

Investigation and development of a home banking site

Kim Hansen – C938223

Informatics and Mathematical Modelling
Technical University of Denmark

17. April 2002

 2

 3

Preface

This report represents the final project of the civil engineering course at the Technical
University of Denmark.

The report was done in EF tecnologias in Portugal in cooperation with the Institute for
Informatics and Mathematical Modelling at the Technical University of Denmark in the period
from 17.10.2001 until 17.04.2002.

Kim Hansen

 4

Abstract

In this thesis a home banking application is investigated along with the security issues
surrounding it. The home banking application has to be able to communicate with a real
bank in an efficient way, where the bank system is clearly separated from the home banking
application.

A model for developing automated web site applications is presented. This model separates
the concerns in web site design and provides the basis for a generation mechanism for
hypermedia design.

A model to ensure a secure environment for the home banking application is implemented.

 5

Table of Contents

1. INTRODUCTION .. 8
1.1 Motivation and background.. 8
1.2 Description of a home banking site .. 9
1.3 Example System of the home banking site .. 9
1.4 Goal and limitations of the case study.. 9
1.5 Explanation of the terms and definitions used in this report .. 10
1.6 Requirements to the reader... 10
1.7 Overview of the thesis .. 11

2. SYSTEM ARCHITECTURE.. 12
2.1 Dynamically versus statically generated sites .. 12
2.2 Connection between home banking application and bank legacy system............................ 13
2.3 Web Services and how they can be used for home banking sites .. 13
2.4 System Architecture Diagram .. 14

3. SECURITY ASPECTS .. 16
3.1 Main security considerations in a home banking site... 16
3.2 Security Model for the home banking application ... 17

4. HOME BANKING DESIGN MODEL... 22
4.1 Modelling a Web Site... 22
4.2 Requirements Specification.. 22
4.3 Functionality Description - Conceptual Model .. 23

4.3.1 Definition of Functions ..23
4.3.2 Access Specification ..24
4.3.3 Logging Specification ..24
4.3.4 Database Modelling ...25

4.4 Navigational Design ... 29
4.4.1 Navigation Space Model ...29
4.4.2 Navigational Structure Model ..30

4.5 Layout Design .. 31
4.5.1 Presentational Model ...32
4.5.3 Applying CSS – Style, Colours, Fonts, Images ...33

5. IMPLEMENTATION.. 36
5.1 Choice of technology – Java technology (JSP and Servlets) ... 36
5.2 MVC - Model View Controller (Java Server Pages Model 2) ... 38
5.3 Implementation Structure ... 38
5.4 Mapping navigation and functionality ... 44
5.5 Mapping views ... 46
5.6 Adding CSS.. 47
5.7 Implementing the Authentication Model and HTTPS ... 49
5.8 Bank Simulator – Glue Web Service ... 51
5.9 Problems and considerations during implementation .. 55

7. DOCUMENTATION OF A HOME BANKING SITE... 56
7.1 Documentation of each web page .. 56
7.2 Web Site Map... 57

 6

8. FUTURE EXPANSIONS... 58
8.1 Improving Application Functionality ... 58
8.2 Administration Application.. 58
8.3 Expanding model to support multi-channels using the Web Service format 58
8.4 Improving separation at top level in the model .. 59
8.5 Improving security in the implementation ... 59
8.5 Implementing PKI-security .. 60

9. CONCLUSION... 62
9.1 Modelling a web site .. 62
9.2 Security in a home banking application ... 63
9.3 Web Service as a communication platform.. 63
9.4 Documentation of a home banking application.. 63
9.5 MVC as implementation platform.. 64

APPENDIX ..ERROR! BOOKMARK NOT DEFINED.

A. SUMMARIES AND COMMENTS ON RELEVANT ARTICLESERROR! BOOKMARK
NOT DEFINED.

Web Service Technology ... Error! Bookmark not defined.
OOHDM – Object Oriented Hypermedia Design Model – short overview........Error! Bookmark not
defined.
Middleware Challenges Ahead .. Error! Bookmark not defined.
More about Web Security .. Error! Bookmark not defined.
XML’s Impact on Databases and Data Sharing................................... Error! Bookmark not defined.
Utilizing Abstract WebEngineering Concepts: an Architecture Error! Bookmark not defined.
WSDL file describing the bank operations as a web service: Error! Bookmark not defined.

B. SOURCE CODE ...ERROR! BOOKMARK NOT DEFINED.

Home Banking Application.. Error! Bookmark not defined.
ConsultationAction.java... Error! Bookmark not defined.
OrderChequesBean.java... Error! Bookmark not defined.
XMLConfigLoader.java... Error! Bookmark not defined.
ControllerHook.java... Error! Bookmark not defined.
BankingHook.java.. Error! Bookmark not defined.
Populate.java .. Error! Bookmark not defined.
BeanUtils.java .. Error! Bookmark not defined.
GenericBean.java ... Error! Bookmark not defined.
Resource.java ... Error! Bookmark not defined.
GenericAction.java .. Error! Bookmark not defined.
Beans.java .. Error! Bookmark not defined.
Auth.java.. Error! Bookmark not defined.
Action.java ... Error! Bookmark not defined.
ActionContext.java .. Error! Bookmark not defined.
HomeBankOperations.java .. Error! Bookmark not defined.
IHomeBankOperations.java... Error! Bookmark not defined.
HTMLElements.java.. Error! Bookmark not defined.
Global.java ... Error! Bookmark not defined.
DBConnect.java ... Error! Bookmark not defined.
Config.java... Error! Bookmark not defined.

Bank Simulator Application... Error! Bookmark not defined.
Pub.java.. Error! Bookmark not defined.
BankDatabase.java... Error! Bookmark not defined.

 7

BankOperations.java .. Error! Bookmark not defined.
IBankOperations.java... Error! Bookmark not defined.
styles.css... Error! Bookmark not defined.
balance.jsp.. Error! Bookmark not defined.
transactionList.jsp .. Error! Bookmark not defined.
stockList.jsp ... Error! Bookmark not defined.
transfer.jsp.. Error! Bookmark not defined.
payment.jsp .. Error! Bookmark not defined.
orderCheques.jsp.. Error! Bookmark not defined.
newName.jsp.. Error! Bookmark not defined.
loadBean.jsp... Error! Bookmark not defined.
menu.jsp ... Error! Bookmark not defined.
welcome.jsp.. Error! Bookmark not defined.
errorPage.jsp .. Error! Bookmark not defined.
errorLogin.jsp... Error! Bookmark not defined.
header.jsp ... Error! Bookmark not defined.
index.jsp ... Error! Bookmark not defined.
loginLevel1.jsp... Error! Bookmark not defined.
loginLevel2.jsp... Error! Bookmark not defined.
loginLevel3.jsp... Error! Bookmark not defined.
loginInclude.jsp.. Error! Bookmark not defined.

Configuration files.. Error! Bookmark not defined.
auth-config.xml .. Error! Bookmark not defined.
action-config.xml ... Error! Bookmark not defined.
web.xml.. Error! Bookmark not defined.

 8

1. Introduction

The main purpose of this project is to investigate the aspects involved in web site creation. It
is based on a case study of a home banking site where fast easy navigation, logic
presentation of information and security aspects have high priority. These aspects cover
several problems like efficient web site creation methods, effective communication with a
bank and the security concerns surrounding it.

1.1 Motivation and background

With home banking sites and web sites in general becoming increasingly bigger and more
complex, there is a growing need for structured implementation methods.

Where content is changed on the fly,
New services are constantly added,
New navigation and interface features added,
Easy connection to different legacy systems that change and get updated

There doesn’t exist one perfect solution to deal effectively with these problem, but
investigation around this area is popularly called “web engineering”. Web engineering tries to
define models to automate the process of generating a web site and separate the main
concerns.

This project is partly motivated by the report: “A method to develop web-based systems” by
Niels Bach[3] where an automated method of implementing a web site is developed. This
method uses a functional approach built around a web site with a database. In this project a
home banking site is investigated and with it also the surrounding elements. It also uses a
database, but the functionality is not only defined by the application itself but also provided
by a bank. This brings other problem considerations into the picture. How does the
interaction with the bank work? Could it benefit from the new concept of web services?

Looking at a web site it can be split up into three main parts: layout, interactivity/dialog and
functionality. Each of these parts has to be fully integrated, but play a different role on the
web site, have different requirements and may very likely be implemented by different
people. By splitting it up, different people with different skills can specialize in their part of
the site.

The three main parts that constitute a web site are:

Layout – the layout of a site is the graphical presentation of the site,
 with placement of text, pictures, forms, tables etc.

Interactivity/dialog – the interactivity and user-dialog deals with
 the user interaction like menu navigation, site-maps etc.

Functionality – the functionality of the site defines the calculations and
 operations that is done in the background. This is where
 the business logic is implemented.

One of the goals is to achieve a model that efficiently supports reuse mechanisms. Aiding
both the design process and the maintenance of a web site.

 9

1.2 Description of a home banking site

A home banking site is normally a small part of a complete bank site. The complete bank site
contains a great deal of information and functionality and the target group is everybody from
individual clients, company clients, partners, to the general public. The home banking part is
targeting individual clients with accounts in the bank. The Internet service is just one way of
accessing the home banking site. Other ways include WAP (Wireless Application Protocol),
WebTV and telephone service. In this case study the focus is on accessing the home banking
site through the Internet with a web browser. The home banking site is a service restricted
only to clients of the bank.

A home banking site provides the client of the bank with the possibility of doing banking
operations with a web browser connected to the Internet. Generally the user has the
possibility of consulting the balance, consulting the bank transactions, order cheques,
execute money transfers, payments, stocks and funds operations, site personalization,
organize messages among other things.

1.3 Example System of the home banking site

The example system is a part of the whole home banking site. It is used to put a focus on
the important aspects and problems of the design and realization of the site, rather than
showing the implementation of all the functionalities.

Informal description:
For the example system the informal description could be something like:

At first a welcome page is presented to the user. The user is a client of the bank and needs
to identify himself to access the home banking application. His next step will either be to
press the Login button in the menu or choose a functionality. In either case he will be
presented with a login authentication page. If the client id and password are accepted, a
main page with client information is shown along with a menu with navigation. From here,
the user can choose to go to a consult page with the possibility of going to a balance page to
check the balance for each account or go to a bank operation list page to see a list of the
latest bank operations done. Another possibility from the main page is to go to an operations
page. In this page the client can access a transfer page to transfer money from one account
to another or go to a payment page where payments can be done. The last option on the
main page is to go to a personalize page where the client can set the names for his accounts.

For the example system the following functionality has been chosen:

Consult Balance – shows the balance for a given account
Consult Transactions – shows a list of transactions for a given account
Execute Transfer – a money transfer from one account to another
Execute Payment – a service payment
Rename Account – applying a personal name for an account

1.4 Goal and limitations of the case study

A home banking site involves a great deal of aspects, covering everything from layout,
marketing, security, functionality, bank communication, data storage, etc. In a real life
scenario several teams work in collaboration to implement the site, each specializing in their
part. The goal of this case study is to get around all the main concerns and to develop a

 10

method that helps the separation of the different tasks involved and the automation of the
whole process.
Some limitations to the case study are needed since several of the mentioned aspects are
huge. To go into complete detail with every aspect is not possible with the given time period
of the project. For instance, security itself is an ever expanding area with new and improved
ways appearing on a daily basis. For this project the security issues involved with a home
banking application are investigated and a model for setting up a secure environment is
described.
Another rapidly evolving subject is web services. In this project it is only touched
superficially. The main advantages are explained and an example is given.
To administrate a home banking site it is necessary to have an administration application
that can add, delete users, administrate accounts etc. This application would use the same
database as the home banking application, but other than that is a separated application. It
is outside the scope of this case study to build an administration application.

1.5 Explanation of the terms and definitions used in this report

The World Wide Web (WWW) is most often called the Web.
The Web is a network of computers all over the world.
All the computers in the Web can communicate with each other.
All the computers use a communication standard called HTTP.

Web information is stored in documents called Web pages.
A collection of Web pages is called a Web site.
Web pages are files stored on computers called Web servers.
Computers reading the Web pages are called Web clients.
Web clients view the pages with a program called a Web browser.
Popular browsers are Internet Explorer and Netscape Navigator.

A browser fetches a Web page from a server by a request.
A request is a standard HTTP request containing a page address.
A page address looks like this: http://www.someone.com/page.htm.

1.6 Requirements to the reader

It is assumed that the reader has extended knowledge about Java, HTML and the usage of
the Internet. Furthermore the section about security assumes some knowledge about
general Internet technology.

http://www.someone.com/page.htm

 11

1.7 Overview of the thesis

In the following an overview of the thesis is shown with the main points described:

Introduction – The introduction to the thesis along with a description of a home

banking site and the example system used throughout the report

System Architecture – Describes the system architecture and the components

needed to implement a home banking application

Security Aspects – Describes the security aspects involved and builds a security

model that ensures a secure environment

Home Banking Design Model – A model for the home application is built and

every step from the requirements specification to the concepts used in the
implementation is shown

Implementation – Describes the chosen technology and the implementation

model used along with the mapping from the home banking design model
to the implementation framework

Comparison with other models – Compares the model introduced in the thesis

with other existing models

Documentation – Describes a way to document a home banking application

Future Expansions – Gives suggestions to future work and improvements

Conclusion – Summarizes what has been developed and the experiences learned

Appendix – Contains program code along with resumes of relevant articles used in

the thesis and some configuration and installation notes

 12

2. System Architecture

In this chapter the system architecture for the home banking application is investigated.
Before the actual system architecture diagram is shown, the concepts and technologies
involved are described.
At first a dynamically generated site is compared with a statically generated site. This is
followed by the technology needed to implement dynamically generated sites. Then the
connection between the home banking application and the bank system is described and the
web service format is introduced as a practical solution for the communication. In the end
the system architecture diagram is shown and explained.

2.1 Dynamically versus statically generated sites

Deciding whether a site should be implemented as a statically site or a dynamically
generated site is determined by the underlying functionality. A site where the pages exists as
files is a static site, whereas a site where the pages are results of computations triggered
every time a document is requested has to be implemented as a dynamically generated site.
Most of the content on the Internet is static and doesn’t change or only change very
infrequently, in spite of being generated from templates and database systems. In these
cases the entire content of a site may be “compiled” before application deployment and
static pages be stored as files directly accessible by the server (see figure below). An
example of this could be a presentation site, e.g. for a new movie. Once the presentation site
has been made it typically doesn’t change in the time it is online. In other cases where the
content changes frequently (e.g. a news site) and/or depends on user input (e.g. a home
banking site) this approach is not feasible. Even in these cases it is a good idea to split up
the site in sub-sites, where the static part is one sub-site and the dynamic part is another
sub-site.
A home banking site is a good example of a site where the pages need to be created on the
fly according to requests from the user. The content to be displayed is either information
that changes very frequently e.g. the balance of an account or depends on the input data
given e.g. the result of a money transfer. Typically the user provides some input e.g. the
account number and receives a dynamically generated page, in this case with the balance
possibly along with other information for that account. In the figure below is shown the main
difference between a statically generated site and a dynamically generated site.

Static
HTML
pagesBrowser

Web Server

Statically generated site Dynamically generated site

Browser
Web Server

Dynamic
HTML

generator

Data
base

The platform for providing dynamic web sites with database access consists of a web server
and a database server. The web server runs a web application that accesses the database
server.

 13

Web Server
A web server is a program that provides network access to web pages. Its main job is to
respond to HTTP requests from web clients. A request is in the form of a URL (Uniform
Resource Locator). When a request is made the web server typically it checks if the file
exists and is accessible and then returns the page to the client. Every computer on the
Internet that contains a web site must have a web server program to be able to respond to
requests. In this project the iPlanet web server[13] from Netscape is used.

Web Application
The web application is the collection of files that the web server uses during runtime. In this
project the web application includes servlets, JavaServer Pages, HTML documents, and other
web resources which might include image files, style sheet files, compressed archives, and
other data.

Database Server
A database server is a program running a database and responding to SQL requests. The
database keeps the data for the application in an organized way, so it is easily accessed,
managed and updated.
Most program languages have a database interface used to communicate with the database.
The database runs individually from other programs and only needs the interface for the
program to access it. In this project the MySQL database[8] and JDBC[24] interface are
used.

2.2 Connection between home banking application and bank legacy
system

The home banking application can be seen as an interface program between the real bank
and the client. When an operation is done in the home banking site it has to be reflected in
the bank itself. All the banking operations are done inside the bank with the bank legacy
system. The home banking application provides the channel for accessing part of the
functionality in the bank through a web browser. It is mainly a service given by the bank to
the clients. The home banking application has to organize which operations are possible
through the browser. Some functionality is better suited for going to the bank (e.g. if
personal contact is required) while other functionality is convenient to do from home.

2.3 Web Services and how they can be used for home banking sites

One of the newest technologies and the buzz-word of the day is Web Services. Basically a
Web Service is a web-based application that can dynamically interact with other web
applications using well defined and well spread standards. The Web Service format is build
around using standards like XML (eXtendable Markup Language)[18], SOAP (Simple Object
Access Protocol)[15] and WSDL (Web Service Description Language)[16]. The power of XML
lies in the way it can describe the format of data to be interchanged in a standard way. It
means that two or more parts that need to interchange data doesn’t have to know each
others system and data format. By agreeing on a format defined in XML they can
concentrate on their own system. This means that changing, updating etc. one of the parts
doesn’t interfere with any other part.
The other standards used in the web service format and in the home banking application are
SOAP and WSDL.
SOAP is a XML based protocol. It provides a way to access services, objects and servers in a
completely platform-independent way. With SOAP it is possible to query, invoke,

 14

communicate with services provided on remote systems, without regard to the remote
systems location, operating system or platform.
WSDL is an XML based language used to define a web service and describe how to access it.
Normally it is not necessary to understand WSDL to use it because there are tools that
automatically generate the WSDL file. In chapter 5.7 an example of an automatically
generated WSDL file for the bank web service is given.
A home banking site is a service provided by a real bank. It is an application extension to the
already existing bank system. This means that the home banking application needs to
communicate with the bank itself for each bank operation done by the client. The more
independent in terms of platform and implementation the two systems are the better for
obvious maintenance reasons. Furthermore the bank legacy system has typically existed a
long time before the home banking application. By agreeing on a standard way of
communication like SOAP and using a format optimised for describing data to be
interchanged like XML, the home banking application is effectively separated from the bank
application.
Adding to the separation of the systems the web service format was chosen for the way it
can easily support an object-oriented design model which is the base for the model described
in this thesis. Internally the web services are implemented with object-oriented languages
following an object-oriented design model. Externally the web services appear to be objects
accessible by standard interface-descriptions. In this project the communication between the
bank and the home banking application is done using the web service format to directly
invoke bank operations using SOAP and XML. Both the home banking application and the
bank implementation is based on an object-oriented platform.

2.4 System Architecture Diagram

In the figure below is shown the system architecture of the home banking application. It is
accessed through the Internet with a web browser (Netscape, Internet Explorer etc.)

In the bottom level of the system architecture we find the bank legacy system which is the
core of the bank. Inside the bank legacy system is where all the possible banking operations
are defined. This system has the main database with all the information about accounts,
clients, etc.. Anybody or anything that wants to access this system has to connect either
through a terminal system with authentication or some other application also implementing
authentication.
Not shown in the diagram is the machine and software in between the bank legacy system
and the basic component structure which provides the information as a web service (using
XML/SOAP). It is assumed in this case study that this software exists (which normally is also
the case in real banks) and the connection to the bank functions as a web service.

The next level is the home banking application where the main functionality is defined as well
as security services. At this level we also have a database where user, account and error
information related to the home banking application is defined. Furthermore a part of the
functionality at this level is the logging of all user interaction with the home banking site.

 15

Other connections like
Telefone (IVR,

CallCenter), SMS etc.

XML/SOAP (WebService)
connection through a

dedicated line

Web Browser
Internet

Home Banking
Web Site Application

Bank Legacy SystemBank
Database

Local
Database

Web Server

Application Server

System Architecture Diagram

The line between the web server hosting the home banking application and the application
server hosting the bank legacy system is a dedicated line. That it is dedicated means that
the communication is done on a physical connection between the two systems unshared with
anyone else.

Since there is no real bank available to communicate with for this project I have
implemented a bank simulator. The bank simulator provides the bank operations as a web
service. In chapter 5.7 it is described how the bank simulator was implemented.

 16

3. Security Aspects

In this chapter I will first describe the security threats to be considered in a home banking
site and the security services needed to ensure a secure environment. In the second part a
model is built that implements each of the necessary security services for the home banking
application.

3.1 Main security considerations in a home banking site

Computer security and in particular web security is becoming increasingly bigger and more
important as the Internet expands and new online business technology evolves. There is a
growing need for secure web services. A home banking site is a good example of a web
service where security plays an extremely important role. Both the bank and the client want
full privacy from unauthorized parties.

To understand what web security involves it is split up into several aspects[2]. Each of these
aspects can be seen as a security service enhancing the systems capability of avoiding a
security attack.

� Authentication: To ensure the identity of the involved entities

� Access Control: To protect the system resources against unauthorized access

according to a security policy

� Audit Trail: A recording of the activities of an entity, sufficient enough to recreate

the activities at a later stage

� Confidentiality: Ensuring that the system resources are only available to authorized

entities

� Integrity: To ensure that the information has not been modified

� Availability: To ensure that the system resources are available to authorized clients

when needed

� Nonrepudiation: To avoid false denial of involvement in a communication

The following security threats are considered:

� Denial of Service – attack on availability
� Interception – attack on confidentiality
� Tampering – attack on integrity
� Fabrication, Replaying – attack on authenticity

A model for the web security has to be build that can implement each of these security
services.
This model uses concepts such as public key cryptography, digital signatures and
authentication protocols and one of the main standards in web security: SSL (Secure Socket
Layer).

 17

3.2 Security Model for the home banking application

In this sub chapter the security model for the home banking application is explained. At first
it is important to understand the concept of a session. When a client accesses the home
banking application a session for the client is created. This session is used to keep temporary
information about the client while he is using the application (information about user id and
user authentication). The session has an expire time that closes the session if the client
hasn’t been requesting the application for a predefined period of time. Another way to close
the session is by closing the browser window. Furthermore the application has a log off
functionality so the user himself can close the session when he is finished using the
application.

Following is a description of each of the security services in the model. The model created
involves several modules related to the principles of security services mentioned above, such
as access control and authentication, audit trail, confidentiality and integrity etc.

Access Control and Authentication

The process of authentication is to confirm your identity.

Both the client of the bank as well as the home banking application has to authenticate
themselves to each other. In this thesis the server authentication is done with the use of a
certificate and the client authentication is done with a user id and password.

There exist several ways to implement the access control and authentication. Each
depending on the demands of the application. In the following several different
authentication models are discussed. The purpose of this is to find a model that fits the home
banking application well.

Authentication Model 1:

The most simple way is to configure the application server to handle everything. The
application server has a good and logic way of dealing with the access control. Basically you
tell it which resources, like directories, files or even other services that should be accessible
by which roles. Then you add users with their passwords and describe which users have
access to which roles. This is a good solution in systems where the pages/files easily can be
divided between certain types of clients, normal users, administrators etc.

Browser Web Server

1. Request
2. Application server

checks authentication and
access control policy

3. Response
Authentication Model 1

Typically in real home banking applications the authentication is controlled by the application
itself or an authentication service outside the application, so it can be customized for specific
needs. In these cases the Authentication Model 1 doesn’t provide enough flexibility.

In my application I want to associate groups of functionalities according to their importance
defined in the business rules.

 18

Since each function is strongly related to one or more web pages, one solution would be to
set an authentication level for each page. The application would then check the
authentication level at each request.

Another approach is to have one entry point to the application where each request is
compared with the authentication and access control policy. One way of achieving this is to
simulate a firewall. This approach is explained in authentication model 2.

Authentication Model 2

The idea is to have two servers running. Only one server is accessible from the outside and
contains the entry point for the application. At this point the authentication check is applied.
The second server contains all the files for the application that need to be protected. These
files can only by accessed by the first server.

Browser

Web Server 1
1. Request

5. Response

Web Server 2

3. Servlet
checks

authentication

2. Calls local servlet

4. Makes call to server 2
with protected program files

Authentication Model 2

Authentication Model 3

Yet another solution and the one used in this case study is to hide all files from the outside
except one that has the entry point for the application and only let this program file be able
to access the application files. This is shown in the figure below.

Browser

Web Server

1. Request

4. Response

3. Program file
checks

authentication

2. Calls local
program file

3. Makes local call
for protected program files

Authentication Model 3

Using this last solution I have the possibility of customizing my own authentication and
access control policy and I can implement the one explained above where I associate groups
of functionalities with different importance. For each group of functions I have an

 19

authentication level. Each level of authentication can have its own way of implementing the
authentication. For example I can set some simple functionalities like getting the balance,
personalizing the accounts etc. with authentication level 1 and it only requires a user id and
a password to access this level. The second level I associate with functions like transfer,
payment etc. and I want an increased authentication at this level. In this project the
different levels all use static passwords stored in a local database, but the model developed
can easily be expanded to support more advanced authentication models at different levels. I
could for example implement a model where authentication level 2 is based on smart
cards[25] or dynamic password devices.

Audit Trail

An audit trail service is set up for the home banking application. The idea is to log enough
information about the client so that an administrator at a later time can get a clear picture of
the actions done by the user. This is done by tracking every operation done by the user.
Since the logging information depends on the functions and their parameters, this is done
inside the application.

HTTPS

To ensure a secure connection between the client and the home banking application an
HTTPS connection is set up. The HTTPS implements a SSL architecture. As shown on the
figure below the SSL is placed between the HTTP layer and the TCP/IP layer. The SSL
implements several protocols to ensure the secure connection.

SSL

TCP/IP

HTTPweb client/server
transfer service

protocols to
ensure basic security

network layer
protocol

It implements two services for SSL connections:

� Confidentiality –a shared secret key is used for conventional encryption
� Message Integrity – another shared secret key is used to form a message

authentication code (MAC)

The SSL uses SSL Handshake Protocol to let the server and client authenticate each other
and to negotiate an encryption and MAC algorithm and cryptographic keys which are used to
secure the data sent in a SSL record.

 20

Windows 2000 Machine

Web Server

Internet

Client

Application
Servlet

AuthenticationHTTPS

Only allows https-
connections from
specified ports.

Application
functionality Bank

Dedicated line

Only allows
authenticated
clients access

Availability

The availability security is about making sure that the service is always available. Therefore
one of the purposes is to avoid a system crash down. The system has to be able to prevent
attacks on availability. A typical attack on a web service is a hacker trying to provoke a
system break down (denial of service attack) by sending large amounts of requests to the
web server. This could cause the web server to go down if it can’t handle to many
simultaneous requests. To prevent this from happening several measures could be taken to
improve the web servers ability to handle large amounts of simultaneous requests. This can
be done by setting up several servers to share the load of the requests. Another way to
implement a dynamic expire time for the sessions. When the number of requests goes up,
the expire time goes down. The application itself will thereby automatically adjust the load of
requests.

In the home banking application no particular measures have been taken to provide an
availability security service. Though the home banking application is built to ensure that no
requests goes to the bank if either the web server is not running (the service is unavailable)
or if the local home banking database is down or returns an error. For each request from the
client the operation is logged in the local database and if the logging wasn’t possible the
request never goes to the bank. Instead an error message is returned to the client.

A systems sensitivity to input data depends very much on the implementing platform. In this
thesis the Java-platform is used. Since the Java APIs provide access to all commonly used
functions you rarely need to let a shell execute commands with user-supplied data. This
makes it more secure than for example CGI (Common Gateway Interface)[19]*). Many CGI
scripts, if not carefully coded, may use the command shell to execute OS commands. So a
creative hacker can make a script to remove all files on the server, mail the server's
password file to a secret account, etc.

*) CGI is a method by which a web server can obtain data from (or send data to) databases,
documents, and other programs, and present that data to viewers via the web.

 21

 22

4. Home Banking Design Model

In this chapter the model for the development of a home banking application is presented.
The model is described by several steps going from the informal requirements specification
until the implementation.
Whenever possible the steps are explained so they can be performed in an automated way
and thereby providing a basis for implementing a generation mechanism.

4.1 Modelling a Web Site

This model is inspired by the OOHDM model[9] which consists of the following 5 steps:

1. Requirements Gathering
2. Conceptual Design
3. Navigational Design
4. Abstract Interface Design
5. Implementation

This model is based on an object-oriented structure which is also the basis for the
implementation of this project.

As mentioned in the introduction a web site can be split up into three parts: the functionality,
the navigation and the layout. This OOHDM model follows this way of separating the
concerns.

UML is the standard for modelling object-oriented systems and is therefore used in the
modelling of the navigation and layout presentation. This model is based on ideas from
[10][11].

4.2 Requirements Specification

As in all applications, both software and web applications, the first task is to describe the
requirements of the application.

The requirements specification is the base used to describe the conceptual model. The
requirements depends on the users and the tasks they need to be able to perform on the
system.

Home Banking
Application

Consult Balance
Consult Transactions
Execute Transfer
Execute Payment
Rename Account

Client in bank

Users and tasks

For the example system we derive the following users and tasks:

 23

The users of a home banking application: clients of the bank

Tasks (these were derived from the informal description in chapter 1):

Consult Balance – shows the balance for a given account
Consult Transactions – shows a list of transactions for a given account
Execute Transfer – a money transfer from one account to another
Execute Payment – a service payment
Rename Account – applying a personal name for an account

4.3 Functionality Description - Conceptual Model

In this part of the model the functionality is described and a conceptual model is built. There
are several important matters to take into account when defining a function in a home
banking site. For each function request the authentication and access control for that
particular function has to be checked before it is executed. The only thing needed is to define
the authentication level for each function. Furthermore the logging data for each function has
to be specified. This is done at the logging specification.

The steps in the functionality description are the following:

• Definition of Functions - define and group the functions from the tasks defined in the
requirements specification.

• Access Specification - apply the authentication level for each function
• Logging Specification – define the parameters to be logged for each function
• Database Modelling – the database is modelled and a conceptual model is defined

4.3.1 Definition of Functions

This part of the model defines the step from the informal functionality description to the
formal specification of the requirements.

Operations in the bank are seen as transactions. The home banking functionality is a
reflection of the banking functionality. Thus each function in the home banking application
will be a direct mapping of one or more transactions in the bank, unless it is a function
related to the application itself. E.g. the Rename Account doesn’t exist in the bank and
therefore this functionality might need database storage in the home banking application.
Furthermore the functions are divided into consulting functions and operation functions. A
consulting function only requests data e.g. consulting the balance, while an operation
function tries to execute a transaction which changes the accounts, e.g. a money transfer.

The full description of a function is then defined by its input and output data, which group it
belongs to, the authentication level it has and the logging information needed. Each of these
steps are now shown for the example system.

The first step is to describe each function by its input and the resulting output and which
group it belongs to:

Bank specific operations:

Consulting functions:

consultBalance : ClientId × AccountId→ Balance
consultTransactions : ClientId × AccountIdSource → Transactions

 24

Operation functions:

execTransfer : ClientId × AccountIdSource × AccountIdDest × Amount → Transfer
execPayment : ClientId × AccountIdSource × PaymentId × Amount → Payment

Application specific operations:

Personalization functions:

accountNewName : ClientId × AccountId × Name → Accounts

4.3.2 Access Specification

For this application we want to relate the authentication and access control to each bank
operation. If a user tries to execute a command which has a higher level than he is
authenticated to he will be presented an authentication page for that level before the
command is executed.

At this step in the model we describe the authentication level for each function according to
the sensitivity described by the business rules for the application.

For the example system the following levels are set:

Consulting functions:

consultBalance : level 1
consultTransactions : level 1

Operation functions:

execTransfer : level 2
execPayment : level 3

Personalization functions:

accountNewName : level 1

4.3.3 Logging Specification

Ideally the logging functionality of a home banking site is a plug on, like an extra service.
In real home banking applications there exists several logging functionalities. The two main
logging parts are the logging for the audit trail security service and the other is logging for
development purposes. Furthermore the bank itself logs everything in the communication
between the bank and the home banking application. If some doubt from a client or a bank
administrator appears the logging from the bank is compared against the logging from the
home banking application.

In a real home banking application every operation done by the client is logged in the home
banking application before any request to the bank is made. If there was a problem with the
logging the home banking application doesn’t contact the bank, but returns an error to the
client. This ensures that the system is running correct and that everything will be logged.

In this project the logging for the audit trail security service is implemented. The logging
information is directly related to each function in the home banking application.

For each operation the client id, function authentication level and a time stamp is logged.

 25

In this part each function is described with the logging parameters.

Consulting functions:

consultBalance : AccountId→ BalanceOk
consultTransactions : AccountId → TransactionListOk

Operation functions:

transfer : AccountIdSource × AccountIdDest × Amount → TransferOk
payment : AccountId × PaymentId × Amount → PaymentOk

Personalization functions:

accountNewName : AccountId × Name → AccountNewNameOk

4.3.4 Database Modelling

The main purpose of the database related to the home banking application is to keep user
information, like user name, password, user status, etc.. Concepts that are related to the
home banking application. Furthermore the database is used to keep information about the
name of accounts, logging information and error codes with messages, etc..

The modelling of the database is done following an Entity Relation model defined by the
following 6 steps:

1. Choose Entities
2. Find attributes for entities
3. Normalization
4. Create ERD
5. Remove many-to-many relationships
6. Redraw final ERD

Following these steps a conceptual model describing the functionality seen from the client as
well as from the internal functionality needed for the home banking application to run is
build.

For the example system the following is modelled:

Entities

Home banking application

Client – contains the login data about the client

Account – contains additional information about the accounts that doesn’t exist

in the bank

OpLog – contains the logging of the operations related to accounts

OpType – contains the different home bank operation types

Error – contains the different error types

 26

Bank application

Client – contains the data about the client in regards to the bank

Account – contains the information about the account

Transaction – contains information about transactions related to an account

Attributes and keys for entities

The key attributes are underlined

Home banking application

Account
account id integer
name string

Client
client id integer
level integer
password string
last login timestamp

OpLog
op id integer
account id integer
date timestamp
detail string
status integer

OpType
op id integer
type string

Error

error id integer

message string

 27

Bank application

not all the entities are shown for the bank application – only the once with relevance to the
example system

Account
account id integer
balance double

Transaction
transaction id integer
amount double
account Src integer
account Dst integer
description string

Client
client id integer
account id integer
name string
address string

Normalization

Now it is verified if the database is normalized, that is if it lives up to the 5. NF.

1NF

Definition: Non-key attribute in a table should be functionally dependent on the whole key.
 This is true for all entities.

2NF

Definition: 1NF, plus it includes no partial dependencies; that is, no attribute is dependent
on only a portion of the primary key.

This is true for all entities.

3NF

Definition: 2NF, it contains no transitive dependencies.

This is true for all entities.

4NF

Definition: There can not be 2 or more independent multi-value facts about an entity.

This is true for all entities.

 28

5NF

Definition: No table can be build from a join of smaller tables.

This is true for all entities.

ERD

The following entity-relationship diagram is derived:

Account

Account

TransactionBank
Home Banking

Application

0..1

0..*

1

1

Client

Client

11..*

10..1

OpLog 0..1 1

Error

OpType

1

1

1

1

has

has

has

has

has

has

has

Remove many-to-many relationships

There exist no many-to-many relationships.

The conceptual model is created from the ERD by adding the functions where they affect the
table. The relationship symbols are not shown. The following conceptual model is derived for
the example system:

 29

Conceptual Model for example system:

Account
account id: Integer
balance: Double
...

Account

account id: Integer
name: String

getBalance()setName(String)

Transaction

transaction id: Integer
amount: Double
account Src: Integer
account Dst: Integer
description: String
...

getBalance()

Bank
Home Banking

Application

< has has >0..1 0..*1 1

Client
client id: Integer
password: String
level: Integer
lastLogin: Date

Client

client id: Integer
account id: Integer
name: String
address: String
...

<has 1

1..*

< has

1

0..1

OpLog

op id: Integer
account id: Integer
date: Timestamp
detail: String
Status: Integer

<has0..1 1

Error

error id: Integer
message: String

OpType

op id: Integer
type: String

1

1

1

1

4.4 Navigational Design

In this part the navigational modelling is described.

This part of the model focuses on the navigational design of the web site. The navigational
design describes which parts of the conceptual model is to be seen and how the user can
navigate to see them. Thus the purpose of this part of the model is to show how the
navigational model can be systematically developed from the conceptual model.

The navigational model in a web application has to allow the user not only to browse through
the information being shown in the web application but also to operate on it.

The navigational model is built from the conceptual model and is seen as a view over the
conceptual model.

It is defined by two steps:

The navigational space model shows the classes of the conceptual model that can
be visited
The navigational structure model defines the navigation of the application.

4.4.1 Navigation Space Model

The navigation space model shows the objects that can be visited by direct navigation.

The navigation space model is derived from the conceptual model with the following steps:

• All classes that are relevant for the navigation are included in the navigation space
model.

 30

• All attributes in the conceptual model map directly to attributes in the navigation
space model if they are relevant

«navigational class»
Account

account_id: Integer
balance: Double

«navigational class»
Account

account_id: Integer
name: String

getBalance()setName(String)

«navigational class»
Transaction

account_id: Integer
date: Timestamp
amount: Double
balance: Double
description: String

getTransactionList()
execTransfer()
execPayment()

Bank
Home Banking

Application

10..*

1..*

1

4.4.2 Navigational Structure Model

Next is created a navigation structure model that shows the navigation between the
navigational classes. This model is based on a simplified version of [10] and [11].

UML extension symbols used in the Navigational Structure Model:

web page

menu

index

 31

Navigational Structure Model for example system:

Balance

Transaction List

Main

Balance

Transfer

Payment

Transfer

ByDate

Consultations

Payment

Operations
Rename Account

Consultations

Operations
Personalization

Transaction List

4.5 Layout Design

The layout of a page is often very closely connected to the graphical design of the page. The
layout mainly deals with the placement of the content for each page, while the graphical
design determines the font type, size and colour, background colours, pictures, logos, etc. It
is the more artistic part of a web site and the people involved with the graphical layout tend
to give more value to the visual experience of the site thinking less of the functionality
behind. Designing a web site is a balance between being original in the use of graphics and
layout of the page while giving a good user experience and making sure the site shows the
right profile and identity of the company. Furthermore the layout and graphical design is
dependent on the restrictions set by the browser and technology used. For example creating
the whole site as a Flash animation would give more freedom to graphical designer, but
might give some other problems with functionality.
Generally the more functionality and size a site has, the less freedom the graphical designer
has.

In a home banking site the functionality often has the highest priority and the graphical
layout is very restricted. Most of the pages contain either tables with text and values and/or
pages with fill-out forms.

Basically the content of each page is defined from the functionality of the page and then has
to be mapped to the page using some layout criteria’s.

To define a method for laying out the pages we first need to define the different types of
pages and their elements. There exists and is constantly being developed a lot of
technologies and techniques to aid in the structuring and graphical presentation of the page
as well as providing methods for creating dynamic pages. As the foundation, HTML defines
the language used to layout the content on the page. HTML in itself is purely static, but using
technologies such as JavaScript pages can change the content dynamically without
requesting the web server for a new page. Furthermore there exists several plugins (like

 32

Flash[22]) to the browsers providing additional possibility of creating more animated and
graphically attractive web sites.

To formalize the layout a presentational model is created. It shows the layout of the

At the top level of the presentational model a frameset is described. A frameset splits up the
page in different areas to arrange presentational objects, but may contain other nested
framesets.

4.5.1 Presentational Model

The presentation model is based on framesets. This is where the pages are split up in frames
that can be directly implemented with HTML frames.

The following symbols are introduced to construct the presentation model:

«frameset»

«frame» «frame»

«presentational class»

«presentational class»

«text» «form»

«anchor» «button»

«image»

The presentational class contains the elements or groups of elements used on the HTML
pages.

For the example system the following presentation model is derived – only the main
presentational class for the transfer page is shown. The presentational classes for the other
pages are very similar because they follow the same structure. E.g. the payment
presentational class has the same layout only the title and form is different.

 33

«main frameset page»

«presentational class»
header

«bank logo»

«presentational class»
main

...

«presentational
class»
menu

...

«presentational class»
menu

«sub menu consult»

balance

transactin list

«sub menu operation»

transfer

payment

presentationr

log in

log out

«presentational class»
main

«form»

execute

«presentational class»
page name

clear

Internal Bank Transfer

«presentational class»
message

result message

4.5.3 Applying CSS – Style, Colours, Fonts, Images

In the last step of the Home banking design model the colors, font parameters and general
layout parameters are applied.

In a home banking site functionality is one of the main concerns since we are dealing with
banking operations. And the pages in a home banking site tend to have few pictures and a
lot of data to be presented. One technology that definitely aids in separating the graphical
presentation from the content in these cases is CSS – Cascading Style Sheets.

 34

CSS is a tool built into the latest browsers that gives the possibility of reusing and gathering
information about styles, fonts, colors, margins, etc., for the text, tables, form elements,
etc..

Different pages can load the same CSS file that provides a way to describe colour, style, etc.,
for fonts and table elements, etc., which are the elements mainly used when a lot of data
and/or a lot of pages has to be presented in an organized fashion. In this way changing the
appearance of the page is centralized and very easy. Furthermore CSS-files can load each
other in an object-oriented way so one CSS file can inherit styles from another. By the use of
CSS a great part of the graphical layout can be dealt with at the top level separating it in a
simple and powerful way from functionality.

The CSS files are organized according to the views that use them.

CSS applies the following:

font parameters (size, font color, face etc.)
colors (background, layers etc.)

 table layout (margins, padding)

Typically we want the same type of layout for similar pages or as a minimum make sure
each page have some sort of identical representation. This is a way of improving the user
experience, ease the navigation and facilitate the recognition of where the user is.

Applying CSS

CSS styles are applied to each element in the presentation class as well as each type of
presentation class.

For the example system we get:

First the three main pages that is separated by the frameset:

«presentational class» header:
style sheet cssHeader

«presentational class» menu:
style sheet: cssMenu

«presentational class» main: (same for all main pages like, balance, transfer, etc.)
style sheet: cssMain

Then the elements on the main page:

«presentational class» page name:
style sheet: cssPageName

«presentational class» page name text:
style sheet: cssPageNameText

«presentational class» message:
style sheet: cssMessage

«presentational class» message text:
style sheet: cssMessageText

 35

«presentational class element» button: (same for both execute and clear button)
style sheet: cssButton

Then follows the elements on the menu page:

«presentational class» sub menu: (same styles for consult and operation menu)
style sheet: cssSubMenu

«presentational class element» anchor: (same for each link in the menu)
style sheet: cssAnchor

 36

5. Implementation

This chapter focuses on the implementation of the home banking site. The first sub chapter
(5.1) describes the chosen technology Java, JSP and servlets. The second sub chapter (5.2)
shows how the JSP and servlets can be combined to create an implementation model for the
application. In the third chapter (5.3) an implementation of this structure is then introduced
along with the file structure of the application. In sub chapters 5.4, 5.5 and 5.6 the step
from the model to the implementation is described. This is followed by chapter 5.7 that
explains the implementation of the authentication model defined in chapter 3.2. Chapter 5.8
describes the implementation of the Bank Simulator and finally chapter 5.9 contemplates on
some of the difficulties and decisions taken during the implementation process.

5.1 Choice of technology – Java technology (JSP and Servlets)

For this case study Java technology has been chosen as the implementation platform. With
its object-oriented structure it provides an efficient building ground for reusability in a
banking application environment.
Imagining a company that creates several applications for several banks. By using the Java
structure and organizing the code well several advantages are clear.
As an example of reusing and organizing code let’s take a look at the different levels. On the
top level exists objects used by all the applications like for example a session-object with
general functionality. This objects share general functionality used by several different
applications. This object is extended and functionality added for the next level where
different applications add the extra functionality needed. These applications can again be
split up and extended. In the lowest layer several different banks use the same applications
and thus extend the application objects (see figure).

One possible organisation of the code for an object used throughout the applications e.g. a
session-object could be like this:

Session-object

Banking Application
Session Other Application

Home Banking Session Corporate Banking
Session

Bank 1 Home Banking
Session

Bank 2 Home Banking
Session

Furthermore using Java you have a robust underlying structure. Robust because it avoids
using pointers and other means of addressing memory directly. It also checks array
boundaries, etc. and thereby eliminates the risk of overwriting memory and corrupting data
that could cause a system shutdown. That along with the exception handling aids greatly in

 37

creating secure programs when dealing directly with input data, which is important in a
home banking application.

Java Servlet

A servlet[6] is a Java web component that can create dynamic content. By dynamic content
is meant that the output to the web browser can change dynamically according to the
calculations done by the servlet and the input data received. It runs in a servlet container
which is part of a web server that handles network services like a request, response, etc.. It
can replace the need for gateway programs like CGI-programs and other similar technologies
that provide the interface between the web server and external programs. Servlets are
invoked through URL invocation.

A typical sequence of events for a servlet request could be like this:

1. A client/(web browser) makes a HTTP-request to a web server
2. The request is received by the web server and handed over to the servlet container
3. The container uses its configuration to determine which servlet to invoke and calls it

with objects representing the request and response
4. After that it uses the request parameters to determine the remote user and gather

the data that was possibly sent with the request. It then performs the functionality it
was programmed for. E.g. call a Java Bean for additional functionality. And finally
generates the data needed to send back to the client. The data is sent back with the
response object.

5. When the servlet is finished processing the request, the container flushes the
response and returns control back to the web server.

JavaBean

A JavaBean[5] is a self-contained Java software component. It provides a structure for
building reusable Java components. The structure follows certain design patterns when
naming JavaBean features and can therefore be used in conjunction with JavaBean builder-
tools for easier implementation. It works efficiently together with Java servlets to keep parts
of functionality outside the servlets and provide data for a JSP-call (see chapter 5.2). In the
implementation structure used in this thesis JavaBeans are used to contain the functionality
of the home banking application.

JSP – Java Server Page

A JSP[7] is a page, much like an HTML page, that can be viewed in a web browser. However,
in addition to HTML tags, it can include a set of JSP tags and directives intermixed with Java
code that extend the ability to incorporate dynamic content in a page. One of the main
benefits of JSPs is that, like HTML pages, they do not need to be compiled. The web designer
simply writes a page that uses HTML and JSP tags and puts it on their web server. The web
designer does not need to know how to define Java classes or use Java compilers.

JSP pages can access full Java functionality in the following ways:

by embedding Java code directly in scriplets in the page
by accessing Java beans
by using server-side tags that include Java servlets

A JSP page is an extension of a Java servlet and provides a good way of holding the layout of
a web page. It can help avoiding mixing the functionality with the layout.

 38

5.2 MVC - Model View Controller (Java Server Pages Model 2)

Using Java Server Pages together with Java Servlets combined in the Model View Controller
model provides a good framework platform for the model. It effectively helps in separating
layout, navigation and functionality. It implements a good structure for a bank site.

Model – The model is the main functionality of the web application. It consists of Java Beans
that contain the business logic and connectivity with other resources like databases, web
services etc. (It also keeps the state of the web application)

View –The view together with the CSS file(s) describes the layout of the page. A view is
basically a JSP pages that contains the html used to build the pages. It furthermore contains
some Scriplet code (could be replaced by tags) that is mainly used to catch the data to be
shown from the beans.

Controller – The controller takes care of receiving the form data, instantiating the right
model objects (beans) and redirecting to the correct view page.

Request

Web Server

Web form

Response

Web page

Java beans

Bank Server

Controller :
Servlet

View :
JSP

Instantiates
Database

Model :

Fo
rw

ar
d

5.3 Implementation Structure

This chapter shows the implementation structure of the home banking application. As a base
for the implementation is used an already implemented simple example of the MVC model
called Theseus[17]. This implementation has a controller servlet which has been changed for
this application, some extra classes for instantiating the bean and an example.

 39

The Java classes has the following structure:

Theseus

actions beans servlets

presentation

actions beans servlets

general

src

banking

The whole directory structure for the application:

src
WEB-INF

classes lib

pics

Homebank

web

...

css

...

unprotected

The main following types of files exist:

Layout files:
css/stylesheet.css, balance.jsp, transfer.jsp, etc.

Functionality files:
GenericBean, BalanceBean, TransferBean, PaymentBean, etc.

Navigation files:
ConsultationAction, OperationAction, etc.

Layout file explained:

In the following the main points of balance.jsp file is shown and explained. The HTML tags
are not explained.

1 <%@ include file="/loadBean.jsp" %>
2 <% BalanceBean b = (BalanceBean)in.readObject(); %>
3
4 <html>
5 <head><title>balance</title>

 40

6 <%= Global.getStylesheet() %>
7 </head>
8
9 <body class="cssMain">
10
11 <div class="cssHeader"> :: Consult the balance of your accounts</div>
12
13 <div class="cssPageName">
14 <table cellpadding="0" cellspacing="0">
15 <form method="post" action="/ConsultBalance.do?command=GetBalance&auto-
16 populate=true"><tr>
17 <td class="cssPageNameText">Active account:</td><td class="formField">
18 <%= b.getAccountsSelect("selectField") %></td>
19 </tr></form></table>
20 </div>
21
22

23 <table class="balanceBorder" cellpadding="1" cellspacing="0" border="0"><tr>
24 <td class="formNameBalance">Balance:</td><td class="formValueBalance">
25 <%= b.getBalance() %> €</td>
26 </tr></table>
27
28

29
30 <div class="message">
31 <%= b.getMessage("okMessage","errorMessage") %></div>
32
33 </body>
34 </html>

The line numbers are added only to help describing the functionality. They don’t exist in the real
balance.jsp file.

line 1: import a file with a general structure for loading the bean
line 2: the bean containing the functionality for the page
line 6: loads the style sheet file for this document. The information is stored

in Global to make it easy to change for all or individual files
lines 11,13 and 30: generally the <div> tag is used to surround the view parts.

With a <div> several parameters like font attributes, padding, etc. can
be set for the area the tag surrounds

lines 18,25 and 31: shows how methods from the functionality bean is invoked
to get the values calculated in the functionality part. In line 31 it is shown
how the styles can still be used even though the element is coming from
the and that different styles can be used for different purposes. In this
case we want different colour for different types of messages.

Functionality file explained:

In the following the functions of BalanceBean is explained. The BalanceBean extends
GenericBean.

BalanceBean() – sets the type of the operation – used for logging
refresh() – called to reset message values etc.
setAccount(String value) – called during population of the class – to set the parameters send

when a form is submitted

 41

the following methods return the values used on the balance.jsp page:

getBalance() – returns the balance
getAccountsSelect() - returns a select with the accounts belonging to the client
getAccountsSelect(String style) – same as getAccountsSelect() but adds a style sheet the select
getMessage() – returns the message, can be either an error message or a success message
getMessage(String styleOk, String styleError) – same as getMessage() but gives the possibility

of showing the style

the following functions contacts the bank by invoking a function through the web service

getAccountsFromBank(ActionContext context) – calls bank to get accounts for client
getBalanceFromBank() – calls bank to get balance for an account

Navigation file explained:

In the following the methods of ConsultationAction is explained. ConsultationAction
extends Action. Each of these methods are called from ControllerServlet and reflect a
command on the view (JSP) pages. E.g. GetBalance is a command on the balance.jsp page.

executeCommandShowBalancePage(ActionContext context) – relates to a

command on the menu.jsp used to show the balance page without having an
account selected

executeCommandGetBalance(ActionContext context) – relates to a command
from balance.jsp to show the balance for a given account

executeCommandShowTransactionListPage(ActionContext context) – relates to
 a command on menu.jsp used to show the transaction list page without having
 an account selected
executeCommandGetTransactionList(ActionContext context) – relates to a

command on the transactionList.jsp to show the transaction list for a given account

Now it is described how this relates to the MVC structure:

Controller:

Theseus.servlets.ControllerServlet: this is the controller servlet in the MVC model
banking.presentation.servlets.BankingHook : is called from the ControllerServlet
to make the authentication check

Model:

banking.actions.ConsultationAction: for each function-group there exists an
action– this is the action for the consultations
banking.beans.BalanceBean: for each function exists a bean – this is the bean for
the balance

View:

balance.jsp: all the view files exist in the Homebank/web directory – this is the view
for the balance

 42

MVC-functionality

When the web server is started and the first page request is made an init procedure is called
in the Controller Servlet that sets up the Actions and Authentication levels used at each
request.
The information is stored in the files: auth-config.xml and action-config.xml.

The purpose of these two files is now explained along with two examples.

auth-config.xml

This file contains the authentication level for each function and the resource (in this case a
login file) for each level. This information is used in the Controller Servlet to check that the
client is authenticated to the right level when executing a function.

Here is part of the auth-config.xml file for the example system. The whole file is shown in the
auth-level implementation step (chapter 5.4)

<auth-config>
 <!-- authentication-level for each command -->
 <auth command="ShowBalancePage" level="1"/>
 <auth command="GetBalance" level="1"/>
 ...

 <!—login page for each authentication level -->
 <auth-resource level="1" page="/unprotected/loginLevel1.jsp"/>
 <auth-resource level="2" page="/unprotected/loginLevel2.jsp"/>
 ...
</auth-config>

action-config.xml

This file contains the action configuration used by the controller servlet to set up the Action
class
for each function. Every group of functions uses the same Action class. It furthermore
contains the Bean class for each function as well as the resource that the controller servlet
will direct to when a command has been executed.

Here is part of the action-config.xml file for the example system. The whole file is shown in
the auth-level implementation step (chapter 5.4).

<mvc-app>
 <action name="ConsultBalance" class="banking.presentation.actions.ConsultationAction">
 <bean name="BalanceBean" class="banking.presentation.beans.BalanceBean"/>
 <forward name="ShowBalanceOK" resource="/balance.jsp"/>
 <forward name="GetBalanceOK" resource="/balance.jsp"/>
 </action>
 <action name="ConsultTransList" class="banking.presentation.actions.ConsultationAction">
 ...
</mvc-app>

To understand the overall flow of the application the Controller Servlet is now explained. The
most important functionality happens in the init function and the service function.

The init function is called the first time a request for the Controller Servlet is made.
The service function is called for each request for the Controller Servlet.

 43

init function

These are the main things done in the init of Controller Servlet:

• set up local homebank database connection
• auth-config.xml is read and the authentication levels inserted into a Map
• action-config.xml is read and the action classes and references are put into a Map

service function

Explanation of main steps when executing the consultBalance command:

1. Browser requests from the balance.jsp page with parameters: command=GetBalance
2. Web Server receives request and redirects to the service function in Controller Servlet
3. The command is verified that it exists
4. The homebank database is checked if it is running so logging for each command can

be done
5. If these two criteria are full filled the Controller Servlet checks the authentication level

for command by calling BankingHook
6. If client is authenticated for at least level 1 (required for consultBalance) control is

returned to the Controller Servlet else it redirects to the login page for level 1
7. Assuming the user is logged in the Controller Servlet reads the command: GetBalance

from the query string
8. It furthermore reads the first part of the query string which tells which Action to use

(the Action contains the bean with functionality for the command)
9. The Action is instantiated if it wasn’t found in either the request, the session or in the

application as an attribute. If it wasn’t found it is then stored in either the request,
session or application for later use

10. Then the Controller Servlet calls a function that “populates” (calls a setter-function in)
the BalanceBean with the parameters sent from the page. In the case of
consultBalance it is only the account number

11. The parameter values needed for the consultBalance command are now ready and the
Controller Servlet invokes an executeGetBalance command in ConsultationAction
which is the Action bean belonging to the command consultBalance

12. The ConsultationAction bean calls two functions in the BalanceBean – first the
function getAccounts which gets the accounts and then the getBalance which gets the
balance

13. The getAccounts and getBalance get their result from the bank. This is done by
invoking a getAccounts and getBalance command on the web service provided by the
bank. The web service (the bank) contacts the database and returns the accounts and
the balance to the BalanceBean

14. The BalanceBean now has the values to be shown on the browser so they return an
ok to the ConsultationAction which returns the name of the page that the Controller
Servlet will forward to, which in this example case is balance.jsp

15. The Controller Servlet then forwards to the page along with the BalanceBean which
contains the data to be shown on the page

16. The balance.jsp page is called and this page calls methods in BalanceBean which
returns the accounts and the balance for the requested account

This is now shown in the following diagram with boxes representing Java classes and arrows
representing function calls or function invocations.

 44

Example of execution of command: consultBalance

balance.jsp

Bank Web
ServiceBalanceBeanConsultationAction

Controller Servlet

calls

forw
ards

invokes web
service and
command

balance.jsp

request

BalanceBean

requests
balance data

invokes
command

invokes web
service

command

Bank Web
Service

BalanceBeanConsultationAction

calls

invokes
command

executeGetBalance() {
 getAccounts()
 getBalance()
 ...
}

getAccounts()
 invoke Web Service command

getBalance()
 invoke Web Service command

The arrows in the figures above only show the call of functions and doesn’t tell whether
values were returned for each call or not.

5.4 Mapping navigation and functionality

The function groups represent collections of functions with similar functionality. It is
therefore practical to keep them together in the implementation.

Each function-group relates to an Action-class:

Consultation-group -> ConsultationAction
Operation-group -> OperationAction
Personalization-group -> PersonalizationAction

The beans represent the functionality of the home banking application.

 45

Each function relates to a Bean-class:

consultBalance -> BalanceBean
consultTransactions -> TransactionListBean
execTransfer -> TransferBean
execPayment -> PaymentBean
accountNewName -> NewNameBean

Each function inside the balance-group relates to a command:

consultBalance -> executeConsultBalance
consultTransactions -> executeConsultTransactions
transfer -> executeTransfer
payment -> executePayment
accountNewName -> executeAccountNewName

action-level implementation step

At this step an action xml-file is made that defines an action class for each command. These
commands were defined in the functionality description (chapter 4). Each action contain the
bean with the functionality for the action and the resources that can be called from the
action class when a command has been called.

The action-config.xml for the example system:

<mvc-app>
 <action name="ConsultBalance" class="banking.presentation.actions.ConsultationAction">
 <bean name="BalanceBean" class="banking.presentation.beans.BalanceBean"/>
 <forward name="ShowBalanceOK" resource="/balance.jsp"/>
 <forward name="GetBalanceOK" resource="/balance.jsp"/>
 </action>
 <action name="ConsultTransList" class="banking.presentation.actions.ConsultationAction">
 <bean name="TransListBean" class="banking.presentation.beans.TransactionListBean"/>
 <forward name="ShowTransactionListOK" resource="/transactionList.jsp"/>
 <forward name="GetTransactionListOK" resource="/transactionList.jsp"/>
 </action>
 <action name="OperationTransfer" class="banking.presentation.actions.OperationAction">
 <bean name="TransferBean" class="banking.presentation.beans.TransferBean"/>
 <forward name="ExecTransferOK" resource="/transfer.jsp"/>
 <forward name="ShowTransferOK" resource="/transfer.jsp"/>
 </action>
 <action name="OperationPayment" class="banking.presentation.actions.OperationAction">
 <bean name="PaymentBean" class="banking.presentation.beans.PaymentBean"/>
 <forward name="ExecPaymentOK" resource="/payment.jsp"/>
 <forward name="ShowPaymentOK" resource="/payment.jsp"/>
 </action>
 <action name="Personalization" class="banking.presentation.actions.PersonalizationAction">
 <bean name="NewNameBean" class="banking.presentation.beans.NewNameBean"/>
 <forward name="ShowNewNameOK" resource="/newName.jsp"/>
 <forward name="ExecNewNameOK" resource="/newName.jsp"/>
 </action>
</mvc-app>

 46

auth-level implementation step

At this step an authentication xml-file is made that defines a level for each command. These
levels were chosen in the functionality description (chapter 4).

The auth-config.xml for the example system:

<auth-config>
 <!-- authentication-level for each command -->
 <auth command="ShowBalancePage" level="1"/>
 <auth command="GetBalance" level="1"/>
 <auth command="ShowTransactionListPage" level="1"/>
 <auth command="GetTransactionList" level="1"/>
 <auth command="ShowTransferPage" level="2"/>
 <auth command="ExecTransfer" level="2"/>
 <auth command="ShowPaymentPage" level="3"/>
 <auth command="ExecPayment" level="3"/>
 <auth command="ShowNewNamePage" level="1"/>
 <auth command="NewName" level="1"/>

 <!—login page for each authentication level -->
 <auth-resource level="1" page="/unprotected/loginLevel1.jsp"/>
 <auth-resource level="2" page="/unprotected/loginLevel2.jsp"/>
 <auth-resource level="3" page="/unprotected/loginLevel3.jsp"/>
</auth-config>

5.5 Mapping views

For each presentational class that is part of the frame split, a JSP view-page is created. The
presentational classes are also used to define areas where CSS is applied. This is done in the
next sub chapter.

JSP view-pages:

For the example system we get:

Header View -> header.jsp
Menu View -> menu.jsp
Balance View -> balance.jsp
Consult Transaction List View -> transactionList.jsp
Transfer View -> transfer.jsp
Payment View -> balance.jsp

Each of these pages follow a template page structure. The differences are described by the
presentational classes on each page along with the presentational symbols. These symbols
are standard symbols and can be put in a form of a library so the graphical layout designer
only has to think about the placement and the description of the style sheet that is applied to
each element.

 47

5.6 Adding CSS

CSS can be applied to documents in three different ways.

1. By linking a CSS-file in the top of the HTML document – normally inside the header

<link rel="STYLESHEET" type="text/css" href="stylesheet.css">

2. By embedding CSS on the page using a <style> tag

<style>...</style>

3. By using inline style sheet on each element.

The most efficient way for a home banking web site (and most sites in general) is to use the
first method where a style sheet file is loaded. In this way all the styles are kept outside the
view pages and reusability in design layout can be maximized. It is not unlikely that the
graphical layout designer suddenly wants to make global change that need to effect all
pages.

Imagine for example that the background color for each page is described by a tag in the
stylesheet.css file. When the designer wants to change the background color on all pages he
would only have to change in one place.

In the stylesheet.css file there would be a tag like:

.cssBackground {
 background-color: #f0f0f0;
}

All pages with the with the following body tag would have the color: #f0f0f0 (RGB-value) as
the background color.

<body class=”cssBackground”>

The CSS styles are added for each CSS-element defined in chapter 4.5.3

For the example system we get:

.cssHeader {
 background-color: #9CB5C8;
 margin-left: 20px;
}

. cssMenu {
 background-color:#8AA4B8;
 margin-left: 0px;
}

. cssMain {
 background-color:#9CB5C8;
 margin-left: 20px;
}

 48

. cssPageName {
 font-family: Verdana, Arial, Helvetica, sans-serif;
 padding-top: 12px;
 padding-bottom: 8px;
 padding-left: 20px;
 text-align: left;
 font-weight: bold;
 font-size: 10pt;
 background-color: #8EA7BA;
 width: 500px;
 height: 43px;
 vertical-align: center;
 border-bottom: 1px solid #8198AA;
}

. cssPageNameText {
 font-family: Verdana, Arial, Helvetica, sans-serif;
 color: #336688;
 padding-top: 0px;
 padding-right: 4px;
 text-align: right;
 font-weight: bold;
 font-size: 8pt;
}

. cssMessage {
 padding-left:40px;
}

There is defined two CSS styles for this text because it is a result of an operation that should
result in two different views:

. cssMessageTextOk {
 font-family: Verdana, Arial, Helvetica, sans-serif;
 color: #2266ff; // blue color – signifies a success full result from an operation
 font-size: 9pt;
 font-weight: bold;
}

. cssMessageTextError {
 font-family: Verdana, Arial, Helvetica, sans-serif;
 color: #ff6622; // red color – signifies an error happened during execution
 font-size: 9pt;
 font-weight: bold;
}

. cssButton {
 font-family: Verdana, Arial, Helvetica, sans-serif;
 color: #336688;
 font-weight: bold;
 font-size: 8pt;
}

. cssSubMenu {

 49

 padding-top: 2px;
 padding-bottom: 2px;
 text-align: left;
 padding-left: 3px;
 font-weight: bold;
 font-size: 8pt;
 font-family: Verdana, Arial, Helvetica, sans-serif;
}

. cssAnchor:link {
 color: #0033cc;
 text-decoration:none;
}

. cssAnchor:hover {
 color: #3366cc;
 text-decoration:none;
}

. cssAnchor:visited {
 color: #000033;
 text-decoration:none;
}

. cssAnchor:active {
 color: #3366cc;
 text-decoration:none;
}

In the appendix there is an example of the full style sheet file: styles.css

5.7 Implementing the Authentication Model and HTTPS

This subchapter describes the implementation of the authentication model and the steps
needed to create HTTPS connection.

Authentication Model Implementation

The authentication implementation consists of a class file (BankingHook) with three functions
and the auth-config.xml file mentioned in chapter 5.4.

When the client accesses the home banking application for the first time a session is created
in the web server. This session is valid until it times out (web server configuration) or until it
is being invalidated either by the application or when the browser window is closed by the
user. The session contains the client id that identifies the client and the authentication level
that the client is authenticated to for the current session.

In the following the main functionalities in BankingHook is explained:

logIn – tries to login to the given authentication level – this is done by accessing the
local homebank database and verifying the user id and password for the given
authentication level

 50

logOut – invalidates the session and thereby “forgets” the client id and authentication
level and then redirects to the welcome page

securityCheck – checks the authentication level for the command – this is done by

getting the authentication level from the session and checking against the
authentication level for the command supplied by the Controller Servlet.

HTTPS implementation

To implement HTTPS in the home banking application a certificate for the server is needed.
This certificate is used by the web server to identify itself. It contains some data like name of
holder, expire date etc., the signature of the certification authority and the public key used
for encryption.

To implement the HTTPS connection on the iPlanet web server the following steps were
taken:

• A trust database for certificates was created
• A certificate was requested
• The certificate was installed on the server
• In the last step the encryption was turned on

Requesting a certificate can be done in two ways:

1. Either a certificate is requested from one of the big and trusted certification
authorities like VeriSign[26]. This has the advantage that all the most known
browsers already trust VeriSign.

2. The other way to request a certificate is by installing your own certification authority.
In this thesis the iPlanet Certificate Management System was installed and used to
create a certificate.

Once the encryption is turned on with the web server the only way to access the home
banking application is by using an HTTPS connection.

Finally in the home banking application itself it was necessary to modify the code where the
forward to the JSP page is made in the Controller Servlet.

The important parts of the code that does the forward is shown below. What is important to
notice is the urlString where the “https” is used as part of the url. The forwardPath contains
the URL to be forwarded to. Furthermore the main thing to create the forward with HTTPS is
the HttpsURLConnection which sets up an HTTPS connection. This connection is used to
connect an input and an output stream through which the forwarding of the bean containing
the functionality is done (the purpose of the bean forwarding was described in chapter 5.3).

String urlString = "https://mistral"+forwardPath;

URL url = new URL(urlString);
System.out.println("Connecting to " + url + "...");
HttpsURLConnection con = (HttpsURLConnection)url.openConnection();

con.setRequestMethod("POST");
con.setDoInput(true);
con.setDoOutput(true);

 51

OutputStream outStream = con.getOutputStream();

ObjectOutputStream out = new ObjectOutputStream(outStream);
out.writeObject(b);
out.flush();
out.close();

InputStream stream = null;

if (con.getResponseCode() >= 300) {
 System.err.println("Received Error: "+con.getResponseMessage());
} else {
 stream = con.getInputStream();
}

OutputStream os = response.getOutputStream();

for (int c = 0; (c=stream.read()) != -1;) {
 os.write(c);
}
os.flush();
os.close();

5.8 Bank Simulator – Glue Web Service

In this subchapter the bank simulator implementation is described. The bank simulator
implementation serves as a proof-of-concept to test the home banking application and is not
intended to represent a real bank legacy system.

To illustrate and amplify the separation of the systems in the home banking application, I
decided to use a different technology for the implementation of my bank simulator than the
one used for the home banking application itself. The Glue Web Service[20] is a free
software product (shareware) that provides easy installation and configuration of a web
service. It supports Java Technology which gives me the possibility of invoking a Java-
method from the home banking application. The communication is done with SOAP/XML and
Glue generates the WSDL code used in the communication. By using the SOAP/XML format in
this way the technology and implementation in the bank is effectively separated from that of
the home banking application. This means that the bank system can be replaced and
changed without the need of modifications to the home banking application. As long as it
provides the same web service with the standard formats SOAP/XML.

 52

Other Application

BalanceBean
Bank Web Service

SOAP/XML
communication

SOAP/XML

communica
tion

Sharing of Web Service

Home Banking Application

The bank simulator has the following directory structure inside the Glue directory:

src

banking

The bank simulator consists of the following classes:

BankDatabase, BankOperations, IBankOperations and Pub. Following is a description of each
of the classes along with code parts that illustrate the functionality of the bank operations as
a web service.

BankDatabase

This class sets up the bank database and contains functions to execute SQL selects and
updates. These functions are called from the BankOperations class. The following functions
exist:

BankDatabase – connects to the database with the driver

createDB – runs the scripts that create the tables and values in the database

execDB – executes a statement.execute() that reads from the database

execUpdateDB – executes a statement.executeUpdate() that writes to the database

BankOperations

This class contains all the bank operations. These operations use the BankDatabase to
execute the SQL statements that implements the bank operations. Each of the functions in
the BankDatabase related to the example system is described below.

 53

All of these functions work on the bank database and retrieve or stores their input and
output data with SQL statements select and update.

getAccounts – gets the accounts for the client and returns them as string array

getBalance – retrieves the balance for a given account and returns it as a string

getTransactionList – retrieves the a list of transactions for a given account and
 returns them as a string array

execTransfer – executes a transfer from one account to another by updating both
 the source account balance, the destination account balance, the
 transfer table and the transaction table

execPayment – executes a payment by updating the account with the payment, the
 payment table and the transaction table

getPaymentTypes – is used to show the payment types on the payment page and
 also part of the description in the transaction table

IbankOperations

This is an interface class that is used by the tools provided by Glue to create descriptions in
the WSDL file. Following is an example of a function in the bank and the generated WSDL
file. This file is typically used by the different companies that develop applications using bank
operations. To go into details about the WSDL file is outside the scope of this thesis, but this
example illustrates the easy way to distribute a web service.

Code for the Show Balance operation:

 ...
 /**
 * Returns the balance of an account
 * @param account The account number
 * @return The balance
 */
 String getBalance(String account);
 ...

Resulting part in the WSDL file:

 ...
- <message name="getBalance1In">
- <part name="account" type="xsd:string">
 <documentation>The account number</documentation>
 </part>
 </message>
- <message name="getBalance1Out">
- <part name="Result" type="xsd:string">
 <documentation>The balance</documentation>
 </part>
 </message>
...
- <operation name="getBalance" parameterOrder="account">
 <documentation>Returns the balance of an account</documentation>

http://localhost:8004/glue/
http://localhost:8004/glue/
http://localhost:8004/glue/
http://localhost:8004/glue/
http://localhost:8004/glue/

 54

 <input name="getBalance1In" message="tns:getBalance1In" />
 <output name="getBalance1Out" message="tns:getBalance1Out" />
 </operation>
 ...

Any application developer that needs to interact with the bank only needs access to the
WSDL describing the web service. He doesn’t need to care about the system that implements
the service. Furthermore if the bank at a later state decides to change or upgrade their
system, they can do so without problems as long as they make sure the same web service is
provided.

Pub

This class publishes the bank operations as a web service on port 8004.

package banking;

import electric.registry.Registry;
import electric.server.http.HTTP;

public class Pub {
 public static void main(String[] args) throws Exception {

 // start a web server on port 8004, accept messages via /glue
 HTTP.startup("http://localhost:8004/glue");

 // publish an instance of Exchange
 Registry.publish("bankoperations",new BankOperations());
 }
}

When running the Pub class the web service is available on this port:

http://localhost:8004/glue/bankoperations.wsdl

(Requesting this page on the home banking application computer makes the browser show the WSDL
file that describes the web service. The complete file is shown in the appendix)

to connect to this web service it has to be invoked. An example of this is shown here:

 String wurl = "http://localhost:8004/glue/bankoperations.wsdl";
 String iMethod = "getBalance";
 String balance = null;
 String chosenAccount = “0”;

 try {
 balance = (String) Registry.invoke(wurl, iMethod, new Object[]{chosenAccount});
 } catch(Throwable t) {
 System.out.println("Throwable exception trying to invoke method: " + iMethod);
 t.printStackTrace(System.out);
 }

 55

5.9 Problems and considerations during implementation

Building the authentication model and access restrictions proved to be a hard task. In the
following is described some of the problems and their solutions that were encountered during
the implementation process.

Basically the access restrictions was done by protecting all the important files from access
from any other machine than the machine with the web server and the web application. Thus
assuming that no one who is not allowed has access to the machine itself. Access to the
protected files has to go through the ControllerServlet which contains the authentication
protocol. The identifier for the machine is the IP-address.
One of the first problems with creating my own authentication and access control was to
configure the web server to grant permission to files on the machine only to the machine
itself. This couldn’t immediately be done with the Tomcat web server[21], which was the first
choice of implementation. Therefore I switched to using the Netscape iPlanet web server.
Here you can easily configure the permissions so that some files are only accessible from a
certain IP address – the one of the web server machine.
By using the iPlanet web server this works fine, but during implementation one significant
problem occurred. When doing the forward from the ControllerServlet to the protected files,
the forward uses the request from the client machine. The web server would therefore not
allow access to the files, since it thinks it is a client trying to access the protected files.
To make it possible for the ControllerServlet to access the files and still keeping them
protected from outside access a new request that doesn’t have the requested IP-address of
the Client machine has to be generated. This can be done by creating a post from inside the
ControllerServlet*). This solved the problem of protecting the files from anyone but the
ControllerServlet, but it generated another problem with fitting the first proposed MVC-
model. In this model the session on the client side is used to hold the class instantiated by
the ControllerServlet and used by the view (JSP) pages. But when creating a new request a
new session for that request is also created and the server “pretends” to be the client with
that request. For obvious security reasons it is not possible to change the request nor change
the session on client side. Therefore the only way to make the server side instantiated beans
available to the JSP pages is by transferring them in some way.
One last thing that had to be dealt with when creating a new request was that a cookie
appeared on the web server machine for each request from the client browser. This is
because when we create a new request a new session is created and all session handling in
JSP pages are handled with the use of cookies. Since this cookie serves no purpose for our
model a configuration is made to prevent this cookie from popping up (and avoid hiring a
guy to accept or reject every cookie).

At a later state the HTTPS was implemented and the forwarding in the Controller Servlet had
to be changed to support this. The HTTPS implementation was described in chapter 5.6
which shows the final implementation. Before reaching this point the Java API had to be
expanded with two class libraries**) along with their patches. This shows a typical real life
development process where the flexibility of Java comes in to hand. When the standard JDK
API doesn’t provide functionality enough for your task it is easily expandable.

*) For the implementation of the post function an HTTPClient package[14] of classes were added to
the application. This package provides an HTTP client library including request methods HEAD, GET,
POST and PUT.

**) iSaSiLk 3 containing HTTPS connection support and IAIK-JCE 3.0 containing an encryption package

 56

7. Documentation of a home banking site

In this chapter I introduce a method to document a home banking site. It is split up into two
parts. One describing the functionality and another describing a simple navigational structure
that can be handy to include on a web site.

7.1 Documentation of each web page

This part describes each web page in the home banking application and the function it
implements.

From this documentation it should be possible to build the navigation of the web site as well
as understand the functionality described on each page. Furthermore the layout of the page
is described in regards to use of style sheet.

Each page contains the following parameters:

Name – the web page name
Description – a short description of the functionality of the page
Frameset – the frameset the page belongs to
Function - which function it implements

Group - which group of functionalities it belongs to
Level - the authentication level for each function

Elements – the visual elements on the page
 CSS – each style used for the elements
Input – the parameters sent with the page
Buttons – tells whether the page has an execute and clear button
Links – links on the page

Each frameset is defined with the following parameters:

Description – a short description of the functionality of the page
Frames – a list of the frames and their frame name that are shown by the frameset

As an example the balance page is shown:

Name balance.jsp
Description shows the balance for a given account
Frameset index.jsp
Function
 Group
 Level

getBalance
consultation
1

Elements
 CSS

page name, page name text, account
cssPageName, cssPageNameText, cssMessage,
cssMessageText, cssButton

Input account number
Buttons
Links

 57

The top frameset is shown as an example:

Description shows the balance for a given account
Frames header.jsp - headerFrame

menu.jsp - menuFrame
main.jsp - mainFrame

7.2 Web Site Map

This part describes a way to show the organization of the web pages on a web site. This is
generally called a web site map.

A web site map can be created in several different ways depending on the purpose and the
target group. The purpose of a web site map on a web site is to show visitors the structure of
the site as well as give them a possibility of going straight to a page. It has to give an
impression of the layout of web pages available and the easiest way to get to them. A good
way to do this is to group things and use menus, possibly with lower menus.

For the example system a simple grouping of pages according to subject provides the user
with a simple and easy overview of the pages. The web site map also provides a way for the
user to go directly to a page. This example shows the grouping of pages according to
functionality, but other criteria may be followed. All the pages could for example be listed
alphabetically.

Consulting functions:

• Balance
• Transactions

Operation functions:

• Transfer
• Payment

Personalization functions:

• accountNewName

 58

8. Future expansions

In this chapter I give some suggestions to improve the home banking site application. These
suggestions consider both the functionality, separation of concerns and security
enhancements.

8.1 Improving Application Functionality

Improving functionality stability

An important general functionality to implement in a real home banking application is to
check for a duplicate operation. If a user by accident tries to execute the same operation
twice the system should give a warning message. For example a user trying to do the same
transfer twice. This is a typical error among home banking clients.

Improving database stability

If the database suffers a breakdown in the middle of a bank operation that possible requires
multiple database updates. The system should be able to check and recover from this. Either
by continuing where it left of or go back to the start of the operation and make a roll back in
the database.

8.2 Administration Application

An obvious expansion to the home banking application is to create an administration
application. The main purpose of this application would be to administrate clients and
accounts. With operations like adding, deleting clients, administrate the authentication levels
for the client, etc., for the home banking application service.

8.3 Expanding model to support multi-channels using the Web
Service format

The functionality at the middle layer can be reused by several channels, like a home banking
site (through a browser), WAP (with a cellular phone), TV (using a Set-Top box), etc..
At the top level the navigation, layout (graphics) and functionality specific to the channel can
be defined. By inserting an extra level in the system architecture as shown on the figure
below a better way of reusing code and maintenance of a large application environment is
improved. The Web Service format can again be used as a good way of separating the
implementation environment.

 59

Other connections like
Telefone (IVR,

CallCenter), SMS etc.

XML/SOAP
(WebService)

Other distribution
channels like

WAP, webTV etc.

XML/SOAP (WebService)
connection through a

dedicated line

Web Browser

Internet

Presentation layer.
Higher level functionality, navigation

and layout

Basic components structure.
Managing main functionality services ,

security restrictions and
access to data

Bank Legacy System
Bank

Database

Local
Database

Server

Server

Server

8.4 Improving separation at top level in the model

When implementing view (JSP) pages in the current model the web designer has to know the
tag-based language HTML (and maybe also some JavaScript to implement dynamic HTML).
To get the content (created by the functionality) to be presented on the page he has to use
JSP scriplets. These scriplets call java functions in the Java Beans representing the
functionality. One way of avoiding this way of mixing the tag-based HTML with the Java-
based scriplets would be to implement a tag library where each function call is represented
by a tag. With this implementation the whole web page is described with tags and the web
designer only has to know how to use and which tags can be used on which pages. This both
helps the web designer implement the page but also gives the possibility of running
programs that verifies (tag-validates) the syntax of the page. Thereby making it easier to
implement error-free pages.

8.5 Improving security in the implementation

In the current implementation architecture the whole application with web server and
database is implemented on the same computer. This means that gaining access to the
computer means gaining access to the protected files and the database. All access to the
computer goes through iPlanet, that supposedly only gives access to the port where the web
server is running. The web server then controls the access to protected and unprotected files
and accesses the database. iPlanet is used throughout the world as a web server and is

 60

therefore also a target of attack. Some holes in iPlanet has been found and several patches
exist to solve this.
A way to improve this architecture that needs less reliance on iPlanet to protect the files
could be to separate the iPlanet control from the web application and the database. Basically
by using three computers. The first computer contains the iPlanet control, the second
computer only accepts requests from the first computer and contains the web application
and the third computer contains the database that can only be accessed from the second
computer. Several filters can be added between the computers depending on the
functionality of the system. For example if the home banking application is only available in a
certain time period, one could add a filter between the second computer and the third
computer that only grants access in that certain time period. The rest of the time there is no
access to the database. This architecture also improves the availability of the database and
the web application. If someone makes the first computer go down the others can continue
to work and provide their service possibly to other computers.

Computer 3Computer 2Computer 1

Internet

Client

Web Server Application

AuthenticationHTTPS

Only allows https-
connections from
specified ports.

Database

Only allows
authenticated
clients access

8.5 Implementing PKI-security

In the current security model for the home banking application only the web application is
authenticated. This means that the home banking application trusts the user if he can
present a valid user id and password. A more secure situation would be if the client also had
to be authenticated to access the application. This can be achieved with the use of PKI -
Public Key Infrastructure[4] which implements mutual authentication.

PKI provides a full set of security services with the purpose of preventing security threats.

There exist four parts in a PKI.

• CA (Certificate Authority) which are organisations that issue digital certificates. This is
normally a widely trusted party.

• An Authentication Service
• Services
• Business users in a client server environment.

A typical scenario of using the PKI

• First the new user requests the CA for a certificate
• The CA responds with the certificate for the user

 61

• With the certificate in hand the user accesses the application and presents the
certificate

• The application checks with the authentication service

Implementing a PKI infrastructure will provide a very safe environment, but the
disadvantages are that it is expensive to implement and the communication will be slower.

 62

9. Conclusion

In this project a home banking application and the surrounding environment has been
investigated. Furthermore an implementation of the complete system has been made.
Following now is a discussion of the parts of the project where the most important
experiences were made.

9.1 Modelling a web site

A method was developed to automate the design process of a home banking application. This
model separates the concerns of web sites in layout, interactivity and functionality.

By separating the concerns in this manner several important goals are achieved:

• reusability in each part can be applied
• the layout designer can specialize on layout, the navigational expert can focus on

navigation and the programmer can concentrate on the functionality

The reusability was implemented in each part of the web site.

Layout – by splitting up the content on the page in blocks called views – groups of style
sheet elements can be reused.

Navigation – the navigation was described in groups of similar functionality and these
groups can be reused.

Functionality – in this thesis an example of reusability was given. It was recognized that
most banking operations depend on a selected account and therefore this module was
reused.

Whenever possible the steps in the model are described in an automated way opening the
door for automated generation. Tools can be build that ease the task of implementing and
updating the web site.

In the navigational design and layout design a UML-based method is described. Using UML as
a modelling language has the advantage of using a well-known standard thus making it
possible to use already defined case tools in the development process.

Applications with similar structure

The closest application to a home banking application is a corporate banking application.
Most of the structure in the form of navigation, layout and parts of the functionality would be
directly reusable. A typical scenario is for a bank to have both applications and implement
them with similar type of navigation, possibly some different layout parts and colours and a
more extended functionality.

In this thesis a home banking application contacting a bank is shown. A lot of other types of
applications could implement the same structure. It would be practical to have online stores,
stock market sites, etc. applications that can benefit from direct contact with one or several
banks. This would make payments easier since they can be done in directly and immediately
in your bank.

 63

9.2 Security in a home banking application

It was furthermore investigated what security concerns are necessary and how they fit into
the model. In the security investigation a custom made authentication model was build that
gives the possibility of applying your own authentication/access policy.

Basically two security services are directly implemented in the model. The first is authenticity
where the authentication level for each function had to be defined. The other is the audit trail
security service where each operation done by the user is logged for later documentation
proof. To some extend the availability was also implemented by making sure that the bank
would only be contacted if the homebank database was running and the operations therefore
could be logged.

From the experiences made during the implementation of the security model I think it would
be better to separate the security implementation completely from the implementation itself.
That would make it easier to focus on each part separately and thereby improving the actual
implementation. It would also make it easier to reuse the security part for a different web
site where security plays a similar important role, but where functionality is quite different.

9.3 Web Service as a communication platform

It was shown how Web Services can be used as an efficient way of communication. By using
the Web Service format, the two units, in this case the bank system and the home banking
application, can be seen as two individual and independent systems. This facilitates
maintenance of the systems and gives more freedom in the choice of implementation
technology.

The complete system involves setting up a web server and database server for the home
banking application, implementing a bank simulator with another database as a web service.

Using the Glue Web Server proved to be very easy to configure and use. The way Java
functions can be directly invoked makes the web service seem transparent and it gives a
good platform for real life applications. Not much thought on how the communication works
is needed. This makes it a good tool when one of two communicating tools need to be
changed or updated. As shown in this thesis a simulator can be set up during implementation
where everything is tested. Once everything is working correctly the application is connected
to the real application – in this thesis it would be to the bank legacy system.

In the future more and more applications will be linked together most likely using the web
service format.

9.4 Documentation of a home banking application

Part of the process of modelling a home banking application is defining ways of describing
the functionality, the navigation and the layout in a formalized way.

In this thesis the modelling was first build and the documentation came afterwards. I think it
would have been a better idea to it in the other way around. Either by making the
documentation first and then the modelling or try and make them at the same time. By
doing the documentation would give a different angle as to what the home banking
application should contain.

 64

9.5 MVC as implementation platform

The MVC – Model View Controller defines a model for implementing dynamically generated
web sites. It uses the technologies from Java to separate the concerns. With a combination
of JavaBeans (Model), Java Servlets (Controller) and JavaServer Pages (View) it provides the
platform for the home banking application implemented in this thesis.

Generally the model has a good structure for implementing the model for building a home
banking application described in this thesis, but is complicated to set up and debug. In this
thesis a Theseus implementation was used as the basis and customized to implement the
home banking application. I found it to support the web site modelling well, but giving some
restrictions on flexibility. It didn’t support my authentication model immediately and a lot of
work was done to solve this problem.

If I was to redo the project now I would create my own MVC implementation and thereby be
able to fit the home banking modelling better with the actual implementation.

 65

References

[1] Andreas Heberle, Jörn Rehse, Bernd Ornasch and Börje Sieling.: Utilizing Abstract
WebEngineering Concepts: an Architecture. IEEE MultiMedia, 0-7695-0981, September 2001.
[2] William Stallings.: Network Security Essentials - Applications and Standards, Prentice
Hall, 1999, ISBN 0-13-016093-8.
[3] Niels Bach, En metode til udvikling af web-baserede systemer. 2001.
[4] PKI description homepage, http://www.id2tech.com/topmenu/smartcard/pki.asp.
[5] JavaBeans homepage, http://java.sun.com/products/javabeans/.
[6] Java Servlet homepage, http://java.sun.com/products/servlet/.
[7] JavaServer Pages homepage, http://java.sun.com/products/jsp/.
[8] MySQL homepage, http://www.mysql.com/.
[9] Daniel Schwabe and Gustavo Rossi.: The Object-Oriented Hypermedia Design Model (OOHDM).
[10] Nora Koch, Hubert Baumeister, Rolf Hennicker and Luis Mandel: Extending UML to
Model Navigation and Presentation in Web Applications.
[11] Rolf Hennicker and Nora Koch: A UML-based methodology for Hypermedia Design.
[12] Caixa Geral do Depositos home banking site,
http://www.cgd.pt/particulares/produtos_servicos/servicos/servico_caixadirecta_online/demo/.
[13] iPlanet web server home page, http://www.iplanet.com/.
[14] HTTPClient home page, http://www.innovation.ch/java/HTTPClient/.
[15] SOAP home page, http://www.xml101.com/news/news_soap.asp.
[16] WSDL home page, http://www.learnxmlws.com/tutors/wsdl/wsdl.aspx.
[17] Theseus MVC-model home page, http://www.brainopolis.com/theseus/index.html.
[18] XML home page, http://www.xml101.com/xml/default.asp.
[19] CGI home page, http://www.cgi101.com/class/.
[20] Electric GLUE web service home page, http://www.themindelectric.com/.
[21] Jakarta web service home page, http://jakarta.apache.org/tomcat/.
[22] Macromedia Flash home page, http://www.macromedia.com/software/flash/.
[23] CSS tutorial home page, http://www.intranetjournal.com/articles/200101/csstutorial1a.html.
[24] JDBC database interface home page, http://java.sun.com/products/jdbc/.
[25] Smart Card home page, http://www.smartcardbasics.com/.
[26] VeriSign home page, http://www.verisign.com/.

	Preface
	Abstract
	1. Introduction
	1.1 Motivation and background
	
	
	
	Layout – the layout of a site is the graphical pr
	with placement of text, pictures, forms, tables etc.
	Interactivity/dialog – the interactivity and user
	the user interaction like menu navigation, site-maps etc.
	Functionality – the functionality of the site def
	operations that is done in the background. This is where
	the business logic is implemented.

	1.2 Description of a home banking site
	1.3 Example System of the home banking site
	1.4 Goal and limitations of the case study
	1.5 Explanation of the terms and definitions used in this report
	1.6 Requirements to the reader
	1.7 Overview of the thesis

	2. System Architecture
	2.1 Dynamically versus statically generated sites
	
	
	
	Web Server
	Web Application
	Database Server

	2.2 Connection between home banking application and bank legacy system
	2.3 Web Services and how they can be used for home banking sites
	2.4 System Architecture Diagram

	3. Security Aspects
	3.1 Main security considerations in a home banking site
	3.2 Security Model for the home banking application
	
	Access Control and Authentication
	
	
	
	
	Authentication Model 2
	Authentication Model 3

	Audit Trail
	HTTPS
	Availability

	4. Home Banking Design Model
	4.1 Modelling a Web Site
	4.2 Requirements Specification
	
	
	
	Users and tasks

	4.3 Functionality Description - Conceptual Model
	4.3.1 Definition of Functions
	4.3.2 Access Specification
	4.3.3 Logging Specification
	4.3.4 Database Modelling

	4.4 Navigational Design
	4.4.1 Navigation Space Model
	4.4.2 Navigational Structure Model

	4.5 Layout Design
	4.5.1 Presentational Model
	4.5.3 Applying CSS – Style, Colours, Fonts, Image

	5. Implementation
	5.1 Choice of technology – Java technology \(JSP
	
	
	
	Java Servlet
	JavaBean
	JSP – Java Server Page

	5.2 MVC - Model View Controller (Java Server Pages Model 2)
	5.3 Implementation Structure
	
	
	
	
	
	
	Example of execution of command: consultBalance

	5.4 Mapping navigation and functionality
	5.5 Mapping views
	
	
	
	Header View -> header.jsp
	Menu View -> menu.jsp
	Balance View -> balance.jsp
	Consult Transaction List View -> transactionList.jsp
	Transfer View -> transfer.jsp
	Payment View -> balance.jsp

	5.6 Adding CSS
	5.7 Implementing the Authentication Model and HTTPS
	
	Authentication Model Implementation

	5.8 Bank Simulator – Glue Web Service
	
	
	
	BankDatabase
	BankOperations
	IbankOperations
	Pub

	5.9 Problems and considerations during implementation

	7. Documentation of a home banking site
	7.1 Documentation of each web page
	7.2 Web Site Map

	8. Future expansions
	8.1 Improving Application Functionality
	
	
	
	Improving functionality stability
	Improving database stability

	8.2 Administration Application
	8.3 Expanding model to support multi-channels using the Web Service format
	8.4 Improving separation at top level in the model
	8.5 Improving security in the implementation
	8.5 Implementing PKI-security

	9. Conclusion
	9.1 Modelling a web site
	9.2 Security in a home banking application
	9.3 Web Service as a communication platform
	9.4 Documentation of a home banking application
	9.5 MVC as implementation platform

