”);
}

Constructing the IOException implicitly calls the static mathod valueOf
on the exception object ex to convert it into a string.

Looking at a fragment of the generated CIL for the exception handler, the
problem shows up.

. locals (...
class [BJLIB]java.lang.Exception V 5
...)

...
IL 146: ldstr ”bad class file (”
...
IL 155: ldloc . s ’ V 5’
IL 157: call class [BJLIB]java.lang.String

[BJLIB]java.lang.String ::valueOf

7.2 Bootstrap test 73

(class [BJLIB]java.lang.Object)

At hex-offset 157 is the call to the valueOf method, which takes an argu-
ment of type java.lang.Object. The object on the stack is not compatible
with the method argument, so this is not verifiable to be type-safe.

In praxis it works correctly. That is because the implementation of valueOf
in the class library checks the runtime type of its argument, and treats
instances of System.Exception as a special case.

7.2 Bootstrap test

As shown in figure 5.2 (and repeated in figure 7.1), the compiler can be
bootstrapped using the compiler included with the original Pizza source.
This is the stage 1 compiler. We now have a compiler generating CIL,
running on the JVM. In stage 2 this compiler is used to compile itself,
yielding a CIL generating compiler, in CIL.

This can be taken a step further as shown in figure 7.1. The stage 2 compiler
running on the CLR is, in the 3rd stage, used to compile itself once again.

The compilers generated in stage 2 and 3 are then compared. This is known
as the bootstrap, or “strong compiler” test from [Wir77]. It can be shown
that if a compiler is correct and deterministic, then the bootstrap test will
succeed, ie. the two compilers generated in stage 2 and 3 will be identical
[Goe99].

In practice the test is performed simply by comparing the generated assem-
bler code for stage 2 and 3 using the diff tool. The value of being able to
use tools like peverify to statically type-check the generated code showed
its value. When the compiler passed the verifier, modulo the exception
shown in the previous section, it was also able to pass the bootstrap test.

That the compiler passes the bootstrap test only proves that it generates
correct code in the test case of the compiler. This is a very practical
“sanity” test, and since the compiler itself is a large program, also quite
covering.

74 Chapter 7. Tests

PIZZA CIL

PIZZA

PIZZA CIL

PIZZA PIZZA

CIL

CIL

PIZZA

PIZZA

JVM

JVMPIZZA

JVM

PIZZA CIL

JVM

PIZZA CIL

PIZZA

JVM

JVM

(Hand generated)

(These are given)

1

2

3

PIZZA

CIL

CIL

?

=

CLR/
CIL

Figure 7.1: Performing the bootstrap test

7.3 Test suite

Apart from the compiler I have been able to successfully compile and run
applets from the JDK1.0 distribution, many benchmarks (Linpack, Java-
World, JavaGrande) and other older programs that did not depend on
newer class libraries, the Java VNC viewer among others [vnc].

I wrote some small tests during development of the back-end, to figure out
specific problems in code-generation. This meant they had to be small
enough that I was able to manually check the generated code, but this also
means that they are not very exhaustive. They can be found in the tests/
directory in the source package.

A comprehensive test suite would be needed to properly test every corner
of the back-end, and especially library, because there are still many things
not covered. Remote Method Invocation, sockets and Reflection to mention
some. Sun has a full test suite that they use to certify Java implementa-
tions, the Java Compatability Kit. Unfortunately it is not available for
free, and so could not be used to test the compiler in this project.

A free alternative exists in Mauve [mau]. This test suite has a number of

7.4 Performance tests 75

tests for the Java class libraries. Most of the tests are written for JDK1.1,
and so only very few of them could be used, none of which tested anything
particular interesting. Some more test cases should be written to better
test the back-end.

7.4 Performance tests

The Java tests has been run using the Sun Java Development Kit version
1.3.1 01 for Linux. All performance tests were run with the “-server” VM
for maximal speed. The CLR tests were run using the .NET beta 2 SDK
running on Windows 2000 Professional, using the Java libraries from J#
beta 1. The tests were performed on a Pentium III 850MHz PC.

I have made performance tests to evaluate the compiler. Several factors,
which all influence the results, come into play:

• The generated code
• The runtime
• The libraries

As the .NET runtime and libraries used for the tests were beta versions,
no hard conclusions should be made from the results.

7.4.1 Floating point performance

For floating point performace measurement I used the Linpack benchmark
from http://www.netlib.org/benchmark/linpackjava/. The results are
shown in table 7.1.

Description mflops/sec 1st run mflops/sec avg.

javac / JVM 34.5 37.2
javac -o / JVM 34.7 37.9
pizza / JVM 32.8 35.0
pizzacil / CLR 33.5 35.9

Table 7.1: Linpack benchmark

http://www.netlib.org/benchmark/linpackjava/

76 Chapter 7. Tests

The first two rows shows the benchmark compiled using the Sun compiler,
with and without optimization, running on the JVM .There is not much
difference between the results from Javac with or without optimization
turned on. The third row shows the Pizza compiled benchmark running
on JVM. Comparing the benchmark between Javac and Pizza, the code
generated by Pizza is slightly slower when run on the JVM. This is due to
the difference in optimization.

The difference between the first run, and the averaged results, are a result
of the Sun “HotSpot” virtual machine that performs optimization depend-
ing on which parts of a program is executed often. After running the
benchmark a couple of times, all of the methods involved will have been
compiled.

What is perhaps more surprising is that the CLR actually outperforms the
JVM slightly on the code generated by pizzacil.

7.4.2 Bootstrap

The above micro benchmark only shows floating-point performance. Tim-
ing the compiler bootstrap is a good overall benchmark. Table 7.2 shows
average timings for compiling the compiler itself.

Description JVM CLR Difference

Avg. compile time 45.5s 64.2s 41%
Avg. max footprint 27172k 24820k -8 %

Table 7.2: Bootstrap benchmark

The compilation on the CLR uses about 40% more time for the boot-
strap, which is not too bad considering that both the runtime and the
class libraries are products still in beta, and that the back-end generates
sub-optimal code for switch statements.

7.5 Code size

Code size is important. One of the major applications, touted by both
Java and .NET, is dynamic downloading of programs across networks. For

7.5 Code size 77

mobile low bandwidth applications, or for embedded devices, code size can
be an important factor.

In table 7.3 I have collected data on size for a few test cases: The compiler
itself, the JavaWorld benchmark [jwb] and the VNC viewer.

There are 4 relevant sizes to look at:

jar This is the standard distribution format for JVM code. Each file is
compressed individually before being archived together.

exe The standard file format for CLR files in Portable Executable (PE)
format.

j0r.gz The jar file is created with -0 (only archiving) before being com-
pressed with GNU zip. This is the smallest possible size of the JVM
executable, if special schemes for class compression are not consid-
ered.

exe.gz The CLR executable file compressed with GNU zip.

pizzacil JWBench VNC

Executable jar 447k 48k 24k
exe 502k 66k 35k

Compressed j0r.gz 360k 28k 21k
exe.gz 179k 12k 14k

Table 7.3: Code sizes of resulting executables in kilobytes.

Looking at the sizes of the files, comparing the first two rows, the JVM jar
files are slightly smaller than the CLR executables. Actually the CLR has a
slight disadvantage, because I have not implemented use of short branches,
and the code generated for switch statements takes up more space than
necessary.

The compiled code of the compiler contains roughly 10000 branches, and
most of them would only needs a short offset, which would save 3 bytes per
branch, for a total of about 30 kilobytes. This would bring the size down
on par with the jar file. Although relevant in the context of disk space, the
comparison is skewed because the jar archives are compressed, while the
PE executables are not.

In [Pug99a] it is shown that the actual byte-code only takes up around
20% of a class file. The rest is used by the constant pool, with most of

78 Chapter 7. Tests

it being string entries. The problem with JVM class files are, that all
external references are symbolic, so that every class file constant pool will
contain many strings representing class names and methods. Most class
files will contain references to all the basic Java classes, but references to
other classes in the same package, also results in symbolic string references
being created. The metadata in the PE files on the other hand, only has
to contain these external references once, because all internal references
are made using tokens. This results in large savings in the size of the
executable.

The last two rows compare the sizes for compressed executables, which is
relevant in regards to transmission at least. Even when the jar files are
only archived and then compressed, which results in about 20% reduction
in size, the .NET CLR executables are still less than half the size of the
JVM jar files.

7.6 Local variable optimization

In the first prototype implementation of the back-end, I had not imple-
mented reuse of local variable slots. Later this was done, and I was curious
to see whether this had any impact on performance or memory usage.

Altogether the compiler consist of 2290 methods. Compiled only 1004 have
any local variables. Counting the locals in these methods yields:

Maximum # of locals Average # locals Executable size

No reuse 158 5.1 502272 bytes
Reuse 116 4.4 500736 bytes

Table 7.4: Reuse of local variable slots.

Obviously the reuse logic did result in less locals being allocated. It only
reduced the size of the executable about 2 kilobytes though, a small frac-
tion.

Performance wise it made no difference. The footprint of the compiler,
when compiling itself, in both cases was about 25 megabytes, and no dif-
ference in speed could be detected. This confirms that the CLR does a
good job on the liveness analysis and register allocation for locals.

79

Chapter 8

Status

This chapter contains an evaluation of the CLR as target for Pizza. Then
an overview of possible future work on the compiler, and ideas for some
related projects.

8.1 Evaluation of the CLR

Designing and implementing the new back-end has shown some interesting
properties of the .NET Common Language Runtime, compared to the Java
Virtual Machine. Some has meant more work is placed on the compiler
writer, but others has made simplifications possible.

The CLR lacks some of the high-level instructions of the JVM. No doubt,
this is due to a design decision of not supporting (or at least, not worrying
about) interpretation. While high-level instructions are good for interpre-
tation, because less instructions means less wasted time on decoding them,
they can be a major source of problems when efficient translation to native
code is desired. On the other hand, lower-level instructions mean more
work for the source compiler, but arguably this can be defended because
performance is usually not as big an issue there.

80 Chapter 8. Status

Switch statements

The lack of an instruction to directly implement a lookup table, like the
JVM has in lookupswitch, complicates things if sparse ranges are present
in switch instructions.

Multidimensional arrays

The JVM directly supports both single- and multidimensional arrays, while
the CLR only supports single-dimensional arrays. To implement the multi-
dimensional Java arrays in the CLR, the back-end has to emit code inline
for the allocation, which is made trickier by the fact that array sizes are
not compile time constants.

Stack manipulation

Operations for esoteric stack manipulation, like the JVM dup2, dup x2 and
swap, do not have counterparts in the CLR. As shown in section 5.8, the
stack operations can be used to translate some constructs elegantly. The
problem is that, although not a problem for an interpreter, stack manip-
ulation impede the data-flow analysis in a JIT compiler, and can lead to
generation of poor native code. The IBM JVM have to use a heuristic
of commonly occurring stack manipulation idioms to avoid inefficient code
[S+00].

Conditional branches

The CLR conditional branch instructions work on all types, which sim-
plified generation of conditional expressions, because there is no need to
distinguish between the case of boolean and integer comparisons, and com-
parisons on other types.

Polymorphic instructions

Because the arithmetic instructions are polymorphic, there is no need to
emit different instructions depending on the type of the operands.

8.1 Evaluation of the CLR 81

Unified type sizes

One of the most beneficial improvements is the removal of the distinction
between 32- and 64-bit basic types. The JVM back-end have to jump
through hoops when referencing values on the stack, in local variables or in
the constant pool because 64-bit types always takes up two slots. Avoiding
this saved much grief in the new back-end.

Exceptions

In the CLR try-finally handler blocks are treated in the same way as try-
catch handlers. Although the restrictions on entering and leaving protected-
and handler-blocks necessitate some extra work, it is better than the JVM
way of having to make the compiler emit subroutine calls to the finally
handler, at all points where the try-block is exited. These subroutine calls,
using the jsr byte-code in the JVM, also makes verification harder.

8.1.1 Portability of the CLR

Unlike the JVM which has been implemented on almost any possible plat-
form, the CLR currently only exists on one: Windows/x86. There are
projects working on implementing the ECMA specifications on other plat-
forms, but it remains to be seen how portable the CLR really is. During
an early part of the project I looked at translation of CIL to ANDF. This
brought up some issues:

• Explicit layout of classes. The CLR allows the exact memory layout
of fields in a class to be specified using .pack and .size directives.
This can be used, for example, when translating ANSI C structs and
unions. This is not portable, for example some hardware platforms
restricts alignment of data.

• It seems more emphasis has been placed on being able to gener-
ate efficient code for the Intel architecture, than on being portable.
Both with floating-point, but also other examples like integer division,
which is defined to throw an extra exception on x86.

• In the CLR, stepping outside the sand-box environment, and invoking
functions in the underlying operating system, can be done directly
using the PInvoke construct. When using native methods in Java,

82 Chapter 8. Status

one first has to create a dynamic library with “glue” stubs. The easy
access, outside the environment of the virtual machine, could tempt
people to create unportable programs.

• Not all parts of the class library has been submitted for ECMA stan-
dardization, for example the graphical user interface libraries are not
part of the standardized set.

8.2 Further work

Some things are missing from the implementation. There are also areas
where the back-end can be improved upon, or better optimized.

Exceptions

Proper support for exceptions thrown by the runtime is not fully imple-
mented. The J# library uses filter handlers to translate CLR exceptions
to JVM equivalents, and I did not complete code generation for this. This
means, that currently a program will not be able to successfully catch ex-
ceptions generated internally by the runtime1

Branches

The back-end does not perform compaction of branches, it only uses the
long form. Since the generated code is stored in a buffer before being
written to a file, this should not be too hard to solve.

Debug information

Support for symbolic debugging is missing. The ECMA standards does not
define how to include debug information, so one would have to rely on how
the Microsoft .NET SDK implements it.

1Like ArithmeticException or NullPointerException

8.3 Pizza language related 83

Switch translation

The new back-end emits naive code when translating switch statements
with sparse ranges. This should be improved using the algorithm from
[Gou02].

Array allocation

The way code generation for array allocation is implemented, the backward
branch constraint2 does no longer hold at all times, but the generated code
is still verifiable.

Strictfp

An implementation of the strictfp modifier, using explicit use of truncating
conversion instructions is missing.

Native methods

Support for native methods should be implemented. This will be necessary
when implementing the Java class libraries, for methods that need to co-
operate with the runtime, like implementation of reflection and threading.

8.3 Pizza language related

Some areas related to implementation of the Pizza extensions have not been
fully explored. Some of the extra features the CLR supports, compared to
the JVM, could perhaps be used for easier, or more efficient translation.

8.3.1 Tail-calls

Transformation of tail-calls could be replaced with an implementation using
the CIL tail. prefix instruction, which turns a normal method invocation

2[gT01c] 1.8.2: The stack must be empty at a backward branch

84 Chapter 8. Status

using call, into a tail-call. Tail-calls are represented as Goto nodes in
the AST before being transformed. An better implementation of tail-calls
would need to:

• Remove the transformation done in the TransClosures class.
• Implement code generation for the Goto node in the back-end.

8.3.2 Boxing of basic types

The current method of implementing instantiation of generic classes with
basic types involves much overhead, because of boxing within reference
types. It would be interesting to see whether using the CLR primitives,
box and unbox, could result in any noticeable difference.

8.3.3 Generic CLR

An extended version of the CLR runtime implementing generics has been
created by Andrew Kennedy and Don Syme [KS01]. Compared to Pizza
they have had the advantage of being able to change the behavior of the
runtime, while Pizza pays a premium for backwards compatibility. Their
implementation uses both specialization and sharing, which means:

• That instantiation with basic types is efficient, the generic class is
specialized with the required type, no boxing operations are made.

• That instantiation with all reference types will share the implemen-
tation, meaning no code bloat.

Informally comparing what can be read from the released article, with the
demands of Pizza, it seems it would be possible to map Pizza directly onto
the Generic CLR.

Targeting it, the parts of pizzacil that performs the type erasure should be
bypassed.

8.3.4 ILX

The current version of the CLR does not, apart from tail-calls, directly
support any of the other Pizza concepts.

8.4 Further projects 85

A project within Microsoft has created an extended CIL, called ILX, which
contains direct support for higher-order functions, algebraic datatypes and
generics [Sym01]. The actual implementation transforms ILX into regular
CIL, much in the same way as Pizza does, just from a lower level. A
design of how to use the type unsafe CIL instructions ldftn and calli to
implement first-class functions efficiently is sketched. Trying this out for
Pizza could be attempted.

8.4 Further projects

8.4.1 Assembly toolkit

A library for CIL assembly file manipulation is needed. The code generator
outputs binary CIL code already, which the current implementation then
spends a lot of unnecessary time on converting into text for input to ilasm.
The .NET Reflection classes could perhaps be used as basis for this.

8.4.2 Java class library re-implementation

A full free re-implementation of the Java2 class library is needed. Most
of the library should be implemented in Java, with use of classes from
the .NET class library to implement the necessary interface to the virtual
machine.

86 Chapter 8. Status

87

Chapter 9

Conclusion

9.1 Status

I have designed and implemented a new back-end, that targets the .NET
Common Language Runtime for the Pizza compiler.

• Enough of the dynamic semantics of the Java language has been suc-
cessfully mapped to the CLR that the compiler was able to bootstrap
and pass the bootstrap test.

• A number of smaller benchmark programs and applets was also suc-
cessfully translated, but attempts to translate some larger programs
stranded, due to the lack of library support more recent than JDK1.02.

• Support for exceptions thrown by the runtime itself, and some other
parts of the Java Language Specification that were not essential, are
still missing. Some solutions have been presented, but not imple-
mented yet.

• The generated code is not type safe, due to design choices constrained
by the class library, over which I had no control.

• Performance tests showed that the generated code does not perform
significantly worse when running on the CLR, and that on floating-
point arithmetic the CLR actually outperformed the tested JVM
slightly.

• The compiler itself, with the new back-end, runs an order of mag-
nitude slower than the original, and improvements in the generated

88 Chapter 9. Conclusion

code can be made in some places.
• I started out work on the back-end by modification of the existing.

This did save some grunt work, since the translation of some AST
nodes only needed smaller modifications. In retrospect it might have
been better to start from scratch, instead of trying to fit within the
old framework.

It is my conclusion that the .NET Common Language Runtime works well
as target for Pizza/Java. Apart from some workarounds necessary to pre-
serve the class hierarchy, and some operations that need library support,
the CLR can support the dynamic semantics of Java in a fairly straightfor-
ward manner.

The back-end need to do more work for some things to generate code,
because of the missing high-level instructions, but if this makes better JIT
compilation possible, it seems like a good tradeoff.

The choice made by the developers of the J# library to rely on unsafe
tricks seems unnecessary and unwise. Even more so because the methods
that implement it and can be accessed by any .NET program, not just Java
programs. This opens up a major security hole.

The CLR implements a superset of the Java Virtual Machine, which should
make it a better candidate to be used as an “UNCOL” also for languages
that are less like C# than Pizza is. But its limits have not really been
stressed in this project.

9.2 The project

The course of my project has been a bit disastrous. When I defined it
originally, I did not have a good enough notion of the eventual goal. I did
a pretty poor job of project management, and did not early enough figure
out the essentials, and decide what to concentrate on. I also did not do a
good job of soliciting help from my supervisor in the beginning.

At one point I got side-tracked, spending time looking at ANDF, and trying
to figure out whether it could be used as a code generator for CIL. The
time spent on this is unfortunately not quite reflected in this document,
although it did help me familiarize myself with the CIL instruction set. It
was only after scrapping this, that I started work on the Pizza back-end. I
also feel a more formal view might have been appropriate on some issues.

9.3 The future 89

9.3 The future

I have been in touch with the maintainers of the Pizza compiler, and they
showed enthusiasm for the possibility of getting a new back-end targeting
.NET. I hope to work with them to merge this project back into the regular
Pizza compiler, so that others may benefit from it, and hopefully improve
it.

In spite of the problems I have had during the project, I have learned a
lot about code generation for .NET, the Pizza language and Java Virtual
Machine. I have also gained a good understanding of compiler construction
in general, and the concepts, and implementation of, generics.

90 Chapter 9. Conclusion

91

Bibliography

[Bun95] Jørgen Bundgaard. An andf based ada 95 compiler system.
Technical report, DDC-I A/S, 1995.

[cla] The classpath project. http://www.gnu.org/software/
classpath/classpath.html.

[DD00] S. Doyon and M. Debbabi. On object initialization in the java
bytecode. Computer Communications, 23:1594–1605, 2000.

[DER95] DERA. A Guide to the TDF Specification, June 1995.
[DF80] J.W. Davidson and C. W. Fraser. ”the design and application

of a retargetable peephole optimizer”. Transactions on Pro-
gramming Languages and Systems, 2(2):191–202, 1980.

[Ert96] M. Anton Ertl. Implementation of Stack-Based Languages on
Register Machines. PhD thesis, Technische Universität Wien,
Austria, 1996.

[ES70] Jay Earley and Howard E. Sturgis. A formalism for transla-
tor interactions. Communications of the ACM, 13(10):607–617,
1970.

[FM99] Stephen N. Freund and John C. Mitchell. The type system for
object initialization in the Java bytecode language. ACM Trans-
actions on Programming Languages and Systems, 21(6):1196–
1250, 1999.

[Fra94] Michael Franz. Code-Generation On-the-Fly: A Key to Portable
Software. PhD thesis, Swiss Federal Institute of Technology,
Zürich, 1994.

[GJ+00] James Gosling, Bill Joy, et al. The Java (tm) Language Speci-
fication, Second Edition. Addison-Wesley, 2000.

[Goe99] Wolfgang Goerigk. On Trojan Horses in Compiler Implementa-
tions. In F. Saglietti and W. Goerigk, editors, Proc. des Work-
shops Sicherheit und Zuverlässigkeit softwarebasierter Systeme,

http://www.gnu.org/software/classpath/classpath.html
http://www.gnu.org/software/classpath/classpath.html

92 BIBLIOGRAPHY

ISTec Report ISTec-A-367, ISBN 3-00-004872-3, Garching,
1999.

[Gou02] John Gough. Compiling for the .NET Common Language Run-
time (CLR). Prentice Hall PTR, 2002.

[gT01a] ”ECMA Working group TC39/TG3”. ”common language in-
frastructure (cli) partition i: Concepts and architecture”. http:
//msdn.microsoft.com/net/ecma/, 2001.

[gT01b] ”ECMA Working group TC39/TG3”. ”common language
infrastructure (cli) partition ii: Metadata”. http://msdn.
microsoft.com/net/ecma/, 2001.

[gT01c] ”ECMA Working group TC39/TG3”. ”common language in-
frastructure (cli) partition iii: Cil instruction set”. http:
//msdn.microsoft.com/net/ecma/, 2001.

[gT01d] ”ECMA Working group TC39/TG3”. ”common language
infrastructure (cli) partition v: Annexes”. http://msdn.
microsoft.com/net/ecma/, 2001.

[Jav] Generic Java. http://www.research.avayalabs.com/user/
wadler/pizza/gj/.

[Jon92] S. L. Peyton Jones. Implementing lazy functional languages
on stock hardware: the spineless tagless g-machine. Journal of
Functional Programming, pages 127–202, 1992.

[jwb] Javaworld benchmark. http://www.javaworld.com/
javaworld/jw-09-1998/jw-09-speed.html.

[KF99] Thomas Kistler and Michael Franz. A tree-based alternative
to java byte-codes. International Journal of Parallel Program-
ming, 27(1):21–33, 1999.

[Knu] Donald Knuth. Mmix. http://www-cs-faculty.stanford.
edu/~knuth/mmix.html.

[KS01] Andrew Kennedy and Don Syme. Design and implementation
of generics for the .net common language runtime, 2001.

[LP00] Doug Lea and William Pugh. Correct and efficient synchroniza-
tion of java technology-based threads. Slides, 2000.

[LY97] Tim Lindholm and Frank Yellin. The Java(tm) Virtual Machine
Specification. Addison-Wesley, 1997.

[mau] The mauve project. http://sources.redhat.com/mauve/.
[MD97] Jon Meyer and Troy Downing. Java Virtual Machine. O’Reilly

Associates, 1997.
[MG01] Erik Meijer and John Gough. Technical overview of he common

language runtime. 2001.

http://msdn.microsoft.com/net/ecma/
http://msdn.microsoft.com/net/ecma/
http://msdn.microsoft.com/net/ecma/
http://msdn.microsoft.com/net/ecma/
http://msdn.microsoft.com/net/ecma/
http://msdn.microsoft.com/net/ecma/
http://msdn.microsoft.com/net/ecma/
http://msdn.microsoft.com/net/ecma/
http://www.research.avayalabs.com/user/wadler/pizza/gj/
http://www.research.avayalabs.com/user/wadler/pizza/gj/
http://www.javaworld.com/javaworld/jw-09-1998/jw-09-speed.html
http://www.javaworld.com/javaworld/jw-09-1998/jw-09-speed.html
http://www-cs-faculty.stanford.edu/~knuth/mmix.html
http://www-cs-faculty.stanford.edu/~knuth/mmix.html
http://sources.redhat.com/mauve/

BIBLIOGRAPHY 93

[Moo97] James D. Mooney. Bringing portability to the software process.
Technical Report TR 97-1, West Virginia University, Dept. of
Statistics and Comp.Sci., 1997.

[ORW98] Martin Odersky, Enno Runne, and Philip Wadler. Two ways
to bake your pizza - translating parameterised types into java.
In Generic Programming, pages 114–132, 1998.

[OW97] M. Odersky and P. Wadler. Pizza into Java: Translating the-
ory into practice. In Proceedings of the 24th ACM Symposium
on Principles of Programming Languages (POPL’97), Paris,
France, pages 146–159. ACM Press, New York (NY), USA,
1997.

[pro] Programming languages for the jvm. http://flp.cs.
tu-berlin.de/~tolk/vmlanguages.html.

[Pug99a] William Pugh. Compressing java class files. In SIGPLAN Con-
ference on Programming Language Design and Implementation,
pages 247–258, 1999.

[Pug99b] William Pugh. Fixing the java memory model. In Java Grande,
pages 89–98, 1999.

[S+00] T. Suganuma et al. Overview of the ibm java just-in-time com-
piler. IBM Systems Journal, 39(1):175–193, 2000.

[SWT+58] J. Strong, J. Wegstein, A. Tritter, J. Olsztyn, O. Mock, and
T. Steel. The problem of programming communication with
changing machines: a proposed solution. Communications of
the ACM, 1(8):12–18, 1958.

[Sym01] Don Syme. Ilx: Extending the .net common il for functional
language interoperability, 2001.

[vnc] The vnc java viewer. http://www.uk.research.att.com/
vnc/.

[Wir77] Niklaus Wirth. Compilerbau, eine Einführung. B.G. Teubner,
1977.

http://flp.cs.tu-berlin.de/~tolk/vmlanguages.html
http://flp.cs.tu-berlin.de/~tolk/vmlanguages.html
http://www.uk.research.att.com/vnc/
http://www.uk.research.att.com/vnc/

94 BIBLIOGRAPHY

95

Appendix A

Project description

English title: Portability Through Virtual Machines
Advisor: Jørgen Steensgaard-Madsen
Period: 31/10-1/4-2002
Credit: 30 ECTS points
Participant: Morten Sylvest Olsen

English project desciption:
Having to write software that is easily portable to, or runnable on, multiple
platforms, is an engineering challenge.

One way of achieving this goal is to use abstract machine representations
in lieu of the actual hardware.

.NET is a new Microsoft product which attempts to promote language
and platform interoperability, in the same realm as Java. A central part
of .NET is the specification of a Common Language Runtime (CLR) and
Common Intermediate Language (CIL).

While Java byte-code was originally meant to be used only for the execution
of Java programs, CIL is aimed to include support for a larger class, includ-
ing functional languages and languages that support ”unsafe” operations,
for example pointer arithmetic.

Another intermediate language is the Register Transfer Language (RTL)
which is used internally in the GNU Compiler Collection (GCC) to facilitate

96 Appendix A. Project description

translation from a large number of source languages, to a very large number
of target platforms.

The project goal is to compare the characteristics of these intermediate
representations with emphasis on platform and language issues.

A possibly unachievable goal will be to find a mapping between some of
the languages.

97

Appendix B

User manual

B.1 Getting the code

The full distribution of the source code can be found at:

http://www.student.dtu.dk/~c958496/pizzacil.zip

The code is released under the Artistic License (the Perl license).

The archive only contains the files necessary to build and run the pizzacil
compiler, some things has been removed from the original distribution since
they were irrelevant.1

B.2 Necessary prerequisites

Apart from the Pizza source code, the following tools are necessary to build
the compiler.

Microsoft .NET SDK The compiler has only been tested under the Beta
2 version of the SDK. This is no longer available, but the released SDK
should work.

1Some tests and files for the horrible Ant build tool

http://www.student.dtu.dk/~c958496/pizzacil.zip

98 Appendix B. User manual

Microsoft J# SDK Beta 1 To be able to install this, it is necessary to
have Visual Studio(.NET) installed. During development I have used
Beta 1, a newer version was only just released, and have not been
tested.

Sun Java Development Kit Java is necessary for the bootstrap of Pizza.
I have only tested with Sun JDK1.3.

Cygwin (make, diff) The makefile has been created using Unix paths.
Needs cygwin to run under Windows.

B.3 Structure

The toplevel directory is pizza/.

bootstrap/ This directory contains the pizzaself.jar file necessary to boot-
strap the compiler.

misc/ The manifest file for building a new jar file.
main/src Toplevel directory for the source. Contains the make file.

pizza/support Support classes used to implement the Pizza lan-
guage.

net/sf/pizzacompiler/
classlib Glue classes to interface with the CLR.
compiler The compiler itself.
contrib Some contributed generic datatypes.
lang Generic classes used by the compiler. List, Pair and more.
pizzadoc A JavaDoc-like preprocessor that understands Pizza.
tests Tests.
util Auxiliary generic classes used by the compiler. Set¡A¿, Vec-

tor¡A¿ and more.

B.4 Installing Pizza

1. Unpack the zip archive
2. Edit the “prefix” variable in the makefile in main/src/
3. Unpack the Java class libraries somewhere, since the pizzacil compiler

has no builtin zip support.
4. Make sure that the variables JAR, PIZZA, PIZZACIL, PIZZANET

are set correctly. The default values should work in most cases.

B.5 Bootstrapping the compiler 99

B.5 Bootstrapping the compiler

1. First execute “make jar”. This should create a new jar file in main/s-
rc/pizza.jar. This is the CIL generating compiler (stage 1 compiler).

2. Execute “make pizzacil”. This should generate a “pizzacil.il” file in
main/src using the compiler generated in the previous step. (This is
the stage 2 compiler)

3. Run ilasm on it. This creates pizzacil.exe.
4. Execute “make bootstrap” to let the generated compiler compile it-

self, and hopefully it will be able to pass the bootstrap test.

B.6 Using the compiler

For a full list of switches, run the compiler without arguments. These are
the most important when compiling for .NET:

-o ¡name¿ The desired name of the executable file. Default is “out.il”.
The name should not include the suffix.

-m ¡classname¿ The name of the class that contains a function of sig-
nature static void main(String[] args) which should be the en-
trypoint. If this argument is omitted, the compiler assumes that the
first file on the commandline contains the entrypoint.

B.7 Miscellaneous

• When running programs remember that the necessary J# DLL’s (
bjlib.dll, bjcor.dll, ...) must be either in the current directory, or
somewhere else in the CLR search path.

• Pizza does not automatically search for dependencies. Also when
compiling for .NET, all necessary classes need to be compiled into
one executable. Therefore all source files must be compiled in one go.

100 Appendix B. User manual

101

Appendix C

Assembler format

This appendix contains a short overview of the assembler syntax for CIL
assembler. To describe it I will show fragments of syntax in EBNF. I have
simplified the syntax, and left out details that are not essential. For the
full syntax, see the standard documents.

An assembly file specifies a number of classes and interfaces. Each of these
can contain field, method and nested class definitions. Unlike a Java class
file, a CLR assembly can contain more than one class definition.

ASSEMBLY → PROLOGUE {CLASSDECL}

The prologue contains declarations that specify what other assemblies are
referenced from within this. It can also contain some version magic, and
public-keys used for the security mechanisms. These will not be used in
pizzacil though.

C.0.1 Class definitions

The syntax of a class definition is:

CLASSDECL → ’ . c l a s s ’ CLASSATTR ID [’ extends ’ TYPEREF]
{ ’ implements ’ TYPEREF} ’ { ’ CLASSBODY ’ } ’

CLASSATTR → ’ pub l i c ’ | ’ i n t e r f a c e ’ | ’ auto ’ | . . .

102 Appendix C. Assembler format

An interface is declared by using the interface keyword. Most of the other
class attributes will not be important and can just be ignored as “magic”
incantations.

An example class definition could be:

. class public auto ansi beforefieldinit ErrorMessage
extends [BJLIB]java.lang.Object
implements [BJLIB]java.lang.Cloneable

{
// class body
}

In our case, all classes will extend something, usually Object, but not all
classes will implement any interfaces.

The class body contains declarations of nested classes, methods and fields.
Nested classes will not be used, so we ignore those.

CLASSBODY → {FIELDDECL}
| {METHODDECL}

C.0.2 Field definitions

Both classes and interfaces can have fields. A field can either be a static or
an instance field.

FIELDDECL → ’ . f i e l d ’ {FIELDATTR} TYPEDECL ID
FIELDATTR → ’ p r i v a t e ’ | ’ pub l i c ’ | ’ s t a t i c ’ | . . .

C.0.3 Method definitions

METHODDECL→ ’ . method ’ {METHODATTR} RETURNTYPE ID
’ (’ PARAMS ’) ’ {IMPLATTR} ’ { ’ METHODBODY ’ } ’

IMPLATTR → ’ c i l ’ | ’ managed ’ | ’ synchron ized ’ | . . .
METHODATTR→ ’ pub l i c ’ | ’ ab s t r a c t ’ | ’ v i r t u a l ’ | . . .
PARAMS → TYPEDECL ’ , ’ PARAMS | TYPEDECL

The method body can be empty, if the method is declared abstract.

103

.method public virtual hidebysig instance class
[BJLIB]java.lang.String getSource () cil managed

{
// method body
// follows
}

If it is not empty, it needs to declare the maximal size of the evaluation
stack used, and the types of the local variables used. Each local variable
can be named, and the local can be referenced either by its number, or its
name. Following these declarations are the instructions that make up the
method.

METHODBODY→ ’ . maxstack ’ INTEGER ’ . l o c a l s ’ ’ (’ LOCALDEFS ’) ’ BODY
LOCALDEFS → TYPEDECL ID ’ , ’ LOCALDEFS | TYPEDECL ID

The body of a method consists of lines of instructions. Each instruction
can be prefixed with an optional label, and some have an argument.

BODY → [LABEL ’ : ’] INSN
INSN → ’ add ’ | ’ sub ’ | ’ l d c . i 4 ’ | . . .

An example method body:

.maxstack 2

. locals (
class net. sf .pizzacompiler.compiler.ErrorMessage V 0)

IL 0 : ldarg.1
IL 1 : ldarg.0
IL 2 : bne.un IL 9
IL 7 : ldc . i4 .1
IL 8 : ret
IL 9 : ldarg.1
...
IL 53: ldc . i4 .0
IL 54: ret

For an example of an entire assembly with class, field and method defini-
tions, please refer to the CIL example in appendix D.

104 Appendix C. Assembler format

105

Appendix D

Codeexample

The following is an example of the compilation of a Java program. The
class contains a method to calculate fibonacci numbers.

/∗ A simple class to demonstrate how the code
looks translated into CIL ∗/

package tests;

public class fibonacci {

// This is a constant string
private static String s = ”The result is : ” ;

// The instance constructor
public fibonacci () {

System.out.println(”In constructor”);
}

// An instance method
private long fib(long n) {

if (n==0)
return 0;

else if (n==1)
return 1;

else
return fib(n−2)+fib(n−1);

106 Appendix D. Codeexample

}

// The main entry point
public static void main(String [] args) {

fibonacci f = new fibonacci ();

System.out.println(s+f.fib (10));
}

}

The above source, compiled by pizzacil:

// Pizza Java .NET Compiler Version 1.0
// Read artistic .html
.assembly ’fibonacci ’ {}
.assembly extern BJLIB
{.publickeytoken = (B0 3F 5F 7F 11 D5 0A 3A)
.ver 1:0:3227:0}

.assembly extern JAVALIB{}

.subsystem 3

. file alignment 512

. corflags 0x00000001

.namespace tests
{
. class public auto ansi beforefieldinit fibonacci

extends [BJLIB]java.lang.Object
{

. field private static class [BJLIB]java.lang.String s

.method public specialname rtspecialname
hidebysig instance void . ctor () cil managed

{
.maxstack 2
IL 0 : ldarg.0
IL 1 : call instance void [BJLIB]java.lang.Object ::. ctor ()
IL 6 : ldsfld class [BJLIB]java.io.PrintStream

[BJLIB]java.lang.System ::’out’
IL b: ldstr ”In constructor”
IL 10: call class [BJLIB]java.lang.String

[JAVALIB]cil.compat.Misc::toJavaString
(class [mscorlib]System.String)

IL 15: callvirt instance void

107

[BJLIB]java.io.PrintStream::println
(class [BJLIB]java.lang.String)

IL 1a: ret

} // end of method

.method private virtual hidebysig instance int64 fib (int64) cil managed
{

.maxstack 4
IL 0 : ldarg.1
IL 1 : ldc . i4 0
IL 6 : conv.i8
IL 7 : bne.un IL 13
IL c : ldc . i4 0
IL 11: conv.i8
IL 12: ret
IL 13: ldarg.1
IL 14: ldc . i4 1
IL 19: conv.i8
IL 1a: bne.un IL 26
IL 1f : ldc . i4 1
IL 24: conv.i8
IL 25: ret
IL 26: ldarg.0
IL 27: ldarg.1
IL 28: ldc . i4 2
IL 2d: conv.i8
IL 2e : sub
IL 2f : call instance int64 tests . fibonacci :: fib (int64)
IL 34: ldarg.0
IL 35: ldarg.1
IL 36: ldc . i4 1
IL 3b: conv.i8
IL 3c : sub
IL 3d: call instance int64 tests . fibonacci :: fib (int64)
IL 42: add
IL 43: ret

} // end of method

.method public static hidebysig void
main (class [BJLIB]java.lang.String []) cil managed

{

108 Appendix D. Codeexample

.maxstack 4

. locals (
class tests . fibonacci V 0)

IL 0 : newobj instance void tests . fibonacci ::. ctor ()
IL 5 : stloc .0
IL 6 : ldsfld class [BJLIB]java.io.PrintStream

[BJLIB]java.lang.System::’out’
IL b: ldsfld class [BJLIB]java.lang.String tests . fibonacci :: s
IL 10: call class [BJLIB]java.lang.String

[BJLIB]java.lang.String ::valueOf
(class [BJLIB]java.lang.Object)

IL 15: ldloc .0
IL 16: ldc . i4 10
IL 1b: conv.i8
IL 1c : call instance int64 tests . fibonacci :: fib (int64)
IL 21: call class [BJLIB]java.lang.String

[BJLIB]java.lang.String ::valueOf (int64)
IL 26: callvirt instance class [BJLIB]java.lang.String

[BJLIB]java.lang.String :: concat
(class [BJLIB]java.lang.String)

IL 2b: callvirt instance void
[BJLIB]java.io.PrintStream::println
(class [BJLIB]java.lang.String)

IL 30: ret

} // end of method

.method assembly static hidebysig void .cctor () cil managed
{

.maxstack 1
IL 0 : ldstr ”The result is : ”
IL 5 : call class [BJLIB]java.lang.String

[JAVALIB]cil.compat.Misc::toJavaString
(class [mscorlib]System.String)

IL a : stsfld class [BJLIB]java.lang.String tests . fibonacci :: s
IL f : ret

} // end of method

.method public static hidebysig void
$main (class [mscorlib]System.String []) cil managed

{
.entrypoint

109

.maxstack 1
IL 0 : ldarg.0
IL 1 : call class [BJLIB]java.lang.String []

[JAVALIB]cil.compat.Misc::toJavaStringA
(class [mscorlib]System.String [])

IL 6 : call void tests . fibonacci :: main
(class [BJLIB]java.lang.String [])

IL b: ret

} // end of method

} // end of class fibonacci
} // end of namespace

110 Appendix D. Codeexample

111

Appendix E

Bugs in Pizza

During the work on the pizzacil back-end, I discovered several bugs in the
other parts of the compiler. None of these bugs are major, although some
of them makes Pizza violate the Java Language Specification [GJ+00]. Two
of them have later been corrected after I submitted bug reports, but they
still exists in the code I have based my work on.

Back-end

I discovered two minor bugs in the original JVM bytecode generator. Method
incr in class LocalItem is called to increment/decrement a local variable. If
the local variable is not of integer type invalid code is generated because no
coercion is done before emitting an iadd instruction, which expects integers
as arguments.

The compiler cannot bootstrap itself with debugging turned on. At least
one class, TransPatterns, is miscompiled. The problem lies in the genera-
tion of LocalVariable debug attributes. I did not bother to research this
further, since it was possible to work around.

Parsing

The parser rejects code that includes class literals. For example the code
int[].class, which is a class literal, of type Class, for an array of integers

112 Appendix E. Bugs in Pizza

is not accepted. The code is legal according to the JLS section 15.8.2.

Flow analysis

According to the JLS section 14.20, a java compiler should carry out flow
analysis and make sure that all statements are reachable. If two catch
clauses following a protected region catches the same exception, only the
first will be reachable. Pizza does not reject such code, which is clearly
wrong.

Type check

Arrays should implement both the Cloneable and Serializable interfaces,
but in Pizza they do not. This is a bug in the symbol table initialization.

	Preface
	Executive summary
	Prerequisites
	Typographical conventions
	Terminology
	Organization

	Introduction
	The purpose of the project
	The Pizza compiler
	.NET Common Language Runtime
	Related work
	Portability
	Portability

	Portability through virtual machines
	Virtual machine architectures
	Summary

	The .NET Common Language Runtime
	Motivation
	Overview
	Types
	Execution environment
	Return handle
	Local variables
	Incoming arguments
	Evaluation stack

	Instruction set
	Basic opcodes
	Control flow
	Function calls
	Objects
	Arrays
	Exception handling
	Pointers
	Unsafe instructions

	CIL assembler

	The Pizza Compiler
	Pizza
	The Pizza extensions
	Generics
	First-class functions
	Algebraic datatypes
	Tail recursion

	Design
	Overview
	CLR assembly files
	Name resolution
	Scoping
	Symbolic references

	Basic types
	Reference types
	The current solution

	Arrays
	Creation
	Array covariance

	Classes
	Inner classes
	Object creation
	Methods

	Constants
	Numeric
	Strings

	Arithmetic instructions
	Local variables
	Exception handling
	Modifiers
	Synchronization
	Synchronized methods
	Syncronized blocks

	Entry-point
	Class library
	Bootstrap
	Self hosting on the CLR

	Static initializers
	Unsolved issues
	Finalizers
	Volatile variables

	Implementation
	General
	Structure of the Pizza compiler
	The back-end
	AssemblyWriter
	CILBasic
	CILCode
	CILCodeGen
	CILGen
	CILItem
	MetaData
	Other

	Bootstrap

	Tests
	Correctness
	Verifiable CIL
	Verification of pizzacil

	Bootstrap test
	Test suite
	Performance tests
	Floating point performance
	Bootstrap

	Code size
	Local variable optimization

	Status
	Evaluation of the CLR
	Portability of the CLR

	Further work
	Pizza language related
	Tail-calls
	Boxing of basic types
	Generic CLR
	ILX

	Further projects
	Assembly toolkit
	Java class library re-implementation

	Conclusion
	Status
	The project
	The future

	Project description
	User manual
	Getting the code
	Necessary prerequisites
	Structure
	Installing Pizza
	Bootstrapping the compiler
	Using the compiler
	Miscellaneous

	Assembler format
	Class definitions
	Field definitions
	Method definitions

	Codeexample
	Bugs in Pizza

