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Abstract

The concept of hard real-time systems is introduced, and an informal reference model
for hard real-time systems is de�ned. The theory of priority-driven schedulers is
presented, and the problem of validating a schedule is addressed. Synchronisation
protocols are introduced to control blocking due to resource contention. A com-
mercially available real-time operating system is investigated. Based on scheduling
theory a computational model is de�ned, and implemented upon the particular op-
erating system. A development process for hard real-time systems is proposed. The
design phases of the proposed development process are applied to a case study.
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1 Introduction

A hard real-time system is a system whose correctness depends not only on the logical
result of computation, but also on the time at which the results are produced: it
must satisfy explicit response-time constraints or risk severe consequences, including
failure [Stankovic and Ramamritham, 1988]. Thus, computations in a hard real-
time system are required to complete before a deadline.

Real-time systems span from safety-critical systems controlling large power plants,
over signal processing systems like radar systems, to multimedia applications decod-
ing video streams and displaying them on a screen.

A digital control system, as illustrated in �gure 1.1, is an example of a conceptually
simple real-time system. The control system receives a reference input indicating a
desired state of the controlled system. The control system may monitor the state of
the controlled system by means of sensors and the control system can change the
state of the controlled system by means of actuators.

Control system

Sensor Controlled system Actuator

ADC

ADC

DACControl algorithm

reference
input

control
output

feedback

Figure 1.1: A digital control system.

For a control system, timing constraints may be derived from requirements on the
responsiveness of the sensors and actuators used for monitoring and control. Thus,
for the control system, deadlines may be imposed on the computations reading the
reference input and system state, the computation of a new actuation value according
to a control algorithm and the computation outputting the value to the actuator. If
it is possible at all for computations to meet their deadlines, it is crucial that they
are scheduled in a way which guarantees that their deadlines are met.

To develop hard real-time systems eÆciently, a development process that supports
timing constraints must be used. The development process, in particular the design
phase, must continuously assess that the system is able to meet its timing constraints.
In this way the development process shall trace the development of a system that
will meet all its deadlines, once built.

Given a design of a hard real-time system it must be possible to validate that the
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1 Introduction

system meets its timing constraints. The requirement for validation places many
restrictions on the design and implementation of hard real-time systems. An objec-
tive of this thesis is to investigate how to restrict a design of hard real-time systems
to facilitate validation.

1.1 Thesis Objectives

The primary objective of this thesis is to investigate how to build hard real-time
systems guaranteed to meet their deadlines. This includes:

� The construction of an informal reference model of real-time systems de�ning
and designating concepts used in the further discussion of real-time systems.

� How to design real-time systems. Based on a study of the vast amount of
real-time scheduling theory we present a computational model that ensures
the predictability necessary for validating a design. We sketch a development
process that traces a feasible design through the individual phases of the de-
velopment process.

� How to validate the timing constraints of real-time systems. Based on the
computational model we present validation algorithms which may be used for
demonstrating that timing constraints for a design are feasible.

� How to implement the computational model with a real-time operating system.
This includes a study of the operating system with respect to its suitability
for hard real-time systems.

� The presentation of a case study illustrating the use of the concepts and tech-
niques introduced in this thesis. The case study presents a design of a motor
control system of industrial size and relevance.

1.2 Thesis Outline

Chapter 2 de�nes the reference model for real-time systems. The de�nitions and
designations in the model allows us to concentrate on the essential characteristics of
real-time systems.

Chapter 3 presents common approaches for scheduling real-time applications consist-
ing of independent tasks on a single processor. The validation of timing constraints
for independent tasks is the topic of chapter 4.

In many real-time applications resources are shared between tasks making those
tasks interdependent. This may introduce uncontrolled blocking of tasks resulting
in missed deadlines. In chapter 5 we consider interdependent tasks, provide methods
to control blocking and extend validation algorithms to handle blocking.

In chapter 6 we de�ne a computational model that ensures the predictability neces-
sary for validating a design. We explore a commercially available real-time operating
system in chapter 7 and present an implementation of the de�ned computational
model in chapter 8.

2



1.2 Thesis Outline

An integration of scheduling theory and a traditional development process is sug-
gested in chapter 9. In chapter 10 the proposed methods are tested in a real world
case study.

Finally, in chapter 11, we present our conclusions.

Parts of the implementation of the computational model de�ned in chapter 6 can
be found in appendix A. Appendix B contains the source code for an application
used for measuring the overhead imposed by the Nucleus Plus operating system.
Appendix C features a list of acronyms used in this thesis.
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2 A Reference Model for Real-Time Systems

For the purpose of describing real-time systems we form an abstract model of real-
time systems. The model presents designations and de�nitions [Jackson, 1995],
which are used in the descriptions of real-time systems in this thesis. In this the-
sis we will refer to the abstract model as the reference model. The model is based
on concepts presented in [L�vengreen, 1997], [Rischel et al., 1987], [Hoare, 1985],
[Liu, 2000], and [Klein et al., 1993].

The primary bene�t of an abstract model is that it allows us to concentrate on the
essential characteristics of real-time systems, hence we are independent of the various
application areas. Having described a system in terms of the reference model, we are
allowed to analyse and simulate the real-time behaviour of the system, e.g. produce
accurate estimates of the real-time performance and overhead for the system.

2.1 Real-Time Systems

In the presentation of the reference model, we �rst de�ne the abstract concept of a
system and then a real-time system in particular. A system is a structured collection
of entities of a given universe to be considered as a whole. The system boundary
or the system interface divides the universe into those entities which are part of the
system and those which belong to the rest of the universe, denoted the environment
of the system. System entities are denoted components.

Interaction may occur between entities of the universe. However, when modelling
a real-time system we only focus on the interaction occurring between the system
components and between system components and environment entities. Interactions
between entities in the environment are not considered. The interaction between
components and the entities in the environment de�nes the externally observable
behaviour of the system.

Timing behaviour is important to all computing systems. However, including tim-
ing behaviour in the speci�cation of the system, and thereby in the de�nition of
the correctness of that system, distinguishes real-time systems from other types of
systems. In this thesis we shall adopt the following de�nition of a real-time system
[Klein et al., 1993] [Stankovic and Ramamritham, 1988].

De�nition 2.1 (Real-Time System) A hard real-time system is a system whose
correctness depends not only of the logical result of computation, but also on the time
at which the results are produced.

Many real-time systems responds to external stimuli over time, and is typically
placed in its environment with the purpose of monitoring and controlling some as-
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2 A Reference Model for Real-Time Systems

pects of the environment. There are usually timing requirements associated with
monitoring and controlling each aspect. There are also work in the form of com-
putations that must be performed in order to control or monitor the environment.
Thus, a typical scenario is that the real-time system waits for a stimulus, and starts
some computation in response to its occurrence. The computation must often be
completed by a deadline that is relative to the time, the stimulus occurred.

2.2 Events

We use events to model external stimulus of real-time systems. An event is an
abstraction of an interaction, i.e. an activity involving more than one entity or
component. An event is considered to be atomic: either the activity results in an
overall e�ect, or there is no e�ect at all [L�vengreen, 1997] [Hoare, 1985].

As in [Rischel et al., 1987] we let the term event denote a class of uniform single
events. Thus, we assume that a system processes a collection of single events which
can be divided into a number of classes. A speci�c event occurring in a system is a
member of an event class.

Events may be partitioned into three groups:

Input events carry information across the system boundary from the environment
to the system.

Output events carry information across the system boundary from the system to
the environment.

Internal events carry information between system components.

Additionally, events are characterised by their arrival pattern, that is the pattern of
occurrence as a function of time. In this thesis we consider the following kinds of
event arrival patterns:

Periodic events are characterised by a constant time interval between the arrival
between two consecutive events. The length of the interval is denoted the
period.

Aperiodic events which can be subdivided even further [Klein et al., 1993]:

Irregular events Events arrives with known intervals that are not con-
stant.

Bounded events Events have a minimum inter-arrival interval or a max-
imum arrival rate.

Bursty events Events do not exceed a speci�c event density, which
consists of a burst interval and a burst size.

Unbounded event Event arrivals are described in terms of probability dis-
tribution functions.

6



2.3 Jobs and Tasks

2.3 Jobs and Tasks

To motivate the abstract notions of a job and a task in the reference model, we
reconsider the control system in �gure 1.1. The input data, i.e. reference input and
system state, is obtained from the environment. For the system to operate properly,
the input data acquisition and execution of the control algorithm must be performed
repeatedly. Hence, both computations could be performed in response to two timer
events with a periodic arrival pattern.

To distinguish a single execution instance of the computational work performed in
response to an event from the system function performed by the repeated executions
of the computational work, we introduce the notions of jobs and tasks.

time0 1 2 3 4 5 6 7 8 9 10 11

T1

T2

J1;1

J2;1

J1;2

J2;2

J1;3

Figure 2.1: A job is an execution instance of a task. The execution of individual jobs in two
tasks T1 and T2, may be illustrated with a time line diagram. Consecutive jobs
in a task is shaded di�erently.

A job is an abstraction of the computational work that is performed in a response
to a single occurrence of an event. The term task denotes a set of related jobs which
jointly performs some system function.

Over time a task is a sequence of jobs that are performed in response to an event.
For the control system we may illustrate the situation with a time line diagram. In
�gure 2.1 the task of acquiring input data is denoted T1, and the task of executing
the control algorithm is denoted T2. For each task a time line is placed above the
time-axis. When a job is being executed an indication in the form of a rectangle is
drawn on the time line of the task. Consecutive jobs in a task is shaded di�erently.
We only consider a single processor, hence only one job can execute at any time.

At the time an event arrives, the corresponding job is released and becomes eligible
for execution. The arrival time of the event is the release time for the job.

We shall denote the set of tasks in a system T. For the cardinality n, where
card(T) = n, the task set contains the tasks T1; T2; : : : ; Tn. The individual jobs
of task Ti is denoted Ji;1; Ji;2 and so on, Ji;k being the kth job in Ti. The naming
convention is illustrated in �gure 2.1. When we are discussing properties of individ-
ual jobs but are not interested in the task to which they belong, we simply denote
the jobs J1; J2, and so on. Using the naming convention of jobs, the release time
of the kth job in Ti is denoted ri;k and rk. The inter-release time is de�ned as the
time interval between the release of two consecutive jobs in a task.

A job Ji is characterised by its execution time, ei, i.e. the amount of time required
to complete the job, when it executes alone without having to wait for any required
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2 A Reference Model for Real-Time Systems

resources. The execution time of a job may vary for di�erent reasons, e.g. it may
depend on the job's input data. For a task Ti the execution time is the maximum
execution time of all jobs in it.

2.4 Timing Constraints

A constraint imposed on the timing behaviour of a job is a timing constraint. A
timing constraint considered in this thesis shall be speci�ed only in terms of the
release and completion times of a job.

The release time ri;1 of the �rst job Ji;1 in task Ti is the phase of the task, and is
assigned the symbol �i. Thus, for task Ti we have �i = ri;1. Di�erent tasks may
have di�erent phases. Two tasks are said to be in phase if they have the same phase.

A job Ji released at time ri must complete Di units of time after ri. Thus, Di is the
relative deadline of the task Ti. Thus, the worst-case response time Wi of the job is
Di. The absolute deadline of the job is di = ri +Di.

A deadline may be characterised as:

Hard deadline A job with a hard deadline must always complete its execution
before its deadline.

Soft deadline A deadline is soft when it shall only be respected on average.

No deadline This is included in the reference model as some tasks may exist in
a real-time system that, although they a�ect the timing of other tasks in the
system, have no timing constraint of their own. Such a task is denoted a
background task. Though a background task have no deadline, the task must
must be allowed to execute eventually.

In this thesis we shall only consider tasks with hard deadlines.

A periodic task may require that a job released in response to a periodic event is
performed without jitter. Such a job is usually related to an input or an output
operation. Jitter is a measure of deviation between the desired time for the opera-
tion and the actual time the operation is performed. Thus, jitter is related to the
completion times of the jobs in a periodic task.

Jitter is a consequence of the fact that a job may not start to execute immediately
upon its release. Hard deadlines may be used for controlling jitter. In the extreme
case of a relative deadline equal to the constant execution time of a periodic task,
Di = ei, no jitter is allowed.

2.5 The Periodic Task Model

The periodic task model is a well known deterministic workload model proposed in
1973 by Liu and Layland [Liu and Layland, 1973] [Liu, 2000]. In its original form,
the model was restricted to the strictly periodic case, where all tasks are responses
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to periodic events. Over the years the model has been extended so that it is now
capable of characterising many traditional hard real-time applications, including
those with aperiodic activities.

Periodic Tasks

In the periodic task model, each task Ti is a sequence of jobs performed in response
to an event with a periodic arrival pattern. In the following we shall simply use the
term periodic task to denote such a task. The period pi of the task is the length
of the time interval between the release times for two consecutive jobs in the task.
Thus, for all jobs in a periodic task the inter-release time between the job and the
consecutive job is equal to the period of the task.

At any time, the periodic task model assumes that the period and execution time
of all tasks in a system are known.

The utilisation ui of a task Ti is the fraction of time a strictly periodic task with
execution time ei and period pi occupies a processor.

ui =
ei

pi
(2.1)

The total utilisation U of the tasks in a system consisting of n tasks is the sum of
the utilisations of the individual tasks.

U =
nX

i=1

ui (2.2)

We will often assume that for every task a job is released and becomes ready at the
beginning of each period and must complete before or by the end of the period. Thus,
Di � pi for all tasks. This restriction actually states a throughput requirement: the
system shall keep up with all the work demanded of it at all times. In general, the
relative deadline can have an arbitrary value.

Aperiodic Tasks

In the periodic task model, the workload generated in response to aperiodic events
is modelled by aperiodic tasks. Each aperiodic task is a sequence of jobs, where each
job is the computational work performed in response to an event with an aperiodic
arrival pattern.

Like a periodic task, an aperiodic task is characterised by its execution time, phase,
and relative deadline. However, due to the aperiodic arrival pattern of the event to
which the jobs in an aperiodic task respond, the inter-release intervals for a sequence
of jobs can vary. In particular the inter-release times may be arbitrarily small, thus
increasing the total utilisation of the system.

2.6 Processors and Resources

A number of system resources may be available for the tasks of a real-time system.
All resources are divided into two major types: processors and resources.
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A processor Pi is an abstraction of a central processing unit (CPU) or a microcon-
troller, and it is the most common shared resource of a software system. Processors
carry out instructions and move data. Every job requires a processor to execute and
make progress toward completion. An attribute of a processor is its speed. Though
this attribute is rarely mentioned, it is implicitly assumed that the rate of progress
a job makes toward its completion is a function of the speed of processor, on which
it executes.

The decisions on how a processor is assigned to individual jobs are performed by a
scheduler. We return to schedulers in section 2.7, and give a thorough presentation
of schedulers in chapter 3. In thesis we only consider systems with a single processor.

As opposed to processors resources Ri are passive. A job may need some resources
in addition to a processor in order to make progress. Examples of resources are data
objects and peripherals. Often, resources are critical regions that must be accessed
in a mutual exclusive manner.

Synchronisation Protocols

When resources are shared in a mutually exclusive fashion between concurrent tasks,
a task can be blocked by another task.

In the value-domain the blocking introduced by requirements for mutual exclusion
ensures the integrity of an application. However, in the time-domain the integrity
of a hard real-time application may be compromised by blocking.

The access of a resource is controlled by a synchronisation protocol. If resources
are shared in a hard real-time application, a synchronisation protocol providing a
predictable blocking delay shall be applied. An in-depth introduction to synchroni-
sation protocols is given in chapter 5.

2.7 Scheduling

Every task Ti 2 T is associated with an unique priority �i.

8Ti; Tj 2 T � Ti 6= Tj , �i 6= �j

All the jobs in a task Ti are assigned the priority �i of the task. In this thesis
priorities are represented by integers; the smaller the integer, the higher the priority.
We introduce a new operator, �, to indicate this relation. For example, if a task T1
has higher priority than a task T2, i.e. �1 = 1 and �2 = 2, we have that �1 � �2. In
general we have

�i < �j , �i � �j:

Concurrent activities, i.e. jobs, are competing for the same resources, in particular
for the processor. In this section we shall introduce the terminology associated with
the allocation of the processor and the resources to jobs.

Among the eligible jobs a job is chosen for execution and allocated resources ac-
cording to a chosen scheduling algorithm and a set of synchronisation protocols
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associated with the resources. An implementation of the scheduling algorithm is
denoted a scheduler.

A scheduler may be either preemptive or non-preemptive. Preemptive means that
the execution of any job can be interrupted by the execution of a higher priority job.
When preemption is allowed, a scheduling decision is performed whenever a job is
released or completed.

We say a job is scheduled in a time interval on a processor, if the processor is assigned
to the job in that interval. A schedule is an assignment of all the jobs in the system
to the processor. A schedule is produced by a scheduler.

As in [Liu, 2000] we shall not question the correctness of the schedule. Thus, we
assume the scheduling algorithm and the scheduler are correct and produce only
valid schedules. A valid schedule satis�es the requirements below:

� Every processor is assigned to at most one job at any time.

� Every job is assigned at most one processor at any time.

� No job is scheduled before its release time.

� Depending on the scheduling algorithm used, the total amount of processor
time assigned to every job is equal to its maximum or actual execution time.

� All the precedence and resource usage constraints are satis�ed.

For brevity, we shall often use the term scheduling algorithm or simply algorithm
to denote the scheduler implementing the scheduling algorithm.

Feasibility of Schedules

A valid schedule is feasible if every job scheduled in it meets its deadline. A set of
jobs is said to be schedulable according to a scheduling algorithm, if that algorithm
always produces a feasible schedule for the set.

Optimality of Schedulers

The main criterion for evaluating a scheduling algorithm is its ability to �nd feasible
schedules for a given set of tasks, whenever such schedules exist.

A scheduling algorithm is said to be optimal, if and only if the scheduling algorithm
always produces a feasible schedule for a set of tasks, when a feasible schedule exists.
Thus, if an optimal scheduler fails to �nd a feasible schedule for a given set of tasks,
we can conclude that no feasible schedule exists for it, and that the set of tasks
cannot be scheduled by any other algorithm.

2.8 Representing Real-Time Situations

The de�nitions and designations of the reference model allows us to describe real-
time systems with a standard terminology. To facilitate a very compact represen-
tation of the timing aspects of a real-time system we introduce the concept of a
situation table.
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A situation table represents the essence of a real-time situation. It associates each
task in a real-time system with is parameters in a tabular form. Rather than de�n-
ing multiple instances of situation tables, we take a very pragmatic approach with
respect to the contents of situation tables. A situation table simply summarises the
real-time related information that is relevant in the particular situation.

An example of a situation table is given in table 2.1. The situation table describes
the simple control system introduced in �gure 1.1 on page 1. The table presents the
parameters of three periodic tasks.

Task name Period Phase Exec. time Deadline Resources usage

Sensor 5.0 0.0 1.50 2.0 R1

Control 5.0 2.0 1.75 2.0 R1, R2

Actuator 5.0 4.0 0.50 1.0 R2

Table 2.1: A situation table describing the timing parameters of a real-time system.

In chapter 9 we introduce notation for describing the functional aspects of a real-time
system.
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Symbol Legend

T A set of tasks

Ti The ith task of a given set of tasks

Ji;k The kth job in task Ti

Jk The kth job of a task. The task index is omitted, as we are not inter-
ested in identifying a speci�c task

pi The period of the periodic task Ti is the length of the time interval
between the release times for two consecutive jobs in task Ti

ri;k The release time of the kth job in task Ti

rk The release time of the kth job of a task. The task index is omitted,
as are not interested in identifying a speci�c task

�i The phase of the task Ti, where �i = ri;1

ei The execution time of task Ti

bi The worst-case blocking delay imposed on a job in task Ti due to re-
source contention

Wi The worst-case response time of task Ti

Di The relative deadline of the task Ti

di The absolute deadline of the job Ji with the release time ri is di = ri+Di

�i The priority of task Ti

Pi A processor. In this thesis we only consider real-time systems with a
single processor. A job needs the processor to execute

Ri A resource. Tasks may share resources

ui The utilisation of a task Ti is the fraction of time a strictly periodic
task with execution time ei and period pi occupies a processor Pi

U The total utilisation of the tasks in a system consisting of n tasks is
the sum of the utilisations of the individual tasks

Table 2.2: The notation used in the reference model.
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3 Priority-Driven Scheduling

In this chapter we introduce the priority-driven approach for scheduling hard real-
time systems on a single processor. A taxonomy of hard real-time scheduling algo-
rithms is given in �gure 3.1.

Hard real-time scheduling

8>>>>>><
>>>>>>:

Static

(
Preemptive
Non-preemptive

Dynamic

(
Preemptive
Non-preemptive

Figure 3.1: The taxonomy of hard real-time scheduling algorithms.

A scheduler is said to be static when it uses single schedule that has been calcu-
lated o�-line, that is before the system is started. The interleaving of all jobs are
predetermined, as all scheduling decisions have been made before system start. The
schedule is repeated over and over until the system is restarted.

The concept of preemption was introduced in section 2.7. A scheduler may be either
preemptive or non-preemptive. Preemptive means that the execution of any job
can be interrupted by the execution of a higher priority job. In this thesis only
preemptive schedulers are considered.

A cyclic executive is the implementation of a system, which is scheduled by a static
scheduler. The implementation may be organised as a main loop calling a number of
procedures. This architecture requires that a harmonic relationship exist between
all periodic tasks in the system. If preemption is allowed, the static schedule is
resumed at the end of a preemption instance. We will not consider static schedulers
and their implementations any further in this thesis.

The priority-driven approach is an example of dynamic scheduling. The approach
allows dynamic scheduling decisions at run-time contrary to the static scheduling
approach. Dynamic scheduling is also referred to as on-line scheduling. When
preemption is allowed a scheduling decision is performed whenever a job is released
or completed.

Priority-driven scheduling algorithms are distinguished from each other in the way
priorities are assigned to jobs. A �xed-priority scheduling algorithm assigns the same
precomputed priority to all jobs in a task, whereas a dynamic-priority algorithm
assigns di�erent priorities to each job in a task.

In dynamic scheduling our main concern is the coupling of three components:
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� An optimal scheduling algorithm.

� A feasibility test, which can decide whether a schedule produced by a schedul-
ing algorithm is indeed feasible.

� A worst-case response time computation for a job, which depends on the spe-
ci�c scheduling algorithm.

In this chapter we investigate di�erent priority-driven schedulers. We will consider
an optimal dynamic-priority scheduler, and three optimal �xed-priority schedulers.

Feasibility tests and worst-case response time computations are very closely related.
These topics are investigated in chapter 4.

3.1 The Simpli�ed Periodic Task Model

In this chapter we restrict ourselves to scheduling systems characterised by a sim-
pli�ed version of the periodic task model introduced in section 2.5.

The periodic task model is a well known deterministic work-load model proposed in
1973 by Liu and Layland [Liu and Layland, 1973] [Liu, 2000]. The model imposes
the following restrictions on a task set:

� All tasks are periodic, with a constant interval pi between the instants the task
is submitted for execution, i.e. released ri.

� All tasks have a �xed relative deadline Di and phase �i.

� All tasks are independent, in the sense that the release of a task does not
depend on the initiation or completion of other tasks.

� All tasks have a �xed execution time ei. All computational overhead is assumed
to be included in the computation time.

� No task may voluntarily suspend itself.

In the periodic task model de�ned above no restrictions have been placed on the
phases of the tasks in a task set. Similarly, no relations have been assumed between
the period of a task and its relative deadline. In the following presentation of speci�c
priority-driven schedulers, restrictions are imposed on phases and relative deadlines.

In chapter 5.6 we will extend the periodic task model to include shared resources.

3.2 Dynamic-Priority Scheduling

An example of a dynamic-priority scheduler is the earliest deadline �rst (EDF)
scheduling algorithm.
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3.2.1 Earliest Deadline First Scheduling

The EDF algorithm dynamically assigns priorities to jobs based on their absolute
deadlines. Thus, the dynamic scheduling decision of the EDF algorithm may be
de�ned as follows: at any time the eligible job with the earliest absolute deadline is
scheduled. If there are no eligible jobs, the processor is idle.

Because of the optimality of the EDF algorithm, stated by theorem 3.1, it is con-
sidered theoretically superior to the class of �xed-priority schedulers.

Theorem 3.1 When preemption is allowed and jobs do not contend for resources,
the EDF algorithm can produce a feasible schedule for a task set T with arbitrary re-
lease times and deadlines on a single processor if and only if T has feasible schedules.

A proof for the theorem is given in [Liu, 2000]. The proof is based on the fact
that any feasible schedule of a task set T can be systematically transformed into a
schedule produced by the EDF algorithm.

Despite its optimality, only few available real-time operating systems support the
EDF scheduling algorithm. Fixed-priority schedulers were devised for easy and eÆ-
cient implementations. Compared to an implementation for a �xed-priority sched-
uler, an implementation of an EDF scheduler will have a large overhead, due to the
deadline management for the jobs that have been released but not yet completed.

The theory of dynamic-priority schedulers is well developed. Thus, feasibility con-
ditions and worst-case response time computations have been developed. We shall
not consider EDF anymore in this thesis.

3.3 Fixed-Priority Scheduling

In the following discussion of �xed-priority schedulers, we divide a �xed-priority
scheduler into two components:

� The algorithm producing the precomputed priority assignment used in �xed-
priority scheduling.

� The dynamic scheduling decision.

The �xed-priority schedulers considered in this section all use the highest priority
�rst (HPF) dynamic scheduling decision. The HPF scheduling decision uses a pre-
computed priority assignment. Thus, the dynamic scheduling decision is de�ned as
follows: at any time the eligible job with the highest priority is scheduled. If there
are no eligible jobs, the processor is idle. The scheduling decision is performed when
a job is released or completes.

In this section three di�erent algorithms for computing priority assignments are
discussed:

� The rate monotonic algorithm
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� The deadline monotonic algorithm

� Audsley's algorithm

For each combination of a priority assignment algorithm and the HPF dynamic
scheduling decision we will discuss the optimality of the resulting scheduler. For
�xed-priority scheduling we will discuss optimality in the sense that if a task set
can be scheduled by any �xed-priority scheduler, it can also be scheduled by the
particular scheduler.

For the rate monotonic and deadline monotonic algorithms to be optimal it is re-
quired, in addition to the requirements to task sets given by the periodic task model
in section 3.1, that all tasks in the set have the same phase �. Hence, the �rst job
in every task has the same release time r.

When tasks are allowed to have arbitrary phases a common release time between jobs
in all tasks in a task set may not exist. If it does not exist, the rate monotonic and
deadline monotonic algorithms are no longer optimal. Audsley's algorithm removes
the requirement for identical phases. Thus, the algorithm is optimal for arbitrary
phases. In chapter 4 we present an algorithm for determining if a common release
time exists for a given task set.

3.3.1 Rate Monotonic Algorithm

The rate monotonic (RM) is a well known priority assignment algorithm. The
algorithm assigns priorities to tasks based on their periods: the shorter the period,
the higher the priority. Thus, the task with the highest rate, i.e. the shortest period,
is assigned the highest priority.

For a task set T where priorities are assigned using the rate monotonic approach,
the relationship between periods and priorities is expressed by the following formula:

8Ti; Tj 2 T � pi > pj , �i � �j (3.1)

If several tasks have the same rate given by a common period p an arbitrary priority
assignment among those tasks is selected.

The RM priority assignment corresponds to a simple ordering of tasks with re-
spect to periods. Hence, the complexity of the RM priority assignment algorithm is
O(n log2 n) in the cardinality n of the task set.

For a set of tasks T which is in phase with relative deadlines equal to periodsDi = pi
RM is an optimal priority assignment [Liu and Layland, 1973].

Theorem 3.2 When preemption is allowed and jobs do not contend for resources,
the RM algorithm can produce a feasible schedule for a set of tasks T, when the tasks
are in phase and the relative deadline of each task equals its deadline, if and only if
T has a feasible schedule.
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3.3.2 Deadline Monotonic Algorithm

Another �xed-priority algorithm is the deadline monotonic (DM). This algorithm
assigns priorities to tasks according to their relative deadlines: the shorter the rel-
ative deadline the higher the priority. Hence, the task with the shortest relative
deadline is assigned the highest priority.

For a task set T where priorities are assigned using the deadline monotonic approach,
the relationship between periods and priorities is expressed by the following formula:

8Ti; Tj 2 T �Di > Dj , �i � �j (3.2)

If several tasks have the same relative deadline D, an arbitrary priority assignment
among those tasks is selected.

The DM priority assignment corresponds to a simple ordering of the tasks with
respect to their deadlines. Thus, the complexity of the DM priority assignment
algorithm is O(n log2 n) in the cardinality n of the task set.

The DM algorithm relaxes the restriction of the RM algorithm that the deadline
of each task in a task set must equal its period. The relaxation of this restriction
is essential for jitter control as discussed in section 2.3. For task sets with rela-
tive deadlines less than or equal to periods, Di � pi, DM is an optimal priority
ordering [Leung and Whitehead, 1982] [Audsley et al., 1991] [Audsley et al., 1993]
[Liu, 2000].

Theorem 3.3 When preemption is allowed and jobs do not contend for resources,
the DM algorithm can produce a feasible schedule for a task set T when the tasks
are in phase and relative deadline of each task is less than or equal to its period, if
and only if T has feasible schedules.

When the relative deadlines of every task are proportional to its period Di = Æpi for
some constant Æ, the RM and DM are identical. Thus, a corollary to the optimality
of DM is that RM is optimal when the relative deadlines of every task is proportional
to its period.

When the relative deadlines are arbitrary, the DM algorithm performs better than
the RM in the sense that it can sometimes produce a feasible schedule when RM
fails to do so. In the case of arbitrary relative deadlines the RM algorithm always
fails when the DM algorithm fails [Liu, 2000].

3.3.3 Audsley's Algorithm

The RM and DM algorithms imposes the restriction on the periodic task model
that all tasks share a common release time, i.e. all tasks have the same phase. This
assumption simpli�es response time analysis, but it is seldom a requirement that
jobs must be released simultaneously. By assigning di�erent phases to a set of tasks
their work is spread out. In this case there may not be a common release time for
the tasks, and RM and DM algorithms are no longer optimal.

Audsley's algorithm [Audsley, 1991] is an optimal algorithm for assigning priorities
to task sets when phases may be arbitrary and deadlines may be less than or equal
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to the periods. Thus, the algorithm removes the restriction imposed by the RM and
DM algorithms.

Unlike the RM and DM algorithms, Audsley's priority assignment algorithm requires
the availability of a feasibility test, which is applicable to a task set, where phases
may be arbitrary and deadlines are less than or equal to periods. The test must be
able to determine whether or not a priority assignment results in a schedule that
is feasible. Such a test is known as a necessary and suÆcient feasibility test. A
priority assignment resulting in a feasible test is said to be feasible. We investigate
feasibility tests in chapter 4, and discuss such a feasibility test in section 4.4.

In this section we consider a task set T of cardinality n, where phases may be
arbitrary and deadlines are less than or equal to periods. When assigning unique
priorities to the tasks in T, there are n! distinct priority assignments. A naive but
optimal priority assignment algorithm would test the feasibility of all distinct priority
assignments, and if feasible priority assignments were found arbitrarily select one.
Audsley's algorithm improves this naive but optimal priority assignment algorithm
by reducing the number of priority assignments that must be tested for feasibility.

In the periodic task model a task Ti in T is feasible if and only if

ei + ii � Di;

where ii represents the inference for Ti, i.e. the requirement for execution time of
higher priority tasks in the interval de�ned by the relative deadline Di of the task
Ti.

If Ti is not feasible, and it is not possible to reduce the execution time ei or increase
the relative deadline Di, the only way to make Ti feasible is to decrease ii. This may
be done for the given priority assignment by switching priorities between a higher
priority task Tj and Ti. It may also be possible to reduce ii by switching the priority
of two tasks Th and Tj where

�h � �i � �j:

Approaching the problem in a more structured manner, we consider the task T ,
which is the task assigned the lowest priority n in a task set of cardinality n. Audsley
proves the following two results about such a priority assignment [Audsley, 1991].

Theorem 3.4 If T is assigned the lowest priority, n, and is infeasible, no priority
assignment that assigns T priority level n is a feasible assignment.

Theorem 3.5 If T is assigned the lowest priority, n, and is feasible, then if a
feasible priority assignment for T exists, a feasible assignment with T assigned the
lowest priority exists.

The theorems follow from the fact that the time-demand of all higher-priority tasks
are constant for all priority assignments where T is assigned priority level n. The
two theorems above are now generalised into considering an arbitrary priority as-
signment 	 for a task set of cardinality n.
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Theorem 3.6 Let the tasks assigned priority levels i; i + 1; : : : ; n be feasible under
that priority assignment, 	. If a feasible priority assignment for T exists, then there
exists a feasible priority assignment that assigns the same tasks to levels i; : : : ; n

as 	.

Theorem 3.6 is proved by induction in [Audsley, 1991]. It is shown that a feasible
priority assignment can be transformed into a feasible priority assignment, where
the tasks at level i; i + 1; : : : ; n are the tasks at the same levels in 	.

The above theorems form the basis for the optimal priority assignment algorithm,
which assigns priorities n; n� 1; : : : ; 1 in order. The priority assignment algorithm
only proceeds to level i� 1 if a feasible priority assignment can be made at priority
level i. The algorithm is summarised in the steps below.

The algorithm is structured into two nested loops:

� The outermost loop iterates through the priority levels starting at the lowest
priority n.

{ The innermost loop iterates through the subset of tasks, which have not
yet been assigned priorities, searching for a task that is feasible at that
priority.

� If no feasible task is identi�ed no priority assignment exists for the
task set by theorem 3.4, and the algorithm terminates.

� If a feasible task is found, the task is assigned the current priority.
Theorem 3.6 ensures that if a feasible assignment exists one will exist
with the feasible task assigned the current priority. The innermost
loop exits.

If for a priority level several tasks are feasible, a feasible task is arbitrarily selected
by Theorem 3.6. The algorithm is optimal by the theorems 3.4, 3.5 and 3.6.

The complexity of Audsleys's algorithm can be expressed in the number of tasks
for which the algorithm performs a feasibility test, that is the number of di�erent
priority assignments considered. Assuming the cardinality of the task set is n, the
number of feasibility tests performed when searching for a feasible task at priority
level i � n is i. Considering all the n priority levels the maximum number of
feasibility tests can be expressed as n terms:

n+ (n� 1) + (n� 2) + : : :+ (n� (n� 1)) =
nX

i=1

i

The sum of integers between 1 and n is an Archimedes series, which has the value

nX
i=1

i =
1

2
n(n+ 1)

giving us the maximum number feasibility tests.

Thus, the complexity of Audsley's priority assignment algorithm is O(n2 + n) in
the number of tasks for which the algorithm performs a feasibility test. This is
clearly better than performing a feasibility test for each of the n! possible priority
assignments.
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Dynamic scheduling was introduced in the previous chapter, including dynamic-
priority as well as �xed-priority scheduling. We stated, that a general concern in
dynamic scheduling is the coupling of three components:

� An optimal scheduling algorithm.

� A feasibility test, which can decide whether a schedule produced by a schedul-
ing algorithm is indeed feasible.

� A worst-case response time computation for a job, which depends on the spe-
ci�c scheduling algorithm.

In this chapter we focus on �xed-priority scheduling. We addressed optimal sched-
uling algorithms for �xed-priority scheduling in section 3.3, where three di�erent
algorithms were presented. In this chapter we shall address the remaining two com-
ponents.

Thus, we will consider the problem of determining if a schedule given by a precom-
puted priority assignment is indeed a feasible schedule. We will present techniques,
based on the computation of the worst-case response times, which test if a task in a
set of �xed-priority periodic tasks will meet its deadlines.

4.1 The Validation Problem

In this chapter we consider the validation problem. In its general form the problem
may be stated as follows: Given a set of tasks, a set of resources available to the
tasks, the scheduling algorithm allocating processors to tasks, and synchronisation
protocols allocating resources to tasks, determine whether all jobs in the tasks will
meet their deadlines [Liu, 2000].

The techniques for solving the validation problem, which is presented in this chapter,
are only applicable to a restricted problem: Given a set of independent periodic
tasks, and a preemptive �xed-priority scheduler, determine if all jobs in the tasks
will meet their deadlines.

In chapter 5.6 we will consider a more general form of the validation problem, which
includes shared resources and their synchronisation protocols. Hence, we may re-
state the validation problem: Given a set of periodic tasks, a set of shared resources,
a �xed-priority scheduling algorithm allocating processors to tasks, and synchroni-
sation protocols allocating resources to tasks, determine whether all jobs in the tasks
will meet their deadlines.
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4.1.1 Validating Timing Constraints in Priority-Driven Systems

A feasibility test is said to be correct if it never declares that all deadlines are met,
when some deadlines are in fact missed. A feasibility test is based on a workload
model. When the algorithm is applied to a system, the conclusion of the algorithm
is only correct if the assumptions of the workload model is observed by the system.

Feasibility tests are divided into two classes:

SuÆcient feasibility tests can determine if a task set is feasible. However, if a
suÆcient feasibility test cannot determine that a feasible schedule exists for
the task set, a feasible schedule may still exist.

Necessary and suÆcient feasibility tests can determine whether or not a feasible
schedule exists for a given task set. Thus, if a necessary and suÆcient algorithm
determines that a set of tasks has a feasible schedule then all jobs in the tasks
will meet their deadlines. If the algorithm determines that the task set is
infeasible, then no feasible schedule exist for the task set.

While suÆcient feasibility tests cannot dismiss a task set as infeasible, they are still
useful tools in the design of hard real-time systems. In general, the complexity of
suÆcient tests are lower than that of necessary and suÆcient tests. Thus, suÆcient
tests can often be performed by hand whereas the complexity of necessary and
suÆcient tests require the support of tools.

4.2 A Feasibility Test for Fixed-Priority Tasks with Short

Response Times

The response time of a task is said to be short, if it is less than or equal to the period
of the task. This section presents a feasibility test that can be applied to a task in a
set of independent �xed-priority tasks, where the deadline of each task is less than
or equal to its period. It is a requirement that priorities are unique, but it is not
required that priorities are assigned by the rate monotonic or deadline monotonic
algorithms.

The feasibility test for a task Ti is performed on the basis of information about
periods pi and execution times ei of the tasks in a task set T.

4.2.1 Critical Instants

To determine the worst-case response time of any job Ji;j in task Ti in the task set
T, the worst-case combination of release times for Ji;j and all higher priority jobs in
T must be found. For this combination of release times the job Ji;j faces the most
contention for the processor.

The worst-case combination of release times for a task Ti is denoted a critical instant
of Ti. The response time of a job in Ti released at a critical instant is the worst-case
response time of the task and is denoted by Wi. The following theorem identi�es
the worst-case combination of release times.
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4.2 A Feasibility Test for Fixed-Priority Tasks with Short Response Times

Theorem 4.1 In a task set T of �xed-priority tasks, where every task has a deadline
which is less than or equal to its period, a critical instant of any task Ti in T occurs,
when one of its jobs Ji;j is released at the same time as a job in every higher priority
task, hence, ri;j = rk;lk for some lk for every k = 1; 2; : : : ; i� 1.

The notion of a critical instant was �rst introduced by [Liu and Layland, 1973] in
the presentation of the RM scheduling algorithm. A proof of theorem 4.1 is given
in [Liu, 2000].

Feasibility Intervals

Feasibility testing requires the de�nition of an interval over which the testing shall
occur. This interval is denoted the feasibility interval.

For a system given by a set of n periodic tasks, the least common multiple of pi for
i = 1; 2; : : : ; n de�nes the hyper-period, H, of the system. Thus, the execution of a
the system of periodic tasks is periodic with a period equal to H. In general, when
testing the feasibility of a set of periodic tasks that shares a critical instant, it is not
necessary to consider a feasibility interval of length H.

By theorem 4.1, the feasibility of a task set of cardinality n sharing a critical instant
t0, can be determined by examining whether the jobs released at the critical instant
have completed by their deadline. Thus, the feasibility interval may be restricted to
the interval starting at the critical instant and ending at the absolute deadline for
the lowest priority job Jn;i released at the critical instant, [t0; t0 +Dn].

4.2.2 Drawing a Time Line Diagram

A simple way of testing the feasibility of a task set T is to draw a time line digram
over the feasibility interval of the task set. Time line diagrams were introduced in
section 2.3. When the time line diagram is complete, it is inspected to see if all jobs
in the feasibility interval meet their deadlines. If all jobs meet their deadlines the
task set is feasible.

This feasibility test is necessary and suÆcient. However, for large task sets this
manual technique is laborious and error prone. For simple situations, the technique
is appropriate for providing insight into the schedulability of the system.

We now consider a task set T consisting of four tasks. All tasks have a deadline equal
to its period, and priorities have been assigned by the rate monotonic algorithm.
All tasks share a critical instant as they share the same phase. The characteristics
of the tasks is summarised in situation table 4.1.

We draw the time line diagram by drawing a time line for each task in the task set
in priority order, starting with the highest priority. The time line for the four tasks
T1; : : : ; T4 is presented in �gure 4.1 on the next page. After the time line diagram
is complete we inspect it to see if any job misses its deadline. In �gure 4.1 on the
following page we see that the lowest priority task T4 misses its deadline at time 9.0.
Hence, the task set is not feasible. As we only consider the feasibility interval the
preemption of task T4 at time 9.0 is left out in the time line diagram.

The schedulability tests in the following sections are the mathematical counterparts
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4 Fixed-Priority Scheduling of Periodic Tasks

Task name Period Phase Exec. time Deadline Priority

T1 3.00 0.0 1.00 3.00 1
T2 5.00 0.0 1.50 5.00 2
T3 7.00 0.0 1.25 7.00 3
T4 9.00 0.0 0.75 9.00 4

Table 4.1: A task set sharing a critical instant.

time0 1 2 3 4 5 6 7 8 9

T1

T2

T3

T4

D4

Figure 4.1: Testing the feasibility of the task set summarised in situation table 4.1 by draw-
ing a time line diagram. The task set is infeasible as task T4 misses its deadline
at time 9.0.
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to this technique.

4.2.3 Time-Demand Analysis

Because of theorem 4.1, when tasks are in phase a worst-case response time of a
job in a task may be calculated. If the job Ji;j in a task Ti is released at a critical
instant at time t0, then at time t0+ t, where 0 � t � pi, the time-demand of the job
Ji;j and the jobs of higher priority tasks released in the interval [t0; t] is expressed
by the time-demand function

wi(t) = ei +
i�1X
k=1

�
t

pk

�
ek; for 0 � t � pi: (4.1)

The second term of the time-demand function de�nes the interference on Ji;j, i.e.
the time-demand of the jobs released in the i�1 higher priority tasks in the interval
[t0; to + t].

The job Ji;j will meet its deadline at t0 + Di if and only if wi(t) � Di for some
0 � t � Di. By theorem 4.1, the job Ji;j released at a critical instant has the worst-
case response time of all jobs in Ti. Hence, if the job meets its deadline, then all
jobs in the task will meet their deadlines, and the task Ti is feasible. If the job does
not complete within its deadline the task Ti is infeasible and the task set cannot be
scheduled by the particular �xed-priority scheduling algorithm.

To investigate the nature of the time-demand function we return to the task set
summarised in situation table 4.1 on the preceding page. All tasks have a deadline
equal to its period, hence priorities were assigned using the rate monotonic algo-
rithm. Additionally, all tasks share a critical instant as they share the same phase.
In �gure 4.2 on the following page the solid lines show the time-demand functions of
the individual tasks. The dotted lines show the total contribution of higher-priority
tasks to each lower priority task.

The time available for scheduling tasks is given by the supply function y(t) = t.
Thus, when wi(t) > t the time-demand is greater than the time supply, hence the
task is not feasible by the particular scheduling algorithm. When wi(t) � t the
task can be feasibly scheduled as the time-demand is less than or equal to the time
supply.

The worst-case response time of a task Ti is the least solution to the equation
wi(t) = t. Thus, a dot at the intersection between wi(t) and y(t) marks the instant
where the job Ji;j released at the critical instant of Ti completes.

From �gure 4.2 we see that the tasks T1, T2, and T3 are schedulable. However,
the time-demand function for task T4 lies entirely above the supply function from
0 to 9, hence it misses its deadline at time 9. The �gure illustrates the staircase
nature of the time-demand function. An increase in the function occurs when a job
in one of the higher priority tasks is released. Releases occur at integer multiples
of the periods of higher priority tasks. After a release the time-demand is constant
until the next release. Hence, at the right-most point on each plateau the shortage
of processor time wi(t) � t is the smallest, and it may be negative if the supply is
greater than the demand.
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Figure 4.2: Feasibility test of the task set summarised in situation table 4.1 by time-demand
analysis. The task set is infeasible as task T4 misses its deadline at time 9.0.
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4.2 A Feasibility Test for Fixed-Priority Tasks with Short Response Times

Hence, to test if a task Ti in a task set T is feasible the time-demand analysis method
requires us to:

1. Compute the time-demand function wi(t) according to equation (4.1)

2. Test if the inequality
wi(t) � t (4.2)

is satis�ed for a release time t in one of the k highest priority tasks in T, thus

t 2
�
t0
�� t0 = jkpk ^ k = 1; 2; : : : ; i

	
where for each of the tasks Tk we must consider the following releases of a job
in the task

jk = 1; 2; : : : ;

�
min(pi;Di)

pk

�

If the equality is satis�ed for any of these instants the task Ti is feasible.

The worst-case response time of the task is the value of the time-demand
function for the least solution to the inequality 4.2.

Given the time-demand analysis method, the feasibility of a task set may be tested
by successive application of the method to each task in the set from the highest
priority task to the lowest priority task. The task set is feasible if and only if all the
individual tasks are feasible.

We now return to the task set summarised in situation table 4.1 on page 26 to
illustrate the application of the time-demand analysis method. We apply the method
to the tasks in decreasing priority order. For task T1 we must test the inequality
w1(t) � t for the single value of 3. We �nd that the inequality is satis�ed, hence the
task is feasible. For T2 we must test the values 3 and 5. The inequality is satis�ed
for the value 3. For the task T3 the inequality must be tested for the values 3, 5,
6, and 7. We �nd that the inequality is not satis�ed by 3 but is satis�ed by 5.
For the task T4 we must test the following values 3, 5, 6, 7, and 9. The inequality
w4(t) � t is not satis�ed by any of the values, hence the task T4 is infeasible. The
time-demand functions of the individual tasks were illustrated in �gure 4.2 on the
facing page.

We may use the time-demand analysis method with task sets, where the tasks have
arbitrary phases. In this case a critical instant may not exist, hence the worst case
situation might not occur. For such task sets we simply ignore the phases. Thus, we
assume the worst-case behaviour of the system when using the time-demand analysis
method.

By ignoring phases for a task set in which the tasks will never share a critical instant,
we reduce the necessary and suÆcient feasibility test to a suÆcient test. Hence, if
a task set is deemed infeasible it may still be feasible, as the worst-case situation
might not occur. However, if a task determined to be s feasible, it is indeed feasible.

4.2.4 Worst-Case Response Time Computation

The previous section discussed how it was possible to test the feasibility of a task
with a deadline less than or equal to its period. For a task the feasibility was tested
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4 Fixed-Priority Scheduling of Periodic Tasks

by computing the worst-case response time for integer multiples of the periods of
higher priority tasks and the period of the task itself.

This section presents an alternative algorithm that computes the worst-case response
time of a task Ti from a task set T in an iterative manner. It is a requirement of
the algorithm that T scheduled by the RM scheduling algorithm.

To compute the worst-case response time we must �nd the least solution with respect
to t in equation (4.3).

t = ei +
i�1X
k=1

�
t

pk

�
ek (4.3)

Equation (4.3) may be solved in an iterative manner [Klein et al., 1993]. The fol-
lowing three steps de�nes an algorithm for computing the worst-case response time
for a task Ti.

1. Compute the initial approximation to the worst-case response time Wi.

t0 =
iX

k=1

ei

2. Use the approximation tl to compute the next approximation tl+1 in the for-
mula below

tl+1 = ei +
i�1X
k=1

&
tl

pk

'
ek

3. Determine if the approximation is the answer.

� If tl+1 is less than or equal to Di, and tl+1 is not equal to tl, step 2 is
repeated.

� If tl+1 is greater than Di the worst-case response time is greater than the
relative deadline, hence the task is infeasible.

� If tl+1 = tl the algorithm terminates and tl is the worst-case response
time of the task.

The algorithm may provide an erroneous result if the task set is not scheduled by
the RM scheduling algorithm [Briand and Roy, 1999].

4.3 Feasibility Test for Fixed-Priority Tasks with Arbitrary

Response Times

The response time of a task is arbitrary if it may be larger than the period of the
task. In this section we sketch a feasibility test for determining the feasibility of a
task with a deadline, which may be larger than the period. We refer to [Liu, 2000]
for the details of the test.
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As the response time is allowed to be larger than the period a task may have more
than one job ready for execution at any time. It is a requirement that ready jobs in
the same task is scheduled in the order they were released.

When jobs are allowed to execute beyond the end of its period, we must de�ne a
new feasibility interval over which we shall perform the feasibility test. A level-�i
busy interval is an interval during which the processor is assigned to jobs in tasks
with priorities greater than or equal to �i. At the end of the interval there are no
ready jobs in tasks of priorities greater than or equal to �i.

A level-�i busy interval is said to be in phase if the �rst job of all tasks, that have
priorities higher than or equal to �i and are executed in the interval, have the same
release time. When determining the schedulability of a task Ti in a task set T, in
which the response times of jobs can be larger than their respective periods, it is
suÆcient to consider the special case, where tasks are in phase.

As response times are arbitrary, the �rst job Ji;1 may not have the largest response
time among all jobs in Ti. Thus, to test the feasibility of the task Ti, we must
examine all jobs of Ti in the �rst level-�i busy interval, which is in phase. The right
hand side of the time-demand function (4.1) is still valid for the individual jobs in
task Ti within a level-�i busy interval.

Hence, to test the feasibility of a task set T where deadlines are arbitrary, we test
the feasibility one task at a time from the highest priority task to the lowest priority
task.

4.4 Feasibility Test for Fixed-Priority Tasks with Short

Response Times and Arbitrary Phasing

When tasks are permitted to have arbitrary release phases, a common release time
between the jobs of all tasks in the task set may not exist.

In [Audsley, 1991] Audsley presents a method for determining if a common release
time exists. If a common release time exists we may use one of the feasibility tests
discussed in the previous two sections.

If a common release time does not exist Audsley's feasibility test is a necessary and
suÆcient feasibility test [Audsley, 1991]. Due to the complexity of the Audsley's
feasibility test we shall simply refer to the original paper for further details.
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5 Synchronisation Protocols

In real-time systems resources may be shared between tasks making those tasks
interdependent, i.e. we have a resource contention or a race condition between the
tasks. To control this resource contention a synchronisation protocol or a resource
access-control protocol must be used. In this thesis we shall only consider resources
which shall be allocated in a mutual exclusive manner, i.e. a critical section.

Using a traditional �xed priority synchronisation protocol a task can make a request
on a resource. If the resource is available it becomes allocated by the task. If the
request fails, i.e. the resource is already allocated by another task, the task may
abort the request or wait until the resource becomes available. A task releases a
resource when it has �nished using it.

The failure to request a resource may result in a task being blocked by another task
of lower priority. This phenomenon is called priority inversion, i.e. the blocked task
indirectly a gets lower priority than the blocking task. We de�ne the blocking, bi,
for a task, Ti, as the worst possible amount of time the task can be blocked by a
task of lower priority. Thus, the task of lowest priority can never be blocked.

Unfortunately, there are situations were a task can be blocked for uncontrolled and
unacceptable times. Occasionally there may even be mutual deadlocks. Uncontrolled
blockings and mutual deadlocks are not acceptable in hard real-time systems. In
this chapter we present alternatives to the �xed priority synchronisation protocol.
These protocols deal with the problems introduced in the next section.

5.1 Uncontrolled Blocking and Mutual Deadlock

Table 5.1 on the next page features a task set which results in uncontrolled blocking
of the task T1. The situation is illustrated in �gure 5.1 on the following page. The
problem is that the intervening and resource independent task T2 might run for
a very long time. The situation becomes even worse if more intervening tasks are
added. The intervening tasks are said to be chain blocking or to be transitive blocking
task T1.

When designing real-time systems the amount of blocking should be at an absolute
minimum. Even a good design cannot avoid blocking totally, but if chain blocking
can be eliminated, the blocking of tasks becomes controllable and thus might be
acceptable.

When tasks allocate more than one resource at the same time, the possibility for
mutual deadlock may occur. Table 5.2 on the next page features a task set which
results in mutual deadlock. The situation is illustrated in �gure 5.2 on the following
page.
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5 Synchronisation Protocols

Task Priority Phase Resource usage

T3 3 0 1.7
T2 2 2 -
T1 1 3 0.8

Table 5.1: A task set which results in uncontrolled blocking.

time0 1 2 3 4 5 6 7 8 9 10 11

T1

T2

T3

B

Rattempts to allocates R

preempted

released

releases R and

gets preempted

Figure 5.1: Example of an uncontrolled blocking situation. The intervening task T2 is chain
blocking the task T1 which causes the uncontrolled blocking.

Resource usage

Task Priority Phase R1 R2

T2 2 0 2.0 1.5
T1 1 2 0.5 3.0

Table 5.2: A task set which results in deadlock.

time0 1 2 3 4 5 6 7 8 9 10 11

T1

T2

B

R1

R2

released

preempted

attempts to allocates R1

attempts to allocates R2

Figure 5.2: Example of a mutual deadlock situation.
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A deadlock is fatal. A simple way of avoiding deadlocks is to forbid tasks to request
more than one resource at the same time or to let all task request the resources in a
prede�ned sequence, e.g. R1, R2, etc. Methods to detect deadlocks at the application
design level are a subject of concurrent programming theory and is not treated in
this thesis.

A good application design cannot in general eliminate the problems of chain blocking
and mutual deadlock. Thus, we need a synchronisation protocol that can do that.
A number of protocols can eliminate chain blocking and/or deadlock. The most
known are listed below:

� priority inheritance protocol (PIP)

� priority ceiling protocol (PCP)

� non-preemptive critical section protocol (NPCS)

� highest locker protocol (HL)

The PIP can decrease the blocking duration but is not able to control blocking
in general. Furthermore, it does not avoid deadlock. The PCP can both control
blocking and avoid deadlock.

The PIP and PCP basically works using priority inheritance, e.g. if a task T1 requests
a resource allocated by a task T3 of lower priority, T3 dynamically inherits the priority
of T1 until is has released the resource. The PIP protocol and especially the PCP
protocol are diÆcult to implement and introduces a large overhead. In this thesis we
shall only consider the NPCS and the HL. For a more detailed description of the PIP
and PCP protocols see [Klein et al., 1993], [Briand and Roy, 1999], and [Liu, 2000].

Section 5.2 and section 5.3 present the non-preemptive critical section protocol
(NPCS) and the highest locker protocol (HL), respectively. In section 5.4 we see
how to compute the amount of blocking for tasks using either the NPCS or HL.
Furthermore, in section 5.5 we present an alternative to synchronisation protocols
for periodic tasks were their timing behaviour are used to synchronise tasks.

5.2 The Non-Preemptive Critical Section Protocol

The non-preemptive critical section protocol (NPCS) makes a task non-preemptable
when the task requests a resource. Thus, a task always succeeds in allocating a
resource. No other task can preempt the task and make a request for the same
resource while the resource is allocated. When the resource is released, the task is
made preemptable again. The e�ect of the protocol is similar to giving the task the
highest priority of all tasks.

The protocol is very easy to implement and may be implemented in two variants:

Task level Makes a task non-preemptable by disabling the scheduler, i.e. informs
the scheduler that the task is now non-preemptable.

Interrupt level Makes a task non-preemptable by disabling interrupts.
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5 Synchronisation Protocols

The protocol prevents both chain blocking and deadlock, i.e. no other task can
execute as long as the task is non-preemptable. The new behaviours of task sets
presented in table 5.1 to 5.2 on page 34, using the NPCS, are illustrated in �gure 5.3
to 5.4 on this page.

time0 1 2 3 4 5 6 7 8 9 10 11

T1

T2

T3

B

R

�3  0 releases R, �3  3, gets preempted

released �1  0 �1  1

Figure 5.3: Example of uncontrolled blocking avoidance using the non-preemptive critical
section protocol or the highest locker protocol. The intervening task T2 is now
push-through blocked of T3.

time0 1 2 3 4 5 6 7 8 9 10 11

T1

T2

B

R1

R2

released

�2  0
releases R2, �2  2,

gets preempted

�1  0 �1  1

Figure 5.4: Example of mutual deadlock avoidance using the non-preemptive critical section
protocol or the highest locker protocol.

The protocol fails to work

� on multiprocessor platforms where a task running in parallel can also request
the same resource.

� if the non-preemptable task choose to self-suspend thereby yielding control to
another task which can also request the same resource.

A task using the protocol will block all tasks of higher priority. Even tasks that
never request the resource are blocked. The latter phenomenon is called push-through
blocking, i.e. the tasks are blocked by an event they do not take part of. In the next
section a synchronisation protocol which is more moderate in terms of push-through
blocking is presented.
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The NPCS is a good and simple protocol when the critical sections are small and
when most of the tasks conict with each other.

5.3 The Highest Locker Protocol

The highest locker protocol (HL) uses priority manipulation to synchronise tasks. It
uses the following rules [Klein et al., 1993, p. 5-47]:

� Each shared resource has a ceiling priority de�ned, prior to run-time, as the
highest priority of all the tasks that requests the resource.

� When a task requests a resource, its priority is set to one level higher than
the de�ned resource ceiling priority. If a task is requesting more than one
resource at the same time, its priority is set to one level higher than the
highest ceiling priority of all the requested resources. Thus, a task always
succeeds in allocating a resource.

� When a task has released all resources, its normal priority is restored.

No other task competing for the same resources can preempt the task which allocated
the resources and thus the protocol prevents both chain blocking and deadlock.

If all resource ceiling priorities are equal to the priority of the highest priority task
the behaviour of the HL is identical to the NPCS. Thus, the examples situated by
table 5.1 to 5.2 on page 34, and illustrated in �gure 5.3 to 5.4 on the facing page
gives the same behaviour for NPCS and HL.

Consider the example situated in table 5.1 and illustrated in �gure 5.3. If a task
of higher priority were added to this set of tasks, the task would have been push-
through blocked using the NPCS but not by using the HL. Thus, using the HL, tasks
with higher priority than the ceiling priority of a resource cannot be push-through
blocked by request on that resource.

Like the NPCS this protocol fails to work:

� on multiprocessor platforms where a task running in parallel can also request
the same resource.

� if the non-preemptable task choose to self-suspend thereby yielding control to
another task which can also request the same resource.

The protocol is easy to implement. The use of the protocol requires knowledge prior
to compilation of all tasks that uses a resource in order to de�ne the ceiling priority
of each resource.

5.4 Computing Blocking Times

With the presented synchronisation protocols we have eliminated the possibility
for chain blocking and mutual deadlock. Unfortunately, these protocols introduces
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another blocking factor: push-through blocking. Fortunately, push-through blocking
is more controllable than chain blocking.

We repeat the de�nitions of direct blocking and push-through blocking:

Direct blocking A high priority job can be blocked by a low priority job in a direct
resource contention.

Push-through blocking A medium priority job can be blocked by a low priority
job which inherits the priority of a high priority job.

For the HL a task is subject to push-through blocking if its priority is between the
priorities of at least two task sharing a resource. The factor of push-through blocking
is the duration of the resource allocation of the push-through blocking task. If a
task is push-through blocked by several tasks the factor is the maximum duration
of the resource allocations of the push-through blocking tasks. A task may be direct
blocked, at most, for the duration of the longest resource allocation by a resource it
uses.

Both protocols has the property that a job can be blocked for at most one duration
of the longest continuous resource allocation made by tasks of lower priority.

Table 5.3 situates a task set of four tasks. The two tasks, T2 and T4, has a resource
contention for the resource R. The table shows the obtained blockings with either
of the two protocols. The situation presented is quite simple. Structured methods
to determine blockings are needed in more complex situations. Examples of these
can be found in [Klein et al., 1993], [Liu, 2000], and [Briand and Roy, 1999].

Blocking

Task Priority Resource R usage NPCS HL

T1 1 - 9z 0
T2 3 9 7y 7y

T3 4 - 7z 7z

T4 5 7 - -

Table 5.3: Example of how synchronisation protocols a�ect the blocking. The blockings
marked with a dagger are direct blockings, and blockings marked with a double
dagger are push-through blockings.

5.5 Synchronisation with Phasing and Deadlines

In this section we presents an alternative to the presented synchronisation proto-
cols.By the use of timing constraints we can obtain mutual exclusive access of a
resource. We illustrate this by an example. The alternative can be used for periodic
tasks in certain situations only.

Consider the situation presented in table 5.4 on the facing page. Here two tasks with
same period, T1 and T2, shares a resource R. By creating a controlled interleaving
of tasks by introducing a phase displacement and deadline we ensure that the task
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of higher priority cannot preempt the task of lower priority. Thus, the task cannot
be in direct contention for the resource. The situation is illustrated in �gure 5.5.

Task Priority Phase Period Exec. time Rel. deadline Resource usage

T2 2 2.0 10.0 6.0 8.0 1.0
T1 1 0.0 10.0 1.5 2.0 1.0

Table 5.4: Situation table for alternative synchronisation protocol example.

time0 1 2 3 4 5 6 7 8 9 10 11

T1

T2

�2 p2

p1

D1

D2

Figure 5.5: Example of mutual exclusive access using precedence constraints.

Using this alternative it is very important that the two tasks are released by the
same timer. Otherwise, the periods of the tasks may drift from each other causing
a direct resource contention with no mutual exclusion access.

5.6 Shared Resources in the Periodic Task Model

In the previous sections we investigated the extra complexity introduced by sharing
resources in a real-time system. To ensure mutual exclusive access to a shared
resource a job may be blocked. In particular, we explained how shared resources may
cause scheduling abnormalities such as priority inversion, leading to uncontrolled
blocking.

To control the blocking the concept of synchronisation protocols was introduced.
We gave a detailed description of the two synchronisation protocols: NPCS and
HL. NPCS ensures mutual exclusion access and controls the blocking by turning
critical sections into non-preemptable sections. Though the synchronisation protocol
succeeded in controlling the blocking, it introduced a new form of blocking, push-
through blocking, which will a�ect all but the lowest priority task in the system.
HL ensures mutual exclusion access and controls blocking by priority manipulations,
which turns the critical section into a non-preemptable for task within a given range
of priorities.

The delay due to blocking may cause a job in a high priority task to miss its deadline.
Thus, when testing the feasibility of a task we must consider the interference of all
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higher priority tasks, but also the amount of blocking introduced by lower priority
tasks.

The time-demand function (4.1) in section 4.2.3 did not consider the amount of
blocking introduced by lower priority tasks. With the introduction of synchronisa-
tion protocols, we argued that a job is only blocked if it is released when a lower
priority task is in a non-preemptive critical section. Thus, we may see blocking as
extra execution time added to the start of the job.

Fixed-Priority Tasks with Short Response Times

The feasibility test for �xed-priority tasks with short response times are now ex-
tended to properly consider blocking. Assume we have computed the blocking time
bi for the task Ti as described in section 5.4. If a job is to meet its deadline, the time-
demand of all higher priority tasks, the task itself, and the blocking time imposed
by lower priority tasks must be met by the time supply.

Thus, we may add the blocking time bi to the time-demand function wi(t) for the
task Ti. Hence, when using the following time-demand function

wi(t) = ei + bi +
i�1X
k=1

�
t

pk

�
ek; for 0 � t � pi: (5.1)

instead of the function (4.1) in the inequality (4.2) of the feasibility test, we properly
consider the e�ects of blocking when testing the feasibility of a task Ti.

Fixed-Priority Tasks with Arbitrary Response Times

In the feasibility test for a task which has arbitrary response times Ti the e�ects of
blocking is captured as in the feasibility test for tasks with short response times.
We refer to [Liu, 2000] for further details.
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In this chapter we de�ne a computational model which will restrict the possible
design of a hard real-time system. The restrictions ensure a schedulability analysis
of a design is possible.

In the case study of this thesis we shall adhere to this computational model in order
to analyse the resulting designs.

The restrictions are derived from the theory of the previous chapters and is stated
below without any further explanation.

Processors A system consists of one and only one CPU.

Dynamic scheduling decision A �xed priority, preemptive scheduler is required.
The dynamic scheduling decision shall work in a HPF manner.

Priorities The priorities of tasks must be �xed using either the DM approach or
the Audsley approach. Thus, all tasks are assigned unique priorities.

Task behaviour All tasks must have a truly periodic behaviour. Tasks are not
allowed to self-suspend and to alter their priorities themselves.

Execution times It must be possible to compute the worst-case execution time
(WCET) for a task.

Deadlines A job in a task may have a deadline less or equal to its period.

Phases Tasks are allowed to have di�erent phases.

Task synchronisation For ensuring mutual exclusive access of a critical section
either the NPCS or the HL must be used.

In special situations mutual exclusive access of a critical section may be ob-
tained using precedence constraints, cf. section 5.5.

Tasks shall only interact using critical sections. Resources to be requested in
a mutual exclusive manner shall be treated as a critical section.
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7 The Nucleus Plus Real-Time Operating System

Nucleus Plus (NP), by Accelerated Technology Incorporated (ATI), is a real-time,
preemptive, multitasking kernel designed for time-critical embedded applications.
Nearly 95% of Nucleus Plus (NP) is written in ANSI C, making it portable for
di�erent processor architectures and compilers.

NP is implemented as a C library. Applications are linked together with this li-
brary, resulting in one binary object which may be loaded onto a target platform.
NP comes with complete source code, which promotes greater understanding and
permits application-speci�c modi�cations.

This chapter provides an overview of the features in NP and also highlights relevant
details for this thesis. Finally, we discuss pros and cons for using NP in hard real-
time systems.

7.1 Provided Functionality

NP features a large set of functionality, e.g. tasks, dynamic memory, inter-process
communication and semaphores, which is described in [ATI, 2000b]. This is sum-
marised in this section.

Nucleus Plus Tasks

NP tasks are semi-independent programs with dedicated purposes. Managing the
execution of competing tasks is the main purpose of NP, cf. section 7.3. A task is
always in one of following �ve states:

Executing Task is currently running

Ready Task is ready to run, but another task is running

Suspended Task is dormant while waiting for a service request, cf. section 7.3.
When the request is complete, the task is moved to the ready state

Terminated Task was killed

Finished Task �nished its processing

If a task enters one of the two latter states, it has to be reset in order to execute
again. If reset the task becomes suspended and must be explicitly resumed in order
to execute again. Figure 7.1 on the following page shows an automaton of the states
of a NP task. Processing time required for managing task is constant.
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Executing

Ready Terminated Finished

Suspended

Figure 7.1: Automaton for the states of a Nucleus Plus task.

Partition Memory Pools

A partition memory pool speci�es an area of memory from where it is possible to
allocate/deallocate �xed-sized memory blocks. The block-size is speci�ed when the
partition memory pool is created. A property of partition memory pools is that
a request for a block of memory can always be granted by a non-empty pool. In
general, this property does not hold for dynamic memory pools due to fragmentation,
cf. section 7.1. A task is subject to suspension if it attempts to allocate memory
from a partition memory pool that is currently empty. Processing time required for
allocating and deallocating memory partitions is constant.

Dynamic Memory Pools

A dynamic memory pool speci�es an area of memory from where it is possible to al-
locate/deallocate variable-sized memory blocks. NP uses a �rst-�t algorithm, which
is basically a linear search, to see if a memory block of the wanted size is available. A
task is subject to suspension if it attempts to allocate a memory block of a size big-
ger than currently available. Processing time required when allocating memory from
a dynamic memory pool is upper-bound by the total size of the dynamic memory
pool and the number of fragments to look through.

Mailboxes

A mailbox provides a mechanism to simple asynchronous inter-process communica-
tion. It is capable of holding one message at the time only. A message has a �xed
size of 16 bytes and is sent and received by value. A task is subject to suspension if
it attempts

� to receive a message from an empty mailbox; or

� to send a message to a full mailbox.

It is also possible to broadcast a message to all the tasks waiting for a message.
Processing time required for sending and receiving a single messages is constant.

Queues and Pipes

Queues and pipes are conceptually similar constructs which provides a mechanism
to asynchronous inter-process communication. They are very similar to mailboxes,
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except that they can hold several messages at the time. Furthermore, messages can
be either �xed-sized or variable-sized of arbitrary length. Messages may be placed
either at the front or the back of the queue/pipe. The only di�erence between queues
and pipes is that

� a queue message consists of one or more 32-bit words; and

� a pipe message consists of one or more bytes.

It is also possible to broadcast a message to all the tasks waiting for a message. Basic
processing time required for sending and receiving messages is constant. However,
the time required to copy a message is linear in the size of the message. Thus, a
broadcast operation is linear in the number of waiting tasks.

Semaphores

A semaphore provides a mechanism to control access of critical regions and to man-
age shared resources. The implementation provides counting semaphores that ranges
in value from 0 to 4,294,967,294. A task is subject to suspension if it attempts to
obtain a semaphore whose count is currently zero. Processing time required for
obtaining and releasing a semaphore is constant.

Event Groups

Event groups provides a mechanism to indicate that a certain system event has
occurred. An event is represented by a single bit, called an event ag. An event
group consists of 32 event ags. Event ags are synchronous by nature. A task
does not recognise that event ags are present until a speci�c request is made. A
task is subject to suspension if it tries to receive a combination of event ags that is
currently not present. Processing time required for receiving event ags is constant.
However, the processing time required to set an event ag is linear in the number
of tasks currently suspended on the event group to whom the event ag belongs.

Signals

Signals are somehow similar to event groups. However, there are signi�cant di�er-
ences in operation. As mentioned in section 7.1, event groups are synchronous by
nature. Signals, on the other hand, operate in an asynchronous manner. When
a signal is present, a special signal handling routine is executed when the task is
resumed. A task is capable of handling 32 di�erent signals. A task's signal han-
dling routine must be supplied before any signal can be processed. Processing time
required to send and receive signals is constant. The time required by the signal
handling routine is application speci�c.

Timers

Most real-time applications require processing on periodic time intervals. Each task
in NP has a built-in timer which is used to provide task sleeping and time-outs on
system calls which might suspend the task. It is also possible to read and set the
system clock.

NP provides programmable application timers. When they expire a speci�c user-
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supplied routine executes. They can be set up in two ways: as an one-shot timer
or as a periodic timer. Periodic timers continuous to expire until disabled. Appli-
cation timers execute as HISRs, cf. section 7.1. Therefore, self-suspension are not
allowed and processing should be kept at a minimum. Processing time required to
manage application timers is constant. However, time required by the user-supplied
routines depends on the routines themselves and the number of timers that expired
simultaneously.

Interrupts

When an interrupt occurs, the processor suspends the current path of execution
and transfers control to the appropriate interrupt service routine (ISR). In NP an
interrupt service routine may be divided into two parts:

Low-level interrupt service routine (LISR) A LISR is a regular ISR. A LISR
have very limited access to the system services of NP, e.g. only six simple
system services are available. If a LISR needs to access other system services,
this must be indirectly done by activating a high-level interrupt service routine
(HISR). It is not possible to release a semaphore from a LISR.

In NP there are two kinds of LISRs: managed and unmanaged. With the
managed LISR NP takes care of saving and restoring the context. This might
introduce some extra overhead because NP saves all registers whether they are
to be altered or not. With the unmanaged LISR, the routine itself must take
care of everything self. This makes it possible to make a tailored ISR with a
minimum of overhead.

High-level interrupt service routine (HISR) AHISR can only be activated by
a LISR and thus form the second part of a NP ISR. A HISR is scheduled by
NP, cf. section 7.3 and may access most of the NP system services. However,
only non-blocking system services may be called. Thus, if a HISR needs to call
a system service which may block, this must be done indirectly by starting a
regular NP task.

NP o�ers system services to disable and enable interrupts. By disabling all interrupts
a task can not be preempted at all, thus ensuring mutual exclusion access of critical
regions.

System Diagnostics

Nucleus Plus provides facilities to improve examinations of problems in the system:

Error management If a system error occurs, processing control is transferred to
a common error handling routine, cf. section 7.2. By default, this routine
prepares an error message and halts the system. However, it is possible to add
additional error processing to this routine.

System history System activities can be logged into a circular log. Additionally,
it is possible for tasks and HISRs to make entries in this log. Every log-entry
is time-stamped and is provided with information about the service and the
caller. In order to enable system history, the NP library must be compiled
with this option enabled.
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Version information It is possible to retrieve information about the underlaying
version and release of the NP operating system.

License information It is possible to get information about the customer's license
of NP, e.g. the customer's serial number.

I/O Drivers

Many applications require input and output from various peripherals. The control
of peripherals is usually accomplished through a device driver.

NP provides a standard interface to attend request for initialisation, assignment,
releasing, input, output, status and termination. It is possible to protect the internal
data structures of a driver from simultaneous access. In this case a task may be
subject to suspension.

7.2 States of Execution

A NP application is always in one of the following six possible states of execution:

Initialisation is the systems �rst state of execution. All NP components are ini-
tialised by this function. After system initialisation is complete, application
speci�c initialisation is carried out. After all initialisation is complete, the
system timer is started and the control is transferred to the scheduling loop.

System error is entered if a system error occurs. System errors are at most de-
tected during initialisation. However, stack overow conditions are detected
during task and HISR execution. By default, system errors are fatal and
therefore this is a terminal state.

Scheduling loop is responsible for transferring control to the HISR or task of
highest priority, ready for execution. Control stays inside this loop if no HISR
or task is ready to execute.

Tasks express most of the application processing. A task has it own stack and have
full access to NP services.

Signal handlers are associated with tasks and executes on top (using the same
stack) of a task. A signal handler have limited access to NP services, e.g.
self-suspension is not allowed.

HISR forms the second part of an interrupt service routine. HISRs are scheduled
in a manner similar to tasks, cf. section 7.3. Most non-blocking system calls
may be performed by a HISR.

7.3 HISR and Task Management

NP has a preemptive scheduler that runs in a HPF manner. Tasks and HISRs are
both managed by the scheduler. A ready HISR is always executed before any task,
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i.e. HISRs have higher priorities than tasks. HISR priorities can be either 0, 1 or 2,
where priority 0 is the highest. Task priorities ranges from 0 to 255, where priority
0 is the highest. The priority of a HISR or a task is speci�ed at the creation time.
The priority of a task may be changed dynamically.

Tasks at the same priority level may or may not run in a weighted round-robin
(WRR) fashion. The size of the time-slice is speci�ed in timer ticks at task creation
time and can be changed dynamically. A task can also relinquish control to other
tasks at the same priority level.

It is possible for a task to disable preemption and thus not become preempted of
other tasks. This can be done at task creation time and can also be done dynamically.
If preemption is disabled time-slicing is also disabled for tasks at the same priority
level. If a task has disabled preemption a HISR can still preempt a task.

Suspension of tasks

When a task invokes a system call which could start a race condition for a shared
resource, the task is subject to implicit suspension. In this case the task has the
option to

� suspend unconditionally;

� suspend with a time-out; or

� not to suspend.

The type of suspension is speci�ed when the task invokes such types of system calls.
If the task chooses to suspend unconditionally, it will be resumed when the resource
becomes available for that task. If it chooses to suspend with a time-out and the
resource does not become available before the time-out, the task continues with
other jobs when the time-out occurs. Finally, if the task chooses not to suspend, the
task continues immediately with other jobs.

If the task becomes suspended it can be resumed in either

� �rst-in, �rst-out (FIFO) order; or

� highest priority �rst (HPF) order.

Which policy to use is speci�ed when the shared resource is created. If tasks are
suspended in �rst-in, �rst-out (FIFO) order, they are resumed in the order they
were suspended. Otherwise, if tasks are suspended in HPF order, they are resumed
from high priority to low priority.

When race conditions occurs, tasks are subject to priority inversion and to mutual
deadlocks. NP does not implement resource allocation protocols to bound priority
inversion and to avoid mutual deadlocks.

A task can also be explicitly suspended e.g. by another task or HISR. If this happens,
the suspended task must also be explicitly resumed again. Finally, a task can also
go to sleep (self-suspension). The amount of time to sleep is speci�ed in timer ticks.
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7.4 Determinism

Most of the system services in NP are performed in constant time. However, there
are some cases were this is not true:

� When a task is suspended in priority order. The processing time required to
suspend the task is a�ected by the number of task currently suspended on that
particular resource.

� When allocating memory from a dynamic memory pool. This is due to possible
memory fragmentation. NP uses a �rst-�t algorithm, which is basically a linear
search, and as a result the worst-case performance depends on the amount of
fragmentation.

� When broadcasting a message over a mailbox, a queue or a pipe. The process-
ing time is linear to the number of the tasks waiting for message.

� When sending/receiving a message over a queue or a pipe. The processing
time required to copy a message is linear to the size of the message.

� When setting an event ag in an event group. The processing time required
depends on the number of tasks currently suspended on that event group.

� When a signal-handler invokes. The processing time depends on the signal-
handling routines themselves.

� When an application timer executes a user-supplied expiration routine. The
processing time depends on the expiration routines themselves and the number
of timers that expires simultaneously.

7.5 Kernel Internals

In the beginning of our investigations of the Nucleus Plus operating system we
were told that it was believed that when using a NP semaphore as synchronisation
primitive, resources protected by this were requested in a way similar to the priority
inheritance protocol (PIP). Though we were not able to �nd anything about this in
the documentation of Nucleus Plus [ATI, 2000a] [ATI, 2000b].

At the Nucleus Plus web-site (www.atinucleus.com) we found the following question
and answer in the pages of Nucleus Plus frequently asked questions (FAQ):

Q: Does Accelerated Technology do anything about priority inversion?

A: We (ATI) have a protection mechanism that works like a software
monitor. It uses a scheme comparable to priority inheritance when a
higher priority task needs a resource that is in the exclusive possession
of a lower priority task. The lower priority task is allowed to run just far
enough to release the resource, and then control returns to the higher
priority task, which is then able to continue, with exclusive access to the
resource it needed.
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There were no further explanations, e.g. how to utilise this protection mechanism.
The answer did neither con�rm nor disprove that NP semaphores were implemented
in a PIP-like way. We decided to investigate the source code of NP by ourselves in
order to �nd whether there was a special protection mechanism or not.

By studying relevant parts of the NP source code we found that NP semaphores did
only implement a traditional �xed priority synchronisation protocol.

Nevertheless, we found that kernel data structures of the Nucleus Plus was in fact
protected by a PIP-like mechanism, i.e. in the way described in the Nucleus Plus
FAQ above.

This means that a task operating inside the kernel can become preempted. If the
preemptor invokes a system call that requests for the same kernel data structures,
the preempted task is `pushed through' the critical section of the kernel. As soon
as the preempted task has left the critical section the preemptor executes again and
allocates the requested internal data structures.

We believe that this mechanism is only supposed to be used by the system services
of kernel, i.e. the mechanism was not described in details anywhere. We think that
the reason why to let a task become preempted during a system call is an attempt
to reduce interrupt latency.

7.6 Summary and Discussion

We have examined the functionality and concepts of a commercial real-time operat-
ing system. The operating system was introduced to us by Critical ApS which uses
the particular one in their development of embedded software systems.

By investigating parts of the Nucleus Plus source code we have obtained insight into
the internals of the kernel. During this journey we have not been further impressed
of the implementation.

We have to criticise that the equipped documentation did not mention the kernel
synchronisation mechanism as discussed in section 7.5. Even though it was somehow
mentioned on the web-site of ATI we had to investigate large parts of the source code
in order locate the mechanism and furthermore to understand how the mechanism
worked. The protection mechanism was complex and used widely in all system
services increasing the operating system overhead. Based on our investigations of
the source code we believe that the mechanism is created as a stop-gap solution to
an unforeseen problem discovered in the kernel | the possibility for chain blocking.

We think that the HISR concept is indeed superuous. HISRs are scheduled by the
same scheduler as tasks. HISRs can be considered as tasks of higher priority that
may not suspend. If it was possible for a LISR to release a semaphore for a waiting
task a similar e�ect could be obtained.

From the previous sections it should appear that Nucleus Plus provides a very large
set of di�erent functionalities and concepts. It seems that the creators of NP tries
to satisfy everybody by providing all kinds of constructs. We think that a lot of the
functionality is overlapping which makes it hard to �gure out which mechanism to
use, e.g. which mechanism is the fastest etc.
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Even though the source code is provided it is way too diÆcult to understand the most
essential parts of the operating systems, e.g. the scheduler and internal protection
mechanism.
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In chapter 6 a computational model was de�ned. In this chapter we show an imple-
mentation of the computational model in the Nucleus Plus (NP) operating system,
i.e. we make it possible for a hard real-time application to comply the computational
model when implemented upon the particular operating system.

In section 8.1 we describe a way of creating periodic tasks in NP. In section 8.2 we
show implementations of the non-preemptive critical section protocol (NPCS) and
the highest locker protocol (HL).

8.1 Periodic Tasks

Nucleus Plus has a system call which let a task sleep for a number of timer ticks.
This can be used in the following scenario to create a periodic task:

1. Execute a job

2. Read the system clock

3. Compute the amount of time to sleep

4. Go to sleep

5. Resume when timer expires and go to step one

There is a problem with the presented scenario. After the system clock is read in
step two, the system clock may tick before the task goes to sleep. E.g. if the task is
preempted right after step three and is resumed two ticks afterwards the computed
amount of time to sleep is now incorrect. This jitter may accumulate over time.

The problem is that the NP sleep system call uses a relative timer. Thus, we found
the use of NP application timers more suitable in the creation of periodic tasks, cf.
section 7.1. Application timers can be set up to expire periodically. The �rst time
of expiration can be used to phase the periodic expirations. E.g. with a phase of
seven and a period of ten the timer can have the absolute expiration pattern: 7, 17,
27, 37, etc.

We now illustrate by example the creation of a periodic task in Nucleus Plus using
application timers. We emphasise that the relative deadline of the task must be less
or equal to the period of the task, i.e. Di � pi, cf. section 6. The example shows the
creation of a periodic task T1 = f�1 = 5; p1 = 10; �1 = 3g.

A periodic task must perform a job within every period. When a job is completed
the NP task must be suspended until its release at the beginning of a new period.
In NP this could be expressed with:
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NU_TASK TaskPtr;

/* Definition of functional behaviour of a periodic task. */
VOID Task(UNSIGNED argc, VOID *argv) {
while (1) { /* Infinite loop. */

/* Job start. */
.
.
.

/* Job end. */

NU_Suspend_Task(&TaskPtr); /* Self-suspension. */
}

}

/* Function to be called when a new period begins. */
VOID ResumeTask(UNSIGNED id) { NU_Resume_Task(&TaskPtr); }

First, a task pointer is de�ned. Next, the functional behaviour of the task is de�ned
within the in�nite loop of the Task function. The loop ends with a self-suspension.
Finally, each time a new period begins the NP task must be resumed again with
a call to the ResumeTask function. We return to the caller of the ResumeTask

function.

We now de�ne the phase, the period, and the priority of the task:

#define TASK_PHASE 5
#define TASK_PERIOD 10
#define TASK_PRIORITY 3

In the initialisation part of a NP application a task is created with the system call
NU_Create_Task [ATI, 2000b, p. 24]:

NU_Create_Task(&TaskPtr, /* Pointer to task */
"Task T1", /* Name tag */
Task, /* Pointer to function */
0, /* Argument count */
NU_NULL, /* Pointer to arguments */
pointer, /* Pointer to stack */
2000, /* Stack size in bytes */
TASK_PRIORITY, /* Priority level */
0, /* Time slice */
NU_PREEMPT, /* Task preemption allowed */

#if TASK_PHASE==0 /* If the phase == 0 release */
NU_START /* the task right away */

#else /* If the phase != 0 suspend */
NU_NO_START /* the task right away */

#endif
);

The task is created with the previously de�ned task pointer, function, priority, etc.
The preprocessor directive makes sure to start the task right away if the phase is
zero. If the phase is non-zero the task is suspended from the beginning. We do not
promote this kind of C preprocessor use, but in this example it perfectly illustrates
the di�erences in the creation of a periodic task. In the example we have left out
the allocation of memory for the task stack.
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A periodic timer is also created in the initialisation part with the NU_Create_Timer
system call [ATI, 2000b, p. 204]. Every time the timer expires it invokes the previ-
ously de�ned function, ResumeTask, in order to resume the task.

NU_Create_Timer(&TimePtr, /* Pointer to timer */
"Timer T1", /* Name tag */
ResumeTask, /* Pointer to function */
42, /* Unique timer id (not used) */

#if TASK_PHASE==0 /* If the phase == 0 expire the */
TASK_PERIOD, /* timer at phase == period */

#else /* If the phase != 0 expire the */
TASK_PHASE, /* timer at phase == phase */

#endif
TASK_PERIOD, /* Period */
NU_ENABLE_TIMER); /* Enable timer right away */

If the phase is non-zero the timer is set to expire for the �rst time when the phasing
is over. If the phase is zero the timer is set to expire for the �rst time when the
second period begins. After the �rst timer expiration the timer expires periodically
with the de�ned period.

8.2 Synchronisation Protocols

This section presents implementations of the non-preemptive critical section protocol
(NPCS) and the highest locker protocol (HL) in the Nucleus Plus operating system.
Both protocols can ensure that a task gets mutual exclusive access to critical regions.
The protocols can be used in the construction of more structured synchronisation
mechanisms like a monitor.

Section 8.2.1 presents the implementation of the NPCS and section 8.2.2 presents
the implementation of the HL. The overhead of the implemented protocols and the
built-in NP semaphore is compared in section 8.2.3.

8.2.1 Non-Preemptive Critical Section Protocol

As mentioned in section 5.2 there exists two variants of this protocol:

Task level Here inter-task preemption is not possible, e.g. a normal task of higher
priority cannot preempt a task of lower priority. A task can still be preempted
by an interrupt service routine. This variant is suÆcient if the protocol is used
to protect a inter-task critical region.

Interrupt level Here preemption is not possible at all, hence a normal task cannot
be preempted by an interrupt service routine. This solution ensures mutual
exclusive access for both tasks and interrupt service routines.

Task Level Implementation

An implementation of the NPCS task level variant in NP is sketched below. The
implementation uses a NP system call, NU_Change_Preemption, which enables or
disables the possibility to preempt the running task [ATI, 2000b, p. 20].
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/* Outside critical region. */

NU_Change_Preemption(NU_NO_PREEMPT); /* Disable task level preemption. */

/* Inside critical region. */

NU_Change_Preemption(NU_PREEMPT); /* Enable task level preemption. */

/* Outside critical region. */

Interrupt Level Implementation

An implementation of the NPCS interrupt level variant in NP is sketched below. The
implementation uses a NP system call, NU_Control_Interrupts, which enables or
disables all interrupts [ATI, 2000b, p. 224].

/* Outside critical region. */

NU_Control_Interrupts(NU_DISABLE_INTERRUPTS); /* Disable interrupts. */

/* Inside critical region. */

NU_Control_Interrupts(NU_ENABLE_INTERRUPTS); /* Enable interrupts. */

/* Outside critical region. */

8.2.2 Highest Locker Protocol

This section presents two implementations of the highest locker protocol (HL) in
the NP operating system. The �rst one is simple as a task is limited to use a single
resource at the same time. The second one is general and implements all to the rules
presented in section 5.3.

Priority Manipulation in Nucleus Plus

As mentioned in section 5.3 the HL uses only priority manipulation to synchronize
tasks. In NP the following system calls are needed to change the priority of a task:

OPTION NU_Change_Priority(NU_TASK *task, OPTION new_priority)

This function changes the priority of the speci�ed task. It returns the old
priority to the caller. If the new priority necessitates a context switch, control
is transferred back to the system. [ATI, 2000b, p. 21]

NU_TASK *NU_Current_Task_Pointer(VOID)

This function returns a pointer of the calling task. [ATI, 2000b, p. 26]

The result of the latter is required in the call to NU_Change_Priority. Both
functions are constant time operations.

Simple Implementation

By limiting a task to use only one shared resource at the same time, it is possible to
keep the implementation simple. When a task enters a critical region its priority is
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saved when it inherits the ceiling priority of the resource. When it leaves the critical
region it restores the saved priority. A data structure to maintain this scenario is:

typedef struct critical_region_control_block {
OPTION priority; /* Must be initialised to the ceiling priority. */
OPTION saved_priority;

} CRCB;

Every shared resource must have an instance of the data structure CRCB attached.
The �eld priority must be initialised to the ceiling priority of the resource. The
�eld saved_priority stores the original task priority while the task is inside the
critical region.

Two functions are needed. One must be called when the task enters the critical
region and one must be called when it leaves the critical region:

VOID enter_crit(CRCB *region) {
region->saved_priority =

NU_Change_Priority(NU_Current_Task_Pointer(), region->priority);
}

VOID leave_crit(CRCB *region) {
NU_Change_Priority(NU_Current_Task_Pointer(), region->saved_priority);

}

The function enter_crit immediately sets the priority of task to the ceiling priority
of the shared resource. Now the task has exclusive write access to the data structure
and then saves the old priority here. The function leave_crit restores the original
priority of the task.

The complete interface and implementation of the simple implementation can be
found as listing A.1 and listing A.2 in appendix A.

The simple implementation is suÆcient if a task accesses a single resource at the
same time. Nevertheless, it can be used to let a task request more than one resource
at the same time if the policy below is followed:

� Resources must be requested in increasing ceiling priority order.

� Resources must be released in reverse order they were requested.

This policy may be diÆcult to follow in general.

General Implementation

To support the request for an arbitrary number of resources and an arbitrary request
and release order, a list of inherited priority ceilings must be associated to every task.
Then, every time a resource is requested, its priority ceiling is added to this list.
When the resource is released again, its priority ceiling is removed from the list.
The priority of the task must always be equal to the greatest priority in the list. To
maintain this scenario the following data structures are needed:

typedef struct critical_region_control_block CRCB;

typedef struct critical_region_control_block {
OPTION priority; /* Must be initialised to the ceiling priority. */
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CRCB *next, *prev;
};

As in the simple implementation every shared resource must have an instance of the
data structure CRCB attached. The priority �eld must be initialised to the ceiling
priority of the resource. The next and prev �elds are pointers linking the CRCBs
for the regions allocated by a task into a list.

typedef struct thread_control_block_extension {
OPTION normal_priority; /* Must be initialised with the priority. */
OPTION current_priority; /* Must be initialised with the priority. */
CRCB *region_list; /* Must be initialised with null pointer. */

} TCBE;

Every task should have an instance of the data structure TCBE attached. The �eld
priority and current_priority must be initialised with the normal priority of
the task. The �eld region_list is a pointer to the list of regions the task is
currently inside.

Figure 8.1 shows how the data structures are maintained for a task, T1, which
allocates the resources, R1, R2, R3, and deallocates the resource R2. The �elds
region_list, next and prev are illustrated as arrows in the �gure.

1.
TCBE: T1
normal_priority: 5
current_priority: 5

2.
TCBE: T1
normal_priority: 5
current_priority: 4

CRCB: R1

priority: 4

3.
TCBE: T1
normal_priority: 5
current_priority: 2

CRCB: R1

priority: 4
CRCB: R2

priority: 2

4.
TCBE: T1
normal_priority: 5
current_priority: 2

CRCB: R1

priority: 4
CRCB: R2

priority: 2
CRCB: R3

priority: 3

5.
TCBE: T1
normal_priority: 5
current_priority: 3

CRCB: R1

priority: 4
CRCB: R3

priority: 3

Figure 8.1: Data structures of the general implementation of the highest locker protocol.
The �gure shows how the data structures are maintained for a task which allo-
cates and deallocates resources.

The two functions, enter_crit and leave_crit, are in the general implementation
more complicated:

VOID enter_crit(CRCB *region, TCBE *thread) {
if (region->priority > thread->current_priority) {

NU_Change_Priority(NU_Current_Task_Pointer(), region->priority);
thread->current_priority = region->priority;

}
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insert(thread->region_list, region);
}

The function enter_crit �rst checks if the critical region has a higher ceiling pri-
ority than the current task priority. If this is the case the task inherits the ceiling
priority of the region. Now the task have exclusive write access. It updates the �eld
current_priority to its new priority. Finally, the new ceiling priority region is
inserted into the region list by a call to the function insert.

VOID leave_crit(CRCB *region, TCBE *thread) {
remove(thread->region_list, region);
thread->current_priority =

find_greatest_priority(thread->region_list,
thread->normal_priority);

NU_Change_Priority(NU_Current_Task_Pointer(),
thread->current_priority);

}

The function leave_crit �rst removes the ceiling priority from the region list for
the region just left with a call to the function remove. Next, it has to �nd out what
the priority should be: the highest priority of all the regions in the list. To do this
the function find_greatest_priority is called which returns the greatest priority
of all the elements in the list. If the list is empty it returns the normal priority of
the task. Finally, the new priority of the task is set.

The implementation of the insert, remove and find_greatest_priority func-
tions are not listed in this section. The complete interface and implementation of
the general implementation, including the list operations, can be found as listing A.3
and listing A.4 in appendix A.

The list functions insert and remove are implemented as constant time operations,
while the latter, find_greatest_priority, is linear in the number of regions the
tasks is currently inside. All the functions can be implemented as constant time
operations, but this will lead to another data structure which requires more memory.
The memory required is linear in the number of priority levels. A way to do this
can be found in [Labrosse, 1998].

In the general HL implementation every task and resource that uses the protocol
have a data structure attached. This makes the protocol more awkward to use. For
tasks it would be suitable to extend their thread control block (TCB) with the list
of resources they possess [Liu, 2000, section 12.3.1].

The general implementation has not been developed further since the simple imple-
mentation is suÆcient enough for this project.

8.2.3 Overhead Comparison

In this section we compare the overhead of the built-in NP semaphore and the
implementations of the NPCS and the HL. Obviously, the overhead is dependent of
the execution environment. In this project the execution environment is given by
Critical ApS.

At Critical ApS they develop applications for the In�neon C164 family of microcon-
trollers. Together with the Nucleus Plus operating system this microcontroller forms
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our execution environment. In this section we will not go into great details about
the microcontroller, but refer to a more detailed description given in section 10.4.1.

Critical ApS uses a C164 family C cross-compiler, cross-assembler, debugger etc.
by Tasking Incorporated [Tasking, 2000a] [Tasking, 2000b] [Tasking, 2000c]. The
debugger, called CrossView Pro, can measure the number of clock cycles for every
executed machine instruction. For example, it is possible to count the number of
clock cycles between two breakpoints. With this feature at disposal very precise
execution times for the system services can be found. Note that for a C164 it takes
two clock cycles to perform one machine cycle [In�neon, 1999].

We de�ne the overhead of a synchronisation protocol as the number of machine
cycles it takes for a task only to enter and to leave a critical region using the pro-
tocol. To measure the overhead of the two HL implementations, a test application
were created, cf. listing A.5 in appendix A. To measure the overhead of the other
synchronisation protocols. we combined the results from table B.1 in appendix B.
The �nal result can be found in table 8.1.

Synchronisation protocol Machine cycles Relative

Built-in NP semaphore (BCET) 355 32
Built-in NP semaphore (WCET) 1,102 100
Non-preemptive critical section (task level) 490 44
Non-preemptive critical section (interrupt level) 52 5
Highest locker protocol (simple) 1,178 107
Highest locker protocol (general) 1,299 118
Highest locker protocol (raw) 1,052 95

Table 8.1: Overhead of the implemented synchronisation protocols.

Discussion

There are both a best-case execution time (BCET) and a WCET for the NP sem-
aphore. The BCET is where the task obtains and releases the semaphore without
producing a context switch. The WCET is where the task produces a context switch
obtaining and releasing the semaphore. Semaphores are considered a traditional way
of protecting a critical region. Because of this the WCET is given a relative index
of 100 in table 8.1. The semaphore BCET is relative small compared to most of
the other protocols, but a BCET cannot be used in hard real-time systems. More
important is that the semaphore do not provide uncontrolled blocking times | more
overhead is better than uncontrolled blocking times.

The implementation of the task level variant of NPCS produces less than half the
overhead of the semaphore WCET. Note that the number of machine cycles in this
result is based on a worst-case situation were the task gets preempted as soon as it
leaves the critical region.

The implementation of the interrupt level variant of NPCS is very fast. It takes
�fty-two machine cycles in total to disable and enable all interrupts using the NP
system services. By studying the instruction set of the microcontroller, we �nd
that it will take �ve machine cycles in total to disable and enable interrupts using
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pure assembly code [In�neon, 2001]. The operating system overhead is considerably
larger compared to this.

The simple implementation of the HL gives only seven percent more overhead than
the semaphore. The general implementation of the HL introduces eighteen percent
more overhead than the semaphore. Note that this is a best-case result, i.e. the task
enters only one critical region.

Finally, we have a `raw' implementation of the HL. By raw we mean the minimum
of system calls and computations needed to obtain the same behaviour as the HL,
i.e. two priority change system calls. The programmer must now take care of setting
the correct priority levels when entering and leaving critical regions. We discover
that the raw implementation has less overhead than the NP semaphore.

We �nd there is a large variation in overhead of the synchronisation protocols. Of
course, another execution environment will give di�erent measurements. Below we
give some considerations about protocol overhead:

Atomic critical regions Most CPUs has atomic read/write operations of simple
data types, e.g. a 16-bit word on the In�neon C164, thus no synchronisation
protocol is needed and thus no protocol overhead. The programmer has to be
careful, e.g. if a 16-bit word is put on an odd memory address, the operation
might not be performed in one atomic operation, but in two operations which
may be interrupted. If the application has to be ported to another execution
environment, this environment has to be studied carefully to ensure atomicy
is kept.

Small critical regions If a task spends ten machine cycles inside a critical region,
but it takes a thousand machine cycles to enter and to leave the region, the
protocol overhead is relative big compared to the time spend inside the region.

High frequency used critical regions The overhead accumulates faster.
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In this chapter a development process well suited for the development of hard real-
time systems is presented. The objective of the hard real-time development process
is to trace a feasible design from requirements to deployment. A design said to
be feasible, if and only if a feasible schedule exists for the task set given by the
processes of the design. Thus, during development process the feasibility of a design
is repeatedly assessed using the theory of schedulability analysis.

In the discussion of the development process we focus on the phase of architectural
design. A design method that addresses the architectural design phase is introduced.

9.1 The Design Phase

We adopt the following view of the design phase of the development process. The
view was formulated by Alan Burns and Andy Wellings [Burns and Wellings, 1995].

We take a constructive view of the design phase, by describing the phase of system
design as a progression of increasingly speci�c commitments. These commitments
de�ne properties of the system design, which designers operating at a more detailed
level are not allowed to change.

The aspects of a design to which no commitment is made at some particular level
in the design hierarchy are obligations that lower levels of the design must address.
The initial obligations in the design phase are given by the requirements de�ned for
the system. The requirements may also contain commitments to the structure of
the system, in terms of interface de�nitions and processes. However, the detailed
behaviour of the de�ned processes remains the subject of obligations which must be
met during further design.

The process of developing and implementing a design, i.e. transforming obligations
into commitments, is often subject to constraints imposed primarily by the execu-
tion environment. The execution environment is the set of hardware and software
components, e.g. processors and real-time operating system, upon which the sys-
tem is built. It may impose both resource constraints, e.g. processor speed, timing
constraints, e.g. the period with which a value must be written to a register of a
peripheral, and constrains of mechanism, e.g. interrupt priorities and mutual exclu-
sive access to critical sections. For a given execution environment these constraints
shall be considered �xed.

When the design phase is complete all obligations have been transformed into com-
mitments under the constraints imposed by the execution environment. Thus, the
collection of commitments made during the design process constitutes the design of
a system.
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9.2 A Design Method

When considering design methods, it is a general misconception that a method will
provide a design to the designer if he simply performs the individual steps of the
method.

A method cannot make commitments for the designer. The design phase is a creative
phase of the development process. Thus, it is the designer's creative ability, ability
to abstract, and experience that will enable him to produce the design. A method
simply provides a systematic and focused approach for reaching a design, by making
commitments in a systematic manner.

This section briey introduces the design method described in [L�vengreen, 1997]
and [Rischel et al., 1987]. The method de�nes the following steps:

System partition decomposes the system into a number of subsystems.

Interface identi�cation �nds the events linking the system and its environment,
i.e. input and output events. Events are typed to indicate the information
they carry.

Event structuring characterises the behaviour of the system. This is done by
identifying the temporal ordering of the input and output events. The result
is a number of event sequences. The event sequences are all put in parallel,
hence they identify the processes of the system.

Program structuring where the event sequences are transformed into abstract
programs, which are expressed in a CSP-like process language where processes
communicate over synchronous channels corresponding to the events of the
system. Shared resources are identi�ed by a data ow analysis and are repre-
sented by processes denoted state monitors.

9.2.1 Design Documentation

An important part of the design phase is the documentation of the design, that
is the documentation of how obligations are transformed into commitments. As a
method provides a structured approach to making commitments, a method could
be seen as a structured approach to documenting the design.

For the method introduced in this section, the �nal design documentation is the
program structure given by the abstract programs for the system processes and
state monitors. The abstract programs express all the commitments that has been
made through the design process.

The �rst three steps of the design method produces a series of temporary documen-
tation: a list of identi�ed subsystems, a list of identi�ed input and output events,
and the event sequences. The temporary documentation captures the progression of
increasingly speci�c commitments, which formed the basis for the program structure.
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9.3 The Traditional Development Process

Most traditional software design methods incorporate a development process in
which the following activities of system development are recognised:

Requirements de�nition produces a speci�cation of the functional as well as non-
functional requirements to the behaviour of the system. It is outside the scope
of this thesis to discuss requirements speci�cation and analysis.

Architectural design where the top-level structure of the system is de�ned.

Detailed design completes the system design based on the architectural design.

Implementation of a system according to the detailed design.

Testing of a system implementation. Testing can be prohibitive time consuming if
done exhaustively, but it is unreliable if the coverage of the test is incomplete.

The development process is iterative. Thus, we may revert to a previous activity to
solve a problem identi�ed in the current activity. For example, we may return to
the detailed design activity if we identify a problem in the implementation activity.

9.4 The Hard Real-Time Development Process

For hard real-time systems the traditional development process has the disadvan-
tage that timing problems will only be recognised during testing, or worse after
deployment. The following observation is found in [Burns and Wellings, 1995]:

. . . it has been common practise of system developers to consider non-
functional requirements comparatively late in the development process.
Often timing requirements are viewed simply in terms of performance
of the completed system. Failure to meet the required performance of-
ten lead to ad hoc changes to the system. This is not a cost e�ective
development process.

To avoid this problem we decompose the architectural design activity of the tradi-
tional development process into two activities:

Logical design where the commitments are made that are independently of the
constraints imposed by the execution environment. The objective is to satisfy
the functional requirements of the system.

Physical design maps the logical design onto the execution environment within
the imposed constraints. Hence, the functional as well as non-functional re-
quirements are to be satis�ed by the physical design.

The resulting hard real-time development process is illustrated in �gure 9.1 on the
following page. The individual phases of the process is addressed in the remainder
of this chapter.
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Requirements de�nition

Logical design

Physical design
(schedulability analysis)

Execution environment constraints

Detailed design

Implementation
including execution time

estimations

Execution environment constraints

Testing including execution time measurements

Figure 9.1: The hard real-time development process.
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9.5 Logical Design

The logical design is the set of commitments which can be made independently of the
execution environment. Thus, the product of the activity shall be a design satisfying
the functional requirements. The existence of timing requirements may, however,
strongly inuence the development of the logical design.

We will base our development of the logical design on the method introduced in
section 9.2. From the logical design activity we proceed to the physical design
activity.

9.6 Physical Design

The physical design is developed from the logical design, however its development
will usually be an iterative and concurrent process, in which both the logical and
physical designs are modi�ed.

The physical design maps the logical design onto the execution environment while
taking the constraints of the execution environment into account. The method used
for creating the logical design is also used in the physical design phase.

In the abstract programs de�ned in the physical design are assigned their real-
time attributes, i.e. priority, period, phase, deadline, and an initial execution time
estimate.

Hence, the �nal documentation of the physical design is the program structure given
by abstract programs for processes and state monitors, and a situation table docu-
menting the real-time attributes of the abstract programs. A situation table were
introduced in section 2.8.

As a part of the physical design phase the schedulability of the physical design is
analysed. We may proceed from the physical design phase when the schedulability
analysis concludes that the design is feasible, otherwise we must return to the logical
design phase. If the timing requirements for the system are too restrictive it may
prove impossible to develop a feasible design for the given execution environment.

Thus, the product of the physical design activity shall be a design that satis�es the
functional requirements and the timing requirements.

Mapping Logical Design to Execution Environment

Mapping the logical design onto the execution environment to produce a physical
design may not be straightforward. In particular, there may be several ways to do
this.

The execution environment may provide specialised hardware features, which may
be used to increase the performance of a system. Such features could be hardware
shortcuts for performing certain multiprogramming operations, e.g. scheduling of
tasks, monitor operations, or direct memory access (DMA).

The software components of the execution environment may also provide several
possibilities for mapping the logical design into software components, e.g. di�erent

67



9 The Development Process

types of tasks and interrupt handlers.

Not all events necessary for modelling the behaviour of components of the execution
environment were considered in the logical design. Thus, in the process of map-
ping the logical design onto the execution environment, additional events may be
introduced if they are necessary for modelling the behaviour of components in the
execution environment, onto which the logical design is mapped.

Additional events of the execution environment are incorporated into the logical
design by reapplying the method used for creating the logical design. Thus, the
additional events shall be temporally ordered with the events of the event sequence
for the abstract program, which is being mapped onto the execution environment.
Following the formation of new event sequences, new abstract programs and state
monitors are formed for the physical design.

Schedulability Analysis

The physical design forms the basis for assessing whether non-functional require-
ments of the application are met, once the detailed design and implementation have
taken place. The physical design addresses the timing constraints and the necessary
schedulability analysis that can validate that the �nal system will meet its deadlines.

As the process of developing the physical design is an iterative and concurrent pro-
cess, the schedulability analysis should be applied to the physical design as early as
possible. As several alternative implementations may be possible, the schedulabil-
ity analysis shall be used in the assessment of the alternatives for the purpose of
selecting an implementation.

To undertake the schedulability analysis, the time dependent behaviour of the target
processor and other aspects of the execution environment must be available, e.g.
estimates for the overhead imposed by the operating system.

Additionally, it is necessary to make some initial estimations of the resource require-
ments of the physical design, e.g. estimates of the execution time of an implemen-
tation of the abstract programs of the physical design. The initial resource require-
ments are subject to modi�cation and revision as the physical design is developed,
implemented, and tested. In this way a feasible design is traced from requirements
to deployment.

9.7 Detailed Design, Implementation, and Testing

Once the logical and physical design activities are complete, the detailed design
activity can begin. When detailed design completes new execution time estimates
must be produced and the schedulability of the detailed design analysed. If the de-
tailed design is feasible we can proceed to the implementation phase. If the detailed
design is infeasible or design problems are discovered we must return to the logical
or physical design phase to create an improved design.

The detailed design phase is followed by the implementation phase, where the code
for the system is written. When the code has been written the execution times of the
implementations for the abstract programs must be measured. Given the measured
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execution times the schedulability of the system must again be assessed. If the
schedulability analysis concludes that the implementation is feasible, we proceed
to the testing phase. If the implementation is infeasible, i.e. the execution time
measurements deviate from the estimates of the detailed design phase, it may suÆce
to return to the detailed design phase if the deviations are small, otherwise we must
return to either the logical or physical design phase to improve the design.

In general, the detailed design phase of the hard real-time development process
should be performed as in the traditional development process, with the addition of
the execution time estimation.

The execution time measurement performed in the implementation phase is a com-
plex issue. In particular, it is necessary to constrain the way code is written so that
analysis of execution time for the �nal system is not too pessimistic. For example,
all loops must be bounded. An introduction to program analysis is out of the scope
of this thesis.

9.8 Summary

In this chapter we introduced a development process which is better suited for the
development of hard real-time systems than the traditional development process.

The hard real-time development process divides the architectural design phase into a
logical design phase and a physical design phase. The physical design phase addresses
the schedulability of the physical design.

In the following phases of the development process: detailed design, implementa-
tion, and testing the schedulability is repeatedly reassessed as the execution time
estimates are revised. Thus, the hard real-time development process allows a feasible
design to be developed and traced from requirements to deployment.

In the discussion of the hard real-time development process we have carefully avoided
the term re�nement. When a design is developed or modi�ed it is not guaranteed
that the behaviour of the new design is a re�nement of the previous design, e.g.
when mapping the logical design onto the execution environment.
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10 Case Study: Motor Control System

To illustrate the use of the concepts and techniques introduced in this thesis, we
now return to the example of a control system as presented in �gure 1.1 in the
introduction. Two main control principles are used in such control systems: closed-
loop and open-loop control. A closed-loop control system reads the current state
of the controlled system. This input, denoted feedback, and the reference input are
used in a control algorithm for computing a new control output. This output is
based on the deviation between the current state and the desired state. The output
is used in the activation of the actuators, which brings the controlled system closer
to its desired state. In an open-loop control system no feedback from the controlled
system is used in the control algorithm.

In this case study we shall study a closed-loop control system, which controls a
variable speed alternating current (AC) motor. This kind of motor is used in many
kinds of electrical machinery such as washing machines, ventilators and electrical
power steerings.

A three-phase, line-to-line, induction motor is a simple, robust, and inexpensive type
of electrical motor. A frequency converter is the key component in the implemen-
tation of an variable speed induction motor. In this case study we shall investigate
how a frequency converter for controlling this kind of motors may be constructed
using a microcontroller.

The main focus in this case study will be on analysing the timing behaviour of the
system which turns out to be very time-critical.

10.1 The Frequency Converter

In a three-phase induction motor the rotor follows the magnetic �eld rotating in the
gap between the rotor and the stator [Danfoss, 1998]. Hence, the wanted number of
revolutions per minute of the motor can be obtained by controlling the frequencies
of the three phases of the motor's supply voltages. The controlling of the frequencies
is implemented by a frequency converter.

Frequency converters have experienced a rapid development since the end of the
1960's. Especially the advances in semi-conductors and microprocessors have lead
to progress in this area. However, the basic structure and principles of frequency
converters remain the same. The key component in a frequency converter is the
inverter ; a circuit converting a direct current (DC) voltage into a three-phase AC
voltage. The DC voltage supply may either be variable or constant. In this case
study we assume the DC voltage supply to be constant. Figure 10.1 on the next
page gives a structural overview of the frequency converter.
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Figure 10.1: A frequency converter consists of a control circuit and an inverter. The control
circuit gets feedback from the inverter and motor, e.g. voltage drop, temper-
ature etc. Furthermore, reference input like a motor-speed is also treated by
the control circuit.

The Inverter

The three-phase AC output voltage is generated in the inverter. Though di�erent
inverters exist, their structure is always the same [Danfoss, 1998]. The structure
is illustrated in �gure 10.1. The main components in an inverter are six switches
grouped in three pairs. The switches connect or disconnect each of the three points
A, B and C on the rotor to the positive or negative pole on the DC power supply.
This enables or disables the ow of current through the rotor; the change in state is
considered instantaneous. Today, transistors are used as switches.

The transistors are operated by the control circuit of the frequency converter. In this
case study the transistors are operated according to a principle known as pulse-width
modulation (PWM). This principle is discussed in section 10.1.

Pulse-Width Modulation

A common way to generate sinusoidal voltages through a three-phase inverter is
pulse-width modulation (PWM) [Copeland, 1999] [Danfoss, 1998]. In this case study,
the inverter consists of six switches grouped in three pairs, one for each phase, cf.
�gure 10.1.

The three-phase voltages for an induction motor are generated by delivering a DC
voltage to the motor in pulses of varying width. Varying the width of the pulses
causes di�erent characteristics, e.g. voltage amplitude and frequency.

The two switches in a pair has the property that when e.g. switch A+ is on then
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switch A� is o� and vice versa. The time interval where a switch is on is called
pulse-width or duty cycle. This is illustrated in �gure 10.2. The sum of the positive-
and the negative pulse-width equals a switching period. The positive pulse-width
and negative pulse-width within one switching period forms a PWM pattern. A
PWM pattern is needed for each switch-pair.

A+

A�

positive

pulse-width

negative

pulse-

width

switching period

pattern n pattern n + 1 pattern n + 2

Figure 10.2: An example of three PWM patterns for a single switch-pair. The sum of the
positive pulse-width and the negative pulse-width equals the switching period.
The width of the switching period is derived from the switching frequency.

In practice, to prevent a short circuit of the power source through the inverter,
a small period of time where both switches are o�, must be inserted when the
switches are changed. This is called dead-time or dead-band. The length of this
period depends on how the inverter is built. In this case study dead-time is not
discussed any further.

When connecting the inverter to a three-phased induction motor, it is assumed that
the inductance of the motor will �lter the PWM patterns into a smooth signal
[Copeland, 1999]. Figure 10.3 illustrates this. The higher switching frequency (rate
of PWM patterns), the better approximation of a sinusoidal. The better approxima-
tion of a sinusoidal, the cleaner drive of the motor is achieved and thus less heat is
produced in the motor. However, a higher switching frequency produces more heat
in the inverter. Thus, these parameters must be weighted against each other.

A+

A�

A

120Æ 240Æ 360Æ

Figure 10.3: An example of PWM patterns for a single switch-pair showed with an ideal
sine wave.

There are several possibilities for making PWM patterns for the purpose of gener-
ating sinusoidal voltages. The sinusoidally weighted pulse-width modulation (SW-
PWM) is a simple and traditional way to do this [Danfoss, 1998]. The obtained
output voltages using SWPWM are illustrated in �gure 10.4 on the following page.
The �gure reveals that the e�ective voltage is only 87% of the inverter rail voltage.
The greater voltage drops obtained, the better utilisation of the power source. Im-
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Figure 10.4: Output voltages in percentage of the inverter rail voltage (�U) using sinu-
soidally weighted pulse-width modulation. The solid lines are the phase volt-
age. The dashed lines are the line-to-line combined voltages.

proved methods like space vector modulation (SVM) combined with overmodulation
give voltages up 112% of the inverter rail voltage [Copeland, 1999].

A PWM pattern is generated from a voltage frequency and amplitude, plus a phase-
angle from the previous PWM pattern. The generation of PWM patterns is not
discussed any further in this case study.

10.2 Requirements Speci�cation

In this section we present the requirements for the motor control system. We present
functional requirements as well as non-functional requirements.

Functional Requirements

Functional requirements do not relate to time. The motor control system shall be
based on the closed-loop control paradigm. The motor shall be controlled on the
basis of the following inputs:

� The reference input, which is the desired motor speed, is given by a DC voltage.

� The state of the motor controlled by the motor control system can be deduced
from the following feedback:

{ inverter output voltage

{ inverter output current

{ inverter temperature
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The output from the motor control system shall be the PWM signals for each of
the three phases of the AC motor. Additional details of the control computation is
discussed in section 10.3.

All inputs to the motor control system are analog. Hence, an analog digital converter
(ADC) is needed to read the analog data and convert it to digital values. This
conversion is considered unreliable. To increase the reliability, it is common practice
to perform a �ltering, combining digital values from several readings. For the motor
control system four readings per input is required.

The motor control system will be based on a custom hardware platform developed by
the manufacturer of the motor control system. The hardware platform features the
In�neon C164CI microcontroller. The hardware platform also includes the sensors
providing the inputs to the motor control system. However, in this case study we
will abstract from the these, and restrict our attention to the microcontroller. In
section 10.4.1 we discuss the details of the microcontroller.

The software of the motor control system shall be based on the Nucleus Plus operat-
ing system. The operating system implements a preemptive �xed-priority scheduler.
A brief summary of the components of the operating system which are important
for the development of the motor control system is given in section 10.4.2.

Non-Functional Requirements

The non-functional requirements of the motor control system are the requirements
related to the timely behaviour of the system.

It is estimated that the responsiveness to changes in the input values is suÆcient,
if the inputs are read periodically with a period of 10 milliseconds. Jitter on the
reading of input values are allowed, however the input operation must complete
within the 10 millisecond period.

Finally, to ensure a suitable approximation of a sinusoidal, the switching frequency
of the motor control system shall equal 10 kHz. No jitter is allowed on the output
of PWM signals.

10.3 Control Computations

This section gives a description of the computations performed for a closed-loop
motor control system in this case study. This is used as a foundation for the design
of the control system.

Based on a reference speed for the motor and feedbacks, the control algorithm must
produce two values to be used in the generation of PWM pulses: a voltage frequency
and a voltage amplitude. The reference speed and the feedbacks will change over
time and the computations must hence be repeated regularly.

At a given reference speed, the motor control system must, at variable motor-loads,
maintain a constant motor-speed. By reading the inverter output voltage and cur-
rent, it is possible to determine the actual speed of the motor and then compensate
for a variable motor-load.
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10 Case Study: Motor Control System

Furthermore, the control system must monitor the inverter temperature. If this
temperature exceeds certain levels, the control system must interfere, resulting in
a stepwise degradation of the dynamic performance. If the inverter temperature
becomes too high, a system shutdown should be carried out. We do not consider
this situation in this case study.

In this case study, computations performed by the control algorithm are not de-
scribed. Emphasis is put on the input used by the algorithm, and the computation
time used to produce a voltage frequency and amplitude value.

� reference motor-speed (indicated by a voltage to the system)

� inverter output voltage

� inverter output current

� inverter temperature

All inputs are analog. Therefore, an ADC is needed to read the analog data and
convert it to digital values. Sometimes this conversion is considered unreliable and
might result in a faulty result. Therefore, it is common practice to perform a �ltering
combining digital values from several readings in order to get a reliable value. In
this case study four readings per input are considered suitable.

Based on the output from the control algorithm, the motor control system is sup-
posed to drive the motor by applying PWM signals to the inverter. Figure 10.5
shows a system diagram for the motor control system.

MCS Inverter
PWM signal

InvTemperature, InvVoltage, InvCurrent
RefVoltage

Figure 10.5: System diagram for the motor control system.

10.4 Execution Environment

In section 9.1 an execution environment was de�ned as the set of hardware and
software components upon which the system is built. In this section we describe the
execution environment of the motor control system, which consists of two compo-
nents:

� In�neon C164CI microcontroller

� Nucleus Plus real-time operating system

10.4.1 The In�neon C164CI Microcontroller

Several microcontrollers, tailored for motor control systems, exist on the market
today. In this project, Critical ApS has introduced us to the In�neon C164CI
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microcontroller. This single-chip microcontroller has a built-in interface to control
a three-phase inverter with PWM signals. Furthermore, it is cheap and supported
by the Nucleus Plus operating system.

The In�neon C164CI is a 16-bit single-chip microcontroller, a member of the In�neon
C164 class of microcontrollers [In�neon, 1999]. It combines high CPU performance
with high peripheral functionality. Some of the relevant key features are highlighted
here:

� high performance 16-bit, RISC concept, CPU with a four-stage pipeline

� integrated memory

� 16 priority-level interrupt system

� 8-channel peripheral event controller (PEC)

� integrated peripherals, controlled via special registers:

{ 8-channel 10-bit ADC

{ real-time clock

{ capture/compare unit

In the following sections we summarise relevant features of the microcontroller.

10.4.1.1 The Analog Digital Converter

The C164 family features an 8-channel multiplexed, 10-bit resolution, analog digital
converter (ADC) [In�neon, 1999, ch. 18]. The ADC has several modes of operation.
In this case study the ADC is operated in auto scan continuous conversion mode.
Here the ADC converts a set of channels repeatedly. It is only possible to sample
from one of the eight channels at the same time. Thus, in auto scan conversion
mode the selected set of channels are converted in turns using a multiplexer and not
in parallel.

10.4.1.2 The Real Time Clock

The C164 family features a real time clock (RTC) to serve for di�erent purposes
[In�neon, 1999, ch. 14]:

� system clock to keep hold of the current date and time

� to produce periodic time based interrupts

� 48-bit resolution for long term time measurements
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10.4.1.3 The CAPCOM6 Capture/Compare Unit

The capture/compare unit 6 (CAPCOM6) of the C164CI supports generation and
control of timing sequences with a minimum of software intervention [In�neon, 1999,
ch. 17]. The CAPCOM6 unit provides three 16-bit capture/compare channels. As
the name implies this capture/compare unit can operate in two modes:

Capture mode Here the contents of a 16-bit timer may be captured into any one
of three 16-bit registers on speci�c external or internal events. In this mode the
CAPCOM6 unit can be used for measuring the duty cycle of a PWM signal.

Compare mode In this mode the unit can compare up to three 16-bit values with
a 16-bit timer. In case of a match the unit can modify the signals on output
pins associated with the CAPCOM6 unit. Below it is explained how the unit
in this mode may be used for the generation of PWM signals for controlling a
three-phase induction motor.

In compare mode the CAPCOM6 unit provides two output signals for each of the
three 16-bit channels. The two signals may have identical or inverted polarity. With
inverted polarity the unit is well suited to drive the kind of inverter used in this
case study. For example, the �rst output signal is used to control the positive pulse-
width and the second and inverted output signal is used to control the negative
pulse-width, cf. �gure 10.1 on page 72.

The CAPCOM6 unit contains shadow latches which allow the next PWM patterns
to be set for later use without disturbing the use of the current PWM patterns.
When the current patterns are used, the content of the shadow latches are transfered
immediately into the real CAPCOM6 registers and an interrupt is generated. The
interrupt indicates that new PWM patterns can be written to the shadow latches.
As PWM patterns may be written to the shadow latches before use, the shadow
latches provides an simple way of eliminating PWM output jitter.

10.4.1.4 Interrupts Mechanisms

The C164 family supports several mechanisms for fast and exible response to service
requests that can be generated from various sources internal or external to the
microcontroller [In�neon, 1999, ch. 5]. In this case study we apply:

Normal interrupt processing This suspends the current path of execution to
service an interrupt requesting device. The current program status is saved
on the internal system stack. There are sixteen interrupt priority levels.

Interrupt processing using the peripheral event controller (PEC) This is
faster alternative to the normal interrupt processing is servicing an inter-
rupt requesting device with the integrated PEC. Triggered by an interrupt
it performs a single byte or word data transfer between two memory locations
through one of eight programmable PEC service channels. During a PEC
transfer the normal program execution is halted for one instruction cycle only.
No program status has to be saved. Section 10.4.1.5 goes into details of the
PEC.
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10.4.1.5 The Peripheral Event Controller

This section describes the peripheral event controller (PEC) in greater detail. As
mentioned in section 10.4.1.4, if the response to an interrupt is to transfer data, the
PEC can service such an interrupt very fast, with no software intervention.

During normal interrupt processing an ISR takes care of an interrupt request from
a peripheral. Here, the current path of execution is interrupted to service the pe-
ripheral. In this operation the associated ISR has to save the currently used regis-
ters in order to resume the interrupted path of execution after the termination of
the ISR. Furthermore, some data processing is performed by the ISR. Transferring
data between a peripheral and a memory address is the most common kind of data
processing. An ISR triggered with a high frequency introduces a signi�cant CPU
overhead. Therefore, the C164 family provides the PEC as a faster alternative to
normal interrupt processing.

Triggered by an interrupt request the PEC performs a single byte or word transfer
between two memory addresses, e.g. a peripheral register and a memory location.
During this transfer the CPU is halted for one instruction cycle only, which reduces
CPU overhead dramatically for high frequency interrupt requests. This technique
is somehow similar to direct memory access (DMA) where some peripheral accesses
the memory directly without using the CPU.

There are eight PEC service channels available for data transfers. When a service
channel has been initialised by a pair source and destination pointers for the data
transfer, its service is said to be enabled. The two pointers are either �xed or one
of them can be incremented after a data transfer. The latter option is convenient
when feeding some peripheral, e.g. the CAPCOM6 unit, with data from a table.
The table size has an upper limit of either 254 bytes or 127 words.

When the PEC has transfered the last element in a table, it activates a normal ISR
and becomes disabled. The PEC will not respond to any interrupt requests until it
has been re-initialised, i.e. it has been given a new pair of source and destination
pointers. The activated ISR may perform the re-initialisation of the PEC.

10.4.1.6 Execution Times

In this section, architectural inuences of the C164 microcontroller on the execution
times are described.

Running at a 20MHz frequency the C164 microcontroller performs ten million ma-
chine cycles per second [In�neon, 1999, ch. 2]. In other words, the C164 performs a
machine cycle for every 100ns. Most machine instructions are performed with one
machine cycle. This gives up to ten million instructions per second (MIPS) for a
C164 running at 20MHz.

It is possible for the C164 microcontroller to have both internal and external memory.
In practice, internal memory has faster access times than external memory. In this
case study no distinction is made between internal and external memory. Thus,
internal memory speed is assumed. Furthermore, the C164 has no cache memory to
make inuence on the execution times.
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The C164 has a four-stage instruction pipeline. The stages are described below:

Fetch An instruction is fetched from internal or external memory.

Decode The fetched instruction is decoded and required operands are fetched.

Execute The decoded operation is performed on the before fetched operands.

Write back The result is written back to the speci�ed memory location.

Branch instructions require only one additional machine cycle when the branch is
taken. Furthermore, most branches in loops require no additional machine cycles at
all. Procedure calls require one additional machine cycle. The pipeline is primarily
held by wait states for external memory accesses.

Table 10.1 shows execution times for a partial survey of machine instructions. The
execution times are found by investigating [In�neon, 1999].

Operation Execution time [ns]

Majority of operations 100
Multiplication of two words 500
Division of a double-word with a word 1 000
One PEC byte/word transfer 100
Initialisation of one PEC-channel 100
Starting/stopping the ADC 100
NPCS access to read/write two words 300
NPCS access to read/write sixteen words 2 100

Table 10.1: Execution times for a 20MHz C164 microcontroller. Multiplication- and division
operations may be delayed if an interrupt request occurs during the operation.

Table 10.2 shows the execution times for the computations performed in the case
study on the C164 microcontroller. These execution times are well quali�ed esti-
mates by Critical ApS.

Computation Execution time [�s]

One run of control algorithm, incl. �ltering of inputs 5 000
Generation of three PWM patterns 40

Table 10.2: Execution times for the computations performed by the control system.

Table 10.3 on the next page shows other time factors which have inuence on the
scheduling analysis of the motor control system. The times for interrupt latencies
are found in [In�neon, 1999] and the time for an ADC reading is from Critical ApS.

10.4.2 The Nucleus Plus Real-Time Operating System

The characteristics of the NP operating system, necessary for understanding the
mapping of the logical design into the physical design, are summarised in this section.
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Legend Time [ns]

Typical interrupt latency 300
Maximum interrupt latency 500
Reading of an ADC-channel 100 000

Table 10.3: Other time factors with inuence on the motor control system.

10.4.2.1 Low-Level Interrupt Service Routines

A low-level interrupt service routine (LISR) is started in a response to an interrupt
request and is not scheduled by the operating system.

In NP a LISR has very limited access to the services of the operating system. The
only possibility for communicating with NP tasks is using the NPCS protocol or to
activate a HISR. It is not possible to release a semaphore from within a LISR. This
must be done indirectly by activating a HISR, which then releases the semaphore.

10.4.2.2 High-Level Interrupt Service Routines

A HISR is activated by a LISR and is scheduled by the operating system.

Many of the NP system services are available for a HISR. A HISR must not be
blocked by any system service. Thus, system services that are subject to blocking
shall be called in a non-blocking way, e.g. if a HISR tries to obtain a semaphore, it
must not be suspended if the semaphore cannot be obtained at the time.

10.4.2.3 Tasks

A NP task is scheduled by the operating system and have all system services at its
disposal. A task in NP has always lower priority than a HISR.

10.4.2.4 Execution Times

This section presents a table of execution times for a selected set of NP system ser-
vices. The execution times are found on basis of a performance test program, sup-
plied from Accelerated Technology Incorporated (ATI). Furthermore, administrative
overhead for LISRs, HISRs and tasks are quantitative estimates. The estimation is
based on the authors experiences with NP.

10.5 Logical Design

This section documents the logical design of the motor control system, i.e. it presents
all the design decisions that has been made independently of the execution environ-
ment. We shall not consider the initialisation phase of the system, i.e. we only
consider a system which has successfully passed its initialisation phase.
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Operation WCET [�s]

Obtain a semaphore 55.1
Release a semaphore 55.1
Disable interrupts (NPCS) 2.6
Enable interrupts (NPCS) 2.6
Go to sleep 55.8
LISR administrationy 5.0
Task and HISR administrationy 50.0

Table 10.4: Worst case execution times for selected NP system services and administra-
tive operating system overhead. Execution times marked with a dagger are
quantitative estimates.

In the following section the partitioning of the motor control system is documented.
In section 10.5.2 the system interface is identi�ed. In section 10.5.3 the system is
structured by arranging the events constituting the system interface event sequences.
Finally, in section 10.5.4 the event sequences are transformed into abstract programs,
and the resulting logical design is summarised by a structure diagram in subsection
10.5.4.4.

10.5.1 System Partition

In this section the motor control system is partitioned into subsystems. Being a
traditional control system, as discussed in section 10.3, it is reasonable to partition
the motor control system into the following three subsystems:

� Sensor

� Control

� Actuation

10.5.2 Interface De�nition

The motor control system communicates with the environment through the periph-
erals: ADC, CAPCOM6, and RTC. By identifying the events between the control
system and its environment the interface is documented.

Events are divided into two kinds: input and output. To indicate the type of
information carried by an event, every event is associated with a type. In table 10.5
on the facing page the identi�ed input events are presented. Table 10.6 on the next
page presents the identi�ed output events.

10.5.3 System Structuring

The events identi�ed in section 10.5.2 are now arranged into event sequences to
characterise the temporal behaviour of the system. Events that are temporally de-
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Subsystem Event name Data type Legend

Sensor InvTemperature number Read inverter temperature
InvVoltage number Read inverter voltage
InvCurrent number Read inverter current
RefVoltage number Read reference voltage
Timer1 unit Periodic event
Timer2 unit Periodic event
Timer3 unit Periodic event
Timer4 unit Periodic event

Control Timer5 unit Periodic event

Actuation CapComReady unit Periodic event; CAPCOM6 is
ready for new PWM patterns

Table 10.5: External input events for the motor control system.

Subsystem Event name Data type Legend

Actuation FeedCapCom number-triple Feed the CAPCOM6 unit

Table 10.6: External output events for the motor control system.

pendent are sequenced together. In table 10.7 the result of this ordering is presented.
The table reveals six event sequences of the motor control system.

Subsystem Name Event sequence

Sensor DriverIT (Timer1; InvTemperature)*
DriverIV (Timer2; InvVoltage)*
DriverIC (Timer3; InvCurrent)*
DriverRV (Timer4; RefVoltage)*

Control Control (Timer5)*

Actuation DriverCAPCOM6 (CapComReady; FeedCapCom)*

Table 10.7: Event sequences containing only external events.

The event sequences document the design decisions taken at this early stage of the
design process. The behaviour of the subsystems of the motor control system is con-
trolled by the synchronisation events identi�ed in section 10.5.2. Thus, structuring
the synchronisation events into event sequences restricts the possible behaviour of
the motor control system.

The event sequences DriverIT, DriverIV, DriverIC, and DriverRV structures the
data acquisition activities of the motor control system. The data acquisition is
structured into four individual event sequences. The rationale for four individual
sequences is that suÆcient information for ordering the events into a smaller number
of event sequences is not available. In each event sequence a periodic event is followed
by an input event. Thus, the event sequences indicate that the individual data
acquisition activities are performed periodically.
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The Control event sequence documents the periodic execution of the control algo-
rithm of the control system. The event sequence is simply the repeated sequence,
which consists of a single periodic event. The Control event sequence is not associ-
ated with any data acquisition or actuation events.

The event sequence DriverCAPCOM6 structures the actuation behaviour of the
control system. The actuation is the periodic feeding of PWM patterns to the
CAPCOM6 unit. Hence, the event sequence is the repeated sequence, which consists
of the periodic event indicating the CAPCOM6 unit is ready for new PWM patterns
followed by the event outputting the patterns to the CAPCOM6 unit.

10.5.4 Abstract Programs

The main purpose of this design step is to analyse the motor control system, cur-
rently structured by the event sequences. The product of the analysis shall be an
identi�cation of:

� The computations performed by the system.

� The data ow in the system.

� The data stores necessary to support the data ow. Data stores are either
local to a process or shared between processes.

The �ndings of the analysis are documented by:

� A table presenting the identi�ed computations.

� The event sequences augmented with the identi�ed computations.

� A number of abstract programs.

In the following sections the analysis is performed, and its �ndings are documented.

10.5.4.1 Computations

Section 10.3 gave an overview of the computations performed in the motor control
system. The computations are summarised by the three items below.

� Filtering of all four types of analog input data: the speed reference input, and
the inverter temperature, voltage, and current.

� The control computation yields a voltage amplitude and frequency.

� The voltage amplitude and frequency are turned into compare values necessary
for the generation of PWM signals in the actuation subsystem.
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Subsystem Computation Legend

Control FilterDataIT Process raw inverter temp. data
FilterDataIV Process raw inverter voltage data
FilterDataIC Process raw inverter current data
FilterDataRV Process raw reference voltage data
CalculateUF Calculate new values of voltage ampli-

tude and frequency

Actuation CalculatePWM Calculate the PWM patterns necessary
for the generation of the PWM signals

Table 10.8: Computations performed in the motor control system.

In table 10.8 the computations are grouped according to the subsystems in which
they are performed.

To further structure the behaviour of the system the previously formed event se-
quences are augmented by the identi�ed computations. The resulting event se-
quences are shown in table 10.9.

It can be seen from the event sequence Control that the analog input values are
�ltered before they are used in the computation of the voltage amplitude and fre-
quency.

The computation of PWM patterns used for the generation of the PWM signal have
been placed in DriverCAPCOM6. This design decision separates the generation of
PWM signals from the control computation of the motor control system.

Event Sequence Event sequences with computations

DriverIT (T1; InvTemperature)*
DriverIV (T2; InvVoltage)*
DriverIC (T3; InvCurrent)*
DriverRV (T4; RefVoltage)*

Control (T5; (FilterRawDataIT k FilterRawDataIV k
FilterRawDataIC k FilterRawDataRV); CalculateUF)*

DriverCAPCOM6 (CalculatePWM; CapComReady; FeedCapCom)*

Table 10.9: Event sequences augmented by the identi�ed computations.

10.5.4.2 Abstract Program Skeletons

For the purpose of constructing abstract programs, the event sequences are trans-
formed into abstract program skeletons. As the syntax of a CSP-like abstract pro-
gram resembles that of an event sequence, the translation into an abstract program
skeleton is done by a number of simple transformations [L�vengreen, 1997].

The abstract program skeletons corresponding to the event sequences containing
only input events are given below.
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DriverIT
def
= do Timer1 ? ; InvTemperature ? od

DriverIV
def
= do Timer2 ? ; InvVoltage ? od

DriverIC
def
= do Timer3 ? ; InvCurrent ? od

DriverRV
def
= do Timer4 ? ; RefVoltage ? od

The transformation of the event sequence for the control computation results in the
following program skeleton.

BasicMotorControl
def
=

do

Timer5 ? ;
( FilterDataIT k FilterDataIV k FilterDataIC k FilterDataRV );
CalculateUF

od

Finally, the event sequence for the actuation is transformed into the skeleton below.

DriverCAPCOM6
def
=

do

CalculatePWM;
CapComReady ? ;
FeedCapCom !

od

10.5.4.3 Data Flow

Having transformed the event sequences into abstract program skeletons, we now
look for data sources for the output data.

In general, the data needed by an output action in some process may have three
sources [L�vengreen, 1997]:

� The data can be found as a function f of a recently received data value stored
in a local variable x. In this case, the output takes the form O!f(x).

� The data can be computed from data received previously by the process itself.
In this case, a process-wide variable is introduced, updated in connection with
the relevant events, and used in the output action.

� The data can be computed using data produced by other processes. In this
case, a state monitor to hold relevant information produced by one or more
other processes, is introduced. A state monitor must provide means for reading
and writing such that data integrity is ensured. Thus, the processes given by
abstract program skeletons shall not share variables.

To introduce the state monitors into the motor control system, we analyse the system
in order to identify the data ow. Starting at an output event, we identify the data
ow necessary for computing the associated output value. This is done by tracing
the data ow backwards through the system until reaching the input events, that
provide the input data for all the computations in the system.
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The Voltage Amplitude and Frequency Monitor

In the motor control system data must ow to the CAPCOM6 unit. Thus, output
data must be delivered to FeedCapCom. The output data is the PWM patterns
needed by the CAPCOM6 unit to produce the PWM signal driving the inverter,
and hence the motor. The calculation of the PWM patterns is computed by Calcu-
latePWM. There are no input events in DriverCAPCOM6, thus the data necessary
for computing the PWM patterns are not accessible to the process.

The PWM patterns are computed from the voltage amplitude and frequency data
produced by BasicMotorControl. To provide DriverCAPCOM6 with the data, a
state monitor MonitorUf is introduced. The name `Uf' is derived from the voltage
amplitude (U) and frequency (f).

MonitorUf This monitor holds the voltage amplitude and frequency. The monitor
provides the following operations:

putUf store voltage amplitude and frequency in the monitor.

getUf retrieve voltage amplitude and frequency from the monitor.

In an abstract program a monitor operation is implemented by a channel with an
identical name. Thus, the invocation of a monitor operation is modelled by a com-
munication on the particular channel. To ensure the channels have unique names,
the monitor operations shall be pre�xed with the monitor's name using a dotted
notation, e.g. MonitorUf.putUf.

The Analog Input Monitors

The process BasicMotorControl, which is executing the system's control computa-
tion, has no external input events. Thus, the data necessary for computing the
voltage amplitude and frequency data is inaccessible to the process.

The processes DriverIT, DriverIV, DriverIC, and DriverRV receive the necessary
external input events from the ADC.

A state monitor is introduced for each driver process: MonitorIT, MonitorIV, Mon-
itorIC, and MonitorRV. Each monitor has the same interface: an input operation
and an output operation, hence we will only describe MonitorIT. The capacity of
the monitor has been left underspeci�ed in the logical design.

MonitorIT This monitor holds the raw inverter temperature data sampled by the
ADC. The monitor has the following operations:

putValue inserts a value into the monitor.

getData obtains the data inserted into the monitor.

10.5.4.4 Structure Diagram

Figure 10.6 on the next page presents a structure diagram for the logical design of the
motor control system. The structure diagram presents the internal structure of the
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design: the processes, and the state monitors synchronising processes and supporting
the data ow through the system. Thus, the structure diagram summarises the
relationships between the components in the logical design.

Sensor subsystem Control subsystem Actuator subsystem

A
D
C

DriverIT

DriverIV

DriverIC

DriverRV

In
p
u
ts

Control U
f Driver

CAPCOM6

C
A
P
C
O
M
6

Figure 10.6: Structure diagram for the motor control system.

10.5.4.5 Abstract Programs

The �ndings of the data ow analysis is documented in a number of abstract pro-
grams. The programs are constructed from the abstract program skeletons de�ned
in section 10.5.4.2.

A local variable has been identi�ed in each of the four ADC driver processes, which
sample the analog input data. The four processes in the sensor subsystem are
analogous. Thus, we only show the abstract program for the DriverIT process.

DriverIT
def
=

var it : number;
do

Timer1 ? ;
InvTemperature ? it;
MonitorIT.putValue ! it

od

The four monitors storing the analog input data in the sensor subsystem are analo-
gous. Thus, we only show the abstract program for the MonitorIT process.

MonitorIT
def
=

var it : number;
var itl : number�list;
do

putValue ? it ! itl := it :: itl
[]

getData ! itl ! itl := [ ]
od

The abstract program for the control process is shown below. The functions, Filter-
Data, CalculatePWM, and CalculateUf, are left underspeci�ed.
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Control
def
=

var it , iv , ic , rv : number�list;
var �t , �v , �c , frv : number;
var Uf : number � number;
do

Timer5 ? ;
(
MonitorIT.getData ? it; �t := FilterDataIT(it) k
MonitorIV.getData ? iv; �v := FilterDataIV(iv) k
MonitorIC.getData ? ic; �c := FilterDataIC(ic) k
MonitorRV.getData ? rv; frv := FilterDataRV(rv)

);
Uf := CalculateUf(�t , �v , �c , frv );
MonitorUf.putUf ! Uf

od

The voltage amplitude and frequency monitor:

MonitorUf
def
=

var Uf : number � number;
do

putUf ?Uf ! skip [] getUf ! Uf ! skip

od

The actuator process:

DriverCAPCOM6
def
=

var Uf : number � number;
var PWM : number � number � number;
do

MonitorUf.getUf ?Uf;
PWM := CalculatePWM(Uf);
CapComReady ? ;
FeedCapCom !PWM

od

10.6 Physical Design for Sensor Subsystem

The sensor subsystem must control the ADC and pass inputs to the control subsys-
tem. An implementation of the sensor subsystem should:

� Every time the control subsystem is about to run, provide new inputs for this.

� Produce a minimum overhead.

In this section a modi�ed logical design for the sensor subsystem is presented. The
rationale for the modi�ed logical design is that it is better suited for the map-
ping onto the execution environment. Given the modi�ed logical design, a general
mapping onto the execution environment is discussed. Finally, two speci�c imple-
mentation alternatives for the physical design are suggested.

89



10 Case Study: Motor Control System

10.6.1 Modi�ed Logical Design

In the logical design presented in section 10.5, it is assumed that individual ADC
channels can be read in parallel. However, the execution environment does not
facilitate this. The ADC supports up to eight channels, but it is only possible to
read a value on one channel at a time, cf. section 10.4.1.1. This dependency among
the input events in the actual execution environment was not discovered in the
development of the initial logical design.

The logical design is modi�ed by arranging the input events of the four event se-
quences DriverIT, DriverIV, DriverIC, and DriverRV into a single event sequence
DriverADC. From the event sequence a program skeleton and an abstract program
are developed. Thus, the four input drivers of the logical design are sequentially
composed into a single driver DriverADC. The merging of the four drivers into one
driver eliminates the four input events, T imer1, T imer2, T imer3, and T imer4, but
introduces another input event T imer6 which starts all the readings. DriverADC
must perform a total of sixteen readings, four readings of each input, cf. section 10.3.
When all values are read, which is expressed by the internal choice in the innermost
loop, the sixteen values are transfered to the monitor.

Given a single driver process, it is no longer necessary, that the interface between the
sensor and the control subsystem consists of four monitors. The four state monitors
are combined into one, MonitorInput, which de�nes a new interface between the
sensor and the control subsystem.

The abstract programs for the new process DriverADC and the new state monitor
MonitorInput are given below:

DriverADC
def
=

var it , iv , ic , rv : number;
var values : number�list;
do

Timer6 ? ;
values := [ ];

do

InvTemperature ? it;
InvVoltage ? iv;
InvCurrent ? ic;
RefVoltage ? rv;
values := it :: iv :: ic :: rv :: values ;
( skip de exit)
od

MonitorInput.putValues ! (values)
od

MonitorInput
def
=

var values : number�list;
do

putValues ? values ! skip [] getData ! values ! skip

od
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10.6.2 Physical Design

The ADC shall sequentially read four channels. To �lter the input values as discussed
in section 10.5.4.1, each channel are read four times before there are enough readings
to be passed to the control subsystem.

In this case study, a reading from an ADC channel is estimated to be accomplished
in 100�s. Thus, it takes 1.6ms to perform sixteen readings if the ADC is operated in
auto scan continuous mode, cf. section 10.4.1.1. In this mode the ADC repeatedly
reads a set of channels until it becomes disabled. When a value becomes ready the
ADC unit generates an interrupt.

An implementation of the subsystem must setup the ADC to start the readings.
Furthermore, when the ADC has produced a new reading, the subsystem must
transfer this from the ADC register to another memory location before yet another
reading is produced. Using the PEC to transfer the readings is the solution with
least overhead. When sixteen readings are completed the ADC must be stopped.

It is important that the readings are temporally ordered when they are passed on
to the control subsystem. The control subsystem must know in which order the
readings came in order to �lter them correctly. One way to do this is to synchronise
the two subsystems properly.

10.6.3 First Implementation Alternative of Sensor Subsystem

When developing the physical architecture, new internal events are introduced in
order to model the operation of the execution environment. The internal events
model the additional synchronisation found in the physical architecture. Table 10.10
summarises the necessary internal events.

Subsystem Event name Legend

Sensor StartADC Start the ADC in auto scan continuous
mode

StopADC Stop the ADC unit
ValueReady A new value is ready in the ADC register
InitADCPEC Initialise a PEC channel to service the ADC

interrupt
StartADCPECLISR When the PEC becomes idle the AD-

CPECLISR is activated
putValues Insert the input values into MonitorInput
getData Read the input data from MonitorInput

Table 10.10: Internal subsystem events modelling internal synchronisation and behaviour
of execution environment.

Considering the original input events for the sensor subsystem in table 10.5 on
page 83 and the new internal events in table 10.10, three event sequences were
formed: DriverADC, ADCPEC, and ADCPECLISR. Then, program skeletons were
constructed, and abstract programs derived.

A periodic NP task shall implement DriverADC. The task starts the ADC in auto

91



10 Case Study: Motor Control System

scan continuous mode. In addition, the task initialises a PEC channel, implementing
the process ADCPEC, to transfer sixteen readings to a local memory location.

DriverADC
def
=

do

Timer6;
InitADCPEC ! [ ];
StartADC !

od

ADCPEC
def
=

var value : number;
var values : number�list;
do

InitADCPEC? values;
do

ValueReady ? value;
values := value :: values ;
( skip de exit)

od

StartADCPECLISR ! values
od

When ADCPEC has transferred all the readings, which is expressed by the internal
choice in the innermost loop, the PEC service is disabled and a LISR, implementing
ADCPECLISR, is started, cf. section 10.4.1.5. The ADCPECLISR stops the ADC
and then transfers all the readings from the local memory location to MonitorInput,
which is the critical section shared between the sensor- and control subsystem. The
critical section is protected by the NPCS.

ADCPECLISR
def
=

var values : number�list;
do

StartADCPECLISR ? values;
MonitorInput.putValues ! values;
StopADC !

od

10.6.3.1 Constructing a Situation Table

As explained in section 2.8 a situation table may be used for the representing a
real-time design. In this section we illustrate how the periods, execution times, and
relative deadlines presented in the situation tables of every subsystem are found.

We will only give a rigorous explanation of the construction of a situation table
for the �rst implementation alternative of sensor subsystem. For the remaining
implementation alternatives we only indicate, unless special problems occurred, how
the execution time estimates and deadlines were found when forming the situation
table.

Periods

In section 10.2 it was required that the readings of the inputs should be repeated
with a period of ten milliseconds. From this requirement we can derive that the
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sensor subsystem has a period of ten milliseconds.

Execution Times

Based on the found and/or estimated execution times derived of the execution envi-
ronment, presented in section 10.4.1.6 and section 10.4.2.4, we �nd execution times
for the abstract programs.

When mapping the DriverADC abstract program onto the execution environment
it is implemented as a NP task. Table 10.4 shows that a NP task is estimated to
have an administrative overhead of 50�s. The task must start the ADC and release
the ADCPEC task. In the presented execution environment this can be achieved in
(100 + 100)ns = 200ns. Thus, the total execution time is 50�s + 200ns = 50:2�s.

When mapping the ADCPEC abstract program onto the execution environment it
is implemented as sixteen PEC operations. Table 10.1 shows that a PEC operation
is performed in 100ns of which the execution time is derived.

When mapping the ADCPECLISR abstract program onto the execution environ-
ment it is implemented as a LISR. Table 10.4 shows that a LISR is estimated to
have an administrative overhead of 5�s. Furthermore, this task is responsible of
transferring the sixteen readings to the input monitor. Using the simplest and
fastest implementation of NPCS this can be done in 2:1�s, cf. table 10.1. Finally,
the ADC must be stopped. This operation takes 100ns. Thus, the total execution
time is (5 + 2:1 + 0:1)�s = 7:2�s.

Deadlines

In section 10.2 it was required that all the readings should be completed within ten
milliseconds after the �rst reading was started.

At a �rst glance we do not have enough information to �x a deadline for the Driver-
ADC task. We can only say that it must be less than ten milliseconds. We return
to this deadline when we have been through the rest of the subsystem.

Table 10.3 shows that the ADC will produce a reading every 100�s, i.e. the ADC
result register must be read within 100�s before yet another reading is produced.
This gives a deadline for each of the sixteen PECs of 100�s.

The LISR must stop the ADC within 100�s after the ADC has produced the sixteen
readings. This must be done before yet another reading is completed. The LISR is
released at the same time the last PEC service is started. This gives a deadline of
the ADCPECLISR of 100�s.

We now return to the deadline of the DriverADC task. The whole operation, of
one run of the sensor subsystem, must be completed within ten milliseconds. We
can see that the sixteen readings is completed in 16 � 100�s = 1:6ms. Together with
the deadline of the ADCPECLISR we �nd that once the ADC is started it takes
1:6ms + 100�s = 1:7ms, before all the sixteen readings are transfered to the input
monitor. Thus, in order to meet the overall deadline of the subsystem the deadline
for the DriverADC task must be (10 � 1:7)ms = 8:3ms.

In table 10.11 on the following page the derived situation table is presented. The
situation table captures the real-time design of the �rst implementation alternative
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Task name Type Period [ms] Exec. [ms] Deadline [ms]

ADCPEC [1{16] PEC 10.0000 0.0001 0.1000
ADCPECLISR LISR 10.0000 0.0072 0.1000
DriverADC Task 10.0000 0.0502 8.3000

Table 10.11: Situation table for sensor subsystem; �rst implementation alternative. The
`type' column indicates mapping onto execution environment.

of the sensor subsystem. The table contains the initial execution times estimates for
the tasks of the subsystem. In the subsequent phases of the development process the
execution times are re�ned as the implementation of the individual tasks progresses.

For example, the execution time for the computation of three PWM patterns are
estimates based on previous experience. As the implementation is carried out better
estimates may be provided. When the �nal implementation is complete the exact
execution time is measured.

Given the situation tables for all subsystems we may analyse a complete design. In
section 10.9 we analyse di�erent designs of the motor control system.

10.6.4 Second Implementation Alternative for Sensor Subsystem

The second implementation alternative di�ers from the �rst in that we take advan-
tage of the timing behaviour of the system. The idea is illustrated by the example
in section 5.5. If the sensor subsystem has the same period as the control subsys-
tem and the two subsystems are displaced in their phases, it can be arranged that
the two subsystems will not access the critical section at the same time. Thus, no
protection mechanism is necessary to make sure all sixteen values are written before
any of them are read.

The internal events introduced in the �rst implementation alternative, cf. table 10.10,
are identical to the second implementation alternative, except the event putValue
which di�ers from the internal events of the �rst implementation alternative.

As in the previous implementation a periodic NP task implements DriverADC, i.e.
starts the ADC in auto scan continuous mode and initialises the PEC channel, which
implements ADCPEC. Now the PEC transfer the sixteen readings directly into the
critical section with no protection all. As before, when the PEC has transferred
all the readings a LISR, ADCPECLISR is started. The LISR stops the continuous
mode of the ADC.

The second implementation alternative gives rise to di�erent abstract programs for
MonitorInput, ADCPEC, and ADCPECLISR:

MonitorInput
def
=

var value : number;
var values : number�list;
do

do putValues ? value ! values := value :: values od

k
do getData ! values ! values := [ ] od
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od

ADCPEC
def
=

var value : number;
do

InitADCPEC? ;
do

ValueReady ? value;
MonitorInput.putValue ! value;
( skip de exit)

od

StartADCPECLISR !
od

ADCPECLISR
def
=

do

StartADCPECLISR ? ;
StopADC !

od

10.6.4.1 Situation Table

The idea behind the second implementation alternative is to ensure mutual exclusion
by assigning the tasks of the sensor subsystem a phase di�erent from the phase of
the control system, cf. section 5.5. We assign the sensor subsystem a phase of zero
milliseconds and the control subsystem a phase of two milliseconds. Both subsystems
share the same period of ten milliseconds.

We e�ectively place a precedence constraint on the control subsystem, which shall
execute after the sensor subsystem. Thus, the sensor subsystem must complete
within the �rst two milliseconds of its period, while the control subsystem is allowed
to execute for the remaining eight milliseconds.

Due to the phasing the tasks of the two subsystems will never share a critical instant.

The deadline of the task DriverADC of the sensor subsystem must be reduced
according to the phasing of the subsystem, (2� 1:7)ms = 0:3ms.

Task name Type Period [ms] Exec. [ms] Deadline [ms]

ADCPEC [1{16] PEC 10.0000 0.0001 0.1000
ADCPECLISR LISR 10.0000 0.0051 0.1000
DriverADC Task 10.0000 0.0502 0.3000

Table 10.12: Situation table for sensor subsystem; second implementation alternative.

10.7 Physical Design for Control Subsystem

The control subsystem is implemented as a periodic NP task. The task shall �rst
retrieve and �lter the sixteen readings from the sensor subsystem. The task must
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then compute a new pair of voltage amplitude and frequency values with the control
algorithm. The two values must be available for the actuation subsystem which
contains the phase generator algorithm. The two values shall be written to a critical
section using a NPCS.

Control
def
=

var values : number�list;
var Uf : number � number;
do

Timer5 ? ;
MonitorADC.getData ? values;

Uf = CalculateUf(FilterData(values));

MonitorUf.putUf ?Uf;
od

10.7.1 Situation Table

Task name Type Period [ms] Exec. [ms] Deadline [ms]

Control Task 10.0000 5.0524 10.000

Table 10.13: Situation table for control subsystem.

The above situation table is based on the con�guration where the control system
is coupled with the �rst implementation alternative of the sensor subsystem. The
execution time for the Control task is based on the control algorithm execution
estimate time of 5ms, cf. table 10.2, the NPCS access of both monitors estimated to
(2:1 + 0:3)�s = 2:4�s, cf. table 10.1, and �nally the estimated administration task
overhead of 50�s, cf. table 10.4. The total estimated execution time is found to be
5ms + (2:4 + 50)�s = 5:0524ms as stated in the situation table.

If the control subsystem is coupled with the second implementation alternative the
deadline of the Control task must be reduced to eight milliseconds and the phase
shall be two milliseconds, as discussed in section 10.6.4.1.

10.8 Physical Design for Actuation Subsystem

We now turn our attention to the actuation subsystem. We shall consider two
di�erent implementation alternatives, exploring the e�ects of using di�erent features
of the execution environment in the development of the physical architecture.

10.8.1 First Implementation Alternative for Actuation Subsystem

The �rst implementation alternative for the actuation subsystem does not imply
any modi�cations to the logical architecture. Hence, a PWM pattern for each phase
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is calculated every time the CAPCOM6 unit is fed. The structure diagram in �g-
ure 10.6 is still valid for the �rst implementation alternative of the actuation alter-
native.

The interface between the control and the actuation subsystem is MonitorUf, which
provides the operations putUf and getUf for storing and obtaining a voltage ampli-
tude and frequency pair. Mutual exclusive access to the monitor's data is achieved
by NPCS. The abstract program for the monitor is identical to the one given in the
logical design.

As explained in section 10.4.1.3 the calculation of the PWM patterns used for the
generation of PWM signals with the CAPCOM6 unit can be done in response to
an interrupt. This approach is taken in the �rst implementation alternative for the
actuation subsystem.

Thus, DriverCAPCOM6 is implemented by a LISR. The use of NPCS in Moni-
torUf ensures mutual exclusion between BasicMotorControl and the LISR. When
the CAPCOM6 unit generates an interrupt, the LISR obtains the current voltage
amplitude and frequency values from the monitor, computes the PWM patterns for
the three phases, and writes the patterns to the shadow latches of the CAPCOM6
unit.

10.8.1.1 Situation Table

Task name Type Period [ms] Exec. [ms] Deadline [ms]

DriverCAPCOM6 LISR 0.1000 0.0456 0.1000

Table 10.14: Situation table for actuation subsystem; �rst implementation alternative.

The period is derived from the required switching frequency, cf. section 10.2. Jitter
is not allowed on the output operation. Using the shadow latches this jitter require-
ment is meet, cf. section 10.4.1.3. After the PWM patterns are transfered from the
shadow latches to the CAPCOM6 unit new patterns must be supplied within 100
microseconds.

The estimated execution time for the DriverCAPCOM6 task is based on the esti-
mated execution time of 40�s for generating the PWM pattern triple, cf. table 10.2,
the estimated LISR administration overhead of 5�s, cf. table 10.4, the NPCS ac-
cess of the MonitorUf of 300ns, and �nally the execution time required to write
the PWM patterns into to the registers of the CAPCOM6 unit of 300ns. The total
estimated execution time is found to be (40 + 5)�s + 2 � 300ns = 45:6�s as stated in
the situation table.

10.8.2 Second Implementation Alternative for Actuation Subsystem

The second implementation alternative introduces a modi�ed logical design. The
modi�ed logical design is presented here, as it is an intermediate step in the process
of developing the physical design. The rationale for the modi�ed logical design is
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that it is better suited for deriving a physical design that utilises the PEC of the
C164CI microcontroller; a special hardware feature of the execution environment.

10.8.2.1 Modi�ed Logical Design

The calculation of PWM patterns is separated from the task of driving the hardware
device. Thus, DriverCAPCOM6 shall no longer be concerned with the calculation
of PWM patterns for the CAPCOM6 unit. The decomposition indicates that too
many events have been ordered into one event sequence in the initial logical design,
in order to support all possible physical designs.

In this alternative DriverCAPCOM6 shall only be concerned with moving the com-
puted PWM patterns into the CAPCOM6 unit generating the PWM signals. A new
process PhaseGenerator shall compute the PWM patterns.

The logical architecture is modi�ed by rearranging the events of the event sequence
DriverCAPCOM6 into two new sequences. Then, these are translated into abstract
program skeletons, and the data ow of the new architecture is analysed. The result
is two abstract programs DriverCAPCOM6 and PhaseGenerator and an additional
state monitor MonitorPWM.

From the voltage amplitude and frequency data stored in MonitorUf, PhaseGener-
ator calculates the PWM patterns use in the PWM signal generation.

PhaseGenerator
def
=

var Uf : number � number;
var PWM : number � number � number;
do

MonitorUf.getUf ?Uf;
PWM := CalculatePWM(Uf);
MonitorPWM.putPWM!PWM

od

In the state monitor MonitorPWM the PWM patterns are stored in a queue. The
internal choice in the abstract program for MonitorPWM models the necessary
blocking enforced by the monitor operations. putPWM shall block if the queue is
full, and getPWM shall block if the queue is empty. Hence, in the modi�ed logical
design the capacity of the queue is left underspeci�ed. The abstract program for the
monitor is given below.

MonitorPWM
def
=

var PWM : (number � number � number);
var FIFO : (number � number � number)�list;
do

putPWM?PWM ! FIFO := FIFO @ [PWM]
de
getPWM! hd(FIFO) ! FIFO := tl(FIFO)

od

The process DriverCAPCOM6 feeds the PWM patterns stored in the MonitorPWM
to the CAPCOM6 unit.

DriverCAPCOM6
def
=

var PWM : number � number � number;
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do

MonitorPWM.getPWM?PWM;
CapComReady ? ;
FeedCapCom !PWM

od

10.8.2.2 Physical Design

In the development of the physical architecture the modi�ed logical architecture
is modi�ed even further. These modi�cations as well as the main points in the
development of the physical architecture are summarised below.

� New internal events modelling the operation of the execution environment are
introduced.

� Mutual exclusive access to the data stored inMonitorUf is enforced by NPCS.

� The monitor MonitorPWM is implemented as a double bu�er data structure.
The monitor shall synchronise the execution of the processes accessing the
bu�ers, and in particular ensure mutual exclusive access to each bu�er.

� DriverCAPCOM6 is split into three processes, when mapping the logical ar-
chitecture onto the execution environment.

{ A process DriverCAPCOM6. The process moves PWM patterns from a
bu�er into the CAPCOM6 unit. The process is implemented by three
PEC channels, one for each phase of the inverter.

{ A process PECLISR is implemented by a LISR. The process is started
when DriverCAPCOM6 moves the last three PWM patterns in a bu�er
into the CAPCOM6 unit, thus when the PEC service is disabled

{ A process PECHISR implemented by a HISR. The process is started by
PECLISR and is responsible for:

� Obtaining a new bu�er of PWM patterns from MonitorPWM to be
processed by DriverCAPCOM6.

� The re-initialisation of the PEC service, hence activating the PEC
service.

� Returning the bu�er processed by DriverCAPCOM6 to Monitor-
PWM.

� The process PhaseGenerator is implemented as a NP task. The process obtains
an empty bu�er from MonitorPWM and �lls it with PWM patterns.

The internal events introduced to model the additional synchronisation found in
the physical architecture are listed in table 10.15 on the next page. Due to the
complexity of the second implementation alternative of the actuation subsystem we
show a structure diagram in �gure 10.7 on the following page.

Data Flow

Though the identi�cation of state monitors is a result of the data ow analysis and is
performed late in the design process, the presentation of the physical design begins
with a discussion of the identi�ed state monitors.
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Subsystem Event name Legend

Actuation InitPEC Initialise the PEC
StartPECLISR When the PEC becomes idle the PECLISR

is activated
StartPECHISR The PECLISR activates the PECHISR
getEmptyBu�er Partially implements logical event putPWM
putEmptyBu�er Partially implements logical event getPWM
getFullBu�er Partially implements logical event getPWM
putFullBu�er Partially implements logical event putPWM

Table 10.15: Internal events for the actuation subsystem; second implementation alterna-
tive.

Actuator subsystem; second implementation alternative
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Generator

Driver
CAPCOM6
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Figure 10.7: Structure diagram for actuation subsystem; second implementation alterna-
tive.
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A new state monitor, MonitorPWM, shall hold the PWM patterns computed by
PhaseGenerator until they are fed to the CAPCOM6 unit by DriverCAPCOM6.
The implementation of the monitor uses a concrete data structure consisting of two
equally sized bu�ers. A bu�er element is a triple of PWM patterns, a pattern for
each of the three phases driving the motor.

The PhaseGenerator and the DriverCAPCOM6 has a simple producer/consumer
relationship. PhaseGenerator produces one bu�er of PWM patterns, while Driver-
CAPCOM6 consumes the contents of the other, i.e. the PWM patterns of the bu�er
is fed into the CAPCOM6 unit.

The following terminology is used in the discussion of the monitor's operations: a
bu�er is said to be full if none of the contained PWM patterns have been fed to the
CAPCOM6 unit. A bu�er is said to be empty, if all the PWM patterns of a bu�er
have been fed to the CAPCOM6 unit. The monitor provides four operations:

getFullBu�er allows DriverCAPCOM6 to obtain a full bu�er of PWM patterns.
The operation blocks if no full bu�er is available.

putFullBu�er stores a full bu�er of new PWM patterns computed by PhaseGen-
erator in the monitor. The operation blocks if the monitor already
holds a non-empty bu�er.

getEmptyBu�er allows PhaseGenerator to obtain an empty bu�er. The operation
blocks if no empty bu�er is available.

putEmptyBu�er an empty bu�er is returned to the monitor by DriverCAPCOM6.
The operation will block if the monitor already holds an empty
bu�er.

An abstract program for MonitorPWM is given below. The abstract program spec-
i�es that, initially, a bu�er must be �lled before a full bu�er can be obtained.
Afterwards, one bu�er can be �lled while the other bu�er is being emptied.

MonitorPWM
def
=

var FullBu�er : ( number � number � number)�list;
var EmptyBu�er : (number � number � number)�list;
do

getEmptyBu�er ! EmptyBu�er;

do putFullBu�er ? FullBu�er ; getFullBu�er ? FullBu�er od

k
do putEmptyBu�er ?EmptyBu�er ; getEmptyBu�er ?EmptyBu�er od

od

Abstract Programs

For the remaining abstract programs of the subsystem, event sequences were formed,
considering the new internal events in table 10.15 and the events in the original event
sequence for DriverCAPCOM6, see table 10.9 on page 85. Then, program skeletons
were constructed, and abstract programs derived.

As already discussed PhaseGenerator acquires an empty bu�er. After the bu�er has
been �lled with PWM patterns, it is stored in MonitorPWM.
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PhaseGenerator
def
=

var Uf : number � number;
var Bu�er : ( number � number � number)�list;
do

MonitorPWM.getEmptyBu�er ?Bu�er;
MonitorUf.getUf ?Uf;
Bu�er := CalculatePWM(Uf);
MonitorPWM.putFullBu�er ! Bu�er

od

The process DriverCAPCOM6 of the modi�ed logical design is replaced by the three
processes: DriverCAPCOM6, PECLISR, and PECHISR in the physical design. How
the processes map onto the execution environment is explained below.

The process DriverCAPCOM6 of the physical design is mapped onto three PEC
channels, cf. section 10.4.1.5. Given a bu�er of PWM patterns the process feeds
patterns to the CAPCOM6 unit. While the bu�er of PWM patterns is not empty,
each PEC channel moves a single PWM pattern into the shadow latches of the CAP-
COM6 unit in response to the interrupt CapComReady generated by the CAPCOM6
unit, cf. section 10.4.1.3.

When feeding the last pattern in the bu�er to the CAPCOM6 unit, detected by the
internal choice of the innermost loop, the process exits the innermost loop and starts
the process PECLISR. The PEC service is disabled until it is reinitialised, i.e. given
a new bu�er.

DriverCAPCOM6
def
=

var Bu�er : ( number � number � number)�list;
do

InitPEC?Bu�er

do

CapComReady? ;
FeedCapCom ! hd(Bu�er);
Bu�er := tl (Bu�er);
( skip de exit)
od

StartPECLISR !Bu�er;
od

In the Nucleus Plus operating system a LISR responds to an interrupt request. Since
a LISR can only perform very simple system calls, cf. section 10.4.2.1, a HISR must
be started with the purpose of switching bu�ers and reinitialising the PECs.

PECLISR
def
=

var EmptyBu�er : (number � number � number)�list;
do

StartPECLISR?EmptyBu�er;
StartPECHISR !EmptyBu�er

od

When PECHISR is started by PECLISR it returns the empty bu�er to Monitor-
PWM and requests a full one. The PECs are then reinitialised with the full bu�er,
thus reactivating the PEC service.
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PECHISR
def
=

var EmptyBu�er : (number � number � number)�list;
var FullBu�er : ( number � number � number)�list;
do

StartPECHISR?EmptyBu�er;
MonitorPWM.getFullBu�er ? FullBu�er;
InitPEC ! FullBu�er;
MonitorPWM.putEmptyBu�er ! EmptyBu�er

od

PWM patterns shall be continuously fed to the CAPCOM6 unit at the rate of the
switching frequency. Thus, it is a real-time requirement that PhaseGenerator has
already delivered a new bu�er of PWM patterns when DriverCAPCOM6 requests a
new bu�er of PWM patterns. With a switching frequency of 10kHz, cf. section 10.2,
a bu�er must hold 100 triples of PWM patterns.

10.8.2.3 Situation Table

The real-time design of the second implementation alternative for the actuation
subsystem is summarised in situation table 10.16.

Task name Type Period [ms] Exec. [ms] Deadline [ms]

PhaseGenerator Task 10.0000 4.1054 9.9000
DriverCAPCOM6 PEC 0.1000 0.0003 0.1000
PECLISR LISR 10.0000 0.0050 0.1000
PECHISR HISR 10.0000 0.1057 0.1000

Table 10.16: The situation table for actuation subsystem; second implementation alterna-
tive. The estimated execution time for PECHISR exceeds its deadline.

Execution times

For each process in the physical design we will briey introduce the estimated exe-
cution times, based on the estimates in the tables 10.1, 10.2, and 10.4.

The administrative overhead of releasing a NP task is 50�s. The current values
for the voltage amplitude and frequency must be retrieved, at the cost of 0.3�s.
The PhaseGenerator must produce a bu�er of PWM pattern triples. The execution
time for the calculation of one PWM pattern triple is estimated to be 40�s according
to table 10.2. Thus, a bu�er 100 triples can be calculated in 4 000�s. When the
bu�er has been �lled it is returned to theMonitorPWM causing the PhaseGenerator
to suspend on a semaphore at the cost of 55.1�s. Thus, the total execution time
estimate for the PhaseGenerator is 4,105.4�s.

DriverCAPCOM6 is implemented by three PEC channels servicing the CapCom-
Ready interrupt. Thus, the estimated execution time is simply three times the
execution time for a single PEC, i.e. 0.3�s by table 10.1.

The execution time estimate for the PECLISR is given by the estimated adminis-
trative overhead introduced by a LISR. It is the responsibility of the PECLISR to
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activate the PECHISR. However, the cost in execution time for activating a HISR
is included in the administrative overhead estimate for the PECHISR and will be
paid by PECHISR. Thus, by table 10.4 the estimated execution time for PECLISR
is 5�s.

For the PECHISR the administrative overhead is estimated to be 50�s. In table 10.4
the execution time for the operation of releasing the semaphore blocking PhaseGen-
erator is estimated to 55.1�s. The PWM pattern bu�er switch can be performed by
only six instructions having an execution time of 0.6�s. Thus the total estimate for
the PECHISR is 105.7�s.

Deadlines

With a switching frequency of 10kHz DriverCAPCOM6 must have a deadline of
100�s in order to service the CAPCOM6 unit. When all PWM patterns of the
bu�er has been fed to the CAPCOM6 unit a new bu�er must be acquired and the
three PECs must be reinitialised within the same deadline of 100�s.

To summarise the current design, the operation of feeding the last triple of PWM
patterns to the CAPCOM6 unit generates the CapComReady interrupt, which ac-
tivates the PECLISR. The PECLISR activates the PECHISR. It is the job of the
PECHISR to switch PWM pattern bu�ers, reinitialise the three PECs, and release
the PhaseGenerator.

Thus, from the generation of the interrupt the PECLISR and PECHISR must com-
plete within 100�s. However, the estimated execution time for the PECHISR is
105.7�s, hence the deadline of 100�s can never be met.

10.8.2.4 Revised Physical Design

The physical design for the second implementation alternative of the actuation sub-
system must be revised before it can meet its deadlines. The re-initialisation of the
three PECs implementing DriverCAPCOM6 can meet its deadline of 100�s if it is
placed in in the PECLISR rather than the PECHISR.

Thus, the PECLISR shall obtain a new bu�er from MonitorPWM, reinitialise the
three PECs, and the �nally activate the PECHISR.

PECLISR
def
=

var EmptyBu�er : (number � number � number)�list;
var FullBu�er : ( number � number � number)�list;
do

StartPECLISR?EmptyBu�er;
MonitorPWM.getFullBu�er ? FullBu�er;
InitPEC ! FullBu�er;
StartPECHISR !EmptyBu�er

od

When PECHISR is started by PECLISR it simply returns the empty bu�er to
MonitorPWM. This will release the PhaseGenerator, which in turn �lls the empty
bu�er.

PECHISR
def
=

var EmptyBu�er : (number � number � number)�list;
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do

StartPECHISR?EmptyBu�er;
MonitorPWM.putEmptyBu�er ! EmptyBu�er

od

10.8.2.5 Situation Table

The real-time design for the revised physical design of the second implementation
alternative of the actuation subsystem is summarised in situation table 10.17.

Task name Type Period [ms] Exec. [ms] Deadline [ms]

DriverCAPCOM6 PEC 0.1000 0.0001 0.1000
PECLISR LISR 10.0000 0.0056 0.1000
PECHISR HISR 10.0000 0.1051 1.0000
PhaseGenerator Task 10.0000 4.1051 9.0000

Table 10.17: Situation table for actuation subsystem; second implementation alternative.

Given the revised design, the execution time estimate for the PECLISR is increased
to 56�s and the execution time estimate of the PECHISR is reduced to 105.1�s.

In the revised physical design the PECLISR obtains a new bu�er of PWM patterns
and reinitialises the three PECs, hence its deadline must be 100�s. The deadline of
100�s is no longer required for the PECHISR, thus we relax the deadline to 1 000�s.
This requires the PhaseGenerator to complete before a deadline of 9 000�s.

10.9 Schedulability Analysis

The initial iteration of the logical and physical design phases of the development
process is now complete. In the logical design phase we decomposed the system into
three subsystems by identifying two general interfaces between the subsystems. The
logical design phase was completed by the de�nition of abstract programs for the
three subsystems. In the physical design phase, the abstract programs were mapped
onto the execution environment. Having successfully de�ned general subsystem in-
terfaces in the logical design phase, it was possible to construct two di�erent physical
design alternatives for the sensor and actuation subsystems. For each implementa-
tion alternative its real-time design was summarised in a situation table.

In this section we will investigate di�erent implementations of the motor control
system by combining di�erent subsystem implementation alternatives. We inves-
tigate two implementations based on the combination of the �rst implementation
alternative for the sensor subsystem, the control subsystem implementation, and the
two implementation alternatives for the actuation subsystem.

At this early time in the development process we will investigate the following aspects
of the two motor control system implementations:

� test the feasibility
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� calculate the total utilisation U

� estimate the spare capacity with respect to increasing the switching frequency
while maintaining the current system responsiveness

Finally, for the motor control system implementation based on the �rst implementa-
tion alternative for the actuation subsystem, we will predict the reduction in system
responsiveness necessary to obtain a switching frequency of 12.5kHz.

10.9.1 Tool Support

We will use a tool, when performing the feasibility tests in the following sections.
The tool implements the feasibility test described in section 5.6, hence it supports
arbitrary deadlines and blocking, but it does not support arbitrary phasing. The
tool `Response Time' by St�ephane Decleire is found on a CD-ROM bundled with
[Briand and Roy, 1999]. The tool only supports the feasibility test, hence it does
not provide support for priority assignment or blocking time computation.

Unfortunately, it has not been possible to obtain a tool, which implements Audsley's
priority assignment algorithm and feasibility test, which supports deadlines less than
or equal to the period and arbitrary phasing. Given such a tool a necessary and
suÆcient feasibility test would have been available for the motor control system.

10.9.1.1 Implication of Tool Limitations

The limitations of the tool imply that precedence constraints are ignored. Thus, we
only consider the worst-case situation of a critical instant.

For example, for the sensor subsystem we will ignore the di�erent phases of the
sixteen ADCPEC tasks. Instead, we will investigate the worst-case situation of a
critical instant, though it will never occur.

The rationale for this approach is discussion found in section 4.2.3. If for every task
Ti, in a task set T, a job in Ti released at a critical instant meets its deadline, then
every job in the task set T will meets its deadline.

Thus, for the set of tasks in an implementation of the motor control system, the
feasibility test is not suÆcient and necessary, but only suÆcient. Hence, we cannot
conclude that the motor control system is infeasible when the feasibility test fails,
as the worst-case situation may never occur.

The tool is the reason why we do not consider the second implementation alternative
for the sensor subsystem. Let us for the moment ignore blocking. Then, when
phasing is ignored the second alternative simply reduces to the �rst alternative, as
all periods, execution times and relative deadlines are identical. Let us again consider
blocking, and consider it as execution time added to the start of each job in a task.
Now, the second alternative places a lower demand on the processor as blocking is
only found in the �rst implementation alternative. In the second implementation
alternative for the sensor subsystem the mutual exclusive access was implemented
by di�erent phases, cf. section 10.6.4. Thus, if a motor control system using the �rst
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implementation alternative is feasible, then a motor control system using the second
alternative is feasible too.

10.9.2 Calculating Blocking

In this section we explain how the blocking for the motor control system implemen-
tations considered in the following was calculated. In all implementation the Control
task is assigned the lowest priority.

In the interfaces between the three subsystems we �nd two monitors, MonitorADC
and MonitorUf, both protected by the simplest NPCS implementation to ensure
mutual exclusive access.

The MonitorADC contains sixteen words. The operation of reading or writing all
sixteen words in a mutual exclusive manner will be carried out in 2.1�s, cf. table 10.1.
TheMonitorUf contains two words. The operation of reading or writing both words
in a mutual exclusive manner will be carried out in 0.3�s.

Both monitors are utilised by the Control task but not at the same time. Thus,
the longest continuous resource allocation is made by accessing the MonitorADC.
Because Control is the task with lowest priority, all other tasks can be blocked for
the duration of 2.1�s.

10.9.3 First Implementation of the Motor Control System

In the �rst implementation of the motor control system the �rst implementation
alternative of the sensor subsystem, the control subsystem, and the �rst implemen-
tation alternative of the actuation subsystem are combined.

10.9.3.1 Feasibility Test

The three situation tables, 10.11, 10.13, and 10.14, of the three subsystems are
combined into one, which is used as input to the feasibility test.

Priorities are assigned using the deadline monotonic approach, as deadlines are less
than or equal to periods. The priorities are listed in the `Priority' column of situation
table 10.18 on the next page. As blocking is present, the deadline monotonic priority
assignment is no longer optimal. The blocking times for the individual tasks are
listed in the `Blocking' column of the situation table.

The feasibility test indicates that the motor control system is feasible. The worst-
case response times of the individual tasks released at a critical instant are listed in
the `Completion time' column of table 10.18.

The total utilisation of the �rst implementation of the motor control system is
calculated to be U = 96:7%.
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ADCPEC [1] PEC 10.000 0.0001 0.100 1 2.1 2.2
ADCPEC [2] PEC 10.000 0.0001 0.100 2 2.1 2.3
ADCPEC [3] PEC 10.000 0.0001 0.100 3 2.1 2.4
ADCPEC [4] PEC 10.000 0.0001 0.100 4 2.1 2.5
ADCPEC [5] PEC 10.000 0.0001 0.100 5 2.1 2.6
ADCPEC [6] PEC 10.000 0.0001 0.100 6 2.1 2.7
ADCPEC [7] PEC 10.000 0.0001 0.100 7 2.1 2.8
ADCPEC [8] PEC 10.000 0.0001 0.100 8 2.1 2.9
ADCPEC [9] PEC 10.000 0.0001 0.100 9 2.1 3.0
ADCPEC [10] PEC 10.000 0.0001 0.100 10 2.1 3.1
ADCPEC [11] PEC 10.000 0.0001 0.100 11 2.1 3.2
ADCPEC [12] PEC 10.000 0.0001 0.100 12 2.1 3.3
ADCPEC [13] PEC 10.000 0.0001 0.100 13 2.1 3.4
ADCPEC [14] PEC 10.000 0.0001 0.100 14 2.1 3.5
ADCPEC [15] PEC 10.000 0.0001 0.100 15 2.1 3.6
ADCPEC [16] PEC 10.000 0.0001 0.100 16 2.1 3.7
ADCPECLISR LISR 10.000 0.0072 0.100 17 2.1 10.9
DriverCAPCOM6 LISR 0.100 0.0456 0.100 18 2.1 56.5
DriverADC Task 10.000 0.0502 8.300 19 2.1 152.3
Control Task 10.000 5.0524 10.000 20 0.0 9 397.8

Table 10.18: Situation table for the motor control system; �rst implementation alterna-
tive. The `Priority' column indicates the priorities assigned using the deadline
monotonic approach. The blocking time times for the individual tasks are
listed in the `Blocking' column. The total utilisation is U = 96:7%.
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10.9.3.2 Estimating Spare Capacity

In this section we will estimate the spare capacity of the �rst motor control system
implementation.

By spare capacity we mean the amount of time that can be used for increasing
the switching frequency, while maintaining the responsiveness of the motor control
system. The responsiveness is de�ned as the period of the Control task.

It is important to understand that the amount of spare capacity is not computed by
subtracting total utilisation from 100% [Klein et al., 1993]. Instead, we shall �nd
the extra amount of time within one period of the Control task, which can be used
for increasing the switching frequency, without any task in the motor control system
misses its deadline.

To �nd the maximum achievable switching frequency, we reduce the period of Driver-
CAPCOM6, i.e. increasing the switching frequency, until a deadline is missed in the
motor control system.

The maximum achievable switching frequency was found to be 10.7kHz, which equals
a period of 93.4�s for DriverCAPCOM6. The total utilisation for the motor control
system was calculated to be U = 99:9% for the maximum switching frequency.
Control is the �rst task in which a job released at a critical instant will miss its
deadline.

Comparing the total utilisations of the �rst implementation of the motor control
system for the two switching frequencies, we see that the spare utilisation is 0:999�
0:967 = 0:032. Hence, the spare capacity of the �rst implementation of the motor
control system is 10ms � 0:032 = 0:32ms.

10.9.4 Second Implementation of the Motor Control System

In the second implementation of the motor control system the �rst implementation
alternative of the sensor subsystem, the control subsystem, and the second imple-
mentation alternative of the actuation subsystem are combined.

10.9.4.1 Feasibility Test

The three situation tables, 10.11, 10.13, and 10.17, for the three subsystems are
combined into situation table 10.19. Again, priorities are assigned according to the
deadline monotonic approach.

The feasibility test indicates that the second implementation of the motor control
system is also feasible. The worst-case response times of the individual tasks released
at a critical instant is listed in the `Completion time' column of table 10.19.

Let us return to the problem discussed in section 10.8.2.3, where the estimated ex-
ecution time for DriverCAPCOM6 exceeding its deadline. If we had not discovered
the problem when constructing situation table 10.16, the problem would have been
identi�ed by the feasibility test. The revised design solved the problem. By inspect-
ing the worst-case completion times in situation table 10.19, we see that PECLISR
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ADCPEC [1] PEC 10.000 0.0001 0.100 1 2.1 2.2
ADCPEC [2] PEC 10.000 0.0001 0.100 2 2.1 2.3
ADCPEC [3] PEC 10.000 0.0001 0.100 3 2.1 2.4
ADCPEC [4] PEC 10.000 0.0001 0.100 4 2.1 2.5
ADCPEC [5] PEC 10.000 0.0001 0.100 5 2.1 2.6
ADCPEC [6] PEC 10.000 0.0001 0.100 6 2.1 2.7
ADCPEC [7] PEC 10.000 0.0001 0.100 7 2.1 2.8
ADCPEC [8] PEC 10.000 0.0001 0.100 8 2.1 2.9
ADCPEC [9] PEC 10.000 0.0001 0.100 9 2.1 3.0
ADCPEC [10] PEC 10.000 0.0001 0.100 10 2.1 3.1
ADCPEC [11] PEC 10.000 0.0001 0.100 11 2.1 3.2
ADCPEC [12] PEC 10.000 0.0001 0.100 12 2.1 3.3
ADCPEC [13] PEC 10.000 0.0001 0.100 13 2.1 3.4
ADCPEC [14] PEC 10.000 0.0001 0.100 14 2.1 3.5
ADCPEC [15] PEC 10.000 0.0001 0.100 15 2.1 3.6
ADCPEC [16] PEC 10.000 0.0001 0.100 16 2.1 3.7
DriverCAPCOM6 PEC 0.100 0.0003 0.100 19 2.1 4.0
ADCPECLISR LISR 10.000 0.0072 0.100 20 2.1 11.2
PECLISR LISR 10.000 0.0056 0.100 21 2.1 16.8
PECHISR HISR 10.000 0.1051 1.000 22 2.1 122.2
DriverADC Task 10.000 0.0502 8.300 23 2.1 172.4
PhaseGenerator Task 10.000 4.1051 9.000 24 2.1 4 289.8
Control Task 10.000 5.0524 10.000 25 0.0 9 355.4

Table 10.19: Situation table for the motor control system; second implementation alterna-
tive. The `Priority' column indicates the priorities assigned using the deadline
monotonic approach. The blocking time times for the individual tasks are
listed in the `Blocking' column. The total utilisation is U = 93:6%.
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and PECHISR both complete before their respective deadlines.

The total utilisation of the second implementation of the motor control system is
U = 93:6%.

Assuming the estimate of the administrative overhead of a LISR is correct, the lower
total utilisation is due to the use of specialised features of the execution environment,
i.e. the PEC unit of the C164CI microcontroller.

10.9.4.2 Estimating Spare Capacity

In this section we will estimate the spare capacity of the second motor control system
implementation. We refer to section 10.9.3.2 for a de�nition of spare capacity and
a discussion of how to calculate it.

To increase the switching frequency of the second implementation, we must mod-
ify the tasks PhaseGenerator and DriverCAPCOM6 of the second implementation
alternative for the actuation subsystem.

We briey summarise the relevant parts of the design. The task PhaseGenerator
�lls a bu�er with PWM pattern triples. The PWM pattern triples in the bu�er
are fed to the CAPCOM6 unit by DriverCAPCOM6 for each period of the Control
task.

Hence, to increase the switching frequency the PhaseGenerator must put more PWM
pattern triples into the bu�er, and the period of DriverCAPCOM6 must be reduced
to feed the bu�er contents to the CAPCOM6 unit, all within the period of the
Control task. The execution time estimate of PhaseGenerator must be revised for
every change in bu�er size.

The maximum achievable switching frequency was found to be 11.5kHz. To sup-
port this switching frequency the bu�er must hold 115 PWM pattern triples. The
increased bu�er size yields an increase in the execution time estimate for PhaseGen-
erator from 4,105.1�s to 4,705.1�s. The required period of DriverCAPCOM6 is
85.9�s.

The resulting total utilisation for the motor control system was calculated to be
U = 99:6% for the maximum switching frequency. Control is the �rst task in which
a job released at a critical instant will miss its deadline.

Comparing the total utilisations of the second implementation of the motor control
system for the two switching frequencies, we see that the spare utilisation is 0:996�
0:936 = 0:060. Hence, the spare capacity of the �rst implementation of the motor
control system is 10ms � 0:060 = 0:60ms.

10.9.5 Increasing Switching Frequency by Reducing Responsiveness

In the sections 10.9.3.2 and 10.9.4.2 we estimated the spare capacity of the two
implementations of the motor control system. The spare capacity corresponded to
an increase in the switching frequency from 10kHz to 10.7kHz and 11.5kHz for for
the �rst and second implementation, respectively.
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In this section we predict the cost in reduced responsiveness that must be paid for
a 25% increase of the switching frequency, that is a switching frequency of 12.5kHz.
We will only consider the �rst implementation of the motor control system, i.e.
the combination of the �rst implementation alternative of the sensor subsystem,
the control subsystem, and the �rst implementation alternative of the actuation
subsystem.

To reduce the responsiveness of the motor control system, we increase the period of
all tasks in the sensor and control subsystems. All tasks in these two subsystems
share the same period. The switching frequency can then be increased by decreasing
the period of the task DriverCAPCOM6 in the actuation subsystem. DriverCAP-
COM6 is implemented by a LISR.

Based on experiments we found that by increasing the period of the control and
sensor subsystem by 19.5% the system was able to meet its deadlines with a switching
frequency of 12.5kHz. A situation table for the resulting motor control system is
shown in table 10.20 on the facing page. The resulting total utilisation is U = 99:8%.

10.9.6 Summary

This section concludes the �rst schedulability analysis performed in the design phase
of the development process. We have performed a rather extensive schedulability
analysis of the initial physical design, and our �ndings are summarised below:

� The �rst implementation of the motor control system was feasible with a total
utilisation U = 96:7%.

� The second implementation of the motor control system was also feasible with
a lower total utilisation U = 93:6%.

� The spare capacity of the �rst implementation of the motor control system
was 0.32ms, which could be used for increasing the switching frequency from
the required 10kHz to 10.7kHz, with a resulting total utilisation U = 99:9%.

� The spare capacity of the second implementation of the motor control system
was 0.60ms, which could be used for increasing the switching frequency from
the required 10kHz to 11.5kHz, with a resulting total utilisation U = 99:6%.

� Finally, we have estimated the necessary reduction in the responsiveness of
the �rst implementation of the motor control system in order to increase the
switching frequency by 25%. By increasing the period of the sensor and control
subsystems by 19.5% the switching frequency of 12.5kHz was feasible.

Based on the �ndings of the schedulability analysis we conclude that both designs are
feasibible and can achieve high total utilisations. When using the spare capacity to
increase the switching frequency of the two implementations, the performance of the
second implementation is better than the performance of the �rst implementation.
However, the better performance comes at the price of a more complex physical
design using specialised features of the execution environment.

The �ndings of the schedulability analysis may be used for deciding how to proceed
in the design process. We have three main options:
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ADCPEC [1] PEC 11.950 0.0001 0.100 1 2.1 2.2
ADCPEC [2] PEC 11.950 0.0001 0.100 2 2.1 2.3
ADCPEC [3] PEC 11.950 0.0001 0.100 3 2.1 2.4
ADCPEC [4] PEC 11.950 0.0001 0.100 4 2.1 2.5
ADCPEC [5] PEC 11.950 0.0001 0.100 5 2.1 2.6
ADCPEC [6] PEC 11.950 0.0001 0.100 6 2.1 2.7
ADCPEC [7] PEC 11.950 0.0001 0.100 7 2.1 2.8
ADCPEC [8] PEC 11.950 0.0001 0.100 8 2.1 2.9
ADCPEC [9] PEC 11.950 0.0001 0.100 9 2.1 3.0
ADCPEC [10] PEC 11.950 0.0001 0.100 10 2.1 3.1
ADCPEC [11] PEC 11.950 0.0001 0.100 11 2.1 3.2
ADCPEC [12] PEC 11.950 0.0001 0.100 12 2.1 3.3
ADCPEC [13] PEC 11.950 0.0001 0.100 13 2.1 3.4
ADCPEC [14] PEC 11.950 0.0001 0.100 14 2.1 3.5
ADCPEC [15] PEC 11.950 0.0001 0.100 15 2.1 3.6
ADCPEC [16] PEC 11.950 0.0001 0.100 16 2.1 3.7
ADCPECLISR LISR 11.950 0.0072 0.100 17 2.1 10.9
DriverCAPCOM6 LISR 0.800 0.0456 0.800 18 2.1 56.5
DriverADC Task 11.950 0.0502 10.250 19 2.1 152.3
Control Task 11.950 5.0524 11.950 20 0.0 11 905.8

Table 10.20: Situation table for the motor control system; �rst implementation alternative
with increased switching frequency and reduced responsiveness. Priorities are
assigned using the deadline monotonic approach. The total utilisation is U =
99:8%.
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� If a simple design is desired for simplifying the implementation, or if a future
increase in the switching frequency of 7% is considered suÆcient, or if a reduc-
tion of the system's responsiveness is an option, we should proceed with the
�rst implementation of the motor control system.

� If the property of a future increase in the switching frequency of 15% is desired,
a reduction of the systems responsiveness is not an option, and we are con�dent
that we can implement the more complex physical design, we should proceed
with the second implementation of the motor control system.

� If the requirements of a switching frequency of 10kHz and a responsiveness of
10ms are �nal, the microcontroller of the execution environment may be over-
dimensioned. If the motor control system is to be produced in high numbers
it may be pro�table to consider a less powerful microcontroller and repeat the
design if necessary.

It should be emphasised, that this has been the �rst schedulability analysis of the
design process. The analysis was based on initial execution time estimates. Natu-
rally, the analysis depends on correct estimates. When physical design for the motor
control system has been selected and the implementation is started, more precise
estimates may become available.

Hence, during the following phases of the development process, we should continue
to analyse the schedulability of the design, while the individual subsystems are
at various degrees of completion. During the following phases the execution time
estimates will converge towards the actual execution times.

If the suÆcient feasibility test of the schedulability analysis indicates that the system
is infeasible, we must revert to the design process and improve the design. Before
doing so, we should apply a necessary and suÆcient feasibility test, to ensure the
design is indeed infeasible.
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11 Conclusion

After the motivation of hard real-time systems we introduced an informal model for
hard real-time systems. The model formed a basis for investigating important com-
ponents of such systems, e.g. schedules, priority-driven schedulers, and the problem
of validating that a schedule is indeed feasible for a simpli�ed periodic task model
without shared resources. Having investigated the problem of uncontrolled blocking
associated with resource contention we introduced the concept of synchronisation
protocols, which allows the introduction of shared resources into the periodic task
model. Based on the theory of the periodic task model, we de�ned a computational
model, for which an implementation in a real-time operating system was proposed.
Finally, a development process for hard real-time systems was proposed, and the
design phases of the process were applied to a case study.

11.1 Results

The Reference Model

An informal model of real-time systems was constructed. The model presented
de�nitions and designations, which allowed us to describe and discuss aspects of
hard real-time systems.

Hard Real-Time Scheduling

We presented the taxonomy of hard real-time scheduling. Rather than exploring
the static scheduling paradigm, we investigated the more exible priority-driven
scheduling paradigm. We discussed the optimality of priority-driven schedulers.
The dynamic-priority earliest deadline �rst scheduling algorithm was found to be
optimal for the most general sets of tasks.

We chose to focus on the �xed-priority schedulers as they are widely supported by
current real-time operating systems. A �xed-priority scheduler may be divided into
two components:

� The priority assignment algorithm

� The dynamic scheduling decision

Three optimal priority assignment algorithms have been discussed. The rate mono-
tonic algorithm required deadlines to equal periods in order to be optimal. The
deadline monotonic algorithm allowed deadlines less than or equal to periods, hence
it provides means for controlling jitter, while remaining optimal. Finally, Audsley's
algorithm allowed the task of a task set to have arbitrary phases and deadlines less
than or equal to periods and remain optimal.
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11 Conclusion

Feasibility Tests

For hard real-time systems it must be possible to validate that a schedule is indeed
feasible, i.e. all jobs in a task set will meet their deadline. We presented di�erent
techniques for performing a feasibility test. Most necessary and suÆcient feasibility
tests require tool support for realistic systems.

Synchronisation Protocols

We have discussed the problems introduced by blocking, and we have addressed
methods to control blocking, i.e. the highest locker synchronisation protocol. Thus, it
was possible to extend the simpli�ed periodic task model to include shared resources.
Additionally, the blocking factor was introduced in the feasibility tests.

Implementation of a Computational Model

Based on a subset of the presented theory a computational model for hard real-time
designs was de�ned. The computational model supports designs of hard real-time
systems, which are analysable using the feasibility tests.

Based on an investigation of the functionality and concepts of a commercially avail-
able real-time operating system, we implemented the de�ned computational model
upon the operating system. The overhead of the implemented synchronisation pro-
tocols were measured, compared, and discussed.

The Hard Real-Time Development Process

We proposed a development process for hard real-time systems. We focussed espe-
cially on the activity of architectural design, which was divided into two phases: the
logical and physical design phase. The objective of the design process is to trace a
feasible design from requirements to deployment. The logical design addresses the
requirements that does not relate to time. The requirements that relate to time are
addressed by the physical design phase. In the initial iteration of the physical design
execution time estimates are associated with the individual processes of the design.
During the development process the execution time estimates are revised. A feasible
design is traced by repeatedly applying a feasibility test.

The Case Study

The design phases of the proposed development process was tested on a case study,
concerning the construction of a motor control system. The �rst iterations of the
logical and physical design phases were completed for the case study.

The logical design phase successfully divided the motor control system into three
subsystems. The physical design phase resulted in several design proposals for each
subsystem. By introducing timing constraints in the physical design phase we could
immediately detect problems in the design of one of the subsystems. The design was
modi�ed in order to resolve the problem.

The di�erent design proposals of subsystems could successfully be combined resulting
in a complete design of a motor control system.

Two di�erent designs of the motor control system were composed from the design
alternatives for each subsystem. Both designs were found to be feasible. We inves-
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tigated the spare capacity of the two designs. For one of the designs the necessary
reduction in responsiveness was estimated for a 25% increase in the switching fre-
quency of the motor control system.

11.2 Evaluation

Scheduling theory for hard real-time systems has matured during the early 1990s.
Thus, a large number of results are now available. During the project we have
studied the fundamentals of the scheduling theory for hard real-time systems, and
we have discussed relevant parts in this thesis.

The Hard Real-Time Development Process

We have tested the proposed development process in a larger case study. We com-
pleted the �rst iterations of the logical and physical design phases.

The idea of separating the architectural design phase into a logical and physical
design phase seems to work well. Addressing the real-time requirements in a separate
design phase forces the designer to focus on the real-time constraints during the
initial design of the system.

Applying the schedulability analysis repeatedly during the development process al-
lows the designer to trace a feasible design through the development process. Addi-
tionally, the schedulability analysis may provide guidance through the development
process and provide the designer with a tool for making design decisions.

The Computational Model

Based on the presented scheduling theory we formed a computational model, which
we have successfully implemented onto a commercial real-time operating system.
The computational model could be extended. We discuss two possible extensions
below:

� The computational model did not allow arbitrary deadlines though we men-
tioned a technique which made it possible to validate systems with arbitrary
deadlines. In our situation we had a throughput requirement hence deadlines
was less then or equal to periods.

If the computational model was extended to allow arbitrary deadlines the
implementation of the computational model had to be reconsidered. We have
identi�ed two approaches to implement a computational model that allows
arbitrary deadlines:

{ A new task of same priority is dynamically created each time the periodic
event occurs. This approach involves dynamic task creation and task
deletion and is expected to produce a large overhead.

{ The periodic task has a counter of outstanding jobs. Each time the
periodic event occurs the counter is incremented. As long as there is
outstanding jobs the task continues to execute.
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� In the reference model we identi�ed aperiodic events, but we did not present
any results for this. Aperiodic events was not allowed in the computational
model. Thus, in order facilitate validation and analysis of systems with aperi-
odic events these must be cast into the periodic task model.

Far from all systems have a truly periodic behaviour. Thus, the computational
model should be extended to deal with aperiodic events. There are several
possibilities when dealing with aperiodic activities:

Periodic polling Aperiodic activity generated by peripherals must be trans-
formed into periodic polling if possible. The hardware engineer must
have this in mind when constructing interfaces to peripherals. Periodic
polling introduces more event latency and more overhead but nevertheless
periodic overhead is analysable.

Sporadic servers Aperiodic activity can be normalised into a periodic ac-
tivity using sporadic servers. A sporadic server is a periodic task with
budget of execution time which can be used to aperiodic activity. For
more information about sporadic servers see [Sprunt, 1990], [Liu, 2000]
and [Briand and Roy, 1999].

Ignore them If a system is overwhelmed by handling aperiodic activities it
may result in missed deadlines. The system should be designed in a way
such that only the newest is needed and therefore treated. The old ones
should be discarded.

Hard Real-Time Operating Systems

We have examined a commercially available real-time operating system. It is our
opinion that the particular operating system is too big and complex for hard real-
time systems.

In our work with the scheduling theory for hard real-time systems we have identi�ed
a small set of required functionality that a simple kernel should provide:

� A �xed-priority preemptive scheduler.

� Support for periodic tasks, i.e. absolute timers.

� Provide fast task priority changes, i.e. to be used in the implementation of the
highest locker protocol.

� To make it possible for an interrupt service routine to signal on a semaphore,
i.e. to release a task.

� Support for sporadic servers.

In general a hard real-time operating system should provide support for common
real-time abstractions. Thus, the operating system should not introduce superuous
concepts.

Final Remarks

We have accomplished the objectives of the thesis. By preparing this thesis we have
obtained fundamental understanding of the problems involved in the development
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of hard real-time systems. In particular, we feel con�dent in the approach to the
development and documentation of hard real-time systems suggested in this thesis.
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A Highest Locker Protocol

This appendix features listings of the source code presented in chapter 8.2.2.

A.1 Simple Implementation

Listing A.1: Interface to the simple highest locker protocol.

1 /*
2 * file: simple_highest_locker.h
3 * desc: interface to the simple highest locker protocol
4 * copyright 2001, Thomas Hedemand Nielsen & Jens Christian Schwarzer
5 */
6

7 typedef struct critical_region_control_block {
8 OPTION priority; /* must be initialised to the ceiling priority */
9 OPTION saved_priority;
10 } CRCB;
11

12 VOID enter_crit(CRCB *);
13

14 VOID leave_crit(CRCB *);

Listing A.2: Implementation of the simple highest locker protocol.

1 /*
2 * file: simple_highest_locker.c
3 * desc: implementation of the simple highest locker protocol
4 * copyright 2001, Thomas Hedemand Nielsen & Jens Christian Schwarzer
5 */
6

7 #include "nucleus.h"
8 #include "simple_highest_locker.h"
9

10 VOID enter_crit(CRCB *region) {
11 region->saved_priority =
12 NU_Change_Priority(NU_Current_Task_Pointer(),
13 region->priority);
14 }
15

16 VOID leave_crit(CRCB *region) {
17 NU_Change_Priority(NU_Current_Task_Pointer(),
18 region->saved_priority);
19 }

121



A Highest Locker Protocol

A.2 General Implementation

Listing A.3: Interface to the general highest locker protocol.

1 /*
2 * file: general_highest_locker.h
3 * desc: interface to the general highest locker protocol
4 * copyright 2001, Thomas Hedemand Nielsen & Jens Christian Schwarzer
5 */
6

7 typedef struct critical_region_control_block CRCB;
8

9 typedef struct critical_region_control_block {
10 OPTION priority; /* must be initialised to the ceiling priority */
11 CRCB *next, *prev;
12 };
13

14 typedef struct thread_control_block_extension {
15 OPTION normal_priority; /* must be initialised with the priority */
16 OPTION current_priority; /* must be initialised with the priority */
17 CRCB *region_list; /* must be initialised with 0 */
18 } TCBE;
19

20 VOID enter_crit(CRCB *, TCBE *);
21

22 VOID leave_crit(CRCB *, TCBE *);

Listing A.4: Implementation of the general highest locker protocol.

1 /*
2 * file: general_highest_locker.c
3 * desc: implementation of the general highest locker protocol
4 * copyright 2001, Thomas Hedemand Nielsen & Jens Christian Schwarzer
5 */
6

7 #include "nucleus.h"
8 #include "general_highest_locker.h"
9

10 VOID insert(CRCB *list, CRCB *node) {
11 if (0 == list)
12 list = node->next = node->prev = node;
13 else {
14 node->next = list;
15 node->prev = list->prev;
16 list->prev->next = node;
17 list->prev = node;
18 }
19 }
20

21 VOID remove(CRCB *list, CRCB *node) {
22 if (node->next == node)
23 list = 0;
24 else {
25 node->prev->next = node->next;
26 node->next->prev = node->prev;
27 if (node->next == node->prev)
28 list = node->next;
29 }
30 }
31

32 OPTION find_greatest_priority(CRCB *list, OPTION max) {

122



A.2 General Implementation

33 CRCB *node;
34 if (0 != list) {
35 node = list;
36 do {
37 if (node->priority > max)
38 max = node->priority;
39 node = node->next;
40 } while (node != list);
41 }
42 return max;
43 }
44

45 VOID enter_crit(CRCB *region, TCBE *thread) {
46 if (region->priority > thread->current_priority) {
47 NU_Change_Priority(NU_Current_Task_Pointer(),
48 region->priority);
49 thread->current_priority = region->priority;
50 }
51 insert(thread->region_list, region);
52 }
53

54 VOID leave_crit(CRCB *region, TCBE *thread) {
55 remove(thread->region_list, region);
56 thread->current_priority =
57 find_greatest_priority(thread->region_list,
58 thread->normal_priority);
59 NU_Change_Priority(NU_Current_Task_Pointer(),
60 thread->current_priority);
61 }
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A.3 Overhead Comparison

Listing A.5: Application for highest locker protocol overhead measurement.

1 /*
2 * file: speed_test_demo.c
3 * desc: overhead measurement of the highest locker protocols
4 * copyright 2001, Thomas Hedemand Nielsen & Jens Christian Schwarzer */
5

6 /* use the simple HL implementation */
7 /*#define SHL */
8

9 /* use the general HL implementation */
10 /*#define GHL*/
11

12 /* use the built-in NP semaphore */
13 /* none of the two above should be defined */
14

15 #include "nucleus.h"
16

17 #if defined(SHL)
18 #include "../simple_highest_locker/simple_highest_locker.h"
19 #elif defined(GHL)
20 #include "../general_highest_locker/general_highest_locker.h"
21 #endif
22

23 NU_TASK Task;
24

25 VOID task(UNSIGNED argc, VOID *argv);
26

27 NU_MEMORY_POOL System_Memory;
28

29 #if defined(SHL) || defined(GHL)
30 CRCB Crit;
31 #else
32 NU_SEMAPHORE Semaphore;
33 #endif
34

35 #ifndef GHL
36 typedef UNSIGNED TCBE;
37 #endif
38

39 TCBE tcbe;
40

41 VOID lock(TCBE *tcbe) {
42 #if defined(SHL)
43 enter_crit(&Crit);
44 #elif defined(GHL)
45 enter_crit_g(&Crit, tcbe);
46 #else
47 NU_Obtain_Semaphore(&Semaphore, NU_SUSPEND);
48 #endif
49 }
50

51 VOID unlock(TCBE *tcbe) {
52 #if defined(SHL)
53 leave_crit(&Crit);
54 #elif defined(GHL)
55 leave_crit_g(&Crit, tcbe);
56 #else
57 NU_Release_Semaphore(&Semaphore);
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58 #endif
59 }
60

61 VOID Application_Initialize(VOID *first_available_memory) {
62

63 VOID *pointer;
64

65 NU_Create_Memory_Pool(&System_Memory, "SYSMEM",
66 first_available_memory, 20000, 50, NU_FIFO);
67

68 NU_Allocate_Memory(&System_Memory, &pointer, 1000, NU_NO_SUSPEND);
69

70 NU_Create_Task(&Task, "Task", task, 0, NU_NULL, pointer, 1000, 5, 0,
71 NU_PREEMPT, NU_START);
72

73 #if defined(SHL) || defined(GHL)
74 Crit.priority = 4;
75 #else
76 NU_Create_Semaphore(&Semaphore, "SEMAPHORE", 1, NU_PRIORITY);
77 #endif
78

79 #ifdef GHL
80 tcbe.normal_priority = tcbe.current_priority = 5;
81 tcbe.region_list = 0;
82 #endif
83 }
84

85 VOID task(UNSIGNED argc, VOID *argv) {
86

87 lock(&tcbe);
88

89 unlock(&tcbe);
90

91 }
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B Execution Times of Nucleus Plus System

Services on an In�neon C164

This appendix shows the results of a test application constructed to measure execu-
tion times of a selected set of Nucleus Plus system services.

The test application consists of two tasks which have a controlled behaviour due to
their set up. The measurement was carried out using the CrossView Pro debugger
as in section 8.2.3. The test application can be found in listing B.1. Twenty-one
measurements are performed by the application and the result can be found in
table B.1.
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1 Task go to sleep yes 558
2 Task relinquish itself yes 324
3 Suspend a task no 306
4 Resume a task no 287
5 Suspend a task yes 466
6 Resume a task yes 478
7 Immediate release semaphore, no task waiting at all no 170
8 Immediate obtain semaphore no 185
9 Obtain semaphore, blocked by task of lower priority yes 551
10 Release semaphore, no task of higher priority waiting no 339
11 Release semaphore, task of higher priority waiting yes 551
12 Task priority change yes 527
13 Task priority change no 525
14 Retrieve the current task pointer no 32
15 Disabling of task preemption no 170
16 Enabling of task preemption, no task of higher priority waiting no 179
17 Enabling of task preemption, task of higher priority waiting yes 320
18 Protect kernel data structure no 67
19 Unprotect kernel data structure no 61
20 Disabling of all interrupts using OS system call no 26
21 Enabling of all interrupts using OS system call no 26

Table B.1: Execution times of a selected set of Nucleus Plus system services on a C164
microcontroller.

127



B Execution Times of Nucleus Plus System Services on an In�neon C164

Listing B.1: Application for Nucleus Plus system services execution times.

1 /*
2 * file: nucleus_wcet_c164ci.c
3 * desc: program to measure the execution times for system services of
4 * the Nucleus Plus operating system on a Infineon C164 target.
5 * copyright 2001, Thomas Hedemand Nielsen & Jens Christian Schwarzer
6 */
7

8 #include "nucleus.h"
9

10 /* Define Application data structures. */
11 NU_TASK Control;
12 NU_TASK Sub_Task;
13 NU_SEMAPHORE Semaphore;
14 NU_MEMORY_POOL System_Memory;
15

16 /* Data structure used in test 13 and 14. */
17 NU_PROTECT test_protect;
18

19 /* Define prototypes for function references. */
20 VOID Control_Entry(UNSIGNED, VOID *);
21 VOID Sub_Task_Entry(UNSIGNED, VOID *);
22

23 /* Define the Application_Initialise routine that determines the
24 initial Nucleus PLUS application environment. */
25

26 VOID Application_Initialize(VOID *first_available_memory) {
27

28 VOID *pointer;
29

30 /* Create a system memory pool that will be used to allocate task
31 stacks, queue areas, etc. */
32 NU_Create_Memory_Pool(&System_Memory, "SYSMEM",
33 first_available_memory, 8192, 50, NU_FIFO);
34

35 /* Create Control task. */
36 NU_Allocate_Memory(&System_Memory, &pointer, 2000, NU_NO_SUSPEND);
37 NU_Create_Task(&Control, "Control", Control_Entry, 0, NU_NULL,
38 pointer, 2000, 5, 0, NU_PREEMPT, NU_START);
39

40 /* Create Sub Control task. */
41 NU_Allocate_Memory(&System_Memory, &pointer, 2000, NU_NO_SUSPEND);
42 NU_Create_Task(&Sub_Task, "Sub Task", Sub_Task_Entry, 0, NU_NULL,
43 pointer, 2000, 6, 0, NU_PREEMPT, NU_START);
44 }
45

46 VOID Control_Entry(UNSIGNED argc, VOID *argv) {
47

48 /* -1A- Calculate time for a sleep with context switch. */
49 NU_Sleep(1);
50

51 /* -2B- */
52

53 /* -3A- Calculate time for suspending a task */
54 NU_Suspend_Task(&Sub_Task);
55 /* -3B- */
56

57 /* -4A- Calculate time for resuming a task with no context switch */
58 NU_Resume_Task(&Sub_Task);
59 /* -4B- */
60
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61 NU_Suspend_Task(&Sub_Task);
62

63 NU_Change_Priority(&Sub_Task, 4);
64

65 /* -5A- Calculate time for resuming a task with context switch */
66 NU_Resume_Task(&Sub_Task);
67

68 /* -6B- */
69

70 NU_Change_Priority(&Sub_Task, 5);
71

72 NU_Resume_Task(&Sub_Task);
73

74 NU_Create_Semaphore(&Semaphore, "Semaphore", 0, NU_FIFO);
75

76 /* -7A- Calculate the time for immediate release of semaphore. */
77 NU_Release_Semaphore(&Semaphore);
78 /* -7B- */
79

80 /* -8A- Calculate the time for immediate obtain semaphore. */
81 NU_Obtain_Semaphore(&Semaphore, NU_NO_SUSPEND);
82 /* -8B- */
83

84 /* -9A- Calculate the time to suspend trying to obtain the
85 semaphore. */
86 NU_Obtain_Semaphore(&Semaphore, NU_SUSPEND);
87

88 /* Control comes back here after semaphore is released by sub
89 task. */
90 NU_Obtain_Semaphore(&Semaphore, NU_SUSPEND);
91

92 /* -11B- */
93

94 /* -12A- Calculate the time for priority change involving a context
95 switch. */
96 NU_Change_Priority(&Control, 6);
97

98 /* -14A- Calculate the time to retrieve the current task pointer. */
99 NU_Current_Task_Pointer();

100 /* -14B- */
101

102 /* -15A- Calculate the time for disabling the task scheduler. */
103 NU_Change_Preemption(NU_NO_PREEMPT);
104 /* -15B- */
105

106 /* -16A- Calculate the time for enabling the task scheduler. */
107 NU_Change_Preemption(NU_PREEMPT);
108 /* -16B- */
109

110 NU_Change_Preemption(NU_NO_PREEMPT);
111

112 NU_Change_Priority(&Sub_Task, 4);
113

114 /* -17A- Calculate the time for enab. the sched. w/context switch. */
115 NU_Change_Preemption(NU_PREEMPT);
116

117 /* Set up a protect data structure. */
118 test_protect.words[0] = 0;
119 test_protect.words[1] = 0;
120

121 /* -18A- Calculate the time for protecting a data structure from
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122 simultaneous access. */
123 NU_Protect(&test_protect);
124 /* -18B- */
125

126 /* -19A- Calculate the time for unprotecting a data structure from
127 simultaneous access.*/
128 NU_Unprotect();
129 /* -19B- */
130

131 /* -20A- Calculate the time for disabling all interrupts using a OS
132 system call. */
133 NU_Control_Interrupts(NU_DISABLE_INTERRUPTS);
134 /* -20B- */
135

136 /* -21A- Calculate the time for enabling all interrupts using a OS
137 system call.*/
138 NU_Control_Interrupts(NU_ENABLE_INTERRUPTS);
139 /* -21B- */
140 }
141

142 VOID Sub_Task_Entry(UNSIGNED argc, VOID *argv) {
143

144 UNSIGNED clock_value;
145

146 /* -1B- */
147

148 /* Both tasks must now have same priority. */
149 NU_Change_Priority(&Sub_Task, 5);
150

151 /* Wait for clock tick to make sure control task is not sleeping. */
152 clock_value = NU_Retrieve_Clock();
153 while (NU_Retrieve_Clock() == clock_value) { }
154

155 /* -2A- Calculate Relinquish time with context switch. */
156 NU_Relinquish();
157

158 /* -5B- */
159

160 /* -6A- Calculate time for suspending a task with context switch. */
161 NU_Suspend_Task(&Sub_Task);
162

163 /* -9B- */
164

165 /* -10A- Release the semaphore to resume the waiting control task. */
166 NU_Release_Semaphore(&Semaphore);
167 /* -10B- */
168

169 /* Control task is now ready. Relinquish to let control task to
170 run. Processing returns here when another obtain is performed by
171 the control task. */
172 NU_Relinquish();
173

174 /* Raise the priority level of control task. */
175 NU_Change_Priority(&Control, 4);
176

177 /* -11A- Calculate semaphore release with immediate context switch. */
178 NU_Release_Semaphore(&Semaphore);
179

180 /* -12B- */
181

182 /* -13A- Calculate the time for priority change involving no context
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183 switch. */
184 NU_Change_Priority(&Control, 5);
185 /* -13B- */
186

187 NU_Relinquish();
188

189 /* -17B- */
190

191 NU_Change_Priority(&Sub_Task, 5);
192

193 NU_Relinquish();
194

195 }
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C Acronyms

AC alternating current

ADC analog digital converter

ANSI American National Standards Institute

ATI Accelerated Technology Incorporated

BCET best-case execution time

CAPCOM6 capture/compare unit 6

CPU central processing unit

DAC digital analog converter

DC direct current

DM deadline monotonic

DMA direct memory access

EDF earliest deadline �rst

FAQ frequently asked questions

FIFO �rst-in, �rst-out

HISR high-level interrupt service routine

HL highest locker protocol

HPF highest priority �rst

ISR interrupt service routine

LISR low-level interrupt service routine

MIPS million instructions per second

NP Nucleus Plus, by ATI, is a real-time operating systems for embedded
applications

NPCS non-preemptive critical section protocol

PCP priority ceiling protocol

PEC peripheral event controller

PIP priority inheritance protocol
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C Acronyms

PWM pulse-width modulation

RISC reduced instruction set computing

RM rate monotonic

RMA rate monotonic analysis

RTC real time clock

SVM space vector modulation

SWPWM sinusoidally weighted pulse-width modulation

TCB thread control block

WCET worst-case execution time

WRR weighted round-robin
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