
Memory Access Analysis
for Embedded Systems

Jesper Bjerregaard

30-1-2002 Version 12

Abstract

The memory subsystem has traditionally been a major bottleneck in the design of high
performance processor based systems. As the disparity in speed between a processor and
its main memory continues to widen, the need for an e�cient exploitation of the memory
hierarchy plays an increasingly important role in achieving good overall performance.
When dealing with the design of embedded systems this is particularly important. As
an embedded systems application is likely to run on the same system throughout its entire
lifetime, a tailoring of the systems memory con�guration to �t certain application speci�c
requirements, can be extremely bene�cial. Likewise a tailoring of a particular application
to �t the parameters of the memory hierarchy, can result in a better exploitation of data
locality. As the latencies in memories are orders of magnitude larger than that of modern
day processors, merely small changes in an applications memory access behaviour can
yield considerate performance gains. Especially in data intensive applications where
large amounts of data is accessed in multi level nested loops, signi�cant improvements
can be obtained.

In this thesis a wide range of techniques for improving memory access behaviour has
been covered. The primary focus has however been put on the topics of carrying out
memory layout- and control- transformations on application codes. The use of the former
of these is to perform a speci�c layout of data in main memory, thereby improving data
locality. The use of control transformations can in a similar way improve data locality,
by rearranging memory references in an application.

Based on the presented topics a high level compiler tool for optimizing memory access
behaviour has been developed. This tool has been constructed by the aid of the SUIF
compiler set, and is capable of carrying out the well known tiling transformation. The
developed tool is able to perform an analysis of a given application, and to carry out the
best suited tiling transformation based on this analysis. For some real-world benchmarks
a 56% reduction in the number of main memory accesses has been obtained.

Preface

The work presented in this Masters thesis has been carried out by Jesper Bjerregaard
at the Institute of Computer Science and Technology at the Technical University of
Denmark. The course of this project has stretched over a time period of six months
ending in January 2002. During this period of time I have had the pleasure of working
with Jan Madsen, whom I wish to thank for his excellent guidance.

During the course of this project some tools for the practical part of the work have
been used. These tools have however, turned out to be somewhat unstable. This unfor-
tunate fact has to some extend delayed the project, and the original objectives have not
been achieved. The initial problems have however after some time been overcome, and
the tools have in the end turned out to be useable in the context of this project.

Jesper Bjerregaard

1

Contents

1 Introduction 5

2 Survey. 7

2.1 Objectives. 7
2.1.1 Performance. 7
2.1.2 Power. 9
2.1.3 Transformations. 9

2.2 Control Transformations. 10
2.2.1 Introduction. 10
2.2.2 Overview. 11
2.2.3 Related Work. 14
2.2.4 Summary. 17

2.3 Memory Layout Transformations. 17
2.3.1 Introduction. 17
2.3.2 Scalar variables layout. 19
2.3.3 Array Layout. 23
2.3.4 Array Padding. 24
2.3.5 Tile-based Layout. 27
2.3.6 Instruction Layout. 28
2.3.7 Selection of Dynamic Memory Layouts. 29
2.3.8 Concluding Remarks. 33

2.4 Memory hierarchy design. 33
2.4.1 Introduction. 33
2.4.2 Power-Performance tradeo�s and characteristics. 34
2.4.3 Other factors. 36
2.4.4 Estimation approaches. 38
2.4.5 Speci�c Estimation algorithm. 40
2.4.6 Static memory. 48
2.4.7 Conclusion. 52

2.5 Other Areas. 53
2.5.1 Introduction. 53
2.5.2 Worst Case Execution Time. 53
2.5.3 Alternative approaches. 56

2.6 Discussion. 59
2.7 Summary. 61

2

CONTENTS 3

3 Framework. 63

3.1 Introduction . 63
3.2 Overview . 63
3.3 SUIF. 65

3.3.1 Introduction . 65
3.3.2 Pros & cons. 66
3.3.3 Detailed description. 66

3.4 SimpleScalar . 67

4 Implementation. 69

4.1 Discussion of selected implementation. 69
4.2 Implementation Speci�c Theory. 71

4.2.1 Data dependencies. 71
4.2.2 Dependences in loops. 72
4.2.3 Legality criteria for transformations. 75
4.2.4 Tiling aspects. 76
4.2.5 Representation of references. 78
4.2.6 Determination of reuse and equivalence classes. 80
4.2.7 Reuse and equivalence classes - a mathematical approach. 82
4.2.8 Quantifying reuse. 86
4.2.9 Limitations. 90

4.3 Implementation - Overview of code. 95
4.3.1 Tasks. 95
4.3.2 Overview. 97
4.3.3 Individual parts of the implementation. 100
4.3.4 User interface. 104
4.3.5 Shortcomings. 106

4.4 Future Work and Improvements. 108
4.4.1 Interchange . 108
4.4.2 Memory Layout . 109
4.4.3 Estimations . 109

5 Testing. 111

5.1 Benchmarks. 111
5.2 Assumptions and metrics. 112
5.3 Results. 114

5.3.1 Matrix multiplication. 114
5.3.2 Successive Over Relaxation. 118
5.3.3 CONV. 120
5.3.4 Local summation problem. 122

5.4 Summary. 123

6 Conclusion. 125

CONTENTS 4

A Code. 130

A.1 my_tile.cc . 130
A.2 class for_loops . 134
A.3 class nested_loop . 136
A.4 locality.h . 139
A.5 locality.cc . 143

A.5.1 class uni_gen_set . 145
A.5.2 auxiliary . 148
A.5.3 iteration_space . 154

A.6 for_loop_transform.h . 158
A.7 for_loop_transform.cc . 161

A.7.1 Dependences. 165
A.7.2 Locality analysis. 170
A.7.3 Evaluating reuse. 174
A.7.4 Auxiliary. 178

B SimpleScalar installation errors. 180

C Debugging tests. 184

C.1 Dependence tests. 184
C.2 Uniformly generated sets. 193
C.3 Evaluation tests. 200

Chapter 1

Introduction

In the recent years, the gap between memory and processor performance has increased
signi�cantly, thereby making the memory sub-system a large bottleneck in todays data
based systems. As this gap continues to grow, the memory sub-system becomes an
even more critical component, seriously degrading performance. This developement has
a�ected the performance of both general purpose systems, as well as application speci�c
embedded systems.

Aside from being a limiting factor for performance in terms of cycles, the memory
system also contributes by consuming signi�cant amounts of power and by occupying
large fractions of the chip area. These drawbacks are especially important in the con-
text of embedded systems, as the demand for small portable battery powered devices
continues to grow.

In order to reduce the negative impacts of limited speed and energy ine�ciency
in todays memories, extensive research aiming at a better exploitation of the memory
hierarchy has been carried out. The developed techniques can roughly be divided into two
categories, namely program transformations and cache design. Program transformations
are applied to an application in order to allow for a better exploitation of data locality,
thereby improving its memory speci�c behaviour. These transformations are usually
performed at a high level of abstraction, e.g. as source to source transformations, before
compile-time.

Cache design techniques are used to tune the various cache parameters to �t the
applications memory speci�c behaviour. Cache parameters such as the cache size, line
size and associativity, can signi�cantly in�uence the overall system performance with
respect to both power and execution time.

Both of these memory optimizing techniques are well suited to be used in the de-
velopement of embedded systems, as a program constructed for such a system is likely
to run there throughout its entire lifetime. This fact, as well as the developement of
new technologies, allows for a costumization of the memory hierarchy to suit application
speci�c requirements. A similar tailoring of the application code is performed by apply-
ing program transformations seeking to exploit the special characteristics of the memory
hierarchy. An improvement of memory performance can thus be obtained by tailoring
the memory hierarchy to �t application speci�c behaviour, or vice versa.

In this paper an exploration of the di�erent memory optimizing techniques will be

5

6

performed. One or more of these techniques will be implemented in a tool, and an
evaluation of their impact will be carried out. As this project is the �rst of its kind
at the Technical University of Denmark, an emphasis on the theoretical parts of the
presented topic will be made. Furthermore an attempt to cover as wide an area as
possible, within the �eld of memory access optimization, will be made.

The paper is organized as follows :
Chapter 2 contains a survey covering previous work in the area. In chapter 3 the tools
used for evaluation and parsing of programs are presented. Chapter 4 describes the
actual implementation, and the results are evaluated in chapter 5. Finally a conclusion
is o�ered in chapter 6.

Chapter 2

Survey.

2.1 Objectives.

The memory subsystem has through several years been a major bottleneck in developing
high performance processor based systems. The main problem is that these systems
require large memories, which in turn require longer access times. In order to cope with
these con�icting requirements, modern day processor based systems are equipped with
memory hierarchies consisting of multiple memory levels, that are used to reduce the
number of the very time consuming accesses to bigger memories. The smaller levels in
these hierarchies can be placed on-chip, and will thus allow for fast retrieval of the data
present therein.

Such memory con�gurations exploit the fact that programs tend to reuse data and
instructions that have been used recently. The fact that once the access to particular
element has been established, the additional time penalty for fetching the nearby ele-
ments is very small, is also exploited. This is done by simultaneously fetching several
elements from the higher levels of the memory hierarchy, whenever a data-element that
is requested by the processor is not present in the innermost level. This fetching of new
data will then most likely result in the eviction of another data block, that at this time
was present in the cache. If the retrieved block has not been evicted from the cache
when the next reference to data in the same block occurs, the data can now be accessed
in the much faster innermost level of the memory hierarchy (i.e. the cache).

2.1.1 Performance.

The most common design of a memory hierarchy consists of three levels, namely the
cache, main memory and disk. This hierarchy is sometimes extended by also including
second level caches that reside between cache and main memory, or TLB's which are
even smaller than the cache.

The innermost memory level is in most cases the cache. Access times for caches
normally lie in the range of 1 to a few cycles, as it usually resides on-chip [34]. The
main memory is the outermost level of RAM. This level of memory is also referred to as
the o�-chip memory, and access times usually vary somewhere between 5 and 50 cycles.
Access times to the disk can take up to several hundred CPU cycles.

7

2.1 Objectives. 8

Allthough this introduction sofar only has described the handling of data storage, the
same principles apply to the storage of instructions. Usually the memory banks that are
positioned at lower levels than the main memory, are divided into data and instruction
caches, and they are thus accessed separately. In �gure 2.1 a common con�guration of a
memory hierarchy, is shown. The included access times illustrate approximate times for
accessing the di�erent memory components [34].

FILE
REG.−

ON−CHIP

CACHE

MAIN
MEMORY

CHIP
(OFF−

MEMORY)

DISK1−2
cycles

5−50
cycles

>100
cycles

Figure 2.1: An illustration of a common memory hierarchy.

As it was former mentioned the overall strategy, for exploiting the hierarchy, is to
simultaneously fetch several data elements or instructions that constitute one block of
memory, from the slower memory levels into the smaller and faster levels of the hierarchy,
thereby partially hiding the latency of single accesses. The number of elements that are
brought into the cache at each main memory access is commonly referred to as the block
size, or the line size of the cache. This number can be de�ned during the design phase
of the memory subsystem.

Which cache line a particular data-element or instruction maps into is determined
by a �xed number of the lower bits in the elements adress. That is, there exist a uniform
mapping of each block of data-elements, in main memory, into the cache. As the main
memory usually is much larger than the cache, several data-elements will map into the
same cache line, and if this data is referenced close in time it might lead to severe
performance penalties.

This feature of caches is particular important as it sometimes makes it posible to
perform a layout of data and/or instructions in memory, that will ensure that data
currently in use by the processor is not evicted from the cache, before the processor
is done referencing it. This editing of the source code and is commonly referred to as
memory layout transformations. An improvement in the reuse of data already brought
into the cache can also be obtained by reordering the di�erent memory references (control
transformations), or by changing the con�guration of the memory hierarchy (memory
hierarchy design).

The approximate cycle estimates given above, clearly indicate that memory perfor-
mance impose severe constraints on overall system capabilities. Hence the importance
of improvíng the reuse of data elements and instructions, once brought into the cache,
is a determinant factor for the achievement of performance gains.

2.1 Objectives. 9

2.1.2 Power.

When dealing with the reduction of power consumption, the number of transitions on bus
lines is an important factor. Whenever a single bit line on one of the buses of a particular
architecture changes from 1 to 0, or from 0 to 1, a power consuming charging of the
existing capacitances on the line takes place. This charging and discharging of bus lines
constitutes a major fraction of the overall power consumption in an embedded system,
and the use of software optimizations to reduce the transition count, is therefore an
obvious target for improvement. As the o�-chip capacitances on a particular architecture
are approximately three orders of magnitude larger than typical on-chip capacitances, the
power consumption due to accesses to o�-chip memory is the major source. Consequently
e�orts in minimizing power dissipation should concentrate on o�-chip memory.

As it was the case when dealing with performance in terms of execution time, memory
behaviour also constitutes a serious bottleneck when the primary goal is energy reduction.

The power dissipation introduced by memory accesses can mainly be said to consist of
two di�erent parts. One contribution from transitions on the data bus, and one stemming
from transitions on the adress bus. As it is possible to predict the access sequences and
thereby the exact adressing of memory locations for a particular application, the power
dissipation due to transitions on the adress bus can be reduced. The power consumption
introduced by transitions on the data bus is however, almost impossible to reduce using
these same techniques. This is the case as there is no way of knowing what kind of data
is transferred between on- and o�-chip memory.

2.1.3 Transformations.

As earlier mentioned, signi�cant performance improvements both cycle- and power- wise
can be obtained by either customizing the memory hierarchy to �t application-code re-
quirements, or by customizing the code to e�ciently exploit the memory hierarchy. Both
of these techniques can be used to reduce the number of data and instruction transfers
between memory levels, thereby reducing execution time as well as power consumption.
Furthermore the use of memory optimizing strategies alltogether, is usually targeted at
loops as this is where programs generally spend most of their time.

When dealing with the costumization of application code for a particular architec-
ture, i.e. performing program transformations, a distinction between two types of trans-
formations are usually made. These two kinds of transformations are denoted control
transformations and memory layout transformations. Control transformations are used
to change the access patterns of programs in order to improve cache reuse. That is, ap-
plying control transformations to a particular application, will result in a program with
reordered instructions, implying reordered memory references, that hopefully reduces
memory transfers.

Memory layout transformations on the other hand, reorders the placement of data
and/or instructions in the o�-chip memory, in order to improve cache reuse without
having to change the order of memory references.

In the next section the most commonly known control transformations will be pre-
sented. This is followed by section 2.3 in which memory layout techniques and algorithms
will be described. Section 2.4 deals with memory hierarchy design, and in section 2.5

2.2 Control Transformations. 10

some other aspects in the area of memory optimization are presented. A summary and
some concluding remarks are �nally given in section 2.6.

2.2 Control Transformations.

2.2.1 Introduction.

Control transformations are used to change undesirable access patterns in applications,
in order to allow for a better exploitation of the memory hierarchy. This reordering
of memory references should increase cache reuse, thereby improving performance with
respect to both execution time and power consumption. To illustrate the use of this
kind of transformation a simple example involving interchanging of loops will be given
in the following. This example will furthermore be used to illustrate some of the aspects
involved when dealing with control transformations.

Loop interchange is a transformation that consists of changing the order in which
the iterations are performed in a multi-level nested loop. The aim of performing such a
reordering of the loop nests is to improve spatial reuse among the references. An example
of interchanged loops is given in the following :
Original loop :

A[n][m]

for i=1 to N do

for j=1 to N do

A[j][i] = A[j][i] + 1

Interchanged loop :

for j=1 to N do

for i=1 to N do

A[j][i] = A[j][i] + 1

Loop interchanging is a very powerful tool in improving application performance. Pro-
vided that the arrays in the above example have been stored in row major format, the
interchange will severely have increased spatial reuse in the loop, as the iterations in the
innermost loop now are performed a row at a time. That is, the stride in the innermost
loop is now 1, whereas it was equal to N in the original loop. Consequently the inter-
change allows for a large degree of reuse in the transformed loop. In the original loop
however, the amount of reuse would be none, provided that the number of cache lines is
less than n. That is, in that case each access to the A array would result in fetching new
data from main memory, thereby seriously degrading performance and energy e�ciency.

From a power consuming point of view the reduced o�-chip memory accesses will of
course be advantegeous. However even more is true. The number of transitions on the
adress bus are likely to be less for the interchanged loop. If m is a power of two however,
the amount of switching will remain unchanged.

When performing control transformations targeted at improving performance for
the data memory hierarchy, one should keep in mind that the transformations might
introduce instruction memory overhead, because of increased code size. Applying control
transformations will for instance often result in an increase in the code size, thereby

2.2 Control Transformations. 11

leading to larger storage requirements for the particular application. Under unfortunate
circumstances the instruction cache performance might also su�er from the increase in
code size.

These drawbacks are however, often negligible as the data cache performance gains
obtained by performing the transformation in the vast majority of cases will outweigh
the negative e�ects. The important point to make in this context, is that the in�uence on
code size and hence instruction cache behaviour, should not be set aside completely, as
the impact can be signi�cant in some cases. Thus a tradeo� between these two con�icting
objectives might be necessary.

In the next section some more of the most common control transformations will be
described. This is followed by section 2.2.3 where a review of speci�c earlier work in the
area, is given. Finally some concluding remarks are o�ered in section 2.2.4.

2.2.2 Overview.

In this section some of the commonly known control transformations will be presented.

Loop Fusion.

Loop fusion is a transformation technique which combines a number of loops into a single
loop, with the aim of improving cache performance. The technique is sometimes also
referred to as loop jamming. The use of loop fusion is illustrated below :
Original loops :

for i=1 to N do

b[i] = b[i+1] + a[i]

for i=1 to N do

c[i] = c[i]*2 + a[i] +7

After loop fusion :

for i=1 to N do

b[i] = b[i+1] + a[i]

c[i] = c[i]*2 + a[i] +7

The main bene�ts of loop fusion are better exploitation of data locality and reduced loop
overhead.

Loop Fission.

The transformation commonly known as loop �ssion consists of breaking a single loop
into more than one loop, and distributing the computations and references in the original
loop among these loops, thereby improving cache performance. This technique is also
known as loop distribution or loop splitting. An example of applying loop �ssion on a
suitable code fragment. is given in the following :
Original loop :

for i=1 to N do

a[i] = a[i+1] * 2

b[i] = b[i+2] + b[i]*3 + 5

2.2 Control Transformations. 12

After loop �ssion :

for i=1 to N do

a[i] = a[i+1] * 2

for i=1 to N do

b[i] = b[i+2] + b[i]*3 + 5

The potential bene�ts of using loop �ssion are :

� It reduces memory requirements as each iteration involves fewer references. This
can in turn improve the cache performance signi�cantly.

� The splitting of the involved references might reduce the number of dependencies
inhabited in the loop.

� The instruction cache performance might also improve as the loop bodies become
smaller.

� It might allow for a better reuse of registers, as fewer variables or constants are in
use (live) at the same time.

� A drawback of loop �ssion is that the increased number of iterations introduces
some overhead.

Loop Unswitching.

Loop unswitching consists of moving a conditional statement outside the loop it is con-
tained within, thereby eliminating the overhead of executing the conditional in each iter-
ation.This technique can be applied when the result of the conditional is independent of
the index/iteration variable used inside the loop. When applying loop unswitching the
particular loop must be replicated in each branch of the conditional in order to ensure
correct execution of the program. An example of loop unswitching is illustrated in the
following :
Original loop :

for i=1 to N

stm1

if cond1

stm2

else

stm3

After loop unswitching :

if cond1

for i=1 to N do

stm1

stm2

else

for i=1 to N do

stm1

stm3

2.2 Control Transformations. 13

Loop Unrolling.

The transformation commonly known as loop unrolling consists of reducing the loop
iteration count by adding instructions to the loop body. The use of loop unrolling is
illustrated in the following :
Original loop :

for i=1 to 100 step 1 do

B[i] = A[i] + A[i+1]

Unrolled loop :

for i=1 to 99 step 2 do

B[i] = A[i] + A[i+1]

B[i+1] = A[i+1] + A[i+2]

In this case the loop is unrolled once, and as the reference A[i+1] is accessed twice in
each iteration it can be register allocated. Another bene�cial side e�ect is that the loop
control overhead is reduced. The code size can however, increase signi�cantly depending
on the degree of urolling. This is of course is a very undesirable e�ect, which could
seriously degrade instruction cache performance.

Function Inlining.

Another transformation technique that is very similar to loop unrolling is function inlin-
ing. This technique consists of replacing function calls with the bodies of the respective
functions.

The use of function calls in a programming language is an example of a necessary fea-
ture for improving the readability and the modularity of the code. Functions also reduce
the required storage space, but they also have the side e�ect of degrading performance
and energy e�ciency compared to inlining of the code [10]. These undesirable e�ects
arises partly because of the extra instructions that are needed to perform the actual
call, as well as the return from it. Furthermore unavoidable accesses to the stack are
necessary in order to save/restore registers, return adresses, base pointers and potential
parameters. These memory accesses can be particularly time consuming, if they require
fetching of new cache lines into the cache.

As in the case of loop unrolling performing function inlining is an attempt to increase
performance at the cost of code size. Therefore a tradeo� between these two entities must
be made. It can for instance be very bene�cial to replace a function call with its body,
when the body is very small and the call is made inside a multilevel nested loop that is
executed several times.

Loop Tiling.

Loop tiling or loop blocking (as it is also referred to) is a transformation that changes
the layout of a loop in order to iterate over the data accesses in tiles (or blocks), thereby
reducing the number of capacity misses. The actual computations performed in the loop
must of course be the same as before, but the order in which they are carried out has
been changed, so that a better reuse of the data is possible. An example of a loop tiling
transformation is given in the following :
Original loop :

2.2 Control Transformations. 14

for i=0 to N-1

for j=0 to N-1

for k=0 to N-1

C[i][j] = C[i][j] + A[i][k] * B[k][j]

Transformed loop:

for j'=0 to N-1 step TSIZE

for k'=0 to N-1 step TSIZE

/* for one tile */

for i=0 to N-1

for j=j' to min(j'+TSIZE-1,N-1)

for k=k' to min(k'+TSIZE-1,N-1)

C[i][j] = C[i][j] + A[i][k] * B[k][j]

The use of loop tiling can be especially bene�cial when the involved arrays in a loop
cannot all �t into the cache at the same time. In this case the partitioning of the
iteration space into TSIZE X TSIZE tiles should ensure that all the data accessed in the
processing of one tile can �t into the cache, thereby reducing the number of capacity
misses. Furthermore the order in which data is accessed in a loop may be more or less
suited for loop tiling transformations. When the access patterns of the di�erent arrays
involved, allows for a later reuse of the fetched data, but the iteration order percludes
the exploitation of this reuse, a loop tiling transformation can enhance performance
signi�cantly. The selection of the most bene�cial tile sizes is therefore very important.

The working set for a particular tile is de�ned as all the data elements that are
accessed during the computations in the loop involving the tile. The reuse of data must
be ensured by selecting the tile sizes so that the working set can �t into the cache,
thereby fully eliminating capacity misses for that particular tile.

When dealing with tiled loops, cache con�icts are divided into two categories. The
cache con�icts among array elements in the same tile are denoted self-interference con-
�icts, whereas the ones arising from competition among elements in di�erent tiles (of the
same array), or di�erent arrays, are referred to as cross-interference con�icts.

There exists numerous articles and papers which describe the use of control trans-
formations. An exhaustive overview of the the most commonly known transformations
can be found in [2].

2.2.3 Related Work.

This section will contain a more in-depth description of some di�erent approaches, pro-
posed by various researcher when implementing control transformations.

Enabling transformations.

In [30] the successive use of di�erent kinds of transformations are used to optimize ap-
plication code. The important point to make in this context is, that the presence of
data dependencies that prohibit the possibility of performing certain transformations,
can be avoided by performing other transformations as a �rst step. That is, perform-

2.2 Control Transformations. 15

ing the transformations in the right order might enable the use of transformations that
otherwise could not be applied.

The optimizations are mainly targeted at reducing power consumption for mutimedia
applications. The involved transformations consists of loop- and size reduction- trans-
formations as well as control- and data- �ow transformations. Inbetween applying these
di�erent kinds of transformation to the code, yet other enabling transformations are car-
ried out in order to be able to perform other transformations once again. The presented
work constitutes a part of extensive research performed at IMEC [5], where numerous
transformations are applied to applications in order to optimize performance in every
possible manner.

Tiling.

In [34] a tiling algorithm is presented. The computing of the working set size is performed
using techniques described in [9]. The strategy for determining the tile size consists sim-
ply of choosing the largest square tile, with dimensions equalling a multiple of the cache
line size, that still makes the working set �t into the cache. In this implementation the
user is also allowed to manually determine either the number of rows, the number of
columns, both rows and columns or the ratio of this two entities. This approach is of
course especially useful when the user have some application speci�c information which
can be exploited.

Most of the earlier work carried out in the �eld of loop tiling have tried to minimize
the number of con�ict misses in a tiled loop by selecting appropriate tile sizes. That is,
the consideration towards minimizing the number of cache con�icts have in�uenced the
computation of tile size. This has sometimes lead to less e�cient loop tiling [34].

The approach chosen by [34] consists however of selecting the tile sizes without regard
to cache con�icts. These con�icts are dealt with separately, after the tile size selection
has been performed. The way these con�icts are handled is by the use of a memory
layout technique known as padding. This technique will be described in section 2.3,
where di�erent memory layout methods are presented. As it turns out, the approach
for performing the tiling results in even better performance gains, as the use of padding
allows for an optimization of the tile size independently of potential con�icts.

Matrix & vector representation.

In [8] techniques for performing both data-(memory layout) and control-(execution or-
der) transformations is presented. The methods aim primarily at optimizing code with
respect to performance, and deals also with transformations suited especially for mul-
tiprocessor systems. In this context a serious performance obstacle commonly referred
to as false sharing is adressed. This phenomenom arises when di�erent processors ac-
cesses and alters data in the same coherent block. The altering is naturally done in the
respective processors local memory, but causes subsequently severe memory tra�c that
degrades performance.

For estimating di�erent data- and control- transformations an algebraic notation
for loops, mappings and indexations is used. This notation uses vectors and matrices
for representing entities like subscript-vectors, stride-vectors, mapping-vectors, access-
matrices and transformation-atrices.

To illustrate the use of this notation a small example will be described. Consider for

2.2 Control Transformations. 16

instance the following loop :

for i=1 to n

for i=1 to n

A[i][i+j]=....

For the access to the A-array we can de�ne its subscript vector as (i,i+j) as the row
indexing is done by the variable i and the column indexing is done by i added to j.
The reasoning leading to this subscript vector could also have been done by multiplying
the access matrix of the A[i][i+j] reference by (i,j) (as the iterating in the outer and
inner loop is done over the variables i and j respectively). The access matrix is thus :

H =

1 0
1 1

!

A mapping vector is a vector that when multiplied by a particular subscript vector yields
the o�set of the referenced data element from the �rst element of the array. The mapping
vector thus holds information of the data layout in memory. Once again considering the
above example containing two nested loops and a row major memory layout, the mapping
vector would be equal to (n,1). A column major mapping would instead be represented
by (1,n). We �nd the o�set of any element accessed by the above A[i][i+j] reference
to be (n,1)�(i,i+j) = (n+1)i + j.

Another important entity in the algebraic notation is the stride vector. This vector
has the property that the i'th element of the vector equals the di�erence between the
adresses accessed when the i'th loop-variable is incremented by the particular stepsize.
For the above example the stride vector is thus : (n+1,1), where n+1 is the reference
stride for A[i][i+j] when i is incremented by 1 (=stepsize). Similarly 1 is the reference
stride for A[i][i+j] when j is incremented by 1 (=stepsize). The stride vector can be
computed by multipying the transposed access matrix by the mapping vector :

1 1
0 1

!
�

n

1

!
=

n+ 1

1

!

The stride vector can be used as a measure for the possibilities of reuse to occur in a
particular nested loop. As the best chances for reuse to be exploited occurs within the
inner loops the last elements of the stride vector should be small. The likelihood of reuse
is thus increased when the elements of the stride vector appears in decreasing order.

As the stride vector depends on both the indexing order inhabited in the loop, as
well as the memory layout, these parameters should be tuned in order to achieve the
optimal stride vector, thereby ensuring exploitation of data locality.

Manual optimization.

In [49] a partially manual method for optimizing applications with respect to energy and
performance is used. The presented approach exploits a pro�ling tool to �nd the energy
critical sections of the code, which then become targets for optimizations. A cycle ac-
curate energy consumption simulator for mapping important code sections to the source
code, is also used in the process.

2.3 Memory Layout Transformations. 17

Analyzing for most suited transformation.

In [54] the problems involved in determining the best optimizations for loop nests are
adressed. The performed optimizations are limited to loop transformations involving
interchange, reversal, skewing and tiling. The theories presented deals with both multi-
dimensional arrays as well as potentially deep loop nests.

In order to perform certain transformations on a particular loop, the accesses involved
are examined, and the inherent data dependence is stored in dependence vectors. The
representation of the di�erent iterations of loops are also stored in vectors, the so called
index vectors. These vectors de�nes the iteration space of the particular loop. As the
data dependence inherent in a particular loop might impose limitations on what sort of
transformations are possible, the dependence vectors can be used to determine what is
possible. Furthermore certain transformations can sometimes make it possible to carry
out former illegal transformations (e.g. skewing can in some cases enable the use of
tiling).

Apart from determining which transformations are applicable for a certain loop nest,
it is also necessary to analyze the loop in order to �nd the most bene�cial transformations.
This is done by grouping the accesses into di�erent reuse equivalence classes in the same
manner as described in [37]. The four kinds of reuse classes are : self-temporal, self-
spatial, group-temporal and group-spatial. An in-depth description of the meaning of
this distinction between di�erent kinds of reuse will be conducted in section 2.4 The
partitioning of accesses into these types of classes is performed by mathematically aided
methods. By the use of these methods the accesses are represented by one or more
vectors that de�nes the dimensions in which the particular reference exhibits some sort
of reuse. That is a dimension in the iteration space, corresponds to a particular loop.

2.2.4 Summary.

A presentation of some common and extensively used control loop transformations has
been conducted in this section. The loop interchange transformation has been used
to introduce the concept of control transformations. In section 2.2.2 an overview of
some other control transformations was provided. The bene�ts as well as the drawbacks
related to the di�erent ways of optimizing performance has also been discussed. In
section 2.2.3 some summaries of selected papers dealing with control transformations
was given. Some of the selected papers present ways for analyzing access patterns,
and �nding the best suited transformations to optimize performance. When possible,
multiple transformations are applied to the same application code to obtain the best
performance within certain limits. Other of the reviewed papers present a widely used
matrix and vector representation for describing memory layout, transformations, data
dependencies and subscripts.

2.3 Memory Layout Transformations.

2.3.1 Introduction.

In the previous chapter the use of control loop transformations was described. This
kind of transformations changed the iteration order in loops, thereby altering the ac-

2.3 Memory Layout Transformations. 18

cess patterns in order to e�ciently exploit reuse, for a particular layout of the data in
memory. The use of memory layout transformations however, consists of a kind of in-
verse approach. This kind of transformations leaves the iteration order unchanged, and
attempts instead to choose a layout of data or instructions in memory, that suits the
particular access patterns. The use of memory layout transformations, thus involves an
analysis of an applications speci�c access patterns, followed by a layout strategy that
based on the analysis optimizes instruction or data cache reuse.

When dealing with memory layout of arrays a distinction between row-major, column-
major or tile-based memory layout is usually made. Row-major format is the most com-
mon form of layout, and it is usually the applied mapping style in compilers. In this form
the elements of a row are placed in consecutive loacations in memory. This mapping is
opposed to column-major format in which the elements of an array column are placed
next to each other in memory. In a tile-based layout the elements of a tile of an array
with speci�ed tile-dimension lengths, are placed in consecutive locations in memory.

To illustrate the use of memory layout transformations a very simple example will
be given here. The example is similar to the one presented in section 2.2.1 by which the
concept of control loop transformations were introduced. Provided that the array A is
stored in row-major format, the accesses in the following piece of code will exhibit very
little spatial reuse :
Original loop :

A[n][m]

for i=1 to N do

for j=1 to N do

A[j][i] = A[j][i] + 1

In section 2.2.1 the cache reuse was signi�cantly improved by interchanging the two for-
loops. Employing a column-major mapping of the A array into memory will have the
same e�ect, as this also will result in stride 1 accesses in the innermost loop.

Memory layout and control loop transformations both have the desirable property
of reducing the memory bandwith requirement for a particular application. The use
of memory layout transformations can sometimes however, be more powerful than loop
transformations, as their use is not constrained by data dependencies. That is, no
reordering of the execution order whatsoever is performed. Only the arrangement of
data or instructions in memory is a�ected, hopefully resulting in an improvement of
cache reuse.

In the area of memory layout transformations a natural distinction between instruc-
tion and data layouts exists. When dealing with the mapping of data into memory the
techniques for handling scalar variables and arrays also di�er. The research performed in
the area of array layout is far more comprehensive than the corresponding work pertain-
ing to scalar layout. This is because the potential performance gains are larger for arrays.
The complexity of the array handling algorithms are also correspondingly greater. Fur-
thermore the use of padding is a widely used technique when dealing with array layouts.
This technique consists of inserting empty (dummy) elements between the declarations
of arrays, or after each column of a particular array. This is done in order to reduce
con�ict misses.

In the following sections some in-depth described approaches for performing memory

2.3 Memory Layout Transformations. 19

layouts in di�erent areas, will be presented. In the next two sections a thorough descrip-
tion of scalar and array layout techniques will be conducted. The use of padding will
be described in section 2.3.4. Some references and less exhaustive descriptions of work
done in the �elds of tile-based layout and instruction layout will follow in the two next
sections. An in-depth description of some dynamic memory layout techniques will be
given in 2.3.7, followed by some concluding remarks in section 2.3.8.

2.3.2 Scalar variables layout.

In [34] a strategy for organizing data in o�-chip memory in order to reduce memory
tra�c is presented. By applying the algorithm to a speci�c application, a bene�cial
mapping of scalar variables into memory can thus be obtained.

The employed methods assume that the branching probabilities as well as the loop
bounds are known. If the loop bounds are not �xed, approximations might be obtained
by pro�ling. Estimations of the branching probabilities will of course make it possible to
achieve a higher accuracy. It is also assumed that register allocation has been performed,
and that the spilled variables have been marked. Furthermore the techniques does not
consider the interference of potential operatingsystem like tasks.

The overall strategy of organizing the scalar variables for a particular application
involves the following steps :

1. The application is translated into an access sequence graph. The nodes represents
memory references and the edges indicates a �ow of control between the two nodes.

2. From the access sequence graph a closeness graph containing the same nodes (e.g.
memory references) is build. The weights of the edges between nodes in this graph
should be a measure/metric for the importance of keeping the two nodes in ques-
tion, in the same cache-line sized area in main memory.

3. Partition the variables into clusters, so that the variables in each cluster can �t
into a line in the cache. This is done by analyzing the closeness graph.

4. A cluster interference graph is build. The nodes in this graph represents clusters,
and the weight of the edges indicates the desirability of mapping the two clusters
into di�erent cache lines.

5. Based on the information in the cluster interference graph the clusters are assigned
pro�table memory locations.

The above steps will in the following be described in greater detail. To illustrate the
di�erent steps the following fraction of code will be used:

....

a = 0;

b = 1;

if(c<5){

d = e;

f = 8;

}

else{

for(int i=0; i<4; i++){

2.3 Memory Layout Transformations. 20

g = 7;

h = i;

}

}

j = 5;

....

A node in the access sequence graph might represent either a store or a read, thus no
distinction is made between those two types of memory references.

The directed edges in the graph indicates a �ow of control from the one node to
the other, and they also carry a weight. This weight indicates the number of times
control is expected to �ow to the target node from the current node, when control is at
the current node. For consequtive memory references the weight is 1, whereas the two
outgoing branching edges stemming from an if-statement (and preceeded by a memory
reference) might each have a weight of 0.5. Similarly the last memory reference in a
loop should have an edge pointing to the �rst memory reference in the same loop with
a weight equal to the iteration count minus 1. How these rules are interpreted in the
context of the former shown code fraction, is illustrated in �gure 2.2.

A

B

D

E

F

G

H

I

J

1

½ ½

1

1

1

1

1 1

3

Figure 2.2: Access sequence.

The closeness graph consists of exactly the same nodes as the access sequence graph.
The weights of the edges generated when building this graph should indicate the degree
of desirability for keeping two variables in the same "cache-line" area in main memory.
The weights of the edges are initialized with the value 0.

When building the closeness graph from the access sequence graph a simple distance
function is used as a metric to determine the correlation between two references. The
distance between two nodes u, v is denoted distance(u,v) and is de�ned as the number
of variable nodes existing on a path between u and v including u and v. The path could
be in either direction.

The correct weights are now assigned to the edges of the closeness graph by traversing
through the access sequence graph, while considering each node in this graph. For all
the nodes(v), that are at a distance less than the cache line size away from the node(u)

2.3 Memory Layout Transformations. 21

in question, the expected number of control �ows (according to the directed edges)
between these two nodes are recorded. This value is then added to the weight of the
edge connecting u and v in the non-directed closeness graph. If there also exists a �ow
of control from v to u and this path has a distance less than the cache line size the (u,v)
edge will receive an additional contribution to its weight when the processing of v is
performed.

The preliminary version of the resulting closeness graph constructed from the former
shown access sequence graph is given in �gure 2.3. The graph has been build while
assuming that the cache on the target processor is able to hold a maximum of three of
the used scalars.

A

B

D

E

F

GH

I

J

1
½

½ ½½
½

½

11
1

1
1

1

4
4

4

1

Figure 2.3: Closeness graph.

The next step is to group the variables into clusters with sizes equal to the cache line
size. This is done by examining the closeness graph and selecting the clusters in a way
that maximizes the total edge weights of all the clusters. Thus the clustering is basically
a partitioning of the closeness graph, where the aim is to make the "cuts" separating the
clusters at the low weight edges. As a high edge weight in the closeness graph indicates
a good chance of exploiting spatial locality among the scalars, this partitioning criterion
should result in less compulsory data cache misses. Performing an exhaustive search
of the closeness graph in order to guarantee an optimal solution using this technique is
however too costly. Instead an approximation algorithm for grouping the variables into
clusters is employed. The steps involved are listed in the following :

1. For each node (u) in the closeness graph (V) calculate the sum S(u) of the edge-
weights for all the edges connected to u.

2. Select the node with the highest S(u), and let it be the �rst element of a new cluster
(C).

3. The variables with the highest sum of edge-weights for edges connected to nodes in
C, are successively added to C. When the cache line size is reached or all variables
in V has been clustered, the algorithm terminates.

4. All edges connecting C with the remaining closeness graph are deleted, and all S(u)
values for the remaining nodes are updated. The clustering is continued at step 2.

2.3 Memory Layout Transformations. 22

After the clustering of variables has been performed, a so called Cluster Interference
Graph (CIG) must be build. In this graph the nodes represents clusters, and the edges
indicate the importance of storing clusters at memory locations that do not map into
the same cache line. The CIG is also non-directed.

The algorithm for constructing the Cluster Interference Graph starts by generating
one node corresponding to each cluster. The edges and their weights are then generated
by performing a conversion of the former used Variable Access Sequence Graph (VASG)
into a Cluster Access Sequence Graph (CASG). The conversion simply consists of re-
placing each node in the VASG by the cluster that contains the variable represented by
the node. The conversion of a Variable Access Sequence Graph into a Cluster Access Se-
quence Graph is illustrated in �gure 2.4. For simplicity another Access Sequence Graph
than the former, is used in this example.

BA C D E F

x y x x z y

X Y X X Z Y

VASG

CASG

Figure 2.4: Generating a Cluster Access sequence Graph from a Variable Access Sequence
Graph.

The edge weight between two nodes in the CIG is now calculated as the number
of times the appearance of the same two nodes alternate in the CASG. An example of
generating such a CIG from the CASG in �gure 2.4 is shown in �gure 2.5.

Y

X

Z
2

3 1

Figure 2.5: An example of a Cluster Interference Graph. (CIG)

The �nal step in organizing the scalar variables in main memory, consists of the
assignment of the generated clusters to memory locations. In order to minimize the
potential number of con�ict misses the information inhabited in the Cluster Interference
Graph should be exploited. A high edge-weight on the edge connecting two nodes in-
dicates a strong desirability for letting the two corresponding clusters of variables, be
mapped to di�erent cache lines. Consequently the aim of the memory assignment phase
can be formulated as follows :

Assume that all the nodes that are mapped to cache line i have a total weight-sum of
W(i) on the edges connecting these nodes internally. The assignment of locations should
be done in such a way that

P
lineW (i), where the summation is performed over all the

cache lines, is minimized.
The algorithm used to perform this last step, calculates the former described S values

(sum of incident edge weights) for each of the clusters in the CIG, and uses this metric

2.3 Memory Layout Transformations. 23

for determining the order in which adresses are assigned. The clusters are then assigned
to a page in memory that in size equals the number of sets in the cache times the cache
line size. Each cluster is in the given order assigned to an adress that minimizes the
potential number of con�icts, when mapped into the cache.

2.3.3 Array Layout.

Some of the problems involved in organizing the memory layout of arrays, in order to
minimize cache con�ict misses, will now be adressed. Theories for carrying out such
analytical steps can be found in [18] and [34].

When dealing with arrays we do no longer take the possibility of compulsory misses
into account as most arrays are much larger than the typical cache line size. Thus, there
is no clustering involved when organizing arrays, as they are reluctant to �t into a cache
line. The technique described here handles only the layout of one-dimensional arrays, in
order to make the description simple.

The �rst step involved in determining a bene�cial memory layout for the arrays of a
speci�c application, consists of constructing an interference graph. This graph is simply
build by generating a node for each array in the code, and connecting the nodes whose
corresponding arrays are accessed in the same loop by edges. The weight of the edges is
set to be the loop iteration count. If two given arrays are both accessed in di�erent loops,
the edge weight should equal the sum of those loops loop-bounds. This interference graph
is used to select the the order in which memory adresses are assigned to the arrays.

For calculating the number of con�icts arising from a particular memory assignment
to a speci�c array (u), a function denoted AssignmentCost is used. This function �nds all
the other arrays that have already been assigned a memory location and are connected to
u by a nonzero weighted edge. For each of those arrays the additional cost (i.e. number
of con�icts) is calculated if the array turns out to map to the same cache line as u. This
can be calculated because the starting adress of both arrays, as well as the di�erence in
their indexations, are known. Provided that they map to the same cache line the cost is
calculated as the number of times references to the two arrays alternate in the loop they
are accessed, times the loop iteration count.

The algorithm performing the actual assignments of memory adresses uses the sum of
incident edge weights for each array, to determine the order in which to assign adresses.
This is the same metric that was used earlier for clustering scalar variables (denoted S(u),
for array u). In decreasing order of S(u) values the following procedure is performed for
each array u :

For some speci�c starting adress and in steps of the cache line size the assignment
cost of u to this adress is calculated using AssignmentCost. If this cost is less than
the minimum cost found so far the cost is recorded along with the adress. When the
adress examined again maps to the same cache line as the starting adress the iteration
terminates, and is assigned the adress associated with the minimum cost. The location
in memory where u ends is now calculated and is used as the starting adress for the
memory assignment of the next array.

2.3 Memory Layout Transformations. 24

2.3.4 Array Padding.

Padding is a memory layout technique that consists of inserting dummy (empty) data
elements in between data declarations, in order to force certain data-blocks to be mapped
into di�erent cache lines. This technique is especially useful when for instance array
accesses to di�erent arrays or di�erent parts of the same array, continuously causes
con�icts through the entire iteration of a loop. Such an unfortunate memory layout of
arrays could cause many evictions of data that otherwise would have been reused. Let
us for instance consider the following loop in which only two arrays are accessed :

for i=1 to N do

... = A[i] + B[i]

Let us assume that both A's and B's starting points is at a cache line boundary, and that
the placement of the arrays in o�-chip memory causes the �rst element of each array to
map into the same cache line. Provided that the cache uses a direct mapping strategy,
the number of o�-chip accesses will in this case be equal to the number of accesses, and
the performance is as a result thereof seriously degraded. Using a padding that separates
the two arrays further by a distance equal to the cache line size will however enhance
performance signi�cantly. This form of layout is actually similar to the steps performed
in the previous section, where memory layout of arrays was adressed.

In the following the use of padding for tiled loops will be illustrated. At �rst some
considerations for performing a padding of single arrays will be presented. This is fol-
lowed by the presentation of a technique for handling multiple arrays. A more thorough
description of the use of padding can be found in [18] and [34].

Single arrays.

To illustrate the e�ectiveness and the use of padding in this context, the following sce-
nario will be considered. Imagine that we are dealing with a direct mapped cache con-
sisting of 16 sets, where each line has a size of 8 data elements. Furthermore a tile size
of 8X8 elements have been selected for the tiled loop in which the only array involved
is a square 1024 element array. The tile of 64 elements certainly �ts in the cache (along
with the rest of the working set), but the di�erent parameters in this scenario results in
an unfortunate mapping of the data into cache as severe self-interference con�icts will
arise. This is illustrated in �gure 2.6.

As shown in �gure 2.6 the �rst and the �fth row of the tile will map to the same
cache line. Furthermore, also the 2.,3. and 4. will con�ict with the 6.,7. and 8. row
respectively. However, by using padding all of the above con�icts can be avoided. A
choice of padding that would ensure no self-interference con�icts during the processing
of any of the 16 tiles inhabited in the array, is shown in �gure 2.7.

One can be convinced that no con�icts will occur within any of the 16 tile iterations,
by realizing that for any of the 16 tiles, the fetching of each of the 8 tile-rows involves
adressing elements that are at a �xed distance apart. That is, the distance between the
adress of the �rst element in tile-row no. x, and the adress of the �rst element in tile-row
no. x+ 1 is the same for all 16 tiles. So if no con�icts would occur during the iteration
over one single tile (which has just been illustrated), then no con�icts will occur within
the processing of each of the remaining 15 tiles.

2.3 Memory Layout Transformations. 25

Set no. 1

Set no. 2

Set no. 3

Set no. 4

Set no. 5

Set no. 6

Set no. 7

Set no. 8

Set no. 9

Set no. 10

Set no. 11

Set no. 12

Set no. 13

Set no. 14

Set no. 15

Set no. 16

32 data−elements

8

CACHEARRAY

Figure 2.6: An example of self-interference in a tiled array.

One of the necessary conditions for using this kind of reasoning is, that the number of
columns in the tile must be a multiple of the cache line size. This is as earlier mentioned
ensured during the tile selection.

In order to �nd an appropriate padding of the involved array [34] uses an exhaustive
algorithm that systematically explores the behaviour of the application for di�erent
padsizes. An initial step in the algorithm ensures that all the rows of the array have
start adresses at a multiple of the cache line size. This adress should also be at a multiple
of the cache line size, from the start adress of the �rst row. This is done by a padding of
the array (if neccesary). The reason for performing this initial padding is that it makes
the mapping into cache lines much more predictable. It is thus su�cient to check for the
absence of self interference con�icts in a single tile of the array, to ensure absence of self
interference con�icts for all the tiles (cf. the above discussion).

The next step in the algorithm consists of successively exploring the mapping into
the cache for di�erent padsizes. Once a padsize that ensures no self interference con�icts
is found, the algorithm terminates returning this padsize. The algorithm is outlined in
the following :

if (NoOfColumnsInArray mod LineSize == 0)

then InitPad = 0;

else

InitPad = LineSize - (N mod LineSize)

for PadSize = InitPad to CacheSize step LineSize

status = OK

Initialize LinesArray[i] to zero for all i where i<(number of lines in cache)

for i=0 to TileRows

for j=0 to TileColumns step LineSize

k=(i x (NoOfColumnsInArray + PadSize) + j) mod CacheSize

if (LinesArray[k/LineSize] == 1)

status=CONFLICT

else

2.3 Memory Layout Transformations. 26

Set no. 1

Set no. 2

Set no. 3

Set no. 4

Set no. 5

Set no. 6

Set no. 7

Set no. 8

Set no. 9

Set no. 10

Set no. 11

Set no. 12

Set no. 13

Set no. 14

Set no. 15

Set no. 16

32 data−elements

8

CACHEARRAY

PAD

Figure 2.7: Avoiding self-interference by the use of padding.

LinesArray[k/LineSize]=1

if (status==OK)

return PadSize

As shown the mapping of all the tile-elements into the cache are examined by iterating
over the tile in steps of the line-size, and recording the numbers of all the occupied lines
in the array LinesArray.

Multiple Arrays.

Dealing with loop tiling when multiple arrays are involved can be accomplished by incor-
porating minor extensions to the single-array technique. It is assumed that the involved
arrays have both identical sizes and tile sizes.

Consider the two arrays represented by the two large squares, and the inhabited tiles
in �gure 2.8.

R R

S
Y

X X

Y

Figure 2.8: Two tiled arrays.

2.3 Memory Layout Transformations. 27

As shown in the �gure the array dimensions are S �R and the tile sizes are denoted
X � Y . The steps involved in computing pad sizes and assigning array adresses for
ensuring absence of self interferences (within each tile) and cross interferences (among
di�erent tiles) are :

1. Construct a new tile by placing the tiles involved next to each other, thereby
forming a new rectangular shaped tile as shown in �gure 2.9. The tile should be
as small as possible.

2. Now consider this new tile as one coherent tile inhabited in a single array, and
perform the padsize computation described in the previous section for this array.
The added padding to this �ticious array should be added to both the initial arrays
resulting in their new sizes becoming S � (R+ padsize).

3. The last step consists of placing the two arrays in main memory at locations result-
ing in the distance between them being equal to ((X�(R+padsize))\modolus00CacheSize)
when mapped into the cache.

X

R + PAD

PAD

Y

X

Figure 2.9: Padding of more than one array.

This placement of the arrays will together with the computed padsize in step 2 ensure,
that both self-interference as well as cross-interference con�icts is avoided in each tiled
loop.

2.3.5 Tile-based Layout.

In this section an approach for carrying out tile-based layout of arrays originally presented
by [35], will be presented. Some of the other techniques that have been described in this
paper will also be presented.

In [35] methods for enhancing performance as well as techniques for reducing power
consumption in o�-chip memory accesses are presented. Di�erent hardware implemented
memory access modes are in coherence with software transformations exploited to yield
considerate performance gains. Furthermore some techniques for reducing power con-
sumption in o�-chip memory, by changing the data layout for arrays, are presented.

Apart from the commonly used memory access modes such as single word reads or
writes, other modes can usually be employed by modern DRAMs. For instance Read-

2.3 Memory Layout Transformations. 28

Modify-Write (RMW) mode - where a single word is read from an adress in memory,
modi�ed, and written back to the same adress. Reads or writes of successive words in
the same page can also be performed, as well as RMW operations on successive words
in the same memory page.

These di�erent ways of accessing memory data are exploited by the techniques pre-
sented by [35] in order to improve performance for speci�c applications. In order to make
good use of the memory access modes, the data access patterns inhabited in the partic-
ular applications are analyzed, and a possible reordering of the accesses are performed.
Di�erent kinds of loop transformations might also be applied.

The techniques for reducing power consumption in o�-chip memory consists basically
of extensions to previous work in the area of minimization of o�-chip memory accesses.
It should be noted here that methods for reducing the number of cache misses and hence
the number of main memory accesses in most cases also will have the bene�cial side
e�ect of reducing the power consumption [35]. The described approach is very similar to
the well known performance oriented compiler optimizations, as the spatial locality and
the regularity in the memory accesses is exploited.

In order to reduce the power consumption of the o�-chip memory system, the number
of transitions on the memory adress bus between two successive accesses must also be
reduced. This task is accomplished by examining and analyzing the array reference
patterns and choosing a suitable mapping of data to the main memory, based on this
analysis. The di�erent mapping styles employed are either row-major, column-major or
tile-based mapping. This approach is as mentioned almost identical to the techniques
aiming at maximizing data cache reuse, by dividing the iteration space of loops into
tiles. In this context however, the criteria for determining the exact mapping of data
into memory should primarily reduce the power consumption.

In addition to these memory layout optimizations a hardware implemented Gray
Code Converter is also used to further reduce the bus transition count.

2.3.6 Instruction Layout.

In [45] a method for performing code layout transformations on applications targeted for
database- and web- servers is presented. The described methods are applicable for what-
ever kind of application one might wish to optimze, but the proposed algorithms have
been designed with this particular purpose in mind. More speci�cally the aim of the pre-
sented tool is intended to improve instruction cache performance for OnlineTransaction
Processing Workloads (OLTP) on database- and web- servers, as this area is relatively
unexplored.

The actual code optimizations are implemented with the aid of Spike, which is a
program for optimizing executables for the Alpha architecture. Spike allows for di�erent
code layout transformations to be performed at di�erent levels in the transformation
phase.

The proposed approach uses pro�ling for performing the actual code layout optimiza-
tions. These are obtained from speci�c pro�ling tools that uses either instrumentation
or sampling, and returns execution counts for the di�erent basic blocks. A call graph
that illustrates the control �ow between procedures in the application is then obtained
using Spike. The eges in the graph is a metric for execution frequency. A �ow graph that

2.3 Memory Layout Transformations. 29

provides information on the internal �ow of control in each procedure, is also constructed.
The next step in the transformation algorithm consists of chaining the basic blocks

within each procedure together. The information inhabited in the �ow graph is used to
determine the internal ordering of the di�erent basic blocks, so that successive blocks
that are frequently executed is placed next to each other. Furthermore the layout of the
blocks is done while attempting to reduce the number of conditional branches taken, and
eliminating frequently executed unconditional branches.

After the basic block chaining has been performed each procedure is divided into
di�erent code segments, each ending with an unconditional branch or return. This
partitioning step divides the procedures into smaller parts than is possible with the use
of Spike. The advantages of this approach is greater �exability and ultimately better
perfomance. Each code segment should consist of a few basic blocks that are likely to
be executed sequentially.

The �nal step in the code layout optimization algorithm is to chain the code seg-
ments together, while obtaining an adjacent placement of segments with internally large
execution counts. The optimization techniques has been able to reduce instruction cache
misses by upto 65%.

2.3.7 Selection of Dynamic Memory Layouts.

In this section some of the work presented by [22] will be presented. This research
involves an alternative approach for carrying out memory layout transformations. In [22]
a dynamic approach for exploiting the data locality of a speci�c application is presented.
The aim of the introduced method's is to change the memory layout of the di�erent
datastructures during the the execution of the program, with the purpose of improving
performance compared with the earlier known static transformation algorithms, for which
all the memory layouts are done at compile-time. Such an approach is useful when a
program accesses the same datastructures at di�erent program points during execution,
and when at the same time, the access patterns at these points requires di�erent memory
layouts for exploiting spatial locality. The strategies presented determines when an array
that is accessed in di�erent regions of the program needs di�erent memory layouts in
some of these, and inserts the necessary code to perform the layout-transformation at
run-time. In other words, the arrays representation in memory may be changed during
the course of execution. The implemented algorithms and the taken approach will in the
following be described in further detail.

Any kind of datastructures can be transformed to improve the data locality of the pro-
gram, using the authors tool, but in order to keep things simple only multi-dimensional
arrays will be treated here. Furthermore the control structures discussed are limited to
sequencing, nested loops and conditional constructs (i.e. if statements), that are not
allowed inside loops.

In trying to improve performance using the dynamic optimizing techniques, the tool
still employs earlier known so called static optimizing strategies. Those used in this
context employs a combination of loop- and data- transformations. Assuming that a
single nest is to be treated, the �rst step is to determine the maximum inherent temporal
reuse present. Hereafter a suitable loop transformation is applied to exploit this reuse.

The next step involves dividing the arrays in the (innermost) loop into two cate-

2.3 Memory Layout Transformations. 30

gories. One containing the arrays with temporal reuse, and one containing those arrays
that do not exhibit temporal reuse. No transformations are applied to arrays in this �rst
group, as they already exhibit temporal locality. The memory layout of the arrays in
this last group however, is now transformed by applying data transformations, to exploit
spatial locality for these data-sets. This must of course be done with the former used
loop transformation taken into account.

Abstract program representation.

The datastructure used to represent a program is a directed graph. Each node in the
graph corresponds to a loop or a possibly nested loop. Each directed edge e from a node
v to a node v0 indicates that there could be a control �ow from the nest represented by
v to the nest represented by v0. Associated with each edge (v; v0) is also a weight which
is the product of the estimated number of control transfers from v to v0 (denoted fvv0

for frequency) and the estimated number of exposed cache misses in v0 (denoted mv0).
The name given to this sort of graph is Nest Flow Graph which is abbreviated NFG.

To illustrate both the use of the NFG datastructure as well as a computation of the
frequency for a particular edge, a short code fragment and its corresponding nest �ow
graph will be used. The NFG is shown in �gure 2.10 and the (pseudo)code from which
it has been derived is presented in the following. In this code a nested loop is simply
represented by the string "Nest", followed by a label for this nest.

Nest V0

L0: Nest V1

if(...)

Nest V2

else

L!: Nest V3

Nest V4

if(...)

goto L1

Nest V5

if(...)

goto L0

In order to calculate the frequency for a speci�c edge we need to consider to factors.
One is the probability of the branches leading to the particular edge being taken. The
other is the number of iterations of all the loops enclosing the edge. Suppose we wanted
to determine f13 for the shown program-fragment. This is done in the following way:

After the v1 node a conditional branch might lead to the v3 node or it might not. The
probability of either of these choices is considered to be 50%. The only loop enclosing
the (v1; v3) edge is the one going from v5 to v1, and if this loop iterates N times then
f13 can simply be computed as 0:5 �N . An important observation to make at this point
is, that the number of iterations in the target- nest represented by the node v3 has not
yet been taken into account. Of course this number has no bearing on the estimated fre-
quency of control �ow to v3, but it certainly is a factor in determining the importance of
the nest v3. This iteration-count is instead incorporated into the mv0 parameter, which
is a measure for the estimated number of exposed cache misses, for a complete execu-

2.3 Memory Layout Transformations. 31

V0

V1

V2

V3

V4

V5

Figure 2.10: An example of a Nest Flow Graph (NFG).

tion of the innermost loop. If we assume that the loop enclosing just v3 and v4 iterates
N 0 times, then fv3v4 can also be computed. The value of this frequency will be 0:5�N �N 0.

Algorithm.

The method employed to estimate the number of exposed misses mv for a given loop v,
is taken from a technique presented by [31]. The approach is to �rst calculate the esti-
mated number of exposed misses for each particular reference in the loop. This number
is also referred to as the reference cost.
The way to calculate the reference cost are divided into three cases :

1. If an array reference in a loop has temporal reuse, then the cost is 1.
2. If an array reference has spatial reuse, the cost is given by : trip/(cls/stride), where

trip is the number of iterations of the innermost loop. Cls is the cache line size in
data items, and stride is the step size in data elements of the innermost loop.

3. If the reference in the innermost loop has neither temporal nor spatial reuse, the
cost is considered to be equal to the number of iterations (trip).

In the case of spatial reuse we can consider the entity stride/cls, as a measure for the
estimated number of cache misses per iteration. This number multiplied with trip must
of course be equal to the reference cost.

For determining the array layouts at di�erent program points, the static optimizing
technique described by [22] is used along with the cache miss estimation technique just
described. For illustative purposes we will consider a simple program which consists of a
sequence of consequtive loops without any branches whatsoever. The NFG for this code
is shown in �gure 2.11.

V0 V1 V2 V3 V4

Figure 2.11: A simple example of a Nest Flow Graph.

2.3 Memory Layout Transformations. 32

The dynamic approach �rst uses the static locality optimizer described by [22] to
�nd all the loop-nest transformations for v0 - v4 with the purpose of improving data
locality. By applying these transformations to the code you would get what would
normally be returned by the static optimizer. In the dynamic approach however, these
transformations are for the time being just recorded.

The next step is to estimate the programs total number of cache misses (this number
will be referred to as cost04). Hereafter all the edges are checked, and the one with
the highest value is selected as the "cut point". This is the point where it might be
bene�cial to change the layout of some speci�c array. At this point in the program
a temporary partitioning of the program into two parts are made. The purpose is to
check whether it is possible to obtain higher performance, if the static optimizer is run
on the two partitions separately. We can do this as long as we also remember to check
whether such an approach will require a change in the memory layout between these two
partitions. This would of course be the case if the same array had been transformed into
two di�erent layouts, in the two program-parts.

Suppose that the selected cut point turned out to be the edge (v2; v3), thereby divid-
ing the program into the two partitions consisting of the nests v0,v1,v2 and v3,v4. This
simple partitioning is illustrated in �gure 2.12. The next step would then be to run the
static optimizer on those two partitions, resulting in some cost values cost02 and cost34,
which represents the estimated number of misses. Furthermore some loop- and layout-
transformations are carried out, if this proves bene�cial. Finally the overhead introduced
by performing the layout transformations (somewhere near the cut point) should also be
computed, and it could be checked whether the new total cost is lower than the former.
This would be the case if cost02 + overhead23 + cost34 was lower than cost04, where
overhead23 represents the overhead introduced.

V0 V1 V2 V3 V4

Figure 2.12: A partitioned Nest Flow Graph.

If the use of the memory layout transformation didn't improve performance relative
to the static approach, then the code resulting from applying the static transformations
would also be the result of using the dynamic approach. If however the layout transfor-
mations resulted in a performance gain, then the current partitioning together with the
former found layout- and loop- transformations and its total cost would be recorded as
the best solution found so far. A subsequent further partitioning of the NFG would then
be tried in the attempt to achieve even better performance. The approach for doing this
is similar to the method just described.

In [22] an algorithm for selecting the optimal points of partitioning the NFG, is also
described (selection of the cut points). This is not a trivial problem as the branches in the
graph allows several possible cut points which all must be examined. Once the memory
layouts of the data, which might vary at di�erent program points, have been determined,
all that is left, is to carry out the appropriate dynamic layout transformations. This is
of course provided that the program could bene�t from di�erent memory layouts of the
same data. As these kinds of transformations are pure overhead the incentive to make

2.4 Memory hierarchy design. 33

them e�cient are very strong. To perform this task in the best possible way, an algorithm
which tries to transform several arrays simultaneously, whenever this is possible, is used.
The algorithm also makes sure that no unneccesary transformations are ever applied
(eg. never performing a transformation prior to a branch if the use of the transformation
depends on whether it is taken or not).

2.3.8 Concluding Remarks.

In the current chapter some di�erent aspects of memory layout techniques have been
adressed. Some analytical approaches for determining suitable memory assignments to
scalar variables and arrays was presented in sections 2.3.2 and 2.3.3 respectively. In the
case of scalar variables the order of accesses was examined, and those which exhibited
tendencies of being accessed consequtively was mapped to the same cache line. The
layout of arrays was performed in a similar way, where the number of accesses to arrays
mapping into the same cache line, in the same iteration, was minimized. This was
accomplished assigning appropriate starting adresses to the arrays, thereby resulting in
a minimization of con�ict misses.

The use of padding was described in section 2.3.4, where a technique for padding
arrays in tiled loops also was presented. Less comprehensive examples of tile-based
layout and instruction layout was given in sections 2.3.5 and 2.3.6 respectively. The
tile-based layout of arrays was performed with the primary goal of minimizing power
consumption.

Finally an algorithm for performing dynamic memory layout originally presented
by Mahmut Kandemir was described. This approach involves the insertion of memory
layout altering code, which is executed at run time.

2.4 Memory hierarchy design.

2.4.1 Introduction.

As the speed of processors continues to grow faster than the speed of memory in modern
embedded systems, memory accesses form an increasing bottleneck in modern complex
systems. Consequently the penalties associated with a cache miss becomes larger and
larger relative to processor performance, and the overall system performance becomes
very sensitive to cache parameters.

Modern processor based embedded systems allow the designer to costumize the on-
chip memory to suit application speci�c requirements. This developement in integration-
technology of modern day embedded systems is very useful, as especially cache- and
cache-line- sizes as well as associativity are determinant factors for the overall system
performance.

When parameters such as bus-widths, replacement policies and the use of additional
on-chip memory levels, aside from the traditional cache, are also taken into account,
the design space becomes signi�cantly large. To be able to cope with the extremely
time consuming task of examining these multiple combinations of parameter values,
which is necessary to obtain an application speci�c designed cache, certain estimation
techniques are put in to use. By applying these techniques to a particular application for

2.4 Memory hierarchy design. 34

di�erent values of the tunable cache parameters, important information pertaining to the
execution time and power consumption, can be obtained. The set of cache parameters
that yielded the best results, can then be chosen for the �nal memory con�guration.

Deciding which combination of cache parameters that should determine the �nal ar-
chitecture might also force the making of a tradeo� between power and performance.
That the need for such a tradeo� actually do exist, when dealing with the tuning of
certain parameters, and for certain applications, will become apparent in the following
section. This section also describes earlier papers attempt do determine the character-
istics of di�erent applications for varying memory con�gurations (especially line-sizes).
In section 2.4.3 some other factors that also have signi�cant impact on performance and
power are discussed. Some di�erent approaches for estimating performance for di�erent
memory con�gurations are presented in section 2.4.4. This is followed by an in-depth
description of an estimation algorithm in section 2.4.5. The use of static on-chip memory
and its bene�ts are discussed in section 2.4.6 along with a partitioning strategy for using
this memory. Finally some concluding remarks are given in section 2.4.7.

2.4.2 Power-Performance tradeo�s and characteristics.

In this section some of the tradeo�s between power and performance that are involved
when con�guring the on-chip memory are presented. The considered cache parameters
are mainly cache size and cache line size. Furthermore some basic characteristics for
common applications are examined, and an attempt to �nd some sort of pattern in
memory behaviour will be made.

When dealing with cache design aiming at reducing power consumption, it is impor-
tant not only to consider the power consumed by the fetching of a single block, but also
the e�ect of the cache con�guration on hit rates. Tailoring the cache to increase hit rates,
has aside from the obvious performance gain also the desirable side e�ect of decreasing
o�-chip memory accesses, which signi�cantly reduces power consumption [17].

In [15] an exhaustive exploration of the critical power consuming components in-
volved in interfacing core-based designs, is presented. Also performance and area met-
rics are considered, and the exploration of the design space includes various kinds of
core parameters, as well as the buses connecting them. More speci�cally, both CPU,
instruction-cache, data-cache, o�-chip memory and buses are considered. Moreover sys-
tem parameters such as cache sizes, line sizes, associativity, o�-chip memory size, bus
encoding schemes, and bus widths at cross cores, are examined.

The results show that except when dealing with on-chip bus con�guration, it is possi-
ble to select the other core parameters in a way that minimizes both power consumption,
and execution time in most cases. When dealing with the con�guration of the on-chip
bus however, the results clearly indicate that a tradeo� between power and performance
must be made. Large bus widths yields good performance but increases power dissi-
pation. Not surprisingly, a reduction of the bus width decreases performace as well as
power consumption. This phenomenon is explained by the fact that smaller bus widths
results in less wire capacitance and hence lower power consumption. On the other hand
this also a�ects performance, as more bus transfers now are required to fetch the same
amount of data.

In [6] and [37] it has been shown that the performance for any of the involved bench-

2.4 Memory hierarchy design. 35

marks improves signi�cantly with increasing cache size, until a certain point. That is,
when a certain cache size is reached, the reduction in cache misses for even larger caches
becomes much smaller, and the incentive for increasing the on-chip memory is less. The
tests carried out by [6] also show that the energy consumption decreases at approxi-
mately the same rate as the execution time, when the cache size is increased. At about
the same point where the performance gain tends to decrease, the power dissipation
increases slightly, as one might expect. That is, a point is reached where the advantages
of increasing the cache further are smaller, and at this point a slight increase in power
consumption is observed. This can be explained as follows. The increase in cache size
contributes at this point with an energy consuming component which is larger than the
power gains stemming from the reduction in cache misses, that the larger cache gives
rise to.

These results are expanded to also include e�ects of varying the cache line size in
[47] and [6]. In [47] and [6] the problems involved in simultaneously performing op-
timizations with respect to both loop transformations, cache con�gurations, and data
placement strategies, are adressed. The presented methods perform the optimizations in
the listed order with the aim of improving performance and minimizing area and energy
consumption due to the memory system. The simulated tests shows that when dealing
with the tuning of cache sizes, and especially cache line- sizes to �t performance and en-
ergy requirements, the e�ect on these two entities can be quite di�erent. Depending on
the application in question relatively small cache sizes will result in large miss penalties
both cycle- and energy- wise. An appropriate larger cache can however, usually be found
which signi�cantly improves performance and energy dissipation, for almost any line size
(the line size has however still a great impact). A further increase in the cache will at
some point usually result in greater energy consumption, and the cache size should thus
be chosen somewhere in the area before this happens. This is where both performance
as well as energy dissipation lie within reasonable bounds.

Apart from the sections of the cache design space where the line size is unrealistically
large compared with the cache size, a very clear correlation between the performance im-
provements, and the energy consumption seems to exist for varying line sizes. The tests
simply show that the cycle count decreases and the energy dissipation increases for in-
creasing line sizes. That the performance is improved by the selection of larger line sizes
(as long as they are not to big) should come as no surprise, as this allows for better spatial
reuse at little additional time costs. The reason for the increase in energy consumption
stems from a number of factors. First of all the energy-wise performance does not bene�t
from the overall reduced time costs, of bringing larger blocks of data into the cache at
the same time, as it is relatively independent of the access time to memory. Secondly
as the memory access penalties has little e�ect on energy consumption, it bene�ts more
from the fetching of smaller data blocks where the potential for spatial reuse is greater.
Conversely the selection of larger cache lines will instead introduce an increasing amount
of energy consuming transitions on the buses and in o� chip circuitry.

Concluding Remarks.
When dealing with the con�guration of cache sizes the results from the presented papers
in this section clearly indicate that an acceptable cache size which yields good power
and performance results can be obtained. Choosing the cache size that optimizes power

2.4 Memory hierarchy design. 36

consumption also implies good performance behaviour in most cases. This performance
can usually be improved by further increasing the cache size, but at this point the perfor-
mance gains are marginal. A more explicit tradeo� exists when dealing with the selection
of line sizes. In [47] the results obtained from several benchmarks roughly indicate that
large line sizes favour performance on account of power, and that the inverse situation
is the case for relatively small line sizes. According to the results presented by [15] rea-
sonable compromises between power and performance can be obtained for speci�c line
sizes. In this work the con�guration of the bus width is listed as a more critical factor,
when both power and performace objectives are taken into account.

2.4.3 Other factors.

In this section some selected results, from di�erent papers, dealing with the con�guration
of on-chip memory are presented.

Area considerations.

Designing the memory hierarchy to �t certain application speci�c requirements can nat-
urally also a�ect the amount of occupied chip-area. The extend of conducted research
for minimizing or bounding the amount of occupied area is still very limited, compared
to what has been done in order to minimize other objectives such as execution time or
power consumption. The reason for this is probably that although memory is one of
the most area contributing factors in embedded systems, increases can be allowed if this
implies better performance and lesser power dissipation. Furthermore a reduction in
power consumption has a signi�cant impact on the amount of necessary cooling devices,
which in turn impose severe size constraints. In this subsection some brief descriptions
of earlier conducted research, dealing with area aspects will be given.

In [46] techniques for �nding a memory con�guration meeting certain area and power
constraints are presented. The proposed methods allows for determining the minimum
area con�guration for bounded power, or minimum power con�guration, for bounded
area. The techniques also makes use of some of the well known loop transformations
such as loop unrolling and loop fusion, to further improve the obtained results.

In [46] a discussion of area issues pertaining to memory design is also included :
The use of multiport memories has some drawbacks, as they consume large amounts of
power, and are also very expensive. These factors makes them impractical for embedded
systems, in which single port memories are primarily used.

When dealing with the design of multiple memory banks and their individual and
total sizes, a tradeo� between power dissipation and area must be made. A large memory
module consume more power than the same memory capacity partitioned into several
smaller parts [46]. On the other hand the smaller parts occupy a combined larger area
than an equal sized coherent memory module.

In [1] Techniques for �nding memory hierarchy e�cient solutions customized to spe-
ci�c applications in embedded systems, are presented. The proposed methods aim at
reducing power and area costs by tailoring the memory con�guration to �t the ap-
plications requirements, thereby increasing data reuse. Several layers of memory are
considered and evaluated using power- and area- cost functions.

2.4 Memory hierarchy design. 37

Associativity.

The primary bene�ts and drawbacks of using di�erent degrees of associativity are [28] :

Direct mapped cache : low cost, faster hit-time, high miss rate when cache is not to
big

Set associative cache : higher cost, longer hit-time, lower miss rate

Selected papers describing both theories and results of the use of more or less associative
caches will in the following be presented.

When accessing a set associative cache more bit line transitions are involved on
average, as more than one cache line is examined. This normally results in a greater
power consumption even though the capacitance for each individual bit line is smaller
than in the case of a direct mapped cache [28]. The tests performed by [28] show that
increasing the cache size yields higher hit rates for the instruction cache, than for the
data cache. The same relative behaviour of the two caches is seen when increasing the
block size. As expected the hit rate was improved in both cases. Furthermore, bit
transition rate reductions of 33% and 12% were obtained by gray code conversions for
the instruction- and data- cache adress buses respectively.

Other cache designs aiming at optimizing the memory hierarchy are reported by [55],
that reviews designs such as MRU- and Skewed-Associative- caches. They also report of
results showing that two-way associative caches increases access times by 40-51% over a
direct mapped cache.

In [17] performance and power consumption is estimated for a number of di�erent
applications, while cache-size, line-size and associativity is varied. The results show that
a two-way set associative cache is the best choice with respect to associativity for the
vast majority of cases.

Some of the tests that have been carried out in order to investigate the impacts of
set associative caches relative to direct mapped caches, have shown that set associativ-
ity usually improves hit rates as well as performance. This seems to be the case for a
wide variety of benchmarks. One should though keep in mind, that these results have
been obtained without prior optimizing transformations on the application code. That
a direct mapped cache would be the best choice when control- and/or memory layout
transformations have been applied beforehand could very well be the case. If further-
more cache parameters such as size and line size also had been tailored to suit certain
application speci�c requirements, this conclusion could possibly be even more noticeable.

Other areas.

In [42] a technique for reducing the leakage power dissipation by turning o� unused parts
of the instruction cache is presented. This way of reducing the e�ect of leakage energy
consumption is one of the relatively unexplored areas in the �eld of power reduction
techniques [42]. This power consuming factor can for some technologies be just as large
as the switching component and should therefore not be ignored.

In [32] energy dissipation is reduced in general purpose processors by using an ad-
ditional very small I-cache (L0-cache) between the original I-cache and the CPU. The
introduced methods dynamically analyzes the access behaviour of the running program,
and uses the obtained results to guide the selection of blocks to placed in the L0-cache.

2.4 Memory hierarchy design. 38

In [25] a hardware/software co-synthesis algorithm for designing suitable memory
con�gurations along with other architecture features is presented. The work di�ers
from most of the earlier work of this �eld by, apart from performing a synthesis of
the hardware and software application parts, also to design an appropriate memory
hierarchy. The target architecture consists of a multiprocessing environment involving
both general purpose processors as well as application speci�c CPU's, such as DSP's and
other hardware components.

In the area of hardware/software co-design the research pertaining to the partitioning
of tasks between hardware and software, has so far primarily been concentrated on single
CPU architectures with customized hardware components. In the recent years however,
more and more work involving multiprocessor systems has been carried out [25].

In this section some approaches which also consider the e�ect of memory hierarchy
design on the total chip area has been presented. The issue of which degree of associa-
tivity that is most bene�cial for di�erent application has also been adressed, and results
from di�erent papers dealing with this subject was presented. The most important con-
clusion that was made from these papers was that a set associative cache generally is a
better choice than a direct mapped cache when the main objective is performance. It is
however likely that a direct mapped cache will outperform an associative cache, when
the application code have been a subject to optimizing transformations.

2.4.4 Estimation approaches.

Being able to estimate execution time and power consumption of a particular applica-
tion on architectures with di�erent con�gurations is a powerful ability, when dealing with
memory hierarchy design. Fast and accurate estimations allow the designer to perform a
much more comprehensive exploration of the design space, thereby improving the possi-
bility of �nding the most optimal memory con�guration for the application in question.
This can be accomplished by simply applying the estimation algorithms to the particular
application code for a wide range of system parameter values, as it was also mentioned
in the introduction to this chapter. The set of parameters that yielded the best results
while eventually meeting certain other requirements can then be chosen.

Trace driven simulation is another method for estimating performance and power.
This technique basically consists of running the application on a simulator while measur-
ing execution time and possibly power. It is consequently a simple but time consuming
approach. More speci�cally the approach consists of gathering adress traces from an
adress trace generator and using the traces as input to a simulator that can provide
statistics about the code. The technique is especially impractical because it is neces-
sary to obtain several program traces in order to ensure the generation of a su�ciently
descriptive pro�le of the application code [29].

Modern days complex processors and systems have made the developement of ac-
curate estimation techniques more di�cult. These microprocessors make extensive use
of instruction level parallelizing features such as pipelining and caching in order to im-
prove performance. These performance improving designs has however the somewhat
unfortunate side e�ect, of seriously degrading the predictability of applications. This
degradation is undesirable as it immensly complicates the estimation of execution time
and power consumption on these systems.

2.4 Memory hierarchy design. 39

Another area of embedded systems research commonly known as Worst Case Exe-
cution Time prediction (WCET) is also seriously a�ected by this developement. The
computation of WCET bounds are closely related to the exploration of cache design in
the sence that some sort of simulation or estimation of the application code is necessary
to evaluate the e�ect of a particular cache design. The main di�erence between the two
forms of used execution time estimations is that a safe worst case bound is less important
when dealing with memory explorations. In this case a relatively close approximation
of the execution time is su�cient as the characteristics of this entity is the important
measure. These metrics can then be used to perform clever cache design choices as it is
done in [6]. How this is done will be described further in the subsection denoted Related
Work.

In the following a short discussion of the models used when estimating power, mem-
ory behaviour and execution time is given. This is followed by some examples of the
di�erent kinds of research that have been performed in the area. Finally some summa-
rizing remarks are given.

Separating computations for estimation.

For estimating the in�uence of loop- or data- transformations, memory hierarchy design
or other hardware- or software features on power consumption, di�erent power models
have been used. A common and natural way of structuring the computation of energy dis-
sipation is to divide the calculations into o�-chip data memory accesses, o�-chip instruc-
tion memory accesses, and common operations. When dealing with memory accesses
the parameters involved in the calculations are the voltage supply Vdd, the capacitances
on the bus, decoding circuitry, ... and of course the number of o�-chip memory accesses
[56]. In some cases the power model is simpli�ed even further. When dealing with data
intensive applications (e.g. multimedia appplications) the power related to memory ac-
cesses constitutes an even bigger part, and the processor component is sometimes left out
of the model [56]. For the same applications the accesses to o�-chip instruction caches
are sometimes also ignored (left out of the model) as the major amount of the execution
time is spent in small nested loops, where evictions of instruction cache lines are unlikely.

Models intended for estimating execution time or memory access behaviour also at-
tempts to partition the di�erent computations needed, in order to simplify and clarify
the performed computations. A natural way of dividing the computations when dealing
with memory performance estimation is presented in [37]. In this work a distinction
is made between the di�erent kinds of cache misses. This also involves separating the
misses imposed by arrays, as well as scalar variables. A discussion of the bene�ts and
drawbacks that exist when performing such a modularization is given in [52]. The work
presented in that paper deals with both cache- and pipeline- models to produce safe
WCET bounds. Some other considerations pertaining to models for performing WCET
computations are also included.

Related Work.

In [6] an exploration strategy for determining the optimal size for both the instruction- as
well as the data- cache with regard to power, performance and area is presented. Instead
of performing a time consuming exhaustive search among all the di�erent combinations
of data vs. instruction cache size and total cache size, the power- performance- and area-

2.4 Memory hierarchy design. 40

characteristics of the application in question are exploited to yield optimal, and yet fast
solutions to the cache design problem. The cache design strategy exploits the in section
2.4.2 mentioned general characteristics of program behaviour and its dependence of the
cache con�guration, to let speci�c �xpoints determine the design choices. The strategy
also attempts to prioritize the the two cache types (instruction and data) in terms of
performance- and power-gains so as to achieve the best possible results.

For computing the execution time and the energy consumption [6] makes use of some
former developed tools and theories. The execution time is measured by the SimpleScalar
tool [19], and energy models originally presented by [14] are also exploited.

In [29] methods for estimating the performance of instruction caches for DSP applica-
tions is presented. The proposed techniques exploit the fact that DSP code rarely has any
conditional statements (if-then-else constructs) and often consists of one or more nested
loops with �xed loop iteration counts. Especially the absense of conditional constructs
makes the behaviour of the application very predictable.

In [12] methods for estimating cache performance by building analytical models for
speci�c access patters is presented. The models are able to, apart from the cache size
and line size, also to estimate execution times for di�erent degrees of associativity.

In [15] the estimation of power consumption is performed while concentrating on the
con�guration of cache and its connecting buses, as these components contribute with a
signi�cant part of the total system power. The power consumption is thus estimated for
all possible values of the system parameters such as cache size, associativity, bus size
and encoding. The estimations are obtained by collecting sparse data information by
simulation of the application in question, followed by a quick evaluation using models to
predict power and performance behaviour.

Concluding Remarks.

The ability to quickly evaluate the impact of di�erent memory hierarchy con�gurations
when running an application on an embedded microprocessor system is very valueable.
Such a fast evaluation of memory and power performance can be obtained by estimating
these metrics directly from the application code using certain estimation techniques. The
more accurate but also extremely time consuming trace driven simulations are impracti-
cal when the e�ect of several combinations of data- and/or instruction- cache sizes must
be evaluated. Using much faster and only slightly less accurate estimation techniques
allows in turn for a much larger design space to be explored. The best con�guration
that meets certain requirements or ful�lls speci�c criteria can then be chosen by per-
forming a possibly exhaustive search among the many possible combinations of memory
parameters.

When the use of estimation techniques are targeted at providing safe upper bounds
on the execution time, rather than approximate guidelines, a more sophisticated analysis
is necessary. In this case the pipelining of instructions seriously complicates the task of
�nding safe bounds.

2.4.5 Speci�c Estimation algorithm.

In this section a thorough description of an algorithm that, for some speci�c memory
parameters, and for a particular application, estimates the number of processor cycles

2.4 Memory hierarchy design. 41

due to memory accesses. The developed estimation algorithm is used by [37] in an
exhaustive exploration of the design space, where parameters such as scratch-pad RAM,
cache size and line size are considered. The presented estimation technique attempts
to group all the array accesses in a loop into di�erent classes and uses this partitioning
to provide estimates on cache-misses and -hits. Furthermore a modularization of the
di�erent computations is performed. That is, a distinction between the di�erent sorts of
cache misses (compulsory,capacity,con�ict) is made and dealt with separately.

The estimation algorithm has according to [37] proven to provide good estimates
on performance, as a very little variation has been observed between the estimates and
actual simulation results. The theories for making estimates on the number of o�-chip
accesses is also presented in [37].

In the following a strategy for �nding the optimal on-chip memory parameters for
a speci�c application developed by [37] will be presented. The determined memory
parameters are :

� The total size of the on-chip memory.
� The partitioning of the on-chip memory into cache- and scratch-pad- memory and
the cache line size.

In choosing the optimal memory parameters di�erent performance estimation techniques
are applied to the application code. This is systematically done for all the possible sizes,
within certain speci�ed limits and in powers of 2, of the on-chip memory, the data cache
and the cache line size. The scratch pad RAM size is of course equal to: on-chip RAM
size - cache size.

The obvious advantage of using an analytical estimation based approach for deter-
mining the performance of a given application is that it is many times faster than a
simulation based approach. Moreover the time it takes to perform this estimation is
relatively independent of the size of the application code, and this allows in turn for an
exhaustive exploration of the di�erent combinations of memory parameters. A pseudo
code that outlines the basic strategy for exploring the design of the memory architecture
is given in the following :

for total on-chip memory size T, in powers of 2 :

for cache size C in powers of 2 (as long as C<=T)

scratch-pad memory size S := T-C

assign variables to scratch-pad RAM for best performance

for line size L in powers of 2 (as long as L<=C and L<=maxline)

Estimate performance for the chosen parameters

Record memory parameters that optimizes performance for this particular T

An explanation of the di�erent steps in this code is given in the following:

Line 1 : The total on-chip memory size T is selected.
Line 2 : For each possible cache size C less than the chosen T we estimate performance.
Line 3-4 : The partitioning of program variables between scratch-pad- and cache- mem-

ory is determined using the algorithm described in [36].
Line 5-6 : All possible cache line sizes are examined and the performance for each of

these values are recorded together with the chosen sizes of T and C.
Line 7 : The values of C, S and L that resulted in the best performance for this par-

ticular T are recorded.

2.4 Memory hierarchy design. 42

This exploration algorithm is relatively simple and one can easily be convinced that this
approach would in fact give correct results. The real challenge imposed by this analytical
algorithm is the performance estimation in line 6.

This analytical algorithm estimates the total number of processor cycles used to ac-
cess data in a speci�c application. The algorithm consists of two distinct parts, one for
determining the total cycle count due to scalar variable accesses, and one for determining
the same entity caused by array accesses. Both parts assume that the memory layout
transformations presented in [34] have been applied to the code with the purpose of opti-
mizing performance. Before analyzing the program it is �rst parsed into an appropriate
datastructure in which all accesses that are not already inside any loop, is placed inside a
loop with an iteration count of one. The calculations performed for handling the scalars
are very simple, and these will be described brie�y in the following.

Before describing the actual calculations a comment is made on the desirability for
mapping the scalars into a scratch-pad RAM. Provided that a scratch-pad RAM is
available, and that it is big enough to contain all the scalars, these will in fact be placed
there by the data partitioning algorithm in line 4 of the exploration algorithm [36]. The
reason for putting them there is of course that the accessing to the scalars is very static
compared to that of arrays and they have therefore a good chance of interfering with
array accesses. If for some reason some of them have to be placed in o�-chip memory,
it is of course necessary to be able to handle such a case. This situation could arise if
for instance there is no scratch-pad RAM available, or if the scratch-pad RAM is very
small.

We denote the number of cycles it takes to read the �rst word in a cache line by K,
and assume that it takes one additional cycle to read each of the remaining words in this
cache line. That is, if the cache size is denoted by L it would take K + L cycles to read
one complete line of words into the cache.

The estimation of the number of cycles it takes to access scalar variables assumes
that all the scalars are placed in consequtive locations in memory and that the number
of misses is equal to the number of lines the scalars covers. At �rst glance this might
seem as a very optimistic estimation especially if a scratch-pad RAM is not present.
The memory layout transformations that we have assumed have been performed on the
application-code justi�es however this assumption to some extend. At this point it should
also be noted that the con�ict misses incurred by the scalar variables will be dealt with
later, and with this in mind the above estimation seems fairly reasonable.

We denote the number of scalar variables in the program by N and let the total
number of accesses to these N variables be denoted by M . According to the above
approximization there will then be jN=Lj misses and M � jN=Lj hits among the M
accesses to the scalars. As the fetching of an L-word line from o�-chip memory into
cache costs K + L cycles and access of a word present in the cache costs one cycle, the
total number of cycles incurred by scalar accesses is :

(K + L) � jN=Lj +M � jN=Lj

For estimating the total number of processor cycles introduced by array accesses another
technique to determine the degree of reuse among the cache lines is used. This technique
involves a partitioning of the di�erent data references into so called reuse equivalence

2.4 Memory hierarchy design. 43

classes. This approach employs the use of four di�erent types of reuse classes, which are
listed, together with their short de�nitions in the following :

Self- temporal : A memory reference accesses the same data location in di�erent loop
iterations

Self- spatial : A memory reference accesses the same cache line in di�erent loop itera-
tions

Group- temporal : More than one reference accesses the same data location in di�er-
ent iterations

Group- spatial : More than one reference accesses the same cache line in di�erent
iterations

From these de�nitions of the di�erent types it is clear that self-temporal reuse implies
self-spatial reuse and that group-temporal reuse implies group-spatial reuse.

To illustrate the use of these classes an identi�cation of the di�erent types will be
performed on a speci�c example. The code used for this purpose is a two-level nested
loop which is given in the following :

for i=0, i<M, i++

for j=0, j<M, j++

A[i][j] = A[i][j] + A[i-1][j] + A[i+1][j] + A[i-1][j] +

A[i][j-1] + A[i][j+1] + B[i] + C[j][i]

The reference C[j][i] exhibits no reuse, (as it is de�ned in this context) because the loop
in which it is placed iterates over the variable j and the distance between to successive
references to the C-array is therefore probably large.

The reference B[i] exhibits self-temporal reuse as it accesses the same data location
for each of the M j-iterations.

The remaining references (to the array A) all exhibit at least self-spatial reuse. This
is because these array references are indexed by the variable j which is the one iterated
over. The successive iterations of the innermost loop has therefore, for a particular
reference to the A-array, a good chance of accessing data on the same cache line as the
one that was accessed in the previous iteration.

However, even more is true. The references A[i][j-1], A[i][j] and A[i][j+1]

exhibit group-temporal reuse as the location accessed by A[i][j+1] in one iteration is
also accessed by respectively A[i][j] and A[i][j-1] in the two following iterations.
Because these three references have group-temporal reuse, they must also have group-
spatial reuse. This fact could also have been obtained by observing that they occupy
the same cache line in most of the iterations. This concludes the partitioning step of
the references into reuse equivalence classes. To give a good overview of the obtained
results, the di�erent groups/classes are repeated here :

No reuse : C[j][i]
Self-temporal reuse : {B[i]}
Self-spatial reuse : {A[i-1][j]} {A[i+1][j]}
Group-temporal reuse : {A[i][j-1],A[i][j],A[i][j+1]}
Group-spatial reuse : none

The next step is to move all the references (i.e. groups) exhibiting self-temporal reuse

2.4 Memory hierarchy design. 44

one level up in the nested loop. The reason for doing this is that the number of o�-chip
references to this kind of reuse class is more convieniently calculated in the immediately
enclosing loop. In this loop (i.e. the i-loop) the expected number of o�-chip accesses
to B[i] is 1=L per iteration. Moreover, now all the remaining reuse groups in the j-
loop have an expected number of o�-chip accesses of 1=L, as they belong to either of
the three reuse types self-spatial, group-temporal or group-spatial. By moving all the
self-temporal reuse references to the appropriate (possibly even higher level) enclosing
loop, the calculation of the number of processor cycles due each reuse group in a loop, is
simply performed by multiplying the total iteration count for the loop with (K +L)=L.
(K + L) being the penalty in processor cycles for fetching an entire cache line from the
o�-chip memory, and 1=L being the probability of a miss in this particular iteration.

When calculating the number of processor cycles introduced by the cache misses of the
B[i] reference this is also done correctly as it now is present in the i-loop. The number
of processor cycles originating from cache hits by the B[i] reference must of course also
be taken into account. This is however easily done by making the B[i] reference appear
j times in the i-loop. The j � 1=L cache hits will then later be multiplied with the
product of all the enclosing loops iteration counts to give the correct total number of
cycles.

The only group left to consider in the given example is {C[j][i]} which was cate-
gorized as a "no reuse" group. The cost of such a group is considered to be 1 o�-chip
access per iteration. That is, all misses.

To be able to handle the general case for determining data reuse in any possible
level of the loop nest and not just the innermost one (as just described) [37] re�nes the
reuse analysis techniques of [13] by introducing some new concepts. One of the adressed
problems pertains to formalizing what conditions need to be ful�lled for spatial reuse to
occur at any given level in the nested loop. From this point in the code it is necessary to
be able to determine if accesses from the inner loops are likely to evict data in the cache
that otherwise could have been reused. If this is in fact the case, then the potential reuse
group must instead be recorded as a "no reuse" group. These decisions must of course
be made simultaneously with the partitioning of the references into reuse equivalence
classes to make sure that the partitioning is performed correctly.

The checking whether reuse is possible or not must be done for all the self-spatial and
group-spatial equivalence classes in a loop. Remember that these two types of classes
are the only two we are concerned with at this point in the exploration-strategy. This is
the case as the self-temporal groups have been converted to self-spatial groups and we
consider the group-temporal classes as an instance of a group-spatial class. Apart from
being a necessary step in the partitioning of references into classes, this estimation of
potential reuses might also reveal some reuse classes that based on the previous example
are less obvious, than the ones we ended up with the �rst time. Considering this same
example once more, we discover that the data read by the A[i][j] reference might also
be used by the A[i-1][j]-read in a later iteration. Assuming a perfect replacement
policy this reuse requires that an entire row of the A-array are allowed in the cache when
the iterating is done within the i-loop. Provided that we estimate all the intervening
accesses not to evict the cache line needed by A[i-1][j], this reference could also be a
part of the {A[i][j-1], A[i][j], A[i][j+1]} group exhibiting spatial reuse.

The estimation technique used to partition the references into equivalence classes

2.4 Memory hierarchy design. 45

simply sets the criterion that the total number of data accesses between to given refer-
ences must be less than the cache size if reuse is to occur among them. This condition
will be clari�ed with the following pseudo-code example :

for i=1 to ri

access B[i]

for j=1 to rj

cj accesses

for k=1 to rk

ck accesses

for l=1 to rl

cl accesses

For this nest we wish to determine if the reference B[i] exhibits self-spatial reuse. The
proposed condition for reuse to occur is that :

cj � rj + ck � (rj � rk) + cl � (rj � rk � rl) < CacheSize � L

At �rst glance this approximation might seem a bit optimistic, but when the assumed
memory layout transformations are also taken into account the condition seems more
reasonable. If one imagines that each data element of each line fetched into the cache
was accessed exactly one time during the iteration of the inner loops, then the estimation
would match this number. This seems fairly reasonable. There will almost certainly be
several elements that are accessed more than once, but then again, accesses to every
element in every line is at the same time not likely to occur.

This proposed technique for estimating which references can be reused is applied to
every potential self-spatial reference in a manner similar to the way it was just demon-
strated in the above example. When the condition for reuse needs to be checked for a
potential group-spatial reuse, we apply the same estimation technique with a few minor
changes. When we examine the possibility for reuse among two di�erent references we
need, apart from checking that the line has not been evicted, also to make sure that the
two references indeed will access the same row at some point. Imagine that part of an
application includes the following piece of code :

....

for i=1 to 13 step 2

....

access a[..][..]...[i+1]...[..][..]

access a[..][..]...[i+2]...[..][..]

Reuse between the two shown accesses can never occur since the step size for the variable
i percludes the two references from ever accessing the same row. Therefore it is also
necessary to make sure that the di�erence in all the indexation levels of the two references
are a multiple of that particular levels stepsize. The technique presented here assumes
that no spatial reuse can ever occur between two references that do not access the same
row (innermost dimension) of a particular array. This is a reasonable assumption as the
cache line size normally is smaller than most of the arrays innermost dimensions.

If all the di�erences in the indexation levels reveal that there exists a possibility for
reuse, the next step is to check whether or not the line accessed by the �rst reference is

2.4 Memory hierarchy design. 46

likely to still be in the cache when the next reference accesses it. This is done using the
same approximation technique employed in the self-spatial case. The only extension to
the self-spatial approach is that we now have to calculate the total number of elements
accessed before each of the indexations in the two references resolves to the same value.
The appropriate way to do this is illustrated in the following example :

for i=0 to 10 step 2

11 accesses

for j=0 to 20

5 accesses

for k=0 to 30

19 accesses

A[i][j][k]

A[i+8][j+3][k+7]

The total number of elements accessed before all three index expressions [i+8][j+3][k+7]
resolves to the same values as A[i][j][k] did previously is calculated as :

(8=2) � (11 + 5 � 20 + 21 � 20 � 30) + 3 � (5 + 21 � 30) + 7 � 21

If this number is less than CacheSize-L, then the two references in question exhibit group-
spatial reuse.

Array con�ict misses.

The techniques presented for estimating the number of cache misses so far has only
dealt with compulsory- and capacity- misses. The estimation of the number of con-
�ict misses in an application is dealt with separately. To be able to calculate a good
approximation of this number a method that divides the arrays in a loop into a sort
of compatability groups is used. After this partitioning step each compatability group
generated will contain arrays that have compatible access patterns. In this case the
de�nition of a set of compatible access patterns is that their index expressions only
di�er by a constant throughout the entire loop. That is, the di�erences are indepen-
dent of the loop variables. This means that for two references to belong to the same
compatability group, their indexes containing index variables must have the same coef-
�cient at every level. For instance, the following two sets contain compatible references
: {A[2i][3j], A[2i+5][3j+2]} , {A[i+7][4j],B[i-3][4j+10]} , whereas to references
such as A[i][2j] and B[i][j+1] are not compatible.

The reason for partitioning the arrays into these compatability groups is that we
can assume that no con�icts will occur between array references of the same group, as
long as there has been performed appropriate memory layout transformations on the
code. We can realize this by considering a simple example. Imagine that two arrays
a and b are accessed in a loop and that they belong to the same compatability group.
Assume furthermore that each element of the two arrays are accessed successively with
a stepsize of one, starting with the �rst element of the particular array. Then these
two arrays should be placed in memory such that the distance between both arrays �rst
element will be at least one cache line apart when these are mapped into the cache.
This approach would perclude any con�icts between the two arrays, and consequently
if all arrays in a loop form just one compatability group then cache con�icts could be

2.4 Memory hierarchy design. 47

avoided completely. This reasoning forms the background for splitting the calculation
of the number of con�ict misses in a loop into two separate cases. In the �rst case we
deal with loops in which all array references form a single group. If this condition is
satis�ed an estimation of the total number of con�icts can simply be calculated as the
ones arising from scalars con�icting with arrays and vice versa.

In the second case we deal with loops containing more than one compatability group.
In these loops it is necessary apart from the just mentioned scalar/array con�icts also
to consider the con�icts among arrays in the di�erent compatability groups.
These abbreviations for di�erent parameters are used in the following :

Msc : Number of lines occupied by scalars in a loop.
M : Total number of lines occupied by the arrays in a loop.
Msj : Number of lines occupied by the arrays of the compatability group Sj.
nsc : Number of scalar accesses in a loop.
na : Number of array accesses in a loop.
C : The number of lines in the cache.

When dealing with the case of only one compatability group we realize that the proba-
bility of one of the na array accesses to map to the same line as one of the Msc scalar
lines must be Msc=C. Similarly the probability of one of the nsc scalar accesses to map
to the same line as one of the M array lines must be M=C. Thus an estimation of the
expected number of con�ict misses per iteration in this type of loop could be given by
(1=C) � (M � nsc +Msc � na). This estimation assumes that each access to a scalar/array
that maps to the same cache line as one of the arrays/scalars actually will result in a
cache miss each time the scalar/array is accessed.

When dealing with more than one compatability group in a loop we again consider
the number of con�icts due to scalar accesses to be equal toM �nsc=M as in the previous
case. When estimating the number of con�icts due to array accesses from a particular
group we must apart from the lines occupied by scalars also consider the lines that arrays
from di�erent compatability groups can map to. This is necessary as the arrays contained
in the group in question no longer can be guaranteed to map to di�erent lines than the
arrays from other compatability groups. As in the case of just one compatability group
we again calculate the number of con�ict misses as the probability for other data to map
to the same cache line as the group in question times the number of accesses to this
group. This is done in spite of the fact that the data of this group could very well be
in the cache when the access occurs. The probability of a con�ict for the nj accesses to
group Sj is thus (M �Msj +Msc)=C. The estimated number of con�ict misses in one
iteration is obtained by adding the misses due to scalar accesses and the misses due to
accesses from each of the compatability groups :

#conflicts =
1

C
(M � nsc +

gX
j=1

(M �MSj +MSc)nj)

The �nal step in the memory estimation algorithm is to add all the results together.
First the total number of cycles estimated for a full iteration of every loop is calculated.
This number is obtained by adding the results from the reuse equivalence classes, the
no reuse classes and the con�ict analysis phase together. Finally the total number of

2.4 Memory hierarchy design. 48

cycles found at each level is multiplied with the number of times this loop is executed,
and adding these contributions from each level together will give the total cycle count
for the entire loop nest.

The estimation of the number of processor cycles due to con�ict misses assumes that
the data brought into the cache in a speci�c loop are not replaced when the next iteration
of this loop commences.

2.4.6 Static memory.

In this section the concept of static memory is introduced. This kind of memory is also
commonly known as scratc-pad memory. A scratch-pad memory allows for fast access
to its residing data, just as it is the case for cache memory. It is placed on-chip and is
accessed through the same adress- and data- buses as the cache- and o�-chip- memory.
The scratch-pad memory is however mapped into an address space that is disjoint from
the o�-chip memory. This allows for placing data that is frequently accessed in this type
of memory, guarantying a one-cycle access time as its contents are never replaced. The
speci�c data that should be mapped to the scratch-pad memory is determined at compile
time, and it will remain there throughout the applications entire execution [36].

In the remainder of this section the bene�ts and drawbacks of scratch-pad memory
will be discussed. Some examples of its use will be provided, and the added compiler
tasks which goes along with it will be described.

The use of a scratch-pad memory adds some other complex problems for optimiz-
ing code with respect to performance. The subject of transforming source code with
the purpose of improving the overall data access times through a cache is well known.
To exploit a scratch-pad RAM to its full potential requires however, slightly di�erent
techniques. What is needed is a strategy for identifying the critical data in an applica-
tion that it would be bene�cial to map into the scratch-pad RAM, thereby partitioning
the data into two parts. One that is mapped into the local on-chip scratch-pad RAM
and one that must reside in the o�-chip RAM accessed through the cache. The use of
scratch-pad memory thus adds some complexity to the tasks which must be performed
by the compiler. In order to partition an applications data with the purpose of exploiting
a scratch-pad RAM, it is necessary that the register allocation has been performed in
advance. This goes of course for the cache related source-transformations as well.

Related work.

Some of the conducted research dealing with scratch-pad RAM has been conducted by
[4] and [37]. In [4] an architecture exploiting a small scratch pad RAM localized close
to the processor is presented. The objective of using such an extra mini-cache in addi-
tion to the traditional data cache is to improve performance and especially the energy
behaviour. The scratch pad RAM is in this context denoted ASM, which stands for
Application Speci�c Memory.

In [36] an algorithm for partitioning an applications data with the purpose of e�-
ciently exploiting the use of a scratch-pad RAM is presented. The algorithm consequently
maps scalars to the static RAM. The access patterns of arrays are together with access
frequencies and "live"-periods used as metrics in determining the most bene�cial parti-
tioning of data. The approach taken in this work will be described more speci�cally in

2.4 Memory hierarchy design. 49

the subsection denoted "Algorithm" later in this section. Before this partitioning strat-
egy is presented a general discussion of the use of scratch-pad memory will be given.
This discussion follows in the next section.

Partitioning discussion.

The aim of the developed program is to determine the mapping of all the applications
variables into either a local on-chip scratch-pad RAM or into an o�-chip RAM, so that
the number of cache con�icts is minimized. Part of this aim can be obtained by map-
ping the variables that are estimated to cause the maximum number of con�icts to the
scratch-pad RAM, thereby eliminating a lot of cache misses and optimizing the overall
memory access performance.

The use of a scratch-pad RAM can be more or less bene�cial depending on the
particular application that is to be executed. If the application involves adressing that
are data dependent a scratch-pad RAM might be very useful. This is because in this
case the adressing order cannot be determined. An example of this situation is given in
the following Histogram Evaluation Code. This code fraction builds a histogram of 256
brightness levels for a particular image.

char Brightnesslevel[512][512];

int Hist[256]; // Elements are initialized to zero.

....

for(i=0; i<512; i++){

for(j=0; j<512; j++){

// For each pixel (i,j) in the image

level = Brightnesslevel[i][j];

Hist[level] += 1;

}

}

This piece of code is taken from a typical image processing application, and in this case
a large number of cache con�icts might be avoided if the array hist was placed in the
scratch-pad RAM.

In other cases the advantages are a lot less clear. If for instance, all the arrays are
to big to �t into the scratch-pad RAM, the full potential of this new type of memory
is not exploited. One might also imagine an application that exhibits little temporal
reuse among the involved arrays. In such a scenario the cache con�icts do not cause any
performance penalty, and a might not be bene�cial at all.

There are at least two good reasons for consistently mapping scalar variables and
constants to the scratch-pad memory. These kinds of data are very likely to interfere
with arrays in the cache. This is because arrays reside in contiguous blocks of memory
and a memory block consisting of scalar variables and constants are therefore very likely
to map to the same cache line as some part of an array thereby causing con�ict misses.
Furthermore it has been observed that for most applications the memory space occupied
by scalars is negligible compared to that of arrays [36]. This is yet another incentive to
consequently map scalars and constants to the scratch-pad memory, instead of using a
lot of energy developing sophisticated algorithms to identify the most frequently accessed
scalars.

2.4 Memory hierarchy design. 50

When it pertains to arrays, a good convention might be to always place arrays larger
than the scratch-pad RAM size in o�-chip memory. Otherwise the compiler would have
to do a lot of extra work in order to ensure correct adressing of the array, as part
of it would be mapped to the o�-chip memory and part of into the on-chip scratch-pad
memory. This would undoubtedly also introduce undesired overhead, and the code would
be less e�cient.

The live-period of a variable is also an important factor that should be taken into
consideration when a partitioning is performed. This entity is de�ned as the time from
the de�nition of the variable to its last use. Assuming intersecting live-periods among
a speci�c group of variables a clever algorithm might be able to chose a partitioning
that minimizes the number of intersecting live-periods. Such a strategy might reduce
the potential number of cache-con�icts among variables. If all scalar variables, as earlier
mentioned are mapped to the scratch-pad RAM, this discussion will of course be relevant
for arrays only. For illustrative purposes let us consider the live-period distribution of
the three arrays A, B and C in �gure 2.13.

A

B

C

TIME

Figure 2.13: Overlapping live periods for three arrays A, B and C.

In this example array A intersects with B that again intersects with C. A preferable
solution in this situation would be to map array b to the scratch-pad RAM, thereby
making sure that the two remaining arrays would never cause any con�ict misses.

Another factor that should have a great impact in determining the partitioning strat-
egy is of course the access frequency of the array. This is because a variable that has a
high number of accesses also has a high probability of introducing cache con�icts. The
access frequency of an array is therefore a critical entity.

Algorithm.

The number of accesses to the elements of an array u during its entire live-period will
in the following be referred to as its Variable Access Count, V AC(u). Another equally
important factor is the number of accesses to other arrays during the live-period of a par-
ticular array u. This entity will in the following be referred to as an arrays Interference
Access Count IAC(u).

As these two measures provide good indications of the number of con�icts involving a
particular array, their sum must be an even better overall estimation of this number. We
therefore de�ne the Interference Factor of a variable as : IF (u) = V AC(u) + IAC(u).
An array with a high IF value should therefore be mapped to the scratch-pad RAM.

The theory leading to the computation of the IF value so far is well suited to be used
when partitioning code involving sequences of instructions and conditional branching.
When loops are also present another strategy is needed.

2.4 Memory hierarchy design. 51

When accessing arrays in loops it is sometimes possible, with the aid of data alignment
techniques, to make sure that there never will exist cache con�icts between certain arrays.
There is however also those cases in which it might not be possible to ensure such a
behaviour. An example that illustrates those two situations is given in the following :

for i = 0 to N-1

access A[i]

access B[i]

access C[2i]

access C[2i+1]

end for

As the access patterns of the arrays a and b are identical di�erent data alignment tech-
niques can be used to ensure that no cache con�icts between those two arrays ever occur.
This is however not neccesarily the case for the array C. This is because the access pat-
tern for C di�ers from that of A and B. A mapping of either the arrays A and B or the
array C into the scratch-pad memory might then be bene�cial.

To be able to make such decisions the use of another descriptive parameter that
provides a measure for how many loop con�icts are likely to occur for an array would
seem reasonable. This parameter is denoted LCF (Loop Con�ict Factor) :

LCF (u) = sumi=1n
�
k(u) + sumvk(v)

�
The outermost summation sumi=1n is performed over all the loops (1; 2; :::; n) in which
u is accessed. The innermost summation sumv is taken over all the other arrays that
are also accessed in loop i and that cannot be guaranteed to avoid cache con�icts with u
using data alignment techniques. The LCF number is then a measure for the desirability
to map the array in question to the scratch-pad memory. For the code shown before we
have that LCF (a) = 3, LCF (b) = 3, LCF (c) = 4.

We now have two ways of computing an estimate for the total number of accesses of
an array that might lead to cache con�icts. One that is applied on loops (LCF) and one
that can be used on any other kind of program constructs (IF). When we use these two
methods as just described on an application and afterwards add the numbers together
we arrive at :

TCF (u) = IF (u) + LCF (u)

, where TCF (u) is the Total Con�ict Factor for the array u. The partitioning problem
can now be formulated as follows :
For a set of arrays A1,A2, An in a given application, with sizes respectively equal to
S1,S2, ... Sn and computed TCF values TCF1,TCF2, ... TCFn, group the arrays into
clusters so that each cluster contains arrays that do not have intersecting live-periods and
so that all possible combinations of arrays are considered. Then �nd a subset of these
clusters such that the subsets accumulated size does not exceed the scratch-pad RAM
size, and such that the subsets accumulated TCF values is maximized (when choosing
the �nal clusters each involved array should of course only appear once).

In order to perform an exhaustive analysis to �nd an optimal solution to the parti-
tioning problem one would have to go through a number of extremely time-consuming
tasks. First all the possible combinations of arrays that could share the same scratch-pad

2.4 Memory hierarchy design. 52

RAM space (because they do not overlap in time) should be grouped into clusters (the
size of the biggest array in a cluster should determine the space occupied by this group).
Then all the possible combinations of these clusters that �t into the scratch-pad memory
should be generated, and the one with the highest total TCF value should be picked.
This approach requires O(22

n

) time which is unacceptable.
The selected solution for the partitioning problem �rst groups arrays that do not

overlap in time into clusters. Then a variation of the value density approximation algo-
rithm [13] for the Knapsack Problem is used to sequentially determine the �nal mapping
of clusters to the scratch-pad RAM. This algorithm �rst calculates the Access density
(AD or access per size) of each cluster. This entity is a measure for the importance of
mapping the arrays contained in the particular cluster to scratch-pad RAM relative to
the space occupied by these arrays. It is de�ned as follows :

AD(c) =
sumv2cTCF (v)

max(size(v)jv 2 c)

The steps involved in the �nal partitioning algorithm are as follows :

1. First all the scalar variables and constants are assigned to the scratch-pad RAM,
and all the arrays larger than the scratch-pad RAM's size are assigned to the
o�-chip RAM.

2. Generate a compatability graph for the remaining arrays. The nodes in this graph
represents arrays and an edge between two nodes indicates that these two arrays
have disjoint live-periods.

3. For each array u we �nd all the other arrays that have a size less than or equal to
u and that are connected to u in the compatability graph. This generated group
of arrays form a cluster for which we compute the Access Density.

4. The cluster with the highest Access Density are assigned to the scratch-pad RAM.
5. All the arrays bigger than the remaining available scratch-pad RAM are assigned

to o�-chip RAM.
6. We now go to step 2 and repeat the making of a new compatability graph.

This completes the presented work on partitioning application data between scratch-pad-
and o�-chip- memory in order to reduce cache con�icts.

2.4.7 Conclusion.

In this section some di�erent aspects of the �eld of memory hierarchy design have been
adressed. Several papers describing previous work in the �eld have been presented, and
a structured overview of this research has been provided in an attempt to give some sort
of insight of what has been done in the area.

In section 2.4.2 the tuning of memory hierarchy parameters to �t certain application
speci�c requirements regarding power and performance was discussed. The results of
di�erent researchers have shown that a cache size yielding good memory behaviour both
power and performance wise usually can be obtained. When dealing with the tailoring
of line sizes however, a tradeo� between power and performance must be made in most
cases.

2.5 Other Areas. 53

In the next section some other considerations regarding area constraints was dis-
cussed, and references to some tools were given. Furthermore some results regarding
cache associativity obtained by di�erent research groups were presented. These results
showed that a small degree of associativity usually improves performance over a direct
mapped cache. The involved benchmarks had however not been optimized in any way
previous to the running of the simulations.

In section 2.4.4 the use of performance and power estimation techniques was dis-
cussed. The ability to obtain quick estimations regarding these two objectives had proven
to be very valuable, as it allows for a nearly exhaustive exploration of the design space.
This in turn, provides the designer with the opportunity of �nding well suited memory
hierarchy parameters for the application in question.

In the next section a speci�c example of an algorithm able to estimate the perfor-
mance of a cache was presented. The described technique used a suitable modularization
of the di�erent tasks involved, thereby separating the computations of the di�erent kinds
of cache misses.

Finally the bene�ts of the use of an on-chip scratch-pad RAM, which contains static
data that is never evicted, was discussed in the previous section. A memory hierarchy
with such an extra "cache" would be very desirable for certain applications. Scalar
variables as well as arrays that are likely to interfere with other arrays could be mapped
into the scratch-pad RAM, thereby yielding performance improvements. A strategy for
selecting the data that would bene�t the most from residing inside the scratch-pad RAM
was also presented. This strategy is necessary to exploit the scratch-pad RAM to its full
potential.

2.5 Other Areas.

2.5.1 Introduction.

In this chapter some work in certain research areas that didn't �t naturally into one of
the three preceding chapters will be presented. Among these areas is the �eld of WCET-
computation which was also discussed brie�y in section 2.4.4 Estimation techniques, as
these two �elds of research are very similar. The main di�erence between these two areas
is, as it was also prior mentioned, that safe upper bounds are needed when dealing with
WCET-computations. This area is covered in section 2.5.2.

Furthermore some alternative approaches for optimizing performance or reducing
power consumption in embedded systems are presented in section 2.5.3. Among the
presented work are some that deals with the research areas of Multiprocessor Systems and
Co-design. Also some alternative approaches for reducing power consumption, exploiting
memory access instructions and exploiting instruction level paralellism are covered.

2.5.2 Worst Case Execution Time.

A vast amount of the embedded systems constructed today must in addition to cost
constraints also satisfy performance constraints. As embedded systems consists of large
complex components such as CPU's and ASIC's the task of computing a WCET for
these building blocks as well as their compositions is not a trivial one. Furthermore the

2.5 Other Areas. 54

complexity of state of the art CPU's involving the use of features such as pipelining and
caches makes the computations of tight WCET bounds even more di�cult, as the exe-
cution time in di�erent parts of the program will depend on both the recent and distant
history of the executed instruction trace. Furthermore the use of di�erent levels of cache
memory and especially out-of-order processors complicates the WCET computation even
more.

When dealing with multiprocessor systems yet other factors need to be taken into
consideration for computing the WCET. For such systems the allocation of processors (or
processing elements) for di�erent processes might result in con�icts imposing execution
delays. Furthermore the scheduling of processes and the use of communication channels
might also be hard to predict.

Performance analysis is also an important part of co-synthesis. Accurate performance
performance estimates are an essential part of being able to meet both hard- and soft-
ware requirements at minimal costs. The estimates are particular useful early in the
design phase when decisions pertaining to the partitioning of tasks between hardware
and software must be made.

The complexity of WCET computations can often be reduced by separating the
overall computation into phases. A commonly used approach is to divide the analysis
into tasks consisting of cache analysis, pipeline analysis and path analysis. This approach
has been used in [52].

Performing pro�ling and simulation is another method for obtaining information
on program behaviour and execution time. This approach has however some major
drawbacks. Exhaustive simulations are impractical and less comprehensive simulation
results will only cover parts of the applications behaviour and cannot provide safe bounds
on the execution time.

In [53] an approach using local simulation of di�erent basic program blocks is used
to predict cache behaviour. A cache model describing which lines of data are likely to
be in the cache before and after the execution of the basic blocks is used to extend the
results obtained from the local cache simulation into a global prediction of the cache
behaviour. In estimating the memory performance the DINERO III tool [48] is applied
to the smaller code blocks to predict the altering e�ect of those code blocks.

In [24] an approach for estimating execution time by transforming the application
assembler code into a speci�cally tailored simulation code is presented. After generat-
ing the assembler code it is simply transformed into a sort of assembler level C-code
annotated with timing information regarding instruction scheduling, register allocation,
adressing modes, memory accesses, and so on. That is, the annotations contains in-
formation about the delays imposed by the di�erent hardware features such as caches
and pipelining. This obtained model of the application code is then simulated and its
behaviour is recorded.

An analogeous approach that has been used by other researchers has attempted to
annotate the original source code [40] or the Control Flow Graph (CFG) [38, 44] in a
similar way. These strategies is the followed by simulations. The control �ow graph of
the program can often be obtained by the target compiler employed.

The approaches performing annotations on the original source code is by nature not
as precise as the ones that exploit the additional compiler and architecture dependent
information inhabited in the control �ow graph. Estimating the execution time merely

2.5 Other Areas. 55

from a high level source code, the tools are forced to guess the optimizations performed
by the compiler on the application code. Furthermore complex architectural features
such as pipelining and caching cannot be estimated. This results of course inevitably, in
less tighter execution time bounds.

In [41] an somewhat similar way of determining the Worst Case Execution Time
(WCET) of an application is presented. The approach makes use of the compiler gener-
ated Control Flow Graph (CFG) to partition object-code of the application into blocks,
followed by an instrumentation and execution of these. That is, the di�erent parts of the
code are altered to guarantee a worst case execution time, and the resulting code-blocks
are then executed on the target architecture, while measuring the execution time.

The main reason for using this approach in determining WCET's is the increasing
complexity, and hence greater modelling problems, of modern day processors. Di�erent
and complex architectures in state of the art processors makes the modelling of pipelines,
caches and other hardware features di�cult. As the developement of this trend isn't
likely to decrease in the future an e�ort to construct a WCET tool that relies more on
measuring than modelling seems reasonable.

[26] uses linear programming methods for estimating the WCET. The entire program
is line by line assigned a cycle count representing the estimated execution time and a set
of equations is used to describe the conditions that must be ful�lled for the execution
of a particular program part to occur. A bound on the WCET can then be obtained by
solving the system of linear equations that exhibit the control �ow of the program. The
major drawback of this approach is that the number of equations to be solved can be
impractically large for bigger programs.

In [23] some new methods for selecting representative samples from a longer trace
involving multiple samples are presented. The need for a good strategy to pick the
samples that best re�ects the behaviour of a speci�c application arises when one wishes
to simulate these traces in order to obtain information about the application.

Trace driven simulation is an often used method for accurately estimating the per-
formance of di�erent architectures. Instruction traces could among other things be used
in the design phase of a particular architecture, when important parameters pertaining
to for instance branch prediction/target bu�er, cache/TLB and pipelines must be made.
Also memory reference traces has proved to be very useful, and has been used to great
extend when memory management strategies such as paging, segmentation and memory
allocation must be chosen.

There are advantages as well as drawbacks for only using samples to perform the
actual simulation of the traces. The advantage of using the longer original trace is
naturally that a better accuracy might be obtained. The most obvious advantage of using
speci�c chosen samples of the original trace is that they require shorter simulation time.
For some applications however, the accuracy of the estimated performance obtained by
the trace driven simulation might not be better for the longer trace. This situation could
arise if the behaviour of the application is very predictable, e.g. spends most of the time
in a small loop.

The �rst step in the strategy, developed by [23], for selecting trace samples consists
of grouping the samples into di�erent clusters. The samples are grouped according to
the behaviour exhibited by both the instruction- as well as the memory reference- trace.
To perform this partitioning of the samples di�erent metrics are used to characterize

2.5 Other Areas. 56

them. Some of the metrics used in the grouping are :

Branch Distances : distance from branch instruction to target instruction.
Access Scatter Function : probability distribution of distances between two consec-

utive memory references.
Block Execution Interval : mean value of the number of instructions consecutively

executed within the same main memory block (o�-chip memory).

Alltogether the algorithm employs 7 di�erent metric functions for characterizing the
samples.

Finally the best samples are selected using sophisticated algorithms that attempts to
calculate the distances of the samples in terms of the 7 di�erent metrics, and picks the
ones that best represents the application.

In this section some di�erent methods for performing WCET-computations have been
presented. Many of the proposed methods seem to use some sort of instrumentation of
the code, in order to guarantee worst case execution times, when performing subsequent
simulations of the code. The instrumentation are, for the presented examples, performed
at di�erent levels in the compilation phase, but usually at a low level.

2.5.3 Alternative approaches.

This section contains some brief descriptions of earlier work carried out in the alterna-
tive research areas mentioned in the introduction to this chapter. The covered areas are
presented with the following headlines : Multiprocessor Systems, Co-Design, Alternative
power reduction approaches, Exploiting memory access modes, Exploiting instruction
level paralellism.

Multiprocessor Systems.

In [7] techniques for identifying and handling false sharing in multiprocessor systems is
presented. These problems has also been adressed by [8], who also presented an algebraic
notation useful for performing data- and control transformations. This notation is also
extended by [7] in the sense that they introduce methods for representing memory layout
of multidimensinal arrays using so called hyperplanes. A hyperplane is represented by a
set of equations that can be used to de�ne array elements exhibiting spatial locality. For
the case of more two dimensional arrays the number of linear equations needed exeeds 1
and the hyperplanes is thus represented in a matrix structure.

In [55] an approach for exploiting data locality and parallelism on a Symmetric
MultiProcessor (SMP) system at runtime is presented. Both the partitioning of di�erent
tasks in a speci�c application and the assignment of these to speci�c processors as well as
data layout optimizations are performed on the application code. The system performing
these optimizations is denoted Cacheminer.

A sophisticated approach is used to reorganize the tasks in an application in order
to be able to partition the task into groups, where data reuse can be exploited. Such a
task could for instance be a multi level nested loop where several computations involv-
ing multidimensional arrays are performed. All the processing of data in such a task
is thus divided among the available processors at runtime, while di�erent factors that
all in�uence the overall perfomance are considered. The factor that makes a signi�cant

2.5 Other Areas. 57

performance gain possible is of course the ability to perform the processing of tasks in
parallel. The factors that deminishes this gain is the decreased data cache locality, a
possible load imbalance between the di�erent processors and the scheduling overhead
imposed by the partition. The impacts of all of these factors are taken into considera-
tion when the partitioning and data layout optimizations are performed at runtime.

Co-Design.

Hardware-software co-design is an area of research in which the tasks in an embedded
system is concurrently partitioned between hardware and software while considering de-
pendencies among the two and overall performance optimization. Most of the research
within this area has focused on alleviating the process of exploring the design space.

In [16] a power/performance design space exploration tool that are able to tradeo�
power against performance and vice versa is presented. The tool is denoted Avalanche,
and it can be used to both estimate and optimize di�erent embedded systems with
respect to both power as well as performance. The optimization and estimation steps
can be applied to both power and performance simultaneously or independently.

The estimations of both power and performance (in terms of cycles) are performed
based on simulation results. In the case of power estimations a measure for the total
dissipated power due to memory accesses is obtained by accurately modelling the memory
subsystem based on its parameters. The expected power consumption due to both
cache misses as well as hits is then calculated while considering all in�uencing memory
parameters such as cache size, associativity, tag size and so on.

Avalanche is also able to perform a hardware/software partitioning of di�erent tasks
inhabited in an application. This partitioning can be performed with respect to both
power and perfomance and is the part of the Avalanche system that yields the largest
improvements both power- and performance- wise.

The source to source transformations that are applied has proven to be less e�ective.

Alternative power reduction approaches.

The simultaneous need for modern day embedded systems to have high performance
properties as well as low power consumption arises mainly because of their extensive use
in battery operated portable devices [39]. Even in more power consuming static systems
the need for limiting the power dissipation is great as it can reduce packaging and cooling
costs and enhance reliability.

A signi�cant fraction of the total dissipated power in embedded systems tends to
come from peripheral devices. This can mainly be contributed to the fact that much
larger capacitances are present in o�-chip than in on-chip circuitry, and the charging and
discharging of these undesirable capacitances is very power consuming.

In addition to the many conventional methods for reducing power consumption, some
relatively new dynamic techniques that aim at turning o� peripheral devices during their
idle periods in order to reduce power consumption has been proposed. Some of the
conducted work in this �eld has been reviewed by [39].

Yet another alternative method for reducing bus power consumption when transmit-
ting data has been proposed by [50]. The hamming distance of two consecutive transmit-
ted data words is computed before sending the data. If the distance is bigger than half
the data word size, the inverted data is sent in order to reduce switching on the bus lines.

2.5 Other Areas. 58

Exploiting memory access modes.

In [35] methods for enhancing performance as well as techniques for reducing power con-
sumption in o�-chip memory accesses are presented. Di�erent hardware implemented
memory access modes are in coherence with software transformations exploited to yield
considerate performance gains. Furthermore some techniques for reducing power con-
sumption in o�-chip memory by changing the data layout for arrays are presented.

Apart from the commonly used memory access modes such as single word reads or
writes, other modes can usually be employed by modern DRAMs. For instance Read-
Modify-Write (RMW) mode - where a single word is read from an adress in memory,
modi�ed, and written back to the same adress. Reads or writes of successive words in
the same page can also be performed as well as RMW operations on successive words in
the same memory page.

These di�erent ways of accessing memory data are exploited by the techniques pre-
sented by [35] in order to improve performance for speci�c applications. In order to make
good use of the memory access modes the data access patterns inhabited in the partic-
ular applications are analyzed, and a possible reordering of the accesses are performed.
Di�erent kind of loop transformations might also be applied.

Exploiting instruction level paralellism.

In [33] techniques for improving the performance of microprocessors exploiting instruc-
tion level parallelism (ILP) are presented. The techniques apply transformations to the
application code in order to allow the hardware to overlap the fetching of multiple cache
lines from memory. The great advantage in overlapping several cache line fetches is that
it makes it possible to hide a much larger part of the miss latencies than what would be
possible if a cache miss should be overlapped with any other kind of instruction.

The techniques are especially concerned with the overlapping of read misses. By the
use of di�erent clustering techniques the applied transformation algorithms attempts
to gather the coming read misses into sizes of the instruction windows that the target
(out-of-order) processor can handle.

An example of a loop transformation that attempts to exploit miss clustering as well
as spatial locality is given in the following :

for(...,...,i++)

for(...,...,j++)

.... A[i][j]

The above loop is as opposed to many of the regular well-known loop transformations
converted into :

for(...,...,j++)

for(...,...,i++)

.... A[i][j]

As the entire �rst column of the A-array is accessed during the very �rst iteration of the
innermost loop the number of read misses will be numerous provided that the cache line
size isn't much larger than the row dimension of A. Furthermore the number of rows in
A and the line size of the cache must be of magnitudes that still allow for spatial reuse

2.6 Discussion. 59

among the row elements.

2.6 Discussion.

Throughout this survey report an attempt to cover a wide range of some of the previous
conducted work in the area of memory analysis has been made. In this section how-
ever, the discussion will primarily be concentrated on the considerations that should be
taken into account when dealing with the optimization of memory and application-code
interactions. That is, some important facts that apply for optimizing applications with
respect to power and performance will be discussed.

As earlier discussed in this survey, there exists some strong incentives for optimizing
embedded systems applications with respect to both power and performance. Some of
the powerful tools for obtaining these goals is the use of control- and memory layout-
transformations. Also the ability to design the memory hierarchy to �t certain applica-
tion speci�c requirements can have strong impacts on power and performance.

When dealing with the task of reducing power consumption the vast majority of the
conducted research have concentrated on con�guring the memory hierarchy in order to
meet certain power speci�c criteria. One of the reasons for this trend can be explained
by the fact that the di�erent parameters of a cache have signi�cant impacts on power
consumption, as they directly control the construction of the hardware. The size of
a cache will for instance determine the power needed for the charging or discharging
of each bit line on the bus, as well as the associativity will introduce extra hardware
that also consumes power. Moreover, when con�guring the memory hierarchy to �t
the access patterns of an application, a reduced number of o�-chip accesses can also be
obtained, which again results in a reduction in power consumption. Some few alternative
approaches in the area of power reduction have however, also been taken. Among these
is the use of gray-code conversion to reduce the amount of switcing on adress buses.

An important point to make at this point is that performing control- or memory
layout- transformation, that primarily are used for optimizing performance, also reduces
power dissipation. This is again a direct result of the fewer o� chip memory accesses
that these transformations give rise to. This e�ect can also be obtained by con�guring
the memory hierarchy to �t the memory access patterns of a particular application, as
it was just mentioned above. Thus, when designing the cache it can be constructed in a
way to suit the application code, and when performing transformations the code can be
tailored to �t the cache con�guration.

In the area of data related optimizations, most of the research have concentrated on
arrays rather than scalar variables. This fact stems from a number of reasons. Most of
the data in todays applications are in some way stored in arrays and there is therefore
usually much larger gains involved when dealing with arrays. Furthermore most of the
execution time is normally spent in loops where the access patterns of arrays can be
exploited. Especially in multi-level nested loops, where the iterations access the same
array elements again and again, some large potential performance gains are present.

Some of the control transformations described earlier in this survey can for such
a case be very useful. The kind of transformations that are bene�cial will however,
of course depend on the speci�c application in question. In this survey some of the

2.6 Discussion. 60

commonly known control transformations have been presented. Among these are : loop
-interchange, -fusion, -�ssion, -unswitching, -unrolling, -tiling and function inlining. Nat-
urally an analysis of the bene�ts and an investigation of the legality of performing a
speci�c transformation must be carried out prior to the actual transformation. Espe-
cially when dealing with very data intensive applications (e.g. multimedia applications)
the use of tiling transformations can yield signi�cant gains, when the memory access
patterns occur in di�erent dimensions. That is, when for instance the access patterns
consist of a square or a cube iterating over a multidimensional array.

When dealing with the con�guration of the memory hierarchy, and speci�cally the
cache size, research have shown that good results in terms of both performance and power
consumption can be obtained. Trying to �nd a suitable cache line size will however,
involve the making of a tradeo� between power and performance. These results were,
obtained by performing simulations of certain benchmarks that had not been optimized
for any particular cache con�guration prior to the simulation. An important question
in this context is whether the line size will be a much less determining factor of the
�nal performace and power related results, if the application code has been su�ciently
optimized to run on an achitecture with a certain line size. That this is in fact the case
is quite possible as the cost in terms of power usually is proportional to the number
of o� chip memory elements fetched during the entire course of execution (ignoring the
amount of bit line switching in each case).

A similar question arises when choosing among the di�erent degrees of associativity
in a particular cache con�guration. Some of the conducted research in this area have
shown that a small degree of associativity in most cases will yield better results than
with a direct mapped cache. Applying control loop- and memory layout- transformations
to the application could however, as in the former example of selecting line sizes, change
this trend.

As it has been described in this survey, there currently exist three commonly used
methods for reducing execution time and power consumption for applications running
on embedded systems. These methods are : Control loop transformations, Memory
layout transformations and Memory hierarchy design. Using all these three methods
when constructing an embedded system and its application-code might ultimately yield
even better results than what could have been obtained otherwise.
The obvious order in which these optimization steps should be applied is :

1. Design the memory hierarchy and select the cache parameters.

2. Apply control transformations with the selected cache parameters in mind, where
it is bene�cial and where data dependence constraints doesn't prohibit transfor-
mations.

3. Based on the cache parameters and the possibly altered execution order imposed
by step 2, a layout of data in main memory that minimizes con�ict- or compulsory
misses can be performed.

This proposed order is the only one that really makes sence as control- and memory
layout- transformations requires information about cache parameters, and memory layout
transformations highly depend on the memory access patterns (which might be altered

2.7 Summary. 61

by control transformations).
In this survey report there have been presented several examples of researchers that

have used simulation or estimation techniques as aids in con�guring the memory hierar-
chy to �t certain application speci�c requirements, during the design phase. This task
might seem a bit more complicated when overall stragety of optimizing performance now
also involves subsequent control- and memory layout- transformations. That is, the op-
timal memory con�guration for the unoptimized application code need not be the same
as for the optimized application code.

One way of looking at this problem might be to choose the best memory con�guration
for the unoptimized code, and use this design based on the point of view that even though
a smaller, and thereby faster and less power consuming, cache might be a better choice
for the optimized code, this selection probably won't be far from the optimal choice.

One could also use this con�guration as a guidance towards a suitable con�guration
and then perform a simulation of the con�garations that only di�er slightly from this
one. In this case one could also use the argument that lower degrees of associativity,
and smaller cache sizes relative to the con�guration obtained based on the unoptimized
code might be better "guesses" than moving in the opposite direction. This strategy will
de�nitely reduce the design space.

Furthermore some area or power constraints known from the very start in the devel-
opement of the system might provide upper bounds on the cache size.

2.7 Summary.

This survey has covered some of the previous conducted work in the area of memory
exploration and optimization for embedded systems. The presentation of memory opti-
mizing tecniques and approaches has been structured in a way that distinguishes between
code transformation and memory hierarchy design. In the former approach a transfor-
mation of the speci�c application code is performed in order to make it �t the underlying
memory hierarchy, thereby improving performance and power. In the latter case the in-
verse approach is taken and the memory subsystem is tuned to suit certain application
speci�c features. When dealing with code transformations a further distinction between
those that alter the control �ow and those that alter the memory layout of an application
has been made.

In the area of control �ow transformations an overview of the most widely used trans-
formations, and their bene�ts and drawbacks has been given. Some summaries of earlier
papers describing particular implementations of this kind of optimization technique has
also been provided.

In the area of memory layout transformations techniques for handling both scalar as
well as array variables has been presented. Also the layout of instructions and dynamic
memory layout approaches has been covered.

In the �eld of memory hierarchy design some of the tradeo�s involved when con�gur-
ing the di�erent cache parameters have been discussed. The use of estimation techniques
for quick evaluations of application speci�c performance and power consumption have
proven to be very valueable. Di�erent approaches for implementing these techniques
have been presented and a speci�c example of how it could be done has been given.

2.7 Summary. 62

Furthermore the concept of scratch-pad memory has been introduced and its bene�ts
and weaknesses has been discussed.

Finally some other areas in the �eld of memory exploration and optimization has
been presented. These include amongst others, the �elds of Worst Case Execution Time-
computation, Co-design and optimization for multiprocessor systems.

Chapter 3

Framework.

In this chapter some tools which could be very useful in the context of this project will
be presented. In section 3.1 an introduction to the kind of tools which could be used is
given. An overview of the found tools is subsequently given in section 3.2. The speci�c
tools are then presented and discussed individually and in greater detail in the following
sections.

3.1 Introduction

When performing compiler optimization oriented research, tools for carrying out the
tedious but yet complicated tasks of parsing and IR-tree generation is very useful. Like-
wise tools for performing the subsequent back-end generation and following evaluation
of obtained performance gains is equally valueable. This is the case both when dealing
with the task of performing code transformations and when memory hierarchy design is
the goal.

As the primary goal for this project is to examine and analyze program code in order
to obtain a better interaction between the code and the memory hierarchy, there is no
need to develop additional tools if such available programs already exists. What would
be really helpful when dealing with code transformations, is thus some sort of compiler
which allows for analyzing and manipulating the IR-tree inbetween the front and back
end generation. Furthermore some sort of evaluation tool (e.g. a simulator) which were
able to calculate the e�ects of these manipulations would be suitable. Similar tools would
also be very valueable when memory hierarchy design was the primary target, allthough
only the front end of a parser would be needed for such a project. In this case estimations
on cache misses could be made based on the parsed program, and the correctness of these
could be evaluated by the use of the simulator.

3.2 Overview

A thorough search among available compiler- and simulator- tools have been carried out,
in order to �nd the most promising and best suited programs for analyzing code and
evaluating results in the context of this project. The use of a desirable framework for
carrying out code transformations is illustrated graphically in �gure 3.1.

63

3.2 Overview 64

PERFORMANCE

PARAMETERS
CACHE

CODE ANALYZE SIMULATE

TRANSFORM

CODE
EDITED

Figure 3.1: Base framework for carrying out transformations.

During the corse of searching for suitable auxiliary compilers and simulators, two
very promising tools were found. The found tools are denoted The SUIF Compiler Set
[11], and the SimpleScalar tool set [19].

The SUIF compiler set is a compiler that was speci�cally developed for performing
compiler optimization research. It consists of C- and Fortran- front-ends, C- and MIPS-
back-ends, and provides a suitable interface for analyzing and editing the IR-tree. The
IR-tree contains all necessary information needed for performing high-level optimizations,
and is thus very well suited to be used in this project.

The SimpleScalar tool set consists among other things of di�erent simulators which
are able to simulate and gather a wide range of statistics for executables. The kinds
of information that can be obtained by the simulators pertains to cache hits/misses,
execution time and several other pro�ling statistics. The simulators can simulate the
behaviour of the so called SimpleScalar architecture, which is a close derivative of the
MIPS architecture. Cross-compilers for generating SimpleScalar executables are also
provided as a part of the tool set. Front-ends for C- and Fortran- programs exists. As
the SimpleScalar tool set provides the means for quickly to obtain memory and cache
behaviour statistics it is also very well suited for this project.

If one wanted to examine the impacts of code transformations on cache behaviour
and performance, the SUIF compiler and the SimpleScalar tool set could thus be used
for this purpose. By using the C-back-end of the SUIF-compiler, the transformed code
can be compiled by the SimpleScalar cross-compiler, thereby generating SimpleScalar
executables. The number of cache hits/misses can subsequently be obtained by running
the appropriate simulators on these executables. The two tool sets thus provides a useful
framework for carrying out code transformations and evaluating their e�ects. Replacing
the predicates "analyze" and "simulate" on the boxes of the previous �gure, with "SUIF"
and "SimpleScalar" respectively, the framework illustrated in �gure 3.2 is obtained.

Among the di�erent kinds of tools which were considered, the SUIF and SimpleScalar
tools appeared to be the most powerful, and almost speci�cally tailored for this project.
Some of the other tools which were also considered can be found at :

http://www.�rst.gmd.de/cogent/catalog/
http://www.cs.jcu.edu.au/ alison/TONY/tony.html
http://www.softpanorama.org/Algorithms/compilers.shtml

These adresses contains extensive lists of similar programs (including links). In the

3.3 SUIF. 65

ANALYZE

TRANSFORM

COMPILE

SIMULATE

CODE

CACHE
PARAMETERS PERFORMANCE

EDITED

CODE

SUIF SIMPLESCALAR

Figure 3.2: Suggested framework by using SUIF and SimpleScalar.

following two sections the SUIF and SimpleScalar tools will be described in greater de-
tail.

3.3 SUIF.

3.3.1 Introduction

There exists two editions of the SUIF compiler system. The �rst edition is denoted SUIF1
and the second SUIF2. The basic functionalities of the two editions are the same, but
they di�er in some areas. The IR-tree representation is for instance completely di�erent
for the two systems. The reason for this is that the SUIF2 system has been expanded to
contain an extensible IR-tree representation, which allows the user to make changes in
the IR-tree, thereby tailoring it for speci�c purposes. This is the main di�erence between
the two di�erent implementations of SUIF.

Another feature which also has been incorporated into the SUIF2 system is the ability
to integrate a userde�ned compiler optimization pass together with selected front- and
back-ends into a single coherent executable. This was not possible in the earlier SUIF1
implementation where the three steps of running a front-end parser, an optimization pass
and lastly a back-end code generator, involved the writing of the output of each step
into a �le. The drawback of this approach is a that it is less e�cient, as the repeated
writing and reading is time rather time consuming.

The last major di�erence between the two systems is that the SUIF1 system is dis-
tributed along with certain very useful libraries. Some of these libraries include interfaces
for performing code transformations, calculating dependencies and carrying out math-
ematical computations. These libraries are naturally very useful in the context of this
project, and have not been ported to the SUIF2 system because the changed IR-tree
structure would require the libraries to be completely rewritten.

3.3 SUIF. 66

3.3.2 Pros & cons.

In this subsection a brief discussion of the arguments which lead to the �nal choice of
which SUIF version, will be conducted.

At �rst the SUIF2 system was chosen to be used as a part of the framework for
performing code transformations. The strongest argument for this choice was that if
a further developement of this project was to be carried out, it might not be possible
to use the SUIF1 system some point in the future as the porting of SUIF1 to future
days operating systems might not exist. As the structure and functionality of the SUIF2
system subsequently was explored, the system turned out to be very poorly documented.
The system was distributed along with guides which explain how to use the front-ends
and back-ends compilers, and with brief descriptions of the structure of a pass. Therefore
the only source of information pertaining to the use and functionality of the IR-tree that
is available to a user of the system is the header �les for the di�erent �les which describe
the IR-tree objects. Furthermore no examples for constructing a pass exists in the
documentation. The SUIF1 system is on the other hand much better documented, and
the distribution contains some simple examples, as well as guides for some parts of the
libraries.

This unexpected drawback of the SUIF2 system thus forced the choice of choosing
the SUIF1 system instead, as the task of understanding and using the SUIF2 system
turned out to be to far to time-consuming. Another additional advantage of using the
SUIF1 system over SUIF2 is the earlier mentioned available libraries that come with this
distribution.

This switch in choosing the best suited framework, had the unfortunate e�ect of
delaying the project to some extend. Furthermore some problems with the SUIF1 com-
piler system began to appear. The included transfom library turned out to generate
assertion errors for some odd reason. The exact reason for this error was never exactly
established, but apparently it was triggered as a result of the order in which the di�erent
SUIF libraries were included. The transform library works however quite well in the �nal
implementation. As it was also mentioned in the preface of this thesis, these problems
caused a delay of the project and as a result of this the original objectives were not fully
met.

3.3.3 Detailed description.

The SUIF compiler system (both editions) has been developed by the Stanford Com-
piler Group at the Stanford University. SUIF is an abbrevation for Stanford University
Intermediate Format, where "Intermediate Format" comes from the representation of
the Intermediate Representation tree, which is used by the system. This format is the
backbone of the SUIF compiler as the system is designed to provide the opportunity for
conducting compiler optimization research by analyzing and manipulating this IR-tree.

The SUIF1 system contains as earlier mentioned C- and Fortran- front-ends, and
C- and MIPS- back-ends. Furthermore it provides an interface for writing analyzing
and/or optimizing compiler passes which operate on, and possibly modify the IR-tree
representing the program under investigation. The IR-tree representation of a particular
program is, after the running of a front-end on the source program, contained in a so

3.4 SimpleScalar 67

called suif-�le. Any number of user de�ned passes can subsequently be applied to this
suif-�le. Such a pass would read the particular suif-�le and after a potential transforma-
tion had been applied, the modi�ed IR-tree would be written to another suif-�le. This
could then be repeated any number of times, if this is the intention. Finally the suif-�le
representing the possibly modi�ed source program could be translated back to source
code by using the back-end C code generator.

The front-end parser contained in the SUIF system is denoted "scc", and the gen-
eration of a suif-�le from a C-program could be obtained by executing the command :

>scc -V -.spd input.c

This generates a �le input.spd, which contains the IR-tree representation of the original
C source program. After the running of one or more passes on this suif-�le, by simply
executing :

>my_pass input.spd input.out.spd

,if ones generated pass was denoted my_pass. The resulting suif-�le input.out.spd

could be converted back into C source format by the back-end s2c :

>s2c input.spd.out input.out.c

The interface which is provided by the SUIF1 system for generating a user de�ned
compiler pass will also be described brie�y. The code which constitutes the pass must
be written in C or C++. In order to create a single executable pass one can de�ne
a procedure that is to be applied to every procedure/function contained in the IR-tree.
This is accomplished by giving this function as an argument to the suif_proc_iter(...)
function, in the main() program of ones pass. The suif_proc_iter(...) function is
provided by the standard SUIF library. Furthermore some other initializing functions
should be called from the main() program of ones pass. These functions perform all the
necessary tasks of reading in the suif-�le, writing it back to a �le(at the end), treating
command-line arguments, creating annotations in the code(used by the system), and so
on.

The SUIF system also provides a standard Make�le which takes care of all the neces-
sary tasks of creating a single standalone pass on the basis of the source code constructed
by the user. The resulting pass can thus be applied to any suif-�le as a single executable
and will produce a possibly modi�ed suif-�le according to the actions performed in the
pass. All that is needed by the user is to assign the names of ones source �les to certain
Make�le variables and the SUIF system takes care of the rest.

3.4 SimpleScalar

The SimpleScalar Tool Set consists of compiler, linker, assembler and simulators for
the SimpleScalar architecture. The tool set allows the user to simulate programs on
modern microprocessors, by the use of fast execution-driven simulation. It comes with
both C- and FORTRAN- frontends which can be used to generate executables for the
SimpleScalar architecture, a close derivative of the MIPS architecture. The execution of

3.4 SimpleScalar 68

generated binaries can be performed by one of 5 di�erent processor simulators that in turn
can provide di�erent kinds of useful statistics about the execution process. Examples
of some of the information that can be gathered during the course of execution is for
instance : Execution time, pro�ling information and number of cache hits/misses.

The simulators provided by the tool set will also accept certain command line argu-
ments, that specify di�erent parameters of the architecture. Sim-outorder, which is the
most powerful simulator in the tool set, is able to simulate out of order execution and
will also accept arguments specifying di�erent parameters of the processor core (no. of
ALU's, no. of cache ports, ...), the memory hierarchy and branch prediction strategies.

The simulators sim-cache and sim-cheetah are especially useful for measuring the
performance of the memory subsystem, as detailed memory con�guration parameters
can be speci�ed as arguments at the command line. Sim-cache accepts arguments that
for both instructions and data con�gures the TLB, level1 and possibly level2 cache.
Furthermore, for each of these memory banks their block size, associativity, number of
sets and replacement policy can also be given as arguments. A �ushing of all caches on
system calls is also possible.

Sim-cheetah, on the other hand, is capable of performing several simulations with dif-
ferent cache parameters simultaneously. That is, for speci�ed intervals of line size, cache
size, associativity and number of sets, sim-cheetah will perform simulations of all pos-
sible combinations of these parameters (of course these parameters are not independent
of each other).

Just as it was the case with the SUIF library, some problems with the SimpleScalar
tool also occurred. These problems do however not relate to the actual use of Sim-
pleScalar. The problems occurred during the installation of the tool, where bugs in the
tool were found. In order to �x these bugs an altering of the actual source code consti-
tuting the tool was necessary. Most of the �xes to these bugs were found on the web.
A list of the changes that had to be made in order to obtain a working simulator are
provided in appendix B.

The SimpleScalar Tool Set can be obtained at :
ftp://ftp.cs.wisc.edu/sohi/Code/simplescalar/.

Chapter 4

Implementation.

4.1 Discussion of selected implementation.

This section contains a brief introduction to the kind of memory analysis tool which has
been chosen to be implemented. Furthermore a discussion of the reasons for the choice
of implementation will be conducted. A brief overview of the contents of the rest of this
chapter is also given.

Based on the compiler- and simulator- tools described in the previous chapter, it has
been chosen to implement a memory analysis tool for carrying out tiling transformations
on embedded systems applications.

Tiling transformations were previously presented in section 2.2.2, where the basics
of this code transformation was introduced. The general idea of carrying out tiling
transformations is to divide the iteration space of a nested loop into smaller parts (tiles),
and to process each of these in turn. The example presented in section 2.2.2 involved a
two dimensional tiling of the given nest, but in general any number of loops in the nest
can be tiled. As the number of iterations performed in each of the loops inside a tile is
relatively small, the number of elements fetched in the inner loops of the tile is reduced.
This in turn allows for fetched data to be reused in the next iterations of some of the
outer loops inside the tile. If such data exists it is not likely that it could have been
reused in the original loop as a large number of intervening accesses in the innermost
loops probably would have �ushed it out of the cache. The tiles should be selected
with an appropriate number of dimensions, and a size which make all the data-elements
fetched during the processing of a tile �t in the cache. If this criterion is met, capacity
misses during the execution of a single tile can be eliminated alltogether.

The use of tiling will be presented in greater detail in section 4.2.4. In these sections
some techniques for determining the desirability of carrying out tiling transformations
will also be described.

Tiling can be an extremely useful transformation when applied to certain applica-
tions. It can be especially bene�cial in cases where di�erent array references in successive
iterations of a loop access elements in both the same row as well as the same column in
their respective arrays. A matrix multiplication algorithm is an example of such mem-
ory access patterns. It is also a well-known case for which a tiling of the entire nest is
particularly bene�cial. As the references in the nested loop of a matrix multiplication

69

4.1 Discussion of selected implementation. 70

algorithm thus moves along both the rows as well as the columns of the array, the in-
terchange of loops yields no performance gains. The correct use of tiling can however
signi�cantly reduce the number of o�-chip accesses.

In cases where the references in successive iterations access elements from a number
of di�erent rows, tiling may also yield considerate performance gains. The Sucessive
Over Relaxation algorithm [35] and the so called Local Summation algorithm [27] are
speci�c real-world examples of this.

Naturally there also exist applications for which tiling transformations yield no per-
formance gains, and just introduces loop overhead. Such applications should of course
not be tiled. There de�nitely also exist applications which would bene�t far more from
other high-level cotrol-transformations, such as interchanging. Nevertheless the presence
of applications that would bene�t signi�cantly from specically tailored tiling transfor-
mations, and for which no other high-level transformation is just as advantegeous, is
undesputed. The ability to perform high level memory analysis and possibly subsequent
tiling transformations is thus at least for some applications very valueable. This fact
constitutes a part of the reasoning which has lead to the choice of implementing tiling
transformations.

In order to accurately analyze a piece of speci�c application code for the desirability
of carrying out a tiling transformation, some sort of evaluation of the potential reuse in
the nested loop must be conducted. The best possible, and most accurate, measure for
the potential bene�ts of carrying out a tiling transformation would be an estimate on
the reduced number of o�-chip accesses. Thus the incorporation of an algorithm which
is able to make some sort of estimation on the number of o�-chip accesses is preferable.
Furthermore the algorithm which calculates the most bene�cial dimensions and sizes
of a tile, also needs to be able to gather information on the number of di�erent cache
lines that is touched during the processing of a tile. The analyzing steps which must be
conducted before this task can be accomplished also involves almost all of the base work
for estimating the number of o�-chip accesses. In order to obtain a well working tiling
transformation tool, it is therefore also necessary to construct an algorithm which can
perform estimations on the number of cache misses. This algorithm is thus a bene�cial
side e�ect of performing tiling analysis. An investigation on the estimation algorithms
ability to predict the values of o�-chip accesses could subsequently be performed. This
could involve both the relative results (compared to other tilings) and the absolute values
of o�-chip accesses, which could be compared with simulator results.

The SUIF1-compiler system which was presented as a part of the proposed framework
in chapter 3, provides well suited tools for carying out the speci�c task of performing tiling
transformations. This is the case as SUIF1 is distributed along with several libraries,
among which some are particularly useful in the context of this project. One of these is
a so called dependence library, which can be used to gather information on the existing
dependences between data-elements in a nested loop. This information can subsequently
be analyzed in order to ensure the legality of the kinds of transformations one wish to
perform. Furthermore a transform library, which among other things is able to carry out
the acual transformation is also available. The speci�c parameters for the transformation
such as tile-dimensions and tile-sizes must be provided by the user.

In the next section of this chapter the necessary theory for implementing a working
tiling transformation tool is presented. This is a rather long section as there are many

4.2 Implementation Speci�c Theory. 71

aspects which should be considered. In the following section (4.3) an overview of the code
which constitutes the developed tiling transformation is provided. Finally in section 4.4 a
discussion of relevant extensions and improvements for the implementation is conducted.

4.2 Implementation Speci�c Theory.

In this section some techniques and theories regarding the construction of a high level
compiler pass will be presented. Some of the subjects adressed will apply only to the im-
plementation of a tile pass, while others are generally applicable when dealing with high
level compiler optimization. All of the described theories are necessary for construct-
ing a well working tile pass. Among the adressed subjects are data dependencies, and
mathematical approaches for evaluating and quantifying reuse. In section 4.2.1 an intro-
duction to data dependencies will be provided. This topic is extended upon in section
4.2.2 in which data dependences in loops are considered. How to apply these theories to
determine the legality of certain transformations is then adressed in the following section.

Some aspects regarding tiling are discussed in section 4.2.4 The reresentation of
references which will be made use of is described in section 4.2.5. This is followed by a
review of the topic of reuse and equivalence classes (section 4.2.6) and a mathematical
approach for calculating these (section 4.2.7). The quanti�cation of reuse is described in
the following section, and �nally some limitations to the presented theories are given in
section 4.2.9.

4.2.1 Data dependencies.

When performing di�erent kinds of control transformations on a loop it is necessary to
consider the inherent data dependencies that might exist in the loop's body. This is
particularly important as some transformations might be constrained by dependences
imposed by the references to memory made inside the loop. Neclecting to investigate
the legality of applying a particular transformation can in the worst case result in an
altering of the program.

When characterizing data dependencies a distinction between three di�erent kinds
of dependences is usually made. These di�erent types are named true dependence, anti
dependence and output dependence.

A true dependence exists when an instruction writes a value (to a memory location
or a register) that is later read by another instruction. Using simple variables as the
place to store values, an example of true dependence is given in the following piece of
code :

........

S1: a = c + 5;

S2: b = a + 12;

........

In this case the instruction S1 writes a value to the variable a, which is later read by
the instruction S2. Therefore S2 has a true dependence on S1, and every transformation
that might cause S2 to be executed before S1 is illegal.

4.2 Implementation Speci�c Theory. 72

An anti dependence exists when a value is read from a storage location, which is
later assigned a value by another instruction. Such a dependence would for instance be
present in a piece of code that had the two instructions S1 and S2 interchanged :

........

S2: b = a + 12;

S1: a = c + 5;

........

, and S2 must in this case always be executed before S1.
The last type of data dependence is denoted output dependence. This kind of dependence
exists when two instructions write some value to a particular memory location. An
example of such a situation is given in the following :

S3: d = e + 20;

S4: d = f + e + 5;

An important fact that should be stressed at this point is that for a dependence to exist
between two instructions (or two references) at least one of them must be a write. As it
has been shown this is the case for all the three types of data dependence just mentioned.

4.2.2 Dependences in loops.

When dealing with data dependencies in multi-level nested loops, vectors is a useful way
to represent a particular iteration of such a loop. More speci�cally an iteration of an
n level nested loop can be represented by a vector ~p = (p1; p2; p3; :::; pn) in which pi is
the loop index for the i'th loop in the nest. The loop indexes are usually ordered from
outermost to innermost, e.i. p1 always corresponds to the outermost loop index. To
illustrate the use of such an index vector, consider the following loop :

for i=1 to I

for j=1 to J

for k=1 to K

........

In this loop the iteration in which the index variables have values i=2, j=7, k=3, will
be represented by the index vector (2; 7; 3).

The lexicographic order of the index vectors in a loop will determine the order in
which the iterations are performed. That is, if p2 is lexicographically greater than p1,
then the iteration corresponding to the index vector p2 will be executed after the iteration
corresponding to the index vector p1. For instance (4; 1; 1) is lexicographically greater
than (2; 7; 3) and is therefore executed after iteration (2; 7; 3).

To �nd out if there exists any dependences in a nested loop, it is su�cient to determine
whether it is possible for any iteration to write a value that is read or written by any
other iteration. If for instance it turns out that in two di�erent iterations p1 and p2
the same data element is accessed, and at least one of the accesses is a write, then the
lexicographically greatest index vector of the two will have a data dependence on the
other. As an illustrative example consider the following nested loop :

4.2 Implementation Speci�c Theory. 73

for i = 2 to N

for j = 1 to N-1

A[i][j] = A[i][j] + A[i-1][j+1];

In iteration (1; 3) the array element A[1][3] is written. This same data element is read
in a later iteration namely (2; 2) in which the array reference A[i-1][j+1] accesses the
very same data element A[1][3]. There is thus a dependence (a true dependence) from
(1; 3) to (2; 2). Furthermore the dependence can be described by the so called dependence
distance which is calculated as (2; 2) � (1; 3) = (1;�1).

In this case the dependence distance actually describes the dependences for all the
iterations, as for instance the iteration (3; 3) is also dependent on (2; 4), (4; 4) on (3; 5)
and so on. Therefore the dependence distance is instead denoted as a distance vector.
At this point it should be noted that a distance vector by de�nition is lexicographically
positive. This can be seen as it was calculated as the lexicographically greatest of the
index vectors minus the lexicographically smaller index vector.

To stress the fact that distance vectors describe dependences among iterations, not
data elements, another example, this time involving a one-dimensional array, will be
given in the following :

for i = 1 to N

for j = 2 to N-1

A[j] = A[j] + A[j-1] + A[j+1];

At �rst glance the following observations are made:

� The value written by A[j] in one iteration of the innermost loop is read by A[j-1]

in the next. This dependence can be describes by the distance vector (0; 1).
� The data element read by A[j+1] in one iteration of the innermost loop is written
to by A[j] in the next. This dependence can also be describes by the distance
vector (0; 1).

� The data element written by A[j] in iteration (x; y), where x and y are integers
within the iteration space boundaries, is read by A[j+1] in iteration (x+1; y� 1).
This dependences can be described by the distance vector (x+1; y� 1)� (x; y) =
(1;�1).

� The data element written to by A[j] in one iteration is read by A[j] (on the right
hand side) in the next iteration of the i-loop. This dependence can be describes by
the distance vector (1; 0).

These distance vectors de�nitely describe the inherent dependence in the nested loop,
however even more is true. For each of the found distance vectors a replacement of
the �rst element in the vector by another positive integer (within the iteration space
boundaries) will also result in a valid distance vector for the loop. For instance the
reference A[j-1] which gave rise to the �rst distance vector that was found (0; 1) also
gives rise to the distance vector (1; 1) and (2; 1) and so on. In this case the dependences
can better be described by a direction vector.

A direction vector is a vector that describes dependences in the same way as it is
the case for a distance vector, but where only the signs of the distance vector elements
matters. For an index vector (q1; q2; q3; :::qn) representing a particular iteration that

4.2 Implementation Speci�c Theory. 74

is dependent on an other iteration (p1; p2; p3; :::; pn) the direction vector describing the
dependence is given by (r1; r2; r3; :::; rn), where the elements are :

ri = " < " if pi < qi
ri = " = " if pi = qi
ri = " > " if pi > qi

In this way a possibly in�nite range of distance vectors can be covered, and the for-
mer mentioned set of distance vectors created by the reference A[j-1] : (0; 1) , (1; 1) ,
(2; 1) can be described by (=; <) for (0; 1) and (<;<) for the rest ((1; 1); (2; 1)::::).
A direction vector is thus a way of representing a set of distance vectors as the elements
�<� and �>� can represent any number of values in the sets of positive and negative
natural numbers respectively. That is, �<� actually corresponds to any possible subset
of Z+ and �>� corresponds to any possible subset of Z-.

Representing a dependence that can be characterized by a single distance vector by a
direction vector instead of a distance vector is an example of how information about the
speci�c dependence is lost. For instance the former mentioned distance vector (0,1) could
be described by the more general (=,<), whereby the information that the dependence
exists between two successive iterations of the innermost loop is lost. Loosing this kind of
information is however not very important when the dependences are used to determine
the legality of certain high level control transformations. In this case only the signs
of the various elements in the distance vector matters and the dependence can just as
well be described by a direction vector. This point will become more clear when the
legality criteria for performing high level transformations such as interchange or tiling is
discussed in a later section.

Sometimes the symbols "+", "0" and "-" is used instead of "<", "=" and ">" respec-
tively. That is, "+" corresponds to "<", "0" corresponds to "=" and "-" corresponds
to ">". Furthermore the symbols <=, >= or � might also be used to denote combined
ranges of distances. The symbol <= thereby denotes both ranges < and =. The symbol
>= denotes ranges > and =. Lastly � denotes all the ranges <, = and >.

Using these symbols the direction vectors characterizing dependences in a loop can
be summarized in a smaller set of directoins vectors or even a single one. This can be
illustrated by once again to considering the last example, in which the distance vectors
(0,1) , (1,0) , (1,-1) and (1,1) was found. These distance vectors corresponds to the
direction vectors (=,<) , (<,=) , (<,>) and (<,<). Summarizing all these vectors
into one yields (<=,�) , where each direction ri in the summarizing direction vector
(r1; r2; :::; rn) corresponds to the union of ranges found at the same nesting depth in all
the other direction vectors.

This summarizing direction vectors once again leads to the loss of some information
about the actual dependences. When performing this summarizing step however, one
should be careful not to accidently create a direction vector that represents a possible
lexicographic negative direction vector. In this case this is exactly what has happened.
The direction vector (<=,�) actually represents a possible lexicographic negative direc-
tion vector as it for instance covers the direction vector (=,>). This is a very unfortunate
e�ect and the summarizing of direction vectors should be avoided when this may lead
to possible lexicographically negative direction vectors. The main reason for this is that

4.2 Implementation Speci�c Theory. 75

it might result in a following transformation legality analysis to produce wrong results.
That is, the summarized direction vector might actually cover a dependence that does
not really exist, but that prohibits a certain transformation from being legal.

For the direction vectors (=,<) , (<,=) , (<,>) and (<,<) a summarizing that covers
only lexicographically positive direction vectors should instead be performed. This can
be done by summarizing (=,<) , (<,=) and (<,<) into (<=,<=), while leaving (<,>)
unchanged.

4.2.3 Legality criteria for transformations.

As it was former mentioned the dependence vectors of a particular loop can be used to
determine the legality of carrying out di�erent kinds of transformations on this loop.
The e�ect on the dependence vectors of performing a transformation, and the here from
derived criteria that can be stated, will be described by a simple example. This example
involves the interchange of loops.

When iterations in a nested loop can be represented by vectors it is possible to
represent transformations such as reversal, skewing and interchange as matrix transfor-
mations. When interchanging a nested loop of depth 2 the iteration described by the
index vector (x; y) is mapped to the iteration (y; x). This mapping can be formulated in
a matrix notation as :

0 1
1 0

!
�

x

y

!
=

y

x

!

It is clear that the matrix performs a linear interchange transformation on the iteration
space. Moreover, when an iteration (x2; y2) has a dependence on (x1; y1) in the orig-
inal iteration space (the dependence vector is (x2; y2) - (x1; y1)), then the mapping of
(x2; y2) = v2 and (x1; y1) = v1 will be given by M � v2 = (y2; x2) and M � v1 = (y1; x1).
This means that in the transformed iteration space the dependence vector is now given
by (y2; x2)� (y1; x1) = M � v2�M � v1 = M � (v2� v1), which shows that the matrix also
maps dependence vectors into the new iteration space. Thus if v is a dependence vector
in the original iteration space, then M � v is a dependence vector in the transformed
iteration space. More speci�cally v = (v1; v2) is mapped into :

0 1
1 0

!
�

v1

v2

!
=

v2

v1

!

This can be summed up as follows : Interchanging loops i and j in a nested loop yields
changed dependences, which can be described by interchanging elements i and j in all
the dependence vectors that describe dependences in the nested loop. Furthermore, if all
the dependence vectors remain lexicographically positive after the transformation, then
the interchange is legal.

As an example consider a nested loop with depth 3 and with dependences (<,=,>)
and (<,>,>). In this loop it is legal to interchange the two innermost loops, while the
outermost loop cannot be interchanged at all. If however, a dependence described by
(=,<,>) also existed in the loop then no interchange what so ever could be performed.

The same principle that was described here applies to all unimodular transformations.
That is, a unimodular transformation is legal if and only if all the dependence vectors
remain lexicographically positive.

4.2 Implementation Speci�c Theory. 76

The neccesary condition that must be ful�lled for a particular set of loops in a nested
loop to be tileable is, that the loops targeted for tiling must be fully permutable [54].
The de�nition of fully permutable loops is as follows :

Loops Ii through Ij in a nested loop are fully permutable (and tileable) if and only
if for each dependence vector either (d1; d2; :::; di�1) is lexicographically positive or all
elements di; di+1; :::; dj are non-negative. To make this important criterion more clear,
an example will be presented in the following:

Consider a nested loop of depth 5, with the following dependence vector : (=,=,=,<,=).
In this nest it is possible to tile the two innermost loops (i.e. loops 4 and 5). The
(d1; d2; :::; di�1) elements are not lexicographically positive as they equal (=,=,=), but
on the other hand the di; di+1; :::; dj elements (equal to < and =) are both non-negative
and the criterion is met. In fact all possible sets of adjacent loops in this nest are tileable.

If the dependence described by the dependence vector (<,>,>,>,=) was also present
in the loop, then every set of adjacent loops except the ones involving the outermost
loop could be tiled.

4.2.4 Tiling aspects.

The use of tiling transformations have previously been described in section 2.2.2. In this
description an example of a two-dimensional tiling was also included, and the bene�ts
and incentives for performing tiling transformations was brie�y discussed. As it was
mentioned in section 2.2.2 the tiling of a loop can result in a better exploitation of the
inherent reuse present in the nested loop.

Performing a tiling transformation of a nested loop improves its cache reuse by di-
viding the nests iteration space into tiles, and transforming the loop to iterate over the
tiles, one at a time. As the processing of each tile involves a lot fewer interveaning ac-
cesses, data reuse can now occur in all the loops targeted for the tiling. This is of course
provided that all the data used in the processing of a tile simultaneously can be held in
the cache. An illustrative example showing how reuse can occur in di�erent loops inside
the nest will be presented using the following matrix multiplication algorithm :

for i = 1 to N

for j = 1 to N

for k = 1 to N

C[i][k] = A[i][j] * B[j][k];

In this naive matrix multiplication algorithm, each line of C-array elements that is fetched
as a result of the reference C[i][k] has the potential to be reused in each iteration of the
j-loop. The reuse can however only occur, if the large amount of interveaning accesses in
the iteration of the k-loop don't �ush out the C elements from the cache before it can be
reused. In a similar manner each line of B array elements that is fetched as a result of the
B[j][k] reference has the potential to be reused during the next iteration of the i-loop.
The array references do however still exhibit some sort of reuse, as for instance A[i][j]
exhibits self temporal reuse in the innermost loop (see section 2.4.5 for classi�cation of
reuses). Likewise the references C[i][k] and B[j][k] both exhibit spatial reuse in the
innermost loop. At this point it should be made clear that for an non-tiled loop the only
reuses that are exploited are those present in the innermost loop. One can also say that

4.2 Implementation Speci�c Theory. 77

the only reuses that are exploited are those that coinside with the localized vector space
of a nested loop, and for a non-tiled loop the localized vector space consists only of the
innermost loop. By performing a tiling transformation however, all the loops involved
in this tiling becomes a part of the localized vector space, and it is thereby possible to
exploit a greater part of the inherent reuse in a nested loop.

The potential reuses in the loop that are not exploited are besides the two already
mentioned reuses of C[i][k] (temporal) and B[j][k] (temporal) in the j- and i- loop
respectively, also the self spatial reuse of A[i][j] in the middle loop. It is thus clear
that unexploited reuse exists in all of the three loops, and that a tiling of all the three
loops therefore would be bene�cial, as long as the working set of a tile computation can
�t in the cache.

In general, the e�ect of letting a particular loop (j) in a nest be a part of the tile-
transformed area is that a much smaller number of iterations in the inner loops will
be performed before an iteration of the j-loop is performed again. This is a result of
the dividing of the iteration space, and this will allow a potential reuse in loop j to be
exploited as it hereby becomes a part of the localized vector space.

In the described example involving the matrix multiplication algorithm reuses turned
out to be present in all of the three loops. A tiling involving all of the three loops would
therefore be very bene�cial as it would allow for the reuses in all loops to be exploited.
One can also say that the entire iteration space (i.e. all three loops) has been localized,
and that this allows for all potential reuses to be exploited. It is actually a well known fact
that matrix multiplication code is an extremely well suited target for tiling transforms,
as reuses exist in all loops and as the tiling of those is perfectly legal.

In other cases however, there might not exist reuse in all of the loops, and it might
not be legal to perform a tiling or another kind of transformation in order to exploit
those reuses that do exist. In such cases it is bene�cial to perform transformations such
as interchange that orders the loops in a way that places loops with reuses innermost
in the nest, before an eventual tiling of the nest is carried out. All of the performed
transformations should of course still be legal, and this is not always the case.

A tiling should always include at least the two innermost loops in a nest, to really
make sense. That is, a one dimensional tiling of a loop alters nothing except for intro-
ducing overhead in terms of the extra for loop. Furthermore as the e�ect of performing
a tiling transform is to localize the iteration space, a tiling that doesn't involve one or
more of the innermost loops in a nest, seems unadvantageous. For instance a tiling of
some subset of the loops that does not involve the innermost loop will not result in a
further localization of the iteration space, as long as the bound in the innermost loop is
relatively large. A tiling should thus always on some number of the innermost loops in
the nest.

The tiling of the matrix multiplication algorithm previously presented could be per-
formed as follows :

for i_tile = 1 to N step T

for j_tile = 1 to N step T

for k_tile = 1 to N step T

for i = i_tile to min(i_tile + T - 1, N)

for j = j_tile to min(j_tile + T - 1, N)

4.2 Implementation Speci�c Theory. 78

for k = k_tile to min(k_tile + T - 1, N)

C[i][k] = A[i][j] * B[j][k];

Where T is the chosen tile size which ensures that the working set will �t in the cache.
The �rst three loops iterate over all the tiles, while three innermost loops process

the computations performed within each tile. The outermost loops which control the
iterations over the tiles are sometimes referred to as the controlling loops. This group
of loops are fully permutable as well as the group consisting of the innermost loops are.
What this means is, that within each group of loops, the loops can be interchanged
without violating any depedences. That is the order of the controlling loops (named by
their index variables) are currently {i_tile, j_tile, k_tile}, and they could just as
well be laid out in the order {j_tile, i_tile, k_tile} or for instance {j_tile, k_tile,
i_tile}. If this last choice is made then the layout of the code would look as follows :

for j_tile = 1 to N step T

for k_tile = 1 to N step T

for i_tile = 1 to N step T

for i = i_tile to min(i_tile + T - 1, N)

for j = j_tile to min(j_tile + T - 1, N)

for k = k_tile to min(k_tile + T - 1, N)

C[i][k] = A[i][j] * B[j][k];

In this fraction of code the two middle loops could just as well be merged into one
without changing the order of execution in the loop. The merging of these two loops
would produce the following code :

for i_tile = 1 to N step T

for j_tile = 1 to N step T

for i = 1 to N

for j = j_tile to min(j_tile + T - 1, N)

for k = k_tile to min(k_tile + T - 1, N)

C[i][k] = A[i][j] * B[j][k];

This form of merging loops together after tiling is commonly known as coalescing. As
just mentioned applying coalescing to a tiled loop doesn't change the iteration order at
all, and the coalesced loop still remain a part of the localized vector space.

4.2.5 Representation of references.

As it has been demonstrated in the previous section, unimodular transformations and
tiling can be used to alter the localized iteration space in a nested loop, ultimately
resulting in a better exploitation of reuse. This improvement in performance is obtained
when the applied transformations succeeds in making the localized iteration space overlap
with the inherent reuse in the nest. To be able to methodize the execution of such
transformations, a technique for �nding the potential reuse in a nested loop is needed.
That is, it is necessary to be able to determine which references do exhibit some sort of
reuse, and in which loop this reuse occurs (i.e. in what dimension of the iteration space).
Furthermore it is also necessary to be able to quantify this reuse in order to make good

4.2 Implementation Speci�c Theory. 79

strategic decisions pertaining to the actual transformations that should be applied. That
is, some sort of evaluation of which transformations would be most bene�cial should be
carried out. To be able to do this in an e�cient and clear way a suitable representation of
the array references in a nested loop must be used. This representation can then be used
to establish what kinds of reuse the di�erent references exhibit and in which dimensions
this reuse occurs.

This section will provide a description of a suitable representation of array references
in nested loops, and a further description of how this representation can be used in
calculating a way to exploit the reuse in the best possible manner. A description of a
useful representation of array references will be given in the following. The representation
needs to carry information of both the subscripts of arrays as well as the the loop-
positions of the index variables that are used in the subscripts. This is accomplished by
letting each reference be represented by a function which maps the index vector of the
nested loop to a vector containing all the subscript expressions in the reference. How
this works is best illustrated by an example. Consider the following nested loop :

for i1 = 1 to N

for i2 = 1 to N

for i3 = 1 to N

A[i1][i2+1] = B[i3 -1][i2];

The function representing the reference A[i1][i2+1] is given by f(i) = H �~i+~c, where
~i is the index vector, and where H is the matrix :

H =

1 0 0
0 1 0

!

, and ~c is the constant vector (0,1).
It is thus clear that f(i) equals the vector (i1, i2+1) which contains exactly the index

expressions of the reference A[i1][i2+1]. The matrix stores the positions of the index
variables for each indexation of the array and the vector ~c stores the constant terms.
One should notice that the matrix has dimensions (loop�depth)� (array�dimension).

In a similar way the H and c belonging to the B[i3 -1][i2] reference can be identi�ed
to be :

H =

0 0 1
0 1 0

!
c =

�1

0

!

The reason for representing the references by this matrix and vector notation is that it
makes it possible to calculate both reuse dimensions as well as equivalence classes by the
means of simple matrix and vector operations. This will become apparent later in this
section, when it is described how this is done.

For the presented example one additional comment must be made. The reference
A[i1][i2+1] exhibits reuse in the i3-loop and is therefore said to have reuse in the
(0,0,1) direction of the iteration space. In general a reference that exhibits reuse in loop
ix in an n-level nested loop, is said to exhibit reuse in the (i1; i2; i3; :::; ix; :::; in�1; in)
dimension, where ix equals 1 and the rest of the elements equal 0. This is a way of using
vector spaces to represent the directions in which reuse is found, and these directions are
the ones that are advantegeous to include in the localized iteration space.

4.2 Implementation Speci�c Theory. 80

4.2.6 Determination of reuse and equivalence classes.

When analyzing a nested loop for potential reuses a division of the di�erent reuse-types
into separate equivalence classes is prefereable. The references are divided into equiva-
lence classes based on the same criteria that was described in section 2.4.5. The main
reason for performing this partitioning of references is that the estimation of the number
of o�-chip accesses due to a certain set of references is determined by the number and the
types of equivalence classes that the references can be divided into. An equivalence class
can consist of one or more array references, and all the references belonging to the same
class, must of course reference the same array. The meaning of an equivalence class which
contains more than one reference is that some sort of reuse exists among these references
in the current loop. If the class only contains one reference then some sort of reuse
exists between the accesses to this array element in di�erent iterations. Furthermore an
equivalence class is de�ned to contain one or more references that exhibit a particular
type of reuse. That is a speci�c type of reuse is associated with each equivalence class
in a nested loop. The types of reuses that can occur has also been presented in section
2.4.5 and their de�nitions will be listed here for convienience :

Self- temporal : A memory reference accesses the same data location in di�erent loop
iterations

Self- spatial : A memory reference accesses the same cache line in di�erent loop itera-
tions

Group- temporal : More than one reference accesses the same data location in di�er-
ent iterations

Group- spatial : More than one reference accesses the same cache line in di�erent
iterations

From these de�nitions it should be clear that an equivalence class consisting of more that
one reference only can be of one of the two types : Group-temporal or Group-spatial.
Likewise an equivalence class consisting of a single reference can only be of one of the
the two types : Self-temporal or Self-spatial. It should also be noted that self-temporal
reuse implies self-spatial reuse and that group-temporal reuse implies group-spatial reuse
(a reference to the same data element is also a reference to the same cache line).

The explanation of how the partitioning of references into equivalence classes should
be done will be illustrated by the use of an example. The same code that was used in
section 2.4.5 is very well suited for this purpose and will therefore also be used here. There
exists however at this point some di�erent aspects of how the partitioning of references
should be carried out. This is the case as the use of tiling provides the opportunity of
extending the localized vector space to also include others than just the innermost loop.
This is important because the localization of the iteration space by the use of tiling may
alter the original equivalence classes calculated from the original loop.

To provide the best possible description of how this a�ects the steps that should
be taken, it will �rst be described how the equivalence classes can be derived from the
original code, where no tiling is intended. The code looks as follows :

for i=0, i<M, i++

for j=0, j<M, j++

A[i][j] = A[i][j-1] + A[i][j] + A[i][j+1] +

4.2 Implementation Speci�c Theory. 81

A[i-1][j] + A[i+1][j] + B[i] + C[j][i]

The partitioning of these references into equivalence classes resulted in the generation of
the following classes, where all references belonging to the same class are placed inside
the braces "{" and "}". The equivalence classes are listed according to which type of
reuse they exhibit :

No reuse : C[j][i]
Self-temporal reuse : {B[i]}
Self-spatial reuse : {A[i-1][j]} {A[i+1][j]}
Group-temporal reuse : {A[i][j-1], A[i][j], A[i][j+1]}
Group-spatial reuse : none

Consider as a �rst example the reference C[j][i] which exhibits no reuse in the current
loop. This is the case as the innermost loop iterates over the index variable j, and this
in turn results in the accesses to the C-array (via the C[j][i] reference) to be in stride
M. Therefore no spatial reuse can exist and no temporal reuse can exist either as each
element of the C-array are only accessed once in the entire nest. This argumentation for
proving that no reuse occurs for the C[j][i] reference is perfectly true for the way the
iteration space of the loop is currently traversed. When dealing with the possibilities of
extending the localized vector space however, additional care must be taken when the
references are grouped into equivalence classes.

It is actually the case that the C[j][i] reference exhibits spatial reuse in the i-
loop. This is a fact as each line brought in to the cache while accessing the C-array
in the iteration of the j-loop can be reused in the next iteration of the i-loop, if the
interveaning accesses has not �ushed out the C-elements from the cache. As the loop is
constructed currently the accessed C lines are however, very likely to have been �ushed
out of the cache at the time of the next i-loop iteration. Therefore the spatial reuse that
the C[j][i] reference exhibits in the i-loop is said not to be exploited and the reference
is not assigned to any equivalence class. If the i-loop however, was a part of the localized
vector space, then the spatial reuse that the C[j][i] reference exhibits in the i-loop
could be exploited. Alternatively this could be expressed as : The C[j][i] reference
exhibits spatial reuse in the (1,0) dimension but as the (1,0) dimension currently is not
a part of the localized vector space, the reuse is not exploited.

It is thus clear that when dealing with the investigation of potential reuses in a nested
loop, all reuses in any dimension should be considered, as they might be exploited by
transforming the iteration space. A tiling that involves both the i- and the j-loop in
the current example would for instance allow the spatial reuse of the C[j][i] reference
in the (1,0) dimension to be exploited. The localized vector space would then consist of
the dimensions (1,0) and (0,1).

The above listed equivalence classes are thus a collection of the reuses that exist in
the innermost loop, which equals the localized iteration space in the untransformed code.
What is needed when one wants to analyze the nested loop for possible bene�ts from a
tiling transformation is information about reuse in all dimensions. In a similar manner
as it has been done for the C-array reference the B[i] reference can now be investigated
for reuse in other dimensions. This reference also exhibits spatial reuse in the i-loop,
which also is not exploited in the current loop.

4.2 Implementation Speci�c Theory. 82

Likewise additional reuse among the rest of the references can also be seen to ex-
ist. The rest of the references are currently divided into the three equivalence classes
: {A[i-1][j]}, {A[i+1][j]} and {A[i][j-1], A[i][j], A[i][j+1]}. Apart from the
reuse that have been identi�ed to exist in the innermost loop for these equivalence classes,
internal reuse actually also occurs. More speci�cally, temporal reuse exists among refer-
ences in these three equivalence classes in the i-loop.

Thus, if the nested loop was to be tiled in both dimensions the three mentioned
equivalence classes would instead be replaced by a single one containing all the references
of the three classes.

As it was brie�y mentioned at an earlier point in this chapter the generation of
equivalence classes is used to estimate the number of o�-chip accesses in a loop. The
ability to perform such an estimation is very valueable as it allows for a precise evaluation
of which kinds of transformations are most suitable. In this context the transformations
that are considered actually consists of more than one transformation. I.e. what really
is measured is the performance of di�erent sets of transformations. E.g. a skewing
transformation might be applied to a nested loop in order to enable a tiling of some of
the loops in that nest. Several interchange transformations might also be applied to a
nest in order to place the potential reuses in the innermost loops.

For such a number of di�erent sets of transformations the estimated number of o�-
chip accesses per iteration of a loop can hereafter be calculated. This calculation is
based on the number and types of the di�erent equivalence classes, that are present in
the nested loop. I.e. the partitioning of references into equivalence classes is absolutely
essential for estimating the number of o�-chip accesses in a nested loop. Hence this
partitioning is also essential for the ability to evaluate the e�ect of transformations,
and it provides a useful framework to investigate a number of di�erent transformations.
After such an investigation has been performed the transformation which results in the
minimum number of o�-chip accesses can then be chosen.

In order to reduce the search space, of �nding a near optimal transformation of a
nested loop additional analysis of the loop in question should also be performed. That
is, an exhaustive search algorithm that estimates the performance of all the legal combi-
nations of unimodular and/or tiling transformations on a nest, would be very ine�cient.
Therefore the information about reuses that have to be gathered in order to perform
the partitioning of references into equivalence classes should also be used to reduce the
search space at this point. If for instance no reuse occurs in some number of the in-
nermost loops, then there is no point in calculating equivalence classes and estimating
performance for the tiling of these loops. Instead a more analytical approach should be
applied.

4.2.7 Reuse and equivalence classes - a mathematical approach.

In this section a mathematical approach for calculating reuses will be presented. This
approach uses the previously described matrix notation for array accesses in nested loops.

Once again the code earlier used for the description of reuse across multiple iterations
will be used to illustrate this mathematical approach for calculating reuses. The code is
repeated here for convienience :

4.2 Implementation Speci�c Theory. 83

for i=0, i<M, i++

for j=0, j<M, j++

A[i][j] = A[i][j-1] + A[i][j] + A[i][j+1] +

A[i-1][j] + A[i+1][j] + B[i] + C[j][i]

No reuse : C[j][i]
Self-temporal reuse : {B[i]}
Self-spatial reuse : {A[i-1][j]} {A[i+1][j]}
Group-temporal reuse : {A[i][j-1], A[i][j], A[i][j+1]}
Group-spatial reuse : none

The presentation for the di�erent kinds of reuses will proceed in the same order as it has
been done previously. Starting with an instance of self-temporal reuse.

Self-temporal.

When a reference exhibits self-temporal reuse, the same data element is accessed in dif-
ferent iterations. These di�erent iterations can be represented by two arbitrary index
vectors ~i1 and ~i2. If the reference furthermore is represented by the access marix ~H
and the constant vector ~c, the criterion for temporal reuse between i1 and i2 is that
~H �~i1+~c = H �~i2+~c. This can also be written as H � (~i1�~i2) = ~0. When this is the case
the reuse occurs in direction (~i1 �~i2). The reuse will however, only be exploited when
this dimension is a part of the localized iteration space in the nested loop. Letting the
vector ~v denote the distance between the two arbitrary iterations~i1 and~i2, the question
of whether a reference represented by H and ~c exhibits temporal reuse can be answered
by solving the equation H � ~v = ~0 (i.e. independently of ~c). Alternatively this equation
can also be written as kernel(H). To illustrate this with a concrete example consider the
reference B[i] which earlier was determined to exhibit self-temporal reuse in the j-loop,
simply by argumenting.

The reference B[i] can be presented by the matrix H =
�
1 0

�
, and the solution

to kernel(H) is thus : span{(0,1)}.
Reuse in the (0,1) direction corresponds of course to reuse in the j-loop for the current

nest and the result can thus be identi�ed to concur with the previous argumentation.
It should be noted that reuse can occur in more than one direction, which can make

the bene�ts of tiling even greater. Consider for instance the same nest with an additional
loop (a k-loop) placed inside the j-loop :

for i=0, i<M, i++

for j=0, j<M, j++

for k=0, k<M, k++

A[i][j] = A[i][j-1] + A[i][j] + A[i][j+1] +

A[i-1][j] + A[i+1][j] + B[i] + C[j][i]

The reference B[i] would in this case be described by H = [100], and the solution to
kernel(H) is : span{(0,1,0),(0,0,1)}. In such a loop the B[i] reference would thus exhibit
temporal reuse in both the j- and the k-loop.

Self-spatial.

4.2 Implementation Speci�c Theory. 84

Self-spatial reuse for a reference can be calculated in a very similar manner as it was
done for self-temporal reuse. However, as all accesses to the same row of an array has a
potential for exploiting spatial reuse, it is of lesser importance how the indexing in this
dimension of the array is done. more speci�cally, for an arbitrary array reference like
: A[i1][i1]....[in], where the dimension of the array is n, the index expression in

does not matter as long as the strides in the innermost loop is less than the line size.
For instance in :

for i=0, i<M, i++

for j=0, j<M, j++

A[i][j] = A[i][j*8];

In this loop no spatial reuse could occur for the reference A[i][j*8] if the line size was
greater than or equal to 8 � (element � size). If this is not the case, then spatial reuse
will occur in the innermost loop. The degree of reuse will of course depend on the stride,
which in this example is 8. In the following it will be assumed that all strides are of a
magnitude which allows for spatial reuse.

The fact that the last index expression does not matter when examining for self-
spatial reuse is re�ected in the access matrix used for this purpose. As the last row
of the access matrix describes the last index expression of the array reference, this row
should be replaced by a row of all zero's when self-spatial reuse is calculated. Hereafter
the process is exactly identical to the one described for self-temporal reuse. The task
of examining a reference, represented by the access matrix H, for self-spatial reuse in a
nested loop thus consists of replacing the last row in H by all zero's (thereby generating
H 0) and solving kernel(H 0). Considering once again the reference B[i] in the following
nested loop :

for i=0, i<M, i++

for j=0, j<M, j++

for k=0, k<M, k++

A[i][j] = A[i][j-1] + A[i][j] + A[i][j+1] +

A[i-1][j] + A[i+1][j] + B[i] + C[j][i]

B[i] can be represented by H =
�
1 0 0

�
. Replacing the last row of H by a row of all

zero's yieldsH 0 =
�
0 0 0

�
. The solution to kernel(H 0) is : span{(1,0,0),(0,1,0),(0,0,1)},

and the reference thus exhibits self-spatial reuse in all dimensions. The fact that self-
spatial reuse occurs in the two innermost loops should come as no surprise, as it already
has been established that B[i] exhibits self-temporal reuse in those two loops. Because
self-temporal reuse also implies self-spatial reuse the reason for the inclusion of the direc-
tions (0,1,0) and (0,0,1) in the solution to kernel(H 0) is obvious. The reason that B[i]
also exhibits self-spatial reuse in the outermost loop is also fairly obvious.

As another example consider any of the references to the A-array in the given loop.
These all have the same access matrix H. The question of whether any of them exhibits
self-spatial reuse can thus be answered by just one calculation. for these references the
access matrix H is given by :

H =

1 0 0
0 1 0

!

4.2 Implementation Speci�c Theory. 85

And H 0 thus becomes :

H
0 =

1 0 0
0 0 0

!

The solution to kernel(H') is span(0,1,0)(0,0,1), and these directions are thus the ones
in which any of the A-array references exhibits self-spatial reuse. As we already know,
group-temporal reuse actually also exists among these references.

Group-temporal reuse.

When examining a set of references for group-temporal behaviour, only sets consisting of
references with the same access matrix H need be considered. This is the same as saying
that only uniformly generated sets possess a possibility for group-temporal reuse to be
exploited. Thus a uniformly generated set is a set of references with identical access
matrices. Two references that belong to the same uniformly generated set will exhibit
group-temporal reuse within a certain localized vector space if they access the same data
element inside this localized vector space. If the two references are represented by the
access matrix H and the two constant vectors c1 and c2, and furthermore the localized
vector space is denoted by L, then the condition for group-temporal reuse to occur can
be formulated as :

9~r 2 L : H � r = ~c1 � ~c2

If a particular solution ~rp to this equation exists then the general solution will be ~rp +
kernel(H). When solving this equation it is necessary to make sure that the two constant
vectors ~c1 and ~c2 are not equal. That is, if the two references were identical or if the
testing accidentially was performed on the same reference. This can also be formulated
by the condition :

((spanf~rpg+ kernel(H)) \ L) 6= (kernel(H) \ L)

Considering once again the loop :

for i=0, i<M, i++

for j=0, j<M, j++

for k=0, k<M, k++

A[i][j] = A[i][j-1] + A[i][j] + A[i][j+1] +

A[i-1][j] + A[i+1][j] + B[i] + C[j][i]

The references A[i][j-1], A[i][j] and A[i][j+1] have earlier been identi�ed to belong
to the same equivalence class, which exhibits group-temporal reuse. These references can
be represented by the access matrix H :

H =

1 0 0
0 1 0

!

, and the constant vectors (0,-1), (0,0), (0,1) for references A[i][j-1], A[i][j] and
A[i][j+1] respectively.

Starting with references A[i][j-1] and A[i][j] a particular solution to the equation
H �~r = (0;�1)�(0; 0) is (0,-1,0) and the general solution to this equation is therefore (0,-
1,0) + ker(H). Since this solution is a part of the iteration space span{(0,1,0),(0,0,1)} the

4.2 Implementation Speci�c Theory. 86

group-temporal reuse between the references A[i][j-1] and A[i][j] can be exploited
if these two directions are included in the localized vector space. In a similar manner
the reference A[i][j+1] can likewise be shown to have group-temporal reuse with both
of these references in the same two directions.

As it previously has been mentioned a localization of the entire iteration space in
the given nest, would result in an equivalence class consisting of all the references :
A[i][j-1], A[i][j], A[i][j+1], A[i-1][j], A[i+1][j]. This equivalence class has as
it is shown also the two references A[i-1][j] and A[i+1][j] and the class exhibits
group-temporal reuse. How this conclusion can be reached will be illustrated by showing
that the references A[i-1][j] and A[i][j+1] can exhibit group-temporal reuse between
them. The constant vectors representing A[i-1][j] and A[i][j+1] are respectively :
(-1,0) and (0,1). A particular solution to the equation H �~r = (�1; 0)� (0; 1) is (-1,-1,0)
and the general solution is therefore (-1,-1,0) + kernel(H). This solution is a part of the
iteration space spanned by (1,0,0),(0,1,0),(0,0,1) and group-temporal reuse can thus be
exploited if the localized vector space includes all of these three directions.

The calculations needed for determining if group-spatial reuse exists among a set of
references is very similar to the calculations performed in the case of group-temporal
reuse. To determine the directions in which group-spatial reuse occurs for two references
with the access matrix H and constant vectors ~c1 and ~c2, the last row of H should be
replaced by zero's and the last element in both ~c1 and ~c2 should be replaced with a zero.
Hereafter the steps for determining the directions of reuse are exactly identical to the
group-temporal case which has just been described.

4.2.8 Quantifying reuse.

In the preceeding sections the steps involved in the partitioning of array-references into
equivalence classes have been described. This partitioning is an important task to per-
form when an evaluation of the the degree of reuse, and hence the number of o�-chip
accesses, in a nest needs to be established. This is the case as the information obtained
by the partitioning steps constitutes a good basis for performing calculations pertain-
ing to cache hits/misses. The ability to perform e�cient and accurate estimations on
the expected number of o�-chip accesses is in turn very valueable when dealing with
the problem of choosing the best transformation for a particular nest. The estimated
number of o�-chip accesses can thus be used as a metric for �nding the most bene�cial
transformation.

When dealing with estimating the number of o�-chip accesses for a particular local-
ized iteration space, the references that have been put in the same equivalence class are
treated together, i.e. as a single reference. This is done as the references belonging to the
same equivalence class touches the same cache lines, or maybe even the same locations
during the processing of a tile. One might thus say that the performance gains which
are obtained because di�erent references, in the same equivalence class, access the same
cache lines are expressed in the estimation calculations in the way that these references
are treated as just one. Here it is also assumed that the localization of the iteration
space which lead to some particular equivalence class being formed, ensures that all the
cache lines which are accessed in the processing of one tile can �t in the cache. Of course
this is not always the case as con�ict misses might occur internally between the elements

4.2 Implementation Speci�c Theory. 87

accessed in a tile, but in the process of estimating cache misses it is assumed that this
situation does not arise.

The maximum number of o�-chip accesses that can be caused by the references inside
a single equivalence class can be calculated as the product of the number of iterations
for each loop enclosing the reference(s). The presence of spatial and/or temporal reuse
might however reduce the actual number of o�-chip accesses signi�cantly. If the spatial
reuse for a particular equivalence class is exploited it can thus reduce the number of
o�-chip accesses by a factor equal to the line-size (l), if the accesses are stride-1. When
spatial reuse exists, the degree to which it is exploited will however also depend on the
size of the data-elements accessed as well as the stride in the accesses. In general, if the
stride is k, and the data-element size is d, then the number of o�-chip accesses can be
reduced by the factor l=(d � k). Similarly the presence of temporal reuse in a particular
dimension in an equivalence class can reduce the number of o�-chip accesses by a factor
equal to the tile size (S), for that particular dimension. In general, if the number of loops
in which an equivalence class exhibits self-temporal reuse is denoted i, then the number
of o�-chip accesses due to this equivalence class can be reduced by the factor Si, if the
loops are included in the localized iteration space (and these loops all have tile-size =
S).

When estimating the number of o�-chip accesses for a particular nest, these rules can
be applied. Care must though be taken in order to avoid making incorrect calculations by
including the reduction factors of both temporal and spatial reuse, when the temporal
reuse is just a special case of spatial reuse. How this situation can arise will become
apparent when the formula for estimating the number of o�-chip accesses is presented in
the following.

The general formula for estimating the number of o�-chip accesses per iteration of a
loop due a single equivalence class is :

#accesses

iteration
=

1

(l
element�size�stride

)LRst 6=LRss � Sdim(LRst)

The meaning of the symbols in this equation are :

l : The line size.
stride : The di�erence in the subscript expressions between two successive iterations of

the loop within which the reference is placed.
LRst 6= LRss : An expression which equals 1 if (L \Rst) 6= (L \Rss), otherwise 0.
dim(LRst

) : The number of dimensions spanned by the intersection of L and Rst.
S : The tile-size.

In order to illustrate the use and the legality of the above formula, it will in the following
be applied to a series of examples. For simplicity an equivalence class containing just a
single reference will be used as a �rst example. The approach is however exactly identical
for equivalence classes containing more than one reference.
Consider the previously presented nested loop :

for i1=0, i1<N1, i1++

for i2=0, i2<N2, i2++

for i3=0, i3<N3, i3++

4.2 Implementation Speci�c Theory. 88

A[i1][i2] = A[i1][i2-1] + A[i1][i2] + A[i1][i2+1] +

A[i1-1][i2] + A[i1+1][i2] + B[i1] +

C[i1][2*i2] + D[i1][i2][5]

In this loop the reference B[i1] has an access matrix H, which equals : H = [1 0 0]. The
reference exhibits self-temporal reuse in the dimensions spanned by (0,1,0) and (0,0,1),
and self-spatial reuse in dimension (1,0,0). Furthermore, let the localized iteration space
consist of all three loops (i.e. a tiling of all three loops is considered), and let the line-
size for the cache be denoted by l. As L \ Rss does not equal L \ Rst, the expression
LRst 6= LRss will be set to equal 1 in the formula. This can be interpreted in the way
that the self-spatial reuse present in L is not a case of self-temporal reuse, and thus a
performance gain of l=(elementsize � stride) is obtained due to this localization of the
iteration space.

As the intersection of Rst and L spans a total of two dimensions, namely (0,1,0)
and (0,0,1) the expression dim(LRst) will be set to equal 2 in the above formula. The
self-temporal reuse present in the localized iteration space will thus yield a performance
gain of S2 in this case.

Putting these results together the estimated number of o�-chip accesses per iteration
of the inermost loop due to the equivalence class {B[i1]} can be calculated to be :

#accesses

iteration
=

1
l

element�size�stride
� S2

As the instructions in the innermost loop are executed a total of N1 � N2 � N3 times,
during the processing of the entire nest, the estimated total number of o�-chip accesses
due to this reference will be :

N1 �N2 �N3
l

element�size�stride
� S2

:

Provided that one wanted to include all three loops in the tiling transformation (i.e. L
consists of all three loops), the total number of o�-chip accesses during the processing of
the entire nest could be estimated by performing the same calculations for all the other
uniformly generated sets in the nest and adding the results together. If a uniformly
generated set, for some particular choice of L, consists of more than one equivalence
class, then the estimate obtained by the formula can simply be multiplied by the num-
ber of equivalence classes to cover the entire uniformly generated set. That is, once a
particular size of L has been chosen, the above formula need only be calculated once for
the particular uniformly generated set in question. The number of generated equivalence
classes that the choice of L leads to can then be multiplied by o�-chip-acc./iteration, to
obtain the estimated number of o�-chip accesses per iteration, due to all the references
belonging to the uniformly generated set. This entity is thus :

#accesses

iteration
=

#eq � classes

(L
element�size�stride

)LRst 6=LRss � Sdim(LRst)

Before proceeding with another example an additional comment regarding the stride (k),
as it has been de�ned in this context, must be made. The stride equals as it appears in

4.2 Implementation Speci�c Theory. 89

the formula the distance in terms of data-elements between two data-elements accessed
in two successive iterations of the loop in which the self-spatial reuse occurs. What is
needed is however a metric for determing the distance between two successive accesses
relative to the line-size. Therefore the stride is multiplied by the size of the data-elements
of the array, in order to determine the degree of self-spatial reuse by dividing the line-size
by this entity. An alternative approach would be to de�ne the stride in terms of bytes,
instead of data-elements, as it has been done here.

The stride as it has been de�ned here thus only depends on two factors. Namely the
step-size of the particular loop in which the self-spatial reuse occurs, and the factor of
the loops index variable in the last subscript expression in the reference. As an example
consider the reference C[i1][2*i2] in the previous example. The stride for this reference
is currently 2 as the factor of the index variable is 2 and the step-size of the i2-loop in
which this reference exhibits self-spatial reuse is 1.

The reason for the special de�nition of the parameter LRst 6= LRss, which determines
the degree of self-spatial reuse that is exploited (if any) will in the following be brie�y
described.

In the case that L\Rst does equal L\Rss the spatial reuse is in fact a special case
of self-temporal reuse, and the potential performance gain from this reuse is expressed
in formula as the factor Sdim(LRst). Therefore there exists no additional bene�ts from
this spatial reuse and the (LRst 6= LRss) parameter is set to 1. As an example of this
consider the reference D[i1][i2][5] in the previous nest. This reference exhibits self-
spatial reuse in loop 3, but this reuse is actually also self-temporal and the estimated
number of o�-chip accesses per iteration for this references is calculated as :

1=(Sdim(LRst))

In the case that L \ Rst does not equal L \ Rss, the reuse is self-spatial but not self-
temporal and an estimated performance gain should be calculated as l=(element� size �
stride) as previously discussed. For this "reduction factor" to be a valid measure it must
however not be less than 1, as this would imply that more than one cache line needs
to be fetched for a reference to a single data-element. This situation might occur when
the stride and element-size are relatively large compared to the line-size. To cope with
this situation the assumption that no data-element will occupy more than a single cache
line is made, and the entity l=(element� size � stride) should be set to 1 if it originally
turned out to be less than 1.

As the the approach for calculating the number of o�-chip accesses per iteration of a
loop now has been established, the additional steps for calculating a bene�cial tile-size is
fairly straight-forward. A tile-size which makes the working set �t in the cache should be
chosen. I.e. the number of di�erent memory locations touched during the processing of
a tile should �t in the cache. The size of the working set can be obtained by multiplying
the estimated number of o�-chip accesses per iteration by Sdim(tile) � l. In this expression
sdim(tile) equals the number of iterations executed during the processing of each tile,
and l equals the line-size. By solving this equation for the largest possible tile-size, a
bene�cial tiling can thereby be obtained.

4.2 Implementation Speci�c Theory. 90

4.2.9 Limitations.

In this section some special cases of reuse that have not been dealt with so far will be
discussed. These cases of reuse identi�es some shortcomings in the evaluation techniques,
that have been presented in section 4.2.7. Furthermore some problems which might arise
when performing a partitioning of uniformly generated sets into equivalence classes are
pointed out. An introduction to the subject will be given in the following. The individ-
ual and more speci�c cases are handled in the subsequently.

Introduction.

In the preceeding two subsections the investigation and evaluation of reuse has been con-
ducted while only considering the prescence of reuse in single independent dimensions.
That is, in the presented examples the kernel's of the corresponding access matrices have
only consisted of vector spaces spanned by vectors with only 1 non-zero element. It might
however also occur that the kernel of an access matrix only has vectors (directions) which
contain more than one non-zero element. As an example consider the following access
matrix, which could represent an array reference A[i1][i2+i3][i2+i3] in a three level
nested loop with index variables i1, i2 and i3 respectively :

H =

0
B@ 1 0 0

0 1 1
0 1 1

1
CA

The kernel of this matrix equals k �(0; 1;�1), and this vector contains more than one non-
zero element. The kernel of the same matrix with the last row replaced by zero's yield the
same vector space and it can thus be concluded that this reference does not exhibit any
kind of reuse in a single independent dimension of the iteration space. It does however
exhibit self-temporal reuse across the dimensions (0,1,0) and (0,0,1). This can be realized
by interpreting the kernel as a distance vector. For any iteration represented by the
vector (x1; x2; x3) where x1, x2 and x3 denotes a particular iteration value for the three
index variables i1, i2 and i3 respectively the element accessed in this iteration will also
be accessed in the iteration represented by (x1; x2; x3) + (0; 1;�1) = (x1; x2+1; x3 � 1).
Reuse will naturally also occur in iterations at distances of (0,2,-2), (0,3,-3), ... and
so on, as long as the sum of the iteration vector and the distance vector represents an
iteration which remains inside the loop bounds. One might say that reuse occurs in the
direction (0,1,-1) of the iteration space.

This kind of reuse can arise when the array references contain subscript expressions
in which more than one of the index variables of the nest occurs, and such cases have
not been handled so far. As no litterature that covers this subject has been found,
no general terms which describe these di�erent kinds of reuse is known. Therefore the
notations "single dimensional"- and "multiple dimensional" - reuse is adopted to
describe these kinds of reuse. The former describe kernels with vector spaces that can be
described by spans of vectors with only 1 non-zero element. The latter describe kernels
with vector spaces that only can be described by spans of vectors with more than 1
non-zero element.

In the presented example the self-temporal reuse that occurs in direction (0,1,-1) can
be exploited if the two innermost loops are included in the localized iteration space. The

4.2 Implementation Speci�c Theory. 91

degree of reuse that is actually present is however a more complex issue, and how this
kind of reuse should be evaluated has not been answered yet. If it is assumed that all
the elements accessed during the processing of one complete iteration of the i-loop can
�t in the cache, then the two innermost loops in the nest can be considered a part of
the localized iteration space. If furthermore the loop bounds are denoted N1, N2 and
N3 and the stepsize is 1, then a good estimate on the number of o�-chip accesses during
the processing of the entire nest would be N1 � (N2 +N3). This estimate could not have
been obtained by the evaluation techniques described in section 4.2.8, and an extended
approach for evaluating this kind of reuse would therefore be preferable.

The problems and considerations involved in identifying and evaluating this kind of
multiple dimensional reuse is discussed in the following section. As earlier mentioned
the access patterns of array references that lead to multiple dimensional reuse (as just
illustrated) can also result in a complication of the partitioning of uniformly generated
sets into equivalence classes. This topic is discussed in the subsection denoted �Equiva-
lence class generation�, which appears later in this section.

Multiple dimensional reuse.

As described in the previous subsection the evaluation and quanti�cation of multiple di-
mensional reuse cannot be carried out by the previously presented methods. This section
will contain a discussion and some suggestions for quantifying this kind of reuse. The
discussion will be based on a few examples, and the emphasis is set on evaluating the
degree of reuse based on these cases.

It is di�cult to speak about the frequency of multiple dimensional reuse in common
real world applications. There might exist several types of applications that that does not
contain any reference patterns which for some localized iteration space exhibits multiple
dimensional reuse. Clearly there is no need to be able to identify and evaluate this
type of reuse if it almost never occurs. It has however been found to exist in some of
the benchmarks used for this project. So even though it might not occur very often
it still exists in some applications, and it might even in some cases have a signi�cant
e�ect on both the selection of the localized iteration space as well as the selection of tile
sizes. The investigation and evaluation of multiple dimensional reuse should therefore
not be completely neglected, in a data locality optimizing algorithm. At the very least, a
compiler researcher should be aware of the important distinction between multiple- and
single- dimensional reuse.

The examples which are used to illustrate the occurrences of multiple dimensional
reuse in this section are, as it is the case for most of the other code fractions in this
report, only used to illustrate the principles of the current topic, and they have thus no
actual semantic meaning. An example of a fraction of code in which a reference exhibited
multiple dimensional reuse has already been given in the previous section. In order to
make to make the discussion more general and to point out some more factors pertaining
to the investigation of multiple dimensional reuse one should consider, another example
is used here. This code fraction might seem even more meaningless than the previous
one presented, but it is very useful in this discussion. The code looks as follows :

for i1=0, i1<N1, i1++

for i2=0, i2<N2, i2++

4.2 Implementation Speci�c Theory. 92

for i3=0, i3<N3, i3++

A[i1+i2+i3] [i1+i2+i3] [i1+i2+i3] =

As the analysis of the degree of reuse that is present in this loop will be concentrated
on the shown reference to the A-array no other references are included in this loop. The
constant vector for the reference is the null-vector and the access matrix for the reference
is :

H =

0
B@ 1 1 1

1 1 1
1 1 1

1
CA

The kernel for the access matrix can easily be identi�ed to be expressed by the vector
space spanned by : k � (1;�1; 0) and l � (0; 1;�1), where k and l are arbitrary constants.

As it was done during the relatively short analysis of the code presented in the
previous section, it is assumed that all the elements fetched due to the reference to
A[i1+i2+i3] [i1+i2+i3] [i1+i2+i3] during the processing of the entire nest can �t in
the cache. It is furthermore assumed that no other references occur in the code. This
implies once again that all the three loops can be considered a part of the localized
iteration space, and that the nest during the analysis of reuse can be percepted as one
big tile with space enough for all elements. The analysis could however just as well have
been performed for the same loop divided into tiles, and no loss of generality occurs here.

Furthermore let the loop bounds N1, N2 and N3 equal 10, and let the size of the
3-dimensioanl array equal 30 in each dimension. That is the declaration of the array
could look like : int A[30][30][30]. The elements accessed during the processing of
the nest is thus all the elements which appear in the diagonal between A[3][3][3] and
A[30][30][30].

As the code fraction now has been displayed, and the assumptions have been stated,
an analysis of the degree of reuse that occurs for the reference to the A-array will be
conducted.

During the execution of the entire nested loop a total of N1 � N2 � N3 = 1000 references
to the A-array are made. As the actual elements accessed already have been revealed to
be the ones in the diagonal between A[3][3][3] and A[30][30][30], the total numer of
o�-chip accesses can easily be identi�ed to equal 28. How an estimate on this number can
be obtained be a methodogical approach that uses the information extracted by solving
kernel(H) will now be discussed.

The kernel of the access matrix representing A[i1+i2+i3][i1+i2+i3][i1+i2+i3]

was ealier identi�ed to equal k � (1;�1; 0) + l � (0; 1;�1), for arbitrary constants k and
l. As it was mentioned in the previous section the vector (1,-1,0) can be interpreted in
the way that the element accessed in a particular iteration (x; y; z), is also accessed in
the iteration (x; y; z) + (1;�1; 0) = (x+ 1; y � 1; z), as long as the iteration represented
by this iteration vector is within the bounds of the loop. Likewise the same element will
also be accessed in the iterations (x+2; y � 2; x), (x+ 3; y� 3; z), ... and so on, as long
as the constraint pertaining to the bounds of the loops still are satis�ed.

For instance, in the current example the element A[30][30][30] is accessed only
once, namely in the iteration (10,10,10), as the addition of either of the vectors (1,-
1,0) or (0,1,-1) will result in an iteration vector which is not within the loop bounds.
Likewise the element A[29][29][29] is referenced for the �rst time in (9,10,10) and again

4.2 Implementation Speci�c Theory. 93

in (9,10,10) + (1,-1,0) = (10,9,10), and (10,9,10) + (0,1,-1) = (10,10,9). This iteration is
however the last time the element is accessed as the addition of (10,10,9) with either of
the vectors (1,-1,0) or (0,1,-1) once again will result in an iteration vector which is not
within the loop bounds.

It is thus clear that the number of times a particular element, which corresponding
reference exhibits multiple dimensional reuse, is accessed, and hence the degree of reuse
that occurs for this element, can vary to a large extend depending on the element in
question. This makes it harder to make an estimate on the number of o�-chip accesses
caused by such a reference.

To illlustrate this enhanced complexity a simple example of single dimensional reuse
can be presented for comparative purposes. Consider the following nested loop and
corresponding access matrix for the A-array reference :

for i1=0, i1<N1, i1++

for i2=0, i2<N2, i2++

A[i1] =

H =
�
1 0

�
If the assumption is made that the localized space in this nest consists only of the

innermost loop, then the A[i1] reference exhibits self-temporal and single dimensional
reuse in the innermost loop. Each element of the A-array that is ever accessed is thus
reused N2 times during one iteration of the i1-loop. There is thus no di�erence in the
degree of reuse that exists between the accesses to the di�erent elements of the A-array.
Hence the estimated number of o�-chip accesses due to A[i1] during the entire processing
of the nest can easily be identi�ed to equal N1 (as the localized space was assumed to
consist of the i2-loop, and the spatial reuse in the i1-loop is thus not exploited).

It should be noted at this point that multiple dimensional reuse possibly could occur
across any number of dimensions in the iteration space. In the example given in this sec-
tion, the directions of reuse were (1,-1,0) and (0,1,-1). For a reference with the following
access matrix, the reuse will however occur across all four iteration dimensions :

H =

0
BBB@

1 1 0 0
3 1 1 1
1 0 1 0
1 0 0 1

1
CCCA

This is the case as the kernel of this matrix is given by : (1,-1,-1,-1).
So far the description of the evaluation and quantifying of multiple dimensional reuse

have been concentrated on the reuse that is self-temporal. The complexity of quantifying
the self-spatial reuse that occurs across multiple dimensions of the iteration space seems
to be of the same magnitude as it is the case for self-temporal reuse. For instance a
reference with the access matrix :

H =

1 1
2 1

!

, exhibits no self-temporal reuse but it exhibits self-spatial reuse in the (1,-2) direction.

4.2 Implementation Speci�c Theory. 94

Yet another special case which is not handled by the estimation techniques presented
in section 4.2.7, is the appearance of self-spatial reuse in more than one dimension.
This is not the same as multiple dimensional self-spatial reuse, as just described by
the example above. When the presentation of the estimation technique was conducted
presiously, it was assumed that self-spatial reuse only occurred in a single dimension.
This is however not always the case. An example of this is given by the access matrix
which could represent the reference A[3][i1+i2] in a two-level nested loop :

H =

0 0
1 1

!

In this case there exists self-spatial reuse in both loop 1 and loop 2. This is the case as
the kernel of this matrix with the last row replaced by all zero's yields k � (1; 0)+ l � (0; 1),
for arbitrary constants k and l. If the number of iterations performed in each loop in
this nest is denoted N1 and N2, and the line-size is denoted by l, then a good estimate
on the number of o�-chip accesses during the processing of the entire nest would be
(N1 +N2)=(l � element� size). An estimation technique which is able to provide good
guesses in such a case would therefore also be valueable. It should be noted that there
also exists self-temporal multiple dimensional reuse in the direction (1,-1) of the iteration
space.

In this section a further description of the problems involved in quantifying multiple
dimensional reuse has been given. No actual solutions have been provided, but some
examples that identi�es some of the problems that exist have been given.

Equivalence class generation.

In section 4.2.7 a criterion for two references to be put in the same equivalence class, for
some localized space L, was established. The criterion stated that if the two references
constant vectors was denoted ~c1 and ~c2, and the access matrix for the uniformly gener-
ated set was denoted H, then a particular solution ~r 2 L to H � ~r = ~c1 � ~c2, must exist
for the two references to belong to the same group-temporal equivalence class. Similarly
a particular solution ~r 2 L to Hs � ~r = ~c1 � ~c2 had to exist for the two references to
belong to the same group-spatial equivalence class.

The problem of determining whether such a solution exists, might however involve
the examination of both a particular solution to the equation, as well as the kernel of
the access matrix corresponding to the references in question. This is the case as a
complete solution to the above equation can be obtained by adding the kernel of H to
the particular solution ~r. Thus, even though a particular solution ~v 62 L" might exist to
the above equation there might still exist a solution which actually belongs to L. Such
a solution would satisfy the above stated criterion for the presence of group reuse and
the two references should in this case be put in the same equivalence class. This will be
illustrated by the use of an example.

for i1=0, i1<N1, i1++

for i2=0, i2<N2, i2++

for i3=0, i3<N3, i3++

A[i1][i2+i3][i2+i3] = + A[i1][i2+i3+1][i2+i3];

The two references A[i1][i2+i3][i2+i3] and A[i1][i2+i3+1][i2+i3] in the nest have

4.3 Implementation - Overview of code. 95

the constant vectors (0,0,0) and (0,1,0) respectively and they belong to the same uni-
formly generated set as their access patterns can be described by the access matrix :

H =

0
B@ 1 0 0

0 1 1
0 1 1

1
CA

As no solutions whatsoever exists to the equation H � ~r = ~c2 � ~c1 = (0; 1; 0), no group-
temporal reuse will exist among the references in any of the possible localized iteration
spaces. When examining the references for group-spatial reuse however, some solutions
exist to the equation Hs � ~r = (0; 1; 0). By solving for r, a particular solution such
as (0,1,0), (0,0,1) or (0,2,-1) might be obtained. In the case that the generation of
equivalence classes was performed for the localized space consisting only of the innermost
loop (i.e. the untransformed code), it would be necessary to perform a further analysis
provided that (0,1,0) or (0,2,-1) was the obtained solution. This is the case as neither
of these solutions belong to the iteration space spanned by (0,0,1). Therefore it would
require further computations in order to determine if there among the complete set of
solutions de�ned by the particular solution obtained plus kernel(Hs), exists a solution
belonging to L. That such a solution actually does exist have already been revealed as
it was mentioned earlier that ~r = (0,0,1) satis�es the criterion for group-spatial reuse.
As the kernel of Hs can be identi�ed to equal k � (0; 1;�1), for an arbitrary constant k,
the solution (0,0,1) can be obtained from the complete set of solutions by : (0; 1; 0) + 1 �
(0; 1;�1) or (0; 2;�1) + (�2) � (0; 1;�1).

4.3 Implementation - Overview of code.

In this section the actual implementation of the tiling transformation program will be
described. At �rst a description of the tasks that must be performed is given. During this
description a distinction between the tasks that can be handled by the SUIF1 library rou-
tines and the ones that must be implemented from scratch will be made. This is followed
by a by a brief overview of the entire code in section 4.3.2. This section should provide
some insight into the general �ow of control in the implementation. The individual parts
of the implementation will subsequently be described in greater detail in section 4.3.3.
This is followed by a de�nition of the provided user interface in section 4.3.4. Finally a
listing of the capabilities as well as some shortcomings of the implementation is given in
section 4.3.4.

4.3.1 Tasks.

The �rst step involved in carrying out a high-level optimization pass such as the one that
is implemented here is of course the parsing of the target application code. As described
in chapter 3, this is handled by the SUIF1 compiler system. SUIF1 also provides an
interface which allows the user to process each procedure in the application code one by
one.

What is needed at this point is thus some routines which can handle the task of
traversing the SUIF-IR tree representing each procedure in the application, and identify

4.3 Implementation - Overview of code. 96

each nested loop found. The nests which meet speci�c criteria for what the transform
library is able to handle can then be put in a suitable data structure for later processing.
This task is represented by the �rst box in �gure 4.1. The �owchart provided in this
�gure illustrates the di�erent steps involved in the complete tile-pass. It should be noted
that the �owchart and its boxes in no way describes the actual code which has been
developed, as it merely is intended as an illustration of di�erent steps which are involved
and the order in which they occur.

SUIF−program
 (IR−tree)

Identifying nested

loops. analysis + quantification

Reuse and locality

Selection of tile− sizes and
dimensions. Estimating off−

chip accesses.

Transformation selection :
Choose best legal

transformation

Dependence test.
Carry out the

selected transformation. END

Figure 4.1: The steps involved in a complete tile-pass.

Each identi�ed legal nest can hereafter be processed by a number of successive rou-
tines, in which the nested loop and its references are analyzed in di�erent ways, and
�nally transformed. These routines are represented by the remaining boxes in the
�owchart.

The �rst of these represents the reuse and locality analysis of the nest, as well as the
subsequent quanti�cation of the inhabited reuse. This task is by far the most complicated
of the ones show here. The analysis performed in this step is conducted by using the ma-
trix and vector representation for array references which was introduced in section 4.2.5.
For this purpose the SUIF system contains some procedures which are able to extract the
information in the subscript expressions of an array reference. This information about
index variables and constants can then subsequently be inserted in prede�ned matrix
and vector data-structures which are a part of the math-library provided by SUIF. This
library also provides some basic operations on vectors and matrices, and some of these
operations are used to carry out the in section 4.2.7 presented mathematical approaches
for generating uniformly generated sets. Hereafter the references inside each uniformly
generated set are partitioned into equivalence classes. This is done for each possible
localization of the iteration space. Finally a quanti�cation of the degree of reuse present
is carried out for every posible localized iteration space. The results of the hereby per-
formed calculations can then later be used to estimate the number of o�-chip accesses
in a nest. The quanti�cation step is done according to the theory presented in section
4.2.8.

In the next step of the complete tile-pass the determination of tile-sizes for the di�er-
ent possible values of tile-dimensions, is performed. That is, the number of dimensions

4.3 Implementation - Overview of code. 97

of a tile equals the number of loops that is included in the localized iteration space,
and tile-sizes are calculated for localized spaces consisting of loops 1 to nest-depth, 2 to
nest-depth, ... , depth to depth. This step is represented by the box denoted "tile-size
selection" in �gure 4.1. The calculations performed at this step is done according to the
theory presented in section 4.2.8. In order to carry out the computations at this step
the information regarding the number of ST- and SS - reuse dimensions as well as the
number of equivalence classes that was generated in the previous step, is used. As these
measures were calculated for each of the possible localizations of the iteration space in
the previous step, the tile-sizes can be calculated for each of these. Concurrently with
the determination of tile-sizes in this step an estimate on the number of o�-chip accesses
for the particular localized space is also computed. These estimates are what ultimately
determines which tiling is most bene�cial.

The actual gathering of information pertaining to dependences among references in
the nest is carried out by the routines represented by the "Dependence test" - box. The
routines which accomplish this task makes use of the dependence library provided by
SUIF. This library contain procedures for calculating dependences between two given
references. The result of such a test will be returned in the form of one or more de-
pendence vectors if any dependence existed. The hereby obtained dependence vectors
are then stored in suitable data structures, thereby enabling other developed procedures
to investigate the dependece vectors, in order to determine the legality of a particular
transformation. These procedures have also been developed. The actual gathering of
dependence information could in theory be done at any point in time, before the actual
selection of transformation, as the information on dependences is used at this step. In
the current implementation however, it must be done right after the parsing of nested
for-loops, as the positions of the array-references inside the nest also is recorded at this
step.

In the "transformation selection" step of the tile-pass the estimated best tiling is cho-
sen. At �rst the records containing information about the di�erent possible localizations
of the iteration space is sorted according to increasing cost. The cost of a particular
tiling (which are distinguished by the number of loops that they include) is considered
to be the estimated number of o�-chip accesses. One by one the di�erent tilings are then
considered in order of increasing cost, and the �rst tiling which violates no dependence
constraints is selected to be carried out.

In the last step of the tile-pass the particular tiling which was estimated to yield the
lowest number of o�-chip accesses is carried out. The actual transformation is conducted
by a call to the SUIF tile_transform routine which, given certain arguments can carry
out the transformation of the code. The arguments which are needed establishes the
loops to be tiled, as well as the tile-size.

4.3.2 Overview.

This section will provide a basic overview of the control �ow in the implementation. The
main parts of the code that constitutes the constructed tile-pass will be described brie�y,
and the contents of the involved �les will also be listed.

The main()-function of the implementation is placed in the �le my_tile.cc. This �le
thus contains function calls to the di�erent parts of the implementation which together

4.3 Implementation - Overview of code. 98

forms the constructed tile-pass. An overview of the contents of this �le is given in �gure
4.2.

main()

suif_proc_iter()

do_proc()

Creates a for_loops
object containing a
list of nested loops

Iterates over the
IR−tree. Calls
nested loop con−
structor for each
found for−loop

Checks for the
legalilty of the
found for−loop.
Stores in a list.

for_loops()

nested_loop()

Creates a for_loop−
transform object
representing the
nested loop.

Processes this nest:
calc_dep()

locality_analysis()

generate_uni_gen_sets()

generate_eq_classes()

find_best_tile_region()

Various opera−
tions are perfor−
med on the nest,
in order to find
the best transfor−
mations.

User provided
arguments or info
obtained by the
performed analy−
sis, guide the
choice of trans−
formation.

ok_to_tile()

tile() SUIF−library−transf.

Figure 4.2: Main overview of code

In this �gure the interface provided by the SUIF-system for constructing di�erent
kinds of compiler passes becomes evident. This interface, which is provided by the func-
tion suif_proc_iter() in the main() part of my_tile.cc, was also brie�y mentioned
in chapter 3. The e�ect of this function is to apply a function, which is given as an
argument, to each of the procedures present in the SUIF input program. In the current
implementation the argument given to the suif_proc_iter() procedure is a function
denoted do_proc(), which is also contained in the my_tile.cc �le. When running a
pass on an input SUIF program, the do_proc()-function will thus be called once for
each of the procedures present in the input program. It is called with a pointer to the
SUIF IR-tree representing the corresponding procedure. This allows for traversing the
IR-tree, identifying certain constructs, performing analytical calculations and possibly
modifying the IR-tree for optimizations of di�erent kinds.

The do_proc()-function consists of two distinct parts. In the �rst part the IR-tree is
traversed and a list of pointers to nested loops that are present in the current procedure
is gathered. In the second part this list of nests is traversed and each nest is analyzed

4.3 Implementation - Overview of code. 99

and possibly transformed.
The �rst part of the do_proc()-function basically consists of a call to the for_loops()-

constructor. This constructor runs through the IR-tree, until it �nds a for-loop. It then
calls the nested_loop()-constructor, which checks for the legality of the found nest.
That is, legal in these terms means that no for-loops in the nest are allowed at the same
level (see section4.3.5), and that no while-loops must be present. The nested_loop()-
constructor collects pointers to the for-statements in the nest. If the nest turned out to
be legal, the nested loop object is appended to the list of nests in the for_loops instance.
Otherwise it is deleted. After the creation of a for-loops object it thus contains a list
of pointers to nested_loop objects, present in the procedure.

As it was former mentioned the second part of the do_proc()-function consists of
the processing of each of the found nests. Each of these nests are handled one at a
time, by creating a for_loop_transform object, which represents the particular nest,
and performing operations on this object. Such an object contains function- and data-
members for analyzing the particular nest with respect to reuse and locality. It also
contains members for performing estimations on the number of o�-chip accesses, carrying
out tile-size selection algorithms and analyzing for best possible tiling. Furthermore the
for_loop_transform class also contains function members for carrying out the actual
tiling transformation.

As shown in �gure 4.2 the �rst of two main steps involved in the processing of
a nest (represented by a for_loop_transform object), is to perform various analyz-
ing operations on the object. This step is represented in �gure 4.2 by the calls to 5
di�erent function members. These are denoted : calc_dep(), locality_analysis(),
generate_uni_gen_sets(), generate_eq - _classes() and find_best_tile_region().
The functionality of calc_dep() is to gather information on the inhabited data-dependencies
in the nest. This function also �nds all array-references in the nest and stores them in a
suitable data-structure for later processing. The main e�ect of the locality_analysis()
function is to identify the access matrices and constant vectors of all found array-
references.

The main functionality of the functions generate_uni_gen_sets() and generate_eq_classes(),
is considered to be rather self-evident. Finally in the find_best_tile_region() func-
tion, all the obtained information regarding reuse and locality is used to estimate per-
formance, and to �nd optimal tile-sizes and regions.

The second of the two main steps involved in the processing of a nest is to carry out
the actual tiling. This step is represented in �gure 4.2 by the last box inside do_proc().
If no speci�c requests for a particular tiling was made from the user, the estimated
best transformation is carried out. It is however also possible for the user to specify
certain command line arguments, which determines the tiling to be performed. Any
tile-size relative to the calculated optimal tile-size can be chosen, for the best localized
space. Furthermore it is also possible to specify the loops to be included in the tiling. If
this option is set, the tiling is carried out with the optimal tile-size for that particular
localized space.

As earlier mentioned the �le my_tile.cc contains the main()- and do_proc()- func-
tions of the implementation. The classes for_loops and nested_loop which were used
for �nding and storing nests are placed in the �les for_loops.cc and nested_loop.cc re-
spectively. The for_loop_transform class is placed in for_loop_transform.cc, and the

4.3 Implementation - Overview of code. 100

auxiliary data structures that this class use are placed in the �le denoted locality.cc.
These two �les are rather large as all the code for analyzing nests and performing esti-
mations is inhabited in these �les.

4.3.3 Individual parts of the implementation.

In the previous section a basic overview of the implemented tile-pass was given. A follow
up on this overview will be provided in this section, as each of the steps for processing
a single nest will be described in greater detail. That is, all of the operations that
was performed on the for_loop_transform object in the do_proc() function in �gure
4.2, will be explained further. Furthermore the most important data structures will be
presented.

The �rst step involved in the processing of a nest is, as indicated by �gure 4.2 in
section 4.3.2, performed by a call to the calc_dep() function of the for_loop_transform
class. The tasks performed by this call will be clari�ed by a brief presentation in the
following. An overview and description of the auxiliary functions that calc_dep() uses
is given in �gure 4.3.

do_proc()

calc_dep()

find_array_instr()

Collects info on de−
pendence by calling
the two shown
functions.

Runs through the nested loop and collects
all array−references. The references are

process_array_insr_list()

For all two references to the same array
a dependence test is run, if at least one of
them is a write. The test is performed by a
call to the SUIF−dependence library. De−
pendence vectors are returned, and they are
stored in a list for later processing.

put in a list. The list is used in next function.

Figure 4.3: Code for calculating data dependencies

As shown the find_array_instr() function collects all array-references in the nest,
and stores them in a list, while noting the loop in which they occurred. This important
as the calc_dep() function therefore must be called before any of the other operations
on the for_loop_transform object.

The subsequent process_array_instr_list() function performs dependence test-
ing on all of found array references in the nest. The information gathered at this step is
of the form of dependence vectors (see section 4.2.2), which are used later in do_proc()

when the ok_to_tile() function is called to ensure the legality of carrying out a par-
ticular tiling transformation.

The second step involved in the processing of a nest is the gathering of access patterns
for each reference. This task is performed by a call to the for_loop_transform function
member.

locality_analysis(). An illustration and description of the calls to auxiliary func-
tions that this function makes is given in �gure 4.4.

4.3 Implementation - Overview of code. 101

do_proc()

locality_analysis()

Runs through the array_instr_−
list_table[] array containing
array references for each depth
of reference. Hereby the array_−
ref_list_table[] array is filled
with each array−instructions
corresponding array_ref object.

array_ref() − constructor

The array_ref object is initialized
with constant−vector and access
matrix.
The information on these values are
obtained by calling the array_info
procedure in the SUIF system.

array_info()

Figure 4.4: Code for performing locality analysis

The array_instr_list_table[] data member that the locality_analysis() func-
tion runs through, contains all the array references collected by calc_dep(). The list at
index i of this array contains all instructions found in loop i+ 1.

After the locality_analysis() function returns, the array_ref_list_table[] con-
tains lists of all the references' access patterns.

The third step involved in the processing of a nest consists of partitioning the refer-
ences into uniformly generated sets. This task can be performed based on the information
found in the previous step, as two references belong to the same uniformly generated set
if and only if they have the same access matrix. This step is in some sense very similar
to the subsequent step, which consists of partitioning the references in each uniformly
generated set into equivalence classes. The similarity, at least in the context of this im-
plementation, is that both steps perform the task of generating and extending the same
data structure. A graphical illustration of this data structure is shown in �gure 4.3.3.

The structure form a tree in which all array references are divided into di�erent
"categories" at the di�erent levels of the tree. The references are divided according to :

� The level of reference in the loop.
� The array they reference.
� The uniformly generated set to which they belong.
� The di�erent possible localizations of the iteration space
� The equivalence class to which they belong

And this is done in the above listed order.
As it was just mentioned, the generate_uni_gen_sets() function carries out the task
of dividing all references into uniformly generated sets, by �lling in the data structure
shown in �gure 4.5. This data structure which is generated at this point consists only of
levels down to the point of the objects denoted uni_gen_set. How this is accomplished
is shown in �gure 4.6, which illustrates how the dynamic allocation of the data structure
is performed.

An additional note should be made to the actions taken inside the uni_gen_set-
constructor. In this constructor objects of an auxiliary class denoted iteration_space

is introduced. This class is used to represent either a certain localized space of a nested
loop or one or some number of reuse dimensions for a particular reference. The reason

4.3 Implementation - Overview of code. 102

uni_gen_set_list_table[]

all_array_uni_gen_set

Contains information on locality
and reuse, for all array−referen−
ces at a particular reference−
depth.
All references to the same array
is represented by an array_−
uni_gen_set

array_uni_gen_set

Contains a list of uni_gen_set’s
for a particular array.

uni_gen_set

Represents a uniformly genera−
ted set. Contains information on
all the references that belong to
this set, as well as the access
matrix and self−spatial and self−
temporal reuse spaces.
References are contained in a
member list.
Reuse spaces are represented
by iteration_space objects.
An array contains pointers to
local_space_eq_classes.
Element i in the array corres−
ponds to localized space i−depth.

local_space_eq_classes

Contains a list of equivalence classes for a particu−
lar localized iteration space. Information on the
intersections of the uni_gen_set’s reuse spaces
and the localized space also exists.

member−list

iteration_space

eq_class member−list

iteration_space

"all_array_uni_gen_set’s for other reference depths"

Figure 4.5: Data structure representing uniformly gen. sets and eq-classes

for developing this class is that the objects of type vector_space which is returned by
calls to the SUIF-math library, does not contain certain needed oprations. These are
for instance operations such as intersections, unions and di�erences between two given
vector_space objects.

The fourth step involved in the processing of a nest consists as earlier mentioned of
partitioning the references of each uniformly generated set into equivalence classes. This
is done by extending the data structure shown in �gure 4.5, which was constructed by
generate_uni_gen_sets() in the previous step. A graphical illustration of how this
task is carried out is given in �gure 4.7.

As shown in the �gure, the generate_eq_classes() function traverses the former
mentioned data structure, and for each uniformly generated set it partitions the refer-
ences into equivalence classes. This partitioning is done for each possible localization of
the iteration space. That is for localized spaces 1->depth, 2->depth, ... , depth->depth.

4.3 Implementation - Overview of code. 103

do_proc()

generate_uni_gen_sets()

Runs through the list of array_ref’s
in the array_ref_list_table[] array.
For each newly found array−variable
at level i in the nest an array_uni_−
gen_set representing this array is
appended to the all_array_uni_gen_−
set uni_gen_set_list_table[i−1].
Insert_arary_ref() is called to place
the array_ref in the correct uniform−
ly generated set.

insert_array_ref()

The list of uniformly generated sets is
traversed to find the correct set for the
array_ref. When an array_ref’s access
matrix match the matrix of a uni_gen_set
in the list, it is appended to the set.
Ifno match is made a new uni_gen_set is
constructed.

The self−temporal and self−spatial reuse
spaces of the set is calculated by calls
to the SUIF−library kernel() function.
The returned vector spaces are conver−
ted to the iteration_space representation.

uni_gen_set() − constructor

SUIF−library kernel()

Figure 4.6: Code for generating uniformly generated sets

The actual partitioning is carried out in the local_space_eq_classes() constructor.
In this context it should be noted that a �aw in the SUIF system was discovered,

at this point. The local_space_eq_classes constructor uses a list of member's, which
represent array references to carry out the partitioning. The list class used to contain
these member's is however not one of available macro-generated classes provided by the
SUIF-system, as these turned out to contain a bug in at least one of their function
members. This bug occurred in the remove() method which was needed at this point.
Because it was necessary to be able to remove elements from a list and because the use of
the list structures available in the C++ STL Library were unuseable with the SUIf-system
(introduced rede�nitions of certain functions), another solution had to be chosen. Classes
containing lists of only member's and corresponding iterators were therefore constructed
to solve this problem. This was done by rewriting some of the source-�les in the SUIF-
system which de�nes the base list classes. For a further description of this problem see
section 4.3.5.

The next step involved in the processing of a nest consists of calculating tile-sizes and
estimated number of o�-chip accesses, for each of the possible localizations of the iteration
space. This task is handled by the function denoted find_best_tile_region(). The
control �ow of this function is illustrated in �gure 4.8.

This function �rst collects all the information regarding reuse that has beeen obtained
by the previous steps. This is done by calling the function collect_local_space_statistics().
The information which hereby has been gathered is then used by the function denoted
tile_size_selection() to calculate tile-sizes and to estimate the number of o�-chip
accesses for the di�erent localizations of the iteration space. After the return of this call,
the calculated optimal tilings for each localization space are sorted in order of lowest
cost.

By the calling of find_best_tile_region(), all the tasks involved in the analyzation
of the nest have been completed. What remains is thus to carry out a particular tiling

4.3 Implementation - Overview of code. 104

do_proc()

generate_eq_classes()

For all different levels in the nest.
 Through the list of array_uni_gen_sets.
 Through the list of uni_gen_set’s
 For all the possible localizations of
 the iteration space.
 Generate a local_space_eq_class
 object for local−space i−depth,
 and assign it to local_space_eq_−
 class_table[i−1], in the uni_gen_set

local_space_eq_class()

Runs through the member_list
of the uni_gen_set object, and
partitions the member’s into
equivalence classes. These
classes are represented by
objects of type eq_class and
are stored in a list. The parti−
tioning is carried out by calling
the SUIF−library function
particular_solution().
The number of equivalence
classes that exist for this
localized space, is also
recorded.

SUIF−library
particular_solution()

eq_class()

Figure 4.7: Code for generating equivalence classes

transformation, if possible.

4.3.4 User interface.

As it was mentioned in �gure 4.3.2 the tile-pass will carry out the estimated most bene-
�cial transformation, if no command-line options are provided by the user. This is done
by running through the sorted array of the most bene�cial tiling transformations for
each possible localization of the iteration space. This sorted array was the one generated
by the find_best_tile_region() function, in the previous step. For the optimal pair
of tiling parameters (tile-size,tile-dimensions), it is then checked whether the particular
tiling violates any data-dependencies, by calling the function ok_to_tile(). This is
illustrated in the main overview of the code given in �gure 4.2. This function uses the
dependence vectors generated in the calc_dep() function to check for the legality of a
particular transformation. If the tiling is illegal, the rest of the tilings are examined in
order of lowest cost, until a legal tiling is found.

If the user however has speci�ed certain tiling speci�c options at the command-line
prompt, the tiling is instead carried out according to these options. The options available
to the user are :

-cs : Cache-size

-ls : Line-size

-� : The argument to this option speci�es the �rst loop in the nest which should be
included in the tiling. That is, a localized space consisting of loops argument
to nest � depth is requested. The requested transformation is only carried out
if proves to not violate any data dependencies. If this is not the case, an error-
message informing about the illegal request is printed out, and a tiling involving

4.3 Implementation - Overview of code. 105

Calls collect_local_ −
space_statistics()

Calls tile_size_selection()

Runs through all the generated uni_gen_set’s
and their corresponding local_space_eq_ −
classes. The information needed for calcula−
ting tile−sizes is stored in a new object deno−
ted local_space_info. These new objects are
stored in lists,where all elements in the same
list correspond to the same localized space.
These lists are in turn stored in the local_ −
space_info_list_table[], such that localized
space i−depth is at index offset [i−1] in the
array.
By performing this restructuring of statistics
the numbers for calculating tile−sizes and off−
chip accesses for a particular localized space
can be carried out by simply traversing the
corresponding list and performing the relevant
calculations.

local_space_info()

For every possible localization of the iteration space.
 For a temporary tile−size of line_size/data_element_size
 and in steps of line_size/data_element_size.
 Run through the list of local_space_info’s for this parti−
 cular localized space, and calculate the accumulated
 Working−Set size and estimated no. of off−chip
 accesses.
 For each temporary tile−size, its WS−size and tile−size
 is stored in a list.
 The loop is exited when WS>cache_size, or when the
 tile−size becomes bigger than the loop boundaries.
 If the exit condition of the loop was WS>cache_size the
 previous tile−size is chosen as the optimal one, and stored.
 If the loop was exited because the eile−size became bigger
 than the number of iterations in one of the localized loops
 it is also noted that tiling is not beneficial.

do_proc()
collect_local_space_statistics()

find_best_tile_region()

tile_size_selection()

The optimal tile−sizes for
each localized space cal−
culated in the tile_size_ −
selection procedure is sor−
ted according to lowest
cost. The optimal tiling for
different locallizations are
in optimal_tiling_info_ −
table[].

tile_size_info()

Figure 4.8: Code for �nding optimal transformation

the same dimensions is tried on the next loop in the program, if any. If the ar-
gument is not within the range 1 to nest, an appropriate error message is printed
out, and once again the next loop is processed. An argument which equals the
nest-depth is not carried out either, as no change is made to the loacalized space
by such a transformation. All tilings are performed with the optimal tile-size for
the requested tile-dimension.

-ws : This option speci�es that a particular tile-size is requested, for the estimated
best tile-dimension. More speci�cally the argument to this option speci�es that a
particular tile-size which is (argument�1) �(tile�size�step) smaller than the es-
timated best tile-size, should be used. In this entity the expression tile�size�step
is the step-size which is used for di�erent values of the tile-size when calculating
the working set size. T ile� size� step is calculated as line� size=element� size.
Furthermore if the argument value equals 0 the optimal tile-size is used. Provided
that the estimated optimal tile-size for a particular nest was found to be 28, and

4.3 Implementation - Overview of code. 106

that tile � size � step was equal to 4, the following tile-sizes for di�erent option
values would be obtained :

-ws 1 => tile-size=28
-ws 2 => tile-size=24
-ws 3 => tile-size=20
-ws 5 => tile-size=14

-bws : This option has a function very similar the -ws option, as it provides the op-
portunity for selecting tile-sizes that are a multiple of tilesizestep bigger than the
optimal tile-size. More speci�cally the tile-size is now chosen as optimal � tile �
size + (argument � tile � size � step) Once again the tiling is performed for the
optimal localization of the nest in question. Following the same example as given
for the -ws option, the tile-sizes are now :

-bws 1 => tile-size=32
-bws 2 => tile-size=36
-bws 3 => tile-size=40
-bws 5 => tile-size=48

When using the -bws option no information pertaining to the estimated number
of o�-chip accesses or cache-utilization is given to the user. This is because the
above tile-sizes all make the working set larger than the cache, and the applied
estimation techniques are thus no longer applicable.

4.3.5 Shortcomings.

In this section a list of the capabilities as well as some of the shortcomings of the devel-
oped tool will be given. The list of capabilities which is provided is intended as a clear
de�nition of what the tool can do. Some of the shortcomings originates from �aws or
shortcomings of the SUIF1 compiler system. Others are functionalities which have not
been incorporated in the implementation yet.

Capabilities.

The constructed implementation is able to perform data reuse and locality analysis of
array-references in a nested loop, and to carry out a tiling of this nest, if this proves
bene�cial. Based on the analysis of the nest the most advantegeous tiling is performed
if this transformation does not violate any data dependence constraints. All possible
tilings of the original loop ordering is considered and appropriate tile-sizes are calculated
in order to maximize reuse. The metric used for determining the most bene�cial tiling
parameters is an estimate on the number of o�-chip accesses for such a tiling. This
estimate is calculated simultaneously with the selection of tile-sizes, and it provides the
opportunity for evaluating the correctness of the chosen transformation.

Shortcomings.

4.3 Implementation - Overview of code. 107

� Some kinds of nested loop constructs cannot be handled by the SUIF transform
library and theses will therefore not be considered for optimization. A particular
case is the appearance of several for-loops at the same level inside a nest :

for(...){

for(...);

.....

for(...);

}

This kind of nest will not be identi�ed as a legal nested loop by the identi�ca-
tion routines which constitute the introductory part of the implementation. They
are therefore skipped. Furthermore while-loops are not considered as the exit
conditions for such loops normally cannot be predicted at compile time. As no
information on the number of executed iterations can be obtained in these cases,
transformations makes no sence.
The tool is however able to handle any other nest, which do not make the depen-
dence testing to messy. This includes any level of for-loops, and instructions and
conditional constructs in any level of the nest.

� As some �aws was discovered in the SUIF-distributed macroes for generating
lists and iterators for user de�ned data-structures, a separate implementation
of one list had to be made. The macro generated classes was not able to re-
move particular elements from the list, and as this ability was needed in the
local_space_eq_classes-constructor of the implementation, a list class was cre-
ated separately. This class was created by simply taking the source �les used for
macro generation from the SUIF distribution and performing minor editings of
these. The resulting classes are contained in the �les my_list.h and my_list.cc,
separate from the rest of the implementation. As the local_space_eq_classes

constructor is the only place in the implementation in which there exists a need
for removing elements from a list, the macroes have been used for all other list
generations in the rest of the implementation without any problems.

� When checking for equivalence class membership in the local_space_eq_classes
constructor, only the particular solution to H � ~r = ~c2 � ~c1 returned by the Suif-
math library is considered. That is, in some cases the complete solution, which
can be obtained by also taking the kernel into account, can reveal another solution
which actually is inside the localized iteration space. This problem was previously
discussed in section 4.2.9, which can be reviewed for more details.

� The special case of multiple dimensional reuse, which occurs when reuse occurs
across multiple dimensions of the iteration space, is not considered in the current
implementation. An in-depth discussion of this topic was conducted in section
4.2.9, where it also was mentioned that no litterature describing such cases had
been found.

� As the estimation techniques used in the current implementation does not consider

4.4 Future Work and Improvements. 108

con�ict misses, the tool might provide unrealistically optimistic estimations when
direct-mapped caches is used. If furthermore there exists very similar access pat-
terns of di�erent arrays in the particular target application code, the estimations
on the number of o�-chip accesses might be even smaller.

� The appearence of references to arrays which contain elements of di�erent sizes
can of course occur for some applications. This di�erence can have an impact
on the estimation of the degree of spatial reuse that occurs for certain references
as the tile-size always is chosen to be a multiple of the entity line-size/element-
size. The reason for choosing tile-sizes of this magnitude is, as it has earlier been
discussed, that the fetching of unwanted data-elements thereby can be avoided for
some cases. A good way of handling the appearance of references to arrays with
elements of di�erent sizes would therefore be to investigate the innermost loop for
which element size is the most frequently occurring. This element-size could then
be used to determine the steps of the tile-size, which would equal line-size/element-
size. This feature has however not been implemented and a random element in the
innermost loop is chosen to determine the steps of the tile-size.

4.4 Future Work and Improvements.

In this section some suggestions for extensions and improvements to the developed tool
will be presented. Some of these suggestions originates from topics which have been
presented in the survey report in chapter 2. The minor shortcomings of the tile-pass
which were presented in section 4.3.5, will not be discussed further in this section. Instead
some ideas to extensions at a higher level of abstraction will be provided.

4.4.1 Interchange

An obvious improvement to the existing pass would be to incorporate an algorithm for
analyzing the possibilities and performance gains of adding interchange transformations
to the pass. This, in some cases, very powerful technique for improving reuse and/or
locality could be used together with the already implemented tiling transformation, in a
new and improved pass. The interchange of loops would allow for placing loops with a
large degree of reuse innermost, which could be followed by a tiling of these loops which
might improve performance even further. This topic was also brie�y discussed at the
end of section 4.2.6.

As the tile-pass in its current form already is able to identify the degree of reuse in
the di�erent loops, all that is needed is to make comparisons of these di�erent quantities.
The natural approach is thus to carry out interchanging transformations as a �rst step,
followed by a potential tiling if this proves bene�cial. There might also exist dependen-
cies which percludes certain loops from being moved in the nest. This should naturally
also be considered at the �rst interchanging step, as it might reduce the search space,
of �nding an optimal transformation. After this step has been completed an algorithm
for �nding the best tiling of the innermost loops could be run. In more explicit terms
the integrated interchange and tile pass could be constructed according to the guidelines

4.4 Future Work and Improvements. 109

listed in the following. This is an almost identical approach to the one used in [54] :

1. The loops which carries no reuse and which legally can be placed outermost in
the nest are moved there, as there exists no incentive to make them part of the
localized iteration space (on the contrary). Furthermore the loops which do carry
reuse but must remain in the outermost loops are set to placed there.

2. The remaining loops that were not set to be a part of the outermost loop-set in
step1 are now considered. Among these loops every subset in which all loops con-
tain reuse are tiled innermost in the nest, if this is legal. The performance in terms
of the number of o�-chip memory accesses are noted for each subset, and the one
yielding the best performance is chosen.

4.4.2 Memory Layout

Another natural extension would be to include memory layout transformations such as
padding to the constructed pass. The use of padding was initially presented in section
2.3.4, as a powerful technique for reducing both self-interference as well as cross- inter-
ference con�icts. In this context it should also be noted that one of the incentives for
choosing square tiles, in the implementation, was that the use of padding could be sub-
sequently applied in order to reduce con�ict misses. This was also mentioned in section
4.1, where arguments for the choice of implementation were presented. By choosing to
use square tiles, without any particular regard to con�icts, the use of padding thus con-
stitutes a natural extension to the tile-pass. Choosing to integrate both interchanging,
as former discussed, as well as padding is likely to yield even better results.

4.4.3 Estimations

Yet another way to improve the existing tile-pass, would be to extend the used estimation
techniques to also consider con�ict misses. The techniques used by [37], which were cited
and discussed in section 2.4.5, might be a good choice for this purpose. Whether the
integration of such extended estimation techniques would result in signi�cant changes of
the transformations selected by the pass is debatable.

What would be more interesting in this context is however, to use these estimation
techniques to examine the design space of the memory hierarchy. This would allow the
pass to analyze an application and try to �nd the best memory con�guration for such
a system. As an example one could consider an application for which tiling would be
bene�cial, and where all the data accessed occupies twice the space of the initial cache
size. In such a case a doubling of the cache size would make all the data �t into the
cache, and no localization of the iteration space would be necessary.

An estimation technique which considers con�ict misses could also be used to explore
the design space with regard to di�erent combinations of both cache- and line- size. An
exhaustive search algorithm for carrying out this task was presented in section 2.4.5.
By constructing such a pass, the tradeo�s between power and performance involved
in speci�cally the selection of the line-size could also be considered. This topic was

4.4 Future Work and Improvements. 110

previously adressed in section 2.4.2. By including the e�ect on power consumption as a
secondary goal, a guideline for estimating the bus-transition count as a function of the
line-size would also be needed. That is, one could for instance suggest that the bus-
transition count is linear in the line-size of the cache. Pro�ling statistics might provide
more accurate �gures to be used for this purpose.

Alternatively the SimplePower tool could be used to examine the e�ect of memory
hierarchy design choices and/or transformations. This tool is, as the name suggests, a
simulator for obtaining power consumption related statistics. Some examples of the use
of this tool can be found in [51]

Chapter 5

Testing.

In this chapter the results obtained by the use of the tile-pass will be presented. Based
on these results a discussion of the duability of the implemented tool will be given.
The testing for the correctness of the di�erent parts os the implementation will not be
presented here. The results of this part of the testing-phase is instead provided in the
appendix.

In the next section the benchmarks which have been used will be described. This is
followed by section 5.2 in which some notes on the estimation techniques and assumptions
are provided. This section also contains an overview of the kind of tests which will be
performed. In the following sections the results of running the tile-pass on the di�erent
benchmarks will be given. The benchmarks will be handled one by one and a discussion
of the results will be provided. Finally some summarizing remarks will be given in section
5.4.

5.1 Benchmarks.

The search for suitable real-world embedded systems benchmarks, to be used in this
project has proven to be more than cumbersome. The reason for this stems from a
number of factors. In order to provide a realistic evaluation of the useability of the im-
plemented tool, it is �rst of all necessary to use embedded systems applications. It has
however not been possible to locate any collection of embedded systems applications,
from which source codes could be obtained. When dealing with general purpose proces-
sors the SPEC benchmarks [21] is a widely used collection of sources for evaluating and
comparing performance. These source codes are, as it was just mentioned not relevant
in the context of this project, as there is no way of knowing if such similar code also
exist for embedded systems (see Chapter 1).

A single organization which distribute source codes for embedded systems was how-
ever found. This organization is denoted EEMBC [20] and is located in the U.S. Un-
fortunately the EEMBC does not allow distribution of source code outside the U.S., at
present time.

Another factor which limits the amount of applications which could be used for
testing, is the shortcomings of the SUIF-transform library. As it was mentioned in
section 4.3.5, the library is not able to handle more than one for-loop at the same level

111

5.2 Assumptions and metrics. 112

inside a nest. This fact has percluded some of the found benchmarks from being tested.
The presence of non-constant loop bounds in an application will naturally also make the
code unsuitable for testing.

Furthermore it would be bene�cial to obtain some benchmarks which has the po-
tential of being optimized. There is for instance no reason to alter a nest in which all
array-references are accessed row by row, and where the only reuse is self-spatial in the
innermost loops.

Some contacts at the Technical University of Denmark, have been able to provide a
couple of source codes for embedded systems. These applications consisted of code used
in a digital camera, and code used in a cavity detection algorithm. Unfortunately all of
these turned out to be unapplicable due to one or more of the above mentioned reasons.

As a result of these somewhat unfortunate circumstances, three examples of algo-
rithms used in real-world applications have been gathered from a number of articles.
These algorithms are commonly used in image- or DSP- processing applications. Two of
the algorithms are denoted CONV (convolution) [36] and SOR (Successive Over Relax-
ation) [35]. The third algorithm is commonly referred to as the local summation problem
[27], which in some sence describes the two former algorithms. The source code of these
applications exhibit in some sence very similar memory access behaviour. This is the
case as some of the references in each of the algorithms traverse a particular number of
rows of a two-dimensional array simultaneously. This memory access behaviour allows
for an exploitation of reuse in the outermost loops, and there exists therefore potential
gains by performing a tiling. Furthermore the former introduced Matrix Multiplication
algorithm will also be used to demonstrate the capabilities of the tile-pass.

5.2 Assumptions and metrics.

This section will contain a description of the di�erent tests that will be run on the
benchmarks mentioned in the previous section. Furthermore some notes on what to
expect from the implemented estimation technique will be given.

As it emerges from chapter 4, in which the actual implementation was presented, the
tile-pass can perform estimations on the number of o�-chip accesses as well as tiling-
transformations. These capabilities are partly obtained by performing certain sub-tasks
which enable the pass to make good choices on which tiling parameters to use. That is, an
evaluation of the degree of reuse present in the di�erent loops is performed. Furthermore
the tile-sizes to be used in a potential tiling is calculated. Based on these facts, some
tests for determining the following capabilities of the pass will be conducted :

� The pass will be tested for the ability of correctly identifying the most bene�cial
part of the iteration space to localize.

� The pass will be tested for the ability to identify the best possible tile-size, corre-
sponding to the chosen localized space. This can be done by carrying out transfor-
mations with other tile-size parameters than the estimated optimal and performing
a subsequent simulation of the transformed code.

� The incorporated estimation technique, which the tile-pass makes use of, will be
tested for its accuracy.

5.2 Assumptions and metrics. 113

� For some of the benchmarks, the e�ect of direct-mapped vs. fully associative
caches, on the estimations will be evaluated.

� The performance gains that are obtainable for the di�erent benchmarks will be cal-
culated. The gains are measured as a reduction in the number of o�-chip accesses.

The tests on each of the benchmarks will be carried out with a variety of di�erent
combinations of cache- and line- sizes. That is, for these di�erent combinations, the
tile-pass is given the particular cache- and line- size as command-line options and the
simulation is subsequently carried out with the same cache parameters.

The estimation technique that is currently incorporated in the tile-pass does, as
previously mentioned, only consider compulsory and capacity cache misses. That is,
no estimations on the appearance of con�ict misses is made. Furthermore the tiling
algorithm selects the tile-sizes (for a particular number of dimensions) such that the
amount of data fetched under the processing of an entire tile is as close to the cache size
as possible. The cache is thereby �lled up with data-elements during the execution of a
tile. The degree to which the cache is used might though still depend on the number of
dimensions of the tile, as well as the sizes of the data-elements and the line-size. This is
a fact as the tile-sizes are examined in steps of line-size=data-element-size as explained
in section 4.3.3. Thus, if the dimensions of the chosen tile is large, the cache is small and
the line-size is large relative to the data-element-size then it is possible that a relatively
small fraction of the cache will be occupied by the necessary data. This metric for the
utilization of the cache can be very important for the obtained performance.

When using a fully associative cache and a Least Recently Used replacement policy,
a high degree of cache utilization is de�nite desirable. This could ensure that all data-
elements accessed during the processing of a single tile only had to be fetched once. When
dealing with a direct-mapped cache however, a very high cache utilization might degrade
performance, as more con�ict misses are likely to occur. Whether such a reduction in
performance will occur depends on the access patterns of the di�erent array references.
Situations in which numerous con�ict misses appears can de�nitely arise if an unfortunate
combination of cache-size and access patterns exist.

The cache utilization parameter is also a very important entity that should be con-
sidered when interpreting the estimations provided by the tile-pass. This is a fact as the
tile selection algorithm stops examining for further tile-sizes when the tile-size exeeds
the iteration count in one of the loops that are included in the localized space. This
is the obvious action to take, as the loops naturally cannot be tiled by a size greater
than the iteration count. The occurrence of such a situation should be interpreted in
the way that the particular loops actually can be considered to be a part of the localized
iteration space even without performing any tiling transformation. Thus the cache size
is big enough to hold all the data accessed in the loops in question, and the reuse present
in those loops can be exploited. In such a situation, it might very well be possible that
elements accessed in iterations of the outermost loops are also reused, and the estimation
provided can in such cases be very poor. If the cache is much larger than the working
set, then a potentially very large amount of data can also be reused, and the estimations
become even more misleading. It can thus be concluded that for relatively small cache
utilization parameters, the smaller the cache utilization parameter is, the more unreliable
the estimation will be. The cache utilization parameter is thus a very useful indication

5.3 Results. 114

of the correctness of the performed estimations. For obvious reasons the localized spaces
consisting only of the innermost loop (i.e. the untransformed loop) are likely to have
the largest number of cases where the estimations are unreliable. This is a fact as the
number of elements accessed during a complete iteration of the innermost loop of course
is less than the amount of data accessed in complete iterations in any of the other loops.

5.3 Results.

5.3.1 Matrix multiplication.

This section contains a presentation of the tests which were run on the matrix multi-
plication algorithm. A presentation of the most important results of these tests is also
provided. As this section is the �rst of four in which the di�erent tests on the benchmarks
are presented, the comments will be more thorough in this section.

A matrix multiplication algorithm has, as previously mentioned the special property
that it is both legal and bene�cial to tile all three loops [54]. The code is given in the
following :

#define N 1000

int A[N][N];

int B[N][N];

int C[N][N];

test1()

{

int i, j, k, l, m;

for(i=0; i<N; i++){

for(j=0; j<N; j++){

for(k=0; k<N; k++){

C[i][k] = A[i][j] * B[j][k];

}

}

}

}

The tile-pass has been run on this exact code fraction for a number of di�erent combi-
nations of cache- and line- sizes. More speci�cally all combinations of cache-sizes 8, 16
and 32 Kb with line-sizes 8, 16 and 32 bytes have been used. These cache parameters
have been given to the tile-pass by the use of the command-line options "-cs" and "-
ls", as described in section 4.3.4. The estimated number of o�-chip accesses for each of
these completed passes have been recorded. Furthermore, di�erent localizations of the
iteration space have been requested for all of the (cache-size; line-size) combinations.
As described in section 4.3.4, this can be done by specifying the "-�" command-line
option when running the tile-pass. As it was also described in that section the tile-pass
automatically tries to �nd the best tile-sizes for whatever localized iteration space the
user requests.

The transformed as well as the untransformed code have subsequently been simulated
by the in chapter 3 presented SimpleScalar tool. The hereby obtained simulation results

5.3 Results. 115

matrix-mul. Localized space 3-3 Localized space 2-3 Localized space 1-3

cache line-size sim. est. ut. sim. est. ut. sim. est. ut.

8 Kb 8 bytes 548 1010 9% 551 523 98% 103 58 99%

16 bytes 282 510 9% 303 261 98% 83 31 84%

32 bytes 167 260 10% 194 131 82% 83 15 84%

16 Kb 8 bytes 529 1010 4% 533 516 96% 80 41 94%

16 bytes 269 510 4% 280 258 90% 54 21 94%

32 bytes 150 260 5% 163 129 79% 52 12 75%

32 Kb 8 bytes 216 1010 2% 221 511 96% 50 29 99%

16 bytes 110 510 2% 116 256 96% 31 14 99%

32 bytes 60 260 2% 66 128 96% 26 8 84%

Average 259 593 - 270 301 - 62 25 -

Table 5.1: Matrix Multiplication - direct mapped (o�-chip acc. in thousands).

are listed together with the recorded estimation results in table 5.3.1.
As stated in table 5.1 the simulation have been performed by the use of a direct-

mapped cache. The column denoted "Localized space 3-3" holds the results from the
untransformed program. The columns "Localized space 2-3" and "Localized space 3-3"
hold results from the tiling of the two innermost loops and the tiling of the entire nest
respectively.

In the last row of the table the average values of simulation as well as estimation
results are given.

When analyzing the results in the table, it is important to keep the discussion of
cache utilization which was given in the previous section in mind. The tilings of loops
2-3 and 1-3 have relatively high cache utilization rates, and the estimations given in these
columns might therefore be close to the actual. When looking at the estimation results
for the untransformed program (i.e. 3-3) however, the cache utilization rate appear to be
very low. As discussed in the previous section this indicates that the estimation results
are likely to be very pessimistic. It emerges from table 5.1 that this is indeed the case.

The estimation results stated in the second column (i.e. 2-3) is fairly accurate. The
results for cache-size 32Kb deviate by an approximate factor of two, but the rest are not
far from the simulation results.

The estimation results for the tiling of the entire nest are very optimistic, and they all
lie below he actual values. Part of the reason for this is probably that a direct-mapped
cache has been used. C.f. the discussion in the previous section, this might lead to
optimistic estimates, as con�ict misses are not considered in the current implementation.
Furthermore the reason that these estimates are so much more optimistic than it is the
case for local-space 2-3 (which on average actually are pessimistic) is probably that the
bigger strides involved when processing a three dimensional tile causes a larger number
of con�ict misses. That is, when dealing with a cache of a speci�c size, a tiling which
includes three dimensions are bound to have smaller tile-sizes, than a tiling of only two
loops. If furthermore there exists some references in the code in question, for which the
arrays are traversed row by row, then all of these elements will be placed next to each
other in memory, and will therefore cause fewer con�icts in the cache. As the tile-sizes

5.3 Results. 116

in a tile of three dimensions on the other hand are smaller this fortunate memory layout
may not be exploited to the same extend.

When evaluating the ability of the tile-pass to correctly identify the most bene�cial
iteration space to localize, there is however, no incorrect estimations. For all the possible
combinations of cache- and line- sizes, the tiling of the entire nest is correctly chosen as
the optimal choice. On average, the results naturally also point out that a localization
of loops 1 to 3, is the most advantageous. The average results for the simulations are
plotted in �gure 5.1. The value on the x-axis denotes the �rst loop in the nest which
is included in the tile. The value on the y-axis is the number of o�-chip accesses in
thousands.

50

100

150

200

250

300

1 1.5 2 2.5 3

of
f-

ch
ip

 a
cc

 *
 1

00
0

local-space

Matrix-multiplication

est.

"my_mm_loc_sim.dat" using 1:2

Figure 5.1: Average simulation-results for local-space x-3

For comparative purposes the estimated average number of o�-chip accesses are plot-
ted in �gure 5.2.

0

100

200

300

400

500

600

1 1.5 2 2.5 3

of
f-

ch
ip

 a
cc

 *
 1

00
0

local-space

Matrix-multiplication

est.

"my_mm_loc_est.dat" using 1:2

Figure 5.2: Average estimation-results for local-space x-3

As it has just been discussed, the estimations for the localized space 3-3 is not valid
because of the poor cache utilization. The estimates for the localized space consisting of
loops 2-3 is fairly accurate, whereas the estimations for loops 1-3 is very optimistic.

The obtained performance gains of running the code through the tile-pass are though

5.3 Results. 117

matrix-multiplication -3 -2 -1

cache-size line-size sim. est. ut. sim. est. ut. sim. est. ut.

8Kb 8 bytes 105 187 2% 107 68 70% 111 62 84%

16 bytes 86 62 21% 84 47 37% 80 37 58%
32 bytes 168 260 10% 89 47 9% 85 23 37%

16Kb 8 bytes 85 50 65% 88 47 75% 80 44 84%

16 bytes 59 31 42% 56 27 57% 58 23 75%
32 bytes 59 47 4% 55 23 18% 53 16 42%

32Kb 8 bytes 56 33 77% 58 31 84% 50 30 91%

16 bytes 33 19 58% 34 17 70% 35 16 84%
32 bytes 26 16 21% 26 12 37% 25 9 58%

Average 75 78 - 66 35 - 64 29 -

matrix-multiplication Optimal +1 +2

cache-size line-size sim. est. ut. sim. est. ut. sim. est. ut.

8Kb 8 bytes 103 58 99% 104 - - 105 - -

16 bytes 83 31 84% 79 - - 81 - -
32 bytes 83 16 84% 82 - - 79 - -

16Kb 8 bytes 80 42 94% 80 - - 81 - -

16 bytes 54 21 94% 54 - - 80 - -
32 bytes 52 12 75% 50 - - 84 - -

32Kb 8 bytes 50 29 99% 50 - - 51 - -

16 bytes 31 14 99% 31 - - 31 - -
32 bytes 26 8 84% 24 - - 24 - -

Average 62 26 - 61 - - 68 - -

Table 5.2: Matrix multiplication - di�erent tile-sizes.

signi�cant. As indicated by both table 5.1 and �gure 5.1 a reduction in the number of
o�-chip accesses of 100 � (259 � 62)=259 = 76%, is obtained.

In order to evaluate the ability of the tile-pass to correctly calculate an appropriate
tile-size, yet another type of tests has been performed on the matrix multiplication code.
These tests have been obtained by running the tile-pass with the same cache- and line-
size parameters as before, but with an additional user requested tile-size. For this purpose
the "-ws" and "-bws" options described in section 4.3.4 have been put to use.

The reason for carrying out these kind of tests is that allthough signi�cant perfor-
mance gains turned out to be obtainable for the implemented tile-size selection algorithm,
there might exist tiles (of the same dimensions) with di�erent sizes which could yield
even better results. The results of performing these tests are shown in table 5.2.

In this table the column denoted "Optimal", holds the results of the estimations as
well as the simulations for the tile-size that was automatically selected by the tile-pass.
The other columns are denoted with a number T , for which the results in the respective
column are obtained by using a tile-size equal to : "Optimal-tile size" + (T � tile-size-
step). As no estimations are made when a particular tile-size makes the working set
larger than the cache, the columns of T equal to +1 an +2 are empty. Simulation results
have though still been obtained.

5.3 Results. 118

The results in the table show that the tile selection algorithm selects the best tile-
size in 5 out of the 9 cases. The di�erence in performance between the tile-sizes in the
"Optimal" column and the nearby columns are though very slim, and in all but one of
the cases (row 3) the actual best tile-size is in either the "-1" or "+1" column. This
means that the tile selection algorithm in this case is very well suited as a tile-size very
close to the optimal is selected. This trend is also indicated in �gure 5.3, where the
average values of the simulation results are plotted.

60

62

64

66

68

70

72

74

76

-3 -2 -1 0 1 2

of
f-

ch
ip

 a
cc

 *
 1

00
0

tile-sizes relative to opt.

Matrix-multiplication simulations - 0 is estimated optimal tile

"my_mm_tile_sim.dat" using 1:2

Figure 5.3: Average sim.-results for di�erent tile-sizes

In this �gure it can be seen that there is a minimum at the "+1" tile-size, but that
this minimum is very close to the value value corresponding to the tile-size selected by
the tile-pass ("0").

The average values obtained by the estimation technique is shown in �gure 5.4

5.3.2 Successive Over Relaxation.

This section presents the tests which were run on the Successive Over Relaxation algo-
rithm (SOR). A presentation of the most important results of these tests is also given.

The SOR algorithm is an algorithm which is frequently used in the domain of image
processing applications [43]. The code kernel for this algorithm is presented in the
following.

#define N 512

#define K 2

int A[N][N];

int B[N][N];

int C[N][N];

int D[N][N];

int E[N][N];

int U[N][N];

5.3 Results. 119

20

30

40

50

60

70

80

-3 -2.5 -2 -1.5 -1 -0.5 0

of
f-

ch
ip

 a
cc

 *
 1

00
0

tile-sizes relative to opt.

Matrix-multiplication estimations - 0 is estimated optimal tile

sim.est.

"my_mm_tile_est.dat" using 1:2

Figure 5.4: Average est.-results for di�erent tile-sizes

void test1(){

int i, j, temp;

for(i=1; i<N-1; i++){

for(j=1; j<N-1; j++){

temp = A[i][j]*U[i+1][j] + B[i][j]*U[i-1][j] +

C[i][j]*U[i][j+1] + D[i][j]*U[i][j-1] +

E[i][j]*U[i][j];

U[i][j] += K*temp*E[i][j];

}

}

}

The SOR code has been simulated on an architecture with a fully associative cache. This
has been done as the use of a fully associative cache is likely to yield simulation results
that correlate better with the estimations performed by the tile-pass. The reason for this
is as it has earlier been mentioned that this ensures no con�icts between data elements
accessed during the processing of a particular tile. That no such con�icts occur for each
executed tile, is furthermore one of the assumptions that makes the used estimation
technique valid.
The results of running the tile-pass on the SOR code are shown in table 5.3.

The results of estimating the number of o�-chip accesses for the untransformed pro-
gram are very close to the actual simulated results. All but one of the estimations lie
below 1% of the simulated result. The estimation technique thus performs extremely
well in this case.

The estimations for the localized space consisting of loops 1-2 are allthough they are
relatively close not as precise as the estimations for the untransformed program.

The average reduction in the number of o�-chip accesses can be calculated to be
100 � (610 � 540)=610 = 11%. It should be noted that in three of the 9 cases the

5.3 Results. 120

SOR. Localized space 2-2 Localized space 1-2

cache-size line-size sim. est. ut. sim. est. ut.

2Kb 8bytes 1046 1040 96% 817 780 75%

16bytes 523 520 93% 573 390 75%
32bytes 261 260 87% 403 195 75%

4Kb 8bytes 1046 1040 98% 807 780 84%

16bytes 523 520 96% 512 390 84%
32bytes 261 260 93% 204 195 37%

8Kb 8bytes 1046 1040 99% 869 780 94%

16bytes 523 390 75% 400 390 75%
32bytes 261 260 96% 279 195 75%

Average 610 592 - 540 455 -

Table 5.3: Successive Over Relaxation - algorithm (fully associative).

simulations actually show that the untransformed program performs better than the
tiled one. The tile-pass however identi�es the a tiling of both loops to be the best choice
in all 9 cases.

The reason that the bene�ts of tiling are signi�cantly less in this example is un-
doubtably that only one of a total of 6 arrays in the SOR code has an access pattern
which allows for a bene�cial tiling. All of the 6 arrays are furthermore of the same size,
and the degree to which the reuse in the one mentioned array can be exploited is thus
reduced signi�cantly.

5.3.3 CONV.

The CONV algorithm is a frequently used convolution program in image processing
applications and DSP applications [3]. It is typically used in tasks such as edge detection,
regularization and morphological operations. The code kernel of the CONV algorithm
is given in the following :

#define N 1024

#define NORM 16

#define M 4

int source[N][N];

int mask[M][M];

int dest[N][N];

test1()

{

int x, y, temp;

for(x=0; x<N-M; x++){

for(y=0; y<N-M; y++){

temp = 0;

for(int i=0; i<M; i++){

for(int j=0; j<M; j++){

temp += source[x+i][y+j] * mask[i][j];

5.3 Results. 121

CONV Localized space 2-2 Localized space 1-2

cache-size line-size sim. est. ut. sim. est. ut.

2Kb 8bytes 11221 2642 99% 11241 1061 78%

16bytes 8060 1343 96% 8145 549 59%
32bytes 6832 697 92% 6954 325 31%

4Kb 8bytes 11067 2621 99% 11077 1048 95%

16bytes 7792 1321 99% 7842 530 79%
32bytes 6321 671 96% 6385 276 53%

8Kb 8bytes 11015 2611 99% 10726 1045 88%

16bytes 7684 1310 99% 7578 525 77%
32bytes 6099 660 99% 6060 267 57%

Average 9.394 1.542 - 9.383 625 -

Table 5.4: CONV Algorithm - direct-mapped.

}

}

dest[x+M/2][y+M/2] = temp/NORM;

}

}

}

The estimations as well as the simulated results for the CONV code is shown in table
5.4. These simulated results are obtained by running the simulations on a direct mapped
cache.

As it emerges from the values in the table the estimated and simulated results are
extremely di�erent. The actual simulations show that the number of o�-chip accesses is
far greater than the estimated, and that the di�erences ranges from a factor of 5 to a
factor of 20. This extremely large di�erence might suggest that severe con�ict misses will
occur during the execution of the CONV code (with the shown choice of cache- and line-
sizes). It should also be noted that the simulations show almost no variation between
the transformed and the untransformed code. The estimations provided by the tile-pass
show however, that signi�cant performance gains are obtainable by tiling. Considering
all of these facts, it is thus very likely that severe con�ict misses indeed do occur.

To investigate this matter further, the exact same simulations were performed with
a fully associative cache. The results that were obtained hereby are shown in table 5.5.

As indicated by the values in the table, this test proves that severe con�icts actually
did occur during the simulation with the direct mapped cache. Moreover the estimates
now match the simulation results to a very large extend. It has thereby been proved
that the applied estimation technique in this case is very accurate, once the assumption
that no con�ict misses occur has been made.

The average reduction in the number of o�-chip accesses can be calculated as 100 �
(1523 � 676)=1523 = 56%.

5.3 Results. 122

CONV Localized space 2-2 Localized space 1-2

cache-size line-size sim. est. ut. sim. est. ut.

2Kb 8bytes 2610 2642 99% 1156 1061 78%

16bytes 1306 1343 96% 588 549 59%
32bytes 653 697 92% 310 325 31%

4Kb 8bytes 2610 2621 99% 1211 1048 95%

16bytes 1306 1321 99% 608 530 79%
32bytes 653 671 96% 286 276 53%

8Kb 8bytes 2610 2611 99% 1096 1045 88%

16bytes 1306 1310 99% 551 525 77%
32bytes 653 660 99% 278 267 57%

Average 1.523 1.542 - 676 625 -

Table 5.5: CONV Algorithm - fully associative.

5.3.4 Local summation problem.

In this section the tests which were run on the so called local summation algorithm
are presented. This algorithm is a kind of general version of the previous presented
SOR- and CONV- algorithms. That is, this kind of algorithm is very common in image
processing algorithms, and the local summation algorithm presented here is a slightly
di�erent version. The access patterns does however di�er to some extend. The code is
taken from [27], and is given in the following:

#define N 1000

#define M 4

int Sum[N][N];

int Image[N][N];

test1()

{

int i, j;

for(i=0; i<=N-4; i++){

for(j=0; j<=N-4; j++){

Sum[i][j] = 0;

for(k=0; k<M; k++)

for(l=0; l<M; l++)

Sum[i][j] += Image[i+k][j+l];

}

}

}

The results of running the tile-pass on the Local summation algorithm are shown in table
5.6.

In this case it is noted that the cache utilization rates are very high for the untrans-
formed program, thereby indicating that the estimations are valid. This is of course
only the case when the interaction between code and cache parameters do not result
in severe con�icts. That these estimation results indeed are valid emerges clearly from

5.4 Summary. 123

Loc-Sum. Localized space2-2 Localized space 1-2

cache-size line-size sim. est. ut. sim. est. ut.

2Kb 8 bytes 2611 2480 99% 1370 992 76%

16 bytes 1489 1240 97% 930 496 56%
32 bytes 1114 620 93% 989 248 25%

4Kb 8 bytes 2552 2480 99% 1367 992 94%

16 bytes 1368 1240 99% 732 496 78%
32 bytes 868 620 97% 620 248 50%

8Kb 8 bytes 2025 2480 99% 1099 992 87%

16 bytes 1059 1240 99% 618 496 76%
32 bytes 622 620 99% 438 248 56%

Average 1523 1447 - 907 579 -

Table 5.6: Local Summation Algorithm.

table 5.6. Once again the estimations for the localized space 1-2 turned out to be very
optimistic. A reasonable explanation for this was given in section 5.3.1, and the same
principle applies in this case.

In all of the cases the tile-pass have correctly identi�ed the optimal tiling to include
both loops in the nest. On average the reduction in the number of o�-chip accesses can
be calculated to be 100 � (1523 � 907)=1523 = 40%.

5.4 Summary.

The implemented tile-pass has been tested on four benchmarks. These benchmarks are
the SOR-algorithm, the CONV-algorithm, a matrix multiplication algorithm and an
code kernel commonly referred to as the local summation problem. All but the matrix
multiplication algorithm are algorithms typically used in tasks such as image processing
applications and DSP applications. The benchmarks have been chosen for the evaluation
of the tile-pass because they contain some references with a particular kind of memory
access patterns. The reason for this is that it might be bene�cial to tile applications in
which there exist references with this kind of memory access behaviour.

The used estimation technique have proven to be fairly accurate in some cases, but
also very unprecise in others. There seemed to exist a trend that the estimations matched
the simulation results on fully associative caches very well, while the simulations on direct
mapped caches were more or less unprecise. This has however, come as no surprise as the
in�uence of con�ict misses are not considered in the estimation technique. The results
of estimating the number of o�-chip accesses can thus be said to �t very well with what
was expected.

The tile-pass has furthermore proven to be able to correctly identify the most bene�-
cial iteration space to localize. A test performed on the matrix multiplication algorithm
has shown that the pass is also able to identify the near optimal tile-size in this case.

Results obtained by running the tile-pass as well as simulations on the CONV algo-
rithm, have stressed the need for performing padding when using direct mapped caches,
in some cases. The obtained results indicated that severe con�ict misses occurred. As

5.4 Summary. 124

a result of this no performance gains were obtained for the transformed program,when
simulated on a direct mapped cache. The simulation of the same program on a fully
associative cache revealed however that in this case a reduction in the number of o�-cip
accesses of 56% was obtained.

The average reductions in the number of o�-chip accesses for the other three bench-
marks was recorded to be: 76%, 11% and 40%.

Chapter 6

Conclusion.

In this thesis the topic of memory performance in embedded systems has been adressed.
A survey covering a wide range of techniques for analyzing and improving the memory
subsystem have been presented. Among the techniques for improving performance a
distinction between memory hierarchy design on the one hand and control and memory-
layout transformations on the other hand has been made. The e�ect on both power as
well as performance has furthermore been taken into account.

Based on the information obtained in the survey it has been chosen to implement
a compiler pass capable of carrying out a high-level tiling transformation on a given
application code. This constructed pass is apart from being able to perform the actual
transformation also capable of analyzing the given code for potential unexploited data-
reuse. The information obtained by this analyzing step makes it possible to carry out a
tiling speci�cally tuned for the given application and the underlying memory subsystem.

A thorough presentation of the theories which constitute the backbone of the selected
implementation has also been provided. These theories deals among other things with
the topics of identifying and evaluating potential unexploited data reuse in a nested
loop. In order to carry out these tasks a partitioning of the array references inside the
nested loop is performed. This partitioning makes it possible together with the presented
mathematical approaches for quanti�cation of reuse, to calculate appropriate tile-sizes.
These tile parameters can subsequently be used for the actual transformation. A side
e�ect of carrying out this task is that an estimate on the number of o�-chip accesses for
a particular application also can be obtained.

In order to evaluate and test the dueability of the constructed tile-pass a search
among available parser and simulator tools has been conducted. This search has re-
sulted in the establishment of a framework consisting of the SUIF1 compiler system and
the SimpleScalar simulator. This framework is very well suited to be used in the con-
text of this project as the SUIF1 system allows for a parsing of the application code,
whereas information pertaining to the number of o�-chip accesses can be obtained by
SimpleScalar. The only drawback of these tools is that especially the SUIF1 compiler
system has turned out to be somewhat unstable.

In order to test the capability of the tile-pass a number of di�erent tests have been
run on four di�erent real-world applications. The obtained estimates on the number of
o�-chip accesses have not surprisingly turned out to be fairly accurate when dealing with

125

126

fully associative caches. When the simulations are run on memory con�gurations with
direct mapped caches however, the estimates are less accurate. This behaviour is also
to be expected as the implemented estimation technique does not take potential con�ict
misses into account.

The tile-pass has furthermore been able to correctly identify the most optimal loops
to tile in all of the completed tests. The also performed calculations of the optimal tile-
sizes have turned out to be near the optimal choice. The most promising of the conducted
tests have shown that a 76% average reduction in the number of o�-chip accesses were
obtainable for a matrix multiplication algorithm, on a direct mapped cache. Furthermore
a 56% average reduction in the number of o�-chip accesses were obtained for the CONV
algorithm on a fully associative cache.

It can thus be concluded that it, at least for some applications, de�nitely is possible
to reduce the gap between memory and processor performance by the use of control
transformations. Also the use of memory layout transformations might prove to be very
bene�cial for some cases. In this context especially the use of padding has proven to be
very useful for many purposes [34]. Extensions such as the ability to carry out inter-
change transformations and enhanced estimation techniques can also de�nitely provide
even better possibilities for achieving improved memory behaviour. The partitioning of
references which have been implemented in the tile pass provides excellent opportunities
for such extensions.

Bibliography

[1] Tanja Van Achteren, Rudy Lauwereins, K. U. Leuven, and Francky Catthoor. Sys-
tematic data reuse exploration methodology for irregular access patterns. IEEE,
2000.

[2] David F. Bacon, Susan L. Graham, and Oliver J. Sharp. Compiler transformations
for high performance computing. ACM, 1994.

[3] P. Baglietto, M. Maresca, M. Migliardi, and N. Zingirian. Image processing on high
performance risc systems. -, 1995.

[4] Luca Benini, Alberto Macii, Enrico Macii, and Massimo Poncino. Synthesis of
application speci�c memories for power optimization in embedded systems. ACM,
2000.

[5] F. Catthoor and A. Vandecapelle. Dtse script illustrated on cavity detection demon-
strator. -, 2000.

[6] Chaitali Chakrabarti. Cache design and exploration for low power embedded sys-
tems. IEEE, 2001.

[7] Alok Choudhary, Mahmut Kandemir, J. Ramanujam, and P. Banerjee. A framework
for interprocedural locality optimization using both loop and data layout. -, 10.

[8] Michael Cierniak and Wei Li. Unifying data and control transformations for dis-
tributed shared-memory machines. ACM, 1995.

[9] Stephanie Coleman and Kathryn S. McKinley. Tile size selection using cache orga-
nization and data layout. ACM, 1995.

[10] Vishal Dalal and C. P. Ravikumar. Software power optimization in an embedded
system. IEEE, 2000.

[11] SUIF Stanford University Intermidiate Format.
http://www.suif.stanford.edu/suif/suif1. -, 1993.

[12] Basilio B. Fraguela, Ramon Doallo, and Emilio L. Zapata. Automatic analytical
modelling for the estimation of cache misses. -, 1996.

[13] M. R. Garey and D. S. Johnson. Computers and intractibility - a guide to the theory
of np-completeness. -, 1979.

[14] K. Ghoose and M. B. Kamble. Analytical energy dissipation models for low power
caches. -, 1997.

[15] Tony D. Givargis, Jorg Henkel, and Frank Vahid. Interface and cache power explo-
ration for core-based embedded systems design. IEEE, 1999.

[16] Joerg Henkel and Yanbing Li. Avalanche: An environment for design space explo-
ration and optimization of low power embedded systems. -, 10.

[17] Patrick Hicks, Matthew Walnock, and Robert Michael Owens. Analysis of power
consumption in memory hierarchies. ACM, 1997.

127

BIBLIOGRAPHY 128

[18] Chung-Hsing Hsu and Ulrich Kremer. A stable and e�cient loop tiling algorithm.
-, 1999.

[19] Simplescalar : http://www.cs.wisc.edu/ mscalar/simplescalar.html. -. -, 1995.
[20] http://www.eembc.org/. Embedded microprocessor benchmark consortium,. De-

velops and certi�es real-world benchmarks and benchmark scores to help designers

select the right embedded processors for their systems., 0.
[21] SPEC : http://www.specbench.org/. Standard performance evaluation corporation.

-, 0.
[22] Mahmut Kandemir and Ismail Kadayi�. Compiler directed selection of dynamic

memory layouts. -, 10.
[23] Makoto Kobayashi. Memory reference metrics and instruction trace sampling. -, 0.
[24] Mihai T. Lazarescu, Jwahar R. Bammi, Edwin Harcourt, Luciano Lavagno, and

Marcello Lajolo. Compilation based software performance estimation for system
level design. IEEE, 2000.

[25] Yanbing Li and Wayne H. Wolf and. Hardware software co-synthesis with memory
hierarchies. -, 1999.

[26] Yau-Tsun Steven Li, Sharad Malik, and Andrew Wolfe. Performance estimation of
embedded software with instruction cache modelling. IEEE, 1995.

[27] Yanhong A. Liu and Scott D. Stoller. Loop optimization for aggregate array com-
putations. -, 10.

[28] Ching long Su and Alvin M. Despain. Cache designs for energy e�ciency. IEEE,
1995.

[29] Gabriele Luculli and Alberto Sangiovanni-Vincentelli. Analysis of dsp kernel soft-
ware by implicit cache simulation. IEEE, 2001.

[30] K. Masselos, F. Catthoor, C. E. Goutis, and H. De Man. System-level power optimiz-
ing data-�ow transformations for multimedia applications realized on programmable
multimedia processors. IEEE, 1999.

[31] K. McKinley, S. Carr, and C.W. Tseng. Improving data locality with loop transfor-
mations. ACM, 1996.

[32] Bellas Nikolaos E, Ibrahim N. Hajj, and Constantine D. Polychronopoulos. Using
dynamic cache management techniques to reduce energy in general purpose proces-
sors. IEEE, 2000.

[33] Vijay S. Pai and Sarita Adve. Code transformations to improve memory parallelism.
-, 10.

[34] Preeti Ranjan Panda, Nikil D. Dutt, and Alexandru Nicolau. Memory organization
for improved data cache performance in embedded processors. -, 1996.

[35] Preeti Ranjan Panda, Nikil D. Dutt, and Alexandru Nicolau. Architectural explo-
ration and optimization of local memory in embedded systems. -, 1997.

[36] Preeti Ranjan Panda, Nikil D. Dutt, and Alexandru Nicolau. E�cient utilization
of scratch-pad memory in embedded processor applications. -, 1997.

[37] Preeti Ranjan Panda, Nikil D. Dutt, and Alexandru Nicolau. Local memory explo-
ration and optimization in embedded systems. -, 1999.

[38] C.Y. Park and A. P. Shaw. Experiments with a program timing tool based on source
level tming schema. IEEE, 1991.

[39] Massoud Pedram. Power optimization and management in embedded systems. -,
10.

BIBLIOGRAPHY 129

[40] Stefan Petters, Anette Muth, Thomas Kolloch, Thomas Hopfner, Franz Fischer, and
Georg Farber. The rear framework for emulation and analysis of embedded hard
real-time systems. IEEE, 1997.

[41] Stefan M. Petters and Georg Farber. Bounding the execution time of real-time tasks
on modern processors. IEEE, 2000.

[42] M. Powell, S. H. Yang, K. Roy, B. Falsa�, and T. Vijaykumar. Dri cache: a design
for power e�cient instruction cache. -, 2000.

[43] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical
recipes in c: The art of scienti�c computing. -, 1992.

[44] P. Puschner and A. V. Schedl. Computing maximum task execution times - a graph
based approach. -, 1995.

[45] Alex Ramirez, Luiz Andre Barosso, Kourosh Gharachorloo, Robert Cohn, Josep
Larriba-pey, P. Geo�rey Lowney, and Mateo Valero. Code layout optimizations for
transactio processing workloads. -, 0.

[46] Wen-Tsong Shiue. Optimizing memory bandwith with ilp based memory exploration
and assignment for low power embedded systems. IEEE, 2000.

[47] Wen-Tsong Shiue and Chaitali. Memory design and exploration for low power em-
bedded systems. IEEE, 1999.

[48] Cache Simulator. http://www.ece.cmu.edu/ece548/tools/dinero/src. -, 1998.
[49] Tajana Simunic, Luca Benini, Giovanni De Micheli, and Mat Hans. Source code

optimization and pro�ling of energy consumption in embedded systems. IEEE, 2000.
[50] M. R. Stan and W. P. Burleson. Bus invert coding for low power i/o. -, 1995.
[51] N. Vijaykrishnan, M. Kandemir, M. J. Irwin, H. S. Kim, and W. Ye. Energy driven

integrated hardware-software optimizations using simplepower. ACM, 2000.
[52] Reinhard Wilhelm and Christian Ferdinand. The abstract interpretation approach.

-, 10.
[53] Fabian Wolf and Rolf Ernst. Data �ow based cache prediction using local simulation.

IEEE, 2000.
[54] Michael E. Wolf and Monica S. Lam. A data locality optimizing algorithm. ACM,

1991.
[55] Yong Yan, Xiaodong Zhang, and Zhao Zhang. Cacheminer: A runtime approach to

exploit cache locality on smp. IEEE, 1997.
[56] N. Zervas, K. Tatas, A. Argyriou, M. Dasigenis, and D. Soudris. Memory hierarchy

optimization of multinedia applications on programmable embedded cores. IEEE,
2001.

Appendix A

Code.

A.1 my_tile.cc

#include <stdlib.h>

#include <suif1.h>

#include "for_loops.h"

#include "for_loop_transform.h"

#include <dependence.h>

#include <suif1/cmdparse.h>

int line_size;

int cache_size;

int user_first_tile_loop;

int user_req_ws_no;

int user_req_big_ws_no;

/***

* For each procedure, *

* Need to do fill_in_access because of include_for *

***/

void do_proc(tree_proc * tp){

/* The for_loops class contains a list of tree_for's in a procedure

and it is now initialized with the tree_for's present in the procedure */

proc_sym *proc_sym_p = tp->proc();

printf("=====Processing the %s procedure=====\n",proc_sym_p->name());

int nested_loop_number = 0;

fill_in_access(tp);

for_loops proc_for_loops(tp->body());

nested_loop_list_iter nll_iter(proc_for_loops.nested_loop_list_p);

while (!nll_iter.is_empty()){

nested_loop *nl_p = nll_iter.step();

nested_loop_number++;

printf("====Processing nested loop number %d=====\n",nested_loop_number);

for_loop_transform flt(nl_p);

flt.calc_dependence();

int depth = nl_p->get_depth();

flt.locality_analysis();

//flt.print_access_matrices();

130

A.1 my_tile.cc 131

flt.generate_uni_gen_sets();

//flt.print_uni_gen_sets();

flt.generate_eq_classes();

// Uncomment the following to get information on the partitioning.

//flt.print_uni_gen_sets_and_eq_classes();

flt.find_best_tile_region();

// Uncomment the following to get statistics, and specific estimations.

//flt.print_collected_stat();

//flt.print_est_for_all_spaces();

flt.print_optimal_tile_est();

// Code for handling command line argument user_first_loop.

if(user_first_tile_loop > flt.get_depth()){

printf("The user defined first_loop : %d is greater than nest depth : %d\n",

user_first_tile_loop,flt.get_depth());

printf("No tiling performed - trying next nested loop\n");

continue;

}

if(user_first_tile_loop == flt.get_depth()){

printf("The user defined first_loop : %d equals the nest depth : %d\n",

user_first_tile_loop,flt.get_depth());

printf("No tiling performed - trying next nested loop\n");

continue;

}

if(user_first_tile_loop){

if(flt.ok_to_tile(user_first_tile_loop,flt.get_depth())){

printf("Performing user requested tiling of loops %d-%d\n",

user_first_tile_loop,flt.get_depth());

flt.tile(flt.get_optimal_tiling_for_first_loop(user_first_tile_loop));

flt.print_optimal_tile_est_for_loop(user_first_tile_loop);

continue;

}

else{

printf("User request denied : Not legal to tile loop %d",

user_first_tile_loop);

continue;

}

}

// Code for handling the tiling with a specific tile-size, for the

// estimated best localized iteration space.

// The option -ws is handled. If its value for instance is

// 3, then the third best tile size will be used.

boolean no_legal_tiling_found = TRUE;

int best_first_loop;

int i=1;

if(user_req_ws_no){

while(i<=depth && no_legal_tiling_found){

// best_first_loop is set to hold the number of the first loop

// included in the optimal tiling.

best_first_loop = flt.get_optimal_tiling_loop(i);

if (flt.ok_to_tile(best_first_loop,depth)){

no_legal_tiling_found = FALSE;

A.1 my_tile.cc 132

int optimal_tile_size =

flt.get_optimal_tile_size_for_loop(best_first_loop);

int ts_step = flt.get_tile_size_step();

int no_of_tested_tile_sizes = optimal_tile_size/ts_step;

if(no_of_tested_tile_sizes == 0)

no_of_tested_tile_sizes++;

tile_size_info_list_iter

tsil_iter(flt.get_tile_size_local_space(best_first_loop));

int wanted_ws_size_no = no_of_tested_tile_sizes - user_req_ws_no + 1;

if(wanted_ws_size_no<1){

printf("Requested ws size is too small\n");

continue;

}

int current_no = 0;

tile_size_info *tsi_p;

while(!tsil_iter.is_empty() && current_no<wanted_ws_size_no){

tsi_p = tsil_iter.step();

current_no++;

}

optimal_tiling_info oti =

optimal_tiling_info(tsi_p,best_first_loop);

flt.tile(&oti);

printf("Performed requested tiling with specific ws-size\n");

printf("The tiling was performed for local space %d-%d\n",

best_first_loop,flt.get_depth());

printf("The %d. best tile-size was requested\n",

user_req_ws_no);

printf("The parameters for this tiling are :\n");

flt.print_tile_size_info(tsi_p);

}

i++;

}

if(no_legal_tiling_found)

printf("No legal tiling was found, trying next loop\n");

continue;

}

// Code for handling -bws command-line option. This int is stored in

// user_req_big_ws_no and indicates that a tiling with tile-sizes of

// user_req_big_ws_no*(line_size/data_elem_size) bigger than the

// calculated optimal tiles for the optimal localization space should

// be performed.

no_legal_tiling_found = TRUE;

i=1;

if(user_req_big_ws_no){

while(i<=depth && no_legal_tiling_found){

// best_first_loop is set to hold the number of the first loop

// included in the optimal tiling.

best_first_loop = flt.get_optimal_tiling_loop(i);

if (flt.ok_to_tile(best_first_loop,depth)){

flt.set_selected_first_loop(best_first_loop);

int optimal_tile_size =

flt.get_optimal_tile_size_for_loop(best_first_loop);

int ts_step = flt.get_tile_size_step();

int req_tile_size =

optimal_tile_size + user_req_big_ws_no*ts_step;

A.1 my_tile.cc 133

int no_of_tested_tile_sizes = optimal_tile_size/ts_step;

// dummy_no is not used for anything.

int dummy_no = 100;

optimal_tiling_info oti(best_first_loop, dummy_no,

dummy_no, req_tile_size);

flt.tile(&oti);

no_legal_tiling_found = FALSE;

printf("User requested tiling with tile-size bigger than the optimal was performed\n");

printf("Tiling was performed for local-space %d-%d\n",

best_first_loop,flt.get_depth());

printf("The applied tile-size is %d\n",req_tile_size);

printf("No estimations provided - transformation only for sim. purposes\n");

}

i++;

}

if(no_legal_tiling_found)

printf("No legal tiling was found, trying next loop\n");

continue;

}

// Code for handling the case when no command-line arguments are given.

no_legal_tiling_found = TRUE;

i=1;

while(i<=depth && no_legal_tiling_found){

// best_first_loop is set to hold the number of the first loop

// included in the optimal tiling.

best_first_loop = flt.get_optimal_tiling_loop(i);

if (flt.ok_to_tile(best_first_loop,depth)){

flt.set_selected_first_loop(best_first_loop);

if(!(flt.no_tile_made_WS_fit_in_cache[best_first_loop-1])){

if(best_first_loop == flt.get_depth()){

printf("The optimal tiling consisted only of the innermost loop\n");

printf("Therefore no tiling performed\n");

}

else{

optimal_tiling_info * oti_p = flt.get_optimal_tiling_info_no(i);

flt.tile(oti_p);

printf("The tiling was performed for local-space %d-%d\n",

best_first_loop,flt.get_depth());

fflush(stdout);

printf("The parameters for the tiling are:\n");

flt.print_tile_size_info(oti_p);

}

}

else{

printf("The WS for the optimal loops to tile fit in the cache\n");

printf("Therefore no tiling performed\n");

}

no_legal_tiling_found = FALSE;

}

i++;

}

if(no_legal_tiling_found){

printf("No legal tiling was found, trying next loop\n");

}

A.2 class for_loops 134

// Prints the estimated no. of off-chip acc. and WS-sizes for all

// localized spaces, with tile_size's = 1*,2*,...i*line_size :

// flt.print_est_for_all_spaces();

fflush(stdout);

}

}

/***

* Main: set the tile size if supplied, otherwise it is 64. *

***/

main(int argc, char * argv[])

{

static cmd_line_option my_opt_table[] = {

{CLO_INT, "-ls", "32", &line_size},

{CLO_INT, "-cs", "2048", &cache_size},

{CLO_INT, "-fl", "0", &user_first_tile_loop},

{CLO_INT, "-ws", "0", &user_req_ws_no},

{CLO_INT, "-bws", "0", &user_req_big_ws_no}

};

parse_cmd_line(argc, argv, my_opt_table,

sizeof(my_opt_table)/sizeof(cmd_line_option));

start_suif(argc, argv);

printf("line_size : %d cache_size : %d\n\n",line_size,cache_size);

suif_proc_iter(argc, argv, do_proc, TRUE);

printf("\n");

fflush(stdout);

}

A.2 class for_loops

// File for_loops.h

#ifndef FOR_LOOPS_H

#define FOR_LOOPS_H

#include "nested_loop.h"

/* This declaration constructs a class named nested_loop_list_e

which contains variables and methods for creating and manipulating

a linked list with elements of type pointer to nested_loop.

An iterator class named nested_loop_list_iter for traversing the

list is also constructed */

DECLARE_LIST_CLASS(nested_loop_list, nested_loop*);

class for_loops{

private:

int no_of_loops;

public:

nested_loop_list *nested_loop_list_p;

for_loops(tree_node_list *tnl);

void find_for_loops(tree_node_list *tnl);

};

A.2 class for_loops 135

#endif

#include <iostream>

#include "for_loops.h"

using namespace std;

// for_loops.cc

// An instance of the for_loops object is created for each procedure

// handled in do_proc. After initialization this for loop instance will

// contain a linked list of all the perfectly nested for loops in the

// procedure

for_loops::for_loops(tree_node_list *tnl){

no_of_loops=0;

nested_loop_list_p = new nested_loop_list();

find_for_loops(tnl);

}

void for_loops::find_for_loops(tree_node_list *tnl){

tree_node_list_iter iter(tnl);

while(!iter.is_empty()) {

tree_node * tn = iter.step();

switch(tn->kind()) {

case TREE_FOR:

{

tree_for * tnf = (tree_for *)tn;

// An instance of a nested loop is created and the linked list

// in this object is already initialized with this "tree_for*"

nested_loop *nl_p = new nested_loop(tnf);

// find_perf_nested_loop(tn) is called on nl_p, this function

// member can only be called once on an nested_loop instance

if (nl_p->is_legal_loop()){

nested_loop_list_p->append(nl_p);

}

break;

}

case TREE_IF:

{

tree_if * tni = (tree_if *)tn;

find_for_loops(tni->then_part());

find_for_loops(tni->else_part());

break;

}

case TREE_LOOP:

{

tree_loop * tnl = (tree_loop *)tn;

find_for_loops(tnl->body());

break;

}

case TREE_BLOCK:

{

tree_block * tnb = (tree_block *)tn;

A.3 class nested_loop 136

find_for_loops(tnb->body());

break;

}

case TREE_INSTR:

break; // TREE_INSTR are the leaves of the IR-representation

default:

assert(0);

break;

}

}

return;

}

A.3 class nested_loop

// File nested_loop.h

#ifndef NESTED_LOOP_H

#define NESTED_LOOP_H

#include <suif1.h>

/* This declaration constructs a class named nested_loop_list_e

which contains variables and methods for creating and manipulating

a linked list with elements of type nested_loop*.

An iterator class named nested_loop_list_iter for traversing the

list is also constructed */

DECLARE_LIST_CLASS(tree_for_list, tree_for*);

class nested_loop{

private:

int depth;

int perf_nested_loop;

int legal_loop;

tree_for_list *tree_for_list_p;

void find_perf_nested_loop(tree_node_list *tnl,boolean found_1_instr);

void find_perf_nested_loop(tree_node_list *tnl);

void find_nested_loop(tree_node_list *tnl,boolean inside_if);

void find_nested_loop(tree_node_list *tnl);

public:

nested_loop(tree_node *tn);

int is_a_perf_nested_loop();

boolean is_legal_loop();

int get_depth();

tree_for_list_iter *tfl_iter_p;

tree_for_list* get_tree_for_list_p();

};

#endif

// File nested_loop.cc

#include <iostream>

#include "nested_loop.h"

A.3 class nested_loop 137

using namespace std;

nested_loop::nested_loop(tree_node* tn){

tree_for_list_p = new tree_for_list(); // _e or nothing??

// check that tn actually is a tree_for*

tree_for *tnf = (tree_for *)tn;

tree_for_list_p->append(tnf);

depth = 1;

legal_loop = TRUE;

tfl_iter_p = new tree_for_list_iter(tree_for_list_p);

// The initialization of the nested_loop instance is done entirely

// inside the constructor, if the loop turned out not to be

// perfectly nested the instance must be deleted.

find_nested_loop(tnf->body());

}

void nested_loop::find_perf_nested_loop(tree_node_list *tnl){

find_perf_nested_loop(tnl,FALSE);

}

void nested_loop::find_perf_nested_loop(tree_node_list *tnl,boolean found_1_instr){

int found_1_for_in_tree_node_list = FALSE;

int found_1_instr_in_tree_node_list = FALSE;

perf_nested_loop = TRUE;

tree_node_list_iter iter(tnl);

while(!iter.is_empty() && perf_nested_loop){

tree_node * tn = iter.step();

switch(tn->kind()) {

case TREE_FOR:

{

if (found_1_for_in_tree_node_list ||

found_1_instr_in_tree_node_list ||

found_1_instr){

perf_nested_loop = FALSE;

break;

}

found_1_for_in_tree_node_list = TRUE;

depth++;

tree_for * tnf = (tree_for *)tn;

tree_for_list_p->append(tnf);

find_perf_nested_loop(tnf->body());

break;

}

case TREE_IF:

perf_nested_loop = FALSE;

break;

case TREE_LOOP:

perf_nested_loop = FALSE;

break;

case TREE_BLOCK:

{

tree_block * tnb = (tree_block *)tn;

A.3 class nested_loop 138

find_perf_nested_loop(tnb->body());

break;

}

case TREE_INSTR:

found_1_instr_in_tree_node_list = TRUE;

if (found_1_for_in_tree_node_list)

perf_nested_loop = FALSE;

break;

default:

assert(0);

break;

}

}

return;

}

// This procedure finds a nest with only simple instructions allowed

// inbetween the different for-levels. That is, instructions ... load, stores,

// and if statements.

void nested_loop::find_nested_loop(tree_node_list *tnl){

find_nested_loop(tnl,FALSE);

}

void nested_loop::find_nested_loop(tree_node_list *tnl,boolean inside_if){

boolean found_1_for_in_tree_node_list = FALSE;

tree_node_list_iter iter(tnl);

while((!iter.is_empty()) && legal_loop){

tree_node * tn = iter.step();

switch(tn->kind()) {

case TREE_FOR:{

if (found_1_for_in_tree_node_list){

legal_loop = FALSE;

break;

}

if (inside_if){

legal_loop = FALSE;

break;

}

found_1_for_in_tree_node_list = TRUE;

depth++;

//cout << "Entering an inner for-loop\n";

tree_for * tnf = (tree_for *)tn;

// tnf->print();

tree_for_list_p->append(tnf);

find_nested_loop(tnf->body(),FALSE);

break;

}

case TREE_IF:{

tree_if *tf = (tree_if *)tn;

find_nested_loop(tf->then_part(),TRUE);

find_nested_loop(tf->else_part(),TRUE);

A.4 locality.h 139

break;

}

case TREE_LOOP:{

legal_loop = FALSE;

break;

}

case TREE_BLOCK:{

tree_block * tnb = (tree_block *)tn;

find_nested_loop(tnb->body(),inside_if);

break;

}

case TREE_INSTR:

break;

default:

assert(0);

break;

}

}

return;

}

int nested_loop::is_a_perf_nested_loop(){

return perf_nested_loop;

}

boolean nested_loop::is_legal_loop(){

return legal_loop;

}

int nested_loop::get_depth(){

return depth;

}

tree_for_list* nested_loop::get_tree_for_list_p(){

return tree_for_list_p;

}

A.4 locality.h

// locality.h

#include <suif1.h>

#include <dependence.h>

#include <suifmath.h>

#include "my_list.h"

#ifndef LOCALITY_H

#define LOCALITY_H

typedef int dimension;

A.4 locality.h 140

#define DIMENSION_NOT_INCLUDED 0

#define DIMENSION_INCLUDED 1

class array_ref;

class uni_gen_set;

class array_uni_gen_set;

class eq_class;

class local_space_eq_classes;

class iteration_space;

extern int line_size;

extern int cache_size;

enum reuse {SELF, GROUP_SPATIAL, GROUP_TEMPORAL};

class member{

public:

member();

in_array *array_instr_p;

fract_vector *constant_vector_p;

boolean operator==(member m);

member(member *m_p);

member *next_e;

member *next() const { return next_e; }

};

DECLARE_LIST_CLASS(array_ref_list, array_ref*);

DECLARE_LIST_CLASS(member_list, member*);

DECLARE_LIST_CLASS(uni_gen_set_list, uni_gen_set*);

DECLARE_LIST_CLASS(array_uni_gen_set_list, array_uni_gen_set*);

DECLARE_LIST_CLASS(eq_class_list, eq_class*);

DECLARE_LIST_CLASS(dimension_list, dimension);

class array_ref{

private:

in_array *array_instr_p;

array_info *array_info_p;

matrix *matrix_p;

fract_vector *fract_vector_p;

int element_size;

public:

array_ref(in_array *instr_p, int depth, tree_for** tree_for_p_table);

~array_ref();

in_array* get_array_instr_p();

array_info *get_array_info_p();

matrix* get_matrix_p();

fract_vector *get_fract_vector_p();

int get_elem_size();

};

class uni_gen_set{

private:

int reference_depth;

matrix *matrix_p;

matrix *matrix_s_p;

A.4 locality.h 141

member_list *member_list_p;

int no_of_members;

int nest_depth;

vector_space *self_spatial_vs_p;

vector_space *self_temporal_vs_p;

iteration_space* R_ss_p;

iteration_space* R_st_p;

int element_size;

int last_row;

int subscript_depth;

public:

uni_gen_set(in_array *array_instr_p, matrix *matr_p,

fract_vector *fv_p, int reference_depth, int elem_size);

~uni_gen_set();

local_space_eq_classes **local_space_eq_classes_table;

int get_no_of_members();

int get_reference_depth();

int get_elem_size();

int get_index_var_factor();

int get_nest_depth();

int get_subscript_depth();

member_list *get_member_list_p();

boolean contains(matrix *matr_p);

void add_member(in_array *array_instr_p, matrix *matr_p, fract_vector *fract_vector_p);

iteration_space* get_R_ss_p();

iteration_space* get_R_st_p();

matrix *get_matrix_p();

matrix *get_matrix_s_p();

void print_uni_gen_set();

void print_uni_gen_set_and_eq_classes();

};

class all_array_uni_gen_set{

private:

array_uni_gen_set_list *array_uni_gen_set_list_p;

int reference_depth;

public:

all_array_uni_gen_set(int reference_depth);

~all_array_uni_gen_set();

array_uni_gen_set_list *get_array_uni_gen_set_list_p();

array_uni_gen_set_list *get_array_uni_gen_set_list(var_sym *var_sym_p);

boolean exists(var_sym *var_sym_p);

array_uni_gen_set *get(var_sym *var_sym_p);

void append_array_uni_gen_set(var_sym *var_sym_p, int reference_depth);

void print_all_array_uni_gen_set();

void print_all_array_uni_gen_set_and_eq_classes();

};

class array_uni_gen_set{

private:

var_sym *var_sym_p;

uni_gen_set_list * uni_gen_set_list_p;

int reference_depth;

public:

A.4 locality.h 142

array_uni_gen_set(var_sym *var_sym_p, int reference_depth);

~array_uni_gen_set();

var_sym *get_var_sym_p();

uni_gen_set_list *get_uni_gen_set_list_p();

void print_array_uni_gen_set();

void print_array_uni_gen_set_and_eq_classes();

};

class local_space_eq_classes{

private:

iteration_space *L_space_p;

iteration_space *intersection_L_Rst_p;

iteration_space *intersection_L_Rss_p;

eq_class_list *eq_class_list_p;

int *acc_per_eq_class_in_loop;

int no_of_eq_classes;

int SS_but_not_ST_reuse_dim;

boolean SS_reuse;

int SS_reuse_factor;

int reference_depth;

int total_no_of_off_chip_acc;

boolean intersections_equal;

int *no_of_iter_in_loop;

int no_of_ST_reuse_dims;

int element_size;

int index_var_factor;

uni_gen_set *uniformly_gen_set_p;

int nest_depth;

int subscript_depth;

public:

local_space_eq_classes(uni_gen_set *uni_gen_set_p,

int first_local_space_loop,

int *iter_in_loop);

~local_space_eq_classes();

int get_total_no_of_off_chip_acc();

int get_no_of_eq_classes();

int get_no_of_ST_reuse_dims();

int get_elem_size();

int get_SS_reuse_factor();

int get_index_var_factor();

boolean get_SS_reuse();

void print_eq_classes();

};

class eq_class{

private:

member_list *member_list_p;

uni_gen_set *uni_gen_set_p;

reuse reuse_kind;

public:

eq_class(uni_gen_set *uni_gen_set_p, member *member_p);

void add(member *member_p);

void print_members();

void set_reuse(reuse reuse_kind);

};

A.5 locality.cc 143

class iteration_space{

private:

dimension *dimension_space;

int no_of_dimensions;

public:

iteration_space(int first_loop_inside_local_space, int reference_depth);

iteration_space(int reference_depth);

iteration_space(fract_vector *fract_vector_p);

~iteration_space();

void add_dimension(dimension dim); //crates/allocates a new dimension and inserts it

iteration_space *intersection(iteration_space *it_space_p);

iteration_space *union_space(iteration_space *it_space_p);

// returns TRUE if "this" totally covers the argument.

boolean contains(iteration_space *it_space_p);

boolean equals(iteration_space *iteration_space_p);

// Returns the depth of the nest.

int get_no_of_dimensions();

// Returns the number of dimensions that are included.

int get_no_of_included_dims();

// Returns TRUE if dimension i is included in the iteration space.

boolean dimension_included(int i);

// Returns the last dimension which is in this iteration space but not

// in the arguments iteration space. If none => returns 0.

int get_diff(iteration_space * it_space_p);

void print_included_dimensions();

};

#endif

A.5 locality.cc

// locality.cc

#include "locality.h"

member::member(){

array_instr_p = NULL;

constant_vector_p = NULL;

next_e = NULL;

}

boolean member::operator==(member m){

if (array_instr_p == m.array_instr_p)

return TRUE;

else

return FALSE;

}

A.5 locality.cc 144

member::member(member *m_p){

array_instr_p = m_p->array_instr_p;

constant_vector_p = m_p->constant_vector_p;

}

array_ref::array_ref(in_array *instr_p, int depth, tree_for **tree_for_p_table){

array_instr_p = instr_p;

element_size = (instr_p->elem_size())/8; // elem_size() returns size in bits

// By calling the array_info constructor with the array instruction as

// a parameter, access vectors representing the instruction is

// generated. These access vectors constitute the access matrix for

// the reference.

array_info_p = new array_info(array_instr_p,1);

int access_vec_no;

//count returns the subscript depth of the array reference.

int no_of_rows = array_info_p->count();

matrix_p = new matrix(no_of_rows,depth);

array_info_iter ai_iter(array_info_p);

fract_vector_p = new fract_vector(no_of_rows);

// Run through each subscript-expr. in the array reference. Each

// sub.-expr. is represented by an access_vector.

for(access_vec_no=0; !ai_iter.is_empty(); access_vec_no++){

access_vector *access_vector_p = ai_iter.step();

// Generate the constant vector for this subscript.

int const_term = access_vector_p->con;

fract fract_const_term(const_term);

(*fract_vector_p)[access_vec_no] = fract_const_term;

for(int index_var_no=0; index_var_no<depth; index_var_no++){

fract temp, temp_abs;

temp = fract(access_vector_p->val(tree_for_p_table[index_var_no]));

temp_abs = temp.abs();

// The elt() member returns the matrix element by reference (&)

matrix_p->elt(access_vec_no,index_var_no) = temp_abs;

}

}

assert(access_vec_no == no_of_rows);

}

array_ref::~array_ref(){

delete array_info_p;

delete matrix_p;

delete fract_vector_p;

}

in_array* array_ref::get_array_instr_p(){

return array_instr_p;

}

array_info *array_ref::get_array_info_p(){

return array_info_p;

A.5 locality.cc 145

}

matrix* array_ref::get_matrix_p(){

return matrix_p;

}

fract_vector* array_ref::get_fract_vector_p(){

return fract_vector_p;

}

int array_ref::get_elem_size(){

return element_size;

}

A.5.1 class uni_gen_set

// Uniformly generated sets are represented by uni_gen_set's :

uni_gen_set::uni_gen_set(in_array *array_instr_p, matrix *matr_p,

fract_vector *fv_p, int ref_depth, int elem_size){

element_size = elem_size;

no_of_members = 1;

member_list_p = new member_list;

member *member_p = new member;

member_p->array_instr_p = array_instr_p;

member_p->constant_vector_p = fv_p;

member_list_p->append(member_p);

matrix_p = matr_p;

reference_depth = ref_depth;

// The n() member function returns the number of columns in the matrix

// and this equals the number of for-loops in the nest. (m x n matrix)

nest_depth = matrix_p->n();

// last_row == subscript_depth.

last_row = matrix_p->m();// last_row equals the subscript depth of the

// array-ref. That is, A[i] => last_row=1.

subscript_depth = last_row;

matrix_s_p = new matrix(*matrix_p);

R_st_p = new iteration_space(reference_depth);

R_ss_p = new iteration_space(reference_depth);

// This constructor variant generates a fract_vector of length

// reference_depth and with all elements equal to zero.

fract_vector fv_zero = fract_vector(nest_depth);

// Replace the last row of matrix_s_p with all zero's.

matrix_s_p->set_row(last_row-1, fv_zero);

vector_space self_temporal_vs = matrix_p->kernel();

vector_space self_spatial_vs = matrix_s_p->kernel();

self_temporal_vs_p = new vector_space(self_temporal_vs);

A.5 locality.cc 146

self_spatial_vs_p = new vector_space(self_spatial_vs);

// The basis() function of the vector_space class converts the

// vector space into a list of fract_vector's and returns it.

fract_vector_list *self_temporal_fract_vector_list_p;

self_temporal_fract_vector_list_p = self_temporal_vs_p->basis();

fract_vector_list_iter fvl_st_iter(self_temporal_fract_vector_list_p);

while(!fvl_st_iter.is_empty()){

int first_non_zero;

int i = 0;

int indicator = 0;

fract_vector *temp_fract_vector_p = fvl_st_iter.step();

assert(nest_depth == temp_fract_vector_p->n());

// Finding the dimension with temporal reuse.

for (i=0; i<reference_depth; i++){

if ((*temp_fract_vector_p)[i] != 0){

first_non_zero = i;

indicator++;

}

}

// Only if the fract_vector had a single non_zero element we let

// it count as true temporal reuse.

if (indicator == 1){

R_st_p->add_dimension((dimension)first_non_zero);

}

}

fract_vector_list *self_spatial_fract_vector_list_p;

self_spatial_fract_vector_list_p = self_spatial_vs_p->basis();

fract_vector_list_iter fvl_ss_iter(self_spatial_fract_vector_list_p);

while(!fvl_ss_iter.is_empty()){

int first_non_zero;

int i = 0;

int indicator = 0;

fract_vector *temp_fract_vector_p = fvl_ss_iter.step();

assert(nest_depth == temp_fract_vector_p->n());

// Finding the dimension with temporal reuse.

for (i=0; i<reference_depth; i++){

if ((*temp_fract_vector_p)[i] != 0){

first_non_zero = i;

indicator++;

}

}

// Only if the fract_vector had a single non_zero element we let

// it count as true temporal reuse.

if (indicator == 1){

R_ss_p->add_dimension((dimension)first_non_zero);

}

}

local_space_eq_classes_table = new local_space_eq_classes*[reference_depth];

}

uni_gen_set::~uni_gen_set(){

A.5 locality.cc 147

member_list_iter ml_iter(member_list_p);

delete member_list_p;

delete R_st_p;

delete R_ss_p;

delete [] local_space_eq_classes_table;

}

matrix *uni_gen_set::get_matrix_p(){

return matrix_p;

}

matrix *uni_gen_set::get_matrix_s_p(){

return matrix_s_p;

}

int uni_gen_set::get_reference_depth(){

return reference_depth;

}

int uni_gen_set::get_elem_size(){

return element_size;

}

int uni_gen_set::get_subscript_depth(){

return subscript_depth;

}

void uni_gen_set::add_member(in_array *array_instr_p, matrix *matr_p, fract_vector *fract_vector_p){

if (!(*matrix_p == *matr_p)){

printf("The reference does not belong to this uniformly generated set\n");

assert(0);

return;

}

no_of_members++;

member *member_p = new member;

member_p->array_instr_p = array_instr_p;

member_p->constant_vector_p = fract_vector_p;

member_list_p->append(member_p);

}

void uni_gen_set::print_uni_gen_set(){

printf("The uniformly generated set contains %d references :\n",

no_of_members);

printf("The members of the set are :\n");

member_list_iter ml_iter(member_list_p);

while(!ml_iter.is_empty()){

member *member_p = ml_iter.step();

print_array_access(member_p->array_instr_p);

}

printf("The access matrix for the set is :\n");

matrix_p->print();

printf("The references exhibit self-temporal reuse in loops : ");

R_st_p->print_included_dimensions();

printf("The references exhibit self-spatial reuse in loops : ");

R_ss_p->print_included_dimensions();

printf("\n");

A.5 locality.cc 148

}

void uni_gen_set::print_uni_gen_set_and_eq_classes(){

printf("The uniformly generated set contains %d references :\n",

no_of_members);

printf("The members of the set are :\n");

member_list_iter ml_iter(member_list_p);

while(!ml_iter.is_empty()){

member *member_p = ml_iter.step();

print_array_access(member_p->array_instr_p);

}

printf("The access matrix for the set is :\n");

matrix_p->print();

printf("The references exhibit self-temporal reuse in loops : ");

R_st_p->print_included_dimensions();

printf("The references exhibit self-spatial reuse in loops : ");

R_ss_p->print_included_dimensions();

for (int i=0; i<reference_depth; i++){

printf("The generated eq_class'es for local space %d-%d :\n",

i+1,reference_depth);

local_space_eq_classes_table[i]->print_eq_classes();

}

printf("\n");

}

boolean uni_gen_set::contains(matrix *matr_p){

if (*matrix_p == *matr_p)

return TRUE;

else

return FALSE;

}

int uni_gen_set::get_no_of_members(){

return no_of_members;

}

int uni_gen_set::get_nest_depth(){

return nest_depth;

}

member_list *uni_gen_set::get_member_list_p(){

return member_list_p;

}

iteration_space * uni_gen_set::get_R_st_p(){

return R_st_p;

}

iteration_space * uni_gen_set::get_R_ss_p(){

return R_ss_p;

}

A.5.2 auxiliary

// An all_array_uni_gen_set instance is created for each loop in the nest.

A.5 locality.cc 149

// This class contains a list which represents all the different arrays

// that are present in the particular loop.

all_array_uni_gen_set::all_array_uni_gen_set(int ref_depth){

array_uni_gen_set_list_p = new array_uni_gen_set_list;

reference_depth = ref_depth;

}

all_array_uni_gen_set::~all_array_uni_gen_set(){

delete array_uni_gen_set_list_p;

}

array_uni_gen_set_list *all_array_uni_gen_set::get_array_uni_gen_set_list_p(){

return array_uni_gen_set_list_p;

}

void all_array_uni_gen_set::append_array_uni_gen_set(var_sym *var_sym_p,

int ref_depth){

array_uni_gen_set *array_uni_gen_set_p = new array_uni_gen_set(var_sym_p,

ref_depth);

array_uni_gen_set_list_p->append(array_uni_gen_set_p);

}

void all_array_uni_gen_set::print_all_array_uni_gen_set(){

array_uni_gen_set_list_iter augsl_iter(array_uni_gen_set_list_p);

while(!augsl_iter.is_empty()){

array_uni_gen_set *array_uni_gen_set_p = augsl_iter.step();

array_uni_gen_set_p->print_array_uni_gen_set();

}

}

void all_array_uni_gen_set::print_all_array_uni_gen_set_and_eq_classes(){

array_uni_gen_set_list_iter augsl_iter(array_uni_gen_set_list_p);

while(!augsl_iter.is_empty()){

array_uni_gen_set *array_uni_gen_set_p = augsl_iter.step();

array_uni_gen_set_p->print_array_uni_gen_set_and_eq_classes();

}

}

boolean all_array_uni_gen_set::exists(var_sym *var_sym_p){

array_uni_gen_set_list_iter augsl_iter(array_uni_gen_set_list_p);

if (augsl_iter.is_empty())

return FALSE;

while(!augsl_iter.is_empty()){

array_uni_gen_set *array_uni_gen_set_p = augsl_iter.step();

if(var_sym_p == array_uni_gen_set_p->get_var_sym_p())

return TRUE;

}

return FALSE;

}

array_uni_gen_set *all_array_uni_gen_set::get(var_sym *var_sym_p){

array_uni_gen_set_list_iter augsl_iter(array_uni_gen_set_list_p);

assert(!augsl_iter.is_empty());

while(!augsl_iter.is_empty()){

array_uni_gen_set *array_uni_gen_set_p = augsl_iter.step();

A.5 locality.cc 150

if(var_sym_p == array_uni_gen_set_p->get_var_sym_p())

return array_uni_gen_set_p;

}

assert(0);

return NULL;

}

// The class array_uni_gen_set contains a list of all the different

// uniformly generated sets that exist for references to a particular

// array.

array_uni_gen_set::array_uni_gen_set(var_sym *vs_p, int ref_depth){

var_sym_p = vs_p;

uni_gen_set_list_p = new uni_gen_set_list;

reference_depth = ref_depth;

}

array_uni_gen_set::~array_uni_gen_set(){

delete uni_gen_set_list_p;

}

void array_uni_gen_set::print_array_uni_gen_set(){

printf("Printing uniformly generated sets for array : ");

var_sym_p->print();

printf("\n\n");

uni_gen_set_list_iter ugsl_iter(uni_gen_set_list_p);

while(!ugsl_iter.is_empty()){

uni_gen_set *ugs_p = ugsl_iter.step();

ugs_p->print_uni_gen_set();

}

}

void array_uni_gen_set::print_array_uni_gen_set_and_eq_classes(){

printf("Printing uni_gen_set's and eq_class'es for array : ");

var_sym_p->print();

printf("\n\n");

uni_gen_set_list_iter ugsl_iter(uni_gen_set_list_p);

while(!ugsl_iter.is_empty()){

uni_gen_set *ugs_p = ugsl_iter.step();

ugs_p->print_uni_gen_set_and_eq_classes();

}

}

var_sym *array_uni_gen_set::get_var_sym_p(){

return var_sym_p;

}

uni_gen_set_list *array_uni_gen_set::get_uni_gen_set_list_p(){

return uni_gen_set_list_p;

}

local_space_eq_classes::local_space_eq_classes(uni_gen_set *uni_gen_set_p,

int first_local_space_loop,

int *iter_in_loop){

// The argument first_local_space_loop will equal 1 if for instance

// the 1. loop in the nest is also included in the localized space.

A.5 locality.cc 151

reference_depth = uni_gen_set_p->get_reference_depth();

nest_depth = uni_gen_set_p->get_nest_depth();

element_size = uni_gen_set_p->get_elem_size();

subscript_depth = uni_gen_set_p->get_subscript_depth();

uniformly_gen_set_p = uni_gen_set_p;

// L_space_p includes the directions of the localized

// vector space, which is from "first_local_space_loop" to "reference_depth"

L_space_p = new iteration_space(first_local_space_loop,reference_depth);

eq_class_list_p = new eq_class_list();

no_of_eq_classes = 0;

// creates a copy of the member list as we will pop the elements.

my_member_list *my_ml_p = new my_member_list();

member_list_iter ml_iter(uni_gen_set_p->get_member_list_p());

while(!ml_iter.is_empty()){

member *m_p = ml_iter.step();

//member_list_e *member_list_e_p;

//member_list_e_p = new member(m_p);

member *new_m_p = new member(m_p);

my_ml_p->append(new_m_p);

}

matrix *matr_p = uni_gen_set_p->get_matrix_p();

matrix *matr_s_p = uni_gen_set_p->get_matrix_s_p();

iteration_space* R_st_p = uni_gen_set_p->get_R_st_p();

iteration_space* R_ss_p = uni_gen_set_p->get_R_ss_p();

// The intersection function member returns a dynamically allocated

// iteration_space pointer.

intersection_L_Rst_p = L_space_p->intersection(R_st_p);

intersection_L_Rss_p = L_space_p->intersection(R_ss_p);

no_of_ST_reuse_dims = intersection_L_Rst_p->get_no_of_included_dims();

// SS_but_not_ST_reuse_dim contains the dimension in which there is SS

// reuse but not ST reuse if such a dim exists. Otherwise 0.

SS_but_not_ST_reuse_dim = 0;

SS_but_not_ST_reuse_dim =

intersection_L_Rss_p->get_diff(intersection_L_Rst_p);

if (SS_but_not_ST_reuse_dim == 0)

SS_reuse = FALSE;

else

SS_reuse = TRUE;

if(SS_reuse){

// getting the factor of the index variable for the loop where there

// is spatial reuse, and in the last subscript-expr.

// The indexing of the matrix starts however with zero.

int last_row = matr_p->m();

fract index_var_factor_fract =

matr_p->elt(last_row-1,SS_but_not_ST_reuse_dim-1);

if(index_var_factor_fract.denom())

index_var_factor = index_var_factor_fract.num()/index_var_factor_fract.denom();

A.5 locality.cc 152

if (index_var_factor == 0)

index_var_factor = 1;

}

while(!my_ml_p->is_empty()){

// Removes the front member element (representing an array reference)

// from the list, and checks for group reuse among all the remaining

// elements of the list.

member *assigned_member_p = NULL;

assigned_member_p = my_ml_p->pop();

fract_vector *assigned_fract_vector_p =

assigned_member_p->constant_vector_p;

eq_class *eq_class_p = new eq_class(uni_gen_set_p, assigned_member_p);

my_member_list_iter my_ml_iter(my_ml_p);

boolean GS_reuse_membership_established = FALSE;

boolean GT_reuse_membership_established = FALSE;

// Checks for group-temporal reuse among all the remaining elements

// in this while-loop.

while(!my_ml_iter.is_empty()){

member *current_member_p = my_ml_iter.step();

fract_vector *current_fract_vector_p =

current_member_p->constant_vector_p;

int vector_size = current_fract_vector_p->n();

fract_vector diff_fract_vector(vector_size);

diff_fract_vector = *assigned_fract_vector_p -

*current_fract_vector_p;

boolean solution_exists = FALSE;

boolean solution_inside_local_vector_space = FALSE;

fract_vector fract_vector_solution;

fract_vector_solution = matr_p->

particular_solution(diff_fract_vector,&solution_exists);

if (solution_exists){

iteration_space solution_span(&fract_vector_solution);

//printf("The fract_vector_solution spans the dim's : ");

//solution_span.print_included_dimensions();

solution_inside_local_vector_space =

L_space_p->contains(&solution_span);

}

if (solution_inside_local_vector_space){

// Remove the current_member from the ml_p list, as it now

// will be assigned an eq-class. When the rest of the list

// elements are popped at the outermost while-loop, this

// element will no longer be present in the list.

// The remove method returns a pointer to the member so we

// can just insert it into the eq_class.

member *my_removed_member_p;

my_removed_member_p = my_ml_p->remove(current_member_p);

// assign the current_member_copy_p to the eq-class.

A.5 locality.cc 153

eq_class_p->add(my_removed_member_p);

GT_reuse_membership_established = TRUE;

}

} // END while(!my_ml_iter.is_empty())

if (GT_reuse_membership_established){

eq_class_p->set_reuse(GROUP_TEMPORAL);

}

// No group-temporal reuse was found for assigned_member_p and

// we now check for group-spatial reuse.

my_member_list_iter my_ml_iter2(my_ml_p);

while(!my_ml_iter2.is_empty()){

member *current_member_p = my_ml_iter2.step();

fract_vector *current_fract_vector_p =

current_member_p->constant_vector_p;

fract_vector diff_fract_vector = *assigned_fract_vector_p -

*current_fract_vector_p;

// replace_last_elem_with_zero(diff_fract_vector);

// The []-overloaded operator returns the given element

// by reference.

diff_fract_vector[subscript_depth-1] = fract(0);

boolean solution_exists;

boolean solution_inside_local_vector_space = FALSE;

fract_vector fract_vector_solution;

fract_vector_solution = matr_s_p->

particular_solution(diff_fract_vector,&solution_exists);

if (solution_exists){

iteration_space solution_span(&fract_vector_solution);

solution_inside_local_vector_space =

L_space_p->contains(&solution_span);

}

if (solution_inside_local_vector_space){

// Remove the current_member from the ml_p list, as it now

// will be assigned an eq-class. When the rest of the list

// elements are popped at the outermost while-loop, this

// element will no longer be present in the list.

// The remove method returns a pointer to the member so we

// can just insert it into the eq_class.

member *my_removed_member_p;

my_removed_member_p = my_ml_p->remove(current_member_p);

// assign the current_member_copy_p to the eq-class.

eq_class_p->add(my_removed_member_p);

GS_reuse_membership_established = TRUE;

}

} // END while(!my_ml_iter2.is_empty())

if (GS_reuse_membership_established)

eq_class_p->set_reuse(GROUP_SPATIAL);

eq_class_list_p->append(eq_class_p);

no_of_eq_classes++; //

}// END while(!my_ml_p->is_empty())

acc_per_eq_class_in_loop = new int[reference_depth];

A.5 locality.cc 154

}

local_space_eq_classes::~local_space_eq_classes(){

delete L_space_p;

delete eq_class_list_p;

delete acc_per_eq_class_in_loop;

delete intersection_L_Rst_p;

delete intersection_L_Rss_p;

}

void local_space_eq_classes::print_eq_classes(){

eq_class_list_iter ecl_iter(eq_class_list_p);

int i=0;

while(!ecl_iter.is_empty()){

i++;

printf("Set no. %d :\n",i);

eq_class *eq_class_p = ecl_iter.step();

eq_class_p->print_members();

}

}

int local_space_eq_classes::get_total_no_of_off_chip_acc(){

return total_no_of_off_chip_acc;

}

int local_space_eq_classes::get_no_of_eq_classes(){

return no_of_eq_classes;

}

int local_space_eq_classes::get_no_of_ST_reuse_dims(){

return no_of_ST_reuse_dims;

}

boolean local_space_eq_classes::get_SS_reuse(){

return SS_reuse;

}

int local_space_eq_classes::get_elem_size(){

return element_size;

}

int local_space_eq_classes::get_SS_reuse_factor(){

return SS_reuse_factor;

}

int local_space_eq_classes::get_index_var_factor(){

return index_var_factor;

}

A.5.3 iteration_space

// This constructor generates an iteration space which contains all the

// dimensions included in the span of the fract_vector.

iteration_space::iteration_space(fract_vector* fv_p){

int fract_vector_size = fv_p->n();

dimension_space = new dimension[fract_vector_size];

A.5 locality.cc 155

no_of_dimensions = fract_vector_size;

// Initializing the dimension space to be empty.

for (int i=0; i<no_of_dimensions; i++){

dimension_space[i] = DIMENSION_NOT_INCLUDED;

}

// The fract_vector_size equals the the entire loop nest depth.

// Inserts the dimension number (i.e. loop number in the nest) for

// which the fract_vector contains an non-zero element.

for (int i=0; i<fract_vector_size; i++){

fract temp = (*fv_p)[i];

// num() returns nominator, denom() : denominator.

if (temp.num()){

dimension_space[i] = DIMENSION_INCLUDED;

}

}

}

iteration_space::iteration_space(int first_loop_inside_local_space,

int reference_depth){

// Checking that we are not performing tiling-analysis for some number

// of loops which do not include the one containing the current

// array references.

assert(first_loop_inside_local_space<=reference_depth);

no_of_dimensions = reference_depth;

dimension_space = new dimension[no_of_dimensions];

// Initializing the dimension elements not inside the localized vector

// space to zero.

for (int i=0; i<(first_loop_inside_local_space-1); i++){

dimension_space[i] = DIMENSION_NOT_INCLUDED;

}

// Initializing the elements which correspond to the dimensions that

// are included in the localized vector space.

for (int i=first_loop_inside_local_space-1; i<no_of_dimensions; i++){

dimension_space[i] = DIMENSION_INCLUDED;

}

}

// This constructor creates an iteration space with a number of dimensions

// equal to reference_depth, and with none of then included.

iteration_space::iteration_space(int reference_depth){

no_of_dimensions = reference_depth;

dimension_space = new dimension[no_of_dimensions];

// Initializing the dimension elements not inside the localized vector

// space to zero.

for (int i=0; i<reference_depth; i++){

dimension_space[i] = DIMENSION_NOT_INCLUDED;

}

}

iteration_space::~iteration_space(){

A.5 locality.cc 156

delete dimension_space;

}

int iteration_space::get_no_of_dimensions(){

return no_of_dimensions;

}

boolean iteration_space::dimension_included(int i){

if(dimension_space[i])

return TRUE;

else

return FALSE;

}

boolean iteration_space::contains(iteration_space *it_space_p){

for (int i=0; i<no_of_dimensions; i++){

if (!dimension_space[i]){

if (it_space_p->dimension_space[i])

return FALSE;

}

}

return TRUE;

}

void iteration_space::print_included_dimensions(){

for (int i=0; i<no_of_dimensions; i++){

if (dimension_space[i]){

printf("%d ",i+1);

}

}

printf("\n");

}

iteration_space *iteration_space::union_space(iteration_space *it_space_p){

assert(no_of_dimensions == it_space_p->no_of_dimensions);

// Allocates a new iteration space with no dimensions included yet.

iteration_space *united_space_p = new iteration_space(no_of_dimensions);

for (int i=0; i<no_of_dimensions; i++){

if (dimension_space[i] || it_space_p->dimension_included(i)){

united_space_p->dimension_space[i] = DIMENSION_INCLUDED;

}

}

return united_space_p;

}

iteration_space *iteration_space::intersection(iteration_space *it_space_p){

assert(no_of_dimensions == it_space_p->no_of_dimensions);

// Allocates a new iteration space with no dimensions included yet.

iteration_space *intersected_space_p = new iteration_space(no_of_dimensions);

for (int i=0; i<no_of_dimensions; i++){

if (dimension_space[i] && it_space_p->dimension_included(i)){

intersected_space_p->dimension_space[i] = DIMENSION_INCLUDED;

A.5 locality.cc 157

}

}

return intersected_space_p;

}

boolean iteration_space::equals(iteration_space *iteration_space_p){

assert(no_of_dimensions == iteration_space_p->get_no_of_dimensions());

for (int i=0; i<no_of_dimensions; i++){

if(dimension_space[i]){

if(!(iteration_space_p->dimension_included(i))){

return FALSE;

}

}

else{

if(iteration_space_p->dimension_included(i)){

return FALSE;

}

}

}

return TRUE;

}

void iteration_space::add_dimension(dimension dim){

dimension_space[int(dim)] = DIMENSION_INCLUDED;

}

int iteration_space::get_no_of_included_dims(){

int no_of_dimensions_included = 0;

for (int i=0; i<no_of_dimensions; i++){

if (dimension_space[i]){

no_of_dimensions_included++;

}

}

return no_of_dimensions_included;

}

boolean iteration_space::get_diff(iteration_space *it_space_p){

assert(no_of_dimensions == it_space_p->no_of_dimensions);

for (int i=no_of_dimensions-1; i>=0; i--){

if (dimension_space[i]){

if (!(it_space_p->dimension_space[i]))

return i+1;

}

}

return 0;

}

eq_class::eq_class(uni_gen_set *ugs_p, member *member_p){

member_list_p = new member_list();

member_list_p->append(member_p);

uni_gen_set_p = ugs_p;

// SELF reuse is the default kind.

reuse_kind = SELF;

}

A.6 for_loop_transform.h 158

void eq_class::add(member *member_p){

member_list_p->append(member_p);

}

void eq_class::set_reuse(reuse r_kind){

reuse_kind = r_kind;

}

void eq_class::print_members(){

switch(reuse_kind){

case SELF:

break;

case GROUP_TEMPORAL:

printf("The eq_class exhibits group temporal reuse among its references\n");

break;

case GROUP_SPATIAL:

printf("The eq_class exhibits group spatial reuse among its references\n");

break;

default:

assert(0);

break;

}

member_list_iter ml_iter(member_list_p);

while(!ml_iter.is_empty()){

member *member_p = ml_iter.step();

print_array_access(member_p->array_instr_p);

}

}

A.6 for_loop_transform.h

// for_loop_transform.h

#ifndef FOR_LOOP_TRANSFORM_H

#define FOR_LOOP_TRANSFORM_H

#include <suif1.h>

#include <transform.h>

#include "nested_loop.h"

#define NO_OF_REGIONS 1

#include <useful.h>

#include <dependence.h>

#include "locality.h"

class local_space;

class local_space_info;

class tile_size_info;

class optimal_tiling_info;

/***

Declare a new class which is a list of "in_array"'s

This allows for a later instantiation like :

<list-name> = new array_instr_list;

, that constructs a list of pointers to in_array's.

***/

A.6 for_loop_transform.h 159

DECLARE_DLIST_CLASS(array_instr_list, in_array *);

DECLARE_DLIST_CLASS(access_dep_list, dvlist *);

DECLARE_DLIST_CLASS(local_space_info_list, local_space_info *);

DECLARE_DLIST_CLASS(tile_size_info_list, tile_size_info *);

class for_loop_transform{

private:

nested_loop *nl_p;

int depth;

int tile_size;

tree_for **tree_for_p_array;

loop_transform *loop_transform_p;

boolean *doalls;

int *trip;

// Dependences

int data_dependence_too_messy;

int dependence_exists;

int no_dep_test_was_run;

access_dep_list *access_dep_list_p;

array_instr_list *array_instr_list_p;

array_instr_list **array_instr_list_table;

void process_array_instr_list(array_instr_list * ail);

boolean dir_is_possibly_negative(direction dir);

void find_array_instr(tree_node_list * tnl);

void find_array_instr(tree_node_list * tnl, int current_depth);

void find_array_instr(instruction * ins, int current_depth);

// Locality analysis

// array_ref_list_table is an array of pointers to array_ref_list's

// An array_ref_list is a list of array_ref's for a particular loop

// in the nest.

array_ref_list **array_ref_list_table;

all_array_uni_gen_set **uni_gen_set_list_table;

void insert_array_ref(array_ref* array_ref_p,

uni_gen_set_list *uni_gen_set_list_p,

int reference_depth);

boolean generated_uni_gen_sets;

int *no_of_iter_in_loop;

// Element at offset i, contains the product of the iteration numbers

// for loops 1 to i+1. Is calculated from the no_of_iter_in_loop array.

int *total_no_of_it_in_loop;

// The element at offset i contains the est. no. of off-chip accesses

// for a localized space of loops i+1 to loop-depth.

int *total_no_of_iter_in_loop;

int no_of_off_chip_acc_per_it;

void collect_local_space_statistics();

local_space_info_list **local_space_info_list_table;

int *step_size_table;

int max_no_of_tile_sizes;

int no_of_tile_sizes_tested;

A.6 for_loop_transform.h 160

int selected_first_loop;

int local_space_dim;

int est_element_size;

tile_size_info_list **tile_size_local_space;

optimal_tiling_info **optimal_tiling_info_table;

int tile_size_step;

public:

for_loop_transform(nested_loop *nl_p_arg);

~for_loop_transform();

void tile(optimal_tiling_info *oti_p);

void calc_dependence();

boolean ok_to_tile(int first_loop, int last_loop);

boolean all_interchange_ok();

boolean *no_tile_made_WS_fit_in_cache;

int get_depth();

int get_tile_size_step();

int get_optimal_tile_size_for_loop(int loop_no);

void locality_analysis();

void print_access_matrices();

void generate_uni_gen_sets();

void print_uni_gen_sets();

void generate_eq_classes();

void print_uni_gen_sets_and_eq_classes();

void calculate_relative_costs();

void find_best_tile_region();

int get_tile_region_priority_loop_no(int priority);

void set_selected_first_loop(int first_loop);

void tile_size_selection();

int get_optimal_tiling_loop(int first_tile_loop);

optimal_tiling_info *get_optimal_tiling_info_no(int first_tile_loop);

void print_collected_stat();

void print_est_for_local_space(int first_loop);

void print_est_for_all_spaces();

void print_tile_size_info(tile_size_info *tsi_p);

void print_optimal_tile_est();

void print_optimal_tile_est_for_loop(int loop_no);

int get_smallest_loop_it_in_local_space(int first_loop);

optimal_tiling_info* get_optimal_tiling_for_first_loop(int first_loop);

tile_size_info_list *get_tile_size_local_space(int loop_no);

};

// The local_space_info class contains info on the degree of reuse for a

// particular uni_gen_set in a particular localized iteration space.

class local_space_info{

private:

int no_of_eq_classes;

boolean SS_reuse;

int no_of_ST_reuse_dims;

int no_of_iterations;

int element_size;

int SS_reuse_divisor;

A.7 for_loop_transform.cc 161

public:

local_space_info(int no_of_eq_classes, boolean SS_reuse,

int no_of_ST_reuse_dims, int no_of_iterations,

int elem_size, int stride);

local_space_info(int no_of_ref, int no_of_iterations);

int get_no_of_eq_classes();

int get_no_of_ST_reuse_dims();

int get_no_of_iterations();

int get_SS_reuse_divisor();

void print_info();

};

class tile_size_info{

private:

int WS_size;

int no_of_off_chip_acc;

int tile_size;

public:

tile_size_info(int WS_size,int no_of_off_chip_acc,int tile_size);

int get_WS_size();

int get_no_of_off_chip_acc();

int get_tile_size();

};

class optimal_tiling_info : public tile_size_info{

private:

int first_loop;

public:

optimal_tiling_info(int first_loop,int WS_size,

int no_of_off_chip_acc,int tile_size);

optimal_tiling_info(tile_size_info *tsi_p,int first_l);

int get_first_loop();

};

#endif

A.7 for_loop_transform.cc

// for_loop_transform.cc

#include "for_loop_transform.h"

#include <transform.h>

#include <iostream>

#include "nested_loop.h"

#include <stdlib.h>

#include "locality.h"

extern int line_size;

extern int cache_size;

void find_array_instr(tree_node_list * tnl);

void find_array_instr(tree_node * tn);

void find_array_instr(instruction * instr);

A.7 for_loop_transform.cc 162

for_loop_transform::for_loop_transform(nested_loop *nl_p_arg){

nl_p = nl_p_arg;

depth = nl_p->get_depth();

doalls = new boolean[depth];

tree_for_p_array = new tree_for*[depth];

// The array_instr_list is a private data member of the

// for_loop_transform class.

array_instr_list_p = new array_instr_list;

array_instr_list_table = new array_instr_list*[depth];

for(int j=0; j<depth; j++){

array_instr_list_table[j] = new array_instr_list;

}

//printf("the depth of the for-loop is : %d\n",depth);

int i = 0;

tree_for_list_iter tfl_iter(nl_p->get_tree_for_list_p());

while (i<depth && !tfl_iter.is_empty()){

tree_for_p_array[i++] = tfl_iter.step();

//tree_for_p_array[i++]->print();

//cout << "The tree_for arrays is assigned loop nr : " << (i) << "\n";

//cout.flush();

}

assert(i==depth && tfl_iter.is_empty());

step_size_table = new int[depth];

no_of_iter_in_loop = new int[depth];

for (int i=0; i<depth; i++){

int lower_bound, upper_bound, step_size;

if (!(tree_for_p_array[i]->lb_is_constant(&lower_bound))){

printf("The lower bound in loop %d is not constant\n",depth+1);

assert(0);

}

if (!(tree_for_p_array[i]->ub_is_constant(&upper_bound))){

printf("The upper bound in loop %d is not constant\n",depth+1);

assert(0);

}

if (!(tree_for_p_array[i]->step_is_constant(&step_size))){

printf("The step-size in loop %d is not constant\n",depth+1);

assert(0);

}

no_of_iter_in_loop[i] = (upper_bound - lower_bound)/(step_size);

step_size_table[i] = step_size;

}

total_no_of_iter_in_loop = new int[depth];

total_no_of_iter_in_loop[0] = no_of_iter_in_loop[0];

for (int i=1; i<depth; i++){

total_no_of_iter_in_loop[i] = total_no_of_iter_in_loop[i-1] *

no_of_iter_in_loop[i];

}

loop_transform_p = new loop_transform(depth,tree_for_p_array,doalls);

A.7 for_loop_transform.cc 163

// DEPENDENCE TESTING RELATED VARIABLES :

data_dependence_too_messy = FALSE;

dependence_exists = FALSE;

no_dep_test_was_run = FALSE;

access_dep_list_p = NULL;

// The access_dep_list is designed to contain lists of dependences for

// every two accesses which are data dependent. The dependences are

// themselves a list of dependence vectors.

// The access_dep_list is a private data member of the

// for_loop_transform class.

access_dep_list_p = new access_dep_list;

array_ref_list_table = new array_ref_list*[depth];

for(int i=0; i<depth; i++){

array_ref_list_table[i] = new array_ref_list();

}

uni_gen_set_list_table = new all_array_uni_gen_set*[depth];

for(int i=0; i<depth; i++){

uni_gen_set_list_table[i] = new all_array_uni_gen_set(i+1);

}

local_space_info_list_table = new local_space_info_list*[depth];

for(int i=0; i<depth; i++){

local_space_info_list_table[i] = new local_space_info_list;

}

max_no_of_tile_sizes = cache_size / line_size;

tile_size_local_space = new tile_size_info_list*[depth];

for(int i=0; i<depth; i++){

tile_size_local_space[i] = new tile_size_info_list;

}

optimal_tiling_info_table = new optimal_tiling_info*[depth];

est_element_size = 4; // Is set to 4 bytes by default, correctly set later.

no_tile_made_WS_fit_in_cache = new boolean[depth];

for(int i=0; i<depth; i++){

no_tile_made_WS_fit_in_cache[i] = FALSE;

}

}

for_loop_transform::~for_loop_transform(){

delete [] tree_for_p_array;

delete [] doalls;

delete array_instr_list_p;

delete [] array_instr_list_table;

delete loop_transform_p;

delete access_dep_list_p;

delete [] array_ref_list_table;

delete [] uni_gen_set_list_table;

}

A.7 for_loop_transform.cc 164

int power(int x, int n){

assert(n>=0);

if(n==0)

return 1;

if(n>0)

return x*power(x,n-1);

return 1;

}

int for_loop_transform::get_optimal_tiling_loop(int priority_no){

return (optimal_tiling_info_table[priority_no-1]->get_first_loop());

}

int for_loop_transform::get_optimal_tile_size_for_loop(int loop_no){

return (optimal_tiling_info_table[loop_no-1]->get_tile_size());

}

tile_size_info_list *

for_loop_transform::get_tile_size_local_space(int loop_no){

return tile_size_local_space[loop_no-1];

}

optimal_tiling_info*

for_loop_transform::get_optimal_tiling_info_no(int first_tile_loop){

return optimal_tiling_info_table[first_tile_loop-1];

}

optimal_tiling_info*

for_loop_transform::get_optimal_tiling_for_first_loop(int first_loop){

if(first_loop>depth){

printf("The first loop in user requested tiling is greater than nest depth\n");

fflush(stdout);

assert(0);

}

int i = 0;

while(i<depth){

if(optimal_tiling_info_table[i]->get_first_loop() == first_loop)

return optimal_tiling_info_table[i];

i++;

}

assert(0);

return optimal_tiling_info_table[0];

}

int for_loop_transform::get_smallest_loop_it_in_local_space(int first_loop){

assert(first_loop<=depth);

int smallest_loop_it = no_of_iter_in_loop[first_loop-1];

if(first_loop<depth){

for(int i=first_loop; i<depth; i++){

if(no_of_iter_in_loop[i]<smallest_loop_it)

smallest_loop_it = no_of_iter_in_loop[i];

}

}

return smallest_loop_it;

}

A.7 for_loop_transform.cc 165

A.7.1 Dependences.

void for_loop_transform::calc_dependence(){

//printf("Calculating dep. for loop with depth : %d\n",nl_p->get_depth());

// The body of the outermost for loop is passed to find_array_instr().

// This procedure appends all found array references to the

// array_instr_list

find_array_instr(tree_for_p_array[0]->body());

process_array_instr_list(array_instr_list_p);

}

/***

This routine is called from the calc_dependence() routine when a

complete, possibly multi-level nested, for-loop has been found. The list

containing all the array accesses in the for-loop is given as an

argument to this routine.

The routine runs the DependenceTest() on all pairs of references to the

same array and if there exists dependence it stores the returned dvlist

in the access_dep_list.

***/

void for_loop_transform::process_array_instr_list(array_instr_list * ail){

array_instr_list_iter iter1(ail);

array_instr_list_iter test_iter(ail);

//printf("This loop contains the following accesses :\n");

while(!test_iter.is_empty()){

in_array * ai1 = test_iter.step();

//print_array_access(ai1);

}

while(!iter1.is_empty()){

in_array * ai1 = iter1.step();

if(is_lhs(ai1)) {

var_sym * vs1 = get_sym_of_array(ai1);

//printf("Calculating dependences for lhs access:\n");

//print_array_access(ai1);

// Traversing the list once again to find all other references

// to the array-variable vs1.

array_instr_list_iter iter2(ail);

while(!iter2.is_empty()) {

in_array * ai2 = iter2.step();

var_sym * vs2 = get_sym_of_array(ai2);

// if(!is_lhs(ai2)) was earlier the condition for testing

// for dependence between vs1 and vs2.

if(vs1 == vs2){

deptest_result *dep_test_result_p;

dvlist * access_dep = DependenceTest(ai1, ai2, 1, dep_test_result_p);

switch(*dep_test_result_p){

case dt_none: // No dep.-test was run.

no_dep_test_was_run = TRUE;

break;

case dt_ok:

// The two array accesses are data dependent.

// Dependence vector list returned.

dependence_exists = TRUE;

A.7 for_loop_transform.cc 166

access_dep_list_p->append(access_dep);

break;

case dt_indep:

assert(access_dep->indep());

break;

case dt_no_common_nest:

// This should not be possible

assert(0);

break;

case dt_too_messy:

data_dependence_too_messy = TRUE;

break;

default:

assert(0);

break;

}

}

}

} // end of if(is_lhs(ai1))

}

}

boolean for_loop_transform::ok_to_tile(int first_loop, int last_loop){

if (first_loop <= 0)

{

printf("Error: Argument first_loop to method ok_to_tile negative or zero\n");

assert(0);

}

if (last_loop <= 0)

{

printf("Error: Argument last_loop to method ok_to_tile negative or zero\n");

assert(0);

}

if (first_loop>last_loop)

{

printf("Error: Argument first_loop greater than arg. last_loop in method ok_to_tile\n");

assert(0);

}

if (first_loop > depth)

{

printf("Error: Argument first_loop in method ok_to_tile greater than depth\n");

assert(0);

}

if (last_loop > depth)

{

printf("Error: Argument last_loop in method ok_to_tile greater than depth\n");

assert(0);

}

// access_dep_list_p is a pointer to an access_dep_list which contains

// elements of dependence vector lists. These lists corresponds to the

// dependences that exists between two (possibly different or the same)

// accesses to a particular array.

access_dep_list_iter adl_iter(access_dep_list_p);

boolean so_far_ok_to_tile = TRUE;

A.7 for_loop_transform.cc 167

int dep_vector_no = 1;

while(!adl_iter.is_empty() && so_far_ok_to_tile){

dvlist *dvlist_p = adl_iter.step();

dvlist_iter dvl_iter(dvlist_p);

while(!dvl_iter.is_empty() && so_far_ok_to_tile){

// Treating a single dependence vector represented by the

// class dvlist_e. A dvlist_e contains an instance of a

// distance_vector which again contains a list of

// distance_vector_e's which is a direction <,>,=,<=,>=,<>,*.

dvlist_e *dvlist_e_p = dvl_iter.step();

distance_vector_e *distance_vector_e_p;

boolean vector_is_pos_before_tile_loop = FALSE;

int i = 1;

boolean tile_loop_element_negative = FALSE;

// Treating the first (first_loop-1) elements of the vector

// if the first non_zero element of these first_loop-1

// elements is positive then it is ok to tile the requested

// loops.

distance_vector_iter dv_iter(dvlist_e_p->dv);

while(i<first_loop && !vector_is_pos_before_tile_loop && so_far_ok_to_tile){

// if (!dvlist_e_p->dv->is_empty())

assert(!dv_iter.is_empty());

//distance_vector_e_p = dvlist_e_p->dv->pop();

distance_vector_e_p = dv_iter.step();

direction d = distance_vector_e_p->d.dir();

switch(d)

{

case d_lt:

vector_is_pos_before_tile_loop = TRUE;

break;

case d_eq:

break;

case d_le:

break;

// d_ge d_lg d_star d_gt

default:

printf("Error: Distance vector is lex. negative\n");

assert(0);

break;

}

i++;

}

// i will always contain the element number of the next

// direction to be popped from the distance_vector.

// This is ensured by the following while-loop.

while (i < first_loop){

A.7 for_loop_transform.cc 168

//printf("Popping once, i equals : %d\n",i);

//fflush(stdout);

//printf("%d'th element is popped now!!!!\n",i);

//fflush(stdout);

distance_vector_e_p = dv_iter.step(); //dvlist_e_p->dv->pop();

i++;

}

if (!vector_is_pos_before_tile_loop)

// The legality of tiling was not determined by the

// first first_loop-1 elements being lexicographically

// positive, so it is necessary to check the positivity

// of the first_loop -> last_loop elements of the

// dependence vector.

// All the distance elements in these loops must be pos.

{

for(i=first_loop; i<=last_loop; i++)

{

distance_vector_e_p = dv_iter.step();

direction d = distance_vector_e_p->d.dir();

if (dir_is_possibly_negative(d))

so_far_ok_to_tile = FALSE;

}

}

} // finished iterating over a dep. vector list for two accesses.

} // finished iterating over dep. for all accesses.

return so_far_ok_to_tile;

} // end of ok_to_tile()

boolean for_loop_transform::dir_is_possibly_negative(direction dir)

{

switch(dir)

{

case d_lt:

return FALSE;

break;

case d_gt:

return TRUE;

break;

case d_eq:

return FALSE;

break;

case d_le:

return FALSE;

break;

case d_ge:

return TRUE;

break;

case d_lg:

return TRUE;

break;

A.7 for_loop_transform.cc 169

case d_star:

return TRUE;

break;

default:

assert(0);

return TRUE;

break;

}

}

boolean for_loop_transform::all_interchange_ok(){

if (!dependence_exists)

return TRUE;

return FALSE;

}

// The main iterator over structured control-flow.

// When there is no outer for loop ail will be NULL. ail will be assigned

// at the outermost for loops. All the array accesses for one particular

// (possibly multi-level nested) for-loop are collected in the

// array_instr_list.

// Is called with the tree_for_p_array[0]->body() as the tnl parameter in

// the for_loop_transform class.

void for_loop_transform::find_array_instr(tree_node_list * tnl){

find_array_instr(tnl, 0);

}

void for_loop_transform::find_array_instr(tree_node_list * tnl, int current_depth)

{

//printf("current_depth is : %d",current_depth);

// fflush(stdout);

tree_node_list_iter iter(tnl);

while(!iter.is_empty()) {

tree_node * tn = iter.step();

switch(tn->kind()) {

case TREE_FOR:{

tree_for * tnf = (tree_for *)tn;

find_array_instr(tnf->lb_list(),current_depth+1);

find_array_instr(tnf->ub_list(),current_depth+1);

find_array_instr(tnf->step_list(),current_depth+1);

find_array_instr(tnf->landing_pad(),current_depth+1);

find_array_instr(tnf->body(),current_depth+1);

break;

}

case TREE_IF:{

tree_if * tni = (tree_if *)tn;

find_array_instr(tni->header(),current_depth);

find_array_instr(tni->then_part(),current_depth);

find_array_instr(tni->else_part(),current_depth);

break;

}

case TREE_LOOP:{

A.7 for_loop_transform.cc 170

tree_loop * tnl = (tree_loop *)tn;

find_array_instr(tnl->body(),current_depth);

find_array_instr(tnl->test(),current_depth);

break;

}

case TREE_BLOCK:{

tree_block * tnb = (tree_block *)tn;

find_array_instr(tnb->body(),current_depth);

break;

}

case TREE_INSTR:{

tree_instr * tnin = (tree_instr *)tn;

if(array_instr_list_p)

find_array_instr(tnin->instr(),current_depth);

break;

}

default:

assert(0);

break;

}

}

}

// Iterate over all the instructions of expression trees, add array

// instructions to the list.

void for_loop_transform::find_array_instr(instruction * ins, int current_depth)

{

fflush(stdout);

if(ins->opcode() == io_array) {

assert(array_instr_list_p);

in_array * ia = (in_array *)ins;

array_instr_list_table[current_depth]->append(ia);

array_instr_list_p->append(ia);

}

for(int i=0; i<ins->num_srcs(); i++) {

operand op(ins->src_op(i));

if(op.is_instr())

find_array_instr(op.instr(),current_depth);

}

}

A.7.2 Locality analysis.

/***

* The locality analysis related procedures are listed in the following.

***/

void for_loop_transform::locality_analysis(){

for(int i=0; i<depth; i++){

array_instr_list_iter ail_iter(array_instr_list_table[i]);

in_array *array_instr_p;

while(!ail_iter.is_empty()){

array_instr_p = ail_iter.step();

//print_array_access(array_instr_p);

assert(array_instr_p->opcode() == io_array);

A.7 for_loop_transform.cc 171

// The array_instr_p inserted in the array_ref is the original.

array_ref *array_ref_p = new array_ref(array_instr_p, depth, tree_for_p_array);

array_ref_list_table[i]->append(array_ref_p);

}

if(i==depth-1)

est_element_size = (array_instr_p->elem_size())/8;

}

}

void for_loop_transform::print_access_matrices(){

for(int i=0; i<depth; i++){

array_ref_list_iter arl_iter(array_ref_list_table[i]);

if(arl_iter.is_empty())

continue;

printf("==== Processing loop no. : %d ====\n\n",i+1);

while(!arl_iter.is_empty()){

array_ref *array_ref_p = arl_iter.step();

printf("The access matrix for array reference ");

in_array *array_instr_p = array_ref_p->get_array_instr_p();

matrix *matrix_p = array_ref_p->get_matrix_p();

print_array_access(array_instr_p);

printf("with dimensions : %d x %d is :\n",

matrix_p->m(),matrix_p->n());

matrix_p->print();

printf("\n\n");

}

}

}

int for_loop_transform::get_depth(){

return depth;

}

void for_loop_transform::generate_uni_gen_sets(){

// This variable is used by the destructor

generated_uni_gen_sets = TRUE;

for(int i=0; i<depth; i++){

array_ref_list_iter arl_iter(array_ref_list_table[i]);

while(!arl_iter.is_empty()){

array_ref *array_ref_p;

array_ref_p = arl_iter.step();

var_sym *var_sym_p = get_sym_of_array(array_ref_p->get_array_instr_p());

// The uni_gen_set_list_table[] array contains elements that are

// instances of the all_array_uni_gen_set class.

if (uni_gen_set_list_table[i]->exists(var_sym_p)){

// The all_array_uni_gen_set_list already contained an

// array_uni_gen_set instance which holds information on

// the uniformly generated sets for this array.

array_uni_gen_set *array_uni_gen_set_p =

uni_gen_set_list_table[i]->get(var_sym_p);

uni_gen_set_list *uni_gen_set_list_p =

array_uni_gen_set_p->get_uni_gen_set_list_p();

insert_array_ref(array_ref_p,uni_gen_set_list_p,i+1);

}

else{

A.7 for_loop_transform.cc 172

// Append an array_uni_gen_set representing all uniformly

// generated sets for this array.

// An array_uni_gen_set containing the var_sym and an empty

// uni_gen_set_list is created. i+1 equals reference-depth.

uni_gen_set_list_table[i]->append_array_uni_gen_set(var_sym_p,

i+1);

// Make sure that the array_uni_gen_set was appended properly

assert(uni_gen_set_list_table[i]->exists(var_sym_p));

array_uni_gen_set *array_uni_gen_set_p;

array_uni_gen_set_p = uni_gen_set_list_table[i]->get(var_sym_p);

insert_array_ref(array_ref_p,

array_uni_gen_set_p->get_uni_gen_set_list_p(),

i+1);

}

}

} // end for ...

}

void for_loop_transform::insert_array_ref(array_ref* array_ref_p,

uni_gen_set_list *uni_gen_set_list_p,

int ref_depth){

uni_gen_set_list_iter ugsl_iter(uni_gen_set_list_p);

boolean not_found_similar_uni_gen_set = TRUE;

while(!ugsl_iter.is_empty() && not_found_similar_uni_gen_set){

uni_gen_set *uni_gen_set_p = ugsl_iter.step();

matrix *uni_gen_set_matrix_p = uni_gen_set_p->get_matrix_p();

matrix *array_ref_matrix_p = array_ref_p->get_matrix_p();

if (*array_ref_matrix_p == *uni_gen_set_matrix_p){

uni_gen_set_p->add_member(array_ref_p->get_array_instr_p(),

array_ref_p->get_matrix_p(),

array_ref_p->get_fract_vector_p());

not_found_similar_uni_gen_set = FALSE;

}

}

if (not_found_similar_uni_gen_set){

uni_gen_set *uni_gen_set_p =

new uni_gen_set(array_ref_p->get_array_instr_p(),

array_ref_p->get_matrix_p(),

array_ref_p->get_fract_vector_p(),

ref_depth,

array_ref_p->get_elem_size());

uni_gen_set_list_p->append(uni_gen_set_p);

}

}

void for_loop_transform::print_uni_gen_sets(){

printf("\n\n==== Printing out uniformly generated sets for a loop nest ====\n\n");

for(int i=0; i<depth; i++){

printf("**** Printing uniformly generated sets for loop %d ****\n\n",i+1);

uni_gen_set_list_table[i]->print_all_array_uni_gen_set();

printf("\n");

}

}

void for_loop_transform::generate_eq_classes(){

A.7 for_loop_transform.cc 173

for(int i=0; i<depth; i++){

int ref_depth = i+1;

array_uni_gen_set_list_iter augsl_iter(uni_gen_set_list_table[i]->

get_array_uni_gen_set_list_p());

while(!augsl_iter.is_empty()){

array_uni_gen_set *array_uni_gen_set_p;

array_uni_gen_set_p = augsl_iter.step();

uni_gen_set_list_iter ugsl_iter(array_uni_gen_set_p

->get_uni_gen_set_list_p());

while(!ugsl_iter.is_empty()){

uni_gen_set *uni_gen_set_p;

uni_gen_set_p = ugsl_iter.step();

for(int j=0; j<ref_depth; j++){

local_space_eq_classes *local_space_eq_classes_p;

// The call to the local_space_eq_classes constructor will

// create eq_class'es for local-space : j+1 to ref_depth.

local_space_eq_classes_p =

new local_space_eq_classes(uni_gen_set_p,j+1,

no_of_iter_in_loop);

// local_space_eq_classes_table[j] contains an object

// local_space_eq_classes which again contains a list

// of eq-classes for a localized iteration space

// consisting of loops : j+1 to ref_depth

uni_gen_set_p->local_space_eq_classes_table[j] =

local_space_eq_classes_p;

}

}

}

}

}

void for_loop_transform::print_uni_gen_sets_and_eq_classes(){

printf("\n\n==== Printing out uni_gen_set's and eq_class'es in a nest ====\n\n");

for(int i=0; i<depth; i++){

printf("**** Printing uni_gen_set's and eq_class'es for loop %d ****\n\n",i+1);

uni_gen_set_list_table[i]->print_all_array_uni_gen_set_and_eq_classes();

printf("\n");

}

}

int div_round_up(int dividend, int divisor){

int result = dividend / divisor ;

if(dividend % divisor)

result++;

return result;

}

void for_loop_transform::set_selected_first_loop(int first_loop){

selected_first_loop = first_loop;

local_space_dim = depth - selected_first_loop + 1;

}

A.7 for_loop_transform.cc 174

A.7.3 Evaluating reuse.

// This procedure obtains the costs of tiling the different possible regions

// in the nest by calling the private member function

// calc_off_chip_acc_for_local_space(). The results hereof are examined

// and are ordered in the array tile_region_priority[depth].

void for_loop_transform::find_best_tile_region(){

// Fill in the local_space_info_list_table[depth] which elements are lists

// for the different local spaces. These contain local_space_info's.

collect_local_space_statistics();

tile_size_selection();

// Insertion sort.

for(int j=1; j<depth; j++){

optimal_tiling_info *key_p = optimal_tiling_info_table[j];

int i = j-1;

while(i>=0 && (optimal_tiling_info_table[i]->get_no_of_off_chip_acc())>

(key_p->get_no_of_off_chip_acc())){

optimal_tiling_info_table[i+1] = optimal_tiling_info_table[i];

i--;

}

optimal_tiling_info_table[i+1] = key_p;

}

}

void for_loop_transform::collect_local_space_statistics(){

for(int i=0; i<depth; i++){

int ref_depth = i+1;

array_uni_gen_set_list_iter augsl_iter(uni_gen_set_list_table[i]->

get_array_uni_gen_set_list_p());

while(!augsl_iter.is_empty()){

array_uni_gen_set *array_uni_gen_set_p;

array_uni_gen_set_p = augsl_iter.step();

uni_gen_set_list_iter ugsl_iter(array_uni_gen_set_p

->get_uni_gen_set_list_p());

while(!ugsl_iter.is_empty()){

uni_gen_set *uni_gen_set_p;

uni_gen_set_p = ugsl_iter.step();

for(int j=0; j<ref_depth; j++){

// For each uni_gen_set with corresponding local_space_eq_classes

// that exist in loop i, the local spaces starting with

//loop j is dealth with here.

local_space_eq_classes *lsec_p =

uni_gen_set_p->local_space_eq_classes_table[j];

int stride = step_size_table[i] *

lsec_p->get_index_var_factor();

local_space_info *local_space_info_p =

new local_space_info(lsec_p->get_no_of_eq_classes(),

lsec_p->get_SS_reuse(),

lsec_p->get_no_of_ST_reuse_dims(),

total_no_of_iter_in_loop[ref_depth-1],

lsec_p->get_elem_size(),

stride);

local_space_info_list_table[j]->append(local_space_info_p);

}

for(int j=ref_depth; j<depth; j++){

A.7 for_loop_transform.cc 175

int no_of_ref = uni_gen_set_p->get_no_of_members();

//int element_size = uni_gen_set_p->get_elem_size();

// total_no_of_it_in_loop[ref_depth-1] contains the product

// of all the enclosing loops iteration numbers.

local_space_info *local_space_info_p =

new local_space_info(no_of_ref,

total_no_of_iter_in_loop[ref_depth-1]);

local_space_info_list_table[j]->append(local_space_info_p);

}

}

}

}

}

void for_loop_transform::print_collected_stat(){

for(int i=0; i<depth; i++){

printf("====== The collected info for local space %d-%d ======\n\n",

i+1,depth);

local_space_info_list_iter lsil_iter(local_space_info_list_table[i]);

while(!lsil_iter.is_empty()){

local_space_info *local_space_info_p = lsil_iter.step();

local_space_info_p->print_info();

printf("\n");

}

printf("\n");

}

}

void for_loop_transform::tile_size_selection(){

for(int j=0; j<depth; j++){

// for local-space j+1 to depth.

int smallest_loop_it = get_smallest_loop_it_in_local_space(j+1);

int i=1;

tile_size_step = line_size/est_element_size;

if((line_size%est_element_size) != 0)

tile_size_step++;

int tile_size = tile_size_step;

int no_of_local_space_dims = depth - j;

int working_set_size = 0;

boolean ts_exeeded_loop_it = FALSE;

boolean WS_exeeded_cache_size = FALSE;

tile_size_info *tile_size_info_p = NULL;

while(!WS_exeeded_cache_size && !ts_exeeded_loop_it){

// checker for tile_size = line_size * i;

tile_size = i*tile_size_step;

int accumulated_WS_size = 0;

int accumulated_off_chip_acc = 0;

local_space_info_list_iter

lsil_iter(local_space_info_list_table[j]);

while(!lsil_iter.is_empty()){

local_space_info *lsi_p = lsil_iter.step();

int no_of_it = lsi_p->get_no_of_iterations();

int no_of_eq_cl = lsi_p->get_no_of_eq_classes();

A.7 for_loop_transform.cc 176

int no_of_ST_reuse_dims = lsi_p->get_no_of_ST_reuse_dims();

int ST_div = power(tile_size,

no_of_ST_reuse_dims);

int ST_factor = power(tile_size,

no_of_local_space_dims);

int SS_reuse_div = lsi_p->get_SS_reuse_divisor();

accumulated_WS_size += (ST_factor * no_of_eq_cl * line_size)/

(ST_div * SS_reuse_div);

accumulated_off_chip_acc += (no_of_it * no_of_eq_cl)/

(ST_div * SS_reuse_div);;

}

// Element with index 0 contains corresponding total no. of off-chip

if(accumulated_WS_size < cache_size){

tile_size_info_p = new tile_size_info(accumulated_WS_size,

accumulated_off_chip_acc,

tile_size);

tile_size_local_space[j]->append(tile_size_info_p);

if(tile_size>=smallest_loop_it){

// Selected tile-size is greater than smallest loop bound

// Tiling unneccesary.

optimal_tiling_info *optimal_tiling_info_p =

new optimal_tiling_info(tile_size_info_p,j+1);

optimal_tiling_info_table[j] = optimal_tiling_info_p;

ts_exeeded_loop_it = TRUE;

no_tile_made_WS_fit_in_cache[j] = TRUE;

}

}

else{

// The tile_size_info* constructed in the last iteration is used

// to generate an optimal_tiling_info*

WS_exeeded_cache_size = TRUE;

no_of_tile_sizes_tested = i-1;

if(i==1){

tile_size_info_p = new tile_size_info(accumulated_WS_size,

accumulated_off_chip_acc,

tile_size);

tile_size_local_space[j]->append(tile_size_info_p);

}

optimal_tiling_info *optimal_tiling_info_p =

new optimal_tiling_info(tile_size_info_p,j+1);

optimal_tiling_info_table[j] = optimal_tiling_info_p;

}

// accesses or WS-size for tile-size=line-size*1

//total_off_chip_acc[i-1] = accumulated_off_chip_acc;

//WS_size_for_tile_size[i-1] = accumulated_WS_size;

i++;

}

if(tile_size == 0){

printf("Minimum tile sizes equal to line-size makes ws to big for cache\n ");

assert(0);

return;

}

} // end of while(!WS_exeeded_cache_size && !ts_exeeded_loop_it)

}

A.7 for_loop_transform.cc 177

void for_loop_transform::tile(optimal_tiling_info *oti_p){

tile_size = oti_p->get_tile_size();

int first_loop = oti_p->get_first_loop();

assert(first_loop<=depth);

int nregions = NO_OF_REGIONS; // NO_OF_REGIONS is set to 1

int coalesce[NO_OF_REGIONS] = {}; // setting array elements to 0 (FALSE)

int first[NO_OF_REGIONS+1];

int no_of_local_space_dims = depth - first_loop + 1;

for(int i=0; i<depth; i++){

doalls[i] = FALSE;

}

int no_of_elem_acc_in_tile = 0;

trip = new int[depth];

for(int i=0;i<depth;i++){

trip[i] = tile_size;

}

// Loop no. 1 (i.e. the first loop in the entire nest) is denoted loop no.

// 0 in the transform library convention. The depth of the entire loop nest

// is placed in first[1].

first[0] = first_loop-1;

first[1] = depth;

loop_transform_p->tile_transform(trip, nregions, coalesce, first);

}

void for_loop_transform::print_optimal_tile_est(){

printf("***** Optimal results for all spaces *****\n\n");

for(int i=0; i<depth; i++){

printf("Optimal results for tiling of loops %d - %d :\n",

i+1,depth);

print_tile_size_info(optimal_tiling_info_table[i]);

printf("\n");

}

}

void for_loop_transform::print_optimal_tile_est_for_loop(int loop_no){

printf("***** Optimal results for tiling of loops %d-%d *****\n",

loop_no,depth);

tile_size_info *tsi_p = optimal_tiling_info_table[loop_no-1];

print_tile_size_info(tsi_p);

}

void for_loop_transform::print_est_for_all_spaces(){

printf("***** Estimations for all spaces and all tile-sizes *****\n\n");

for(int i=0; i<depth; i++){

print_est_for_local_space(i+1);

}

}

void for_loop_transform::print_est_for_local_space(int first_loop){

printf("===== Tiling of loops %d - %d estimations =====\n",

first_loop,depth);

tile_size_info_list_iter tsil_iter(tile_size_local_space[first_loop-1]);

A.7 for_loop_transform.cc 178

while(!tsil_iter.is_empty()){

tile_size_info *tsi_p = tsil_iter.step();

print_tile_size_info(tsi_p);

}

printf("\n");

}

void for_loop_transform::print_tile_size_info(tile_size_info *tsi_p){

printf("Tile-size = %d, ",tsi_p->get_tile_size());

printf("WS-size = %d, ",tsi_p->get_WS_size());

int WS_100 = (tsi_p->get_WS_size())*100;

char p_sign[] = "%";

printf("Cache-ut. = %d%s, ",(WS_100/cache_size),p_sign);

printf("No of off-chip acc. = %d\n",tsi_p->get_no_of_off_chip_acc());

// Used for easy insertion in tex-document :

printf(",%d,%d%s\n",tsi_p->get_no_of_off_chip_acc(),(WS_100/cache_size),p_sign);

}

int for_loop_transform::get_tile_size_step(){

return tile_size_step;

}

A.7.4 Auxiliary.

// This constructor is called when there may exist some reuse for the

// uni_gen_set.

local_space_info::local_space_info(int no_of_eq_cl,

boolean SS_r,

int no_of_ST_r_d,

int no_of_iter,

int elem_size,

int stride){

no_of_eq_classes = no_of_eq_cl;

SS_reuse = SS_r;

no_of_ST_reuse_dims = no_of_ST_r_d;

no_of_iterations = no_of_iter;

element_size = elem_size;

if(SS_r)

SS_reuse_divisor = div_round_up(line_size,elem_size*stride);

else

SS_reuse_divisor = 1;

}

// This constructor is called when no reuse exists for the uni_gen_set.

local_space_info::local_space_info(int no_of_ref,

int no_of_iter){

no_of_eq_classes = no_of_ref;

SS_reuse = FALSE;

no_of_ST_reuse_dims = 0;

no_of_iterations = no_of_iter;

element_size = 1;

SS_reuse_divisor = 1;

}

int local_space_info::get_no_of_eq_classes(){

return no_of_eq_classes;

A.7 for_loop_transform.cc 179

}

int local_space_info::get_no_of_ST_reuse_dims(){

return no_of_ST_reuse_dims;

}

int local_space_info::get_no_of_iterations(){

return no_of_iterations;

}

int local_space_info::get_SS_reuse_divisor(){

return SS_reuse_divisor;

}

void local_space_info::print_info(){

printf("no_of_eq_classes = %d ",no_of_eq_classes);

printf("no_of_ST_reuse_dims = %d\n",no_of_ST_reuse_dims);

printf("no_of_iterations = %d\n",no_of_iterations);

printf("SS_reuse_divisor = line_size/elem_size*stride = %d/%d*??? = %d\n",

line_size,element_size,SS_reuse_divisor);

}

tile_size_info::tile_size_info(int WS_s,int no_of_off_ch_acc,

int ts){

WS_size = WS_s;

no_of_off_chip_acc = no_of_off_ch_acc;

tile_size = ts;

}

int tile_size_info::get_WS_size(){

return WS_size;

}

int tile_size_info::get_no_of_off_chip_acc(){

return no_of_off_chip_acc;

}

int tile_size_info::get_tile_size(){

return tile_size;

}

optimal_tiling_info::optimal_tiling_info(int first_l,int WS_size,

int no_of_off_chip_acc,int tile_size)

: tile_size_info(WS_size,no_of_off_chip_acc,tile_size){

first_loop = first_l;

}

optimal_tiling_info::optimal_tiling_info(tile_size_info *tsi_p,int first_l)

: tile_size_info(tsi_p->get_WS_size(),tsi_p->get_no_of_off_chip_acc(),

tsi_p->get_tile_size()){

first_loop = first_l;

}

int optimal_tiling_info::get_first_loop(){

return first_loop;

}

Appendix B

SimpleScalar installation errors.

This appendix contains a description of the problems encountered while installing the
SimpleScalar tool set. The changes necessary to obtain a working simulator required
altering parts of the source code. Most of the changes made have been gathered from
di�erent locations on the internet.
Run the "con�gure" script as described in the install manual :

>./configure --host=i586-linux --target=sslittle-na-sstrix --with-gnu-as --with-gnu-ld --prefix=/hom

Run make
Run make install
Build the simulators ... "make" results in :

[root@localhost simplesim-2.0]# make

gcc `./sysprobe -flags` -DDEBUG -O -c sim-fast.c

gcc `./sysprobe -flags` -DDEBUG -O -c main.c

main.c: In function `main':

main.c:200: warning: return type of `main' is not `int'

gcc `./sysprobe -flags` -DDEBUG -O -c syscall.c

syscall.c:96: bsd/sgtty.h: No such file or directory

make: *** [syscall.o] Error 1

[1]+ Done emacs Makefile

[root@localhost simplesim-2.0]#

To work around this problem I have copied a bsd/ directory containing the sgtty.h �le,
to the /usr/include directory. This "bsd" package have ben obtained in a precompiled
version of the libc-5.4.44 library. This action brings us a little further :

[root@localhost simplesim-2.0]# make

gcc `./sysprobe -flags` -DDEBUG -O -c syscall.c

gcc `./sysprobe -flags` -DDEBUG -O -c memory.c

gcc `./sysprobe -flags` -DDEBUG -O -c regs.c

gcc `./sysprobe -flags` -DDEBUG -O -c loader.c

gcc `./sysprobe -flags` -DDEBUG -O -c ss.c

gcc `./sysprobe -flags` -DDEBUG -O -c endian.c

gcc `./sysprobe -flags` -DDEBUG -O -c dlite.c

gcc `./sysprobe -flags` -DDEBUG -O -c symbol.c

gcc `./sysprobe -flags` -DDEBUG -O -c eval.c

gcc `./sysprobe -flags` -DDEBUG -O -c options.c

gcc `./sysprobe -flags` -DDEBUG -O -c stats.c

180

181

gcc `./sysprobe -flags` -DDEBUG -O -c range.c

gcc `./sysprobe -flags` -DDEBUG -O -c misc.c

gcc -o sim-fast `./sysprobe -flags` -DDEBUG -O sim-fast.o main.o syscall.o memory.o regs.o loader.

syscall.o: In function `ss_syscall':

syscall.o(.text+0x728): undefined reference to `bsd_ioctl'

collect2: ld returned 1 exit status

make: *** [sim-fast] Error 1

[root@localhost simplesim-2.0]#

After replacing the dummy.o �le in /usr/lib/ with the libbsd.a from libc-5.4.44/usr/lib/
we once again get a little further.

[root@localhost simplesim-2.0]# make

gcc -o sim-fast `./sysprobe -flags` -DDEBUG -O sim-fast.o main.o syscall.o memory.o regs.o loader.

/usr/bin/../lib/libbsd.a(signal.o): In function `signal':

signal.o(.text+0x22): undefined reference to `_sigintr'

collect2: ld returned 1 exit status

make: *** [sim-fast] Error 1

[root@localhost simplesim-2.0]#

Remove the signal.o module with "ar vd libbsd.a signal.o" executed in /usr/lib/ we once
again get a little further :

[root@localhost simplesim-2.0]# make

gcc -o sim-fast `./sysprobe -flags` -DDEBUG -O sim-fast.o main.o syscall.o memory.o regs.o loader.

gcc -o sim-cheetah `./sysprobe -flags` -DDEBUG -O sim-cheetah.o main.o syscall.o memory.o regs.o l

....\\

gcc `./sysprobe -flags` -DDEBUG -O -c sim-cache.c

gcc `./sysprobe -flags` -DDEBUG -O -c cache.c

cache.c: In function `cache_access':

cache.c:529: conflicting types for `random'

/usr/include/stdlib.h:346: previous declaration of `random'

cache.c:529: warning: extern declaration of `random' doesn't match global one

make: *** [cache.o] Error 1

[root@localhost simplesim-2.0]#

The following declarations in cache.c (appproximately at line 529) have been commented
out :

/*

#ifndef __alpha__

extern long random(void);

#endif

*/

Running make completes this task!!!!!
Changing directory to gcc-2.6.3, and running the con�gure script, causes no problems.
make LANGUAGES=c yields :

[root@localhost gcc-2.6.3]# make LANGUAGES=c

gcc -DCROSS_COMPILE -DIN_GCC -DPOSIX -g -I. -I. -I./config \

-DGCC_INCLUDE_DIR=\"/home/Jesper/ss/lib/gcc-lib/sslittle-na-sstrix/2.6.3/include\" \

-DGPLUSPLUS_INCLUDE_DIR=\"/home/Jesper/ss/lib/g++-include\" \

-DLOCAL_INCLUDE_DIR=\"/usr/local/include\" \

-DCROSS_INCLUDE_DIR=\"/home/Jesper/ss/lib/gcc-lib/sslittle-na-sstrix/2.6.3/sys-include\" \

182

-DTOOL_INCLUDE_DIR=\"/home/Jesper/ss/sslittle-na-sstrix/include\" \

-c `echo ./cccp.c | sed 's,^\./,,'`

cccp.c:194: conflicting types for `sys_errlist'

/usr/include/stdio.h:557: previous declaration of `sys_errlist'

make: *** [cccp.o] Error 1

[root@localhost gcc-2.6.3]#

Change

"#if defined(bsd4_4) || defined(__NetBSD__)"

to
"#if defined(bsd4_4) || defined(__NetBSD__) || defined(__linux__)"

and the problems with cccp.c disappears
running make LANGUAGES=c yields :

......

gcc -c -DCROSS_COMPILE -DIN_GCC -DPOSIX -g -I. -I. -I./config emit-rtl.c

gcc -c -DCROSS_COMPILE -DIN_GCC -DPOSIX -g -I. -I. -I./config real.c

gcc -c -DCROSS_COMPILE -DIN_GCC -DPOSIX -g -I. -I. -I./config dbxout.c

gcc -c -DCROSS_COMPILE -DIN_GCC -DPOSIX -g -I. -I. -I./config sdbout.c

sdbout.c:57: syms.h: No such file or directory

make: *** [sdbout.o] Error 1

[root@localhost gcc-2.6.3]#

Instead of

"#include <syms.h>"

you should use :

"#include <gsyms.h>"

running make LANGUAGES=c gives :

.....

-DTOOLDIR_BASE_PREFIX=\"/home/Jesper/ss/\" \

\

-c `echo ./gcc.c | sed 's,^\./,,'`

gcc.c:172: conflicting types for `sys_errlist'

/usr/include/stdio.h:557: previous declaration of `sys_errlist'

make: *** [gcc.o] Error 1

[root@localhost gcc-2.6.3]#

Change

"#if defined(bsd4_4) || defined(__NetBSD__)"

to

"#if defined(bsd4_4) || defined(__NetBSD__) || defined(__linux__)"

and the problems with gcc.c disappears
running make LANGUAGES=c gives :

gcc -DCROSS_COMPILE -DIN_GCC -DPOSIX -g -I. -I. -I./config -o g++-cross \

-DGCC_NAME=\"\" ./cp/g++.c version.o obstack.o ` case "gcc" in "cc") echo "" ;; esac `

183

./cp/g++.c:90: conflicting types for `sys_errlist'

/usr/include/stdio.h:557: previous declaration of `sys_errlist'

make: *** [g++-cross] Error 1

[root@localhost gcc-2.6.3]#

Change

"#if defined(bsd4_4) || defined(__NetBSD__)"

to
"#if defined(bsd4_4) || defined(__NetBSD__) || defined(__linux__)"

and the problems with cp/g++.c disappears
running make LANGUAGES=c now compiles without problems, and the following tests
causes no problems.

Appendix C

Debugging tests.

C.1 Dependence tests.

In this section the testing of the developed dependence routines will be performed. For
each of the listed programs, the dependence vectors which describe the dependencies in
the nested loop are traversed in the order they appear in the printouts. The following
printouts which start with : Using dependence vectors :, show how many of the
dependence vectors it was necessary to examine, before a conclusion of the legality of
the particular tiling could be reached. This conclusion is subsequently printet out.

#define N 10

int A[N][N][N][N][N];

test1()

{

int i, j, k, l, m;

for(i=0; i<N; i++)

for(j=0; j<N; j++)

for(k=0; k<N; k++)

for(l=0; l<N; l++)

for(m=0; m<N; m++){

A[i][j][k][l][m] = A[i][j+1][k][l][m];

}

}

/*

[Jesper@localhost dep_test]$./my_tile dep_test1.spd dep_test1.out

=====Processing the test1 procedure=====

Calculating dep. for loop with depth : 5

This loop contains the following accesses :

A[i,j]

A[i+1,j]

A[i,j]

B[j]

B[j]

B[j+1]

C[k]

C[k]

C[k+1]

Calculating dependences for lhs access:

184

C.1 Dependence tests. 185

A[i,j]

(0 0 + * *)

(0 0 0 + *)

(0 0 0 0 +)

(0 0 0 0 0)

(1 0 * * *)

(0 0 + * *)

(0 0 0 + *)

(0 0 0 0 +)

(0 0 0 0 0)

Calculating dependences for lhs access:

B[j]

(+ 0 * * *)

(0 0 + * *)

(0 0 0 + *)

(0 0 0 0 +)

(0 0 0 0 0)

(+ 0 * * *)

(0 0 + * *)

(0 0 0 + *)

(0 0 0 0 +)

(0 0 0 0 0)

(+ 1 * * *)

(0 1 * * *)

Calculating dependences for lhs access:

C[k]

(+ * 0 * *)

(0 + 0 * *)

(0 0 0 + *)

(0 0 0 0 +)

(0 0 0 0 0)

(+ * 0 * *)

(0 + 0 * *)

(0 0 0 + *)

(0 0 0 0 +)

(0 0 0 0 0)

(+ * 1 * *)

(0 + 1 * *)

(0 0 1 * *)

Using dependence vectors : 1

ILLEGAL to tile loops 1 to 5

Using dependence vectors : 1

ILLEGAL to tile loops 2 to 5

Using dependence vectors : 1

ILLEGAL to tile loops 3 to 5

Using dependence vectors : 1 2

ILLEGAL to tile loops 4 to 5

*/

C.1 Dependence tests. 186

int B[100];

test1()

{

int i, j;

for(i=0; i<100; i++)

for(j=1; j<100; j++)

B[j] = B[j-1] + B[j+1];

}

/*

[Jesper@localhost dep_test]$./my_tile dep_test3.spd dep_test3.out

=====Processing the test1 procedure=====

Calculating dep. for loop with depth : 2

This loop contains the following accesses :

B[j]

B[j-1]

B[j+1]

Calculating dependences for lhs access:

B[j]

(+ 0)

(0 0)

(+ -1)

(+ 1)

(0 1)

Using dependence vectors : 1 2 3

ILLEGAL to tile loops 1 to 2

*/

int B[100];

// No tiling of this loop is legal

test1()

{

int i, j, k, l, m;

for(i=0; i<100; i++)

for(j=0; j<100; j++)

for(k=0; k<100; k++)

for(l=0; l<100; l++)

for(m=0; m<100; m++){

B[j] = B[j] + B[j+1];

}

}

/*

[Jesper@localhost dep_test]$./my_tile dep_test6.spd dep_test6.out

=====Processing the test1 procedure=====

Calculating dep. for loop with depth : 5

This loop contains the following accesses :

C.1 Dependence tests. 187

B[j]

B[j]

B[j+1]

Calculating dependences for lhs access:

B[j]

(+ 0 * * *)

(0 0 + * *)

(0 0 0 + *)

(0 0 0 0 +)

(0 0 0 0 0)

(+ 0 * * *)

(0 0 + * *)

(0 0 0 + *)

(0 0 0 0 +)

(0 0 0 0 0)

(+ 1 * * *)

(0 1 * * *)

Using dependence vectors : 1

ILLEGAL to tile loops 1 to 5

Using dependence vectors : 1 2

ILLEGAL to tile loops 2 to 5

Using dependence vectors : 1 2

ILLEGAL to tile loops 3 to 5

Using dependence vectors : 1 2 3

ILLEGAL to tile loops 4 to 5

*/

#define N 10

int A[N][N][N][N][N];

test1()

{

int i, j, k, l, m;

for(i=0; i<N; i++)

for(j=0; j<N; j++)

for(k=0; k<N; k++)

for(l=0; l<N; l++)

for(m=0; m<N; m++){

A[i][j+1][k][l+1][m+1] = A[i][j][k][l][m];

}

}

/*

[Jesper@localhost dep_test]$./my_tile dep_test7.spd dep_test7.out

=====Processing the test1 procedure=====

Calculating dep. for loop with depth : 5

This loop contains the following accesses :

A[i,j,k,l,m]

A[i,j+1,k,l+1,m+1]

C.1 Dependence tests. 188

Calculating dependences for lhs access:

A[i,j,k,l,m]

(0 0 0 0 0)

(0 1 0 1 1)

Using dependence vectors : 1 2

OK to tile loops 1 to 5

Using dependence vectors : 1 2

OK to tile loops 2 to 5

Using dependence vectors : 1 2

OK to tile loops 3 to 5

Using dependence vectors : 1 2

OK to tile loops 4 to 5

*/

#define N 10

int A[N][N][N];

// OK to tile loops : (2,3,4,5)(3,4,5)(4,5)

test1()

{

int i, j, k, l, m;

for(i=0; i<N; i++)

for(j=0; j<N; j++)

for(k=0; k<N; k++)

for(l=0; l<N; l++)

for(m=0; m<N; m++){

A[k][l][m] = A[k][l+1][m+1];

}

}

/*

[Jesper@localhost dep_test]$./my_tile dep_test8.spd dep_test8.out

=====Processing the test1 procedure=====

Calculating dep. for loop with depth : 5

This loop contains the following accesses :

A[k,l,m]

A[k,l+1,m+1]

Calculating dependences for lhs access:

A[k,l,m]

(+ * 0 0 0)

(0 + 0 0 0)

(0 0 0 0 0)

(+ * 0 1 1)

(0 + 0 1 1)

(0 0 0 1 1)

Using dependence vectors : 1

C.1 Dependence tests. 189

ILLEGAL to tile loops 1 to 5

Using dependence vectors : 1 2 3 4 5 6

OK to tile loops 2 to 5

Using dependence vectors : 1 2 3 4 5 6

OK to tile loops 3 to 5

Using dependence vectors : 1 2 3 4 5 6

OK to tile loops 4 to 5

*/

#define N 10

int A[N][N][N];

// Not ok to tile any of the loops

test1()

{

int i, j, k, l, m;

for(i=0; i<N; i++)

for(j=0; j<N; j++)

for(k=0; k<N; k++)

for(l=0; l<N; l++)

for(m=0; m<N; m++){

A[i][j][k] = A[i][j+1][k+1];

}

}

/*

[Jesper@localhost dep_test]$./my_tile dep_test9.spd dep_test9.out

=====Processing the test1 procedure=====

Calculating dep. for loop with depth : 5

This loop contains the following accesses :

A[i,j,k]

A[i,j+1,k+1]

Calculating dependences for lhs access:

A[i,j,k]

(0 0 0 + *)

(0 0 0 0 +)

(0 0 0 0 0)

(0 1 1 * *)

Using dependence vectors : 1

ILLEGAL to tile loops 1 to 5

Using dependence vectors : 1

ILLEGAL to tile loops 2 to 5

Using dependence vectors : 1

ILLEGAL to tile loops 3 to 5

Using dependence vectors : 1

C.1 Dependence tests. 190

ILLEGAL to tile loops 4 to 5

*/

#define N 10

int A[N][N];

// OK to tile loops : (3,4,5),(4,5)

test1()

{

int i, j, k, l, m;

for(i=0; i<N; i++)

for(j=0; j<N; j++)

for(k=0; k<N; k++)

for(l=0; l<N; l++)

for(m=0; m<N; m++){

A[l][m] = A[l][m+1] + A[l+1][m];

}

}

/*

[Jesper@localhost dep_test]$./my_tile dep_test10.spd dep_test10.out

=====Processing the test1 procedure=====

Calculating dep. for loop with depth : 5

This loop contains the following accesses :

A[l,m]

A[l,m+1]

A[l+1,m]

Calculating dependences for lhs access:

A[l,m]

(+ * * 0 0)

(0 + * 0 0)

(0 0 + 0 0)

(0 0 0 0 0)

(+ * * 0 1)

(0 + * 0 1)

(0 0 + 0 1)

(0 0 0 0 1)

(+ * * 1 0)

(0 + * 1 0)

(0 0 + 1 0)

(0 0 0 1 0)

Using dependence vectors : 1

ILLEGAL to tile loops 1 to 5

Using dependence vectors : 1 2

ILLEGAL to tile loops 2 to 5

Using dependence vectors : 1 2 3 4 5 6 7 8 9 10 11 12

OK to tile loops 3 to 5

Using dependence vectors : 1 2 3 4 5 6 7 8 9 10 11 12

C.1 Dependence tests. 191

OK to tile loops 4 to 5

*/

#define N 10

int A[N][N][N][N][N];

test1()

{

int i, j, k, l, m;

for(i=0; i<N; i++)

for(j=0; j<N; j++)

for(k=0; k<N; k++)

for(l=0; l<N; l++)

for(m=0; m<N; m++){

A[i][j][k][l][m] =A[i+j][j+1][k][l+k][m+l];

}

}

/*

[Jesper@localhost dep_test]$./my_tile dep_test11.spd dep_test11.out

=====Processing the test1 procedure=====

Calculating dep. for loop with depth : 5

This loop contains the following accesses :

A[i,j,k,l,m]

A[j+i,j+1,k,k+l,l+m]

Calculating dependences for lhs access:

A[i,j,k,l,m]

(0 0 0 0 0)

(+ 1 0 + +)

(+ 1 0 + 0)

(+ 1 0 0 +)

(+ 1 0 0 0)

(0 1 0 + +)

(0 1 0 + 0)

(0 1 0 0 +)

(0 1 0 0 0)

Using dependence vectors : 1 2 3 4 5 6 7 8 9

OK to tile loops 1 to 5

Using dependence vectors : 1 2 3 4 5 6 7 8 9

OK to tile loops 2 to 5

Using dependence vectors : 1 2 3 4 5 6 7 8 9

OK to tile loops 3 to 5

Using dependence vectors : 1 2 3 4 5 6 7 8 9

OK to tile loops 4 to 5

*/

#define N 10

C.1 Dependence tests. 192

int A[N][N][N][N][N];

int B[N][N][N][N];

int x=0,y=0,z=0,q=0;

test1()

{

int i, j, k, l, m;

for(i=0; i<N; i++){

x++;

for(j=0; j<N; j++)

for(k=0; k<N; k++){

y++;

for(l=0; l<N; l++){

z++;

for(m=0; m<N; m++){

A[i][j][k][l][m] = A[i+j][j+1][k][l+k][m+l];

B[i][j][k][l] = B[i+j][j+1][k][l+k];

}

}

}

}

}

/*

[Jesper@localhost dep_test]$./my_tile dep_test12.spd dep_test12.out

=====Processing the test1 procedure=====

Calculating dep. for loop with depth : 5

This loop contains the following accesses :

A[i,j,k,l,m]

A[j+i,j+1,k,k+l,l+m]

B[i,j,k,l]

B[j+i,j+1,k,k+l]

Calculating dependences for lhs access:

A[i,j,k,l,m]

(0 0 0 0 0)

(+ 1 0 + +)

(+ 1 0 + 0)

(+ 1 0 0 +)

(+ 1 0 0 0)

(0 1 0 + +)

(0 1 0 + 0)

(0 1 0 0 +)

(0 1 0 0 0)

Calculating dependences for lhs access:

B[i,j,k,l]

(0 0 0 0 +)

(0 0 0 0 0)

(+ 1 0 + *)

(+ 1 0 0 *)

(0 1 0 + *)

(0 1 0 0 *)

Using dependence vectors : 1 2 3 4 5 6 7 8 9 10 11 12

ILLEGAL to tile loops 1 to 5

C.2 Uniformly generated sets. 193

Using dependence vectors : 1 2 3 4 5 6 7 8 9 10 11 12 13 14

ILLEGAL to tile loops 2 to 5

Using dependence vectors : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

OK to tile loops 3 to 5

Using dependence vectors : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

OK to tile loops 4 to 5

*/

C.2 Uniformly generated sets.

In this section a testing of the tile-pass' ability to partition the references into uniformly
generated sets will be performed. An identi�cation of the sets dimensions of self-temporal
and self-spatial reuse is also carried out. These results are also printet out by the tile-
pass.
#define N 10

int A[N][N][N];

test1()

{

int i, j, k, l, m;

for(i=0; i<N; i++)

for(j=0; j<N; j++)

for(k=0; k<N; k++)

for(l=0; l<N; l++)

for(m=0; m<N; m++){

A[k][l][m] = A[k][l+1][m+1] + A[i][l+1][m+1] + A[k][j+1][m+1] +

A[i][j+1][k+1] + A[i][j][k] + A[2*k][l+1][m+1] +

A[k][2*l+1][m+1] + A[k][2*l][m] + A[k][2*l+1][m+1];

}

}

/*

[Jesper@localhost locality_test]$./my_tile uni_gen_set_test1.spd uni_gen_set_test1.out

=====Processing the test1 procedure=====

==== Printing out uniformly generated sets for a loop nest ====

**** Printing uniformly generated sets for loop 1 ****

**** Printing uniformly generated sets for loop 2 ****

**** Printing uniformly generated sets for loop 3 ****

**** Printing uniformly generated sets for loop 4 ****

**** Printing uniformly generated sets for loop 5 ****

C.2 Uniformly generated sets. 194

Printing uniformly generated sets for array : .A

The uniformly generated set contains 2 references :

The members of the set are :

A[k,l,m]

A[k,l+1,m+1]

The access matrix for the set is :

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

The references exhibit self-temporal reuse in loops : 1 2

The references exhibit self-spatial reuse in loops : 1 2 5

The uniformly generated set contains 1 references :

The members of the set are :

A[i,l+1,m+1]

The access matrix for the set is :

1 0 0 0 0

0 0 0 1 0

0 0 0 0 1

The references exhibit self-temporal reuse in loops : 2 3

The references exhibit self-spatial reuse in loops : 2 3 5

The uniformly generated set contains 1 references :

The members of the set are :

A[k,j+1,m+1]

The access matrix for the set is :

0 0 1 0 0

0 1 0 0 0

0 0 0 0 1

The references exhibit self-temporal reuse in loops : 1 4

The references exhibit self-spatial reuse in loops : 1 4 5

The uniformly generated set contains 2 references :

The members of the set are :

A[i,j+1,k+1]

A[i,j,k]

The access matrix for the set is :

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

The references exhibit self-temporal reuse in loops : 4 5

The references exhibit self-spatial reuse in loops : 3 4 5

The uniformly generated set contains 1 references :

The members of the set are :

A[2*k,l+1,m+1]

The access matrix for the set is :

0 0 2 0 0

0 0 0 1 0

0 0 0 0 1

The references exhibit self-temporal reuse in loops : 1 2

The references exhibit self-spatial reuse in loops : 1 2 5

The uniformly generated set contains 3 references :

The members of the set are :

C.2 Uniformly generated sets. 195

A[k,2*l+1,m+1]

A[k,2*l,m]

A[k,2*l+1,m+1]

The access matrix for the set is :

0 0 1 0 0

0 0 0 2 0

0 0 0 0 1

The references exhibit self-temporal reuse in loops : 1 2

The references exhibit self-spatial reuse in loops : 1 2 5

*/

**

#define N 10

int A[N][N][N];

int B[N][N][N];

int C[N][N];

test1()

{

int i, j, k, l, m;

for(i=0; i<N; i++){

for(j=0; j<N; j++){

C[j][i] = C[j][i+1] + C[2*i][j] + A[i][j][3];

for(k=0; k<N; k++){

A[i][j][k] = A[i][j][k+1] + A[5*i][5*j][k] + A[i*5][j*5][k+7];

B[i][j][k] = B[i][j][k+1] + B[5*i][5*j][k] + B[i*5][j*5][k+7];

for(l=0; l<N; l++){

for(m=0; m<N; m++){

A[k][l][m] = A[k][l+1][m+1] + A[i][l+1][m+1];

}

}

}

}

}

}

/*

=====Processing the test1 procedure=====

==== Printing out uniformly generated sets for a loop nest ====

**** Printing uniformly generated sets for loop 1 ****

**** Printing uniformly generated sets for loop 2 ****

Printing uniformly generated sets for array : .C

The uniformly generated set contains 2 references :

The members of the set are :

C[j,i]

C[j,i+1]

The access matrix for the set is :

0 1 0 0 0

C.2 Uniformly generated sets. 196

1 0 0 0 0

The references exhibit self-temporal reuse in loops :

The references exhibit self-spatial reuse in loops : 1

The uniformly generated set contains 1 references :

The members of the set are :

C[2*i,j]

The access matrix for the set is :

2 0 0 0 0

0 1 0 0 0

The references exhibit self-temporal reuse in loops :

The references exhibit self-spatial reuse in loops : 2

Printing uniformly generated sets for array : .A

The uniformly generated set contains 1 references :

The members of the set are :

A[i,j,3]

The access matrix for the set is :

1 0 0 0 0

0 1 0 0 0

0 0 0 0 0

The references exhibit self-temporal reuse in loops :

The references exhibit self-spatial reuse in loops :

**** Printing uniformly generated sets for loop 3 ****

Printing uniformly generated sets for array : .A

The uniformly generated set contains 2 references :

The members of the set are :

A[i,j,k]

A[i,j,k+1]

The access matrix for the set is :

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

The references exhibit self-temporal reuse in loops :

The references exhibit self-spatial reuse in loops : 3

The uniformly generated set contains 2 references :

The members of the set are :

A[5*i,5*j,k]

A[5*i,5*j,k+7]

The access matrix for the set is :

5 0 0 0 0

0 5 0 0 0

0 0 1 0 0

The references exhibit self-temporal reuse in loops :

The references exhibit self-spatial reuse in loops : 3

Printing uniformly generated sets for array : .B

The uniformly generated set contains 2 references :

The members of the set are :

C.2 Uniformly generated sets. 197

B[i,j,k]

B[i,j,k+1]

The access matrix for the set is :

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

The references exhibit self-temporal reuse in loops :

The references exhibit self-spatial reuse in loops : 3

The uniformly generated set contains 2 references :

The members of the set are :

B[5*i,5*j,k]

B[5*i,5*j,k+7]

The access matrix for the set is :

5 0 0 0 0

0 5 0 0 0

0 0 1 0 0

The references exhibit self-temporal reuse in loops :

The references exhibit self-spatial reuse in loops : 3

**** Printing uniformly generated sets for loop 4 ****

**** Printing uniformly generated sets for loop 5 ****

Printing uniformly generated sets for array : .A

The uniformly generated set contains 2 references :

The members of the set are :

A[k,l,m]

A[k,l+1,m+1]

The access matrix for the set is :

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

The references exhibit self-temporal reuse in loops : 1 2

The references exhibit self-spatial reuse in loops : 1 2 5

The uniformly generated set contains 1 references :

The members of the set are :

A[i,l+1,m+1]

The access matrix for the set is :

1 0 0 0 0

0 0 0 1 0

0 0 0 0 1

The references exhibit self-temporal reuse in loops : 2 3

The references exhibit self-spatial reuse in loops : 2 3 5

*/

**

#define N 10

int A[N][N][N];

int B[N][N][N];

int C[N][N];

C.2 Uniformly generated sets. 198

test1()

{

int i, j, k, l, m;

for(i=0; i<N; i++){

for(j=0; j<N; j++){

C[j+i][i+j] = C[j][i+1+j];

for(k=0; k<N; k++){

A[i][j+k][k+j] = A[i][j+k][j+k+1];

B[i][j][k] = B[i+j+k][i+j+k][i+j+k];

for(l=0; l<N; l++){

for(m=0; m<N; m++){

A[k][l][m] = A[k][l+1][m+1] + A[i][l+1][m+1+l];

}

}

}

}

}

}

/*

[Jesper@localhost locality_test]$./my_tile uni_gen_set_test3.spd uni_gen_set_test3.out

=====Processing the test1 procedure=====

==== Printing out uniformly generated sets for a loop nest ====

**** Printing uniformly generated sets for loop 1 ****

**** Printing uniformly generated sets for loop 2 ****

Printing uniformly generated sets for array : .C

The uniformly generated set contains 1 references :

The members of the set are :

C[i+j,j+i]

The access matrix for the set is :

1 1 0 0 0

1 1 0 0 0

The references exhibit self-temporal reuse in loops :

The references exhibit self-spatial reuse in loops :

The uniformly generated set contains 1 references :

The members of the set are :

C[j,j+i+1]

The access matrix for the set is :

0 1 0 0 0

1 1 0 0 0

The references exhibit self-temporal reuse in loops :

The references exhibit self-spatial reuse in loops : 1

**** Printing uniformly generated sets for loop 3 ****

Printing uniformly generated sets for array : .A

C.2 Uniformly generated sets. 199

The uniformly generated set contains 2 references :

The members of the set are :

A[i,k+j,j+k]

A[i,k+j,k+j+1]

The access matrix for the set is :

1 0 0 0 0

0 1 1 0 0

0 1 1 0 0

The references exhibit self-temporal reuse in loops :

The references exhibit self-spatial reuse in loops :

Printing uniformly generated sets for array : .B

The uniformly generated set contains 1 references :

The members of the set are :

B[i,j,k]

The access matrix for the set is :

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

The references exhibit self-temporal reuse in loops :

The references exhibit self-spatial reuse in loops : 3

The uniformly generated set contains 1 references :

The members of the set are :

B[k+j+i,k+j+i,k+j+i]

The access matrix for the set is :

1 1 1 0 0

1 1 1 0 0

1 1 1 0 0

The references exhibit self-temporal reuse in loops :

The references exhibit self-spatial reuse in loops :

**** Printing uniformly generated sets for loop 4 ****

**** Printing uniformly generated sets for loop 5 ****

Printing uniformly generated sets for array : .A

The uniformly generated set contains 2 references :

The members of the set are :

A[k,l,m]

A[k,l+1,m+1]

The access matrix for the set is :

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

The references exhibit self-temporal reuse in loops : 1 2

The references exhibit self-spatial reuse in loops : 1 2 5

The uniformly generated set contains 1 references :

The members of the set are :

A[i,l+1,l+m+1]

C.3 Evaluation tests. 200

The access matrix for the set is :

1 0 0 0 0

0 0 0 1 0

0 0 0 1 1

The references exhibit self-temporal reuse in loops : 2 3

The references exhibit self-spatial reuse in loops : 2 3 5

*/

C.3 Evaluation tests.

In this section, all of the most important abilities of the tile-pass are tested. The con-
ducted tests determines the pass' ability to :

� Generate uniformly generated sets.
� Partition the references in each uniformly generated set into equivalence classes.
� Calculate correct tile sizes for the di�erent localizations of a nest.
� Calculate the correct number of estimated o�-chip accesses

Printouts of the performed tests are listed in the following :
#define N 1000

int A[N][N];

int B[N];

test1()

{

int i, j, k, l, m;

for(i=0; i<N; i++){

for(j=0; j<N; j++){

B[j] = B[j] + B[j+1];

A[i][j] = A[i-1][j] + A[i][j-1] + A[i][j] + A[i][j+1] +

A[i+1][j];

}

}

}

void main(){

test1();

}

// SOR (Successive Over Relaxation - code)

/*

line_size : 32 cache_size : 2048

=====Processing the test1 procedure=====

==== Printing out uni_gen_set's and eq_class'es in a nest ====

**** Printing uni_gen_set's and eq_class'es for loop 1 ****

**** Printing uni_gen_set's and eq_class'es for loop 2 ****

Printing uni_gen_set's and eq_class'es for array : .B

C.3 Evaluation tests. 201

The uniformly generated set contains 3 references :

The members of the set are :

B[j]

B[j]

B[j+1]

The access matrix for the set is :

0 1

The references exhibit self-temporal reuse in loops : 1

The references exhibit self-spatial reuse in loops : 1 2

The generated eq_class'es for local space 1-2 :

Set no. 1 :

The eq_class exhibits group temporal reuse among its references

B[j]

B[j]

B[j+1]

The generated eq_class'es for local space 2-2 :

Set no. 1 :

The eq_class exhibits group temporal reuse among its references

B[j]

B[j]

B[j+1]

Printing uni_gen_set's and eq_class'es for array : .A

The uniformly generated set contains 6 references :

The members of the set are :

A[i,j]

A[i-1,j]

A[i,j-1]

A[i,j]

A[i,j+1]

A[i+1,j]

The access matrix for the set is :

1 0

0 1

The references exhibit self-temporal reuse in loops :

The references exhibit self-spatial reuse in loops : 2

The generated eq_class'es for local space 1-2 :

Set no. 1 :

The eq_class exhibits group temporal reuse among its references

A[i,j]

A[i-1,j]

A[i,j-1]

A[i,j]

A[i,j+1]

A[i+1,j]

The generated eq_class'es for local space 2-2 :

Set no. 1 :

The eq_class exhibits group temporal reuse among its references

A[i,j]

A[i,j-1]

A[i,j]

A[i,j+1]

Set no. 2 :

A[i-1,j]

C.3 Evaluation tests. 202

Set no. 3 :

A[i+1,j]

====== The collected info for local space 1-2 ======

no_of_eq_classes = 1 no_of_ST_reuse_dims = 1

no_of_iterations = 1000000

SS_reuse_divisor = line_size/elem_size*stride = 32/4*??? = 8

no_of_eq_classes = 1 no_of_ST_reuse_dims = 0

no_of_iterations = 1000000

SS_reuse_divisor = line_size/elem_size*stride = 32/4*??? = 8

====== The collected info for local space 2-2 ======

no_of_eq_classes = 1 no_of_ST_reuse_dims = 0

no_of_iterations = 1000000

SS_reuse_divisor = line_size/elem_size*stride = 32/4*??? = 8

no_of_eq_classes = 3 no_of_ST_reuse_dims = 0

no_of_iterations = 1000000

SS_reuse_divisor = line_size/elem_size*stride = 32/4*??? = 8

***** Estimations for all spaces and all tile-sizes *****

===== Tiling of loops 1 - 2 estimations =====

Tile-size 8 : WS-size estimation = 288 ,No of off-chip acc. = 140625

Tile-size 16 : WS-size estimation = 1088 ,No of off-chip acc. = 132812

===== Tiling of loops 2 - 2 estimations =====

Tile-size 8 : WS-size estimation = 128 ,No of off-chip acc. = 500000

Tile-size 16 : WS-size estimation = 256 ,No of off-chip acc. = 500000

Tile-size 24 : WS-size estimation = 384 ,No of off-chip acc. = 500000

Tile-size 32 : WS-size estimation = 512 ,No of off-chip acc. = 500000

Tile-size 40 : WS-size estimation = 640 ,No of off-chip acc. = 500000

Tile-size 48 : WS-size estimation = 768 ,No of off-chip acc. = 500000

Tile-size 56 : WS-size estimation = 896 ,No of off-chip acc. = 500000

Tile-size 64 : WS-size estimation = 1024 ,No of off-chip acc. = 500000

Tile-size 72 : WS-size estimation = 1152 ,No of off-chip acc. = 500000

Tile-size 80 : WS-size estimation = 1280 ,No of off-chip acc. = 500000

Tile-size 88 : WS-size estimation = 1408 ,No of off-chip acc. = 500000

Tile-size 96 : WS-size estimation = 1536 ,No of off-chip acc. = 500000

Tile-size 104 : WS-size estimation = 1664 ,No of off-chip acc. = 500000

Tile-size 112 : WS-size estimation = 1792 ,No of off-chip acc. = 500000

Tile-size 120 : WS-size estimation = 1920 ,No of off-chip acc. = 500000

***** Optimal results for all spaces *****

Optimal results for tiling of loops 1 - 2 :

Tile-size 16 : WS-size estimation = 1088 ,No of off-chip acc. = 132812

Optimal results for tiling of loops 2 - 2 :

Tile-size 120 : WS-size estimation = 1920 ,No of off-chip acc. = 500000

C.3 Evaluation tests. 203

=====Processing the main procedure=====

*/

#define N 100

int A[N][N];

int B[N];

test1()

{

int i, j, k, l, m;

for(i=0; i<N; i++){

for(j=0; j<N; j++){

for(k=0; k<N; k++){

B[j] = B[j] + B[j+1];

A[i][j] = A[i-1][j];

}

}

}

}

void main(){

test1();

}

/*

line_size : 32 cache_size : 16384

=====Processing the test1 procedure=====

==== Printing out uni_gen_set's and eq_class'es in a nest ====

**** Printing uni_gen_set's and eq_class'es for loop 1 ****

**** Printing uni_gen_set's and eq_class'es for loop 2 ****

**** Printing uni_gen_set's and eq_class'es for loop 3 ****

Printing uni_gen_set's and eq_class'es for array : .B

The uniformly generated set contains 3 references :

The members of the set are :

B[j]

B[j]

B[j+1]

The access matrix for the set is :

0 1 0

The references exhibit self-temporal reuse in loops : 1 3

The references exhibit self-spatial reuse in loops : 1 2 3

The generated eq_class'es for local space 1-3 :

Set no. 1 :

C.3 Evaluation tests. 204

The eq_class exhibits group temporal reuse among its references

B[j]

B[j]

B[j+1]

The generated eq_class'es for local space 2-3 :

Set no. 1 :

The eq_class exhibits group temporal reuse among its references

B[j]

B[j]

B[j+1]

The generated eq_class'es for local space 3-3 :

Set no. 1 :

The eq_class exhibits group spatial reuse among its references

B[j]

B[j]

B[j+1]

Printing uni_gen_set's and eq_class'es for array : .A

The uniformly generated set contains 2 references :

The members of the set are :

A[i,j]

A[i-1,j]

The access matrix for the set is :

1 0 0

0 1 0

The references exhibit self-temporal reuse in loops : 3

The references exhibit self-spatial reuse in loops : 2 3

The generated eq_class'es for local space 1-3 :

Set no. 1 :

The eq_class exhibits group temporal reuse among its references

A[i,j]

A[i-1,j]

The generated eq_class'es for local space 2-3 :

Set no. 1 :

A[i,j]

Set no. 2 :

A[i-1,j]

The generated eq_class'es for local space 3-3 :

Set no. 1 :

A[i,j]

Set no. 2 :

A[i-1,j]

====== The collected info for local space 1-3 ======

no_of_eq_classes = 1 no_of_ST_reuse_dims = 2

no_of_iterations = 1000000

SS_reuse_divisor = line_size/elem_size*stride = 32/4*??? = 8

no_of_eq_classes = 1 no_of_ST_reuse_dims = 1

no_of_iterations = 1000000

SS_reuse_divisor = line_size/elem_size*stride = 32/4*??? = 8

C.3 Evaluation tests. 205

====== The collected info for local space 2-3 ======

no_of_eq_classes = 1 no_of_ST_reuse_dims = 1

no_of_iterations = 1000000

SS_reuse_divisor = line_size/elem_size*stride = 32/4*??? = 8

no_of_eq_classes = 2 no_of_ST_reuse_dims = 1

no_of_iterations = 1000000

SS_reuse_divisor = line_size/elem_size*stride = 32/4*??? = 8

====== The collected info for local space 3-3 ======

no_of_eq_classes = 1 no_of_ST_reuse_dims = 1

no_of_iterations = 1000000

SS_reuse_divisor = line_size/elem_size*stride = 32/4*??? = 1

no_of_eq_classes = 2 no_of_ST_reuse_dims = 1

no_of_iterations = 1000000

SS_reuse_divisor = line_size/elem_size*stride = 32/4*??? = 1

***** Estimations for all spaces and all tile-sizes *****

===== Tiling of loops 1 - 3 estimations =====

Tile-size 8 : WS-size estimation = 288 ,No of off-chip acc. = 17578

Tile-size 16 : WS-size estimation = 1088 ,No of off-chip acc. = 8300

Tile-size 24 : WS-size estimation = 2400 ,No of off-chip acc. = 5425

Tile-size 32 : WS-size estimation = 4224 ,No of off-chip acc. = 4028

Tile-size 40 : WS-size estimation = 6560 ,No of off-chip acc. = 3203

Tile-size 48 : WS-size estimation = 9408 ,No of off-chip acc. = 2658

Tile-size 56 : WS-size estimation = 12768 ,No of off-chip acc. = 2271

===== Tiling of loops 2 - 3 estimations =====

Tile-size 8 : WS-size estimation = 96 ,No of off-chip acc. = 46875

Tile-size 16 : WS-size estimation = 192 ,No of off-chip acc. = 23437

Tile-size 24 : WS-size estimation = 288 ,No of off-chip acc. = 15624

Tile-size 32 : WS-size estimation = 384 ,No of off-chip acc. = 11718

Tile-size 40 : WS-size estimation = 480 ,No of off-chip acc. = 9375

Tile-size 48 : WS-size estimation = 576 ,No of off-chip acc. = 7812

Tile-size 56 : WS-size estimation = 672 ,No of off-chip acc. = 6696

Tile-size 64 : WS-size estimation = 768 ,No of off-chip acc. = 5859

Tile-size 72 : WS-size estimation = 864 ,No of off-chip acc. = 5208

Tile-size 80 : WS-size estimation = 960 ,No of off-chip acc. = 4687

Tile-size 88 : WS-size estimation = 1056 ,No of off-chip acc. = 4260

Tile-size 96 : WS-size estimation = 1152 ,No of off-chip acc. = 3906

Tile-size 104 : WS-size estimation = 1248 ,No of off-chip acc. = 3604

===== Tiling of loops 3 - 3 estimations =====

Tile-size 8 : WS-size estimation = 96 ,No of off-chip acc. = 375000

Tile-size 16 : WS-size estimation = 96 ,No of off-chip acc. = 187500

Tile-size 24 : WS-size estimation = 96 ,No of off-chip acc. = 124999

Tile-size 32 : WS-size estimation = 96 ,No of off-chip acc. = 93750

Tile-size 40 : WS-size estimation = 96 ,No of off-chip acc. = 75000

Tile-size 48 : WS-size estimation = 96 ,No of off-chip acc. = 62499

Tile-size 56 : WS-size estimation = 96 ,No of off-chip acc. = 53571

C.3 Evaluation tests. 206

Tile-size 64 : WS-size estimation = 96 ,No of off-chip acc. = 46875

Tile-size 72 : WS-size estimation = 96 ,No of off-chip acc. = 41665

Tile-size 80 : WS-size estimation = 96 ,No of off-chip acc. = 37500

Tile-size 88 : WS-size estimation = 96 ,No of off-chip acc. = 34090

Tile-size 96 : WS-size estimation = 96 ,No of off-chip acc. = 31249

Tile-size 104 : WS-size estimation = 96 ,No of off-chip acc. = 28845

***** Optimal results for all spaces *****

Optimal results for tiling of loops 1 - 3 :

Tile-size 56 : WS-size estimation = 12768 ,No of off-chip acc. = 2271

Optimal results for tiling of loops 2 - 3 :

Tile-size 104 : WS-size estimation = 1248 ,No of off-chip acc. = 3604

Optimal results for tiling of loops 3 - 3 :

Tile-size 104 : WS-size estimation = 96 ,No of off-chip acc. = 28845

=====Processing the main procedure=====

*/

#define N 100

int A[N][N];

int B[N][N][N];

int C[N];

test1()

{

int i, j, k;

for(i=0; i<N; i++){

for(j=0; j<N; j++){

for(k=0; k<N; k++){

A[i][k] = A[i-1][k];

B[i][3][j] = B[i][j][k] + B[i+2][j][k];

}

}

}

}

/*

line_size : 32 cache_size : 16384

=====Processing the test1 procedure=====

==== Printing out uni_gen_set's and eq_class'es in a nest ====

**** Printing uni_gen_set's and eq_class'es for loop 1 ****

**** Printing uni_gen_set's and eq_class'es for loop 2 ****

**** Printing uni_gen_set's and eq_class'es for loop 3 ****

C.3 Evaluation tests. 207

Printing uni_gen_set's and eq_class'es for array : .A

The uniformly generated set contains 2 references :

The members of the set are :

A[i,k]

A[i-1,k]

The access matrix for the set is :

1 0 0

0 0 1

The references exhibit self-temporal reuse in loops : 2

The references exhibit self-spatial reuse in loops : 2 3

The generated eq_class'es for local space 1-3 :

Set no. 1 :

The eq_class exhibits group temporal reuse among its references

A[i,k]

A[i-1,k]

The generated eq_class'es for local space 2-3 :

Set no. 1 :

A[i,k]

Set no. 2 :

A[i-1,k]

The generated eq_class'es for local space 3-3 :

Set no. 1 :

A[i,k]

Set no. 2 :

A[i-1,k]

Printing uni_gen_set's and eq_class'es for array : .B

The uniformly generated set contains 1 references :

The members of the set are :

B[i,3,j]

The access matrix for the set is :

1 0 0

0 0 0

0 1 0

The references exhibit self-temporal reuse in loops : 3

The references exhibit self-spatial reuse in loops : 2 3

The generated eq_class'es for local space 1-3 :

Set no. 1 :

B[i,3,j]

The generated eq_class'es for local space 2-3 :

Set no. 1 :

B[i,3,j]

The generated eq_class'es for local space 3-3 :

Set no. 1 :

B[i,3,j]

The uniformly generated set contains 2 references :

The members of the set are :

B[i,j,k]

B[i+2,j,k]

The access matrix for the set is :

1 0 0

0 1 0

C.3 Evaluation tests. 208

0 0 1

The references exhibit self-temporal reuse in loops :

The references exhibit self-spatial reuse in loops : 3

The generated eq_class'es for local space 1-3 :

Set no. 1 :

The eq_class exhibits group temporal reuse among its references

B[i,j,k]

B[i+2,j,k]

The generated eq_class'es for local space 2-3 :

Set no. 1 :

B[i,j,k]

Set no. 2 :

B[i+2,j,k]

The generated eq_class'es for local space 3-3 :

Set no. 1 :

B[i,j,k]

Set no. 2 :

B[i+2,j,k]

====== The collected info for local space 1-3 ======

no_of_eq_classes = 1 no_of_ST_reuse_dims = 1

no_of_iterations = 1000000

SS_reuse_divisor = line_size/elem_size*stride = 32/4*??? = 8

no_of_eq_classes = 1 no_of_ST_reuse_dims = 1

no_of_iterations = 1000000

SS_reuse_divisor = line_size/elem_size*stride = 32/4*??? = 8

no_of_eq_classes = 1 no_of_ST_reuse_dims = 0

no_of_iterations = 1000000

SS_reuse_divisor = line_size/elem_size*stride = 32/4*??? = 8

====== The collected info for local space 2-3 ======

no_of_eq_classes = 2 no_of_ST_reuse_dims = 1

no_of_iterations = 1000000

SS_reuse_divisor = line_size/elem_size*stride = 32/4*??? = 8

no_of_eq_classes = 1 no_of_ST_reuse_dims = 1

no_of_iterations = 1000000

SS_reuse_divisor = line_size/elem_size*stride = 32/4*??? = 8

no_of_eq_classes = 2 no_of_ST_reuse_dims = 0

no_of_iterations = 1000000

SS_reuse_divisor = line_size/elem_size*stride = 32/4*??? = 8

====== The collected info for local space 3-3 ======

no_of_eq_classes = 2 no_of_ST_reuse_dims = 0

no_of_iterations = 1000000

SS_reuse_divisor = line_size/elem_size*stride = 32/4*??? = 8

C.3 Evaluation tests. 209

no_of_eq_classes = 1 no_of_ST_reuse_dims = 1

no_of_iterations = 1000000

SS_reuse_divisor = line_size/elem_size*stride = 32/4*??? = 1

no_of_eq_classes = 2 no_of_ST_reuse_dims = 0

no_of_iterations = 1000000

SS_reuse_divisor = line_size/elem_size*stride = 32/4*??? = 8

***** Estimations for all spaces and all tile-sizes *****

===== Tiling of loops 1 - 3 estimations =====

Tile-size 8 : WS-size estimation = 2560 ,No of off-chip acc. = 156250

===== Tiling of loops 2 - 3 estimations =====

Tile-size 8 : WS-size estimation = 608 ,No of off-chip acc. = 296875

Tile-size 16 : WS-size estimation = 2240 ,No of off-chip acc. = 273437

Tile-size 24 : WS-size estimation = 4896 ,No of off-chip acc. = 265624

Tile-size 32 : WS-size estimation = 8576 ,No of off-chip acc. = 261718

Tile-size 40 : WS-size estimation = 13280 ,No of off-chip acc. = 259375

===== Tiling of loops 3 - 3 estimations =====

Tile-size 8 : WS-size estimation = 160 ,No of off-chip acc. = 625000

Tile-size 16 : WS-size estimation = 288 ,No of off-chip acc. = 562500

Tile-size 24 : WS-size estimation = 416 ,No of off-chip acc. = 541666

Tile-size 32 : WS-size estimation = 544 ,No of off-chip acc. = 531250

Tile-size 40 : WS-size estimation = 672 ,No of off-chip acc. = 525000

Tile-size 48 : WS-size estimation = 800 ,No of off-chip acc. = 520833

Tile-size 56 : WS-size estimation = 928 ,No of off-chip acc. = 517857

Tile-size 64 : WS-size estimation = 1056 ,No of off-chip acc. = 515625

Tile-size 72 : WS-size estimation = 1184 ,No of off-chip acc. = 513888

Tile-size 80 : WS-size estimation = 1312 ,No of off-chip acc. = 512500

Tile-size 88 : WS-size estimation = 1440 ,No of off-chip acc. = 511363

Tile-size 96 : WS-size estimation = 1568 ,No of off-chip acc. = 510416

Tile-size 104 : WS-size estimation = 1696 ,No of off-chip acc. = 509615

***** Optimal results for all spaces *****

Optimal results for tiling of loops 1 - 3 :

Tile-size 8 : WS-size estimation = 2560 ,No of off-chip acc. = 156250

Optimal results for tiling of loops 2 - 3 :

Tile-size 40 : WS-size estimation = 13280 ,No of off-chip acc. = 259375

Optimal results for tiling of loops 3 - 3 :

Tile-size 104 : WS-size estimation = 1696 ,No of off-chip acc. = 509615

*/

#define N 100

int A[N][2*N][2*N];

int B[N];

int C[N];

C.3 Evaluation tests. 210

test1()

{

int i, j, k, l, m;

for(i=0; i<N; i++){

for(j=0; j<N; j++){

B[j] = B[j] + B[j+1];

for(k=0; k<N; k++){

A[i][j][k] = A[i][j+k][j+k] + A[i][j+k][j+k+1] +

A[i][j+k+1][j+k] + A[i][j+k][j+k-3];

}

}

}

}

void main(){

test1();

}

// This test contains an example of a wrong partitioning of references into

// equivalence classes. This flaw has the result that for the localization

// of loops 2-3 an extra equivalence class is generated.

//

/*

line_size : 32 cache_size : 65536

=====Processing the test1 procedure=====

==== Printing out uni_gen_set's and eq_class'es in a nest ====

**** Printing uni_gen_set's and eq_class'es for loop 1 ****

**** Printing uni_gen_set's and eq_class'es for loop 2 ****

Printing uni_gen_set's and eq_class'es for array : .B

The uniformly generated set contains 3 references :

The members of the set are :

B[j]

B[j]

B[j+1]

The access matrix for the set is :

0 1 0

The references exhibit self-temporal reuse in loops : 1

The references exhibit self-spatial reuse in loops : 1 2

The generated eq_class'es for local space 1-2 :

Set no. 1 :

The eq_class exhibits group temporal reuse among its references

B[j]

B[j]

B[j+1]

The generated eq_class'es for local space 2-2 :

Set no. 1 :

The eq_class exhibits group temporal reuse among its references

B[j]

C.3 Evaluation tests. 211

B[j]

B[j+1]

**** Printing uni_gen_set's and eq_class'es for loop 3 ****

Printing uni_gen_set's and eq_class'es for array : .A

The uniformly generated set contains 1 references :

The members of the set are :

A[i,j,k]

The access matrix for the set is :

1 0 0

0 1 0

0 0 1

The references exhibit self-temporal reuse in loops :

The references exhibit self-spatial reuse in loops : 3

The generated eq_class'es for local space 1-3 :

Set no. 1 :

A[i,j,k]

The generated eq_class'es for local space 2-3 :

Set no. 1 :

A[i,j,k]

The generated eq_class'es for local space 3-3 :

Set no. 1 :

A[i,j,k]

The uniformly generated set contains 4 references :

The members of the set are :

A[i,k+j,k+j]

A[i,k+j,k+j+1]

A[i,k+j+1,k+j]

A[i,k+j,k+j-3]

The access matrix for the set is :

1 0 0

0 1 1

0 1 1

The references exhibit self-temporal reuse in loops :

The references exhibit self-spatial reuse in loops :

The generated eq_class'es for local space 1-3 :

Set no. 1 :

The eq_class exhibits group spatial reuse among its references

A[i,k+j,k+j]

A[i,k+j,k+j+1]

A[i,k+j+1,k+j]

A[i,k+j,k+j-3]

The generated eq_class'es for local space 2-3 :

Set no. 1 :

The eq_class exhibits group spatial reuse among its references

A[i,k+j,k+j]

A[i,k+j,k+j+1]

A[i,k+j+1,k+j]

A[i,k+j,k+j-3]

The generated eq_class'es for local space 3-3 :

Set no. 1 :

The eq_class exhibits group spatial reuse among its references

C.3 Evaluation tests. 212

A[i,k+j,k+j]

A[i,k+j,k+j+1]

A[i,k+j,k+j-3]

Set no. 2 :

A[i,k+j+1,k+j]

====== The collected info for local space 1-3 ======

no_of_eq_classes = 1 no_of_ST_reuse_dims = 1

no_of_iterations = 10000

SS_reuse_divisor = line_size/elem_size*stride = 32/4*??? = 8

no_of_eq_classes = 1 no_of_ST_reuse_dims = 0

no_of_iterations = 1000000

SS_reuse_divisor = line_size/elem_size*stride = 32/4*??? = 8

no_of_eq_classes = 1 no_of_ST_reuse_dims = 0

no_of_iterations = 1000000

SS_reuse_divisor = line_size/elem_size*stride = 32/4*??? = 1

====== The collected info for local space 2-3 ======

no_of_eq_classes = 1 no_of_ST_reuse_dims = 0

no_of_iterations = 10000

SS_reuse_divisor = line_size/elem_size*stride = 32/4*??? = 8

no_of_eq_classes = 1 no_of_ST_reuse_dims = 0

no_of_iterations = 1000000

SS_reuse_divisor = line_size/elem_size*stride = 32/4*??? = 8

no_of_eq_classes = 1 no_of_ST_reuse_dims = 0

no_of_iterations = 1000000

SS_reuse_divisor = line_size/elem_size*stride = 32/4*??? = 1

====== The collected info for local space 3-3 ======

no_of_eq_classes = 3 no_of_ST_reuse_dims = 0

no_of_iterations = 10000

SS_reuse_divisor = line_size/elem_size*stride = 32/1*??? = 1

no_of_eq_classes = 1 no_of_ST_reuse_dims = 0

no_of_iterations = 1000000

SS_reuse_divisor = line_size/elem_size*stride = 32/4*??? = 8

no_of_eq_classes = 2 no_of_ST_reuse_dims = 0

no_of_iterations = 1000000

SS_reuse_divisor = line_size/elem_size*stride = 32/4*??? = 1

***** Estimations for all spaces and all tile-sizes *****

===== Tiling of loops 1 - 3 estimations =====

Tile-size 8 : WS-size estimation = 18688 ,No of off-chip acc. = 1125156

C.3 Evaluation tests. 213

===== Tiling of loops 2 - 3 estimations =====

Tile-size 8 : WS-size estimation = 2560 ,No of off-chip acc. = 1126250

Tile-size 16 : WS-size estimation = 10240 ,No of off-chip acc. = 1126250

Tile-size 24 : WS-size estimation = 23040 ,No of off-chip acc. = 1126250

Tile-size 32 : WS-size estimation = 40960 ,No of off-chip acc. = 1126250

Tile-size 40 : WS-size estimation = 64000 ,No of off-chip acc. = 1126250

===== Tiling of loops 3 - 3 estimations =====

Tile-size 8 : WS-size estimation = 1312 ,No of off-chip acc. = 2155000

Tile-size 16 : WS-size estimation = 2624 ,No of off-chip acc. = 2155000

Tile-size 24 : WS-size estimation = 3936 ,No of off-chip acc. = 2155000

Tile-size 32 : WS-size estimation = 5248 ,No of off-chip acc. = 2155000

Tile-size 40 : WS-size estimation = 6560 ,No of off-chip acc. = 2155000

Tile-size 48 : WS-size estimation = 7872 ,No of off-chip acc. = 2155000

Tile-size 56 : WS-size estimation = 9184 ,No of off-chip acc. = 2155000

Tile-size 64 : WS-size estimation = 10496 ,No of off-chip acc. = 2155000

Tile-size 72 : WS-size estimation = 11808 ,No of off-chip acc. = 2155000

Tile-size 80 : WS-size estimation = 13120 ,No of off-chip acc. = 2155000

Tile-size 88 : WS-size estimation = 14432 ,No of off-chip acc. = 2155000

Tile-size 96 : WS-size estimation = 15744 ,No of off-chip acc. = 2155000

Tile-size 104 : WS-size estimation = 17056 ,No of off-chip acc. = 2155000

***** Optimal results for all spaces *****

Optimal results for tiling of loops 1 - 3 :

Tile-size 8 : WS-size estimation = 18688 ,No of off-chip acc. = 1125156

Optimal results for tiling of loops 2 - 3 :

Tile-size 40 : WS-size estimation = 64000 ,No of off-chip acc. = 1126250

Optimal results for tiling of loops 3 - 3 :

Tile-size 104 : WS-size estimation = 17056 ,No of off-chip acc. = 2155000

=====Processing the main procedure=====

*/

#define N 100

int A[N][N];

int B[N][N][N];

int C[N];

test1()

{

int i, j, k;

for(i=0; i<N; i++){

for(j=0; j<N; j++){

for(k=0; k<N; k++){

A[i][3*j] = A[i-1][5*j];

B[i][j][2*k+1] = B[i][j][2*k+2] + B[i][j][2*k+4];

}

}

}

C.3 Evaluation tests. 214

}

/*

line_size : 32 cache_size : 16384

=====Processing the test1 procedure=====

==== Printing out uni_gen_set's and eq_class'es in a nest ====

**** Printing uni_gen_set's and eq_class'es for loop 1 ****

**** Printing uni_gen_set's and eq_class'es for loop 2 ****

**** Printing uni_gen_set's and eq_class'es for loop 3 ****

Printing uni_gen_set's and eq_class'es for array : .A

The uniformly generated set contains 1 references :

The members of the set are :

A[i,3*j]

The access matrix for the set is :

1 0 0

0 3 0

The references exhibit self-temporal reuse in loops : 3

The references exhibit self-spatial reuse in loops : 2 3

The generated eq_class'es for local space 1-3 :

Set no. 1 :

A[i,3*j]

The generated eq_class'es for local space 2-3 :

Set no. 1 :

A[i,3*j]

The generated eq_class'es for local space 3-3 :

Set no. 1 :

A[i,3*j]

The uniformly generated set contains 1 references :

The members of the set are :

A[i-1,5*j]

The access matrix for the set is :

1 0 0

0 5 0

The references exhibit self-temporal reuse in loops : 3

The references exhibit self-spatial reuse in loops : 2 3

The generated eq_class'es for local space 1-3 :

Set no. 1 :

A[i-1,5*j]

The generated eq_class'es for local space 2-3 :

Set no. 1 :

A[i-1,5*j]

The generated eq_class'es for local space 3-3 :

Set no. 1 :

A[i-1,5*j]

Printing uni_gen_set's and eq_class'es for array : .B

C.3 Evaluation tests. 215

The uniformly generated set contains 3 references :

The members of the set are :

B[i,j,2*k+1]

B[i,j,2*k+2]

B[i,j,2*k+4]

The access matrix for the set is :

1 0 0

0 1 0

0 0 2

The references exhibit self-temporal reuse in loops :

The references exhibit self-spatial reuse in loops : 3

The generated eq_class'es for local space 1-3 :

Set no. 1 :

The eq_class exhibits group temporal reuse among its references

B[i,j,2*k+1]

B[i,j,2*k+2]

B[i,j,2*k+4]

The generated eq_class'es for local space 2-3 :

Set no. 1 :

The eq_class exhibits group temporal reuse among its references

B[i,j,2*k+1]

B[i,j,2*k+2]

B[i,j,2*k+4]

The generated eq_class'es for local space 3-3 :

Set no. 1 :

The eq_class exhibits group temporal reuse among its references

B[i,j,2*k+1]

B[i,j,2*k+2]

B[i,j,2*k+4]

====== The collected info for local space 1-3 ======

no_of_eq_classes = 1 no_of_ST_reuse_dims = 1

no_of_iterations = 1000000

SS_reuse_divisor = line_size/elem_size*stride = 32/4*??? = 3

no_of_eq_classes = 1 no_of_ST_reuse_dims = 1

no_of_iterations = 1000000

SS_reuse_divisor = line_size/elem_size*stride = 32/4*??? = 2

no_of_eq_classes = 1 no_of_ST_reuse_dims = 0

no_of_iterations = 1000000

SS_reuse_divisor = line_size/elem_size*stride = 32/4*??? = 4

====== The collected info for local space 2-3 ======

no_of_eq_classes = 1 no_of_ST_reuse_dims = 1

no_of_iterations = 1000000

SS_reuse_divisor = line_size/elem_size*stride = 32/4*??? = 3

no_of_eq_classes = 1 no_of_ST_reuse_dims = 1

no_of_iterations = 1000000

SS_reuse_divisor = line_size/elem_size*stride = 32/4*??? = 2

C.3 Evaluation tests. 216

no_of_eq_classes = 1 no_of_ST_reuse_dims = 0

no_of_iterations = 1000000

SS_reuse_divisor = line_size/elem_size*stride = 32/4*??? = 4

====== The collected info for local space 3-3 ======

no_of_eq_classes = 1 no_of_ST_reuse_dims = 1

no_of_iterations = 1000000

SS_reuse_divisor = line_size/elem_size*stride = 32/4*??? = 1

no_of_eq_classes = 1 no_of_ST_reuse_dims = 1

no_of_iterations = 1000000

SS_reuse_divisor = line_size/elem_size*stride = 32/4*??? = 1

no_of_eq_classes = 1 no_of_ST_reuse_dims = 0

no_of_iterations = 1000000

SS_reuse_divisor = line_size/elem_size*stride = 32/4*??? = 4

***** Estimations for all spaces and all tile-sizes *****

===== Tiling of loops 1 - 3 estimations =====

Tile-size 8 : WS-size estimation = 5802 ,No of off-chip acc. = 354166

===== Tiling of loops 2 - 3 estimations =====

Tile-size 8 : WS-size estimation = 725 ,No of off-chip acc. = 354166

Tile-size 16 : WS-size estimation = 2474 ,No of off-chip acc. = 302083

Tile-size 24 : WS-size estimation = 5248 ,No of off-chip acc. = 284721

Tile-size 32 : WS-size estimation = 9045 ,No of off-chip acc. = 276041

Tile-size 40 : WS-size estimation = 13866 ,No of off-chip acc. = 270833

===== Tiling of loops 3 - 3 estimations =====

Tile-size 8 : WS-size estimation = 128 ,No of off-chip acc. = 500000

Tile-size 16 : WS-size estimation = 192 ,No of off-chip acc. = 375000

Tile-size 24 : WS-size estimation = 256 ,No of off-chip acc. = 333332

Tile-size 32 : WS-size estimation = 320 ,No of off-chip acc. = 312500

Tile-size 40 : WS-size estimation = 384 ,No of off-chip acc. = 300000

Tile-size 48 : WS-size estimation = 448 ,No of off-chip acc. = 291666

Tile-size 56 : WS-size estimation = 512 ,No of off-chip acc. = 285714

Tile-size 64 : WS-size estimation = 576 ,No of off-chip acc. = 281250

Tile-size 72 : WS-size estimation = 640 ,No of off-chip acc. = 277776

Tile-size 80 : WS-size estimation = 704 ,No of off-chip acc. = 275000

Tile-size 88 : WS-size estimation = 768 ,No of off-chip acc. = 272726

Tile-size 96 : WS-size estimation = 832 ,No of off-chip acc. = 270832

Tile-size 104 : WS-size estimation = 896 ,No of off-chip acc. = 269230

***** Optimal results for all spaces *****

Optimal results for tiling of loops 1 - 3 :

Tile-size 104 : WS-size estimation = 896 ,No of off-chip acc. = 269230

Optimal results for tiling of loops 2 - 3 :

Tile-size 40 : WS-size estimation = 13866 ,No of off-chip acc. = 270833

C.3 Evaluation tests. 217

Optimal results for tiling of loops 3 - 3 :

Tile-size 8 : WS-size estimation = 5802 ,No of off-chip acc. = 354166

*/

#define N 100

int A[N][N];

int B[N];

int C[N][N];

test1()

{

int i, j, k;

for(i=0; i<N; i++){

B[i] = B[i+1] + B[2*i];

for(j=0; j<N; j++){

C[i][k] = C[i-1][k];

for(k=0; k<N; k++){

A[i][k] = A[i-1][k];

}

}

}

}

/*

line_size : 32 cache_size : 16384

=====Processing the test1 procedure=====

==== Printing out uni_gen_set's and eq_class'es in a nest ====

**** Printing uni_gen_set's and eq_class'es for loop 1 ****

Printing uni_gen_set's and eq_class'es for array : .B

The uniformly generated set contains 2 references :

The members of the set are :

B[i]

B[i+1]

The access matrix for the set is :

1 0 0

The references exhibit self-temporal reuse in loops :

The references exhibit self-spatial reuse in loops : 1

The generated eq_class'es for local space 1-1 :

Set no. 1 :

The eq_class exhibits group temporal reuse among its references

B[i]

B[i+1]

The uniformly generated set contains 1 references :

The members of the set are :

B[2*i]

The access matrix for the set is :

2 0 0

C.3 Evaluation tests. 218

The references exhibit self-temporal reuse in loops :

The references exhibit self-spatial reuse in loops : 1

The generated eq_class'es for local space 1-1 :

Set no. 1 :

B[2*i]

**** Printing uni_gen_set's and eq_class'es for loop 2 ****

Printing uni_gen_set's and eq_class'es for array : .C

The uniformly generated set contains 2 references :

The members of the set are :

C[i,k]

C[i-1,k]

The access matrix for the set is :

1 0 0

0 0 0

The references exhibit self-temporal reuse in loops : 2

The references exhibit self-spatial reuse in loops : 2

The generated eq_class'es for local space 1-2 :

Set no. 1 :

The eq_class exhibits group temporal reuse among its references

C[i,k]

C[i-1,k]

The generated eq_class'es for local space 2-2 :

Set no. 1 :

C[i,k]

Set no. 2 :

C[i-1,k]

**** Printing uni_gen_set's and eq_class'es for loop 3 ****

Printing uni_gen_set's and eq_class'es for array : .A

The uniformly generated set contains 2 references :

The members of the set are :

A[i,k]

A[i-1,k]

The access matrix for the set is :

1 0 0

0 0 1

The references exhibit self-temporal reuse in loops : 2

The references exhibit self-spatial reuse in loops : 2 3

The generated eq_class'es for local space 1-3 :

Set no. 1 :

The eq_class exhibits group temporal reuse among its references

A[i,k]

A[i-1,k]

The generated eq_class'es for local space 2-3 :

Set no. 1 :

A[i,k]

Set no. 2 :

A[i-1,k]

The generated eq_class'es for local space 3-3 :

C.3 Evaluation tests. 219

Set no. 1 :

A[i,k]

Set no. 2 :

A[i-1,k]

====== The collected info for local space 1-3 ======

no_of_eq_classes = 1 no_of_ST_reuse_dims = 0

no_of_iterations = 100

SS_reuse_divisor = line_size/elem_size*stride = 32/4*??? = 8

no_of_eq_classes = 1 no_of_ST_reuse_dims = 0

no_of_iterations = 100

SS_reuse_divisor = line_size/elem_size*stride = 32/4*??? = 4

no_of_eq_classes = 1 no_of_ST_reuse_dims = 1

no_of_iterations = 10000

SS_reuse_divisor = line_size/elem_size*stride = 32/4*??? = 1

no_of_eq_classes = 1 no_of_ST_reuse_dims = 1

no_of_iterations = 1000000

SS_reuse_divisor = line_size/elem_size*stride = 32/4*??? = 8

====== The collected info for local space 2-3 ======

no_of_eq_classes = 2 no_of_ST_reuse_dims = 0

no_of_iterations = 100

SS_reuse_divisor = line_size/elem_size*stride = 32/1*??? = 1

no_of_eq_classes = 1 no_of_ST_reuse_dims = 0

no_of_iterations = 100

SS_reuse_divisor = line_size/elem_size*stride = 32/1*??? = 1

no_of_eq_classes = 2 no_of_ST_reuse_dims = 1

no_of_iterations = 10000

SS_reuse_divisor = line_size/elem_size*stride = 32/4*??? = 1

no_of_eq_classes = 2 no_of_ST_reuse_dims = 1

no_of_iterations = 1000000

SS_reuse_divisor = line_size/elem_size*stride = 32/4*??? = 8

====== The collected info for local space 3-3 ======

no_of_eq_classes = 2 no_of_ST_reuse_dims = 0

no_of_iterations = 100

SS_reuse_divisor = line_size/elem_size*stride = 32/1*??? = 1

no_of_eq_classes = 1 no_of_ST_reuse_dims = 0

no_of_iterations = 100

SS_reuse_divisor = line_size/elem_size*stride = 32/1*??? = 1

no_of_eq_classes = 2 no_of_ST_reuse_dims = 0

no_of_iterations = 10000

C.3 Evaluation tests. 220

SS_reuse_divisor = line_size/elem_size*stride = 32/1*??? = 1

no_of_eq_classes = 2 no_of_ST_reuse_dims = 0

no_of_iterations = 1000000

SS_reuse_divisor = line_size/elem_size*stride = 32/4*??? = 8

***** Estimations for all spaces and all tile-sizes *****

===== Tiling of loops 1 - 3 estimations =====

Tile-size 8 : WS-size estimation = 8448 ,No of off-chip acc. = 16912

===== Tiling of loops 2 - 3 estimations =====

Tile-size 8 : WS-size estimation = 6720 ,No of off-chip acc. = 34050

===== Tiling of loops 3 - 3 estimations =====

Tile-size 8 : WS-size estimation = 1344 ,No of off-chip acc. = 270300

Tile-size 16 : WS-size estimation = 2688 ,No of off-chip acc. = 270300

Tile-size 24 : WS-size estimation = 4032 ,No of off-chip acc. = 270300

Tile-size 32 : WS-size estimation = 5376 ,No of off-chip acc. = 270300

Tile-size 40 : WS-size estimation = 6720 ,No of off-chip acc. = 270300

Tile-size 48 : WS-size estimation = 8064 ,No of off-chip acc. = 270300

Tile-size 56 : WS-size estimation = 9408 ,No of off-chip acc. = 270300

Tile-size 64 : WS-size estimation = 10752 ,No of off-chip acc. = 270300

Tile-size 72 : WS-size estimation = 12096 ,No of off-chip acc. = 270300

Tile-size 80 : WS-size estimation = 13440 ,No of off-chip acc. = 270300

Tile-size 88 : WS-size estimation = 14784 ,No of off-chip acc. = 270300

Tile-size 96 : WS-size estimation = 16128 ,No of off-chip acc. = 270300

***** Optimal results for all spaces *****

Optimal results for tiling of loops 1 - 3 :

Tile-size 8 : WS-size estimation = 8448 ,No of off-chip acc. = 16912

Optimal results for tiling of loops 2 - 3 :

Tile-size 8 : WS-size estimation = 6720 ,No of off-chip acc. = 34050

Optimal results for tiling of loops 3 - 3 :

Tile-size 96 : WS-size estimation = 16128 ,No of off-chip acc. = 270300

*/

#define N 100

int A[N][N];

int B[N][N];

int C[N][N];

test1()

{

int i, j, k, l, m;

for(i=0; i<N; i++){

for(j=0; j<N; j++){

for(k=0; k<N; k++){

C[i][k] = A[i][j] * B[j][k];

}

C.3 Evaluation tests. 221

}

}

}

void main(){

test1();

}

// A printout of the results obtained by the memory analysis procedure are

// printet below. The results have been tested for correctness.

/*

line_size : 32 cache_size : 2048

=====Processing the test1 procedure=====

==== Printing out uni_gen_set's and eq_class'es in a nest ====

**** Printing uni_gen_set's and eq_class'es for loop 1 ****

**** Printing uni_gen_set's and eq_class'es for loop 2 ****

**** Printing uni_gen_set's and eq_class'es for loop 3 ****

Printing uni_gen_set's and eq_class'es for array : .C

The uniformly generated set contains 1 references :

The members of the set are :

C[i,k]

The access matrix for the set is :

1 0 0

0 0 1

The references exhibit self-temporal reuse in loops : 2

The references exhibit self-spatial reuse in loops : 2 3

The generated eq_class'es for local space 1-3 :

Set no. 1 :

C[i,k]

The generated eq_class'es for local space 2-3 :

Set no. 1 :

C[i,k]

The generated eq_class'es for local space 3-3 :

Set no. 1 :

C[i,k]

Printing uni_gen_set's and eq_class'es for array : .A

The uniformly generated set contains 1 references :

The members of the set are :

A[i,j]

The access matrix for the set is :

1 0 0

0 1 0

The references exhibit self-temporal reuse in loops : 3

The references exhibit self-spatial reuse in loops : 2 3

C.3 Evaluation tests. 222

The generated eq_class'es for local space 1-3 :

Set no. 1 :

A[i,j]

The generated eq_class'es for local space 2-3 :

Set no. 1 :

A[i,j]

The generated eq_class'es for local space 3-3 :

Set no. 1 :

A[i,j]

Printing uni_gen_set's and eq_class'es for array : .B

The uniformly generated set contains 1 references :

The members of the set are :

B[j,k]

The access matrix for the set is :

0 1 0

0 0 1

The references exhibit self-temporal reuse in loops : 1

The references exhibit self-spatial reuse in loops : 1 3

The generated eq_class'es for local space 1-3 :

Set no. 1 :

B[j,k]

The generated eq_class'es for local space 2-3 :

Set no. 1 :

B[j,k]

The generated eq_class'es for local space 3-3 :

Set no. 1 :

B[j,k]

====== The collected info for local space 1-3 ======

no_of_eq_classes = 1 no_of_ST_reuse_dims = 1

no_of_iterations = 1000000

SS_reuse_divisor = line_size/elem_size*stride = 32/4*??? = 8

no_of_eq_classes = 1 no_of_ST_reuse_dims = 1

no_of_iterations = 1000000

SS_reuse_divisor = line_size/elem_size*stride = 32/4*??? = 8

no_of_eq_classes = 1 no_of_ST_reuse_dims = 1

no_of_iterations = 1000000

SS_reuse_divisor = line_size/elem_size*stride = 32/4*??? = 8

====== The collected info for local space 2-3 ======

no_of_eq_classes = 1 no_of_ST_reuse_dims = 1

no_of_iterations = 1000000

SS_reuse_divisor = line_size/elem_size*stride = 32/4*??? = 8

no_of_eq_classes = 1 no_of_ST_reuse_dims = 1

no_of_iterations = 1000000

SS_reuse_divisor = line_size/elem_size*stride = 32/4*??? = 8

C.3 Evaluation tests. 223

no_of_eq_classes = 1 no_of_ST_reuse_dims = 0

no_of_iterations = 1000000

SS_reuse_divisor = line_size/elem_size*stride = 32/4*??? = 8

====== The collected info for local space 3-3 ======

no_of_eq_classes = 1 no_of_ST_reuse_dims = 0

no_of_iterations = 1000000

SS_reuse_divisor = line_size/elem_size*stride = 32/4*??? = 8

no_of_eq_classes = 1 no_of_ST_reuse_dims = 1

no_of_iterations = 1000000

SS_reuse_divisor = line_size/elem_size*stride = 32/4*??? = 1

no_of_eq_classes = 1 no_of_ST_reuse_dims = 0

no_of_iterations = 1000000

SS_reuse_divisor = line_size/elem_size*stride = 32/4*??? = 8

***** Estimations for all spaces and all tile-sizes *****

===== Tiling of loops 1 - 3 estimations =====

Tile-size 8 : WS-size estimation = 768 ,No of off-chip acc. = 46875

===== Tiling of loops 2 - 3 estimations =====

Tile-size 8 : WS-size estimation = 320 ,No of off-chip acc. = 156250

Tile-size 16 : WS-size estimation = 1152 ,No of off-chip acc. = 140624

===== Tiling of loops 3 - 3 estimations =====

Tile-size 8 : WS-size estimation = 96 ,No of off-chip acc. = 375000

Tile-size 16 : WS-size estimation = 160 ,No of off-chip acc. = 312500

Tile-size 24 : WS-size estimation = 224 ,No of off-chip acc. = 291666

Tile-size 32 : WS-size estimation = 288 ,No of off-chip acc. = 281250

Tile-size 40 : WS-size estimation = 352 ,No of off-chip acc. = 275000

Tile-size 48 : WS-size estimation = 416 ,No of off-chip acc. = 270833

Tile-size 56 : WS-size estimation = 480 ,No of off-chip acc. = 267857

Tile-size 64 : WS-size estimation = 544 ,No of off-chip acc. = 265625

Tile-size 72 : WS-size estimation = 608 ,No of off-chip acc. = 263888

Tile-size 80 : WS-size estimation = 672 ,No of off-chip acc. = 262500

Tile-size 88 : WS-size estimation = 736 ,No of off-chip acc. = 261363

Tile-size 96 : WS-size estimation = 800 ,No of off-chip acc. = 260416

Tile-size 104 : WS-size estimation = 864 ,No of off-chip acc. = 259615

***** Optimal results for all spaces *****

Optimal results for tiling of loops 1 - 3 :

Tile-size 8 : WS-size estimation = 768 ,No of off-chip acc. = 46875

Optimal results for tiling of loops 2 - 3 :

Tile-size 16 : WS-size estimation = 1152 ,No of off-chip acc. = 140624

Optimal results for tiling of loops 3 - 3 :

Tile-size 104 : WS-size estimation = 864 ,No of off-chip acc. = 259615

*/

