
AN EMBEDDED
SYSTEMS KERNEL

Lars Munch Christensen

IMM-THESIS-2001-47

IMM

Trykt af IMM, DTU

Foreword

The present report is the result of a master thesis entitled “An Embedded
Systems Kernel”. The project was done from mid February until the end
of October 2001.

I would like to use the opportunity to thank all the parties who have con-
tributed to this project. A special thank you goes to my wife Eva, who
has used valuable time finding spelling and grammar errors in the report.
I would also like to thank MIPS for sponsoring hardware and thank you to
the people at the linux-mips mailing list for valuable MIPS information.

October 26th, 2001.

Lars Munch Christensen

Abstract

The process of composing a development system environment, suitable
for embedded system development in a Free Software environment, is dis-
cussed. The theory of protection and sharing of memory in a single space
operating system is presented. A design for a small embedded systems ker-
nel is presented and the actual implementation of the kernel is described.
A generalized bootstrap is proposed. The actual implementation of the
kernel is included in the appendix.

Keywords

Embedded systems kernel development and implementation, single address
space operating systems, generalized bootstrapping.

i

Contents

1 Preface 1

1.1 Executive summary . 1

1.2 Prerequisites . 1

1.3 Typographical conventions 2

2 Introduction 3

2.1 Introduction to the embedded systems 3

2.2 Introduction to the project 4

2.3 Motivation for the project 4

2.4 Organization . 5

3 Kernel properties 7

3.1 Introduction . 7

3.2 Kernel properties . 7

3.3 Summary . 10

4 Choosing hardware 11

4.1 Introduction . 11

4.2 Intel 8051 . 12

ii CONTENTS

4.3 Atmel AVR 8-Bit RISC . 13

4.4 Atmel AT91 ARM Thumb 13

4.5 MIPS Malta development board 14

4.6 Summary . 14

5 Hardware 17

5.1 The Malta system . 17

5.1.1 The CoreLV . 18

5.1.2 The motherboard . 20

5.2 Test bed . 22

5.3 Summary . 23

6 Software 25

6.1 Introduction . 25

6.2 The different toolchains . 26

6.3 Floating point . 27

6.4 Remote debugging . 28

6.5 Newlib . 28

6.6 Summary . 29

7 SASOS 31

7.1 Introduction . 31

7.2 Opal . 34

7.3 Angel . 36

7.4 Mungi . 38

7.5 Summary . 38

CONTENTS iii

8 Kernel design 41

8.1 Kernel overview . 41

8.2 Scheduling . 44

8.3 Timer . 45

8.4 Synchronization . 47

8.4.1 Message passing . 48

8.5 Interrupt handling . 48

8.6 Context switch . 51

8.7 Global exception handling 52

8.8 Summary . 53

9 Bootstrapping 55

9.1 Bootstrapping in general . 55

9.2 Introduction to boot loaders 58

9.3 Bootstrapping MIPS . 59

9.4 MIPS vs. Intel I386 . 61

9.5 Probing hardware . 61

9.6 Bootstrapping the kernel using YAMON 63

9.7 Kernel bootstrap . 64

9.8 Summary . 65

10 Kernel implementation 67

10.1 Compiling . 67

10.1.1 The Makefile . 67

10.1.2 Source code layout 68

10.1.3 Compilation options 68

10.2 Linking . 69

10.3 Header files . 72

iv CONTENTS

10.4 Handling interrupts . 72

10.4.1 Registering the interrupt handler 73

10.4.2 Combined hardware interrupt 73

10.4.3 Interrupt interface 74

10.5 Context switch . 74

10.6 Semaphores . 75

10.6.1 Semaphore interface 76

10.7 Kernel drivers . 76

10.7.1 Timer driver . 76

10.7.2 LCD driver . 77

10.7.3 Serial terminal driver 79

10.8 Kernel construction . 80

10.9 Summary . 81

11 Status 83

11.1 Current kernel status . 83

11.2 Small kernel improvements 84

11.3 Large kernel related projects 84

11.4 Summary . 85

12 Conclusion 87

A Project description 89

B Source code 95

v

List of Figures

3.1 Generic embedded system 8

5.1 Overview of the CoreLV card 18

5.2 Overview of the motherboard 20

5.3 Development test bed . 22

6.1 GNUPro debugger . 29

7.1 Opal threads can be placed in overlapping protection do-
mains and more than one thread is able to run in each pro-
tection domain. 35

7.2 Protection domains in Angel 37

8.1 Overview of the kernel . 43

8.2 The different process states 45

8.3 An example of priority inversion 47

10.1 Kernel directory structure 69

10.2 Overview of the linked kernel 71

10.3 Jump op-code construction 73

vi LIST OF FIGURES

vii

List of Tables

5.1 Malta physical memory map 21

8.1 Used MIPS interrupts . 49

9.1 Initial Application Context 63

10.1 Options in the Makefile . 68

10.2 Compilation options . 70

10.3 Interrupt component interface 74

10.4 Semaphore component interface 76

10.5 Timer interface . 77

10.6 LCD display addresses. Base address is 0x1f00.0400 78

10.7 LCD driver interface . 78

10.8 Serial terminal interface . 80

viii LIST OF TABLES

1

Chapter 1

Preface

1.1 Executive summary

The present report is the result of a master thesis entitled “An Embedded
Systems Kernel”. The process of composing a development system envi-
ronment, suitable for embedded system development in a Free Software
environment, is discussed. The theory of protection and sharing of mem-
ory in a single space operating system is presented. A design for a small
embedded systems kernel is presented, the actual implementation of the
kernel is described and a generalized bootstrap is proposed. The actual
implementation of the kernel is included in the appendix.

The kernel developed is released under the GNU General Public License.
The reason for this decision is that I want to allow people to use it freely,
modify it as they wish and then give their ideas and modifications back to
the community.

1.2 Prerequisites

The prerequisites for reading this report is a common knowledge of op-
erating system kernels and operating systems in general. Terms such as,
remote procedure calls and virtual memory should be familiar to the reader.

2 Chapter 1. Preface

A basic knowledge of C programming, MIPS assembler and the use of the
GNU development tools is preferable. Finally, some basic understanding
of standard PC hardware will come in handy.

1.3 Typographical conventions

The following typographical conventions are used throughout the report:

Italic

is used for the introduction of new terms.

Constant width

is used for names of files, functions, programs, methods and
routines.

3

Chapter 2

Introduction

This chapter contains an introduction to embedded systems and to the
project itself. The chapter finishes with a section describing the motivation
for this project.

2.1 Introduction to the embedded systems

An embedded system is a combination of computer hardware, software and
and perhaps additional mechanical parts, designed to perform a specific
function. A good example is the microwave oven. Millions of people use one
every day, but very few realize that a processor and software are involved
in preparation of their dinner.

The embedded system is in direct contrast to the personal computer, since
it is not designed to perform a specific function but to do many different
things. The term general-purpose computer may be more suitable to make
that distinction clear.

Often, an embedded system is a component within a larger system. For
example, modern cars contain many embedded systems; one controls the
brakes, another controls the emission and a third controls the dashboard.
An embedded system is, therefore, designed to run on its own without
human intervention, and may also be required to respond to events in real-
time, for example, the brakes has to work immediately.

4 Chapter 2. Introduction

2.2 Introduction to the project

An important concern, in the development of kernels for operating systems
or embedded systems in general, is portability across different hardware
platforms. Most kernel subsystems, including the ones that are machine
dependent, are written in high level languages such as C or C++. As a
result, very little machine dependent assembly code needs to be rewritten
for each new port. But, writing a kernel in a high level language is not
enough for a kernel to be easy portable. If all the machine independent
code is mixed together with the machine dependent, you still have to touch
most of the kernel code in the porting process.

More recently, the notion of nanokernels[11] has been introduced represent-
ing the virtual hardware support for the rest of the machine independent
kernel. This project strives to create a small nanokernel and a few subsys-
tems for use in embedded systems. The kernel subsystems will therefore
have a clean interface to the nanokernel.

The problems concerning coldboot will be analysed with the goal of reduc-
ing dependencies to the hardware to as little as possible.

If coldboot is neglected the embedded system can be considered as one
program with more activities. There will only be one activity, when the
program starts, and this activity will be executed without restrictions in
privileges. The creation of activities should be expressed by means of the
nanokernel’s routines, and both voluntary and forced process switch should
be supported.

The concrete goal for the project is to implement a nanokernel and some
subsystems, exercising it so far that an embedded system is able to coldboot
and use a simple external device. The project should also provide a useful
basis for further work.

2.3 Motivation for the project

There are several motivations for the project both personal and educational.

My personal motivation for the project is a long time interest in kernel
development and operating systems. To get the opportunity and time

2.4 Organization 5

to build a kernel is absolutely the best way to learn practical embedded
systems implementation.

The educational motivation was to try and create a very small kernel,
providing only the necessary features for use in an embedded system with
parallel processes.

Perhaps the most important motivation was to start up a kernel devel-
opment project, on which several different kernel related projects could be
based. This project is the first project in a, hopefully, long series of projects
concerning the construction of nanokernels for embedded systems.

2.4 Organization

The report contains 12 chapters, two appendixes and an annotated bibli-
ography. The 12 chapters are divided into four parts. The first part that
consists of chapters 1 through 6, contains introductory contents. Chapter 7
presents single space operating systems. Chapters 8 and 9 contains the de-
sign of the kernel and the boot process. Chapter 10 contains a description
of the kernel implementation and chapter 11 describes the current status
of the kernel. The report finishes in chapter 12 with a conclusion.

Chapter 2 you are reading it.
Chapter 3 describes the properties that the kernel were given before choos-

ing hardware and before going into a detailed kernel design.
Chapter 4 describes the process of choosing the right hardware for the

development of the kernel. The different hardware, which where con-
sidered, will be described.

Chapter 5 contains a description of the hardware used in this project.
This includes a description of the main board, the CPU and the test
bed used for development.

Chapter 6 contains a description of the software used in the implementa-
tion of the kernel. This includes the compiler toolchain, the debugger
and the considerations done when choosing development tools.

Chapter 7 describes Single Address Space Operating Systems (SASOS).
It begins by introducing single address space operating systems with
comparison to the traditional multiple address space operating sys-
tems. After this introduction three different single address space
operating systems are discussed.

6 Chapter 2. Introduction

Chapter 8 describes the kernel design. All major components of the ker-
nel are described, that includes the timer, the synchronization mech-
anisms, the interrupt handling and scheduling.

Chapter 9 describes bootstrapping in general and then gives an intro-
duction to boot loaders. This is followed by a description of what
happens, the moment after the Malta system has been powered on.
The chapter finishes with a description of, how bootstrapping a kernel
is done in practice on the Malta system.

Chapter 10 describes the kernel implementation. The main focus will be
on, how to interface with the hardware, since this subject has been
the most time consuming part of the kernel implementation.

Chapter 11 first gives a short overview of kernel status, as of this writing.
After this the future development of the kernel is described.

Chapter 12 contains the conclusion.

Throughout the report, I have eliminated minor details to make it more
readable, but in some cases small details may have taken significant time
to figure out or solve, these will then be described thoroughly. This will,
hopefully, save future project-students a lot of hair- pulling. The report is
also written in a way that enables future students to make a jump start to
continuing work on the kernel project.

7

Chapter 3

Kernel properties

This chapter describes the properties that the kernel were given before
choosing hardware and before going into a detailed kernel design.

3.1 Introduction

Before going into a detailed kernel design some general kernel properties
have to be given. Some of these properties are made from personal prefer-
ences while others are made for pure educational purposes.

The idea of these kernel properties are to narrow down the huge number
of possibilities, one is faced with when designing a kernel for an embedded
system.

3.2 Kernel properties

All embedded systems contain a processor and software, but they also have
other features in common. In order to have software, there must be a place
to store the executable code and a storage for runtime data manipulation.
This storage will take the form of RAM and maybe also ROM. All embed-
ded systems also contain a kind of input and output system. Figure 3.1
shows a generic embedded system.

8 Chapter 3. Kernel properties

Inputs

Memory

Processor
Outputs

Figure 3.1: Generic embedded system

The kernel developed in this project will take form of a generic embedded
system and will strive to be the smallest common kernel for embedded
systems.

When choosing a language, in which the kernel should be implemented,
there are several choices. It could be implemented in ADA, Java, C++
and several others. I choose to implement it in C and assembler. The
motivation for implementing the kernel in C is that C, more or less, has
become the standard language in the embedded world, and free C compilers
exists for almost all platforms.

The following list describes the properties, the kernel strives to follow:

Micro kernel structure The kernel can be considered as one program
with more activities. This is almost the same as saying that the kernel
has a micro kernel structure, in the sense, that a micro kernel also has
several activities running as separate processes. The Minix[17] kernel
is divided into I/O tasks and server processes. In this kernel there
will be no real difference in these processes besides their priority, so to
be able to differentiate between these processes, a process controlling
a device will be called a driver, and a process doing a non-device
related task, will just be called a task. If the term process is used, it
includes both drivers and tasks.

Stack based context switch When changing from one process to an-
other the context should be saved and restored by manipulating the
stack. Each process will have its own stack and use this to save and
restore the context. This will be discussed further in the “Kernel De-
sign” (chapter 8). The kernel will only run in one address space, so

3.2 Kernel properties 9

after a context switch we will still be in the same address space but
in a different process. This type of context switching is very similar
to the principles used in coroutines.

Message passing To communicate between two processes the concept of
message passing should be introduced and a simple send and receive
mechanism will be used to implement this. The semantics of these
will be very similar to the ones used in the Minix kernel.

Semaphores Since the kernel has several processes running, it is feasible
to introduce the concept of shared memory between the processes.
A common way, to get mutual exclusion to shared memory, is by
introducing semaphores.

Scheduling The scheduler should be simple and the interface to the sched-
uler should be generic. This will enable one to write a completely
different scheduler, without dealing with architecture-specific issues
and without changing the nanokernel. The scheduler itself should be
kept as simple as possible and is not considered as the important part
of this project.

Modularized design The kernel itself will not maintain the protection
between processes. Instead protection will be introduced by using an
modularized design in the kernel. Different solutions to the problem
will be discussed and one will be implemented.

Global exception handling Using exceptions in an embedded system,
to handle failures in a modular manner, could be of great advan-
tage in bug-finding and system recovery. Different methods for doing
exceptions in C will be analysed.

Portability Portability is also an important property of the kernel. Im-
plementing the kernel as a nanokernel is definitely a huge step in the
right direction. But other things such as the size of pointers and the
addressing should be paid attention. The use of assembler should be
kept at a minimum.

C Compiler requirements The kernel will be licensed under the GPL
license, which is the license of the GNU project. Releasing code un-
der the GPL and using a non-free compiler could lead to licensing
problems. A requirement will therefore be that the compiler is also
under a free software license. The obvious choice could be the GNU
compiler collection (GCC), but other compilers under GPL compat-
ible licenses could also do. This choice creates some restrictions in
possible hardware choices, since not all platforms are well supported
by a GPL compatible compiler.

10 Chapter 3. Kernel properties

3.3 Summary

This chapter has listed several properties to the kernel, the tools used in the
development, and to what should be of concern in the analysis and design
phase of the kernel. Some relation exists among these kernel properties and
some may argue against each other, but this is unavoidable. The chapter
has also defined a basis for the kernel to the extent that feasible choices of
hardware and software used for the implementation can be made.

11

Chapter 4

Choosing hardware

This chapter describes the process of choosing the right hardware for the
development of the kernel. The different hardware, which has been consid-
ered, will be described.

4.1 Introduction

With the previous defined kernel properties in mind, it is now possible to
choose hardware for the project. The different requirements to the hard-
ware can be summed up to:

The price It is a personal wish that the price of the development hard-
ware for the embedded system is low. The motivation for this is
that everyone interested in using the kernel should be able to get the
hardware without being ruined. Having cheap development equip-
ment motivates using it in all kinds of devices, such as home build
MP3 players.

Single board computer The development hardware has to be in the cat-
egory of single board computers. A single board computer is a small
motherboard with a processor, some memory and input/output de-
vices. Many single board computers also contains network adapters,
USB and other peripherals.

12 Chapter 4. Choosing hardware

Fast stack operations Since the kernel is going to have a microkernel
structure, it is crucial that the stack operations on the single board
computer runs at a decent speed. If not, the kernel will run too slow
and be unusable. Fast stack operations are often a matter of good
access speed to memory.

Free tools available Development tools for the given hardware have to
come with a free software license, which is compatible with the GPL
license, the kernel is released under.

In the following the four different single board computers, which have been
investigated, are described.

4.2 Intel 8051

Despite its relatively old age, the 8051 is one of the most popular micro-
controllers in use today. Many of the derivative microcontrollers that have
been developed since, are based on and compatible with the 8051. The
8051 is used in everything from DVD-drives to smartcards.

The 8051 is an 8 bit microcontroller originally developed by Intel in 1980.
Now it is made by many independent manufacturers. A typical 8051 con-
tains a CPU with boolean processor, 5 or 6 interrupts, 2 or 3 16-bit timer/-
counters, a programmable full-duplex serial port and 32 I/O lines. Some
models also include RAM or ROM/EPROM.

Single board computers with an 8051 integrated come in many shapes and
normally cost at most 100$.

Since, it is a widely used microcontroller, there are also a lot of development-
tools for this microcontroller. Of the free tools available, the SDCC, Small
Device C Compiler project[27], looks the most promising.

After talking to a long time 8051-developer, the conclusion was that it is
not suitable for developing a small microkernel, which is heavily based on
stack usage. This is due to the fact that the 8051 compiler does not use
the stack to save parameters to functions, as we know it from e.g Intel’s
i386 systems. If we did use the stack anyway, the result would be slow and
not usable.

4.3 Atmel AVR 8-Bit RISC 13

4.3 Atmel AVR 8-Bit RISC

Atmel has a series of AVR microcontrollers that have an 8 bit RISC core
running single cycle instructions and a well-defined I/O structure that lim-
its the need for external components. Internal oscillators, timers, UART,
analog comparator and watchdog timers are some of the features, that are
found in AVR devices.

The AVR instructions are tuned to decrease the size of the program, whether
the code is written in C or Assembly does not matter. It has on-chip in-
system programmable Flash and EEPROM, which makes it possible to
upgrade the embedded software, even after the microcontroller has been
implemented in a larger system.

To do development on the AVR, a viable choice would be to buy the STK500
development kit [2], which costs around 100$. This development kit in-
cludes the AT90S8515 microcontroller, which has 8Kb of flash memory but
only .5Kb RAM.

The development kit comes with all necessary tools for developing software
for the microcontroller, but GCC also have very good support for all the
different AVR microcontrollers.

The price and the development tools fulfill the requirements, but the AVR
is too limited in FLASH and RAM. The RAM can be extended but only
with SRAM, and SRAM is very difficult to find, since it has been replaced
with newer types of RAM.

4.4 Atmel AT91 ARM Thumb

The Atmel AT91 microcontrollers are targeted at low-power, real-time con-
trol applications. They have already been successfully designed into MP3
players, Data Acquisition products, Pagers, Medical equipment, GPS and
Networking systems.

Atmel’s AT91 ARM Thumb microcontrollers provide the 32-bit perfor-
mance every 8-bit microcontroller user is dreaming of, while staying within
a tight system budget. The AT91EB40 Evaluation Kit[3] costs around
200$ and includes the AT91R40807 microcontroller. This microcontroller
has a 16 bit instruction set, 136Kb of on-chip SRAM, 1Mb of flash, 32

14 Chapter 4. Choosing hardware

programmable I/O lines, 2 UART’s, 16 bit timers, watchdog timers and
many other features.

The GNU Compiler Collection also have a port of their tools for this mi-
crocontroller. Red Hat has even ported their real-time kernel eCos [28] to
this microcontroller, so the community support for this microcontroller is
good.

This microcontroller definitely fulfills all the requirements given to the hard-
ware. It is cheap, it has the right tools, it has enough memory to do a lot
of stack operations, and it has a wide community support.

4.5 MIPS Malta development board

The MIPS processors are widely used in the industry and comes in many
shapes. MIPS has several development boards, where the MIPS Malta
development board is the most comfortable system to develop embedded
kernels on.

The Malta board, which is used in this project, contains the 64 bits 5Kc
MIPS CPU with 16x64Kb cache. This may be a more powerful system,
than originally intended for this project. The CPU is so powerful that
Infineon Technologies chose to use it in their specialized local area net-
work switching applications. The MIPS Malta development board will be
described further in the next chapter.

MIPS supports the free software community very well, and it is even pos-
sible to get a Linux kernel running on the Malta board. The GCC is also
ported to both MIPS32 and MIPS64.

This system does not fulfill the price requirement of being a low budget
system, since the price is approximately 3000$, but it is definitely a nice
system to develop on. It has all the right tools for development and as the
AT91, it has a wide community support.

4.6 Summary

This chapter has discussed the different single board computers, which have
been investigated thoroughly for this project. The choice in hardware fell

4.6 Summary 15

on the MIPS Malta development board with 64 bit CPU. It was chosen,
even though the system did not fulfill the price requirement of being a low
budget system. But, who can say no to a free 64 bits MIPS system?

16 Chapter 4. Choosing hardware

17

Chapter 5

Hardware

To be able to explain the specific implementation of the kernel in the fol-
lowing chapters, an overview of the hardware is given. The level of detail in
the hardware description is just enough to understand some hardware spe-
cific implementation issues. This hardware description includes the main
board, the CPU and the test bed used for development.

5.1 The Malta system

The Malta system is designed to provide a platform for software devel-
opment with MIPS32 4Kc- and MIPS64 5Kc-based processors. A Malta
system is composed of two parts: The Malta motherboard holds the CPU-
independent parts of the circuitry, and the daughter card holds the proces-
sor core, system controller and fast SDRAM memory. The daughter card
can easily be swapped to allow a system to be evaluated with a range of
MIPS-based processors. It can be used stand-alone or in a suitable ATX
rack system. The daughter card used in this project is the CoreLV card
and it is described below.

Malta is designed around a standard PC chipset, giving all the advantages
of easy-to-obtain software drivers. It is supplied with the YAMON (“Yet
Another MONitor”) ROM monitor in the on-board flash memory, which, if
required, can be reprogrammed from a PC or workstation via the parallel

18 Chapter 5. Hardware

port. YAMON contains a lot of nice features like RAM configuration,
PCI configuration, debug interface and simple networking support. The
YAMON ROM monitor will be described further in chapter 9.

The feature set of the Malta system extends from low-level debugging aids,
such as DIP switches, LED displays and logic analyzer connectors, to so-
phisticated EJTAG debugger connectivity, limited audio support, IDE and
flash disks and Ethernet. Four PCI slots on the board give the user a high
degree of flexibility enabling the user to extend the functionality of the
system.

5.1.1 The CoreLV

As mentioned above the daughter card is a MIPS CoreLV[6]. The card
contains several components, and how they interact is roughly shown in
the block diagram on figure 5.1. The two main components are the Galileo
System Controller[4] and the MIPS64 5Kc CPU.

Motherboard connectors

168 pin SDRAM socket

Galileo
GT64120

Controller
System

HP LA debug

Motherboard

SysAD MIPS64
5Kc CPU

Clock
generation

Conf. jumpers

EPLD
7064

CBUSPCI

Figure 5.1: Overview of the CoreLV card

The Galileo is an integrated system controller with three different interfaces
and is especially designed for MIPS CPUs, including 64bit MIPS CPUs.
Galileo’s main functions in the CoreLV device includes:

5.1 The Malta system 19

• Host to PCI bridge functionality.
• Synchronous DRAM controller and host to SDRAM interface. The

SDRAM controller support an address space of 512Mb, but only
64Mb is installed in the test equipment. The SDRAM type has to be
PC100 RAM.

• Device bus interface. The device bus from the Galileo is modified in
the EPLD component on the Core card to provide the CBUS, which
is used for access to Boot Flash, Flash memory and peripheral devices
as LED’s and switches places on the motherboard.

The Galileo is connected to the CPU bus (SysAD), which allows the CPU
to access the PCI and memory buses.

It should be noted already here that due to a bug in the Galileo chip, all
register contents are effectively byte-swapped in big-endian mode, which
should be taken into account.

The CPU mounted on the CoreLV card is a MIPS64 5Kc[7] CPU, which
is a 64-bit MIPS RISC microprocessor core that is designed for high-
performance, low-cost and low-power embedded systems. The CPU ex-
ecutes the MIPS64TM instruction set architecture but also provides 32-bit
compatibility mode, in which code compiled for MIPS32TM processors can
run unaltered.

Features of the 5Kc CPU include:

• Two pipelines. One six-stage integer pipeline and a separate execu-
tion pipeline for multiply and divide operations. The two pipelines
operate in parallel.

• System Controller Coprocessor (CP0). This is responsible for virtual-
to-physical address translation and cache protocols, the exception
control system and the operating modes: Kernel, Supervisor, User
and Debug.

• Cache Controller. The cache controller supports several different
cache protocols, write around, write through and write back. Write
around is the same as disabling the cache.

The Memory Management Unit (MMU) in the 5Kc CPU provides a 64-bit
virtual address space, subdivided into four segments. Two for the Kernel
mode, one for Supervisor mode, and one for User mode. To provide com-
patibility for MIPS32 programs a 232-byte compatibility address space is
defined. For further information on the MMU refer to 5Kc Processor Core
Datasheet[8].

20 Chapter 5. Hardware

5.1.2 The motherboard

The motherboard contains several components, and how they interact are
roughly shown in the block diagram on figure 5.2. From the CoreLV card
there are three interfaces to the motherboard, of which only the PCI and
CBUS interface are shown on the figure. The third interface is a I2C bus,
which is not used in this project.

System RAM Galileo

CLK

Timer

RTC

Interrupt
Controller

Intel
82371EB
(PIIX4E)

South Bridge

SMsC
FDC37M817

Super I/O
Controller

ASCII LED

CBUS FPGA

Monitor Flash
4Mb

DIL Switch

AMD
Am79C973

Ethernet
Controller

SysAD

CoreLV interface

PCI slot 1−4

Serial ports

KBD/mouse

Parallel port

IDE/Flash

USB

ISA

PCI CBUS

LED

Interrupts etc.

5Kc CPU

Ethernet

Figure 5.2: Overview of the motherboard

The PCI bus is connected to a PIIX4[5] multi-function PCI device, an on-
board ethernet device, and of course to the four PCI slots. The PIIX4 is
a standard Intel chipset, found on many modern PC motherboards. It im-

5.1 The Malta system 21

plements PCI-to-ISA bridge function, a PCI IDE function, and a Universal
Serial Bus host/hub function. If a Compact Flash is installed, this chip is
also able to control this device through the IDE interface.

To the ISA bridge of the PIIX4 a Super I/O Controller from SMsC[1]
is connected. This I/O controller contains functionality to control input
devices, such as keyboard and mouse, as well as standard serial and parallel
ports.

The CBUS exists to allow the CPU to access peripherals, which have to be
available before the CPU bus is configured, for instance, the flash memory
YAMON is booting from. The CBUS is also used for those peripherals that
require simple, low-latency access, e.g. the ASCII display.

The largest difference from using peripherals on the MIPS Malta and on a
standard PC is that all devices are memory mapped. This really eases the
task of controlling hardware tremendously. The physical memory mapping
is shown on table 5.1. In some memory areas the mapping depends on the
implementation of the CoreLV card and of the software configuration of
these areas, but the table shows a typical configuration.

Base address Size Function
0000.0000 128Mb Typically SDRAM
0800.0000 256Mb Typically PCI
1800.0000 62Mb Typically PCI
1BE0.0000 2Mb Typically system controllers inter-

nal registers
1C00.0000 32Mb Typically not used
1E00.0000 4Mb Monitor flash
1E40.0000 12Mb reserved
1F00.0000 12Mb Switches, LEDs, ACSII display,

soft reset, FPGA revision number,
CBUS UART (tty2), General pur-
pose I/O, I2C controller

1F10.0000 11Mb Typically system controller specific
1FC0.0000 4Mb Maps to monitor flash
1FD0.0000 3Mb Typically system controller specific

Table 5.1: Malta physical memory map

22 Chapter 5. Hardware

5.2 Test bed

Figure 5.3 shows the development test bed used for kernel development.
The workstation is connected to a LAN and has a TFTP server installed,
on which the kernel is placed. From the workstation to the Malta system
is a serial line used for remote debugging facilities included in YAMON.
The Malta system is also connected to the LAN, and is, with help from
YAMON, able to download and run the kernel served on the TFTP server.
Finally, there is also a serial line connecting the Malta system with an old
vt220 terminal. This terminal is used as console output, and to interface
and control the YAMON monitor. The serial line connected to the old
terminal could just as well be connected to the workstation, but due to the
lack of a second serial port in the workstation the good old terminal came
in handy again.

Yamon and console output

Remote debugging

Workstation with debugger
Old VT220 terminal

LAN
MIPS Malta system

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

Figure 5.3: Development test bed

5.3 Summary 23

5.3 Summary

This chapter has given a short description of the hardware, which should
be sufficient to understand the kernel implementation. The main focus
has been on how the different components interfaces, and where devices
are mapped in memory. The chapter also described the test bed used for
kernel development.

24 Chapter 5. Hardware

25

Chapter 6

Software

This chapter contains a description of the software used in the implemen-
tation of the kernel. This includes the compiler toolchain, the debugger
and the considerations done, when choosing development tools.

6.1 Introduction

As mentioned earlier, the obvious choice for a C compiler is to use the C
compiler included in GCC (GNU Compiler Collection). This may sound
easy, but as it turns out, it is very difficult to find a good version of the
compiler for the MIPS architecture. The problem is that, there are so many
different versions, and every developer is using his own patched version of
the toolchain. There is no central place, where patches are gathered, so
it is a difficult job to collect information about creating a good working
toolchain.

Another problem is that, when a new version of the GCC is released, it does
not have MIPS as it primary target, and it will, most likely, not compile
for this architecture without patching. So, the option to select the latest
and greatest release, could lead to problems.

26 Chapter 6. Software

6.2 The different toolchains

In the following some of the most important toolchains will be described. A
toolchain includes a cross-compiler, linker, assembler and sometimes even
a C library.

Hard Hat Linux Monta Vista[22] is a company, which specializes in em-
bedded Linux distributions and development kits. They have a ver-
sion of their Hard Hat Linux distribution that runs on the MALTA
board with a MIPS 32 processor.
Monta Vista supplies cross-development toolchains with their product
for MIPS 32 and for both little- and big-endian architecture. All of
Monta Vista’s cross-development packages come in forms of RPM
packages.

Linux VR project Linux VR project[23] is a project that brings the
Linux operating system to NEC VRSeries devices, most of which
were originally designed to run Windows CE. The NEC VRSeries
devices all contain MIPS processors.
The project developers have created a set of RPM packages that
even includes the C library. The difference compared to all the other
toolchains is that this toolchain uses soft floating point. More about
this below.

SGI MIPS project SGI MIPS project[25] is SGI’s project to create a
Linux distribution for their MIPS based workstations, like the Indy.
The SGI MIPS project has more or less become the centerpoint for
all Linux-MIPS development, and a lot of valuable information can
be received by joining their mailing list.
SGI MIPS project has created a nice collection of RPM’s for doing
cross-development to both MIPS32 and MIPS64. The toolchains are
based on a rather old version of the C compiler, namely the EGCS
compiler, which is now merged with GCC. Because it is old, it is well
tested and easy to install, and all relevant patches are included in the
RPM as well.

RedHat GNUpro This is RedHat’s[24] commercial version of the GNU
toolkits. Even though it is not free, it is worth mentioning this toolkit.
The toolkit includes support for a lot of different platforms, includ-
ing MIPS 32/64. One really nice feature of the compiler toolchain
is that you can choose between little-endian and big-endian, and be-
tween MIPS 32 and MIPS 64 ABI (Application Binary Interface) as

6.3 Floating point 27

a compile option. In the normal GCC toolchain you will have to have
a different toolchain for each architecture. Another great thing is the
graphical debugger interface to gdb, see 6.4 chapter. Besides a lot of
great features, you will also get support, if you buy this product.

Instead of getting a pre-compiled cross-development toolchain, you can
build the toolchain yourself, as mentioned earlier, this could very well lead
to problems, but it is possible. The information on actually doing this, is
very sparse, and the official cross-compiler HOWTO has not been updated
for several years.

If the latest toolchain, for some reason, is needed for this kernel project, the
trick is then to first build binutils (ld, gasm etc.) and then only enable the
C language when building GCC. There is then no need for the C library,
which is not used for this kernel development anyway.

For this project I chose to use the pre-compiled RPM from the SGI Linux
project. There are several reasons for this; first of all, they are well tested,
so most problems are known, secondly, they are also build for MIPS64, and
I would really like for the kernel to run in 64 bit mode, and thirdly, it is
easy to get support for compiler problems. It should be noted already here
that the MIPS64 linker is very broken, but that there are solutions for this.

6.3 Floating point

The Malta board does not contain a floating point processor, and this could
potentially lead to problems, if floating points are used. There are three
solutions to this, of which the two first are the most common:

1. Create floating point emulation in the kernel. Every time a process
uses a floating point instruction, the system traps to the emulator
in the kernel. This has become the most common way to solve the
problem in the Linux world.

2. Use the emulated floating point in the C library. This is the option
called -msoft-float . This does require the C library to be espe-
cially build with soft floating point. Using the C library is not a good
idea for kernel development, since the C library is huge and there-
fore not recommended to compile into a kernel for small embedded
systems.

28 Chapter 6. Software

3. Use the emulated floating point from the small C library newlib.
Newlib is a small C library created especially for embedded systems,
this library can be build to emulate floating point and is small enough
to include in a kernel. More about newlib below.

I have solved the problem simply by not using any floating point operations
at all. If floating point, for some reason, is needed for this kernel, I would
recommend using newlib, since it is much easier to integrate than a real
kernel floating point emulator, and you get the benefit of the rest of newlib
as well, i.e memory copying functions, string comparing functions etc.

6.4 Remote debugging

Since the MALTA board supports remote debugging, one might as well
take advantage of this. A debugger is not a part of the SGI Linux project
cross-development toolchain, so this should be retrived elsewhere.

One option is to use the nice debugger from the GNUpro package, if one
has already invested in the GNUPro package, see figure 6.1. It has a graph-
ical interface for viewing registers, stacks, memory and source code. The
graphical interface is build on top of the GNU debugger and is very usable.

Another option is to use standard GNU debugger gdb, which is free. It
may not have a nice graphical user interface, but it works just as well.
There exists free graphical frontends for gdb, but these have not been
investigated. The only downside to gdb is that, you have to build it yourself,
but compared to building GCC, this is an easy job.

Using a debugger for kernel development does not come without costs.
There must be some kernel support for the debugger, otherwise, you will
only be able to execute the kernel through the debugger and nothing else.
See “Kernel implementation” (chapter 10) for more information about re-
mote debugging.

6.5 Newlib

As mentioned above, newlib[26] is a C library intended for use in embedded
systems. It is a collection of several library parts, all under the GPL license.

6.6 Summary 29

Figure 6.1: GNUPro debugger

In being a C library, it contains usefull functions for kernel development,
especially the string functions memset and strcpy , which most likely will
be required in the kernel.

As a part of newlib, there is a library called libgloss. Libgloss contains code
to bootstrap kernels and applications for different architectures including
MIPS.

In this kernel project only small code snippets of the newlib have been
used. In future work newlib would be a good thing to include, especially
if the kernel is going to by ported to another architecture, since most of
the functions in newlib has been tested on a variety of different platforms.
Also libgloss could save you from writing the bootstrap code all over again.

6.6 Summary

This chapter has described the different tools for doing MIPS kernel devel-
opment and argued which tools to use. It also gave a small description of

30 Chapter 6. Software

the very usefull library, which is used to some extend in this project. Now
it is time for some real work.

31

Chapter 7

SASOS

This chapter describes Single Address Space Operating Systems (SASOS).
It begins by introducing single address space operating systems with com-
parison to the traditional multiple address space operating systems. After
this introduction three different single address space operating systems are
discussed, namely Angel, Opal and Mungi. The focus will be on the sharing
and protection of memory between processes in the single address space op-
erating system. The three single address space operating systems are very
similar in the mechanisms they use for sharing and protection of memory.
Therefore, the first system described, which is Opal, will be used as a ref-
erence model when discussing the last two single address space operating
systems.

7.1 Introduction

As described in “Kernel Properties” (chapter 3) the context switch between
two processes will be a stack based context switch. That is, when changing
from one process to another, the context switch should be done by manip-
ulating the stack as described in chapter 3. The address space is, therefore,
the same before and after a context switch, hence, the kernel will only run
in one address space.

Running several processes in the same address space could result in strange
behavior or system crashes in an embedded system, if there is nothing to

32 Chapter 7. SASOS

prevent a misbehaving process from writing in another process’ memory. It
would be even worse in a multiuser operating system, if there were no pro-
tection between processes, because it would be impossible to give different
privileges to different users of the system. Another issue is finding bugs and
recovering from a process failure. If a process writes data in some place,
where is was not supposed to, there will be no warning from the system
and the bug would be very hard to find. It would also be impossible to
recover from this situation, since the system will give no warning, when the
process begins to misbehave.

Because these problems with single address space operating systems are
also valid in this kernel project, it was natural to research solutions to
protecting processes from each other. There have been several attempts
to create Single Address Space Operating Systems (SASOS) and three of
these will be described in the following.

Before examining the concepts of a single address space operating system,
it is useful to review the multiple address space approach[12], where every
process has its own private address space. The major advantage of private
address spaces are:

1. They increase the amount of address space available to all
programs.

2. They provide hard memory protection boundaries.
3. They permit easy cleanup when a program exits.

The disadvantage of this approach is that the mechanism for memory pro-
tection, which is isolating a program within a private virtual address space,
is an obstacle for efficient communication between two protected processes.
Especially pointers have no meaning outside a process memory protection
boundary and the primary communication mechanisms rely on copying
data between private virtual memories. The address translation between
two private virtual memories can be calculated fast, but the copying is
expensive.

The common communication choices between processes are to exchange
data through pipes, files or messages, and neither choice is adequate for
programs requiring high performance. Most modern operating systems
have introduced facilities for shared memory, for example in Linux there are
two methods for sharing memory, namely System V IPC and BSD mmap.
However, the mix of shared and private memory regions does introduce

7.1 Introduction 33

several problems; private data pointers are difficult to handle in a shared
memory region, and private code pointers cannot be shared.

Single address space operating systems avoid these problems by treating
a single virtual address as a global resource controlled by the operating
system, just as the disc space or the physical memory is a global resource
controlled by the system. With the appearance of 64-bit address space
architectures the need to re-use addresses, which is required on 32-bit ar-
chitectures, is eliminated. A 32-bit address space may be enough for a
single address space embedded system not requiring that many resources,
but for general purpose systems, 32-bit is no longer sufficient as a single
global virtual address space.

The main goal of single address space systems is to enhance sharing and
to improve performance of co-operation programs. The problems with a
mix of shared and private memory regions in multiple address systems
can, in fact, be avoided in single address space operating systems without
sacrificing the previously mentioned advantages of multiple address space
systems. That is, a SASOS will still be able to:

1. provide sufficient address space without multiple address
spaces due to the use of 64-bit architectures.

2. provide the same protecetion level as the multiple address
space’s system.

3. cleanup after a process without adding complexity to this
action

There are, of course, also several tradeoffs in a single address space system.
For example, the virtual address space is managed as a global system re-
source which has to be used fairly and this requires accounting and quotas.
Another example is that a process’ memory region may not be continuous
in the address space. There are a lot of pros and cons for both single and
multiple address space systems, but these will not be discussed futher. In
the following the main focus will be on, how the single address space oper-
ating systems implements the sharing and protection of memory between
processes.

34 Chapter 7. SASOS

7.2 Opal

Opal[12] is an experimental operating system developed at the University
of Washington, Seattle. The purpose of Opal is to explore the strengths
and weaknesses of the single address space approach. Opal is built on top
of the Mach 3.0 microkernel.

The fundamental mechanisms used for management of the single address
space are described in the following.

In Opal, a unit of protected allocated storage is called a segment. A segment
is, in essence, a contiguous set of virtual pages and the virtual address is
permanently set by the system at allocation time. The smallest possible
segment is one page, but segments are allocated in bigger chunks by the
system, to allow continuous growth of the data contained in the segment.

In Opal, all processes are called threads, and a protection domain is an
execution context for threads, which restricts their access to a specific set
of segments at a particular instant in time. Many threads may execute in
the same protection domain, see figure 7.1. The Opal protection domain
is very similar to a process on the Linux platform, except that protection
domains are not a private virtual address space.

The resources, protection domains and segments, are named by capabili-
ties. A capability is a reference that grant permission to operate on the
resource in a specific way. Given a segment capability an execution thread
can explicitly attach that segment to its protection domain, and thereby
permitting the thread to access the segment directly. The opposite is also
possible, a thread can detach a segment from a protection domain, and
thereby deny access to the segment. The attach request can specify a par-
ticular access directly to a segment, for example read-only access. The
attach request can only request the rights that are permitted by the capa-
bilities at a given segment.

The attach request is very similar to Linux’s BSD mmap system-call for
mapping files into a process, except that in Opal, the system, rather than
an application, always chooses the mapped address. Another difference
from mmap is that in Opal all segments are potentially attachable, given
the right capabilities, so no data is inherently private to a particular thread.

To enable communication from one protection domain to another, a portal
is used. A portal is an entry point to a protected domain and can be

7.2 Opal 35

Protection domain B

Protection domain A

Figure 7.1: Opal threads can be placed in overlapping protection domains
and more than one thread is able to run in each protection domain.

36 Chapter 7. SASOS

used to implement servers or protected objects. Any thread that knows
the existence of a given portal, can make a system-call that transfers the
control into the protected domain associated with the portal. The name
space for portals is global in Opal and allows the exchange of data during
uses of a portal through shared memory. The result is that there is no
copying of data in communication between protection domains.

The key point in the Opal’s handling of protection and sharing of memory
is the use of protection domains, where a group of threads in a protection
domain, can communicate in a protected and controlled manner by attach-
ing and detaching segments. If communication has to be done with threads
in another protection domain, portals are used. The portals are essentially
the same as a remote procedure call, where the data is passed along through
the use of shared memory segment between the two protection domains, as
shown in figure 7.1, where a thread is running in a temporarily overlapping
protection domain.

7.3 Angel

Angel[13] is a single address space operating system developed at the City
University of London. Angel was developed after a study on how to address
some of the problems with the two microkernels Topsy and Meshix:

• The Meshix operating system exhibited poor performance,
especially in the message passing system.
• It was difficult to extend the base system to provide more

complex services.
• The UNIX environment proved too restrictive as a research

platform.

Adaption of the Meshix platform could not address these problems and a
radically different operating system structure was required. The result was
a single address space microkernel named Angel.

Angel is in many ways similar to Opal and many of the design ideas are
also a direct derivation of Opal’s design. Angel has a similar concept of
protection domains, as the one previously described in the Opal system,
which is that a protection domain is an execution context for threads,
see figure 7.2. For some reason Angel groups protection domains together
and calls this for a process. This grouping serves no real purpose and is

7.3 Angel 37

somewhat misleading, since a protection domain is very similar to a normal
UNIX process.

Process A Process B

Objects

Protection domains

Figure 7.2: Protection domains in Angel

The protection in Angel is provided on objects, which consist of one or
more pages of virtual memory. Objects cannot overlap, nor must they be
contained within other objects. As with Opal, the system manages the
objects and not the applications themselves. The semantic of an object
differs from segments in Opal. An object in Angel is an instance of C++
class, whereas a segment in Opal was merely a chunk of memory which
could be used by a thread in a protected manor.

The consequence of using objects instead of segments, is that, every time
a new instance of an object is created, it is assigned with capabilities and
explicitly protected by the system, as the segments are in Opal. This may
seem like a nice and dynamic solution compared to Opal, but the result is
a lot of unnecessary management of objects that are not shared. Another
issue is that if an object is an instance of a data structure, which is able to
expand, it would not be expanded continuously in the virtual memory.

Even though this fine grained management of object does reduce the per-
formance, it does provides the ability to create very advanced management
of the objects. Angel takes advantage of this, by allowing the possibility of
creating dependencies between the capabilities of object. For example, ex-
pressing that one object is not accessible, before another is also accessible.

The communication between the protected domains are in essence the same
as in Opal, but instead they are called light-weight remote procedure calls.

38 Chapter 7. SASOS

The key point in the Angel’s handling of protection and sharing of mem-
ory is the use of objects with associated capatilities in protection domains
and the protection domains are controlled by the system instead of by the
processes themselves.

7.4 Mungi

The final system to be discussed is Mungi[13]. Mungi is the first real native
implementation of a SASOS on standard 64-bit hardware. The previously
discussed systems, Opal and Angel, are both proof of concept implemen-
tations and have not been able to fully demonstrate the potential of a
SASOS. Mungi is built on top of the L4 microkernel and is developed at
The University of New South Wales’ Department of Computer Systems.

Mungi is very similar to Opal, even the type of capabilities, it uses, are
the same. The only thing that is different, in the design of protection and
sharing, is that objects are used instead of segments. Due to the great
similarity to Opal, Mungi’s design of protection and sharing will not be
covered in detail.

It should be noted though that the actual management of objects by the
system is somewhat simplified compared to the management used in Angel.
This is definitely a good decision since, what is gained by having a single
address space should not be lost in a complex and time consuming object
management.

Another thing, which should be noted, even though it is off topic in this
chapter, is that Mungi has been performance tested very thoroughly and
the result has shown a vast improvement in performance compared to tra-
ditional multiple address space systems. The most significant improvement
was with database operations.

7.5 Summary

Even though this kernel project, as of this writing, does not have any mech-
anisms to protect one process from another, it is interesting to see how other
kernel projects have solved this problem in a single address space operating
system. As it will be described briefly in “Kernel design” (chapter 8), there

7.5 Summary 39

are other options than using protection domains for creating protection and
sharing of memory between processes, though some of the other options will
not provide the same level off protection as the operating systems described
in this chapter.

The solution to protection and sharing of memory in the discussed systems
has been to use protection domains and a mechanism similar to remote
procudure calls to communicate between threads in different protection
domains. This is done with a heavy use of the virtual memory mecha-
nisms provided by the hardware. This indicates that this is the best known
method to do protection and sharing in a SASOS, without sacrificing the
level of protection.

The major difference in the three systems lie in, how they actual manage
the protected domain. This management has not been discussed in detail
since, it was not the primary focus of this chapter. Whether one version of
the protection domain management is better than the other is very difficult
to conclude. Personally, I liked Mungi the best, due to its very clean and
simple way to manage objects in its protection domains. Mungi also seems
to have combined the best from Angel and Opal into one system.

Personally, I feel that there is a need for research on mechanisms for pro-
tection and sharing of memory in a SASOS without using virtual memory.
Even though the main motivation for designing a SASOS was the huge
virtual address space, I am sure that small real-time systems, running on
limited hardware, could benefit from this research.

40 Chapter 7. SASOS

41

Chapter 8

Kernel design

This chapter describes the kernel design. All major components of the ker-
nel are described, that includes the timer, the synchronization mechanisms,
the interrupt handling and scheduling. The chapter finishes with a brief
analysis of exceptions in C, but first an overview of the kernel is given.

8.1 Kernel overview

The kernel is not going to be designed to solve specific tasks, instead the
design aims to make the kernel general within the previous mentioned kernel
properties in chapter 3. General means that the kernel is going to include
the common features of an embedded systems kernel. These features can
then be tuned for specific purposes in future use of the kernel.

As described in the kernel properties chapter, the kernel should have a
micro-kernel-like structure that is, a small kernel with several kernel sub-
systems running as separate processes, and where processes are able to
communicate with each other and with the kernel. Besides having a micro-
kernel structure the design also strives to fulfill the following areas:

• Separate the process management and scheduling completely from
the hardware dependent code. This serves two important purposes:
first, you do not have to touch the process management and schedul-
ing code, if you want to port the kernel to a different architecture,

42 Chapter 8. Kernel design

and secondly, you can easily change the scheduler without having to
modify strange assembly routines.

• The processes in the kernel could range from drivers controlling the
ethernet, subsystems implementing an IP stack and processes, which
would normally be running in userspace with lower priority. The last
is very unusual from normal micro-kernels but also very powerful in
embedded systems, for example, if some calculation is more impor-
tant to get done in time, it may have to have a higher priority than
a driver. This is not be possible in a system like Minix without mod-
ifying the kernel.

• Build the processes around a nano-kernel. This has become a com-
mon way for constructing modern micro-kernels[15]. More on this
below.

• Build the kernel as a single address space kernel without using the
memory management unit. The advantages of this is, as described
earlier, that the message passing can be done very fast. Another im-
portant issue is that many micro-controllers, like the previous men-
tioned AT91, do not have a memory management unit at all, so the
kernel has to seek other methods for protecting the different processes
from each other.

The definition of a nano-kernel is not unambiguous, thus there is no list of
components, which are allowed in the nano-kernel and what hardware that
has to be abstracted in the nano-kernel.

Common components of the nano-kernel[15] is:

Boot component responsible for booting and initializing the
system.

Interrupt handler responsible for handling interrupts and ac-
tivation of the scheduler.

Scheduler responsible for doing scheduling decisions.
Boot console responsible for console output at boot time.
Debugger component responsible for debugger hooks in the

kernel.
Interface component responsible for providing a single in-

terface for accessing the hardware.

8.1 Kernel overview 43

The problem is where to draw the line between the nano-kernel and the
processes and what hardware to create an abstraction layer for in the nano-
kernel. For example, it makes no sense to abstract a PCI bus with a general
bus interface, since the PCI bus is used the same way whether implemented
on a PowerPC, MIPS or Intel platform. On the other hand, it makes perfect
sense to abstract I/O to devices in the nano-kernel, since I/O to devices is
not the same on the Intel platform and the MIPS.

Hardware independent
kernel components

Hardware dependent
kernel componentsHandling

Interrupt
Handling

Stack

Process
1.

Process
2.

Process
Idle Processes

Partly hardware dependent

Bootstrap

kernel componentsLCD I/O Timer Serial I/O

SchedulerManagement
Proces

Semaphores

Figure 8.1: Overview of the kernel

On figure 8.1 an overview of the kernel is shown. The dotted line delim-
its the nano-kernel and the small arrows denotes function-calls from the
processes to the nano-kernel. As shown on the figure a process only inter-
faces the kernel through the I/O interfaces and the services provided by
the Timer and Semaphores components.

The nano-kernel components are divided into three different groups:

Hardware independent kernel components These compo-
nents are written in C and should be portable without
changing the code.

Partly hardware dependent kernel components These are
the components written in C but they still depend some-
what on the hardware. If implemented carefully the com-
ponents could be portable between platforms.

Hardware dependent kernel components These are the com-
ponents that have to be implemented in assembly code.

44 Chapter 8. Kernel design

It could be argued that the Serial I/O, as well as the Timer component,
should not be in the nano-kernel. Serial I/O is included for simplicity,
because the boot console is part of that component. If this component
eventually becomes a full featured serial driver, it should be moved out of
the nano-kernel into its own process. The Timer components have been
kept in the nano-kernel for performance issues, because when a timer in-
terrupt occurs, it should be handled as fast as possible. A closer look at
the Minix kernel revealed that it requires several hacks to circumvent the
fact that the timer was placed in its own driver in Minix.

All the processes has a unique priority associated and its own stack. The
nano-kernel does not have its own stack, it uses the stack of the current
running process when handling interrupts. All processes are started up at
kernel boot time, and all processes have to run forever. When a process
is initialized, a predefined stack size is allocated for the task. If the kernel
runs out of stack it will panic during the initialization.

Even though the kernel is highly modularized, it does not prevent a process
from writing in other processes’ data area. It will therefore require some
coding discipline to use the kernel as it is. The modularization could be
taken one step further by using the GNU C extension of nested functions.
Each process could be wrapped into one function and thereby creating an
environment for this process only. For other processes to access the nested
function would require explicit authorization by giving the function pointer
to another process.

If the kernel were restructured using the GNU C nested functions extention,
it might have an influence the interpretation of what should be called a
nano-kernel. This is because the boundary between the nano-kernel and
the kernel processes will become more blurred.

The subject of encapsulating the processes using nested functions is out
of scope for this project, but as of this writing, an initiative to do this is
already in progress by another student at DTU.

8.2 Scheduling

As mentioned previously, the scheduling should be kept simple and easy
to replace. The scheduling is based on the process priority and follow the

8.3 Timer 45

rule: at any given time only the process with highest priority should be
running.

As shown on figure 8.2 a process can be in three different states, waiting,
ready and running. Only one process can be in the running state at a time
and all processes in the waiting state are waiting on a semaphore to be
released. More about this below.

Running

WaitingReady

Figure 8.2: The different process states

Preemption of a process can happen while the process is doing a routine-
call to the nano-kernel. Being able to preempt a process while it is run-
ning a routine-call in the nano-kernel gives a more responsive system, but
it also introduces some problems. To avoid problems, some parts of the
nano-kernel should run without interruption, and all functions provided
by the nano-kernel to the processes should be re-entrant. One of the ob-
vious places, where the nano-kernel must have a critical section to avoid
interruption is during scheduling.

The scheduling decisions will happen, when a timer has expired resulting
in a process being ready again and during process synchronization using
semaphores. Timers and process synchronization will be described further
below.

8.3 Timer

In embedded systems some types of jobs must run once after a given time
and other types of jobs must run cyclic with a fixed period and this requires
the use of a timer. I have decided to have two different types of timers:

46 Chapter 8. Kernel design

One shot timer will, when started, wait for a specified time
and when the time is up, the process waiting for the timer,
will be put in the ready queue.

Cyclic timer will, when started, wait for a specified time and
when the time is up, the process will be put in the ready
queue. If a process is not waiting, it has probably missed
its deadline, so to avoid kernel panic, the timer will be
reset, and the process will try to catch the next deadline.
After this the timer will be reset and start over again.

Every timer can have one, and only one process waiting.

Initialized timers can be in three states, idle, active and done. Idle state
is when the timer is initialized but not started, and active is, when the
timer has been started. The done state indicates that the timer is not used
anymore and should be removed from the timer list.

As mentioned previously, the only time a process is in the waiting state, is
when it waits for a semaphore to be released. This also applies to at process
waiting for a timer. When a timer is started, a semaphore associated to
the timer is locked, when the timer is fired, the semaphore is released
and the process waiting for the timer can continue. The idea of using the
semaphores for the timer comes from the Adeos[18] kernel and simplifies
timer implementation.

The speciel case, where there is no process waiting to be activated, has to
be handled gracefully. There are two reasons why there can be no processes
waiting, first the process could have missed its deadline and secondly if the
process does not cancel the timer, it has created. In both cases the cyclic
timer simply ignores that there are no processes waiting and continues a
new cycle. In hard real-time systems it would be a disaster to miss a
deadline, but in this kernel it is ignored and the process missing a deadline
will simply try and catch the next one.

In most operating systems the timer hardware is programmed to interrupt
at a rate within the magnitude of 50Hz-200Hz. There are two problems
with this when creating a timer; first, the timer is not very precise due to the
low frequency and secondly the overhead of handling the timer interrupt is
unnecessary, if the timer is not used for anything when the timer hardware
interrupts.

To overcome this problem, the amount of time until the next timer interrupt
should occur is calculated, and the timer hardware is adjusted accordingly.

8.4 Synchronization 47

The next timer interrupt should occur when the nearest timer should be
activated. By using this method all unnecessary timer interrupts are elim-
inated unless a process creates a cyclic timer with a period greater than
the value which the timer hardware could be programmed.

The maximum amount of time the timer-interrupt can be postponed, is
dependent on the timer hardware used and the CPU speed. On the MIPS64
hardware used in this project, the timer interrupt can be postponed around
200 seconds, that is, it has to tick with a rate, which is at least 5e −
03Hz. The precision of the timer is in the magnitude of 0.5 micro seconds.
Compared to the traditional timer implementations this is a huge step in
the right direction.

8.4 Synchronization

To introduce synchronization between processes, I have decided to use a
binary semaphore, with a queue of suspended processes, which is sorted by
priority.

Low Priority Process

Medium Priority Process

High Priority Process

Time

= Process blocked

Figure 8.3: An example of priority inversion

The introduction of semaphores is not without cost. Consider the following
example[18] on figure 8.3. Here there are three processes: high priority,
medium priority and low priority. Low becomes ready first, indicated by
the rising edge, and shortly thereafter it takes a semaphore, which is also
used by the high priority process. Now, when high becomes ready it must
block on the semaphore, until the low priority process releases it. The

48 Chapter 8. Kernel design

problem then arises, when the medium process becomes ready, then it is
able to preempt the low priority process and thereby delay the high priority
process. This phenomena is called priority inversion.

There are several solutions to the priority inversion problem. I have decided
to use the Basic Priority Inheritance Protocol (PIP). In short the protocol
works like this:

When a process blocks one or more higher priority processes, it
ignores its original priority assignment and executes its critical
section at the highest priority level of all the jobs it blocks.

This protocol only deals with priority inversion and does not prevent dead-
lock. If, for example, a process locks S1, and then tries to lock S2, but
S2 gets locked by a higher priority process, which now tries to lock S1
and a deadlock occurs. Instead of using PIP, the Priority Ceiling Protocol
or Highest Locker could be used. This would prevent deadlock as well as
priority inversion.

8.4.1 Message passing

As mentioned in chapter 3 message passing between processes should be in-
troduced by a simple send and receive mechanism as known from Minix[17].
This, however, does not have to be a part of the nano-kernel, since this can
be solved by implementing the producer-consumer problem[19] using the
binary semaphore provided by the nano-kernel. This feature is then up
to the user of the kernel to implement, and therefore not included as a
nano-kernel functionality.

It is no requirement that message is introduced at all to use the kernel.
One could just as well choose to have a monolithic kernel structure with
shared memory between the processes.

8.5 Interrupt handling

When designing interrupt handling, several design issues have to be taken
into account:

1. Decide how the interrupts priority should be.

8.5 Interrupt handling 49

2. Decide whether interrupt handler should be nested or not.

The MIPS CPU has a simpleminded approach to interrupt priority, in that
all interrupts are equal. This leaves it completely up to the programmer to
decide, how the interrupts should be prioritized. The MIPS CPU has two
software and six hardware interrupts, see table 8.1. In this kernel there is
no need for software interrupts, so these will be ignored. All interrupts for
the Malta board end up in a combined hardware interrupt (MIPS IRQ 2),
which is asserted, when devices such as the serial port interrupts. When
receiving this type of interrupt the external interrupt controller has to
be checked to actually see, which device asserted the interrupt. The last
interrupt of interest is the timer interrupt asserted by the CPU itself, the
rest are ignored in this kernel. This leaves the choice of creating a priority
scheme, between the timer interrupt and the combined interrupt. I have
decided to give the timer the highest priority, and the combined hardware
interrupt the lowest priority, that is if the two types of interrupts is asserted
at the same time, the timer interrupt should be handled first.

MIPS IRQ Source
0 Software (ignored)
1 Software (ignored)
2 Combined hardware interrupt
3 Hardware (ignored)
4 Hardware (ignored)
5 Hardware (ignored)
6 Hardware (ignored)
7 Timer interrupt

Table 8.1: Used MIPS interrupts

The nesting of interrupts is closely connected to the priority of interrupt.
For example, nesting should not be allowed when handling the highest
priority interrupt, on the other hand, it is preferable to be able to handle
the timer interrupt while handling an interrupt from the serial port. My
solution sums up to:

1. Disable all interrupts when handling the timer interrupt.
2. Disable all but the timer interrupt when handling the combined hard-

ware interrupt.

50 Chapter 8. Kernel design

Disabling all but the timer interrupt when handling the combined hardware
interrupt, may be a brutal decision and one could argue that combined
hardware interrupts with a higher priority should be allowed to interrupt
another combined hardware interrupts with lower priority. I have decided
to keep things simple and handle the combined hardware interrupt with
the highest priority first and without interrupts.

Another important issue when designing an interrupt handler is the per-
formance of the interrupt handling. If the interrupt handling takes a long
period of time, the system will then not be responsive to other events during
this time. The two topics which deserves special attention are:

• The interrupt latency time should be minimized
• The interrupt handling time should be minimized

The time that passes between the interrupt and the execution of the inter-
rupt handler is called the interrupt latency. The interrupt handling time
is the time passed between the first intruction in the interrupt handler is
executed to the last instruction in the interrupt handler is executed.

In the above the interrupt latency for the timer interrupt has been mini-
mized by allowing nesting of interrupts.

The interrupt handling time can be reduced in several ways. First, most
of the interrupt handler could be written in assembly code reducing un-
necessary code generated by the compiler. Secondly, and this is often the
issue which takes the most time, not calling the scheduler at every inter-
rupt. When handling an interrupt the handler is often aware of whether a
scheduling is needed or not. In this kernel all waiting processes are wait-
ing for a semaphore to be released. If the interrupt handler releases a
semaphore, it knows that a scheduling decision has to be made and marks
this by raising a flag. This design removes all unnecessarily scheduling
decisions.

The interrupt handler is summarized in the following:

1. Save the current state
2. Increment the nesting level
3. If timer interrupt, then call its handler and go to 5
4. If combined hardware interrupt, then enable the timer interrupt and

call the combined hardware interrupt handler
5. If the flag, indicating a scheduling decision has to be made, is raised

then call the scheduler

8.6 Context switch 51

6. Decrement the nesting level
7. Restore to the previous state or a new state and return

This interrupt handler could easily be generalized to handle more than two
priority levels. But on the other hand, additional priority levels also means
a worse performance. Sitting in a loop and moving across all the pending
interrupt bits is not the answer, the common case is one pending interrupt
so it is optimized in that direction.

8.6 Context switch

Context switch, the switch between two processes, can happen in two dif-
ferent ways; when a process releases or locks a semaphore, and during
interrupt handling. The context switch is done by switching the stacks.
The stack contains the state to which it should restore to after the context
switch.

When changing from one process to another by switching the stacks, special
attention has to be paid to the problem, as to whether it is an interrupt, who
triggered the context switch, or a process using a semaphore. In systems
where processes uses system-calls to the kernel, it is customary to trigger a
software interrupt and then by means of this, switch to the kernel. In these
types of systems, only the interrupt handler is used to save and restore a
given process state.

In systems, where the context switch can be done by means of a routine
call to the kernel or by means of an interrupt handler doing the context
switch, these two methods has to coorporate. This leads to four special
cases of context switches:

1. Changing from a process preempted by an interrupt to a process
preempted by a using a semaphore.

2. Changing from a process preempted by a using a semaphore to a
process preempted by an interrupt.

3. Changing from a process preempted by an interrupt to a process
preempted by an interrupt.

4. Changing from a process preempted by a using a semaphore to a
process preempted by a using a semaphore.

52 Chapter 8. Kernel design

It is point 1. and 2., which make things difficult because the two different
types of context switch have to coorporate. How this is solved in practice
is described in detail in chapter 10.

8.7 Global exception handling

As stated in “Kernel properties” (chapter 3) the use of global exception
handling in an embedded system, to handle failures in a modular manner,
could be of great advantage in bug-finding and system recovery, thus meth-
ods for implementing exceptions in C should be analysed. This issue will in
the following only be described briefly, since it was not used in the kernel
and the reasoning for not using exceptions will be stated.

Exception handling provides a way of transferring control and information
from a point in the execution of a program to an exception handler asso-
ciated with a point previously passed by the execution. A handler will be
invoked only by a throw-expression invoked in code executed in the han-
dler’s try-block or in functions called from the handler’s try-block. What is
trying to be achieved in C is something similar to the following:

try {
/∗ Do something and throw an exception if something goes wrong ∗/
} catch {

/∗ Handle it here if something went wrong ∗/
}

Listing 8.1: Exception example in C++

There are basically two methods for implementing exceptions in C. The
first method is by using the POSIX functions calls setjmp and longjmp .
These functions have been implemented in the file setjmp.S in appendix
B). The setjmp function saves the stack context for non-local goto and
longjmp makes non-local jump to a saved stack context. The two func-
tions calls can easily be wrapped into two macros throw and try, where
throw would use longjmp to jump to an exception handler and try would
use setjmp to save the exception environment. The result is actually a
very nice implementation of exceptions in C, but it does have some prob-
lems.

8.8 Summary 53

The problems with the setjmp method is that C lack of stack-cleanup
facilities which means that code written to be exception safe must include
far more try blocks than it would in C++ or Java. Another issue is that the
exception implementation has to be threadsafe, since the kernel is running
several processes which are able to use the exceptions. Implementation of
a threadsafe exception is not a trivial task. For these reasons this method
is not used.

The second method was described in the “C/C++ Users Journal”[16] and
implemented using the goto call. The method requires that an error status
is passed on to every function and after all function-calls this value must
be checked. If the error status indicates an error, it would throw an ex-
ception. After some experimentation with the code described in the article
the conclusion was that, it was clumsy to use and made the code difficult
to read. Besides that, I did not like the fact that an extra parameter was
required to be passed on to every function call.

Since the exception handling is not used another approach to handling
errors should be taken. I choose to use a very brutal method: if something
goes wrong then report the error and make a kernel panic immediately. If
exceptions were used, the panic would instead be in the exception handler,
so when the kernel panics it would not be in the same state as when the
error ocurred. Besides, there is absolutely no reason to try to continue
execution if the kernel enters some unexpected state, so the best approach
is to create a kernel panic and fix the bug. In real-world embedded systems
the kernel panic should be combined with a failure handler which often just
restarts the whole system.

8.8 Summary

This chapter covered the kernel design. All the major components of the
kernel have been designed and described and the general kernel structure
is now clear.

54 Chapter 8. Kernel design

55

Chapter 9

Bootstrapping

This chapter first describes bootstrapping in general and then gives an
introduction to boot loaders. This is followed by a description of what
happens, the moment after the Malta system has been powered on. Then a
comparison of the MIPS bootstrapping to other systems is made, and the
chapter finishes with a description, of how bootstrapping a kernel is done
in practice on the Malta system.

9.1 Bootstrapping in general

In operating systems, the term bootstrapping denotes the process of bringing
the operating system’s kernel into main memory and executing it. It is
highly system dependent, how much work is actually required of the system
programmer to get an operating system’s kernel up and running. Often the
bootstrapping process is simplified by the introduction of a BIOS, firmware,
boot loaders and so forth.

When the system cold boots that is, when it starts up just after a power
on, nearly all the hardware is in a random state and has to be initialized,
before it is used. The classical system startup is devided into the following
three steps:

1. In the first step the BIOS, firmware or similar is executed. This is
the first code that is actually executed after power on. This code is

56 Chapter 9. Bootstrapping

provided by hardware manufacturer and will in the following be re-
ferred to as the BIOS. Its main job is to initialize the basic hardware
such as the CPU, the CPU-cache and the RAM. It is completely up
to the hardware vendor, how much functionality is actually included
in this part of the system startup. For instance, the previously men-
tioned AT91 system has no BIOS at all, and all initialization has to
be written from scratch. Depending on the system configuration the
BIOS transfers the CPU control to the boot loader or the operating
systems kernel itself.

2. In the second step the boot loader is executed. Whether this is nec-
essary or not depends on the BIOS, but the boot loader provides a
convenient way to choose between, which different system configu-
rations to run. This could be different operating systems, different
kernel versions or different kernel configurations by passing options
to the kernel.

3. The third and last step executed on system startup is the kernel-
bootstrap. One could expect this part to be small, but on the contrary
this part is rather big, since much of the hardware is initialized all
over again. It is generally believed that the BIOS is filled with bugs,
and therefore the hardware state cannot be trusted, when the kernel-
bootstrap gets control of the CPU, so the hardware is initialized once
again.

As one can imagine there are huge differences in hardware and the function-
ality provided, in the BIOS, by the hardware manufacturer, and therefore
the system startup is different from system to system. However, due to
the uncertainty of the BIOS functionality and the hardware state after the
BIOS has been executed, an increasingly amount of the hardware initial-
ization code is going into the modern operating system’s kernel-bootstrap.
As a consequence to this, the BIOS has become almost negligible in the
system startup. Another consequence is that the kernel-bootstrap can be
generalized, since it always has to go through a certain number of steps in
a certain order, no matter what hardware the kernel is running on.

The kernel-bootstrap code suffers from the clash of two opposing but desir-
able goals. On one hand, it is robust to make minimal or no assumptions
about the state of the hardware and then attemt to initialize and check
every subsystem, before it is used. On the other hand, it is desirable to

9.1 Bootstrapping in general 57

minimize the amount of tricky assembler code, but changing to a high-level
language, like C, tends to require more subsystems to be operational.

The above classical system startup sequence step 1. through step 3. can
be generalized to the following generic startup sequence, where 1. is the
first code to be executed at power on:

1. Initialize CPU registers e.g setup addressing modes and
disable interrupts.

2. Check and initialize RAM. This is often a very hard part,
since RAM chips seems to differ a lot. Fortunately, modern
chipsets do this tedious initialization.

3. Now establish some contact with the outside world. This
could be through the parallel port, which has become the
most standard way on modern PCs. This step is not a
necessity, but it is convenient to see, what is actually going
on during startup.

4. Initialize a stack, registers and call a C function. Now the
rest of the initialization can be done from C.

5. Initialize any other devices needed to load the kernel and
load the kernel or call the boot loader, which loads the
kernel.

6. Transfer the control to the loaded kernel and the kernel-
bootstrap is executed. The kernel bootstrap is, most likely,
the same as step 1. through 4. again.

Step number 5. is the one step that differs mostly from system to system,
since the kernel can be loaded from a lot of different devices, such as from
a flash disc, a floppy disc, a harddisc, over an ethernet or even over the
Internet. All of these different devices have to have a device driver to
provide access for the boot loader or the BIOS to load the kernel. One
could say that step 5 provides the glue between the initial bootstrapping
and the kernel-bootstrapping, and that the glue is provided by the BIOS
or a boot loader. More about boot loaders below.

In very small systems like the previously mentioned AT91, step 1 through
4 are the kernel-bootstrap and step 5 and 6. are not needed. This is
because the bootstrap and the kernel, lie as one continuous piece of code
in the flash RAM and the kernel can therefore be loaded without special
communication with other devices.

58 Chapter 9. Bootstrapping

9.2 Introduction to boot loaders

As mentioned above the boot loader provides the glue between the BIOS
and the actual kernel-bootstrapping, that is, it is responsible for loading a
kernel and transferring the control to the kernel. Boot loaders vary a lot
from system to system, due to the differences in the BIOS provided by the
hardware. That is, if the hardware manufacturer provides hardware with a
small BIOS or no BIOS at all, this has to be compensated for in the boot
loader.

In the following, four different free software boot loaders will be described,
and some of their system-specific features will be mentioned:

LILO - LInux LOader LILO[30] has been the standard boot loader for
Linux on the Intel platform for a long time. It is placed in the boot
sector of a floppy disc or in the master boot record of a harddisc, and
is therefore executed right after the PC BIOS is done with hardware
initialization. To enable LILO to load a kernel, the location of a
kernel on the disc media is hardcoded into LILO. As an example on
how the boot loader compensates for the shortcomings of the PC
BIOS; LILO extends the PC BIOS harddisc drivers, since older PC
BIOSes cannot address a kernel, if it is not located within the first
1024 cylinders of the harddics.

GRUB - GRand Unified Bootloader GRUB[31] is a very dynamic boot
loader and for that reason becoming an increasingly popular boot
loader for the Intel platform. GRUB is file system aware, so that
the location of the kernel on a disc media does not have to be hard-
coded into boot loader, as it was the case with LILO. GRUB is also
compliant to the “Multiboot Specification”, which is an initiative to
standardize the booting of different operating system’s kernels. If the
kernel developed in this project is going to be ported to the Intel
platform, this would be the best boot loader to use, if the kernel is
loaded from a disc media.

EtherBoot EtherBoot[32] is a boot loader, which is created for discless
computers. The boot loader is placed in a flash ROM on an ethernet
adapter and supports loading a kernel over the network using a TFTP
server. The boot loader located in the ethernet adapters flash ROM
is called right after the PC BIOS is done initializing the hardware, as
it was the case with the other boot loaders mentioned above. To load
the kernel over an ethernet, EtherBoot has to provide special driver

9.3 Bootstrapping MIPS 59

support for the ethernet adapter in question and a small network
stack.

RedBoot RedBoot[33] is possibly the most advanced free software boot
loader available. RedBoot combines the BIOS and the boot loader.
RedBoot is available for a wide range of platforms including ARM,
MIPS, PowerPC and Intel platforms. The features include network
booting, flash booting and remote debugging. Unfortunately, the
bootloader only works with the eCos kernel and the Linux kernel.

Of all of the above described boot loaders only RedBoot runs on the MIPS
platform. The reason for this is that MIPS-based hardware products often
come with a boot loader especially designed for the system, and therefore
there has never been a real need for other boot loaders for the MIPS plat-
form. The MIPS Malta system comes with a combined BIOS and boot
loader very similar to RedBoot. This is an open source boot loader called
YAMON, and it is described futher below.

Whether or not a boot loader is really necessary on an embedded system, all
depends on the BIOS features provided with the hardware and the actual
location of the kernel.

9.3 Bootstrapping MIPS

Above, it has been generalized how bootstrapping is done on a general
system with at least some memory and a CPU. Now, the low level details
of how to cool boot the MIPS Malta system will be described.

During a power on or cold reset, the SI ColdReset signal is asserted. The
SI ColdReset is a hard reset signal, and the assertion of the SI ColdReset
signal completely initializes the internal state machines of the 5Kc CPU,
without saving any state information. When SI ColdReset is deasserted, a
reset exception is taken by the 5Kc CPU. When the 5Kc CPU takes the
reset exception, it is hard coded to execute the code located at the address
0xFFFF.FFFF.BFC0.0000, and this is where the YAMON boot loader is
located.

When YAMON gets the control of the CPU, it first disables the interrupts,
determines the endianess of the system, initializes the status register of the
CPU, creates a small stack, and then jumps to the first C function, which

60 Chapter 9. Bootstrapping

does the rest of the initialization. Furtunately, the chipset on the board is
able to initialize the RAM, so this step can be ignored.

This should be compared with the traditional MIPS startup sequence as
described in “See MIPS Run”[20] which is as follows:

1. Reset exeption entry point
2. Initialize status registers
3. Initialize and check the RAM integrity.
4. Make contact with the outside world.
5. Initialize stack and registers to call C function
6. Initialize the cache

The comparison shows that YAMON follows the traditional MIPS startup
sequence almost to the point, except for the fact that contact to the outside
world is postponed in YAMON, until all devices are initialized.

The C function that takes the Malta system through the rest of the initial-
ization is, slightly simplified, as follows:

1. Initialize the PIIX4 chip
• Initialize the ISA bus on which the Super I/O Controller is con-

nected to the the PIIX4 chip, see figure 5.2.
• Initialize the serial ports
• Initialize the parallel port
• Initialize the keyboard and mouse IRQs
• Enable IO access to Power Management device

2. Initialize the peripherals
• Initialize the exception handlers
• Initialize the real time clock
• Initialize the PCI bus memory mapping
• Initialize the network adapter

3. Start the YAMON shell

As noted above the traditional MIPS startup sequences, and the YAMON
startup sequence are very similar, but it should also be noted that these
startup sequences fit very nicely into the generic startup sequence described
in section 9.1. A study of bootstrapping a PowerPC also turned out to fit
in the generic startup sequence as well.

9.4 MIPS vs. Intel I386 61

9.4 MIPS vs. Intel I386

In the following a comparison, of the startup sequence on the Malta system
and the Intel platform, is made.

On the standard Intel PC the initialization, after power on, is as follows:

BIOS → boot loader → kernel

Whereas the initialization on the Malta system, with its combined BIOS
and boot loader is:

YAMON → kernel

When creating embedded systems for real world applications the standard
Intel PC boards are rarely used. This may seem strange, since it is so
widely available. One of the main reasons is that the BIOS is extremely
slow at initializing the hardware. From power on to the actual boot loader
is running takes approximately 10 seconds, whereas on the Malta it takes
approximately 2 seconds. People using embedded systems often expect the
system to be up and running in no time, making the standard Intel PC
unusable for these purposes.

Initiatives to solve the long boot times on the Intel platform is in the works.
The most promising project, is the LinuxBIOS[29] project which is able to
reduce the startup time to 3 seconds from power on, to a stripped down
Linux kernel is running. The only problem with this project is that the
hardware vendors are not very co-operative, when it comes to datasheets
for their hardware.

Another problem, which could be noted, is that many of the features pro-
vided by the PC BIOS is unusable in modern operating systems, since
they always run in protected mode whereas the BIOS can only be used in
real mode. Many of the features that the PC BIOS provides are only for
backwards compatibility with DOS.

9.5 Probing hardware

Above, it has been mentioned that after the CPU and RAM have been
initialized, all the different hardware parts of the system are initialized

62 Chapter 9. Bootstrapping

or at least the ones that are actually used. But how do you know which
hardware is in the system? The method for finding hardware is called
“probing the hardware”.

Since not much hardware is supported in this kernel, not much hardware is
actually probed. The only hardware probed is the CPU type and the CPU
speed, this is implemented in cpu.c

To identify the MIPS CPU type the CPU contains an implementation-
number and a manufacturer-defined revision-level in a register called PRId
in the coprocessor CP0 in the CPU. However, it is best not to rely on
the revision level information, since changes in the CPU are not always
reflected in the revision level. The implementation number, on the other
hand, characterizes the CPU, and from this it can be varified that the
kernel is really running on the 5Kc CPU.

The CPU speed is needed when creating a timer. The CPU speed is often
found by running a loop of known length that will take a fixed large number
of CPU cycles and then compare the count register before and after running
the loop. The count register is described in section 10.7.1.

I have chosen another approach to this problem. The Malta system comes
with a Real Time Clock (RTC) included in the PIIX4 chip, see figure 5.2.
This RTC is updated every second and at every update, a flag is set in the
RTC. By using the flag and the count register, the CPU speed is easy to
get:

1. Wait for the flag to be raised
2. Reset the count register
3. Wait for the flag to be raised again
4. Read the value count register

The count register now contains half the numbers of clock cycles the 5Kc
CPU has in one second. It is half the numbers of clock cycles, since the
count register is only updated at every other clock cycle. By multiplying
this number by two, the result is the CPU speed in Hz. The resulting
probed CPU speed is 40MHz. Running several tests verify that this method
is very precise with a deviation of only ±1 Hz.

9.6 Bootstrapping the kernel using YAMON 63

9.6 Bootstrapping the kernel using YAMON

As mentioned above, YAMON serves both as a BIOS and a boot loader for
the Malta system. On power on the Malta system will initialize and end
up in the YAMON shell. From this shell the command load can be used
to load a kernel and the command go , to run a kernel.

The state of the CPU, when the kernel-bootstrap begins, is called the Initial
Application Context and is as follows:

Register Value
a0 This register is set to the argument count from the YAMON

shell. The arguments are tokens seperated with white spaces.
a1 This register is set to the address of an array of string point-

ers holding the arguments, for example argv[0]="go" and
so forth.

a2 This register holds a pointer to a table holding YAMON
environment variables.

a3 This register holds the memory size of the SDRAM mounted
on the core card.

ra This register holds the return address that the kernel can
use to return to YAMON when it is done running. This will
never be used.

Table 9.1: Initial Application Context

The registers a0 through a3 are argument registers, hence, if they are un-
changed in the kernel-bootstrap the first C function can have the following
prototype, which gives easy access to the kernel parameters:

int
entry(

unsigned int argc, /∗ Number of tokens in argv array ∗/
char ∗∗argv, /∗ Array of tokens (first is ”go”) ∗/
t yamon env var ∗env, /∗ Array of env. variables ∗/
unsigned int memsize); /∗ Size of memory (byte count) ∗/

Listing 9.1: Prototype for first C entry

An example of the use of kernel parameters could tell the kernel, which
serial port the serial terminal is connected to.

64 Chapter 9. Bootstrapping

Besides providing the functionality of loading kernels, YAMON also pro-
vides a set of functions which can be used from the kernel. The function-
ality includes functions to register exeception service routines, reading and
writing to the serial port. Even though these functions would be very con-
vinient to use they are not used in this kernel. The reasoning behind this
decision is that a kernel should control the hardware itself and no rely on
system specific functions, which the YAMON provided functions are.

9.7 Kernel bootstrap

When the kernel-bootstrap is executed, it goes through the following steps,
this is implemented in the file start.S :

1. Disable interrupts and disable the cache
2. Setup a stack, the address of the stack top is hard coded in the linker

script.
3. Initialize the .bss section to zero, see figure 10.2
4. Call the first C function (entry), which does the rest of the initial-

ization.

This bootstrap also fits nicely into the generic startup sequence described
in section 9.1.

The first C function that is called is named entry and is implemented in
the file kernel.c . This function takes the kernel through the rest of the
initialization:

1. Initialize the serial terminal driver. This is done already here, because
it enables kernel to write status messages to the terminal during the
rest of the initialization.

2. Initialize CPU and probe CPU type and speed
3. Initialize timer driver
4. Initialize the process manager and register the processes
5. Initialize and enable interrupts
6. Call schedule and the kernel is up and running.

It should be noted here that not all peripherals that are used in the kernel
are initialized during the kernel-bootstrap. This includes setting up the
memory mapping of the PCI bus and initializing the PIIX4 chip. It is
relied on YAMON to do this initialization properly, before the kernel is

9.8 Summary 65

runned. Fortunately, this is the case and it saves the kernel a lot of work
during the kernel-bootstrapping.

9.8 Summary

From this long discussion of bootstrapping and boot loaders the conclusion
is; even though no code can be reused from one bootstrap to another, the
skeleton, on which the bootstrap is build, has been the same on all systems
studied in this project.

Another thing, which should be noted, is that even though hardware man-
ufacturers provide the hardware with a BIOS, this should not be relied on
to heavily, since it may be buggy and it decreases the protability of the
kernel if the supplied BIOS functions are used.

66 Chapter 9. Bootstrapping

67

Chapter 10

Kernel implementation

This chapter describes the kernel implementation. The main focus will
be on, how to interface with the hardware, since this subject has been
the most time-consuming part of the kernel implementation. The chapter
finishes with a brief description of the actual kernel construction. All the
source code for the kernel is listed in appendix B.

During the chapter, interfaces to several kernel components will be de-
scribed. The prototypes for these interface functions will not be included
in the interface description, since if would not contribute significantly to
the understanding of the semantics of the interface.

10.1 Compiling

This section describes the compilation of the kernel. This includes the
Makefile, the source code layout and the compilation parameters.

10.1.1 The Makefile

The Makefile for building the kernel is created in a very naive way. There
is a perfectly good reason for this, and that is, while the source code is
settling, it would require to much work to keep changing an very advanced

68 Chapter 10. Kernel implementation

build system, every time the source code is moved around and files are
renamed.

The Makefile has been created with portability in mind, and therefore there
are several user configurable options in the Makefile. These are listed below.

TFTPDIR This is where the kernel is placed upon installation.
The TFTP server must be configured to point here.
The default is /kernel

TOOLCHAIN This option sets the tool-chain, the kernel is compiled
with. By default it is the tool-chain for generating a
kernel for big endian MIPS64.

ARCH This option sets the architecture for which the kernel
is going to be compiled. By default this is the MIPS64
architecture.

ENDIAN This option chooses the endianess. The default target
is big-endian.

Table 10.1: Options in the Makefile

10.1.2 Source code layout

The source code is organized as shown on figure 10.1. As the figure shows,
the root of the tree has three branches, one for include files, one for the
kernel and one for the library functions.

The include and kernel branch each has architecture specific branches.
The mips branch contains generic MIPS code, the mips32 branch contains
MIPS32 specific code and the mips64 branch contains MIPS64 specific
code.

The arch file is a symbolic link that links to the architecture to be com-
piled. This link is created at compile-time by the Makefile, and the destina-
tion point for the link depends on the user-defined options in the Makefile,
described above.

10.1.3 Compilation options

When developing normal applications, the compile options are not that
important, and the default options are sufficient for most purposes. When

10.2 Linking 69

include
arch
mips
mips32
mips64

kernel
arch
mips
mips32
mips64

lib

mips64

mips64

Figure 10.1: Kernel directory structure

developing kernels on a cross-development platform, the compile options
can be crucial and should be carefully chosen. In table 10.2 the most
important compiler options are listed.

10.2 Linking

Every link is controlled by a linker script. This script is written in a linker
command language. The main purpose of the linker script is to describe
how the sections in the input files should be mapped into the output file,
and to control the memory layout of the output file. Most linker scripts
do nothing more than this. However, when necessary, the linker script can
also direct the linker to perform many other operations.

In the kernel there is a need for complete control of positions, size and
alignment of the different sections, so the default linker script is not suffi-
cient, and a custom linker script has been written, see the file link.xn in
appendix B.

The custom linker script solves four kernel specific linking issues:

1. Organizing the text section at the address 0x80200000 which is
where YAMON loads the kernel. The rest of the sections will follow
the text section continuously.

70 Chapter 10. Kernel implementation

-O2 This level of optimization should be safe.
-mcpu=r4600 Choose the RISC 4600 cpu type.
-mabi=64 Choose the mips3 instruction set.
-fno-strict-
prototype

egcs 1.1 invokes this optimization per default, but
this optimization is rather untested and should
therefore not be used.

-nostdinc Do not search the standard system directories for
header files. Only the directories that are specified
with ‘-I’ options are searched.

-fomit-frame-
pointer

Do not keep the frame pointer in a register for
functions that don’t need one. This avoids the in-
structions to save, set up and restore frame point-
ers; it also makes an extra register available in
many functions. Remove this option if remote de-
bugging is implemented as the latest version of gdb
does not support this.

-Wa,-32 This is an undocumented, but very important op-
tion. It tells the assembler to generate 32 bit ELF
code instead of the default 64 bit ELF. This is
needed due to the previous mentioned MIPS64
linker bug.

-G num Puts the global and static items less than or equal
to num bytes into the small data or bss sections
instead of the normal data or bss section. This
allows the assembler to emit one word memory
reference instructions based on the global pointer
(gp) instead of the normal two words used. Us-
ing this type of global pointer optimization, could
lead to problems and is therefore eliminated by
supplying the compiler with the value 0 for num.

-Tlink script Specifies the custom linker script

Table 10.2: Compilation options

10.2 Linking 71

2. Putting the file start.o at the very beginning of the linked kernel.
This file contains the bootstrap.

3. Setting the stack size of the kernel. This is hard coded in the linker
script, but could be changed into an option to the linking process.

4. Defining a symbol in the kernel which enables the kernel to get the
size of the stack available. This symbol is called _sp_end

In ISO/ANSI C the symbols end, edata, and etext are elements of the space
of names reserved for the user. Thus, they have to be defined by the linker
script to conform to the standard.

Figure 10.2 shows the layout of the different sections of the linked kernel.

Remaining object files

start.o

Read−only data

Initialized data

0x80200000

edata

Stack top, sp, end

_sp_end

.text

.data

.sbss,.bss

Common symbols

Uninialized data

etext

Figure 10.2: Overview of the linked kernel

After the linking of the kernel, it is still not ready for use on the MIPS64
system. As mentioned previously, the output format of the file is 32 bits
elf code, but it has to be 64 bits elf code since, it is a 64 bit kernel. Besides
that all the addresses have to be converted from 32 bits addresses to 64
bits addresses. Both of these conversions are easily done by the program
objcopy .

72 Chapter 10. Kernel implementation

To be able to load the kernel on the MIPS64 system, the linked kernel
has to be converted into srec format, since this is the only file format
that YAMON can handle. The srec format is the Motorola S-records
format, which is a format that makes it easier to transfer files over low
speed connection with a high error rate and using an extremely simple
protocol like the TFTP protocol. This conversion is done with objcopy
as well.

10.3 Header files

There is only one special thing, which has to be noted about the header files,
and this is the use of the file stdarg.h . This is a header from the glibc
library, which defines a set of hardware specific macros for implementing
the functionality of passing an arbitrary number of arguments passed on
to functions. The header file does not provide any function prototypes to
glibc itself and can therefore safely be used in the kernel implementation.
To be more specific, it is used in the kernel implementation of printf .

10.4 Handling interrupts

In the MIPS architecture, interrupts, traps, system-calls, and everything
else that disrupts the normal flow of execution, are called exceptions.

The 5Kc CPU is hard coded to execute program code at one of five different
locations depending on the type of exception, which has occurred. This
could be a cache error exception, an interrupt exception etc. In this kernel,
only interrupt exceptions are of interest, and all other types of exceptions
are left up to YAMON to handle. In the following, interrupt exceptions
will be called interrupts for simplicity.

The types of interrupt that can occur are a timer interrupt from the 5Kc
CPU, and a combined hardware interrupt generated by the interrupt con-
troller, that is located in the PIIX4 device on the MALTA board. The
interrupt controller located in the PIIX4 device is a standard 82C95 inter-
rupt controller.

10.4 Handling interrupts 73

10.4.1 Registering the interrupt handler

As mentioned above the CPU is hard coded to execute program code at a
specific location when an interrupt is asserted. In the 5Kc CPU the address
is 0xffffffff80000200 , and there is exactly room to put 32 bytes of
code to handle the interrupt at this address .

Instead of copying a full interrupt handler to this address a jump instruction
to the real interrupt handler should be copied on this address. The jump
instruction is composed of the op-code for the jump instruction and the
address, see figure 10.3. The address is not allowed to be more than 28 bits
and has to lie on 32 bit word boundaries, since the last two bits are thrown
away during the op-code generation.

Opcode for Jump (J)

31−26 25−0

Interrupt handler address >> 2001000

Figure 10.3: Jump op-code construction

Normally, the cache would have to be flushed after writing the jump op-
code into the memory, but as previously mentioned the cache has been
disabled to avoid these sort of problems. When the cache is enabled in
future versions of the kernel, special attention has to be paid to all the
places, where the kernel writes to memory mapped hardware, which is
mapped in the cache-able memory.

10.4.2 Combined hardware interrupt

When the interrupt handler receives a combined hardware interrupt, the
function interrupt_hw in interrupt.c is called. Its primary job is to
figure out which device caused the interrupt and then call the appropriate
interrupt handler for the device.

By requesting information from the 82C59 interrupt controller the IRQ,
which triggered the combined hardware interrupt, is found. By using this

74 Chapter 10. Kernel implementation

IRQ as an index in a interrupt handler table, the right handler can be found
and called in constant time.

10.4.3 Interrupt interface

The interface to the interrupt component consists of only two functions,
see table 10.3. These are implemented in the file interrupt.c .

interrupt_init This function initializes the interrupt com-
ponent and registers the interrupt handler,
which receives MIPS interrupts.

interrupt_register This function takes two arguments, namely
the IRQ number and the interrupt handler.
It then registers the handler in the interrupt
table. If an interrupt handler for a given
IRQ is already registered, the kernel will
panic, since shared interrupts are not sup-
ported in this kernel. This function should
only be called during kernel initialization.

Table 10.3: Interrupt component interface

10.5 Context switch

As mentioned in chapter 8, two different types of context switches have to
cooperate e.g. a context switch by using a semaphore and context switch
during interrupt.

The real difference between these two types of context switches lie in the
way they return to a new process after restoring a new context. When
returning from an interrupt, the instruction eret is used. When the eret
instruction is executed, it clears a bit in the status register and then jumps
to the address held in the EPC register. When returning from a context
switch, which has been issued by using a semaphore, it uses a normal jump
instruction. To make these two cases work together gracefully, the special
register k0 is used to store the address, to which a process should continue
after both types of context switch. The k0 is a special register that is

10.6 Semaphores 75

reserved for use in interrupt handlers. The register is safe to use, since
exceptions are disabled during both context-saving and context-restoring
and this prevents other exceptions handlers changing the k0 register, while
it is in use.

The context switch in the interrupt handler is implemented in the file
mipsirq.S and works as follow:

1. Save the EPCregister in k0
2. Save the current CPU context on the stack
3. Save the stack pointer
4. Handle the interrupt
5. Get a new stack pointer for the next process to run
6. Restore to the new context
7. Restore the saved EPCregister
8. Return from the interrupt handler

The context switch used, when using semaphores, is implemented in the
file stack.S and works as follow:

1. Save the return address (ra register) in the k0 register
2. Save the current context on the stack
3. Save the stack pointer
4. Get a new stack pointer for the next process to run
5. Restore to the new context
6. The k0 register now contains the return address, so this is used as

return address.

All the macros used for saving and restoring the states are located in the
file stackframe.h .

10.6 Semaphores

As previously mentioned, the semaphore is a binary semaphore with a
waiting queue of blocked processes sorted after priority.

The basic priority inversion protocol, described in chapter 8, has been im-
plemented as part of the semaphore. This is basically done:

• If a process tries to take a semaphore, which is locked by a lower
priority process, the priority of lower priority process is raised to

76 Chapter 10. Kernel implementation

the priority of the process wanting the semaphore. After this a re-
schedule is issued.

• When a process releases a semaphore, the process priority is lowered
to its original priority and a re-schedule is issued.

All operations in the semaphore implementation, which has to be done as an
atomic operation, has been put in a critical section by disable and enabling
interrupts. The MIPS CPU has special support for atomic operations, but
these have not been used, because the semaphore implementation would
then be hardware specific.

10.6.1 Semaphore interface

The interface to the semaphore is similar to the one used in M. Ben-Ari[19]
and is implemented in the file semaphore.c . The component works as
follows:

semaphore_setup Setup the semaphore and initialize its waiting
queue.

semaphore_wait Takes the semaphore if it is available or waits if
it is locked.

semaphore_signal Releases a semaphore

Table 10.4: Semaphore component interface

10.7 Kernel drivers

In the following, the three kernel drivers will be described. During the
description of the driver interfaces the expression “from the kernel users
point of view” is used. By this is meant, the functions in the interface that
are of relevance for the kernel user e.g. a person implementing processes to
run on the nano-kernel.

10.7.1 Timer driver

On Intel based architectures it is normal to create a timer using the 8253A
chip, which is placed on almost all Intel based motherboards. In the

10.7 Kernel drivers 77

MIPS64 CPU there are two registers, which are very useful when creating
a timer, namely the count and compare registers. These two registers will
be used for the timer implementation instead of the usual timer hardware.

The count register acts as a timer, incrementing by one every other clock
cycle, whether or not an instruction executed. The count register can be
written for diagnostic purposes as it is during boot in this kernel. This
register is 32 bits long.

The compare register is used in conjunction with the count register. The
compare register contains a value, which does not change unless explicitly
updated by software. When the value of the count register is equal to
the value of the compare register, hardware interrupt 5 is asserted and the
interrupt pending bit is raised in the cause register. Hardware interrupt
5 is asserted and continues to be asserted, until the compare register is
written to by software. This register is also 32 bits long.

From the kernel users point of view, the interface to the timer driver consists
of four functions, which are implemented in the file timer.c :

timer_setup This function initializes a timer structure.
timer_start This function starts the timer.
timer_waitfor This function blocks the process until the time is

up.
timer_cancel This function cancels a timer. This function must

be used if the timer is no longer in use.

Table 10.5: Timer interface

10.7.2 LCD driver

The LCD display is a small 1x8 characters wide LCD display mounted on
the Malta board. The LCD display can be used for debugging purposes or
just to show off. The driver is extremely simple, and is used for writing
characters or numbers on the LCD display mounted on the MALTA board.

The LCD display works by writing to the addresses listed in table 10.6.

The interface to the driver consists of the two functions listed in table 10.7.

78 Chapter 10. Kernel implementation

Name Offset Function
ASCIIWORD 0x000.0010 Writing a 32-bit number to this address

will cause the LCD display to show the
number in hex on the display

ASCIIPOS0 0x000.0018 Writing an ASCII value to this address
updates position 0 on the LCD display

ASCIIPOS1 0x000.0020 Writing an ASCII value to this address
updates position 1 on the LCD display

ASCIIPOS2 0x000.0028 Writing an ASCII value to this address
updates position 2 on the LCD display

ASCIIPOS3 0x000.0030 Writing an ASCII value to this address
updates position 3 on the LCD display

ASCIIPOS4 0x000.0038 Writing an ASCII value to this address
updates position 4 on the LCD display

ASCIIPOS5 0x000.0040 Writing an ASCII value to this address
updates position 5 on the LCD display

ASCIIPOS6 0x000.0048 Writing an ASCII value to this address
updates position 6 on the LCD display

ASCIIPOS7 0x000.0050 Writing an ASCII value to this address
updates position 7 on the LCD display

Table 10.6: LCD display addresses. Base address is 0x1f00.0400

lcd_int Takes an integer as argument an prints it in hex
on the LCD display.

lcd_message Takes a string as argument and displays the eight
first characters on the LCD display.

Table 10.7: LCD driver interface

10.7 Kernel drivers 79

10.7.3 Serial terminal driver

This driver controls the serial VT220 terminal connected to the Malta
system’s serial port.

The serial port on the MALTA board is controlled by a Super I/O Con-
troller from SMcS and incorporates two full function UARTs. The file
serial.h defines all the register addresses in the UART and most of the
register settings.

As of this writing, input on the serial line is not supported, but it should
be fairly simple to implement, as the interrupt handler is already registered
to receive the data from the UART. Since, DMA is not supported by the
Super I/O Controller, the data should simply be read from directly from
the memory mapped serial buffer.

Initialization

The VT220 terminal is configured to run at 19.200 baud, with 8 bit data,
one stop bit and no parity, so the serial port in the Super I/O Controller
has to be initialized the same way.

The serial port contains a programmable Baud Rate Generator that is
capable of dividing the internal UART clock by any divisor from 1 to 65535.
The clock runs at 1.8462Mhz and the output from the Baud Rate Generator
is 16 times the baud rate, therefore, to set the desirable baud rate, the
divisor is calculated like this:

Baud rate divisor =
UART clock speed

16× bps

Inserting the numbers in question the resulting baud rate divisor is:

1846200Hz
16× 19200bps

= 6

The baud rate divisor is therefore 6, when a baud rate of 19200 is desired.
This value should be written to the divisor registers. The high register with
the value 0 and the low with the value 6. These registers are the same as

80 Chapter 10. Kernel implementation

the transmitter and receiver registers, so a special bit (DLAB) has to be
set high to tell the serial port that the baud rate is going to be set.

The rest of the configuration of the serial port is done by writing to the
Line Control Register.

The interrupt is not initialized, since the input is not read anyway. Initial-
ization of this interrupt should be located in the function serial_init
along with the rest of the serial terminal initialization.

Serial terminal driver interface

From the kernel users point of view the interface to the serial terminal
driver consists of two functions, see table 10.8. Through these functions
special control characters can be sent to the serial terminal to control cur-
sor position and to print characters an the terminal. These functions are
implemented in the file serial.c .

serial_putchar Prints a character on the terminal.
serial_print Prints a string on the terminal.

Table 10.8: Serial terminal interface

In future development this driver should be split into two, one for the
UART itself and one for the VT220 terminal using the UART, but during
the kernel development this implementation has been sufficient.

10.8 Kernel construction

In the above, the implementation has been described, but not how the
kernel was actually constructed. In the following the steps I went through,
to get the kernel up and running, is summarized:

• First thing to be implemented was the bootstrap. This was debugged
by writing to the LCD display.

• Once the bootstrap was working an environment, for changing from
MIPS assembler into C, was created.

10.9 Summary 81

• Next the serial terminal driver was created and nice printf func-
tion was included. The main reason for the inclusion of a full blown
printf function at this early stage of development was that it would
speed up the debugging process.
• Then an implementation of coroutines was made. This was done

using a yield function, which where very similar to a combination of
the setjmp and longjmp functions, which are implemented in the
file setjmp.S . This was tried out with disabled interrupts. The yield
function later evolved into a stack switch function.

• At this point an interrupt handler was implemented and tested using
the timer interrupt.

• Once this was running a timer driver was implemented.
• The missing link before combining all the pieces was to implement

semaphores and process management. These two components were
implemented and tested as far as possible at this stage of develop-
ment.

• Finally, all the components were combined.

The kernel status, as of this writing, is described in the next chapter.

10.9 Summary

In this chapter most of the kernel implementation has been described. The
main focus has been on hardware architecture specific issues, and how the
hardware is used in the kernel.

82 Chapter 10. Kernel implementation

83

Chapter 11

Status

This chapter first gives a short overview of the kernel status, as of this
writing. After this, the future development of the kernel is described. Dur-
ing the development of the kernel a lot of ideas for future projects came to
mind, as well as some small improvements. This chapter gives a summary
of some of those ideas.

11.1 Current kernel status

All the components described in “Kernel design” (chapter 8) has been im-
plemented and tested to the extend possible at the time of the implementa-
tion. The components have not been exhaustively tested, since this would
be very difficult before all the components of the kernel have been com-
bined.

After all the kernel components were combined, the kernel were handed
over to another project student. At the time of the handover, context
switch, as described in section 10.5 of “Kernel implementation”, was not
fully working, thus the kernel was not tested, as a whole, before the han-
dover.

84 Chapter 11. Status

11.2 Small kernel improvements

Besides fixing bugs in the context switch implementation, there are several
other small improvements, which should be done:

• Every time the kernel changes to the Idle process, it does a full context
switch. This is unnecessary and it increases latency.

• Currently the cache is disabled. Enabling the cache again will give a
vast increase in the performance. This would require implementing
cache flush functions and call these after a write to devices, which are
mapped in the cache-able memory segment.

• Create a real serial driver interface. Chances are that the serial port
will be used for other devices than the serial terminal and this would
require a clean interface to the serial port.

• A faster scheduler implementation, especially the switch from the Idle
process can improved.

11.3 Large kernel related projects

There are several kernel or operating system- related projects, which could
be based on this kernel project. To name a few:

Memory protection Experimenting with memory protection domains as
a way of protecting processes from each other. For example, creating
the worlds smallest SASOS. Experiment with other types of memory
protection, such as the one mentioned in section 8.1.

Porting Porting the kernel to other platforms such as the AT91 or the Intel
I386 architecture. The kernel has been designed and implemented
with portability in mind and should be fairly easy to port to other
platforms.

Remote debugging Remote debugging requires special support in the
kernel. Enabling remote kernel debugging would be a useful feature
and an interesting project.

Scheduling Scheduling experimentation and analysis. The kernel is small
and easy to edit and different scheduling algorithms could be tried
out without modifying much of the kernel. For example, changing
the scheduler to “earliest deadline first” would not require touching
any tricky assembly code at all.

11.4 Summary 85

Real-time Modification of the kernel in such way that it would be suitable
as a hard real-time system. This would not require much coding, but
a thorough analysis of the kernel.

Kernel locking Create a finer grained locking, and maybe even new mech-
anisms for the locking such as spin-locks. To reduce the kernel latency,
locking needs thorough analysing.

11.4 Summary

Hopefully, some of the above suggestion will inspire other students to con-
tinue the work on this kernel project.

86 Chapter 11. Status

87

Chapter 12

Conclusion

A development system environment suitable for embedded system devel-
opment has been composed. The environment includes Free Software tools
and some interesting, reasonably fast and easy to use hardware with a good
community and commercial support.

The resulting kernel, which has been developed during this thesis, is very
small. The source code is approximately 3500 lines of C and assembly code
and this includes all comments and header files. Even though its size is
very limited, it does include some important features, to mention a few:

• Effective timer implementation
• Binary Semaphores which implements the basic priority inheritance

protocol
• A pre-emptive nano-kernel which reduces latency

The resulting kernel is highly modularized and the scheduler can be changed
with minimum effort. With reasonably little coding effort the kernel could
be used in hard real-time systems.

The kernel has been designed and implemented with portability in mind
and as much code as possible has been written in C. The result is a kernel
where the porting process to another architecture can be done almost by
rewriting the assembly routines to fit the new architecture.

Even though there has been hard times carrying out this thesis, with linker
bugs and hardware bugs that took several weeks to work around, it has been

88 Chapter 12. Conclusion

an interesting and educational project. It has given me a good understand-
ing of embedded development, hardware bootstrapping and initialization,
as well as good insight to many different aspects of operating system’s
theory.

Is has also been a good experience to hand over this kernel project to
another student, and enable him to carry on the future kernel work.

89

Appendix A

Project description

Danish title: Bidrag til udvikling af nanokerne
English title: Contribution to development of a nanokernel

Participant: Lars Munch Christensen

Danish project description:

Det langsigtede mål er at konstruere biblioteksrutiner, der kan karakteris-
eres som en nanokerne, idet de skal kunne lænkes sammen med dels anvendel-
ses- dels maskinspecifikke rutiner til indlejrede systemer. Ses bort fra kold-
start skal et indlejret system kunne opfattes som et enkelt program med
flere aktiviteter. N̊ar programmet starter eksisterer kun en enkelt aktivitet,
der afvikles uden begrænsninger i privilegier.

Oprettelse og start af aktiviteter skal kunne udtrykkes ved hjælp af nanok-
ernens rutiner. Der skal kunne styres b̊ade frivilligt og p̊atvungent pro-
cesskifte.

Til udnyttelse af materiel til understøttelse af begrænsninger i forskellige
aktiviteters privilegier søges udarbejdet og afprøvet et sæt passende kon-
ventioner.

Koldstartsproblemer skal analyseres og behandles med henblik p̊a at re-

90 Appendix A. Project description

ducere afhængigheder af materiel s̊a meget som muligt.

Det konkrete mål for projektet er at implementere en nanokerne s̊a vidt, at
et indlejret system kan koldstartes og udnytte en simpel ydre enhed. Ind-
hentning af oplysninger om lignende systemer betragtes som en væsentlig
del af projektet.

91

Bibliography

[1] SMcS FDC37817 Super I/O Controller datasheet.

[2] Atmel, AVR Microcontrollers, STK500 Starter Kit and Development
system.

[3] Atmel, AT91EB40 Evaluation Board Users Guide.

[4] Galileo Technology, GT-64120A System Controller for
RC4650/4700/5000 and RM526x/527x/7000 CPUs

[5] Intel, 82371AB PCI-TO-ISA / IDE XCELERATOR (PIIX4)

[6] MIPS Technologies, CoreLV User’s Manual, Document Number:
MD00007, Revision 02.06

[7] MIPS Technologies, Processor Core Family Software User’s Manual,
Document Number: MD00012, Revision 02.04

[8] MIPS Technologies, 5Kc Processor Core Datasheet, January 15, 2001.

[9] GNU linker ld version 2.10.91 info pages

[10] GNU Automake version 1.4 info pages

[11] S. Tan et al., An Object-Oriented Nano-Kernel for Operating System
Hardware Support, Proceedings of the Fourth IWOOOS, IEEE
Computer Society, Aug, 1995, Lund, Sweden.

92 BIBLIOGRAPHY

[12] Jeffrey S. Chase, Henry M. Levy, Michale J. Feeley and Edward D.
Lazowska, Sharing and Protection in a Single Address Space Oper-
ating System, Department of Computer Science and Engineering,
FR-35, University of Washington, Seattle, WA 98195 USA.

[13] Design and implementation of an Object-Oriented 64-bit Single
Address Space Microkernel, Kevin Murray, Tim Wilkinson, Peter
Osmon - SARC, City University. Ashley Saulsbury - Swedish Institute
of Computer Science. Tom Stiemerling, Paul Kelly - Imperial College.

[14] Implementation and Performance of the Mungi Single Address Space
Operating System. Jochen Liedtke, The University of New South
Wales.

[15] S. Tan et al. An Object-Oriented Nano-Kernel for Operating System
Hardware Support, Department of Computer Science, University of
Illinois at Urbana-Champaign.

[16] Exception Handling in Embedded C Programs, C/C++ Users Jour-
nal, Yonatan Lehman

[17] A. S. Tannenbaum, A. S. Woolhull, Second edition, Operating
Systems Design and implementation. Prentice Hall, 1997

[18] Michael Barr, Programming embedded Systems, O’Reilly and Asso-
ciates, 1999

[19] M. Ben-Ari, Principles of Concurrent Programming.

[20] Dominic Sweetman, See MIPS Run. Morgan Kaufmann Publishers,
Inc.

[21] GNU Project, http://gcc.gnu.org

[22] MontaVista, http://www.mvista.com

[23] Linux-VR Project, http://www.linux-vr.org

[24] Red Hat Inc., http://www.redhat.com

BIBLIOGRAPHY 93

[25] Linux on SGI/MIPS, http://oss.sgi.com/mips/

[26] Newlib Library, http://sources.redhat.com/newlib/

[27] Small Device C Compiler project, SDCC http://sdcc.sourceforge.net/

[28] Red Hat eCos, http://www.redhat.com/embedded/technologies/ecos/

[29] The LinuxBIOS Home Page, http://www.acl.lanl.gov/linuxbios/index.html

[30] The LILO Home Page, http://brun.dyndns.org/pub/linux/lilo/

[31] The GRUB Home Page, http://www.gnu.org/software/grub/

[32] The EtherBoot Home Page, http://etherboot.sourceforge.net/

[33] The RedBoot Home Page, http://www.redhat.com/embedded/technologies/redboot/

[34] The Embedded PowerPC Linux Boot Project,
http://ppcboot.sourceforge.net/

94 BIBLIOGRAPHY

95

Appendix B

Source code

File Page File Page
Makefile 96 include/stddef.h 126
kernel/mips64/link.xn 99 include/system.h 126
include/addrspace.h 100 include/timer.h 128
include/asm.h 102 include/yamon.h 129
include/byteorder.h 103
include/cpu.h 103 kernel/cpu.c 136
include/interrupt.h 104 kernel/interrupt.c 138
include/kernel.h 105 kernel/kernel.c 142
include/lcd.h 105 kernel/lcd.c 144
include/list.h 105 kernel/list.c 145
include/mipsregs.h 107 kernel/mipsirq.S 147
include/piix4.h 111 kernel/panic.c 149
include/printf.h 113 kernel/process.c 150
include/process.h 113 kernel/sched.c 154
include/regdef.h 114 kernel/semaphore.c 156
include/regoffset.h 115 kernel/serial.c 158
include/rtc.h 117 kernel/setjmp.S 160
include/sched.h 118 kernel/stack.S 161
include/semaphore.h 119 kernel/start.S 162
include/serial.h 119 kernel/test1.c 163
include/setjmp.h 121 kernel/test2.c 163
include/stackframe.h 122 kernel/timer.c 164

96 Appendix B. Source code

: Makefile
∗∗
Kernel installation dir
∗∗

TFTPDIR = /kernel

∗∗
Active compilation toolchain
∗∗

TOOLCHAIN = mips64
#TOOLCHAIN = mips64el

∗∗
Architecture
∗∗

ARCH = mips64

∗∗
Endianness EB | EL
∗∗

ENDIAN = EB
#ENDIAN = EL

∗∗
Name of kernel
∗∗

IMAGENAME = kernel

∗∗
The following stuff should not be touched
∗∗

∗∗
Directories
∗∗

ROOT = .
SUBDIRS = lib kernel
SRCDIR = $(ROOT)
VPATH = $(SRCDIR)
BINDIR = $(ROOT)

∗∗
Image file names and map, disassembly file
∗∗

IMAGE BIN = $(IMAGENAME).bin
IMAGE REC = $(IMAGENAME).rec
IMAGE ELF = $(IMAGENAME).elf
IMAGE MAP = $(IMAGENAME).map
IMAGE DIS = $(IMAGENAME).dis

∗∗

97

Compiler toolchain
∗∗

ifeq ($(TOOLCHAIN),mipsel)
CC = mipsel−linux−gcc
LD = mipsel−linux−ld
OBJCOPY = mipsel−linux−objcopy
OBJDUMP = mipsel−linux−objdump
endif

ifeq ($(TOOLCHAIN),mips64)
CC = mips64−linux−gcc
LD = mips64−linux−ld
OBJCOPY = mips64−linux−objcopy
OBJDUMP = mips64−linux−objdump
endif

ifeq ($(TOOLCHAIN),mips64el)
CC = mips64el−linux−gcc
LD = mips64el−linux−ld
OBJCOPY = mips64el−linux−objcopy
OBJDUMP = mips64el−linux−objdump
endif

∗∗
Compiler and linker options
∗∗

INCLUDE = −I$(ROOT)/include
W OPTS = −Wimplicit −Wformat −Wall −Wstrict−prototypes
W OPTS A = −Wformat −Wall −Wstrict−prototypes

ifeq ($(ARCH),mipsel)
DEFS =
CC OPTS =
endif

ifeq ($(ARCH),mips64)
DEFS =
CC OPTS = −g −Wa,−32 −mcpu=r4600 −mabi=64 −mips3 −G0 −pipe \
−D$(ENDIAN) −fno−strict−aliasing −g −c −O2 −nostdinc $(INCLUDE) $(DEFS)

CC OPTS A = $(CC OPTS)
endif

LD SCRIPT = $(ROOT)/kernel/$(ARCH)/link.xn
LD OPTS = −g −G 0 −static −T $(LD SCRIPT) −o $(IMAGE ELF) \

−Map $(IMAGE MAP)

ifeq ($(TOOLCHAIN),mips64)
LD FORMAT = elf64−bigmips
endif

ifeq ($(TOOLCHAIN),mips64el)
LD FORMAT = elf64−littlemips
endif

∗∗
Files to be compiled

98 Appendix B. Source code

∗∗

OBJ = kernel/start.o \
kernel/mipsirq.o \
kernel/stack.o \
kernel/kernel.o \
kernel/ serial .o \
kernel/lcd.o \
kernel/setjmp.o \
kernel/cpu.o \
kernel/ list .o \
kernel/timer.o \
kernel/interrupt .o \
kernel/process.o \
kernel/sched.o \
kernel/semaphore.o \
kernel/panic.o \
kernel/test1 .o \
kernel/test2 .o \
lib/vsprintf .o

∗∗
Rules
∗∗

%.o : %.c
$(CC) $(W OPTS) $(CC OPTS) −o $@ $<

%.o : %.S
$(CC) $(W OPTS A) $(CC OPTS A) −o $@ $<

all : prepare $(IMAGE BIN) $(IMAGE REC) $(IMAGE DIS)

prepare:
rm −f include/arch
ln −s $(ARCH) include/arch
rm −f kernel/arch
ln −s $(ARCH) kernel/arch

$(IMAGE BIN) : $(IMAGE ELF)
$(OBJCOPY) −O binary $(IMAGE ELF) $(IMAGE BIN)

$(IMAGE REC) : $(IMAGE ELF)
$(OBJCOPY) −O srec $(IMAGE ELF) $(IMAGE REC)

$(IMAGE DIS) : $(IMAGE ELF)
$(OBJDUMP) −S $(IMAGE ELF) > $(IMAGE DIS)

$(IMAGE ELF) : $(OBJ)
$(LD) $(LD OPTS) $(OBJ)
$(OBJCOPY) −O $(LD FORMAT) −−change−addresses=0xffffffff00000000 \
$(IMAGE ELF) $(IMAGE ELF)

install : $(IMAGE REC)
cp $(IMAGE REC) $(TFTPDIR)

clean :
rm −f $(OBJ) $(IMAGE BIN) $(IMAGE REC) $(IMAGE DIS)

99

rm −f $(IMAGE ELF) $(IMAGE MAP)

realclean : clean
rm −f include/arch
rm −f kernel/arch
find . −name ’∗˜’ | xargs rm −f
find . −name ’semantic.cache∗’ | xargs rm −f

: kernel/mips64/link.xn
/∗
∗ Linker script for the kernel . Created for the 64bit mips
∗ big endian achitecture . Since the linker sucks at 64bit elf
∗ we link in 32bit elf and then change it afterwards with objcopy.
∗/

OUTPUT(kernel.elf) /∗ Default output name ∗/
OUTPUT ARCH(mips) /∗ Output arch is mips ... no shit :−) ∗/
ENTRY(start) /∗ Entry point of kernel ∗/

SECTIONS
{

/∗∗∗∗ Code and read−only data ∗∗∗∗/

. = 0x80200000; /∗ Here the code should be loaded so we ∗/
/∗ set the location counter to this ∗/
/∗ address. ∗/

.text . : {

ftext = .; /∗ Start of code and read−only data ∗/

kernel/start .o (. text) /∗ This must be the first file since ∗/
/∗ this has the kernel entry point ∗/

∗(.text) /∗ The rest of the object files ∗/
ecode = .; /∗ End of code ∗/

∗(.rodata)

. = ALIGN(8);
etext = .; /∗ End of code and read−only data ∗/

} = 0

/∗∗∗∗ Initialised data ∗∗∗∗/

.data :
{

fdata = .; /∗ Start of initialised data ∗/
∗(.data)

. = ALIGN(8);

∗(. lit8) /∗ Place 8−byte constants here ∗/
∗(. lit4) /∗ Place 4−byte constants here ∗/
∗(.sdata) /∗ Place subsequent data ∗/

. = ALIGN(8);

edata = .; /∗ End of initialised data ∗/

100 Appendix B. Source code

}

/∗∗∗∗ Uninitialised data ∗∗∗∗/

fbss = .; /∗ Start of uninitialised data ∗/

.sbss :
{
∗(.dynsbss)
∗(.sbss)
∗(.sbss .∗)
∗(.scommon) /∗ Place small common symbols here ∗/
}

.bss :
{
∗(.dynbss)
∗(.bss)
∗(.bss.∗)
∗(COMMON) /∗ Place common symbols here ∗/

sp end = .;
/∗ Allocate room for stack ∗/
. = ALIGN(8) ;
. += 0x100000 ;
sp = . − 16;

}

end = .; /∗ End of unitialised data ∗/

/∗∗∗∗ These must appear regardless of . ∗∗∗∗/
.gptab.sdata : { ∗(. gptab.data) ∗(.gptab.sdata) }
.gptab.sbss : { ∗(. gptab.bss) ∗(.gptab.sbss) }

/∗ Provide the symbols etext, edata and end if they are not defined
∗ by the kernel . It in the ISO/ANSI C standard that these should
∗ be defined.
∗/

PROVIDE(etext = etext);
PROVIDE(edata = .);
PROVIDE(end = .);
}

: include/addrspace.h
/∗
∗ This header defines the address space stuff for the
∗ Malta board e.g convertion macros and addresses.
∗
∗ Some of the macros has been taken from the Linux kernel
∗
∗ This file is subject to the terms and conditions of the GNU General
∗ Public License . See the file ”COPYING” in the main directory of
∗ this archive for more details .
∗/

#ifndef ADDRSPACE H
#define ADDRSPACE H

101

/∗ When addressing a byte you have to byteswap the
∗ address due to a bug in the Galileo chip when running
∗ in big endian mode.
∗/

#ifdef EB
#define swap8addr(addr) ((addr) ˆ 0x0000000000000003)
#else
#define swap8addr(addr) addr
#endif

#define MALTA GT PORT BASE (KSEG1ADDR(0x18000000))

/∗
∗ Malta RTC−device addresses
∗/

#define MALTA RTC ADR REG 0x70
#define MALTA RTC DAT REG 0x71

/∗
∗ TTY addresses
∗/

#define TTYS0 0x3F8
#define TTYS1 0x2F8

/∗
∗ Memory segments (64bit kernel mode addresses)
∗/

#define KUSEG 0x0000000000000000
#define KSEG0 0 xffffffff80000000
#define KSEG1 0 xffffffffa0000000
#define KSEG2 0 xffffffffc0000000
#define KSEG3 0 xffffffffe0000000

/∗
∗ Returns the kernel segment base of a given address
∗/

#define KSEGX(a) (((unsigned long)(a)) & 0xe0000000)

/∗
∗ Map an address to a certain kernel segment
∗/

#define KSEG0ADDR(a) ((typeof (a)) \
(((unsigned long)(a) & 0x000000ffffffffffUL) | KSEG0))

#define KSEG1ADDR(a) ((typeof (a)) \
(((unsigned long)(a) & 0x000000ffffffffffUL) | KSEG1))

#define KSEG2ADDR(a) ((typeof (a)) \
(((unsigned long)(a) & 0x000000ffffffffffUL) | KSEG2))

#define KSEG3ADDR(a) ((typeof (a)) \
(((unsigned long)(a) & 0x000000ffffffffffUL) | KSEG3))

/∗
∗ Memory segments (64bit kernel mode addresses)
∗/

#define XKUSEG 0x0000000000000000
#define XKSSEG 0x4000000000000000
#define XKPHYS 0x8000000000000000

102 Appendix B. Source code

#define XKSEG 0xc000000000000000
#define CKSEG0 0 xffffffff80000000
#define CKSEG1 0 xffffffffa0000000
#define CKSSEG 0 xffffffffc0000000
#define CKSEG3 0 xffffffffe0000000

/∗
∗ Memory segments sizes
∗/

#define KUSIZE 0x0000010000000000 /∗ 2ˆˆ40 ∗/
#define KUSIZE 64 0x0000010000000000 /∗ 2ˆˆ40 ∗/
#define K0SIZE 0x0000001000000000 /∗ 2ˆˆ36 ∗/
#define K1SIZE 0x0000001000000000 /∗ 2ˆˆ36 ∗/
#define K2SIZE 0x000000ff80000000
#define KSEGSIZE 0x000000ff80000000 /∗ max syssegsz ∗/

#endif /∗ ADDRSPACE H ∗/

: include/asm.h
/∗
∗ Some useful macros for MIPS assembler code
∗
∗ This file is subject to the terms and conditions of the GNU General
∗ Public License . See the file ”COPYING” in the main directory of
∗ this archive for more details .
∗/

#ifndef ASM H
#define ASM H

/∗
∗ LEAF − declare leaf routine
∗/

#define LEAF(symbol) \
. globl symbol; \
. align 2; \
.type symbol,@function; \
.ent symbol,0; \

symbol: .frame sp,0, ra

/∗
∗ NESTED − declare nested routine entry point
∗/

#define NESTED(symbol, framesize, rpc) \
. globl symbol; \
. align 2; \
.type symbol,@function; \
.ent symbol,0; \

symbol: .frame sp, framesize , rpc

/∗
∗ END − mark end of function
∗/

#define END(function) \
.end function; \
. size function,.−function

103

/∗
∗ EXPORT − export definition of symbol
∗/

#define EXPORT(symbol) \
. globl symbol; \

symbol:

/∗
∗ Print formated string
∗/

#define PROM PRINT(string) \
. set push; \
. set reorder ; \
la a0,8f ; \
jal serial print ; \
. set pop; \
TEXT(string)

#define TEXT(msg) \
.data; \

8: . asciiz msg; \
.previous;

#endif /∗ ASM H ∗/

: include/byteorder.h
/∗ $Id: byteorder.h,v 1.1.1.1 2001/09/23 15:00:00 lmc Exp $
∗
∗ This file is subject to the terms and conditions of the GNU General Public
∗ License . See the file ”COPYING” in the main directory of this archive
∗ for more details .
∗
∗ Copyright (C) 1996, 1999 by Ralf Baechle
∗/

#ifndef ASM BYTEORDER H
#define ASM BYTEORDER H

#include <asm/types.h>

#ifdef GNUC

#if !defined(STRICT ANSI) || defined(KERNEL)
define BYTEORDER HAS U64
#endif

#endif /∗ GNUC ∗/

#if defined (MIPSEB)
include <linux/byteorder/big endian.h>
#elif defined (MIPSEL)
include <linux/byteorder/little endian.h>
#else
error ”MIPS, but neither MIPSEB , nor MIPSEL ???”
#endif

#endif /∗ ASM BYTEORDER H ∗/

104 Appendix B. Source code

: include/cpu.h
/∗
∗ CPU functions
∗
∗ This file is subject to the terms and conditions of the GNU General
∗ Public License . See the file ”COPYING” in the main directory of
∗ this archive for more details .
∗/

#ifndef CPU H
#define CPU H

/∗
∗ Assigned values for the product ID register . In order to detect a
∗ certain CPU type exactly eventually additional registers may need to
∗ be examined.
∗/

#define PRID IMP R2000 0x0100
#define PRID IMP R3000 0x0200 /∗ Same as R2000A ∗/
#define PRID IMP R6000 0x0300 /∗ Same as R3000A ∗/
#define PRID IMP R4000 0x0400
#define PRID IMP R6000A 0x0600
#define PRID IMP R10000 0x0900
#define PRID IMP R12000 0x0e00
#define PRID IMP R4300 0x0b00
#define PRID IMP R12000 0x0e00
#define PRID IMP R8000 0x1000
#define PRID IMP R4600 0x2000
#define PRID IMP R4700 0x2100
#define PRID IMP R4640 0x2200
#define PRID IMP R4650 0x2200 /∗ Same as R4640 ∗/
#define PRID IMP R5000 0x2300
#define PRID IMP SONIC 0x2400
#define PRID IMP MAGIC 0x2500
#define PRID IMP RM7000 0x2700
#define PRID IMP NEVADA 0x2800
#define PRID IMP 5KC 0x8100
#define PRID IMP 20KC 0x8200

void cpu init(void);

void cpu status(void);

void cpu probe(void);

void cpu speed(void);

#endif /∗ CPU H ∗/

: include/interrupt.h
/∗
∗ Interrupt functions
∗
∗ This file is subject to the terms and conditions of the GNU General
∗ Public License . See the file ”COPYING” in the main directory of
∗ this archive for more details .
∗/

105

#ifndef INTERRUPT H
#define INTERRUPT H

#include <regoffset.h>

extern int interrupt nested;

typedef void (∗interrupt handler)(void);

void interrupt register (int irq , interrupt handler handler);

void interrupt hw(reg offset ∗regs);

//void interrupt timer(struct reg offset ∗regs);

void interrupt init (void);

#endif /∗ INTERRUPT H ∗/

: include/kernel.h
/∗
∗ Kernel header. Global kernel stuff
∗
∗ This file is subject to the terms and conditions of the GNU General
∗ Public License . See the file ”COPYING” in the main directory of
∗ this archive for more details .
∗/

#ifndef KERNEL H
#define KERNEL H

void panic(char ∗buf);

#endif /∗ KERNEL H ∗/

: include/lcd.h
/∗
∗ LCD Display driver header
∗
∗ This file is subject to the terms and conditions of the GNU General
∗ Public License . See the file ”COPYING” in the main directory of
∗ this archive for more details .
∗/

#ifndef LCD H
#define LCD H

void lcd int(unsigned int num);

void lcd message(const char∗ str);

#endif /∗ LCD H ∗/

: include/list.h

106 Appendix B. Source code

/∗
∗ Double non−circular linked list functions
∗
∗ This file is subject to the terms and conditions of the GNU General
∗ Public License . See the file ”COPYING” in the main directory of
∗ this archive for more details .
∗/

#ifndef LIST H
#define LIST H

#include <stddef.h>

/∗ The StructOffset macro returns the byte offset of the field ” field ”
∗ in the structure ”st”
∗/

#define StructOffset(st, field) \
((long) &(((st∗)0)−>field))

/∗ The StructBase returns a pointer to the structure of type ”st”
∗ where ”ptr” is pointing to the filed ” field ” in that structure .
∗/

#define StructBase(ptr, st, field) \
((st ∗) (((unsigned char∗)(ptr)) − StructOffset(st, field)))

typedef struct s list element {
struct s list element ∗ pNext;
struct s list element ∗ pPrev;

} t list element ;

typedef struct {
int number;
t list element ∗ pFirst;
t list element ∗ pLast;

} t list head ;

#define list empty(pHead) ((int)((pHead)−>pFirst == NULL))

void list init (t list head ∗ pHead);

void list put (t list head ∗ pHead,
t list element ∗ pElement);

void list put after (t list head ∗ pHead,
t list element ∗ pElement1,
t list element ∗ pElement2);

void list put before (t list head ∗ pHead,
t list element ∗ pElement1,
t list element ∗ pElement2);

t list element ∗ list get (t list head ∗ pHead);

void list remove(t list head ∗ pHead,
t list element ∗ pElement);

int list length (t list head ∗ pHead);

107

#endif /∗ LIST H ∗/

: include/mipsregs.h
/∗
∗ MIPS registers
∗
∗ This file is subject to the terms and conditions of the GNU General
∗ Public License . See the file ”COPYING” in the main directory of
∗ this archive for more details .
∗/

#ifndef MIPSREGS H
#define MIPSREGS H

/∗
∗ The following macros are especially useful for asm
∗ inline assembler.
∗/

#ifndef STR
#define STR(x) #x
#endif
#ifndef STR
#define STR(x) STR(x)
#endif

/∗
∗ Coprocessor 0 control register names
∗/

#define CP0 INDEX $0
#define CP0 RANDOM $1
#define CP0 ENTRYLO0 $2
#define CP0 ENTRYLO1 $3
#define CP0 CONTEXT $4
#define CP0 PAGEMASK $5
#define CP0 WIRED $6
#define CP0 BADVADDR $8
#define CP0 COUNT $9
#define CP0 ENTRYHI $10
#define CP0 COMPARE $11
#define CP0 STATUS $12
#define CP0 CAUSE $13
#define CP0 EPC $14
#define CP0 PRID $15
#define CP0 CONFIG $16
#define CP0 LLADDR $17
#define CP0 WATCHLO $18
#define CP0 WATCHHI $19
#define CP0 XCONTEXT $20
#define CP0 FRAMEMASK $21
#define CP0 DIAGNOSTIC $22
#define CP0 PERFORMANCE $25
#define CP0 ECC $26
#define CP0 CACHEERR $27
#define CP0 TAGLO $28
#define CP0 TAGHI $29
#define CP0 ERROREPC $30
#define CP0 DESAVE $31

108 Appendix B. Source code

/∗
∗ Macros to access the system control coprocessor
∗/

#define read 32bit cp0 register(source) \
({ int res ; \

asm volatile (\
”mfc0\t%0,”STR(source) \
: ”=r” (res)); \

res ;})

#define write 32bit cp0 register(register,value) \
asm volatile (\

”mtc0\t%0,”STR(register) \
: : ”r” (value));

/∗
∗ R4x00 interrupt enable / cause bits
∗/

#define IE SW0 (1<< 8)
#define IE SW1 (1<< 9)
#define IE IRQ0 (1<<10)
#define IE IRQ1 (1<<11)
#define IE IRQ2 (1<<12)
#define IE IRQ3 (1<<13)
#define IE IRQ4 (1<<14)
#define IE IRQ5 (1<<15)

/∗
∗ R4x00 interrupt cause bits
∗/

#define C SW0 (1<< 8)
#define C SW1 (1<< 9)
#define C IRQ0 (1<<10)
#define C IRQ1 (1<<11)
#define C IRQ2 (1<<12)
#define C IRQ3 (1<<13)
#define C IRQ4 (1<<14)
#define C IRQ5 (1<<15)

#ifndef LANGUAGE ASSEMBLY
/∗
∗ Manipulate the status register .
∗ Mostly used to access the interrupt bits .
∗/

#define BUILD SET CP0(name,register) \
extern inline unsigned int \
set cp0 ##name(unsigned int change, unsigned int new) \
{ \

unsigned int res; \
\

res = read 32bit cp0 register (register); \
res &= ˜change; \
res |= (new & change); \
write 32bit cp0 register (register, res); \

\
return res; \

}

109

BUILD SET CP0(status,CP0 STATUS)
BUILD SET CP0(cause,CP0 CAUSE)
BUILD SET CP0(config,CP0 CONFIG)

#endif /∗ defined (LANGUAGE ASSEMBLY) ∗/

/∗
∗ Bitfields in the R4xx0 cp0 status register
∗/

#define ST0 IE 0x00000001
#define ST0 EXL 0x00000002
#define ST0 ERL 0x00000004
#define ST0 KSU 0x00000018
define KSU USER 0x00000010
define KSU SUPERVISOR 0x00000008
define KSU KERNEL 0x00000000
#define ST0 UX 0x00000020
#define ST0 SX 0x00000040
#define ST0 KX 0x00000080
#define ST0 DE 0x00010000
#define ST0 CE 0x00020000

/∗
∗ Status register bits available in all MIPS CPUs.
∗/

#define ST0 IM 0x0000ff00
#define STATUSB IP0 8
#define STATUSF IP0 (1 << 8)
#define STATUSB IP1 9
#define STATUSF IP1 (1 << 9)
#define STATUSB IP2 10
#define STATUSF IP2 (1 << 10)
#define STATUSB IP3 11
#define STATUSF IP3 (1 << 11)
#define STATUSB IP4 12
#define STATUSF IP4 (1 << 12)
#define STATUSB IP5 13
#define STATUSF IP5 (1 << 13)
#define STATUSB IP6 14
#define STATUSF IP6 (1 << 14)
#define STATUSB IP7 15
#define STATUSF IP7 (1 << 15)
#define ST0 CH 0x00040000
#define ST0 SR 0x00100000
#define ST0 TS 0x00200000
#define ST0 BEV 0x00400000
#define ST0 RE 0x02000000
#define ST0 FR 0x04000000
#define ST0 CU 0xf0000000
#define ST0 CU0 0x10000000
#define ST0 CU1 0x20000000
#define ST0 CU2 0x40000000
#define ST0 CU3 0x80000000
#define ST0 XX 0x80000000 /∗ MIPS IV naming ∗/

/∗
∗ Bitfields and bit numbers in the coprocessor 0 cause register .
∗

110 Appendix B. Source code

∗ Refer to your MIPS R4xx0 manual, chapter 5 for explanation.
∗/

#define CAUSEB EXCCODE 2
#define CAUSEF EXCCODE (31 << 2)
#define CAUSEB IP 8
#define CAUSEF IP (255 << 8)
#define CAUSEB IP0 8
#define CAUSEF IP0 (1 << 8)
#define CAUSEB IP1 9
#define CAUSEF IP1 (1 << 9)
#define CAUSEB IP2 10
#define CAUSEF IP2 (1 << 10)
#define CAUSEB IP3 11
#define CAUSEF IP3 (1 << 11)
#define CAUSEB IP4 12
#define CAUSEF IP4 (1 << 12)
#define CAUSEB IP5 13
#define CAUSEF IP5 (1 << 13)
#define CAUSEB IP6 14
#define CAUSEF IP6 (1 << 14)
#define CAUSEB IP7 15
#define CAUSEF IP7 (1 << 15)
#define CAUSEB IV 23
#define CAUSEF IV (1 << 23)
#define CAUSEB CE 28
#define CAUSEF CE (3 << 28)
#define CAUSEB BD 31
#define CAUSEF BD (1 << 31)

/∗
∗ Bits in the coprozessor 0 config register .
∗/

#define CONF CM CACHABLE NO WA 0
#define CONF CM CACHABLE WA 1
#define CONF CM UNCACHED 2
#define CONF CM CACHABLE NONCOHERENT 3
#define CONF CM CACHABLE CE 4
#define CONF CM CACHABLE COW 5
#define CONF CM CACHABLE CUW 6
#define CONF CM CACHABLE ACCELERATED 7
#define CONF CM CMASK 7
#define CONF DB (1 << 4)
#define CONF IB (1 << 5)
#define CONF SC (1 << 17)

/∗
∗ Events counted by counter #0
∗/

#define CE0 CYCLES 0
#define CE0 INSN ISSUED 1
#define CE0 LPSC ISSUED 2
#define CE0 S ISSUED 3
#define CE0 SC ISSUED 4
#define CE0 SC FAILED 5
#define CE0 BRANCH DECODED 6
#define CE0 QW WB SECONDARY 7
#define CE0 CORRECTED ECC ERRORS 8
#define CE0 ICACHE MISSES 9

111

#define CE0 SCACHE I MISSES 10
#define CE0 SCACHE I WAY MISSPREDICTED 11
#define CE0 EXT INTERVENTIONS REQ 12
#define CE0 EXT INVALIDATE REQ 13
#define CE0 VIRTUAL COHERENCY COND 14
#define CE0 INSN GRADUATED 15

/∗
∗ Events counted by counter #1
∗/

#define CE1 CYCLES 0
#define CE1 INSN GRADUATED 1
#define CE1 LPSC GRADUATED 2
#define CE1 S GRADUATED 3
#define CE1 SC GRADUATED 4
#define CE1 FP INSN GRADUATED 5
#define CE1 QW WB PRIMARY 6
#define CE1 TLB REFILL 7
#define CE1 BRANCH MISSPREDICTED 8
#define CE1 DCACHE MISS 9
#define CE1 SCACHE D MISSES 10
#define CE1 SCACHE D WAY MISSPREDICTED 11
#define CE1 EXT INTERVENTION HITS 12
#define CE1 EXT INVALIDATE REQ 13
#define CE1 SP HINT TO CEXCL SC BLOCKS 14
#define CE1 SP HINT TO SHARED SC BLOCKS 15

/∗
∗ These flags define in which priviledge mode the counters count events
∗/

#define CEB USER 8 /∗ Count events in user mode, EXL = ERL = 0 ∗/
#define CEB SUPERVISOR 4 /∗ Count events in supvervisor mode EXL = ERL = 0 ∗/
#define CEB KERNEL 2 /∗ Count events in kernel mode EXL = ERL = 0 ∗/
#define CEB EXL 1 /∗ Count events with EXL = 1, ERL = 0 ∗/

#endif /∗ MIPSREGS H ∗/

: include/piix4.h
/∗
∗ Carsten Langgaard, carstenl@mips.com
∗ Copyright (C) 2000 MIPS Technologies, Inc. All rights reserved.
∗
∗ This program is free software ; you can distribute it and/or modify it
∗ under the terms of the GNU General Public License (Version 2) as
∗ published by the Free Software Foundation.
∗
∗ This program is distributed in the hope it will be useful , but WITHOUT
∗ ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
∗ FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
∗ for more details .
∗
∗ You should have received a copy of the GNU General Public License along
∗ with this program; if not, write to the Free Software Foundation, Inc.,
∗ 59 Temple Place − Suite 330, Boston MA 02111−1307, USA.
∗
∗ Register definitions for Intel PIIX4 South Bridge Device.
∗

112 Appendix B. Source code

∗/

#ifndef PIIX4 H
#define PIIX4 H

/∗∗
∗ IO register offsets
∗∗/

#define PIIX4 ICTLR1 ICW1 0x20
#define PIIX4 ICTLR1 ICW2 0x21
#define PIIX4 ICTLR1 ICW3 0x21
#define PIIX4 ICTLR1 ICW4 0x21
#define PIIX4 ICTLR2 ICW1 0xa0
#define PIIX4 ICTLR2 ICW2 0xa1
#define PIIX4 ICTLR2 ICW3 0xa1
#define PIIX4 ICTLR2 ICW4 0xa1
#define PIIX4 ICTLR1 OCW1 0x21
#define PIIX4 ICTLR1 OCW2 0x20
#define PIIX4 ICTLR1 OCW3 0x20
#define PIIX4 ICTLR1 OCW4 0x20
#define PIIX4 ICTLR2 OCW1 0xa1
#define PIIX4 ICTLR2 OCW2 0xa0
#define PIIX4 ICTLR2 OCW3 0xa0
#define PIIX4 ICTLR2 OCW4 0xa0

/∗∗
∗ Register encodings.
∗∗/

#define PIIX4 OCW2 NSEOI (0x1 << 5)
#define PIIX4 OCW2 SEOI (0x3 << 5)
#define PIIX4 OCW2 RNSEOI (0x5 << 5)
#define PIIX4 OCW2 RAEOIS (0x4 << 5)
#define PIIX4 OCW2 RAEOIC (0x0 << 5)
#define PIIX4 OCW2 RSEOI (0x7 << 5)
#define PIIX4 OCW2 SP (0x6 << 5)
#define PIIX4 OCW2 NOP (0x2 << 5)

#define PIIX4 OCW2 SEL (0x0 << 3)

#define PIIX4 OCW2 ILS 0 0
#define PIIX4 OCW2 ILS 1 1
#define PIIX4 OCW2 ILS 2 2
#define PIIX4 OCW2 ILS 3 3
#define PIIX4 OCW2 ILS 4 4
#define PIIX4 OCW2 ILS 5 5
#define PIIX4 OCW2 ILS 6 6
#define PIIX4 OCW2 ILS 7 7
#define PIIX4 OCW2 ILS 8 0
#define PIIX4 OCW2 ILS 9 1
#define PIIX4 OCW2 ILS 10 2
#define PIIX4 OCW2 ILS 11 3
#define PIIX4 OCW2 ILS 12 4
#define PIIX4 OCW2 ILS 13 5
#define PIIX4 OCW2 ILS 14 6
#define PIIX4 OCW2 ILS 15 7

#define PIIX4 OCW3 SEL (0x1 << 3)

113

#define PIIX4 OCW3 IRR 0x2
#define PIIX4 OCW3 ISR 0x3

#endif /∗ !(PIIX4 H) ∗/

: include/printf.h
/∗
∗ Printf Header
∗
∗ This file is subject to the terms and conditions of the GNU General
∗ Public License . See the file ”COPYING” in the main directory of
∗ this archive for more details .
∗/

#ifndef PRINTF H
#define PRINTF H

#include <arch/stdarg.h>

/∗
∗ Format a string and place it in a buffer
∗/

int sprintf (char ∗ buf, const char ∗fmt , ...);

/∗
∗ Send a print message to the console driver .
∗ Used for debug only.
∗/

void printf(char ∗fmt , ...);

#endif /∗ PRINTF H ∗/

: include/process.h
/∗
∗ Process header file
∗
∗ This file is subject to the terms and conditions of the GNU General
∗ Public License . See the file ”COPYING” in the main directory of
∗ this archive for more details .
∗/

#ifndef PROCESS H
#define PROCESS H

#include <list.h>

/∗ Size of the kernel/idle process stack in dwords ∗/
#define KERNEL STACK 2000

/∗ The maximum number of processes ∗/
#define MAX PROCESSES 20

/∗ Process states ∗/
#define READY 0
#define RUNNING 1

114 Appendix B. Source code

#define WAITING 2

typedef struct {
t list element process elem;
int id ;
int priority ;
int orig priority ; /∗ original priority of a process ∗/
int state ;
unsigned long∗ stack pointer ;

} t process ;

#define process base(ple) StructBase(ple, t process, process elem)

/∗ Pointer to current running process ∗/
extern t process∗ process current ;
extern t process∗ process old ;

/∗ Sorted of ready processes ∗/
extern t list head process list ;

void process init (void);

void process insert(t list head ∗ pHead, t list element∗ pElement);

void process reorder(t list head ∗ pHead, t list element∗ pElement);

void process create(void (∗function)(void),
int priority ,
int stack size);

void process list print (t list head ∗ pHead);

#endif /∗ PROCESS H ∗/

: include/regdef.h
/∗
∗ Register definitions
∗
∗ This file is subject to the terms and conditions of the GNU General
∗ Public License . See the file ”COPYING” in the main directory of
∗ this archive for more details .
∗/

#ifndef REGDEF H
#define REGDEF H

#define zero $0 /∗ wired zero ∗/
#define AT $at /∗ assembler temp − uppercase because of ”.set at” ∗/
#define v0 $2 /∗ return value − caller saved ∗/
#define v1 $3
#define a0 $4 /∗ argument registers ∗/
#define a1 $5
#define a2 $6
#define a3 $7
#define t0 $8 /∗ caller saved in 32 bit (arg reg 64 bit) ∗/
#define t1 $9
#define t2 $10
#define t3 $11

115

#define t4 $12 /∗ caller saved ∗/
#define t5 $13
#define t6 $14
#define t7 $15
#define s0 $16 /∗ callee saved ∗/
#define s1 $17
#define s2 $18
#define s3 $19
#define s4 $20
#define s5 $21
#define s6 $22
#define s7 $23
#define t8 $24 /∗ caller saved ∗/
#define t9 $25 /∗ callee address for PIC/temp ∗/
#define k0 $26 /∗ kernel temporary ∗/
#define k1 $27
#define gp $28 /∗ global pointer − caller saved for PIC ∗/
#define sp $29 /∗ stack pointer ∗/
#define fp $30 /∗ frame pointer ∗/
#define s8 $30 /∗ callee saved ∗/
#define ra $31 /∗ return address ∗/

#endif /∗ REGDEF H ∗/

: include/regoffset.h
/∗
∗ MIPS regs offsets
∗
∗ This file is subject to the terms and conditions of the GNU General
∗ Public License . See the file ”COPYING” in the main directory of
∗ this archive for more details .
∗/

#ifndef REGOFFSET H
#define REGOFFSET H

#ifndef LANGUAGE ASSEMBLY

/∗ MIPS register offsets for use in C ∗/

typedef struct {
/∗ Saved main processor registers . ∗/
unsigned long zero;
unsigned long at;
unsigned long v0;
unsigned long v1;
unsigned long a0;
unsigned long a1;
unsigned long a2;
unsigned long a3;
unsigned long t0;
unsigned long t1;
unsigned long t2;
unsigned long t3;
unsigned long t4;
unsigned long t5;
unsigned long t6;

116 Appendix B. Source code

unsigned long t7;
unsigned long s0;
unsigned long s1;
unsigned long s2;
unsigned long s3;
unsigned long s4;
unsigned long s5;
unsigned long s6;
unsigned long s7;
unsigned long t8;
unsigned long t9;
unsigned long k0;
unsigned long k1;
unsigned long gp;
unsigned long sp;
unsigned long s8;
unsigned long fp;
unsigned long ra;

/∗ Other saved registers . ∗/
unsigned long lo;
unsigned long hi;

/∗ Saved cp0 registers . ∗/
unsigned long cp0 epc;
unsigned long cp0 badvaddr;
unsigned long cp0 status;
unsigned long cp0 cause;

} reg offset ;

#else

/∗ MIPS register offsets for use in assembler ∗/

#define R ZERO 0
#define R AT 8
#define R V0 16
#define R V1 24
#define R A0 32
#define R A1 40
#define R A2 48
#define R A3 56
#define R T0 64
#define R T1 72
#define R T2 80
#define R T3 88
#define R T4 96
#define R T5 104
#define R T6 112
#define R T7 120
#define R S0 128
#define R S1 136
#define R S2 144
#define R S3 152
#define R S4 160
#define R S5 168
#define R S6 176
#define R S7 184

117

#define R T8 192
#define R T9 200
#define R K0 208
#define R K1 216
#define R GP 224
#define R SP 232
#define R S8 240
#define R FP 240
#define R RA 248
#define R LO 256
#define R HI 264
#define R EPC 272
#define R BVADDR 280
#define R STATUS 288
#define R CAUSE 296
#define R SIZE 304

#endif /∗ LANGUAGE ASSEMBLY ∗/

#endif /∗ REGOFFSET H ∗/

: include/rtc.h
/∗
∗ Register definitions for the Real−Time−Clock / CMOS RAM
∗
∗ Modified for use in this kernel by Lars Munch, 2001
∗
∗ Copyright Torsten Duwe <duwe@informatik.uni−erlangen.de> 1993
∗ derived from Data Sheet, Copyright Motorola 1984 (!).
∗ It was written to be part of the Linux operating system.
∗
∗ This file is subject to the terms and conditions of the GNU General
∗ Public License . See the file ”COPYING” in the main directory of
∗ this archive for more details .
∗/

#ifndef RTC H
#define RTC H

/∗ Registers ∗/
#define RTC SECONDS 0
#define RTC SECONDS ALARM 1
#define RTC MINUTES 2
#define RTC MINUTES ALARM 3
#define RTC HOURS 4
#define RTC HOURS ALARM 5
#define RTC DAY OF WEEK 6
#define RTC DAY OF MONTH 7
#define RTC MONTH 8
#define RTC YEAR 9

/∗ Control registers ∗/
#define RTC REG A 10
#define RTC REG B 11
#define RTC REG C 12
#define RTC REG D 13

118 Appendix B. Source code

/∗∗
∗ register details
∗∗/

#define RTC FREQ SELECT RTC REG A

/∗ update−in−progress − set to ”1” 244 microsecs before RTC goes off the bus,
∗ reset after update (may take 1.984ms @ 32768Hz RefClock) is complete,
∗ totalling to a max high interval of 2.228 ms.
∗/

define RTC UIP 0x80
define RTC DIV CTL 0x70

/∗ divider control : refclock values 4.194 / 1.049 MHz / 32.768 kHz ∗/
define RTC REF CLCK 4MHZ 0x00
define RTC REF CLCK 1MHZ 0x10
define RTC REF CLCK 32KHZ 0x20

/∗ 2 values for divider stage reset , others for ”testing purposes only” ∗/
define RTC DIV RESET1 0x60
define RTC DIV RESET2 0x70

/∗ Periodic intr . / Square wave rate select. 0=none, 1=32.8kHz,... 15=2Hz ∗/
define RTC RATE SELECT 0x0F

#define RTC CONTROL RTC REG B
define RTC SET 0x80 /∗ disable updates for clock setting ∗/
define RTC PIE 0x40 /∗ periodic interrupt enable ∗/
define RTC AIE 0x20 /∗ alarm interrupt enable ∗/
define RTC UIE 0x10 /∗ update−finished interrupt enable ∗/
define RTC SQWE 0x08 /∗ enable square−wave output ∗/
define RTC DM BINARY 0x04 /∗ all time/date values are BCD if clear ∗/
define RTC 24H 0x02 /∗ 24 hour mode − else hours bit 7 means pm ∗/
define RTC DST EN 0x01 /∗ auto switch DST − works f. USA only ∗/

#define RTC INTR FLAGS RTC REG C
/∗ caution − cleared by read ∗/
define RTC IRQF 0x80 /∗ any of the following 3 is active ∗/
define RTC PF 0x40
define RTC AF 0x20
define RTC UF 0x10

#define RTC VALID RTC REG D
define RTC VRT 0x80 /∗ valid RAM and time ∗/

#endif /∗ RTC H ∗/

: include/sched.h
/∗
∗ Sched Header
∗
∗ This file is subject to the terms and conditions of the GNU General
∗ Public License . See the file ”COPYING” in the main directory of
∗ this archive for more details .
∗/

#ifndef SCHED H
#define SCHED H

119

extern int sched now;

void schedule(void);

void schedule frominterrupt(void);

#endif /∗ SCHED H ∗/

: include/semaphore.h
/∗
∗ Semaphore definitions
∗
∗ This file is subject to the terms and conditions of the GNU General
∗ Public License . See the file ”COPYING” in the main directory of
∗ this archive for more details .
∗/

#ifndef SEMAPHORE H
#define SEMAPHORE H

#include <list.h>
#include <process.h>

/∗ Semaphore state ∗/
#define FREE 0
#define LOCKED 1

typedef struct {
t list head list waiting ; /∗ Waiting processes list ∗/
int state ; /∗ Semaphore state ∗/
t process ∗owner; /∗ process using the semaphore ∗/

} t semaphore;

void semaphore setup(t semaphore∗ pS);
void semaphore wait(t semaphore∗ pS);
void semaphore signal(t semaphore∗ pS);

#endif /∗ SEMAPHORE H ∗/

: include/serial.h
/∗
∗ This header file defines all the registers and
∗ settings of the FDC37M817 on the Malta board.
∗ Should be compatible with the NS16C550A, the
∗ 16450 ACE and the NS16C550A.
∗
∗ This file is subject to the terms and conditions of the GNU General
∗ Public License . See the file ”COPYING” in the main directory of
∗ this archive for more details .
∗/

#ifndef SERIAL H
#define SERIAL H

/∗
∗ Addressing the Serial Port

120 Appendix B. Source code

∗/
#define UART RX 0 /∗ In : Receive buffer (DLAB=0) ∗/
#define UART TX 0 /∗ Out: Transmit buffer (DLAB=0) ∗/
#define UART DLL 0 /∗ Out: Divisor Latch Low (DLAB=1) ∗/
#define UART IER 1 /∗ I/O: Interrupt Enable Register

∗ (DLAB=0) ∗/
#define UART DLM 1 /∗ Out: Divisor Latch High (DLAB=1) ∗/
#define UART IIR 2 /∗ In : Interrupt ID Register ∗/
#define UART FCR 2 /∗ Out: FIFO Control Register ∗/
#define UART LCR 3 /∗ I/O: Line Control Register ∗/
#define UART MCR 4 /∗ I/O: Modem Control Register ∗/
#define UART LSR 5 /∗ I/O: Line Status Register ∗/
#define UART MSR 6 /∗ I/O: Modem Status Register ∗/
#define UART SCR 7 /∗ I/O: Scratchpad ∗/

/∗
∗ These are the definitions for the Interrupt Enable Register (IER)
∗/

#define UART IER RDI 0x01 /∗ Enable receiver data
∗ available interrupt ∗/

#define UART IER THRI 0x02 /∗ Enable Transmitter holding
∗ empty register int . ∗/

#define UART IER RLSI 0x04 /∗ Enable receiver line status interrupt ∗/
#define UART IER MSI 0x08 /∗ Enable Modem status interrupt ∗/

/∗
∗ These are the definitions for the FIFO Control Register (FCR)
∗/

#define UART FCR ENABLE FIFO 0x01 /∗ Enable the RCVR/XMIT FIFO ∗/
#define UART FCR CLEAR RCVR 0x02 /∗ Clear the RCVR FIFO ∗/
#define UART FCR CLEAR XMIT 0x04 /∗ Clear the XMIT FIFO ∗/
#define UART FCR TRIGGER 1 0x00 /∗ Mask for trigger set at 1 ∗/
#define UART FCR TRIGGER 4 0x40 /∗ Mask for trigger set at 4 ∗/
#define UART FCR TRIGGER 8 0x80 /∗ Mask for trigger set at 8 ∗/
#define UART FCR TRIGGER 14 0xC0 /∗ Mask for trigger set at 14 ∗/

/∗
∗ These are the definitions for the Interrupt Identification Register (IIR)
∗/

#define UART IIR NO INT 0x01 /∗ No interrupts pending ∗/
#define UART IIR ID 0x06 /∗ Mask for the interrupt ID ∗/

#define UART IIR MSI 0x00 /∗ Modem status interrupt ∗/
#define UART IIR THRI 0x02 /∗ Transmitter holding register empty ∗/
#define UART IIR RDI 0x04 /∗ Receiver data interrupt ∗/
#define UART IIR RLSI 0x06 /∗ Receiver line status interrupt ∗/
#define UART IIR CTII 0x0C /∗ Character timeout ID interrupt ∗/

/∗
∗ These are the definitions for the Line Control Register (LCR)
∗
∗ Note: if the word length is 5 bits (UART LCR WLEN5), then setting
∗ UART LCR STOP will select 1.5 stop bits, not 2 stop bits.
∗/

#define UART LCR WLEN5 0x00 /∗ Wordlength: 5 bits ∗/
#define UART LCR WLEN6 0x01 /∗ Wordlength: 6 bits ∗/
#define UART LCR WLEN7 0x02 /∗ Wordlength: 7 bits ∗/
#define UART LCR WLEN8 0x03 /∗ Wordlength: 8 bits ∗/

121

#define UART LCR STOP 0x04 /∗ Stop bits: 0=1 stop bit, 1= 2 stop bits ∗/
#define UART LCR PARITY 0x08 /∗ Parity Enable ∗/
#define UART LCR EPAR 0x10 /∗ Even parity select ∗/
#define UART LCR SPAR 0x20 /∗ Stick parity ∗/
#define UART LCR SBC 0x40 /∗ Set break control ∗/
#define UART LCR DLAB 0x80 /∗ Divisor latch access bit ∗/

/∗
∗ These are the definitions for the Modem Control Register (MCR)
∗/

#define UART MCR DTR 0x01 /∗ DTR complement ∗/
#define UART MCR RTS 0x02 /∗ RTS complement ∗/
#define UART MCR OUT1 0x04 /∗ Out1 complement ∗/
#define UART MCR OUT2 0x08 /∗ Out2 complement ∗/
#define UART MCR LOOP 0x10 /∗ Enable loopback test mode ∗/

/∗
∗ These are the definitions for the Line Status Register (LSR)
∗/

#define UART LSR DR 0x01 /∗ Receiver data ready ∗/
#define UART LSR OE 0x02 /∗ Overrun error indicator ∗/
#define UART LSR PE 0x04 /∗ Parity error indicator ∗/
#define UART LSR FE 0x08 /∗ Frame error indicator ∗/
#define UART LSR BI 0x10 /∗ Break interrupt indicator ∗/
#define UART LSR THRE 0x20 /∗ Transmit−hold−register empty ∗/
#define UART LSR TEMT 0x40 /∗ Transmitter empty ∗/

/∗
∗ These are the definitions for the Modem Status Register (MSR)
∗/

#define UART MSR DCTS 0x01 /∗ Delta CTS ∗/
#define UART MSR DDSR 0x02 /∗ Delta DSR ∗/
#define UART MSR TERI 0x04 /∗ Trailing edge ring indicator ∗/
#define UART MSR DDCD 0x08 /∗ Delta DCD ∗/
#define UART MSR ANY DELTA 0x0F /∗ Any of the delta bits! ∗/
#define UART MSR CTS 0x10 /∗ Clear to Send ∗/
#define UART MSR DSR 0x20 /∗ Data Set Ready ∗/
#define UART MSR RI 0x40 /∗ Ring Indicator ∗/
#define UART MSR DCD 0x80 /∗ Data Carrier Detect ∗/

int serial putchar (char c);

void serial print (char ∗buf);

void serial init (void);

#endif /∗ SERIAL H ∗/

: include/setjmp.h
/∗
∗ setjmp header.
∗
∗ This file is MIPS64 specific
∗
∗ This file is subject to the terms and conditions of the GNU General
∗ Public License . See the file ”COPYING” in the main directory of
∗ this archive for more details .

122 Appendix B. Source code

∗/

#ifndef SETJMP H
#define SETJMP H

#define JBLEN 23
#define JBTYPE long long

typedef JBTYPE jmp buf[JBLEN];

int setjmp(jmp buf);
void longjmp(jmp buf, int);

#endif /∗ SETJMP H ∗/

: include/stackframe.h
/∗
∗ Stackframe macros.
∗
∗ Based on code from the Linux kernel.
∗
∗ This file is subject to the terms and conditions of the GNU General
∗ Public License . See the file ”COPYING” in the main directory of
∗ this archive for more details .
∗/

#ifndef STACKFRAME H
#define STACKFRAME H

#include <asm.h>
#include <addrspace.h>
#include <regdef.h>
#include <regoffset.h>

/∗
∗ Macros to save the current state
∗/

.macro SAVE SOME

. set push

. set reorder
//move k1, sp
move k0, sp
dsubu sp, sp, R SIZE
sd k0, R SP(sp)
sd v1, R V1(sp)
sd zero , R ZERO(sp)
dmfc0 v1, CP0 STATUS
sd v0, R V0(sp)
sd v1, R STATUS(sp)
sd a0, R A0(sp)
dmfc0 v1, CP0 CAUSE
sd a1, R A1(sp)
sd v1, R CAUSE(sp)
sd a2, R A2(sp)
dmfc0 v1, CP0 EPC
sd a3, R A3(sp)
sd v1, R EPC(sp)

123

sd t9 , R T9(sp)
sd gp, R GP(sp)
sd ra , R RA(sp)
. set pop
.endm

.macro SAVE AT

. set push

. set noat
sd AT, R AT(sp)
. set pop
.endm

.macro SAVE TEMP
mfhi v1
sd t0 , R T0(sp)
sd t1 , R T1(sp)
sd v1, R HI(sp)
mflo v1
sd t2 , R T2(sp)
sd t3 , R T3(sp)
sd v1, R LO(sp)
sd t4 , R T4(sp)
sd t5 , R T5(sp)
sd t6 , R T6(sp)
sd t7 , R T7(sp)
sd t8 , R T8(sp)
.endm

.macro SAVE STATIC
sd s0 , R S0(sp)
sd s1 , R S1(sp)
sd s2 , R S2(sp)
sd s3 , R S3(sp)
sd s4 , R S4(sp)
sd s5 , R S5(sp)
sd s6 , R S6(sp)
sd s7 , R S7(sp)
sd s8 , R S8(sp)
.endm

.macro SAVE ALL
SAVE SOME
SAVE AT
SAVE TEMP
SAVE STATIC
.endm

/∗
∗ Macros to restore to some state
∗/

.macro RESTORE SOME

. set push
/∗ . set reorder

mfc0 t0 , CP0 STATUS
. set pop
ori t0 , 0x1f
xori t0 , 0x1f

124 Appendix B. Source code

mtc0 t0 , CP0 STATUS
li v1, 0xff00
and t0 , v1
ld v0, R STATUS(sp)
nor v1, zero , v1
and v0, v1
or v0, t0

∗/
. set push
. set reorder
ld v0, R STATUS(sp)
. set pop
dmtc0 v0, CP0 STATUS
ld v1, R EPC(sp)
dmtc0 v1, CP0 EPC
ld ra , R RA(sp)
ld gp, R GP(sp)
ld t9 , R T9(sp)
ld a3, R A3(sp)
ld a2, R A2(sp)
ld a1, R A1(sp)
ld a0, R A0(sp)
ld v1, R V1(sp)
ld v0, R V0(sp)
.endm

.macro RESTORE AT

. set push

. set noat
ld AT, R AT(sp)
. set pop
.endm

.macro RESTORE TEMP
ld t8 , R LO(sp)
ld t0 , R T0(sp)
ld t1 , R T1(sp)
mtlo t8
ld t8 , R HI(sp)
ld t2 , R T2(sp)
ld t3 , R T3(sp)
mthi t8
ld t4 , R T4(sp)
ld t5 , R T5(sp)
ld t6 , R T6(sp)
ld t7 , R T7(sp)
ld t8 , R T8(sp)
.endm

.macro RESTORE STATIC
ld s0 , R S0(sp)
ld s1 , R S1(sp)
ld s2 , R S2(sp)
ld s3 , R S3(sp)
ld s4 , R S4(sp)
ld s5 , R S5(sp)
ld s6 , R S6(sp)
ld s7 , R S7(sp)

125

ld s8 , R S8(sp)
.endm

.macro RESTORE SP
ld sp, R SP(sp)
.endm

.macro RESTORE ALL
RESTORE SOME
RESTORE AT
RESTORE TEMP
RESTORE STATIC
RESTORE SP
.endm

/∗
∗ Disable interrupts .
∗/

.macro CLI

. set push

. set reorder
mfc0 t0 , CP0 STATUS
. set pop
li t1 , ST0 ERL | ST0 EXL | ST0 IE
or t0 , t1
xori t0 , ST0 ERL | ST0 EXL | ST0 IE
mtc0 t0 , CP0 STATUS
.endm

/∗
∗ Enable interrupts.
∗/

.macro STI

. set push

. set reorder
mfc0 t0 , CP0 STATUS
. set pop
li t1 , ST0 ERL | ST0 EXL | ST0 IE
or t0 , t1
xori t0 , ST0 ERL | ST0 EXL
mtc0 t0 , CP0 STATUS
.endm

/∗
∗ Just move to kernel mode and leave interrupts as they are.
∗/

.macro KMODE

. set push

. set reorder
mfc0 t0 , CP0 STATUS
. set pop
li t1 , KSU USER | KSU SUPERVISOR | ST0 ERL | ST0 EXL
or t0 , t1
xori t0 , KSU USER | KSU SUPERVISOR | ST0 ERL | ST0 EXL
mtc0 t0 , CP0 STATUS
.endm

#endif /∗ STACKFRAME H ∗/

126 Appendix B. Source code

: include/stddef.h
/∗
∗ Standard definitions header
∗
∗ This file is subject to the terms and conditions of the GNU General
∗ Public License . See the file ”COPYING” in the main directory of
∗ this archive for more details .
∗/

#ifndef STDDEF H
#define STDDEF H

#define NULL ((void ∗)0)

#endif /∗ STDDEF H ∗/

: include/system.h
/∗
∗ C functions for setting and clearing interrupt flags .
∗
∗ Functions are taken from the Linux kernel
∗
∗ This file is subject to the terms and conditions of the GNU General
∗ Public License . See the file ”COPYING” in the main directory of
∗ this archive for more details .
∗/

#ifndef SYSTEM H
#define SYSTEM H

extern inline void
sti (void)
{

asm volatile (
”. set\tnoreorder\n\t”
”.set\tnoat\n\t”
”mfc0\t$1,$12\n\t”
”ori\t$1,0x1f\n\t”
”xori\t$1,0x1e\n\t”
”mtc0\t$1,$12\n\t”
”.set\tat\n\t”
”.set\treorder”
: /∗ no outputs ∗/
: /∗ no inputs ∗/
: ”$1”, ”memory”);

}

/∗
∗ For cli () we have to insert nops to make shure that the new value
∗ has actually arrived in the status register before the end of this
∗ macro.
∗ R4000/R4400 need three nops, the R4600 two nops and the R10000 needs
∗ no nops at all .
∗/

extern inline void
cli (void)
{

asm volatile (

127

”.set\tnoreorder\n\t”
”.set\tnoat\n\t”
”mfc0\t$1,$12\n\t”
”ori\t$1,1\n\t”
”xori\t$1,1\n\t”
”mtc0\t$1,$12\n\t”
”nop\n\t”
”nop\n\t”
”nop\n\t”
”.set\tat\n\t”
”.set\treorder”
: /∗ no outputs ∗/
: /∗ no inputs ∗/
: ”$1”, ”memory”);

}

#define save flags(x) \
asm volatile (\

”.set\tnoreorder\n\t” \
”mfc0\t%0,$12\n\t” \
”.set\treorder” \
: ”=r” (x))

#define save and cli(x) \
asm volatile (\

”.set\tnoreorder\n\t” \
”.set\tnoat\n\t” \
”mfc0\t%0,$12\n\t” \
”ori\t$1,%0,1\n\t” \
”xori\t$1,1\n\t” \
”mtc0\t$1,$12\n\t” \
”nop\n\t” \
”nop\n\t” \
”nop\n\t” \
”.set\tat\n\t” \
”.set\treorder” \
: ”=r” (x) \
: /∗ no inputs ∗/ \
: ”$1”, ”memory”)

#define restore flags(flags) \
do { \

unsigned long tmp1; \
\

asm volatile (\
”.set\tnoreorder\t\t\t# restore flags \n\t” \
”.set\tnoat\n\t” \
”mfc0\t$1, $12\n\t” \
”andi\t%0, 1\n\t” \
”ori\t$1, 1\n\t” \
”xori\t$1, 1\n\t” \
”or\t%0, $1\n\t” \
”mtc0\t%0, $12\n\t” \
”nop\n\t” \
”nop\n\t” \
”nop\n\t” \
”.set\tat\n\t” \
”.set\treorder” \

128 Appendix B. Source code

: ”=r” (tmp1) \
: ”0” (flags) \
: ”$1”, ”memory”); \

} while(0)

#define cli() cli ()
#define sti() sti ()
#define save flags(x) save flags (x)
#define restore flags(x) restore flags (x)
#define save and cli(x) save and cli (x)

#endif /∗ SYSTEM H ∗/

: include/timer.h
/∗
∗ Timer Header
∗
∗ This file is subject to the terms and conditions of the GNU General
∗ Public License . See the file ”COPYING” in the main directory of
∗ this archive for more details .
∗/

#ifndef TIMER H
#define TIMER H

#include <regoffset.h>
#include <semaphore.h>
#include <list.h>

/∗ Amount to increment compare reg each time ∗/
extern unsigned int timer offset;

/∗ Timer state ∗/
#define IDLE 0
#define ACTIVE 1
#define DONE 2

/∗ Timer type ∗/
#define ONCE 0
#define PERIODIC 1

typedef struct {
t list element timer elem;
t semaphore semaphore;
int state ;
int type;
unsigned int length;
unsigned int count;

} t timer ;

#define timer base(ple) StructBase(ple, t timer, timer elem)

void timer interrupt(void);

void timer init(void);

void timer setup(t timer∗);

129

int timer start(t timer∗ pT, unsigned int msec,
int timerType);

int timer waitfor(t timer∗);

void timer cancel(t timer∗);

#endif /∗ TIMER H ∗/

: include/yamon.h
#ifndef YAMON H
#define YAMON H

/∗ Basic types ∗/
typedef unsigned int t yamon uint32;
typedef signed int t yamon int32;
typedef unsigned char t yamon bool;

/∗ YAMON Environment variable ∗/
typedef struct
{

char ∗name;
char ∗val;

}
t yamon env var;

#endif /∗ YAMON H ∗/

: lib/vsprintf.c
/∗
∗ This file contains a nice vsprintf function . This code is
∗ heavily based on stuff by Lars Wirzenius & Linus Torvalds
∗ from the linus kernel
∗
∗ This file is subject to the terms and conditions of the GNU General
∗ Public License . See the file ”COPYING” in the main directory of
∗ this archive for more details .
∗/

#include <arch/stdarg.h>
#include <serial.h>

#define ZEROPAD 1 /∗ pad with zero ∗/
#define SIGN 2 /∗ unsigned/signed long ∗/
#define PLUS 4 /∗ show plus ∗/
#define SPACE 8 /∗ space if plus ∗/
#define LEFT 16 /∗ left justified ∗/
#define SPECIAL 32 /∗ 0x ∗/
#define LARGE 64 /∗ use ’ABCDEF’ instead of ’abcdef’ ∗/

/∗
∗ NOTE! This ctype does not handle EOF like the standard C
∗ library is required to.
∗/

130 Appendix B. Source code

#define U 0x01 /∗ upper ∗/
#define L 0x02 /∗ lower ∗/
#define D 0x04 /∗ digit ∗/
#define C 0x08 /∗ cntrl ∗/
#define P 0x10 /∗ punct ∗/
#define S 0x20 /∗ white space (space/lf/tab) ∗/
#define X 0x40 /∗ hex digit ∗/
#define SP 0x80 /∗ hard space (0x20) ∗/

unsigned char ctype[] = {
C, C, C, C, C, C, C, C, /∗ 0−7 ∗/
C, C| S, C| S, C| S, C| S, C| S, C, C, /∗ 8−15 ∗/
C, C, C, C, C, C, C, C, /∗ 16−23 ∗/
C, C, C, C, C, C, C, C, /∗ 24−31 ∗/
S| SP, P, P, P, P, P, P, P, /∗ 32−39 ∗/
P, P, P, P, P, P, P, P, /∗ 40−47 ∗/
D, D, D, D, D, D, D, D, /∗ 48−55 ∗/
D, D, P, P, P, P, P, P, /∗ 56−63 ∗/
P, U| X, U| X, U| X, U| X, U| X, U| X, U, /∗ 64−71 ∗/
U, U, U, U, U, U, U, U, /∗ 72−79 ∗/
U, U, U, U, U, U, U, U, /∗ 80−87 ∗/
U, U, U, P, P, P, P, P, /∗ 88−95 ∗/
P, L| X, L| X, L| X, L| X, L| X, L| X, L, /∗ 96−103 ∗/
L, L, L, L, L, L, L, L, /∗ 104−111 ∗/
L, L, L, L, L, L, L, L, /∗ 112−119 ∗/
L, L, L, P, P, P, P, C, /∗ 120−127 ∗/

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /∗ 128−143 ∗/
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /∗ 144−159 ∗/

S| SP, P, P, P, P, P, P, P, P, P, P, P, P, P, P, P, /∗ 160−175 ∗/
P, P, P, P, P, P, P, P, P, P, P, P, P, P, P, P, /∗ 176−191 ∗/
U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, /∗ 192−207 ∗/
U, U, U, U, U, U, U, P, U, U, U, U, U, U, U, L, /∗ 208−223 ∗/
L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, /∗ 224−239 ∗/
L, L, L, L, L, L, L, P, L, L, L, L, L, L, L, L}; /∗ 240−255 ∗/

#define ismask(x) (ctype[(int)(unsigned char)(x)])

#define isalnum(c) ((ismask(c)&(U| L| D)) != 0)
#define isalpha(c) ((ismask(c)&(U| L)) != 0)
#define iscntrl(c) ((ismask(c)&(C)) != 0)
#define isdigit(c) ((ismask(c)&(D)) != 0)
#define isgraph(c) ((ismask(c)&(P| U| L| D)) != 0)
#define islower(c) ((ismask(c)&(L)) != 0)
#define isprint(c) ((ismask(c)&(P| U| L| D| SP)) != 0)
#define ispunct(c) ((ismask(c)&(P)) != 0)
#define isspace(c) ((ismask(c)&(S)) != 0)
#define isupper(c) ((ismask(c)&(U)) != 0)
#define isxdigit(c) ((ismask(c)&(D| X)) != 0)

#define isascii(c) (((unsigned char)(c))<=0x7f)
#define toascii(c) (((unsigned char)(c))&0x7f)

static inline unsigned char tolower(unsigned char c)
{

if (isupper(c))
c −= ’A’−’a’;

return c;
}

131

static inline unsigned char toupper(unsigned char c)
{

if (islower(c))
c −= ’a’−’A’;

return c;
}

#define tolower(c) tolower(c)
#define toupper(c) toupper(c)

/∗
∗ Hey, we’re already 64−bit, no need to play games.
∗ Replace this if you are going to port the kernel .
∗/

#define do div(n,base) ({ \
int res ; \

res = ((unsigned long) n) % (unsigned) base; \
n = ((unsigned long) n) / (unsigned) base; \

res ; })

static int skip atoi (const char ∗∗s)
{

int i=0;

while (isdigit (∗∗s))
i = i∗10 + ∗((∗s)++) − ’0’;

return i;
}

void ∗ memset(void ∗ s,int c, unsigned long count)
{

char ∗xs = (char ∗) s;

while (count−−)
∗xs++ = c;

return s;
}

static int strnlen(const char ∗ s, int count)
{

const char ∗sc;

for (sc = s; count−− && ∗sc != ’\0’; ++sc)
/∗ nothing ∗/;

return sc − s;
}

static char ∗ number(char ∗ str, long long num, int base, int size, int precision , int type)
{

char c,sign,tmp[66];
const char ∗digits=”0123456789abcdefghijklmnopqrstuvwxyz”;
int i ;

if (type & LARGE)
digits = ”0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ”;

if (type & LEFT)

132 Appendix B. Source code

type &= ˜ZEROPAD;
if (base < 2 || base > 36)

return 0;
c = (type & ZEROPAD) ? ’0’ : ’ ’;
sign = 0;
if (type & SIGN) {

if (num < 0) {
sign = ’−’;
num = −num;
size−−;

} else if (type & PLUS) {
sign = ’+’;
size−−;

} else if (type & SPACE) {
sign = ’ ’ ;
size−−;

}
}
if (type & SPECIAL) {

if (base == 16)
size −= 2;

else if (base == 8)
size−−;

}
i = 0;
if (num == 0)

tmp[i++]=’0’;
else while (num != 0)

tmp[i++] = digits[do div(num,base)];
if (i > precision)

precision = i ;
size −= precision;
if (!(type&(ZEROPAD+LEFT)))

while(size−−>0)
∗str++ = ’ ’;

if (sign)
∗str++ = sign;

if (type & SPECIAL) {
if (base==8)

∗str++ = ’0’;
else if (base==16) {

∗str++ = ’0’;
∗str++ = digits[33];

}
}
if (!(type & LEFT))

while (size−− > 0)
∗str++ = c;

while (i < precision−−)
∗str++ = ’0’;

while (i−− > 0)
∗str++ = tmp[i];

while (size−− > 0)
∗str++ = ’ ’;

return str;
}

/∗∗

133

∗ vsprintf − Format a string and place it in a buffer
∗ @buf: The buffer to place the result into
∗ @fmt: The format string to use
∗ @args: Arguments for the format string
∗
∗ Call this function if you are already dealing with a va list .
∗ You probably want sprintf instead.
∗/

int vsprintf (char ∗buf, const char ∗fmt, va list args)
{

int len ;
unsigned long long num;
int i , base;
char ∗ str;
const char ∗s;

int flags ; /∗ flags to number() ∗/

int field width ; /∗ width of output field ∗/
int precision ; /∗ min. # of digits for integers ; max

number of chars for from string ∗/
int qualifier ; /∗ ’h ’, ’ l ’, or ’L’ for integer fields ∗/

/∗ ’z ’ support added 23/7/1999 S.H. ∗/
/∗ ’z ’ changed to ’Z’ −−davidm 1/25/99 ∗/

for (str=buf ; ∗fmt ; ++fmt) {
if (∗fmt != ’%’) {

∗str++ = ∗fmt;
continue;

}

/∗ process flags ∗/
flags = 0;
repeat:

++fmt; /∗ this also skips first ’%’ ∗/
switch (∗fmt) {

case ’−’: flags |= LEFT; goto repeat;
case ’+’: flags |= PLUS; goto repeat;
case ’ ’ : flags |= SPACE; goto repeat;
case ’#’: flags |= SPECIAL; goto repeat;
case ’0’ : flags |= ZEROPAD; goto repeat;
}

/∗ get field width ∗/
field width = −1;
if (isdigit (∗fmt))

field width = skip atoi(&fmt);
else if (∗fmt == ’∗’) {

++fmt;
/∗ it ’ s the next argument ∗/
field width = va arg(args , int);
if (field width < 0) {

field width = −field width;
flags |= LEFT;

}
}

/∗ get the precision ∗/

134 Appendix B. Source code

precision = −1;
if (∗fmt == ’.’) {

++fmt;
if (isdigit (∗fmt))

precision = skip atoi(&fmt);
else if (∗fmt == ’∗’) {

++fmt;
/∗ it ’ s the next argument ∗/
precision = va arg(args , int);

}
if (precision < 0)

precision = 0;
}

/∗ get the conversion qualifier ∗/
qualifier = −1;
if (∗fmt == ’h’ || ∗fmt == ’l’ || ∗ fmt == ’L’ || ∗fmt ==’Z’) {

qualifier = ∗fmt;
++fmt;

}

/∗ default base ∗/
base = 10;

switch (∗fmt) {
case ’c’ :

if (!(flags & LEFT))
while (−−field width > 0)

∗str++ = ’ ’;
∗str++ = (unsigned char) va arg(args, int);
while (−−field width > 0)

∗str++ = ’ ’;
continue;

case ’s ’ :
s = va arg(args , char ∗);
if (! s)

s = ”<NULL>”;

len = strnlen(s , precision);

if (!(flags & LEFT))
while (len < field width−−)

∗str++ = ’ ’;
for (i = 0; i < len; ++i)

∗str++ = ∗s++;
while (len < field width−−)

∗str++ = ’ ’;
continue;

case ’p’ :
if (field width == −1) {

field width = 2∗sizeof(void ∗);
flags |= ZEROPAD;

}
str = number(str,

(unsigned long) va arg(args, void ∗), 16,
field width , precision , flags);

135

continue;

case ’n’ :
if (qualifier == ’l’) {

long ∗ ip = va arg(args, long ∗);
∗ip = (str − buf);

} else if (qualifier == ’Z’) {
unsigned long ∗ ip = va arg(args, unsigned long ∗);
∗ip = (str − buf);

} else {
int ∗ ip = va arg(args , int ∗);
∗ip = (str − buf);

}
continue;

case ’%’:
∗str++ = ’%’;
continue;

/∗ integer number formats − set up the flags and ”break” ∗/
case ’o’ :

base = 8;
break;

case ’X’:
flags |= LARGE;

case ’x’ :
base = 16;
break;

case ’d’ :
case ’ i ’ :

flags |= SIGN;
case ’u’ :

break;

default:
∗str++ = ’%’;
if (∗fmt)

∗str++ = ∗fmt;
else

−−fmt;
continue;

}
if (qualifier == ’L’)

num = va arg(args, long long);
else if (qualifier == ’l’) {

num = va arg(args, unsigned long);
if (flags & SIGN)

num = (signed long) num;
} else if (qualifier == ’Z’) {

num = va arg(args, unsigned long);
} else if (qualifier == ’h’) {

num = (unsigned short) va arg(args, int);
if (flags & SIGN)

num = (signed short) num;
} else {

136 Appendix B. Source code

num = va arg(args, unsigned int);
if (flags & SIGN)

num = (signed int) num;
}
str = number(str, num, base, field width, precision , flags);

}
∗str = ’\0’ ;
return str−buf;

}

/∗∗
∗ sprintf − Format a string and place it in a buffer
∗ @buf: The buffer to place the result into
∗ @fmt: The format string to use
∗ @args: Arguments for the format string
∗/

int sprintf (char ∗ buf, const char ∗fmt, ...)
{

va list args;
int i ;

va start (args , fmt);
i=vsprintf(buf,fmt,args);
va end(args);
return i;

}

/∗
∗ Send a print message to the console driver
∗/

void printf(char ∗fmt , ...)
{

char buf[1024];
va list args;
int i ;

/∗ Format the string ∗/
va start (args , fmt);
i = vsprintf(buf,fmt,args);
va end(args);

serial print (buf);
}

: kernel/cpu.c
/∗
∗ CPU functions
∗
∗ This file is subject to the terms and conditions of the GNU General
∗ Public License . See the file ”COPYING” in the main directory of
∗ this archive for more details .
∗/

#include <addrspace.h>
#include <regoffset.h>
#include <mipsregs.h>

137

#include <system.h>
#include <rtc.h>
#include <kernel.h>
#include <cpu.h>
#include <printf.h>
#include <timer.h>

static unsigned char rtc read(unsigned long addr) {
volatile unsigned char ∗rtc add =

(unsigned char ∗) swap8addr(MALTA GT PORT BASE +
MALTA RTC ADR REG);

volatile unsigned char ∗rtc dat =
(unsigned char ∗) swap8addr(MALTA GT PORT BASE +

MALTA RTC DAT REG);

∗rtc add = addr;
return ∗rtc dat;

}

static void rtc write(unsigned char data, unsigned long addr) {
volatile unsigned char ∗rtc add =

(unsigned char ∗) swap8addr(MALTA GT PORT BASE +
MALTA RTC ADR REG);

volatile unsigned char ∗rtc dat =
(unsigned char ∗) swap8addr(MALTA GT PORT BASE +

MALTA RTC DAT REG);

∗rtc add = addr;
∗rtc dat = data;

}

/∗
∗ Probe for cpu type
∗/

void cpu probe(void) {
unsigned long type;

type = read 32bit cp0 register (CP0 PRID);
switch (type & 0xff00) {
case PRID IMP 5KC:

printf (”The CPU type is 5KC\n”);
break;

default:
panic(”PANIC: Unsupported CPU\n”);

}
}

/∗
∗ Find the cpu speed
∗/

void cpu speed(void) {

unsigned int cpu freq, bus freq;

/∗ Set Data mode − binary. ∗/
rtc write (rtc read(RTC CONTROL) | RTC DM BINARY, RTC CONTROL);

138 Appendix B. Source code

printf (”calculating cpu speed...\n”);

/∗ Start counter exactly on falling edge of update flag ∗/
while (rtc read(RTC REG A) & RTC UIP);
while (!(rtc read(RTC REG A) & RTC UIP));

/∗ Start r4k counter ∗/
write 32bit cp0 register (CP0 COUNT, 0);

/∗ Read counter exactly on falling edge of update flag ∗/
while (rtc read(RTC REG A) & RTC UIP);
while (!(rtc read(RTC REG A) & RTC UIP));

/∗ Read the r4k counter and calculate the offset .
∗ The value in timer offset is needed in timer driver init . ∗/

timer offset = read 32bit cp0 register (CP0 COUNT);

bus freq = timer offset + 5000; /∗ Round off ∗/
bus freq −= bus freq%10000;

/∗ CPU freq = 2 ∗ bus(timer) freq ∗/
cpu freq = bus freq + bus freq;

printf (”CPU/Bus frequency %d.%02d/%d.%02d MHz\n”,
cpu freq/1000000, (cpu freq%1000000)∗100/1000000,
bus freq/1000000, (bus freq%1000000)∗100/1000000);

/∗ The correct compare value should be set in the timer driver ∗/
write 32bit cp0 register (CP0 COMPARE, 0);

}

void cpu init(void)
{

unsigned int bits;

/∗ Init the CPU Config register
∗ Disable cache K0 (this has to be done in start .S)
∗
∗/

cpu probe();
cpu speed();

bits = ST0 KX | ST0 SX | ST0 UX;
set cp0 status (bits , bits);

}

: kernel/interrupt.c
/∗
∗ Interrupt handling code
∗
∗ This file is subject to the terms and conditions of the GNU General
∗ Public License . See the file ”COPYING” in the main directory of
∗ this archive for more details .
∗/

#include <stddef.h>

139

#include <kernel.h>
#include <addrspace.h>
#include <regoffset.h>
#include <mipsregs.h>
#include <system.h>
#include <sched.h>
#include <printf.h>
#include <piix4.h>
#include <interrupt.h>

extern void mipsIRQ(void);

/∗ Counter for the nesting level ∗/
int interrupt nested ;

#define MAX INT 16

/∗ Array of interrupt handlers ∗/
static interrupt handler interrupt action [MAX INT] = {

NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL

};

/∗ 82C59 interrupt controllers specific functions ∗/

/∗ Make come addresses for fast access ∗/
static volatile unsigned char ∗ctrl11 = (unsigned char ∗)

swap8addr(MALTA GT PORT BASE + PIIX4 ICTLR1 OCW1);

static volatile unsigned char ∗ctrl21 = (unsigned char ∗)
swap8addr(MALTA GT PORT BASE + PIIX4 ICTLR2 OCW1);

static volatile unsigned char ∗ctrl12 = (unsigned char ∗)
swap8addr(MALTA GT PORT BASE + PIIX4 ICTLR1 OCW2);

static volatile unsigned char ∗ctrl22 = (unsigned char ∗)
swap8addr(MALTA GT PORT BASE + PIIX4 ICTLR2 OCW2);

static volatile unsigned char ∗ctrl13 = (unsigned char ∗)
swap8addr(MALTA GT PORT BASE + PIIX4 ICTLR1 OCW3);

static volatile unsigned char ∗ctrl23 = (unsigned char ∗)
swap8addr(MALTA GT PORT BASE + PIIX4 ICTLR2 OCW3);

/∗
∗ This contains the interrupt mask for both 82C59 interrupt controllers .
∗/

static unsigned int cached int mask = 0xffff;

/∗ Disable irq in the 82C59 interrupt controller ∗/
static void disable irq(unsigned int irq nr)
{

unsigned long flags;

if (irq nr >= MAX INT) {

140 Appendix B. Source code

printf (”whee, invalid irq nr %d\n”, irq nr);
panic(”IRQ, you lose ...”);

}

save and cli (flags);
cached int mask |= (1 << irq nr);
if (irq nr & 8) {

∗ctrl21 = (cached int mask >> 8) & 0xff;
} else {

∗ctrl11 = cached int mask & 0xff;
}
restore flags (flags);

}

/∗ Enable irq in the 82C59 interrupt controller ∗/
static void enable irq(unsigned int irq nr)
{

unsigned long flags;

if (irq nr >= MAX INT) {
printf (”whee, invalid irq nr %d\n”, irq nr);
panic(”IRQ, you lose ...”);

}

save and cli (flags);
cached int mask &= ˜(1 << irq nr);
if (irq nr & 8) {

∗ctrl21 = (cached int mask >> 8) & 0xff;

/∗ Enable irq 2 (cascade interrupt). ∗/
cached int mask &= ˜(1 << 2);
∗ctrl11 = cached int mask & 0xff;

} else {
∗ctrl11 = cached int mask & 0xff;

}
restore flags (flags);

}

/∗ Acknowledge interrupt ∗/
static void ack int(int irq)
{

if (irq & 8) {
/∗ Specific EOI to cascade ∗/
∗ctrl12 = PIIX4 OCW2 SEL | PIIX4 OCW2 NSEOI |

PIIX4 OCW2 ILS 2;

/∗ Non specific EOI to cascade ∗/
∗ctrl22 = PIIX4 OCW2 SEL | PIIX4 OCW2 NSEOI;

} else {
/∗ Non specific EOI to cascade ∗/
∗ctrl12 = PIIX4 OCW2 SEL | PIIX4 OCW2 NSEOI;

}
}

/∗ Get the interrupt ∗/
static int get irq (int ∗ irq)
{

/∗

141

∗ Determine highest priority pending interrupt by performing
∗ a PCI Interrupt Acknowledge cycle.
∗/

/∗ Interrupt acknowledge offset ∗/
#define GT PCI0 IACK OFS 0xc34
#define MIPS GT BASE (KSEG1ADDR(0x1be00000))

/∗ Interrupt acknowledge register is read only.
∗ Read acces to this register forces an interrupt
∗ acknowledge cycle on PCI0 ∗/

volatile unsigned int ∗gt irq =
(void ∗) MIPS GT BASE + GT PCI0 IACK OFS;

/∗ Store irq number in ∗irq ∗/
∗irq = ∗gt irq ;
∗irq &= 0xFF;

/∗
∗ IRQ7 is used to detect spurious interrupts .
∗ The interrupt acknowledge cycle returns IRQ7, if no
∗ interrupts is requested.
∗ We can differentiate between this situation and a
∗ ”Normal” IRQ7 by reading the ISR.
∗/

if (∗ irq == 7)
{

∗ctrl13 = PIIX4 OCW3 SEL | PIIX4 OCW3 ISR;
if (!(∗ ctrl13 & (1 << 7)))

return −1; /∗ Spurious interrupt. ∗/
}

return 0;
}

/∗∗∗/

/∗
∗ As a side effect of the way this is implemented we’re limited
∗ to interrupt handlers in the address range from
∗ KSEG0 <= x < KSEG0 + 256mb.
∗/

void interrupt setvector(void ∗addr) {
/∗ Normaly we would have to flush the cache to ensure
∗ that the interrupt handler actually get registered
∗ right away, but just disable cache to avoid strange
∗ problems.
∗/

unsigned long handler = (unsigned long) addr;
∗(volatile unsigned int ∗)(KSEG0+0x200) =

0x08000000 |(0 x03ffffff & (handler >> 2));
}

/∗ Handle the combined interrupt ∗/
void interrupt hw(reg offset ∗regs) {

interrupt handler action;

142 Appendix B. Source code

int irq=0;

if (get irq(&irq))
return; /∗ interrupt has already been cleared ∗/

disable irq (irq);
ack int(irq);
action = interrupt action [irq];

/∗ Handler registered ? ∗/
if (action != NULL)

/∗ call handler ∗/
action ();

else
printf (”IRQ %d but no handler”, irq);

enable irq(irq);
}

/∗ Register an combined interrupt ∗/
void interrupt register (int irq , interrupt handler handler) {

/∗ No irq sharing ∗/
if (interrupt action [irq] != NULL) {

printf (”IRQ %d is already in use”, irq);
panic(”PANIC: No irq sharing”);

}

interrupt action [irq] = handler;
}

/∗ Initialize the interrupt handler ∗/
void interrupt init () {

/∗ reset nesting level ∗/
interrupt nested = 0;

/∗ Set the interrupt vector ∗/
interrupt setvector (mipsIRQ);

/∗ Until now the interrupt has been disabled, so now
∗ we start everything by enabling the interrupts and
∗ setting the interrupt mask.
∗/

set cp0 status (ST0 IM, IE IRQ0 | IE IRQ1 | IE IRQ2 |
IE IRQ3 | IE IRQ4 | IE IRQ5);

sti ();

}

: kernel/kernel.c
/∗
∗ Highlevel kernel entry
∗
∗ This file is subject to the terms and conditions of the GNU General
∗ Public License . See the file ”COPYING” in the main directory of
∗ this archive for more details .

143

∗/

#include <yamon.h>
#include <cpu.h>
#include <serial.h>
#include <timer.h>
#include <process.h>
#include <interrupt.h>
#include <printf.h>
#include <setjmp.h>
#include <sched.h>

#include <mipsregs.h>
#include <system.h>

/∗ Declare processes here ∗/
extern void process 1(void);
extern void process 2(void);

jmp buf buf;

static void foo(void) {
printf (”In foo\n”);
longjmp(buf, 1);
printf (”This should never be seen\n”);

}

int
entry(

unsigned int argc, /∗ Number of tokens in argv array ∗/
char ∗∗argv, /∗ Array of tokens (first is ”go”) ∗/
t yamon env var ∗env, /∗ Array of env. variables ∗/
unsigned int memsize) /∗ Size of memory (byte count) ∗/

{
int i ;
//t timer t ;

/∗ Init serial driver ∗/
serial init ();

/∗ Init the CPU ∗/
cpu init ();

/∗ Init timer driver ∗/
timer init ();

/∗ Create some processes ∗/
process init ();

// process create(process 2 , 5, 5000);
process create(process 1 , 4, 5000);

/∗ Pause to show init status ∗/
for (i=0; i<2000000; i++)

/∗ do nothing ∗/ ;

/∗ Test setjmp ∗/
printf (”here 1\n”);
setjmp(buf);

144 Appendix B. Source code

printf (”here 2\n”);

if (setjmp(buf))
printf (”Back in main\n”);

else {
printf (”First time\n”);
foo ();

}

printf (” kernel call :\n”);
process list print (&process list);

/∗ Init interrupts , this starts the kernel ∗/
interrupt init ();

/∗ Schedule the highest priority process ∗/
schedule();

/∗ Test timer ∗/
//timer setup(&t);
//timer start(&t, 3000, PERIODIC);

/∗ This is idle loop ∗/
while(1) {

//printf(”Idle process”);
printf (” idle %010u,”, read 32bit cp0 register(CP0 COUNT));
for (i=0; i<1000000; i++)

/∗ do nothing ∗/ ;
//set cp0 status(ST0 IM, IE IRQ0 | IE IRQ1 | IE IRQ2 |
// IE IRQ3 | IE IRQ4 | IE IRQ5);
//sti ();

}

return 0;
}

: kernel/lcd.c
/∗
∗ LCD Display driver
∗
∗ This file is subject to the terms and conditions of the GNU General
∗ Public License . See the file ”COPYING” in the main directory of
∗ this archive for more details .
∗/

#include <addrspace.h>

/∗
∗ Display register base.
∗/

#define LCD DISPLAY WORD BASE (KSEG1ADDR(0x1f000410))
#define LCD DISPLAY POS BASE (KSEG1ADDR(0x1f000418))
#define MALTA PORT BASE (KSEG1ADDR(0x18000000))

void lcd int(unsigned int num)
{

145

volatile unsigned int ∗display = (void ∗) LCD DISPLAY WORD BASE;

∗display = num;
}

void lcd message(const char∗ str)
{

volatile unsigned int∗ display = (void∗) LCD DISPLAY POS BASE;
int i ;

for (i = 0; i <= 14; i=i+2) {
if (∗ str)

display [i] = ∗str++;
else

display [i] = ’ ’ ;
}

}

: kernel/list.c
/∗
∗ Double non−circular linked list functions
∗
∗ This file is subject to the terms and conditions of the GNU General
∗ Public License . See the file ”COPYING” in the main directory of
∗ this archive for more details .
∗/

#include <list.h>

/∗
∗ Initialize list
∗/

void list init (t list head ∗ pHead)
{

pHead−>number = 0;
pHead−>pFirst = NULL;
pHead−>pLast = NULL;

}

/∗
∗ Put element at end of list
∗/

void list put (t list head ∗ pHead,
t list element ∗ pElement)

{
pElement−>pNext = NULL;
if (pHead−>pLast == NULL) {

pHead−>pFirst = pElement;
pElement−>pPrev = NULL;

} else {
pElement−>pPrev = pHead−>pLast;
pHead−>pLast−>pNext = pElement;

}
pHead−>pLast = pElement;
pHead−>number++;

}

146 Appendix B. Source code

/∗
∗ Put Element2 after Element1
∗/

void list put after (t list head ∗ pHead,
t list element ∗ pElement1,
t list element ∗ pElement2)

{
if (pElement1 == NULL || pElement1 == pHead−>pLast) {

list put (pHead, pElement2);
return;

}
pElement2−>pNext = pElement1−>pNext;
pElement1−>pNext = pElement2;

pElement2−>pPrev = pElement1;
pElement2−>pNext−>pPrev = pElement2;
pHead−>number++;

}

/∗
∗ Put Element2 before Element1
∗/

void list put before (t list head ∗ pHead,
t list element ∗ pElement1,
t list element ∗ pElement2)

{
if (pElement1 == pHead−>pFirst) {

pElement2−>pPrev = NULL;
pElement2−>pNext = pElement1;
pElement1−>pPrev = pElement2;
pHead−>pFirst = pElement2;

} else {
pElement1−>pPrev−>pNext = pElement2;
pElement2−>pNext = pElement1;

pElement2−>pPrev = pElement1−>pPrev;
pElement1−>pPrev = pElement2;

}
pHead−>number++;

}

/∗
∗ Get first element from list
∗/
t list element ∗ list get (t list head ∗ pHead)
{

t list element ∗ pRet;

if ((pRet = pHead−>pFirst) == NULL) {
return NULL;

}
if (pRet == pHead−>pLast) {

pHead−>pFirst = pHead−>pLast = NULL;
} else {

pHead−>pFirst = pRet−>pNext;
pHead−>pFirst−>pPrev = NULL;

}
pRet−>pNext = NULL;

147

pRet−>pPrev = NULL;
pHead−>number−−;
return pRet;

}

/∗
∗ Remove specific Element
∗/

void list remove(t list head ∗ pHead,
t list element ∗ pElement)

{
if (pElement−>pPrev == NULL) {

if (pHead−>pFirst != pElement)
printf (”Inconsistent list !\n”);

pHead−>pFirst = pElement−>pNext;
} else

pElement−>pPrev−>pNext = pElement−>pNext;
if (pElement−>pNext == NULL) {

if (pHead−>pLast != pElement)
printf (”Inconsistent list !\n”);

pHead−>pLast = pElement−>pPrev;
} else

pElement−>pNext−>pPrev = pElement−>pPrev;

pElement−>pNext = NULL;
pElement−>pPrev = NULL;

pHead−>number−−;
}

int list length (t list head ∗ pHead) {
return pHead−>number;

}

: kernel/mipsirq.S
/∗
∗ Interrupt exception dispatch code.
∗
∗ The idea of how to handle interrupts comes from the Linux
∗ exception dispatch code.
∗
∗ This file is subject to the terms and conditions of the GNU General
∗ Public License . See the file ”COPYING” in the main directory of
∗ this archive for more details .
∗/

#include <asm.h>
#include <regdef.h>
#include <regoffset.h>
#include <mipsregs.h>
#include <stackframe.h>

. text
LEAF(mipsIRQ)

. set noreorder
CLI
SAVE ALL

148 Appendix B. Source code

/∗ process current−>stack pointer = sp, stack pointer
∗ has offset 32.
∗/

ld a0, process current
sd sp, 32(a0)

/∗ interrupt nested++ ∗/
lw a0,interrupt nested
nop
addu a0,a0,1
sw a0,interrupt nested

/∗ get irq mask ∗/
PROM PRINT(” INT\n”)
mfc0 s0 , CP0 CAUSE
nop

/∗ First we check for r4k timer interrupt ∗/
andi a0, s0 , CAUSEF IP7
beq a0, zero , not timer

/∗ delay slot , check hw0 interrupt ∗/
andi a0, s0 , CAUSEF IP2

/∗ We got a timer interrupt. ∗/
move a0, sp
jal timer interrupt
nop # delay slot

j return
nop # delay slot

not timer:
beq a0, zero , not hardware
nop # delay slot

/∗ We got a combined hardware level zero interrupt. ∗/

/∗ Update the interrupt mask for nested interrupts ∗/
/∗ TO BE DONE ∗/

/∗ Now just enable interrupts again ∗/
//STI
move a0, sp
jal interrupt hw
nop # delay slot

j return
nop # delay slot

not hardware:
/∗
∗ Here by mistake? This is possible , what can happen is that by the
∗ time we take the exception the IRQ pin goes low, so just leave if
∗ this is the case . Another option is that the interrupt masks are
∗ fucked up.
∗/

149

PROM PRINT(”Missed an interrupt\n”)
j return
nop # delay slot

END(mipsIRQ)

LEAF(return)
. set noat
. set reorder
/∗ Disable interrupts ∗/
CLI

/∗ interrupt nested−−; ∗/
lw a0,interrupt nested
nop
addu a0,a0,−1
sw a0,interrupt nested

/∗ if (interrupt nested == 0 && sched now) {
∗ sched now = 0;
∗ schedule frominterrupt();
∗ }
∗/

lw a0, interrupt nested
bne a0, zero , dont schedule
lw a0, sched now
beq a0, zero , dont schedule
nop

/∗ sched now = 0; ∗/
sw zero , sched now

/∗ Update current process ∗/
jal schedule frominterrupt

dont schedule:

/∗ sp = process current−>stack pointer, stack pointer
∗ has offset 32.
∗/

ld a0, process current
ld sp, 32(a0) /∗ <−−−− This makes the stuff halt ∗/

/∗ At this point we have handled the exception, maybe even
∗ context switched. So we now load the registers from
∗ whatever stack ∗ we have and return
∗/

. set noreorder
RESTORE ALL
eret
. set at

END(return)

: kernel/panic.c
/∗
∗ The panic function
∗

150 Appendix B. Source code

∗ This file is subject to the terms and conditions of the GNU General
∗ Public License . See the file ”COPYING” in the main directory of
∗ this archive for more details .
∗/

#include <serial.h>

void panic(char ∗buf)
{

char ∗p;

for (p = buf; ∗p; p++) {
if(∗p == ’\n’) serial putchar(’\r’);
serial putchar (∗p);

}

while(1) /∗ now panic ∗/ ;

}

: kernel/process.c
/∗
∗ Process management
∗
∗ This file is subject to the terms and conditions of the GNU General
∗ Public License . See the file ”COPYING” in the main directory of
∗ this archive for more details .
∗/

#include <regoffset.h>
#include <mipsregs.h>
#include <process.h>
#include <kernel.h>
#include <system.h>
#include <printf.h>

/∗ Pointer to current running process ∗/
t process∗ process current ;
t process∗ process old ;

/∗ Sorted of ready processes ∗/
t list head process list ;

/∗ Static allocation of the maximum allowed number of processes ∗/
static t process process allocated [MAX PROCESSES];

/∗ Incremental process ID ∗/
static int nextId;

/∗ Allocate a stack , stack size should be in dwords ∗/
static unsigned long process stackalloc(int stack size) {

/∗ These are the hardcoded values from the linker script ∗/
extern unsigned long sp end;
extern unsigned long sp;

/∗ Calculate the first free stack top ∗/
static long stack top = (unsigned long) & sp − 8∗KERNEL STACK;

151

if ((stack top −= 8∗stack size) < (unsigned long) & sp end)
panic(”PANIC: Not enough stack\n”);

return stack top + 8∗stack size;
}

/∗
∗ Prints and verifies a process list
∗/

void process list print (t list head ∗ pHead) {

t process∗ p;
t list element ∗ pNext;
t list element ∗ pPrev = NULL;
int length = 0;

/∗ test the empty list ∗/
if (pHead−>number == 0) {

if (pHead−>pFirst != NULL)
printf (”First element is not empty and length is 0\n”);

if (pHead−>pLast != NULL)
printf (”Last element is not empty and length is 0\n”);

return;
}

/∗ test first element ∗/
if (process base(pHead−>pFirst)−>process elem.pPrev != NULL) {

printf (”First element previous is not NULL\n”);
}

/∗ test last element ∗/
if (process base(pHead−>pLast)−>process elem.pNext != NULL) {

printf (”Last element next is not NULL\n”);
return;

}

/∗ print contents , damn this loop is ugly ∗/
for (pNext = pHead−>pFirst; pNext != NULL;

pNext = process base(pNext)−>process elem.pNext) {

p = process base(pNext);
printf (”ID %d, Priority %d, State ”, p−>id, p−>priority);
switch (p−>state) {
case READY: printf(”READY\n”); break;
case RUNNING: printf(”RUNNING\n”); break;
case WAITING: printf(”WAITING\n”); break;
}

/∗ Test prevoius pointer ∗/
if (p−>process elem.pPrev != pPrev)

printf (”Wrong previous pointer\n”);

pPrev = pNext;
length++;

}

/∗ test length ∗/

152 Appendix B. Source code

if (length != pHead−>number)
printf (”Wrong list length . Counted %d, Expected %d\n”,

length , pHead−>number);

/∗ test last actually is last ∗/
if (pPrev != pHead−>pLast)

printf (”Wrong last element in list\n”);
}

/∗
∗ Insert a process into an ordered process list . Highest priority in front .
∗/

void process insert(t list head ∗ pHead, t list element∗ pElement)
{

/∗ Get priority ∗/
int priority = process base(pElement)−>priority;

/∗ Get first element of process ∗/
t list element ∗ pLower = pHead−>pFirst;

/∗ Handle the case of an empty list ∗/
if (pHead−>number == 0) {

list put (pHead, pElement);
return;

}

/∗ Walk down the ordered list until a lower priority process is found ∗/
while (pLower−>pNext != NULL) {

/∗ If the priority is lower , the we found the right place
∗ for our new process. Congrats.
∗/

if (process base(pLower)−>priority < priority)
break;

/∗ Next element ∗/
pLower = pLower−>pNext;

}

/∗ Insert the new process into the list here ∗/
list put before (pHead, pLower, pElement);

}

/∗
∗ Reorders a process in a process list
∗/

void process reorder(t list head ∗ pHead, t list element∗ pElement) {

/∗ done by removing and inserting ∗/
list remove(pHead, pElement);
process insert (pHead, pElement);

}

/∗
∗ Create a new task and initialize its state .
∗/

void process create(void (∗function)(void), int priority , int stack size)
{

153

reg offset ∗stack regs ;

/∗ Get a free process ∗/
t process∗ P = &process allocated[nextId];

/∗ Initialize the task−specific data ∗/
P−>id = nextId++;
P−>state = READY;
P−>priority = priority ;
P−>orig priority = priority;

/∗ Allocate a stack ∗/
stack regs = (reg offset ∗) process stackalloc (stack size);

/∗ Build a state corresponding to an interrupted or
∗ or stack switched process ∗/

/∗ R ∗ macros are bytes, but stack ops are word size,
∗ so divide by 8. (ok, a hack..) ∗/

/∗ Reserve stack space. Area is allready zero’ed
∗ from initialization , so that is not nessecary
∗/

if (sizeof(reg offset) != 304)
panic(” reg offset problem”);

stack regs −= sizeof(reg offset);

/∗ Return address for both ra and epc register∗/
stack regs−>ra = (unsigned long) function;
stack regs−>cp0 epc = (unsigned long) function;

/∗ These two also needs special attention ∗/
stack regs−>sp = (unsigned long) stack regs;
stack regs−>fp =

(unsigned long) stack regs + sizeof(reg offset);

/∗ Save status register ∗/
save flags (stack regs−>cp0 status);

/∗ Update stack regs−>cp0 status .. enable interrupts ∗/
stack regs−>cp0 status |= ST0 IE |

IE IRQ0 | IE IRQ1 | IE IRQ2 | IE IRQ3 | IE IRQ4 | IE IRQ5;
#if 0

stack −= R SIZE/8;

/∗ Return address for both ra and epc register∗/
stack[R RA/8] = (unsigned long) function;
stack[R EPC/8] = (unsigned long) function;

/∗ These two also needs special attention ∗/
stack[R SP/8] = (unsigned long) stack; /∗ WRONG!!! ∗/
stack[R S8/8] = (unsigned long) stack + R SIZE; /∗ WRONG!!! ∗/

/∗ Save status register ∗/
save flags (stack[R STATUS/8]);

154 Appendix B. Source code

/∗ Update stack[R STATUS] .. enable interrupts ∗/
#endif

/∗ Update the process structure ∗/
P−>stack pointer = (unsigned long ∗) stack regs;

printf (”Process id: %u, stack: %x\n”, P−>id, P−>stack pointer);

/∗ Insert the process into the ready list ∗/
process insert (&process list , &P−>process elem);

}

/∗
∗ Create a new linked list of tasks.
∗/

void process init (void) {

t process∗ P;

nextId = 0;
list init (&process list);

/∗ Create idle process . The idle process uses the kernel stack,
∗ well actually the idle is the kernel .
∗/

P = &process allocated[nextId];
P−>id = nextId++;
P−>state = READY;
P−>priority = 0;

/∗ Insert the idle process ∗/
process insert (&process list , &P−>process elem);

/∗ The current process is the idle process ∗/
process current = P;

}

: kernel/sched.c
/∗
∗ Scheduler code
∗
∗ This file is subject to the terms and conditions of the GNU General
∗ Public License . See the file ”COPYING” in the main directory of
∗ this archive for more details .
∗/

#include <stddef.h>
#include <process.h>
#include <interrupt.h>

int sched now = 1;

t process∗ process old ;
t process∗ process new;
t process∗ process highest ;

/∗ A valid declaration ?? ∗/

155

extern void stack switch(void);

/∗
∗ Select a new process to be run
∗/

void schedule(void)
{

/∗ Dont schedule if we are nesting , but we raise a flag
∗ to indicate that schedule was intended
∗/

if (interrupt nested != 0) {
sched now = 1;
return;

}

/∗ Get the process with highest priority . This one
∗ is alway the first in the list .
∗/

process highest = process base(process list .pFirst);

printf (” schedule : cur id=%u, high id=%u\n”,
process current−>id,
process highest−>id);

/∗ If there is a higher−priority ready task, switch to it ∗/
if (process current−>id != process highest−>id)
{

process old = process current;
process new = process highest;

process new−>state = RUNNING;
process current = process new;

/∗ Mark old process ready, if it was running ∗/
if (process old−>state == RUNNING)

process old−>state = READY;

printf (” schedule : old sp=%x, cur sp=%x\n”,
process old−>stack pointer,
process current−>stack pointer);

/∗ Switch the stacks ∗/
stack switch ();
/∗ New process will be running here ∗/
printf (” schedule : cur id=%u, high id=%u\n”,

process current−>id,
process highest−>id);

printf (” schedule : old sp=%x, cur sp=%x\n”,
process old−>stack pointer,
process current−>stack pointer);

}
}

/∗
∗ This is used when using calling scheduling from interrupt
∗/

void schedule frominterrupt(void)
{

//t process∗ process old ;

156 Appendix B. Source code

//t process∗ process new;
//t process∗ process highest ;

/∗ Get the process with highest priority . This one
∗ is alway the first in the list .
∗/

process highest = process base(process list .pFirst);

/∗ If there is a higher−priority ready task, switch to it ∗/
if (process current−>id != process highest−>id)
{

process old = process current;
process new = process highest;

process new−>state = RUNNING;
process current = process new;

process old−>state = READY;
}

}

: kernel/semaphore.c
/∗
∗ Semaphore implementation
∗
∗ This semaphore is implemented as a binary semaphore with a
∗ queue sorted by priority
∗
∗ The idea for this semaphore implementation comes from ADEOS.
∗ ADEOS do not have PIP protocol.
∗
∗ This file is subject to the terms and conditions of the GNU General
∗ Public License . See the file ”COPYING” in the main directory of
∗ this archive for more details .
∗/

#include <system.h>
#include <process.h>
#include <semaphore.h>
#include <kernel.h>
#include <sched.h>

void semaphore setup(t semaphore∗ pS)
{

long flags ;

save and cli (flags);

pS−>state = FREE;
list init (&pS−>list waiting);

restore flags (flags);
}

/∗ Wait for a semaphore ∗/
void semaphore wait(t semaphore∗ pS)
{

157

long flags ;

t process∗ process calling ;
t process∗ process semlocker;

save and cli (flags);

printf (” sem wait ”);

if (pS−>state == FREE) {
printf (”free\n”);
/∗ The semaphore is available, take it ∗/
pS−>state = LOCKED;

/∗ Update who owns the semaphore ∗/
pS−>owner = process current;

} else {
printf (”taken\n”);
/∗ The semaphore is taken, test to see if the process
∗ using the semaphore has lower priority
∗/

process semlocker = pS−>owner;
if (process semlocker−>priority < process current−>priority) {

if (process semlocker−>state != READY) {
panic(”PANIC: Nested semaphores are not allowed\n”);

}

/∗ Bump up the process priority of the semaphore owner ∗/
process semlocker−>priority = process current−>priority;

/∗ Reorder the process list ∗/
process reorder(&process list ,

&process semlocker−>process elem);

}
/∗ Add the calling task to the waiting list ∗/
process calling = process current;
process calling−>state = WAITING;
list remove(&process list , & process calling−>process elem);
process insert (&pS−>list waiting, &process calling−>process elem);
printf (” sem call :\n”);
process list print (&process list);

/∗ Now lets get a new process ∗/
schedule();

/∗ When the semaphore is released, the
∗ caller begins executing here.
∗/

}

restore flags (flags);
}

/∗ Signal for a semaphore ∗/
void semaphore signal(t semaphore∗ pS)
{

158 Appendix B. Source code

long flags ;

t process∗ process waiting;

save and cli (flags);

printf (” sem signal”);

if (pS−>state == LOCKED) {

/∗ Get first waiting process ∗/
process waiting = process base(pS−>list waiting.pFirst);

if (process waiting != NULL) {

/∗ Wake the first process on the waiting list
∗ and insert into our ready list
∗/

list remove(&pS−>list waiting,
&process waiting−>process elem);

process waiting−>state = READY;
process insert (&process list ,

&process waiting−>process elem);

printf (” : wakeup id %u\n”,
&process waiting−>process elem);

/∗ Bump down our own priority and reorder if necessarily ∗/
if (process current−>priority != process current−>orig priority)
{

process current−>priority =
process current−>orig priority;

process reorder(&process list ,
&process current−>process elem);

}

/∗ Now lets call schedule , releasing a semaphore
∗ might
∗/

schedule();

/∗ When the semaphore is released, the
∗ caller begins executing here.
∗/

}
else {

pS−>state = FREE;
}

}

restore flags (flags);
}

: kernel/serial.c
/∗

159

∗ Putting things on the screen/ serial line .
∗ No setup of UART − just assume YAMON left in sane state.
∗ Bit of a hack but it works.
∗
∗ This file is subject to the terms and conditions of the GNU General
∗ Public License . See the file ”COPYING” in the main directory of
∗ this archive for more details .
∗/

#include <arch/stdarg.h>
#include <addrspace.h>
#include <serial.h>
#include <system.h>

int serial putchar (char c) {

volatile unsigned char ∗uart sr = (unsigned char ∗)
swap8addr(MALTA GT PORT BASE + TTYS1 + UART LSR);

volatile unsigned char ∗uart data = (unsigned char ∗)
swap8addr(MALTA GT PORT BASE + TTYS1 + UART TX);

/∗ Wait for transmit−hold−register empty ∗/
while ((∗uart sr & UART LSR THRE) == 0)

/∗ nothing ∗/;

/∗ Now write the data directly ∗/
∗uart data = c;

return 1;
}

/∗
∗ Print a string to the serial console
∗/

void serial print (char ∗buf)
{

char ∗p;
long flags ;

save and cli (flags);

for (p = buf; ∗p; p++) {
if(∗p == ’\n’) serial putchar(’\r’);
serial putchar (∗p);

}

restore flags (flags);
}

/∗ handler for the serial interrupt ∗/
void serial interrupt (void) {

/∗ ∗/
}

void serial init (void) {

long flags ;

160 Appendix B. Source code

/∗ Status for ine Control Register (LCR) ∗/
volatile unsigned char ∗uart lcr = (unsigned char ∗)

swap8addr(MALTA GT PORT BASE + TTYS1 + UART LCR);

/∗ Divisor latch ∗/
volatile unsigned char ∗uart dll = (unsigned char ∗)

swap8addr(MALTA GT PORT BASE + TTYS1 + UART DLL);
volatile unsigned char ∗uart dlm = (unsigned char ∗)

swap8addr(MALTA GT PORT BASE + TTYS1 + UART DLM);

/∗ Modem control register ∗/
volatile unsigned char ∗uart mcr = (unsigned char ∗)

swap8addr(MALTA GT PORT BASE + TTYS1 + UART MCR);

/∗ Clean interrupts while configuring serial port
∗ They should actually be off at this point , so
∗ this is just paranoid.
∗/

save and cli (flags);

/∗ Set 1 stop bit , no parity , 8 data bits , no break
∗ an raise Divisor latch access bit .
∗/
∗uart lcr = UART LCR WLEN8 | UART LCR DLAB;

/∗ Set 19200 baud ∗/
∗uart dll = 0x06;
∗uart dlm = 0x00;

/∗ Lower Divisor latch access bit ∗/
∗uart lcr = ∗uart lcr & ˜UART LCR DLAB;

/∗ Initialize interrupts ∗/
// interrupt register (irq , serial interrupt);

/∗ Restore interrupts ∗/
restore flags (flags);

/∗ VT220 term clear/home − escape sequence is ESC[2J ESC[0;0H ∗/
serial print (”\033\1332J\033\1330;0H”);

}

: kernel/setjmp.S
/∗
∗ Implementation of setjmp and longjmp for MIPS64
∗
∗ This file is subject to the terms and conditions of the GNU General
∗ Public License . See the file ”COPYING” in the main directory of
∗ this archive for more details .
∗/

#include <asm.h>
#include <regdef.h>

/∗ int setjmp (jmp buf); ∗/
LEAF(setjmp)

161

sd s0 , 0(a0)
sd s1 , 8(a0)
sd s2 , 16(a0)
sd s3 , 24(a0)
sd s4 , 32(a0)
sd s5 , 40(a0)
sd s6 , 48(a0)
sd s7 , 56(a0)
sd sp, 160(a0)
sd fp, 168(a0)
sd ra, 176(a0)

move v0,zero
j ra

END(setjmp)

/∗ void longjmp (jmp buf, int); ∗/
LEAF(longjmp)

ld s0 , 0(a0)
ld s1 , 8(a0)
ld s2 , 16(a0)
ld s3 , 24(a0)
ld s4 , 32(a0)
ld s5 , 40(a0)
ld s6 , 48(a0)
ld s7 , 56(a0)
ld sp, 160(a0)
ld fp, 168(a0)
ld ra, 176(a0)

bne a1,zero,1 f
li a1,1

1:
move v0,a1
j ra

END(longjmp)

: kernel/stack.S
/∗
∗ Switch the stacks
∗
∗ This file is subject to the terms and conditions of the GNU General
∗ Public License . See the file ”COPYING” in the main directory of
∗ this archive for more details .
∗/

#include <asm.h>
#include <regdef.h>
#include <regoffset.h>
#include <mipsregs.h>
#include <stackframe.h>

. text
LEAF(stack switch)

. set noreorder

/∗ Save current state ∗/

162 Appendix B. Source code

SAVE ALL

/∗ process old−>stack pointer = sp, stack pointer
∗ has offset 32.
∗/

ld a0, process old
sd sp, 32(a0)

/∗ sp = process current−>stack pointer, stack pointer
∗ has offset 32.
∗/

. set reorder
PROM PRINT(” SWITCH\n”);
ld a0, process current
ld sp, 32(a0)
. set noreorder

/∗ Restore new state and return ∗/
RESTORE ALL
j ra
nop # delay slot (crucial .. :−)

END(stack switch)

: kernel/start.S
/∗
∗ Starting point for everything
∗
∗ This file is subject to the terms and conditions of the GNU General
∗ Public License . See the file ”COPYING” in the main directory of
∗ this archive for more details .
∗/

#include <asm.h>
#include <regdef.h>
#include <regoffset.h>
#include <mipsregs.h>
#include <stackframe.h>

. text
LEAF(start):

. set noreorder

/∗ Disable interrupts ∗/
CLI

/∗ Disable kseg0 caching as soon as possible ∗/
mfc0 t0 , CP0 CONFIG
and t0 , ˜CONF CM CMASK
or t0 , CONF CM UNCACHED
mtc0 t0 , CP0 CONFIG
nop /∗ Some nops to let the dust settle ∗/
nop
nop

163

/∗ Setup stack pointer ∗/
la sp, sp

/∗ Clear bss ∗/
la t0 , fbss /∗ First address ∗/
la t1 , end /∗ Last address ∗/

bbs zero:
sw zero , 0(t0)
bne t0 , t1 , bbs zero
addiu t0 , 4

/∗ Get ready to jump to main ∗/
move s0 , ra
la t0 , entry

/∗ Jump to main ∗/
jal t0
nop /∗ Delay slot ∗/

/∗ We should never en up here ∗/
PROM PRINT(”Kernel terminated!?!?\n”)

. set reorder
END(start)

: kernel/test1.c
/∗
∗ Test process 1
∗
∗ This file is subject to the terms and conditions of the GNU General
∗ Public License . See the file ”COPYING” in the main directory of
∗ this archive for more details .
∗/

#include <printf.h>
#include <timer.h>

void process 1(void) {
t timer t ;
//int i ;

timer setup(&t);
timer start(&t, 10000, PERIODIC);

while (1) {
printf (”Test process 1\n”);

printf (” process 1 call :\n”);
process list print (&process list);

timer waitfor(&t);

//for (i=0; i<1000000; i++)
// /∗ do nothing ∗/ ;

}
}

: kernel/test2.c

164 Appendix B. Source code

/∗
∗ Test process 2
∗
∗ This file is subject to the terms and conditions of the GNU General
∗ Public License . See the file ”COPYING” in the main directory of
∗ this archive for more details .
∗/

#include <lcd.h>
#include <timer.h>

static char display string [] = ” AN EMBEDDED SYSTEMS KERNEL ”;
#define MAX DISPLAY COUNT (sizeof(display string) − 8)

void process 2(void) {

t timer t ;
int display count = 0;

timer setup(&t);
while (1) {

timer start(&t, 5000, PERIODIC);
timer waitfor(&t);

/∗ Display message ∗/
lcd message(&display string[display count++]);
if (display count == MAX DISPLAY COUNT)

display count = 0;
}

}

: kernel/timer.c
/∗
∗ Timer driver
∗
∗ This file is subject to the terms and conditions of the GNU General
∗ Public License . See the file ”COPYING” in the main directory of
∗ this archive for more details .
∗/

#include <regoffset.h>
#include <system.h>
#include <timer.h>
#include <mipsregs.h>

/∗ Amount to increment compare reg ∗/
unsigned int timer offset;

/∗ Self explain able :−) ∗/
unsigned int timer tick per ms;

/∗ What counter should be at next timer irq ∗/
static unsigned int timer cur;

/∗ List of timers ∗/
t list head timer list ;

165

/∗
∗ Setup a new timer structure
∗/

void timer setup(t timer∗ pT) {

pT−>state = IDLE;
pT−>type = ONCE;
pT−>length = 0;
pT−>count = 0;

semaphore setup(&pT−>semaphore);
}

/∗
∗ Start a timer
∗/

int timer start(t timer∗ pT,
unsigned int msec,
int timerType)

{
long flags ;
unsigned int tmp;
t list element ∗ pLE;

/∗ Do not start it more than one time ∗/
if (pT−>state != IDLE) return −1;

/∗ Take the semaphore. It will be released when the timer
∗ expires . This should return immediately as the semaphore
∗ is supposed to be free.
∗/

semaphore wait(&pT−>semaphore);

/∗ Initialize the timer ∗/
pT−>type = timerType;
pT−>length = msec ∗ timer tick per ms;
pT−>count = msec ∗ timer tick per ms;
pT−>state = ACTIVE;

/∗ Uninterruptable timer list operations ∗/
save and cli (flags);

if (timer list .pFirst == NULL) {
/∗ This is the only active timer. Update the
∗ compare register. ∗/

timer offset = pT−>length;
timer cur = (read 32bit cp0 register (CP0 COUNT) + timer offset);
write 32bit cp0 register (CP0 COMPARE, timer cur);

} else {
/∗ Other active timers exist ∗/
tmp = read 32bit cp0 register(CP0 COUNT);
if (pT−>length < timer cur − tmp) {

/∗ This timer expires before the current
∗ closest deadline . Not quite straightforward.
∗ Decrement other timers counters until now. ∗/

for (pLE = timer list.pFirst;
pLE != NULL; pLE = pLE−>pNext)

166 Appendix B. Source code

timer base(pLE)−>count −=
tmp − (timer cur − timer offset);

/∗ Update the compare register with new deadline ∗/
timer offset = pT−>length;
timer cur = tmp + timer offset;
write 32bit cp0 register (CP0 COMPARE, timer cur);

}
}

/∗ Add the timer to the timer list ∗/
list put (&timer list, &pT−>timer elem);

printf (” timer start : exp @ %010u\n”, timer cur);

restore flags (flags);

return (0);
}

int timer waitfor(t timer∗ pT)
{

/∗ Dont wait if its not active ∗/
if (pT−>state != ACTIVE)

return −1;

/∗ Wait for the timer to expire ∗/
semaphore wait(&pT−>semaphore);

return (0);
}

void timer cancel(t timer∗ pT)
{

/∗ Remove the timer from the timer list ∗/
if (pT−>state == ACTIVE)

list remove(&timer list, &pT−>timer elem);

/∗ Reset the timer’s state ∗/
pT−>state = IDLE;

/∗ Release the semaphore ∗/
semaphore signal(&pT−>semaphore);

}

void timer interrupt()
{

t timer∗ pT;
t list element ∗ pLE;
unsigned int offset tmp = timer offset;

/∗ Run through the timer list and decrement the
∗ counter. Mark all of the expired timers done, remove them and
∗ signal there semaphore.
∗/

for (pLE = timer list.pFirst ; pLE != NULL; pLE = pLE−>pNext) {
pT = timer base(pLE);
pT−>count −= timer offset;

167

if (pT−>count == 0) {
/∗ if pT−>state != WAITING ∗/
/∗ This counter has expired ∗/
semaphore signal(&pT−>semaphore);

/∗ Restart or idle the timer, depending on its type ∗/
if (pT−>type == PERIODIC) {

pT−>state = ACTIVE;
pT−>count = pT−>length;

} else {
list remove(&timer list, &pT−>timer elem);
pT−>state = IDLE;

}
} else if (pT−>count < timer offset)

/∗ Get the closest deadline ∗/
offset tmp = pT−>count;

}
timer offset = offset tmp;

/∗ Acknowledge interrupt ∗/
printf (” timer int: %010u %010u−>”,

read 32bit cp0 register (CP0 COUNT),
read 32bit cp0 register (CP0 COMPARE));

timer cur = (read 32bit cp0 register (CP0 COMPARE) + timer offset);
write 32bit cp0 register (CP0 COMPARE, timer cur);
printf (”%010u\n”, timer cur);

}

void timer init(void)
{

/∗ Init the timer list ∗/
list init (&timer list);

/∗ CPU should be initialized before Timer ∗/
timer tick per ms = timer offset/1000;

}

	Preface
	Executive summary
	Prerequisites
	Typographical conventions

	Introduction
	Introduction to the embedded systems
	Introduction to the project
	Motivation for the project
	Organization

	Kernel properties
	Introduction
	Kernel properties
	Summary

	Choosing hardware
	Introduction
	Intel 8051
	Atmel AVR 8-Bit RISC
	Atmel AT91 ARM Thumb
	MIPS Malta development board
	Summary

	Hardware
	The Malta system
	The CoreLV
	The motherboard

	Test bed
	Summary

	Software
	Introduction
	The different toolchains
	Floating point
	Remote debugging
	Newlib
	Summary

	SASOS
	Introduction
	Opal
	Angel
	Mungi
	Summary

	Kernel design
	Kernel overview
	Scheduling
	Timer
	Synchronization
	Message passing

	Interrupt handling
	Context switch
	Global exception handling
	Summary

	Bootstrapping
	Bootstrapping in general
	Introduction to boot loaders
	Bootstrapping MIPS
	MIPS vs. Intel I386
	Probing hardware
	Bootstrapping the kernel using YAMON
	Kernel bootstrap
	Summary

	Kernel implementation
	Compiling
	The Makefile
	Source code layout
	Compilation options

	Linking
	Header files
	Handling interrupts
	Registering the interrupt handler
	Combined hardware interrupt
	Interrupt interface

	Context switch
	Semaphores
	Semaphore interface

	Kernel drivers
	Timer driver
	LCD driver
	Serial terminal driver

	Kernel construction
	Summary

	Status
	Current kernel status
	Small kernel improvements
	Large kernel related projects
	Summary

	Conclusion
	Project description
	Source code

