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Summary

Cortical dysplasia, the malformation of the cerebral cortex (the layer of gray
matter forming the surface of the brain), can take on a number of forms, such
as:

� A thickening of the cortex
� A diffuse organization, with white and gray matter apparently mixing
� Brain geometry deformation
� Heterotopia, the misplacement of gray matter inside white

The object of the work reported here is to provide a clinical expert (a radiol-
ogist) with an algorithmic tool that will assist in the detection of the first two of
these. The algorithm analyzes 3D data sets, obtained as luminance level values
representing the output from MR scans of the human brain. The data is orga-
nized as a voxel image, with a geometry representing a straightforward dis-
cretization of that of the brain under study. The only information available as
to the category of a given voxel (gray matter, white matter, cerebro-spinal fluid,
vascular tissue or background) is that of the luminance level. An automated
segregation will suppress precisely the information sought by the present al-
gorithm, while (time-consuming) human intervention would be tantamount to
a solution of the problem addressed. The algorithms are developed with this
limitation observed throughout.

Keywords

Magnetic Resonance, Cortical Dysplasia, Gradient Correlation Algorithm, Voxel
Images, Visualization.
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Dansk resumé

Cortical dysplasi, fejludvikling af hjernebarken (et lag af grå substans der udgør
hjernens overflade) kan give sig udtryk på adskillige måder, såsom:

� Fortykkelse af hjernebarken
� Diffus overgang fra grå til hvid substans
� Deformation af hjernen
� Heterotopi: grå substans fejlplaceret inde i hvid substans

Hensigten med nærværende arbejde er at udruste en klinisk ekspert (en ra-
diolog) med et algoritmisk værktøj der kan hjælpe med at detektere forekom-
ster af de første to af de ovennævnte fænomener. Algoritmen analyserer 3D-
datasæt bestående af luminansværdier fremkommet af MR-skanninger af en
menneskehjerne. Data er organiseret som et voxel-billede, hvis geometri hidrører
fra en direkte diskretisering af den undersøgte hjerne. Den eneste til rådighed
stående information, der kan give et fingerpeg om vævstypen (grå substans,
hvid substans, cerebro-spinal væske, karvæv eller baggrund) er luminansvær-
dien. En automatisk inddeling vil undertrykke netop den information, der
søges af den her præsenterede algoritme, og (tidskrævende) menneskelig ind-
blanden ville svare til en løsning på problemet. Algoritmerne er udviklet med
denne begrænsning.
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Chapter 1

Introduction

The advent of the possibility of visualizing the interior of the human body
without surgical intervention has had a significant impact on the world of
medical science ever since the discovery of x-rays. One fairly recent imaging
modality, known as magnetic resonance imaging (MRI), offers detailed images
of the human anatomy with high soft tissue contrast. Owing to the multitude
of imaging parameters involved, and the fact that, unlike many other modal-
ities, MRI is not confined to transverse cross-sections, it constitutes a versa-
tile way of performing non-invasive in vivo evaluation of tissue anatomy, flow,
metabolism, etc.

As MR examinations become routine in many hospitals, the problem arises
of combing through the vast amount of generated data. Conventional visu-
alization media such as film sheets and computer screens are inherently two-
dimensional, rendering them incapable of displaying true three-dimensional
data sets. Attempts to overcome this limitation, e.g. by imposing transparency,
are likely to fail in the general case because of the reduced dimensionality in-
volved. Clinical examiners (radiologists) have to make do with two-dimensional
data, in the form of planar or curvilinear slices.

The purpose of the work presented here is to provide a clinical expert (a
radiologist) with a way of overcoming the reduced dimensionality inherent in
conventional media by the development of a tool to assist in searching through
large 3D magnetic resonance (MR) images. This tool has been specifically ap-
plied to the visualization and detection of development disorders, known as
focal cortical dysplasia, in the layer of gray matter forming the surface of the
brain (the cerebral cortex). Disorders of this kind are associated with epilepsy.
Although subtle dysplastic lesions may not have any direct effect on the intel-
lect, the effects of medication and frequent epileptic seizures may lead to cog-
nitive impairment. Owing to drug resistance or medically refractory epilepsy,
surgery may provide the only solution. Subtle lesions often show good prog-
noses for surgical intervention, but may be hard to detect owing to their sub-
tlety as well as the level of noise in the MR image. Even for an expert radiol-
ogist, subtle lesions may take days to detect, wherefore any reduction in the
time spent searching would be beneficial.

This thesis describes an algorithm originating from 3D image analysis for au-
tomatic detection of key symptoms of focal dysplasia. The algorithm is embed-
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ded in a real-time graphics system to facilitate the reading and interpretation
of results. A description of key features of this graphics system as well as a
short introduction to relevant subjects are also included in the thesis.

The reader is assumed to be familiar with basic computer graphics and im-
age analysis. Prior knowledge of magnetic resonance and MRI is not a prereq-
uisite.

A related paper was submitted to the 10th international conference on Discrete
Geometry for Computer Imagery in Bordeaux, France.

This work was supported in part by a grant from the Oticon Foundation.
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Chapter 2

Introductory Theory

This chapter attempts to give the reader sufficient insight into image process-
ing, magnetic resonance imaging (MRI), and the human brain so as to make
accessible the subsequent chapters of this thesis. It is by no means intended as
a comprehensive treatment of the subjects.

The next chapter similarly covers the prior work on which the method pre-
sented here is based.

The contributions comprising the kernel of this thesis are presented from
chapter 4 and onwards.

2.1 Magnetic Resonance Imaging Basics

Ensembles of atomic nuclei possessing an odd number of neutrons or protons
exhibit behaviour comparable to that of a compass needle, that is to say these
ensembles, when placed in a magnetic field, tend to align in the direction of this
field. This alignment does not happen instantly, but takes some time depend-
ing on the surroundings of each nuclei as well as the strength of the applied
magnetic field. This gradual alignment is called relaxation. During this relax-
ation, the ensembles precess in the plane perpendicular to the applied field at
a frequency called the Larmor frequency, which is defined by

f =


2�
B ; (2.1)

where f is the resonance frequency, B is the field strength, and , called the gy-
romagnetic ratio, is a number depending on the type of nuclei. This transversal
component of the magnetization is detectable, since the magnetic change may
induce a current in an appropriately positioned reveicer coil. The temporal
signal represented by this current is called the free induction decay (FID).

The relaxation is approximately exponential, but longitudinal and transver-
sal relaxation need not happen at the same rate. This means the compass needle
analogy breaks down, since the length of the needle, corresponding to magne-
tization strength, may change during relaxation. The longitudinal relaxation
time constant is denoted by T1 and its transversal counterpart is denoted by
T2. Different tissue types have (slightly) different time constants – in actuality,
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these time constant differences are often what is being depicted. MR images
emphasizing differences in T1 are known as T1-weighted images, whereas those
differentiating tissue types by their T2 time constants are known as T2-weighted
images.

When the ensembles have been subject to the above static magnetic field
(known as the main field) for some time, a state of equilibrium is reached and
the ensembles no longer exhibit any measurable precession. However, by ap-
plying a transverse magnetic field pulsating at the Larmor frequency, it is pos-
sible to force the ensembles out of this equilibrium. This process is known as
magnetic resonance, and the applied field is known as the excitation, or radiofre-
quency (RF) field, as the Larmor frequencies are usually within the RF range.
By applying a third kind of magnetic field, a field that varies with position,
it is possible to encode positional information into the received signal (FID),
thus enabling the transformation from FID to MR image. This third kind of
magnetic field is known as a gradient field.

However, applying such an inhomogeneous magnetic field leads to phase
dispersion, or destructive (neutralizing) interference, which causes the FID to
deteriorate. One way of reducing this problem is by using gradient echoes. As-
sume that all ensembles (“compass needles”) are in-phase at time t = 0. Fur-
ther assume that a gradient field is applied at time t = 0 in addition to a main
field. At the time t = � , the gradient field has caused some phase dispersion.
Assume that the gradient field is somehow reversed at time t = � . This means
that the ensembles that lost phase when compared to ensembles unaffected by
the gradient field now gain phase, and vice versa. At time t = 2� , the ensem-
bles have rephased, causing a so-called gradient echo. By sampling the FID close
to this echo, the signal-weakening dephasing caused by the gradient fields will
be reduced.

For a thorough treatment of the subject of magnetic resonance imaging, re-
fer to [Nish94]. For a treatment in Danish, including a brief description of the
MR phenomenon based on quantum theory, see [Wolf01].

2.1.1 Scanner output

The usual MRI sequence used for identifying cortical dysplasia is called MP-
RAGE (see [Bran92]), which stands for Magnetization Prepared Rapid Gradient
Echo. This is the gradient echo technique described above, preceded by an
initial 180Æ excitation performed to further enhance the T1 dependency of the
image. This is an MR sequence producing a three-dimensional T1-weighted
image with (typically) near-isotropic voxels. In these images, the main compo-
nents (see section 2.3) of the brain are[Edel96]:

White matter: Bright
Gray matter: Dark

Cerebrospinal fluid: Very dark

This imaging sequence gives good brain tissue contrast while at the same
time offering bearable scan times (� 15 minutes).
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2.1.2 Multi-Planar Reformatting

Multi-Planar Reformatting (MPR) is an imaging method that allows the radi-
ologist to slice through the 3D image and view the resulting image in three
orthogonal planes. This helps overcome the lack of a third dimension on com-
puter screens and may improve the interpretation of the data, i.e. by providing
three orthogonal sectional views each centered on suspicious tissue. The data
is usually a volume of near-isotropic microliter voxels (approximately 1�1�1
mm3), often from an MP-RAGE scan. Figure 2.1 shows a set of corresponding
orthogonal images.

Figure 2.1: Multi-planar reformatting and a three-dimensional representation of a
human head. Upper right: Sagittal. Lower left: Coronal. Lower right: Axial.

2.2 On Rendering, Image Processing, and Image Anal-
ysis

The following sections briefly describe some of the basic concepts of rendering,
image processing and analysis, as well as the conventions used in the following
chapters.

2.2.1 Texture Mapping

As will become clear, rapid display of two-dimensional images is an important
feature of the prototype in which the developed method is to be embedded (see
chapter 4). To make this prototype portable, a graphics library called OpenGL,
which is available across many platforms, is used. The recommended way of
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Figure 2.2: This image shows what seems to be a large lump of gray matter – see also
figure 2.3.

interactively displaying a picture in a quick and portable way using OpenGL
on consumer hardware, using the picture as a texture map, is to perform a 1:1
mapping onto an appropriate quadrilateral. This texture mapping approach
gives the added advantage of being able to perform affine warps of the image
effortlessly, as will be shown in section 6.2.

2.2.2 Coordinate Systems

To allow for arbitrary orientation of a three-dimensional object (a three-dimensional
MR brain image) in a graphics display, two left-handed three-dimensional co-
ordinate systems are defined: a world, or object coordinate system and a cam-
era, or view coordinate system. The viewing transformation is given by a 4�4-
matrix, transforming a point in object space into the corresponding point in
view space by right multiplication. The points are represented using homoge-
neous coordinates, so the viewing transformation of a point is given by
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Figure 2.3: This image, indicating the image plane of the image in figure 2.2 as a
horizontal white line, shows that the apparent cortical thickening is an artifact caused
by the local cortical geometry being near-parallel to the image plane.

vview = Mview � vobject
m2

664
xv
yv
zv
wv

3
775 =

2
664

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

3
775
2
664

xo
yo
zo
1

3
775

(2.2)

The viewing transformation, Mview, includes a projection (here, a parallel
projection is employed) such that the image plane coordinates of a point pv =
[xv ; yv; zv; 1]

T will be determined as pi = [xv ; yv]
T .

The positive directions of the x, y, and z camera axes correspond to the
directions right, up, and forward (into the screen), respectively, forming a left-
handed coordinate system. The same goes for the object space axes in the initial
configuration, i.e. when Mview is equal to the identity matrix.

The first three columns of the viewing matrix of equation (2.2) are equal to
the world space coordinates of the camera space axes (x, y, and z, respectively).
The fourth column contains information on the translation of the origin of cam-
era space with respect to the origin of world space.
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2.2.3 On Discrete Regular Grids

The data obtained from an MR scanner sequence suitable for MPR is normally a
set of near-isotropic voxels on a regular grid. A number of metrics lend them-
selves to distance determination in such a grid. In this thesis, however, the
employed metric is the Euclidean distance between voxel centers. Other met-
rics and their impacts on the developed method will be discussed in section
7.3. The work presented here will assume isotropic voxels – the case of non-
isotropic voxels will be discussed in section 8.5.1.

2.2.4 Gradient Fields

To an intensity field, such as a three-dimensional volume of intensities output
by an MR scanner, can be associated a so-called gradient field1, which is a vector
field displaying the rate of change of the intensity field, each vector showing
the direction of maximum change.

To represent the digital approximation of the gradient, the symbolr (nabla),
conventionally used to denote the gradient of a continuous field, is used.

As a one-dimensional example, determining the gradient along a line of
pixels with no attention paid to scaling, one could use the following expression
to approximate the gradient of the n’th pixel rn, using the pixel intensities in:

rn = in+1 � in�1 (2.3)

Note, that the n’th element of the vector of intensities [i1; i2; i3; : : :] con-
volved with the vector [1; 0;�1] leads to the same result.

In two dimensions, the gradient is a vector of two elements. The first ele-
ment, representing the horizontal component of the gradient, may be derived
in the exact same way as the one-dimensional case, i.e. by convolving each
horizontal scanline. The vertical component can be derived in a similar fash-
ion, namely by convolving each vertical scanline by [1; 0;�1]T . Since this is
only an approximation of the gradient, other filter masks may provide a better
estimate. An alternative set of filter masks for 2D images are:

Mhoriz =

2
4 �1 0 1
�2 0 2
�1 0 1

3
5 Mvert =

2
4 �1 �2 �1

0 0 0
1 2 1

3
5 (2.4)

This set of masks estimates the gradient components using a larger neigh-
bourhood but puts emphasis on nearer pixels. Note, that the masks have been
rotated by 180 degrees when compared to the vectors above. This is due to
the reflection between the filter mask and the point spread function: if h(k; l)
is the point spread function, the filter mask elements (called filter weights) are
usually given as h(�k;�l).

The three-dimensional filter masks used for gradient approximation in this
thesis are appropriately reoriented versions of the mask shown in figure 2.4.

For further reading, refer to [Nibl86].

1Not to be confused with the gradient fields appearing in magnetic resonance.
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Figure 2.4: The filter mask used for three-dimensional gradient approximation.

2.2.5 Resampling

The program offers a choice between two ways of determining the voxel inten-
sity at a given position: Nearest-neighbour filtering or trilinear interpolation
filtering. The following example illustrates the problem and a few possible
solutions.

Example 2.1: One-dimensional resampling. Assume that the values of a func-
tion f(x) are sampled at integer values of x. What would be a reasonable value for,
say, f(1:4) ? Using the nearest-neighbour resampling filter, the answer would be
~fnn(1:4) = f(1), the value of the nearest neighbour. Using a linear resampling filter,
however, the answer would be a linearly weighted average of the nearest values, i.e. a
point corresponding to x = 1:4 on the straight line between (1; f(1)) and (2; f(2)):

~flin(1:4) = (2� 1:4)f(1) + (1:4� 1)f(2) (2.5)

Refer to figure 2.5.

The nearest-neighbour resampling filter is cheaper in terms of computing
time, whereas the linear interpolation filter is considerably less “blocky”, since
the output of the filtered function ~flin(x) is continuous.

Both the nearest-neighbour resampling filter and the linear interpolation
resampling filter may be extended to higher dimensions. The latter is known
as bilinear interpolation in two dimensions (section 6.1) and trilinear interpo-
lation (section 5.1.1) in three dimensions.

Non-linear resampling is another possibility, with sinc interpolation, as well
as quadratic and cubic interpolation resampling being the most popular choices.
A more thorough introduction to resampling may be found in [Nibl86].

2.3 On the Human Brain

The human brain consists roughly of two kinds of tissue arranged in three
layers. In the depth close to the midline, a core of gray matter called the basal
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Figure 2.5: Linear interpolation between integer sample points of the function f . Refer
to example 2.1.

ganglia is found. The basal stuctures are surrounded by a relatively thick layer
of white matter, and this is covered by an approximately 3 mm thick cortex.
During the development of the cerebral cortex, which mainly takes place from
the seventh week after conception to birth, a number of things may go wrong.
One of the possible malformations is called cortical dysplasia, to which some
of the associated MR imaging findings can be seen in table 2.1.

1. Cortical thickening.
2. Blurred gray/white matter junction, i.e. blurred transi-

tion between gray matter and white matter.
3. Brain deformation.
4. Heterotopia (gray matter misplaced inside white matter).

Table 2.1: Typical MR imaging findings in dysplastic brains.

2.3.1 Cortical Dysplasia

Cortical dysplasia associated with seizure disorders are often divided into three
categories[Edel96]:

� Focal lesions, in which the amount of abnormal tissue is relatively small
and localized.

� Unilateral disorders, roughly affecting one entire cerebral hemisphere.
� Generalized, or bilateral, disorders, affecting the entire brain.

The extent of the abnormal tissue in the unilateral and generalized cases
make them susceptible to easy detection by visual inspection of MR images,
whereas the focal lesions may be subtle, and thus more difficult to detect.
The central point in this thesis is the development of a set of tools to aid a
trained neuroradiologist in locating subtle focal dysplastic lesions of Taylor
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type[Tayl71]. This type of disorder is characterized by localized cortical thick-
ening and poor gray/white matter differentiation, item 1 and 2 of table 2.1,
and is believed to be among the most epileptogenic lesions associated with
epilepsy.

The localized cortical thickening makes the cortex of the affected region
look like a carpet with a rock underneath. The size of the rock obviously has a
great impact on the detectability of the disorder. Mild cortical disorganization
may be undetectable by MRI, since the affected region may be smaller than the
resolution of the MR image. Section 2.4 describes the currently used techniques
for detecting subtle cortical dysplasias of Taylor.

2.4 Detection of Dysplastic Lesions

Cortical development disorders of any of the above categories may be detected
using conventional MPR techniques. However, in recent years, work has been
done to aid in the detection of the subtler focal lesions. Various forms of curvi-
linear reformatting (CR), such as the one described in chapter 7 of this thesis,
as well as methods such as voxel-based morphometry, described in the section
3.4, have been proposed.

2.5 Consequences

The possibility of detection of a focal cortical dysplasia in a patient with epilepsy
may take the patient from the category of life-long medication and even drug
resistance to the category of possible surgical candidates. If other neurophysio-
logical investigations (e.g. electro-encephalography, EEG) points to exactly the
same region and to no other regions, the prognosis for surgical intervention is
very good.
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2.6 Important Names and Concepts

Axial Slice orientation. Bottom view. See figure 2.1.
Basal ganglia A structure of gray matter forming the core of

the brain.
Coronal Slice orientation. Rear view. See figure 2.1.
Cerebral cortex The exterior substance of the brain. Consists of

gray matter.
Cerebro-spinal
fluid, CSF

A serous fluid secreted by the membranes cov-
ering the brain and spinal cord. The brain
“floats” in CSF.

Dysplasia Abnormal development (of organs or cells)
or an abnormal structure resulting from such
growth.

Electro-
encephalogram,
EEG

A graphical record of electrical activity of the
brain

Frontal lobe The part of the cerebral cortex in either hemi-
sphere of the brain lying directly behind the
forehead.

Gray matter Grayish nervous tissue forming the cerebral
cortex and the basal ganglia.

Gyrus, pl. gyri The convoluted ridges between the sulci.
Sagittal Slice orientation. Side view. See figure 2.1.
Sulcus, pl. sulci The fissures and grooves in the cerebral cortex.
Temporal lobe The part of the cerebral cortex in either hemi-

sphere of the brain lying inside the temples of
the head.

White matter Whitish nervous tissue forming a rather thick
layer on the basal ganglia.
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Chapter 3

Prior Work

3.1 Curvilinear Reformatting

As a means of overcoming the lack of a third dimension inherent in computer
screens and regular MR images, it is possible to perform a virtual incision in
the MR image that allows for inspection along a given cutting surface. These
surfaces are most often planar (like those of MPR, see section 2.1.2), but may
also be curvilinear, although typically limited in shape to an extrusion of a
manually drawn planar curve. The extraction of curvilinear surfaces is called
curvilinear reformatting.

Bastos et al. [Bast99] presented a new way of extracting curvilinear slices.
This method allows the radiologist to examine the three-dimensional brain im-
age using a series of thin slices curved along the hemispheric convexities of the
brain, much like the layers of an onion. As opposed to the planar slices offered
by conventional MPR, this may significantly reduce the impression of cortical
thickening caused by obliquity of the plane of section in relation to the gyri.
Figure 3.1 shows how curvilinear reformatting obtains a parallel incidence of
the slice in relation to the gyral cortex. This reduces the artifactual cortical
thickness shown in figures 2.2 and 2.3.

The method of Bastos et al. requires a neuroradiologist to manually delin-
eate the brain surface. Subsequently, the software generates a set of 3D polyg-
onal models including the corresponding texture maps. Following this, the
actual examination takes place, during which the radiologist can display and
manipulate the previously generated curvilinear1 data, as well as planar slices
generated on-the-fly2.

3.2 Shear-Warp Rendering

The title of this section is shorthand for volumetric rendering using a shear-
warp factorization of the viewing transformation.

This factorization can be written

1Since the generated data consists of polygonal models, it is in actuality not curvilinear.
2This information was acquired through personal correspondence with Mr. Roch Comeau.



18 Prior Work

Figure 3.1: Coronal diagram showing cortex (gray) and the plane of a curved slice
(black bold). Notice how the slice intersects the cortex at near-right angles.
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Figure 3.2: Ray casting using the shear-warp factorization.

Mview = Mwarp �Mshear (3.1)

The idea behind this technique is to divide the rendering process in a man-
ner similar to the factorization:

1. Perform a 3D shear parallel to the data slices such that the viewing rays
become parallel to each other and perpendicular to the slices (see figure
3.2).

2. Project the sheared slices to form an intermediate but distorted image.
3. Perform a 2D warp to form an undistorted image.

The advantage of this factorization is that rows of voxels in the volume are
aligned with rows of pixels in the intermediate image. This allows the vol-
ume and the intermediate image to be traversed in synchrony, which in itself
leads to rapid rendering, but also enables the exploitation of spatial coherence
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in both the volume and the intermediate image, which leads to even greater
rendering speed.

3.3 Other Render Methods

Current alternatives to volume rendering using the shear-warp transformation
in terms of image quality and render speed are manifold. However, a few typ-
ical directions of research may be deduced:

� Using parallel computer systems or specialized graphics hardware ([Came92],
[Fuch90]).

� Exploiting special features (such as multitexturing, 3D textures, register
combiners) of emerging consumer graphics hardware (see e.g. [Enge01]).

� Accelerating ray casting techniques, e.g. using templates ([Lee97]).

The current generation of consumer graphics hardware have accelerated
support for volumetric textures, but the texture size is limited, often to 64 �
64 � 64 elements (corresponding to 1 Mb of graphics memory), whereas 2D
textures are allowed to use 16 Mb. This indicates that the limitation of volu-
metric textures lies not in memory consumption, but is a hardware or driver
issue. If the incentive is there for the graphics hardware manufacturers, the
support for large (256 � 256 � 256 elements or more) volumetric textures is
only a hardware generation away. At the current rate of progress, rendering
of high-resolution volumetric images at smooth interactive rates on consumer
hardware is only a year or so away.

3.4 Voxel-Based Morphometry

One way of performing a voxel-wise comparison of the cortical structure be-
tween two groups of subjects is called voxel-based morphometry. The idea is
to compare the cortical structure of a patient with that of a statistical model
of a normal cortex, obtained by correlating the information from a database of
healthy cortices.
At the 2001 meeting of the Organization for Human Brain Mapping a team
from the University of Freiburg presented a method making use of voxel-based
morphometry to locate focal cortical dysplasia[Hupp01]. The method is based
on gray matter probability images, generated by low-pass filtering the out-
come of a cortical gray matter segmentation of a three-dimensional MR image.
A normal data base was created from gray matter probability images of 30
healthy volunteers. The examination of a patient’s MR image would then con-
sist of the following steps:

1. Normalize the MR image into a standard position and orientation (into
standard stereotactic space).

2. Segment cortical gray matter. In other words, discard everything but the
gray matter of the cortex.

3. Smooth the gray matter segments. The result of this smoothing is pro-
portional to an approximate cortical gray matter probability image.
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4. Calculate, voxel by voxel, the difference between this probability image
and the mean probability image of the normal data base. The local max-
ima of this difference image indicates where the patient’s cortex differs
the most from that of the normal data base, thus indicating where dys-
plasias are to be expected.

The considerable variability of geometry within the range of healthy brains
detracts from the overall virtue of the method. Furthermore, with the segmen-
tation and low-pass filtering involved, the method runs the risk of eradicating
signs of subtle dysplastic lesions. However, according to the abstract, the me-
thod “seems to provide a valuable additional tool for the detection of focal
cortical dysplasias”, and does show promising results.

For more information on voxel-based morphometry, see [Ashb00].
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Chapter 4

Purpose

The ideal cortical dysplastic lesion detection tool would take a three-dimensional
MR image, process it, and find out whether or not a dysplastic lesion was
present in the cortex, and, in case a lesion was found, pass on information on
the location of the lesion directly to the neurosurgeon. For several reasons this
is not a feasible solution: subtle focal lesions may be invisible on the relatively
coarse MR images[Edel96], and thus undetectable regardless of the method
used; ethical considerations require a human to verify alleged lesions before
any operative procedures be commenced, and to examine the brain in case the
employed tool failed to detect a lesion.

The purpose of this work has been to develop a method of automatically
detecting focal dysplastic lesions, and also to create a working prototype. In
keeping with the above requirement while also allowing for general verifica-
tion of the developed method, such a prototype needs to allow for verification
by visual inspection. Therefore, a substantial amount of this thesis deals with
aspects of graphics and visualization, as already apparent in chapter 3.

This chapter aims at giving the reader an overview of the subjects that need
to be scrutinized in order to implement a working prototype. In the rest of the
thesis, this prototype will be referred to as the program or the prototype.

4.1 Detection

Large dysplastic lesions are typically easily detected using conventional MPR
methods. Subtle lesions, however, may be very difficult to detect – the prover-
bial needle in a haystack would be an appropriate analogy. Therefore the focus
should be on developing a method suitable for finding subtle dysplastic le-
sions. To avoid the need for re-scanning patients, the detection method should
operate on conventional three-dimensional MPR data, such as the result of
scanning using the MP-RAGE sequence. Furthermore, the techniques used
on the data must either be simple (and therefore quick) or require no user in-
put, in order to avoid wasting radiologist resources. A method that requires no
user input is equivalent to a fully automatic detection system, which would be
infeasibly difficult to implement owing to the subtlety of the dysplastic lesions
sought. The proposed method should aid the radiologist – it is by no means
intended to replace the efficient image analysis tool that is the human eyes and
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brain.
The following sections describe the assumptions and constraints which con-

stitute the frame in which the proposed method has been developed.

4.1.1 Assumptions

Throughout this thesis the following assumptions have been made:

� It is assumed that each voxel corresponds to a fixed-size cubic (and thus
isotropic) volume in world space. The case of non-isotropic voxels is de-
scribed in section 8.5.1.

� Tissue time constants T1 and T2 remain constant over all of the scan vol-
ume. Ignoring magnetic field inhomogeneities, this means that all voxels
corresponding to e.g. white matter have the same intensity independent
of position. The effects of magnetic field inhomogeneities are discussed
in section 10.2.

� It is assumed that radiologists hold the correct answer, and are thus able
to determine whether or not a particular cluster of voxels signify abnor-
mal tissue. This thesis will not consider verification of imaging findings
by post-operative histology, nor will it discuss subjects such as: what
type of MR images offers the most advantages in terms of detection (be it
manual or automatic) of cortical dysplasia ?

4.1.2 Constraints

In order to complete the work within the time allotted, a number of constraints
have been posited:

1. Any voxel-wise classification of brain tissue must be performed by a
trained neuroradiologist. However, automatic brain/non-brain tissue
classification is permissible.

2. Constraint number 1 leads to the fact that any decision making based
on global knowledge of brain geometry, besides location and basic shape
must also be left to a radiologist.

3. Out of the typical imaging findings (see table 2.1) the proposed method
only attempts to detect cortical thickening and blurred gray matter / white
matter junction. The remaining types of findings are either easily de-
tectable by a radiologist or require some degree of knowledge of the ge-
ometry of the brain, which renders them outside the scope of this work.

4. Owing to the growth and development of the brain during the first few
years of life, MR images of infant brains may look very different from
those of adults. The developed method focuses on adult brains, but may
in fact turn out to work on infants’ brains as well.

Ad 1: The reasoning behind this constraint may not be obvious, but since
the gray matter / white matter junction of dysplastic lesions may be indistinct,
automatic classification is likely to err exactly at these positions of maximum
importance.
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4.2 Visualization

To verify that the prototype functions as supposed and in keeping with the
aforementioned ethical considerations, some degree of data visualization is
necessary. The visualization method attempts to make use of the experience
the radiologist might have gained using conventional planar reformatting, and
also to exploit recent advances in visual detection of dysplasia.

This has lead to a design featuring both an image of a planar slice and an
image of a three-dimensional model of the brain; a design which necessitated
the application of two different rendering methods. The two-dimensional im-
age displays planar slices while the three-dimensional image displays curvilin-
ear slices as well as indicating the orientation of the planar slice shown in the
two-dimensional image.

This necessity of implementing two different ways of rendering is part of
the reason why the visualization takes up a large part of the rest of the thesis.

The diagram in figure 4.1 shows the general design of the prototype.

User Interface Elements (Buttons, etc.)

3D Display 2D Display

Figure 4.1: Prototype graphical user interface layout showing a cube

4.3 An Overview of this Thesis

The following chapters of this thesis describes the development of the detection
method and the practical implementation of prototype. Following these chap-
ters are two chapters demonstrating and discussing the results of the work.

� Two-dimensional display describes the planar slice extraction and re-
sampling as well as the actual slice display.

� Three-dimensional rendering describes the mechanisms of shear-warp
rendering as well as additions for direct rendering and correct intersec-
tion with other objects.

� Curvilinear reformatting describes the automatic extraction of curvilin-
ear slices.

� Dysplastic lesion detection aid describes the crux of this thesis: Auto-
matic detection of cortical dysplasia.
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� Prototype implementation contains a description of the implementation
of the prototype in more detail.

� Results contains examples of the capacity and limitations of the devel-
oped method.

� Summary contains a concluding examination of the presented work, act-
ing as a recapitulation of the thesis.
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Chapter 5

Two-Dimensional Display

This chapter describes the way the two-dimensional display works. Most of
the content of this chapter is standard, but it is included to provide a full un-
derstanding of how the program works.

The part of the program performing two-dimensional display of planar
slices can be said to work in two steps:

1. Render the appropriate slice into an intermediate image, applying resam-
pling as chosen by the user.

2. Use this intermediate image as a texture map, and map it onto an appro-
priate quadrilateral.

5.1 Rendering the intermediate image

Assuming that the intermediate image is w pixels wide and h pixels high, the
location of the slice plane is determined by the point c and two perpendicular
vectors (of equal magnitude) a and b:

for v = 1 to h

for u = 1 to w

p = c+
�
u� w

2

�
b+

�
v � h

2

�
a

if p inside object then
Image(u; v) = Determine Pixel Intensity(p)

From the pseudocode above we see that the point c gets mapped to image
coordinates (u; v) =

�
w
2 ;

h
2

�
, right in the middle of the image. We also see, that

a is vertical in the image plane, whereas b is horizontal. If a and b are not
perpendicular, the intermediate image will be spatially distorted when trans-
formed from object space to image space, which, in general, is undesirable. The
same goes for the situation where a and b are not of equal magnitude1. Simul-
taneously changing the magnitude of a and b corresponds to a change of scale.
Thus, a “zoom” effect can be achieved this way.

The center point c and the vectors a and b are in fact all derived from a
viewing transformation matrix. In homogeneous coordinates, the center is set

1However, this effect could be used to compensate for non-square pixels.
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equal to the fourth column of the viewing matrix. Since this column is equal to
the coordinate translation vector, this makes sense (refer to section 2.2.2). The
vector a, corresponding to the vertical in the intermediate image, is equal to the
second column, which corresponds to the y-axis, which is defined to be vertical
in the configuration position. Using the same arguments, we set b equal to the
first column of the viewing matrix, corresponding to the x-axis.

The function Determine Pixel Intensity(p) is supposed to determine the
pixel intensity corresponding to the intensity of the scanned object at the posi-
tion indicated by the vector p. This task may be divided into two parts:

1. Determine the voxel intensity at the position indicated by p.
2. Determine the pixel intensity corresponding to this voxel intensity.

These will be described in the following two sections.

5.1.1 Intensity Determination

To approximate the intensity at a given position p, the program offers a choice
of two methods: Nearest-neighbour resampling or trilinear interpolation (refer
to section 2.2.5). The former offers speed, the latter smoother images, partic-
ularly in magnification. Figure 5.1 shows the difference between these resam-
pling methods. Note, that the underlying resolution is the same; the rightmost
image does not contain more information than its neighbour. The rightmost
image basically trades its “blockiness” for “blurryness”.

Figure 5.1: Closeup of a slice resampled using nearest-neighbour filtering (left) and a
slice resampled using trilinear interpolation (right).

5.1.2 Intensity Mapping

In order to maximize visual contrast between tissue types, the program allows
the user to adjust the parameters of an affine mapping of voxel intensities to
pixel intensities. The map is a simple windowed affine transformation: Assum-
ing a minimum image pixel intensity (black) of zero and a maximum image
pixel intensity (white) of one, the mapping is described by two user-selectable
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ip

i
c

i
v

Figure 5.2: The windowed affine intensity mapping with user-defined parameters wh

and ic.

variables. The intensity corresponding to the center of the window is denoted
by ic and half the window width is denoted by wh, see figure 5.2.

ip =

8<
:

0 iv � ic � wh
iv�ic
2 wh

+ 1
2 ic � wh < iv < ic + wh

1 iv � ic + wh

(5.1)

5.1.3 A Slight Improvement

Since, in general, the viewing ray corresponding to every single pixel of the in-
termediate image does not intersect the scan volume, computational cost may
be reduced somewhat by ignoring those pixels whose viewing rays do not in-
tersect the scan volume. Processing each pixel to see if its viewing ray inter-
sects the scan volume is obviously not a feasible solution, since this check is
tantamount to the normal ray-casting step performed. The determination of
some of these “superfluous” pixels may be performed by taking into consider-
ation the fact that the scan volume is a rectangular parallelepiped, i.e. a convex
volume. This has the as a consequence that if the vector variable p of the above
algorithm should happen to leave the volume at any point while traversing a
scanline of the intermediate image, it will never return to the volume while
on this particular scanline. In other words, once we leave the volume while
traversing a scanline, we can skip the rest of that scanline. Refer to figure 5.3.

On the other hand, this necessitates an initial clearing of the intermediate
image, since the skipped pixels are not assigned a value. In practice, however,
this constitutes an overall improvement of the speed of the extraction.

The following pseudocode uses the boolean variable inside object to indi-
cate whether any of the points corresponding to the current scanline has been
inside the object.
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Figure 5.3: Pixel skipping. This extracted intermediate image shows processed pixels
outside the scan volume (black), and inside the scan volume (shades of gray) as well as
skipped pixels (white).

inside object = false
for v = 1 to h

for u = 1 to w

p = c+
�
u� w

2

�
b+

�
v � h

2

�
a

if (p is inside the object) then
inside object = true
Image(u; v) = Determine Pixel Intensity(p)

else
if (entered volume = true) then

inside object = false
Skip to next scanline

5.2 Applying the texture map

After extraction of the slice, the intermediate image needs to be registered as a
texture to the graphics hardware. Following this, the texture map needs only
be mapped to a quadrilateral. Ideally, this should be a 1:1 mapping, but since
the user is allowed to resize the window (thus resizing the quadrilateral onto
which the intermediate image is to be mapped), this is not always the case.
This non-ideal mapping might lead to visual artifacts such as distinct pixeliza-
tion, but since OpenGL is able to filter the texture appropriately (thus reducing
artifacts to a minimum), this does not pose a problem.
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5.3 Possible improvements

It would be faster, and possible without significant loss of image quality, to let
the magnitude of a and b remain at unity (thus always performing slice ex-
traction on a 1:1 scale which means zooming will not reduce the number of
skipped pixels) and then performing any zooming by enlarging the quadri-
lateral onto which the two-dimensional intermediate image is mapped. The
advantage of this method would be that is transfers the work of zooming from
the CPU and onto the graphics hardware, thus freeing the CPU for other work.
Obviously, for this to be an actual advantage, texture mapping hardware is re-
quired. Using the appropriate texture filtering technique (nearest-neighbour or
linear interpolation, depending on the slice resampling filter) the image quality
loss would be negligible.

Another improvement would be to let the program use nearest-neighbour
resampling while the user is interacting with the object and then render the
graphics using trilinear interpolation filtering when the interaction stops. This
approach will achieve good rendering speed during interaction and good im-
age quality of static images.





Chapter 6

Three-Dimensional
Rendering

One of the problems of rendering two-dimensional images of three-dimensional
objects is the sheer amount of data processing needed. One way of reducing the
render time is commonly known as shear-warp rendering, briefly described in
section 3.2. However, shear-warp rendering does just that: rendering. It leaves
no information for the graphics library on how to handle the interaction of the
shear-warp object and other graphics objects. Let us assume that we want to
indicate with a polygon a certain planar slice of the three-dimensional object in
question. Shear-warp rendering, by itself, generates no information on how to
handle the intersection of the polygon and the shear-warp object.

This chapter describes the implementation of three-dimensional rendering
using a shear-warp factorization of the viewing transformation, along with
the developed modifications for interactive display. Furthermore, a flexible
way of combining the aforementioned voxel-based rendering with conven-
tional polygonal rendering is presented.

6.1 Shear-Warp Rendering

In order to achieve good performance on modern computers, it is important to
keep the data used in the fastest memory type possible. Since it is rarely possi-
ble to keep all data in CPU registers alone, as much as possible should be kept
in the fast data cache memory. This means focusing on small coherent portions
of memory instead of making spurious access of data at locations spread all
over the memory at random. To achieve good cache coherency, an ideal vol-
ume rendering method must perform in-order traversals of both volume and
(screen) image data. Klein and Kübler [Klei85] proposed a method in which
the view transformation matrix is factorized into a shear matrix and a warp
matrix. Using this factorization, rendering may be performed in four steps:

1. Choose the appropriate slicing direction. It is assumed that the volume
data may be sliced in three directions, each perpendicular to one of the
world space axes. In other words the voxels within each slice all have
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equal x-, y-, or z-coordinates. Choose the slicing direction such that the
corresponding set of slices is most perpendicular to the viewing direc-
tion. The axis corresponding to this slicing direction is said to be the
principal axis.

2. Shear (translate) each slice such that a viewing ray perpendicular to the
set of slices in the sheared object space will intersect each slice in the
same manner as the oblique viewing ray would intersect the slices in un-
transformed object space (see figure 3.2). This means, that in the sheared
object space, all viewing rays are parallel to the principal axis. To perform
a perspective transform, slices must be scaled as well as sheared.

3. Project the slices into a distorted 2D intermediate image in sheared object
space. Since the shear coefficients are not confined to integers, proper
resampling is necessary to retain image quality.

4. Warp the intermediate image into image space, producing the correct fi-
nal image.

The process of transforming the intermediate image into image space re-
quires a general warp operation. However, since this is a 2D operation, the cost
is limited (about 10% of the total cost in typical cases, according to [Lacr95]).

Note, that the resampling used during the projection takes place in-slice.
This potential problem of using a 2D rather than a 3D reconstruction filter to
resample the volume data is discussed in section 6.4. The prototype allows
resampling using the 2D nearest-neighbour resampling filter or a bilinear filter,
the latter being slightly slower owing to the fact that two voxel scanlines must
be traversed simultaneously.

Assuming the volume consists of fully transparent and fully opaque vox-
els only, the projection could be done using an approach akin to the painters
algorithm: Projecting one sheared slice at a time in back-to-front order, new
opaque voxels overwriting earlier (and thus more distant) voxels. Obviously,
this would lead to a lot of overdraw in the typical case. It turns out to be ad-
vantageous to project the slices front-to-back, ignoring any intermediate image
pixel once an opaque voxel has been projected onto it.

The factorization of the viewing transformation leads to a general warp and
a simple shear operation. The advantage of this is the possibility of travers-
ing each intermediate image scanline and each object volume scanline in syn-
chrony, leading to maximum cache coherency, which in turn means maximum
cache efficiency.

Note, that while it is possible to do each of the above steps “by hand” (on
the CPU), it is likewise possible to make use of the graphics hardware through
OpenGL in the final 2D warping stage of the process, thus relieving the CPU
of this task. See section 6.2.

Since there are six principal viewing directions, two for each axis, it is possi-
ble to achieve in-order object traversal by keeping one copy of the data volume
corresponding to each of these directions. However, relaxing the whole-object
in-order traversal constraint to in-order traversal of each slice, it is possible to
use only half the amount of memory at a minute cost. This way, all slices are
traversed in-order, but the order in which the slices are traversed may change
to accommodate the front-to-back projection order (e.g. when the viewer is “be-
hind” the object). Therefore, three copies of the volume are needed.
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6.1.1 Spatial Coherency

Apart from the in-order traversal of both image space and object space, what
sets the shear-warp rendering method apart from other volumetric rendering
methods is its ability to exploit spatial coherency in both image space and ob-
ject space. Images of human brains contain one coherent object, namely the
brain itself. This object space coherency leads to image space coherency.

One way of exploiting object space coherency would be to store voxel scan-
lines as runs of voxels, e.g. “10 transparent voxels”, then “13 opaque voxels”.
This is called run-length encoding[Fole97]. If object space coherency data is
stored along with the object data in this way, the run-time transparency check-
ing of each individual voxel is superfluous, since transparent voxels may be
ignored once and for all. Since typically 80% of the voxels of an MPR image
are transparent1, this constitutes significant savings in terms of run-time data
processing as well as storage space, since three run-length encoded copies are
usually smaller than a single unprocessed volume.

However, preprocessing data by run-length encoding imposes severe limi-
tations on the extent to which data may be changed on the fly (see section 6.3.6),
since e.g. inserting an opaque pixel in a transparent run (thereby breaking up
the run) will necessitate a re-encoding of the volume.

Image space coherency may be exploited in a similar way. Recalling that,
once a pixel has been set (i.e. once it has turned opaque) in the intermediate
image, it will not be changed again, it is possible to achieve a considerable
speed increase by keeping track of runs of opaque pixels in the intermediate
image. Assume that each opaque pixel is associated with a value that contains
the length of the rest of the current run. This way, it is possible to skip whole
runs of opaque pixels as well as the corresponding object voxel runs, since im-
age space and object space are traversed in synchrony. However, when the
first transparent pixel after an opaque run turns opaque, the length values of
the whole run must be updated (since the length of the run just increased). In
[Lacr95] it is shown, that path compression[Corm97] is a fast way of approximat-
ing this update. Path compression is also the technique used in the prototype
described in this thesis.

6.1.2 The Shear-Warp Factorization

Assuming the z-axis is the principal axis (see section 6.1), the factorization may
be written[Lacr95]:

Mview = Mwarp �Mshear (6.1)

If the z-axis is not the principal axis, the viewing transformation matrix is
pre-multiplied by a permutation matrix, see [Lacr95].

The shear matrix corresponding to a parallel projection will look like this:

1From personal experience, about 80% of the voxels are transparent. However, this figure also
corresponds well to the figures mentioned in [Lacr95].
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Mshear =

2
664

1 0 sx 0
0 1 sy 0
0 0 1 0
0 0 0 1

3
775 (6.2)

where sx and sy denote the shear coefficients. Since this is always a regular
matrix, its inverse is well defined, and the warp matrix may be derived as:

Mwarp = Mview �M
�1
shear (6.3)

Once the principal axis has been determined, the shear coefficients are cho-
sen such that all the viewing rays are parallel to the principal axis (refer to
figure 3.2). Subsequently, the slices are sheared using the shear matrix (6.2),
projected and composited into the intermediate image. Finally, the intermedi-
ate image is subjected to an affine warp by the warp matrix (6.3). The follow-
ing sections describe how to take advantage of available hardware acceleration
when warping and how to retain proper depth information, enabling appro-
priate intersection of subsequently added polygonal graphics.

For more information on rendering using a shear-warp factorization of the
viewing transformation, the reader is referred to [Lacr95].

6.2 Modifications for Interactive Display

Since the warp described in the previous section is an affine transformation,
it is possible to perform the warp using the texture mapping feature of the
graphics library. As opposed to section 5.2, where a 1:1 mapping was desir-
able, mapping the intermediate image as a texture onto a warped quadrilateral
produces the desired warpage. This is just a question of transforming the ver-
tices of the quadrilateral using the warp matrix of equation (6.3). A polygon
thus pretending to be a three-dimensional object is called an impostor.

6.3 Combining Voxels and Polygons

The problem of combining voxel-based graphics and polygonal graphics is that
of depth sorting. OpenGL uses the z-buffer (or depth buffer) technique, but it
knows nothing about the depth information inherent in the rendered volume.
It just “sees” a warped quadrilateral parallel to the image plane.

To solve this problem, proper depth information is generated and stored in
the z-buffer, thereby overwriting any earlier information. Therefore, the shear-
warp object must be the first object being drawn in each frame.

6.3.1 Generating Depth Information

By modifying the inner loop of the shear-warp renderer to make a second in-
termediate image which for each image pixel contains depth information of
the corresponding voxel, it is possible to gain the depth information needed
for appropriate interaction with other objects.
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Figure 6.1: A human head seen from the top (left) and the corresponding depth image
(right).

This intermediate depth image is mapped as a texture onto a warped quadri-
lateral in exactly the same way as in section 6.2. This maps the depth values as
intensity values in the colour buffer (image buffer, as opposed to depth buffer).
Reading back this colour information pixel by pixel and storing it in the z-
buffer then has the desired effect. The z-buffer contains the appropriate depth
information of the voxel volume.

Subsequently, the intermediate image is mapped onto a warped quadrilat-
eral and rendered to the colour buffer. In order to avoid z-buffer corruption
by the imposing quadrilateral, z-buffer comparison and updating must be dis-
abled.

Once the z-buffering is reenabled, the graphics system is ready to display
polygons intersecting the voxel volume properly, without further ado.

The following form shows the steps needed to draw each frame (refer to
figure 6.2):

1. Determine primary viewing axis and factorize the viewing transforma-
tion.

2. Render the intermediate images (color and depth information) to texture
memory.

3. Clear the colour buffer.
4. Map the intermediate depth image onto a quadrilateral in the colour

buffer. The vertices of the quadrilateral have been transformed by the
warp matrix of equation 6.3.

5. Transfer the contents of the colour buffer into the depth buffer. This step
is assumed to affect the whole depth buffer.

6. Clear the colour buffer (but not the z-buffer).
7. Disable z-buffer update and comparison.
8. Map the intermediate depth image onto a warped quadrilateral in the

colour buffer. This quadrilateral has the same coordinates as the one in
step 4, i.e. the warps are identical.

9. Enable z-buffer update and comparison.
10. Draw polygons.
11. Show the finished image (e.g. by swapping the colour buffers).
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Depth buffer

Colour Buffer

After step 4: After step 6: After step 8:

Colour Depth

Intermediate Images

Figure 6.2: Generation of depth information. The intermediate images are mapped to
warped quadrilaterals. Depth information is generated via the colour buffer to insure
correct warpage.
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Please note, that the depth image formed in step 4 is never shown directly,
but transferred to the depth buffer. To see how such a depth image would look,
refer to figure 6.1. Ideally, the intermediate image containing the depth image
should be rendered directly to the depth buffer, but to the best of the author’s
knowledge, OpenGL does not allow this.

The z-buffer must be disabled when performing step 8. Otherwise, the z-
buffer contents would be overwritten with depth information corresponding
to the imposing quadrilateral. If the impostor was behind the virtual object
represented by the z-buffer content, it would not be drawn at all.

Once the z-buffer contains the correct data corresponding to the shear-warp
object, any number of polygons may be added. Of significant use in this ap-
plication would be a polygon indicating the position and orientation of the
current slice, see figure 6.3.

6.3.2 Limited buffer resolution

Since typical colour buffers use 8 bits precision per channel (red, green, blue,
and opacity) the naı̈ve implementation of the above would have a (maximum)
z-buffer precision of 8 bits, and thus 256 equidistant depth values. Since these
256 different depth positions are of the same order as magnitude as typical
scan volume resolutions, this limited precision does not pose a problem. In
this section, however, a method to make the most of the limited resolution will
be presented.

Every element of the intermediate depth image is initialized to 255, which
we define as the depth value corresponding to the far plane of the viewing
frustum. In order to get the most out of the limited precision, we map the
depth value of the nearest voxel to 0 and that of the most distant voxel to 254.
Any depth value between these extremes is subject to an affine mapping. In the
following, this mapping will be referred to as depth coding, the result of which
is referred to as depth codes.

In practice, the depth values of the nearest and the most distant voxels,
zmin and zmax, respectively, are found by examining the eight corners of the
scan volume transformed into camera space.

The following affine transformation is then used to determine the depth
code zc of any depth value z between zmin and zmax:

zc = round

�
254

z � zmin

zmax � zmin

�
(6.4)

Before the buffer transfer step above (step 5) is performed, is it necessary to
translate the information of the colour buffer into proper depth buffer content.
To do this, we need the z-axis distance of the near and far clipping planes,
znear and zfar, respectively. In the default mode of OpenGL, a z-distance of
zfar corresponds to a depth buffer value of 1, whereas a z-distance of znear
corresponds to a depth buffer value of 0. Values between znear and zfar are
subject to an affine mapping.

Ignoring rounding errors, the depth of a pixel having depth code zc is equal
to:
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z =

�
zfar zc = 255

zc
254 (zmax � zmin) + zmin zc < 255

(6.5)

Assume that the z-buffer assigns a value of zero to points whose z-component
is equal to znear and one to points whose z-component is equal to zfar. As-
suming any voxel in question is inside the viewing frustum, the appropriate
z-buffer value zz for a pixel corresponding to a voxel having a depth value of
z is

zz =
z � znear

zfar � znear
(6.6)

Thus, the appropriate z-buffer value zz for a pixel having depth code zc is:

zz =

(
1 zc = 255

( zc
254

(zmax�zmin)+zmin)�znear
zfar�znear

zc < 255
(6.7)

Remark: The current implementation does not work exactly the way described above.
It uses a slightly different mapping to optimize for speed: The nearest and most distant
points, zmin and zmax, are mapped to 1 and 255, respectively. The far clipping plane
zfar is mapped to zero. Using this mapping, clearing the intermediate depth image to
zeroes (which can be done swiftly) leads to the desired initialization of the depth buffer.
Furthermore, this mapping has the added benefit of enabling contour indication on the
slice indication – see figure 6.3 and section 6.3.3.

To recapitulate the modified version of the above steps 2 through 5: Along-
side the normal intermediate image, the modified shear-warp renderer creates
an intermediate depth image, consisting of values translated into depth codes
using equation (6.4). This depth image is mapped onto a warped quadrilat-
eral in a colour buffer. This colour buffer is read into system memory, and the
codes (pixel luminance) are converted back into approximate depth values us-
ing equation (6.7). The colour buffer is cleared, and the depth values are then
stored in the z-buffer.

6.3.3 Contour Drawing

Figure 6.3 shows the frontal part of a brain peeking through a slice plane. Note
how the contour of the part of the brain behind the slice plane is visible. This
contour is actually an artifact caused by filtering the depth image when per-
forming step 4 in section 6.3.1. Figure 6.4 shows how the contours come into
existence. On figure 6.4.4, a slice indicator is placed. Since contour point c1 is
in front of the slice indicator, it will “punch a hole” in it. The contour point c2,
however, will not be visible, since the depth value of the slice indicator is less
than that of the contour point. This shows that this method of contour draw-
ing is less than perfect – but, after all, this contouring phenomenon is just an
artifact, included as a curiosity, although it work quite well in practice. Note,
that this contour drawing technique is based on the coding scheme described
in the remark in section 6.3.2.
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A B

C D

Figure 6.3: Brain with indication of coronal slice. A: Opaque slice indication. B: Slice
indication with contour. C: Transparent slice indication. D: Transparent slice indicator
with contour.
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Figure 6.4: 1. A z-buffer scanline of a hemispheric object. 2. Scanline z-values are
converted to codes using equation (6.4). 3. Using the codes as luminance, step 4 is
performed. Due to the applied texture filtering, the codes are “smoothed”. 4. The codes
are converted back into depth values using equation (6.7), leaving the contour points
c1 and c2 “sticking out”. Note, that the conversion equations used here have been
modified to comply with the coding scheme described in the remark on page 42.
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Figure 6.5: Left: The vectors used in the illumination calculations. Right: Decompos-
ing any unit vector into two angles.

6.3.4 Phong Illumintation

The 3D display serves a dual purpose: To display the curvilinear slices and
to assist in the navigation by showing the position of the current planar slice
shown in the 2D display. To facilitate the latter purpose, the user may choose
between two 3D shading methods: Each voxel is either rendered using the lu-
minance from the MR image or according to the Phong illumination model[Fole97].
When rendering using the latter method, all the opaque voxels are assumed to
be of equal luminance, and the intensity associated with an illuminated voxel
is determined by:

I = Ia + Id (N � L) + Is (R �V)
n (6.8)

where Ia, Id, and Is are the ambient, diffuse, and specular intensity coefficients,
respectively. The unit vector pointing from the point of incident to the light
source is denoted by L; the unit vector pointing from the point of incidence to
the viewer is denoted byV (cf. figure 6.5). The surface normal is denoted byN,
and the reflection vectorR, defined asLmirrored aboutN, may be determined
by

R = 2N (N � L) � L (6.9)

Assuming that the distances from the 3D object to the light source and to
the viewer are infinite, L andV can be assumed to be constant for every object
voxel. If the specular-reflection exponent n and the three intensity coefficients
are assumed to be constant, the intensity equation (6.8) is reduced to a function
of the normal vector of the point of incidence.

Lookup Table Indices

To achieve fast Phong illuminations, a lookup table is used. The following
shows how a normal vector is decomposed and quantized to fit in a 16-bit
lookup table index.
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A normal vector is a unit vector in three-dimensional space. Any such vec-
tor may be constructed like so (cf. figure 6.5):

1. Start with the vector v = [1; 0; 0]T .
2. Rotate v about the z-axis at an angle 0 � az � 180Æ.
3. Then, rotate v about the x-axis at an angle 0 � ax < 360Æ.

Next, the angles ax and az are quantized such that

ax 2 f0; 1; 2; : : : ; 180g

az 2 f0; 1; 2; : : : ; 359g (6.10)

At this point, ax and az can easily be “wrapped” into a single integer ta as
follows:

ta = 360ax + az (6.11)

and unwrapped as follows:

ax =

�
ta

360

�
(6.12)

az = ta mod 360 (6.13)

The integer wrapping ta fits into a 16-bit unsigned integer, since, for any ax
and az satisfying equation (6.10), the following holds:

0 � ta � 65159 < 216 (6.14)

In practice

In the prototype, a preprocessing step (see section 9.2.2) calculates the normal
vector corresponding to each voxel by normalizing the gradient approximation
described in section 2.2.4. This vector is then decomposed into the angles ax
and az which are subsequently quantized and wrapped into a 16-bit integer
stored along with the intensity value of the corresponding voxel.

When rendering, ta is directly used as an index into a table of intensities,
which must be recalculated with each frame2 using equation (6.8) for every
combination of the quantized angles ax and az given by the expression (6.10).

2More precisely: Table recalculation is necessary whenever object orientation changes relative
to light or viewer.
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6.3.5 Possible Improvements

To cater for the limited depth buffer resolution, another option would be to use
several channels (red, green, blue, and opacity) for saving depth information.
This way it would be possible to achieve up to 32 bits of depth buffer precision,
which is more than most graphics hardware and libraries offer. Using this
approach, it is essential to use a nearest-neighbour filter when mapping the
depth texture (step 4 above), since any kind of smoothing might corrupt the
depth information, depending on how the depth information is laid out in the
4� 8 bits.

6.3.6 Alternatives

An alternative to this hassle of generating proper depth buffer data would be to
voxelize the polygons and let them be drawn together with the original shear-
warp object. However, as seen in section 6.1.1, this would require run-length
encoding the volume at every change of the orientation of any polygon rela-
tive to the original voxel object (e.g. the brain). One way around this would
be to forgo the advantages of exploiting object space coherency and store the
object data in an unprocessed format. However, this still leaves the chore of
re-voxelising the polygons at each change of orientation or position, and thus
re-traversing the volume. The method described in the previous sections al-
lows quick graphical updates when changing polygon orientation, since the
“artificially” generated z-buffer data does not change. In other words (assum-
ing the generated z-buffer data is stored in a safe place): If any of the polygons
change (but the volumetric object does not), step 1 and 4 of the recipe of section
6.3.1 may be skipped, along with the shear-warp rendering step itself.

6.4 Disadvantages of Shear-Warp Rendering

The disadvantage of shear-warp rendering is one concerning image quality.
Since inter-slice filtering is not performed, “holes” may occur in the intermedi-
ate image (and thus in the final image). With the understanding that the com-
positing occurs in front-to-back order, this is illustrated in figure 6.6. Viewing
ray a is nearer to the transparent left pixel than the opaque right pixel in slice 0.
Thus, passing slice 0 will not turn the pixel corresponding to this ray opaque.
When passing slice 1, however, ray a is nearest to the opaque left pixel, and
pixel a is set accordingly. Since both of the rays b and c are closer to the trans-
parent pixels than to the opaque ones in both slices, the corresponding pixels
remain transparent, thus creating an undesired hole in the image. Note, that
this artifact is independent of the resampling filter used, since resampling fil-
ters only act on non-transparent voxels. In a full-fledged shear-warp renderer
featuring semi-transparent voxels (such as the one in [Lacr95]), the problem
would be insignificant, since direct transitions from fully transparent to fully
opaque voxels (such as the ones in figure 6.6) are rare in typical MR data. Note,
that, in practice, the problem only occurs when rendering “thin” objects, such
as voxelized surfaces, and not when rendering actually volumetric data. See
also section 7.2.
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Figure 6.6: The disadvantage of shear-warp rendering: Holes may form when render-
ing “thin” objects. Refer to section 6.4.
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Chapter 7

Curvilinear Reformatting

In order to automatically extract curvilinear slices as proposed by Bastos et
al., it is necessary to determine the shape and location of the brain. This is
equivalent to segmenting brain from non-brain tissue, which is exactly what
the appropriately named Brain Extraction Tool (BET) from the Oxford Centre
for Functional Magnetic Resonance Imaging of the Brain does[Smit00]. BET is
a part of the free1 FMRIB Software Library (FSL).

7.1 Brain Extraction Tool

BET reads a file containing a three-dimensional MR image, delineates the brain
surface and writes an MR image containing the brain only. However, in addi-
tion to this brain-only image, BET is also able to output a brain mask, i.e. an
image of the same dimensions as the original image, containing ones where
BET deems there be brain tissue, and zeros elsewhere.

To delineate the brain surface, BET starts by determining the parameters of
a “best-fit” sphere. This sphere is tesselated into a mesh of triangles, which is
subsequently deformed to obtain a better fit. The deformation, which is done
iteratively until an optimal solution is found, takes two things into account:
Fit quality and mesh smoothness. When a solution is found, an approxima-
tive measure of self-intersection is applied. If this measure indicates that the
mesh most likely is self-intersecting, the whole process is repeated with stricter
smoothness constraints.

7.2 Surface Extraction

Using the brain mask delivered by BET, it is possible to extract the outermost
curvilinear slice2 by selecting every voxel satisfying the following two condi-
tions:

1. The voxel must be a brain tissue voxel according to the brain mask.

1Distributed under the GNU public license.
2Note, this slice is not a unique set of voxels, but one depending on the employed notion of

connectivity.
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2. At least one of the neighbours must be a non-brain voxel.

One way of extracting the next slice (the next layer of the analogous onion)
would be to mark the previously extracted voxels as being non-brain voxels
and subsequently repeat the selection above.

However, to get, say, the eighth layer, one would have to perform eight
iterations of selecting and re-marking. This is evidently inefficient, should one
want to access slices in a random order. See also section 7.3.

Another way would be to calculate for each brain tissue voxel the Euclidean
distance to the nearest non-brain tissue voxel, and considering the results as a
function value or measure assigned to the voxels. The set of voxels having a
Euclidean distance measure in a given interval would correspond to a slice of
a certain thickness. Once the distance calculation is done (needs only be done
once), a single selection is all that is needed to extract any slice of any thickness.

Using this method, one could extract the eighth slice mentioned above by
selecting those voxels whose distance measure was greater than seven and less
than or equal to eight. Note, that the set of voxels of this slice would in gen-
eral not be equal to the set extracted above, since connectivity has not been
considered, i.e. the meaning of “neighbour” has not been rigorously defined.

This method is the one employed in the prototype. Figure 7.1 shows four
slices extracted using this technique.

In order to avoid the problems associated with shear-warp rendering of thin
surfaces (see section 6.4), the program does not allow the display of single lay-
ers (i.e. sets consisting of voxels of distance measure dlimit � 1 < dvoxel �
dlimit+1). The selection phase only includes those voxels whose distance mea-
sure is greater than a user-selected threshold. Thus, if the user set a distance
threshold value of zero, the selection phase includes all brain voxels.

The algorithm used to perform the Euclidean distance transformation is
due to Saito and Toriwaki[Sait93]. This algorithm calculates the exact dis-
tance transform (as opposed to methods such as those employing the chamfer
algorithm[Cars00]) of a 3D voxel volume in a matter of seconds on the devel-
opment system.

Since the Euclidean distance (in voxels) between two voxel centers may be
determined as

d(vijk ; vstu) =
p

(s� i)2 + (t� j)2 + (u� k)2 (7.1)

the squared distance is always an integer. In the prototype, the squared dis-
tance is the employed distance measure, since it saves the computation of
many square roots and since integer comparisons are preferable to floating
point comparisons.

7.3 Other Metrics

In some cases, it may be advantageous to make use of other measures of dis-
tance. Should one want to extract surfaces in the first way described in sec-
tion 7.2, but without having to repeat the extraction to get subsequent layers,
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Figure 7.1: Curvilinear reformatting at varying distances from the surface. A: 2 mm.
B: 4 mm. C: 8 mm. D: 12 mm.
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one solution would be to perform a distance transform using the appropriate
notion of connectivity, i.e. calculating the distance from each object voxel to
the nearest (using the appropriate metric) non-object voxel. Assuming two-
dimensional 4-connectivity3, this would mean calculating the distance trans-
formation using the “city-block” metric. This distance transformation can be
performed swiftly using e.g. the chamfer algorithm[Cars00]. Defining a bor-
der voxel to be an object voxel having a non-object voxel in its neighbourhood,
selecting all voxels whose distance is d gives the exact same set of voxels as
performing the following:

iterate (d� 1) times
Mark all border voxels.
Turn marked voxels into (unmarked) non-object voxels

Select all border voxels.

This duality, which can be extended to other simple dual connectivity/metric
pairs4, may be of some use due to the simplicity and the closeness to the layers-
of-an-onion analogy, as well as the swiftness with which a distance transforms
may be performed.

3With 4-connectivity, the neighbours of a voxel at position (x; y) are (x� 1; y) and (x; y � 1).
4Other pairs include the chess-board metric and 8-connectivity and equivalents in higher di-

mensions.
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Chapter 8

Dysplastic Lesion Detection
Aid

In order to be able to detect dysplastic lesions of the cortex, it is necessary
to know what characterizes this abnormal tissue as opposed to normal tissue.
Since MRI is the imaging method of choice, it would be particularly beneficial
to know what MR imaging findings to expect when confronted with a dysplas-
tic lesion.

As described in section 4.1.2, the aim is to detect cortical thickening and/or
blurred gray matter / white matter junction. In order to detect cortical thicken-
ing, a measure of cortical thickness is needed, which calls for the ability to tell
cortical tissue from non-cortical tissue. However, according to the constraints
of section 4.1.2, any gray matter / white matter segmentation must be done by
a trained expert. Here, a user-selected threshold is applied on the voxel inten-
sities, which is not assumed to perform an accurate segregation of tissue types
on a voxel-wise basis, but is only intended to discard the set of voxels unlikely
to represent gray matter. This obviously calls for conservative thresholds.

8.1 Intensity Thresholding

Figure 8.1 shows part of a typical intensity histogram1 corresponding to an
MPR image showing part of a human’s head. The histogram has has three
humps. The hump corresponding to the lowest voxel intensity derives mainly
from the background2, the middle hump mainly from gray matter and the
rightmost hump is due to white matter.

Judging from the histogram, the set consisting of brain voxels whose inten-
sity is between 30 and 90 is very likely to contain a large proportion (if not all)
of the gray matter voxels. Obviously, these thresholds are conservative, but
provide good initial threshold values.

Figures 8.3A and 8.3B show a planar slice before and after intensity thresh-
olding.

1A conventional bar graph was unsuitable for the number of intensities, so a regular connected-
line graph was used.

2The low-intensity voxels also derive from e.g. bone and CSF
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Figure 8.1: Part of a typical intensity histogram.

8.2 Gradient Correlation

One simple way of detecting edges in conventional image analysis is to de-
termine large gradient magnitudes, since these usually signify “hard” edges.
At this point, the search for dysplastic lesions differs from conventional image
analysis, since hard edges (in the right places) do not signify abnormal tissue.
A “soft” and blurred gray matter / white matter junction, however, does. In
order to detect these blurry edges, a measure of “blurredness” is needed.

The gradient correlation is just that. For a voxel v with a specified set of
neighbours N , the gradients r of which are all well-defined, we define the
gradient correlation as:

cv =

(
1 rn = 0 8n 2 N

j
P

n2N
rnj

P
n2N jrnj

else
(8.1)

Here jxj denotes some norm of x. The gradient correlation is a measure of
the extent to which gradient vectors are pointed in the same direction, in other
words, a measure of the correlation of the gradients, hence the name.

In order to examine the properties of expression (8.1), the following general
properties of norms will be needed[Hans99]:

jxj = 0 if and only if x = 0 (8.2)
jxj � 0 for any x (8.3)
jx+ yj � jxj+ jyj (8.4)
jaxj = ajxj for any a 2 R+ [ f0g (8.5)

Using these properties, it can be shown that 0 � cv � 1.
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The following examples illustrate the meaning of the gradient correlation
cv .

Example 8.1: A linear field. Consider a field of voxels whose intensity vary linearly
with one coordinate. Ignoring the field edges, the voxel gradient rv is constant and
non-zero. Assuming each neighbourhood to consist of k voxels, the gradient correlation
of each voxel is equal to:

cv =

�
�P

n2N rn

�
�

P
n2N jrnj =

jk rvj
k jrvj = 1 ; (8.6)

implying field that is not at all blurred.

Example 8.2: A noisy field. Consider a field of voxels whose intensity are given
by a white noise function. Furthermore, assume that all gradients are non-zero, yet any
sum of gradients over a neighbourhood is equal to zero, since the gradients themselves
are so “noisy”. This leads to a field of voxels whose gradient correlation is equal to

cv =

�
�P

n2N rn

�
�

P
n2N jrnj =

j0j
P

n2N jrnj = 0 ; (8.7)

implying a totally blurred field.

Example 8.3: An isointense field. Assuming a field of equal intensity, the gradient
belonging to every voxel is equal to zero. By definition, this means the gradient corre-
lation is equal to one, reflecting the fact that an isointense field is not at all blurred.

In practice, the voxel neighbourhood definition used is the 3�3�3-neighbourhood
centered on the voxel in question, including the voxel itself. The norm used is

the three-dimensional Euclidean norm, given by jvj =
q
v2x + v2y + v2z .

Since hard edges are of no interest here, it would be natural to dispose of
them by discarding any voxel whose gradient is above a certain threshold, thus
performing an “edge disregarding” as opposed to a conventional edge detec-
tion. In practice, however, the gradient correlation of voxels constituting a hard
edge is close to one, since the gradient magnitude of these voxels are several
orders of magnitude larger than the “noise” that would cause blur. This means
that any hard edges are removed by applying a maximum correlation thresh-
old (i.e.. discarding voxels whose gradient correlation exceeds some thresh-
old).

Figures 8.3B and 8.3C show the same slice before and after thresholding on
gradient correlation.

8.3 Cluster Sizes

Using the methods described in the previous sections, the algorithm is capa-
ble of detecting gray matter at various degrees of blur. The voxels satisfying
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the selected parameters of both of these double thresholds are called t-voxels
(threshold voxels). In order to detect cortical thickening, a measure of size is
needed for these clusters of t-voxels. One way of doing this would be for each
t-voxel, using some definition of connectivity, to count the number t-voxels
which could be reached from this voxel without leaving the cluster. This me-
thod, however, would be computationally expensive, and might assign a high
score to a large, but flat, cluster. The desired clusters have the shape of a rock
under a carpet – this method will not give good indication as to whether or not
there is a rock under the carpet. Alternatively, one could imagine measuring
thickness perpendicular to the cortical surface. However, given the complex
geometry of the surface, this would be a daunting task. In practice, a much
simpler method is used.

By using the three-dimensional Euclidean distance transformation on what
has already been detected (the t-voxels), a measure of cluster size is obtained.
That is, for each voxel which is within the intensity interval selected and whose
gradient correlation is within the correlation interval selected, measure the Eu-
clidean distance to the nearest voxel which does not satisfy these conditions.
The local maxima of such a distance field provides information on the sizes of
the corresponding clusters.

The following example demonstrates how this measure of size works. Ad-
ditionally, a shortcoming of this simple method is shown.

Example 8.4: Limitations of the measure of size. The two-dimensional exam-
ple of figure 8.2 shows two clusters, differing only by one voxel. The leftmost cluster
would have a size of

p
8, since this is the maximal distance value. The cluster to the

right, however, would only have a size of
p
2 – half the size of its neighbour. This

shows the shortcoming of this measure of size, and emphasizes the need for conserva-
tive thresholds, to reduce the frequency of these holes.
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Figure 8.2: Two-dimensional examples of the measure of cluster size.

In practice, the selection of clusters is done by displaying only the t-voxels
that satisfy the selected distance requirements. These voxels will be called d-
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Figure 8.3: Detection of dysplastic lesions, step by step. A: Original image. B: After
intensity thresholding. C: After correlation thresholding. D: After cluster size thresh-
olding.

voxels in the following. Assuming an infinite upper size limit and a lower size
limit of 1:5, only seven voxels of the leftmost cluster of figure 8.2 will be d-
voxels, and none of the voxels of the rightmost cluster. This thresholding strat-
egy saves the determination of local maxima of the distances at the cost of the
display of the periphery of the cluster. Alternatives to this strategy will be
considered in section 8.4.

Figures 8.3C and 8.3D show the same slice before and after thresholding on
cluster size.

Note, that it may seem strange to have a minimum cluster size, when the
smallest lesions are the hardest ones to spot. The need for such a minimum
size limitation is seen on figure 8.3. The two double thresholds leave a large
number of isolated t-voxels which need to be removed, lest, owing to their
sheer number, they nullify the idea of requiring separate consideration. As an
alternative to a minimum cluster size, these isolated t-voxels could be removed
by employing an anti-speckle method (see [Nibl86]).
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8.4 Alternatives

Displaying the periphery of the t-voxel clusters would be an improvement,
since the shape and the actual size of the cluster of t-voxels would be more
accurately reproduced this way. This could be done by displaying any t-voxel
located in a cluster containing a d-voxel. Using conditional dilation [Serr88]
this would be possible, but computationally expensive. A relatively cheap ap-
proximation would be the following:

for each d-voxel v
display any voxel closer than dv to v

Here, dv denotes the distance from v to the nearest voxel that is not a t-voxel
nor a d-voxel. Note, that a requirement that any voxels displayed be t-voxels is
not necessary. This might not give the correct shape of the cluster of t-voxels,
but it does provide the general outline of the rock under the rug.

One could also consider improving the differential molecules used to es-
timate the gradients and the neighbourhood used when measuring gradient
correlation. Other filter kernels may be able to improve detection in some way,
e.g. by reducing directional bias. The filter kernels chosen here are by no means
claimed to be optimal; One should, however, be wary not to choose too large
a kernel. Since the sought-after features are typically subtle, they are easily
eradicated by excessive smoothing.

8.5 Discussion

The lack of a third dimension inherent in computer screens and radiographic
film imposes a severe handicap on a radiologist attempting to detect and lo-
cate abnormal tissue in the brain. The radiologist is limited to a set of two-
dimensional views of the data. Even if the object in question is derived from a
three-dimensional data set, it is still projected onto a two-dimensional medium.
The advantage of using a computer program to aid in the detection of dysplas-
tic lesions lies in the fact that the algorithm is not restricted to two-dimensional
views of the data.

Note how the method described in this chapter differs from conventional im-
age analysis. Usually, one would attempt to find the sharpest edges in an image
(e.g. road markings) or areas containing no edges (i.e. no obstructions); Here,
the desired features, the blurred, soft edges, are somewhere in between. A de-
fined, sharp transition from gray to white matter is usually a sign of healthy
tissue, whereas a blurred transition usually indicates abnormal tissue, such as
a dysplastic lesion.

Although the three double thresholds (intensity, gradient correlation, and clus-
ter size) are coupled, it is possible to shut out any one of them by suitable pa-
rameter choices. For example, by setting the lower and upper gradient correla-
tion thresholds to zero and one, respectively, the gradient correlation becomes
devoid of any importance.
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8.5.1 Non-Isotropic Voxels

This thesis has so far assumed voxels to be isotropic, i.e. having the same extent
in all coordinate directions. Although the graphics subsystem does not have
this limitation, the detection aid and the curvilinear slice extraction discussed
in this and the previous chapters would suffer from severe directional bias if
confronted with (highly) anisotropic voxels.

In the case of the detection aid, the problem would be severe directional bias
caused by the differential molecules employed to estimate image gradients.
Correcting biased gradients is a question of multiplying each component of the
gradient vectors by appropriate factors, i.e. factors inversely proportional to
the voxel size in the corresponding coordinate direction. Once the gradients are
corrected, the problem of rectifying the calculation of the gradient correlation
remains. One way of doing this would be to associate weights (depending on
the distance to the center voxel v) to the gradients and gradient magnitudes of
equation (8.1), e.g. like a Gaussian filter kernel (see [Nibl86]), thus transforming
the unweighted sums in the numerator and denominator into weighted sums.

The cluster size thresholding and the curvilinear slice extraction both em-
ploy the Euclidean distance transform, which must also be able to cope with
the anisotropy. Fortunately, the distance transformation is also convertible to
the anisotropic case. To quote [Sait93]:

[The proposed algorithms] are also applicable with slight modifi-
cation to a digitized picture sampled with the different sampling
interval in each coordinate axis.

According to said article, the distance transform can be adapted to typical 3D
MR images, where voxels are larger in the coordinate direction perpendicular
to the slice, without any difficulty.

Although the method developed in this thesis is aimed at (near-) isotropic data
sets, it can be modified to the general case without much trouble by following
the above guidelines.

8.5.2 Blur Versus Noise

Since the noise level in 3D MR images is rather high, it may be difficult to
differentiate the noise arising from structural changes in the cortex (such as
“bizarre cells”) from the noise also present in MR images of normal subjects.
This latter noise type arises from patient motion (gross patient motion, respi-
ratory motion and motion caused by pulsatile blood flow), scanner hardware,
and the employed MR acquisition technique. In a particularly noisy image, the
gray matter / white matter junction may seem blurred all over. Whereas the
human vision system may be able to detect differences in the noise types, this
may not be the case for the automated system described in this chapter. When
using the developed method and encountering a highly noisy MR image, it
may be necessary to disregard the blurring altogether and focus on detecting
other symptoms. At the time of writing, the author has had no opportunity to
test the method on a severely noisy MR image.





Chapter 9

Prototype Implementation

The following sections describe implementation specific details of the devel-
oped prototype.

Note, that the prototype makes heavy use of indication by colour coding.
Since this is does not reproduce well in documents printed in black and white,
the detection images in this and the following chapter have subsequently had
indicators (arrows and frames) added using an image manipulation program.

9.1 General

The prototype implements the detection technique of chapter 8 along with the
automatic curvilinear reformatting method of chapter 7 and the visualization
mechanisms of chapters 5 and 6. This constitutes a tool that enables a radi-
ologist to perform an automatic scan for symptoms dysplastic cortical tissue.
Any tissue deemed abnormal is highlighted by a colour marking. The program
allows verification of these findings by visual inspection, and also for conven-
tional manual search using both planar and curvilinear reformatting.

Although MatLab1 was used in the development phase, the program is
written in approximately 5000 lines of C-code. It was developed on a Linux
system, with graphics support through OpenGL2 (http://www.opengl.org)
and the OpenGL Utility Toolkit (GLUT). Since these libraries exist on most
prevalent platforms, the program is portable to other systems. The program-
ming interface to the rendering routines is fairly clean and uses a naming con-
vention similar to that of OpenGL.

9.2 User Interaction

Figure 9.1 shows the graphical display of the prototype. By keypresses or sim-
ple click-and-drag mouse operations, the user can manipulate both the 2D and
the 3D images. The brain and slice images may be independently zoomed and
rotated about their respective midpoints, and the slice may be translated.

1MatLab is a registered trademark of the MathWorks, Inc.
2OpenGL is a registered trademark of Silicon Graphics, Inc.
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Figure 9.1: Screenshot of the graphics display. On the left is the 3D display with a
slice indicator. On the right is the 2D slice.

The display of curvilinear slices mainly affects the 3D display. However, a
curve indicating the intersection between the curvilinear slice and planar slice
is shown on the 2D display (see figure 9.2). This curve is updated whenever
the user selects a different curvilinear slice. Curvilinear reformatting may be
turned on or off.

The display of detections, shown in figure 9.2, can be turned on or off.
When on, the detections are shown on both the 2D and 3D displays, includ-
ing curvilinear slices. After adjusting detection parameters (the double thresh-
old values on intensity, correlation, and cluster size), the user may start a re-
detection.

To enable user control of the image contrast, the user may adjust the pa-
rameters of the intensity mapping described in section 5.1.2. The adjustment
is performed by dragging the mouse while holding down the middle mouse
button, which is the de facto standard of contrast control in e.g. MPR software.

The resampling method employed is selected at a keypress.
Sections 9.3 and 9.4 describes two extra features that may ease the detection

of cortical disorders.

9.2.1 Selective Updating

By only recalculating and redrawing when necessary, it is possible to save a
considerable amount of data processing, which in turn leads to a higher rate
of graphical updating. By saving intermediate images as well as depth infor-
mation, much work can be saved, since e.g. rotating the planar slice does not
require retraversal of the three-dimensional MR image, even though the slice
indicator on the 3D display would need to be updated.

The following table describes the necessary updates corresponding to a gi-
ven user action.
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Figure 9.2: Screenshot with detected dysplasia (cf. figure 10.1C). The 3D display
shows the curvilinear slice 18 mm from the surface. The 2D display shows the in-
tersection of the curvilinear slice and the planar slice as a gray curve. The detected
dysplasia is indicated with white arrows. Note the false detection (indicated with a
black arrow) at the top of the brain (see section 10.2). A magnified version of this
figure may be found on pages 84-85 in the appendix.

Action Retraverse 3D Redraw 3D Redraw 2D
Re-detect X X X
Rotate 2D X X
Rotate 3D X X
Zoom 2D X X
Zoom 3D X
Translate 2D X X
Resampling 2D X
Resampling 3D X X
Intensity map. X X X
CR on/off X X X
DLDA on/off X X X

Notes to this table:

� Redrawing the 3D display is often necessary when working with the 2D
display because the slice indicator needs to be updated.

� CR and DLDA are abbreviations of curvilinear reformatting and dysplastic
lesion detection aid, respectively.

� Intensity map. refers to the contrast enhancing intensity mapping de-
scribed in section 5.1.2.

� Resampling refers to a change in the resampling method used in a partic-
ular display.

9.2.2 Preprocessing

The preprocessing of the data is done using a separate program. This program
creates the necessary run-length encoded volumes. To achieve in-order ob-
ject traversal regardless of view angle, three encoded volumes are needed (see
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Figure 9.3: Emphasizing the cortical structure facilitates detection of abnormal cortical
asymmetries (black frame).

section 6.1.1). The program accepts a user-selected threshold and classifies all
voxels as being transparent (if their intensity is below the threshold) or opaque
(if their intensity is above the threshold). The gradients of all opaque voxels are
then calculated, encoded (see section 6.3.4), and stored along with the intensity
of the corresponding voxel in each of the three run-length encoded volumes.
The gradient correlation corresponding to each voxel is also calculated and
stored in a separate file.

9.3 Histogram Display

To aid in the determination of feasible parameters for the intensity thresholds,
the program features the display of intensity histograms (see figure 8.1). The
user can zoom in and out on any parts of the histogram by clicking the mouse
buttons. This histogram, which is drawn as a connected-line graph, may help
the user find feasible parameters by showing the approximate ranges of main
voxel types (background, gray matter, and white matter).

9.4 Cortical Detection

In order to emphasize the cortical structure, the prototype contains a simple
method of detecting gray matter. The method uses the same parameters as the
dysplastic lesion detection method, but in a different way:

1. Select all voxels whose intensity is within the range of the user-selected
intensity thresholds.

2. Remove all voxels whose gradient correlation is below the upper correla-
tion threshold. This ensures that only gray matter matter near an edge
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(background / gray matter edge or gray matter / white matter edge) are
included. The voxels that pass steps 1 and 2 are called b-voxels.

3. Discard the b-voxels, whose 3 � 3 � 3-neighbourhood contains less than
bmin b-voxels, where bmin is a user-selected threshold. This last step re-
moves isolated voxels and small clusters of voxels which may distract the
radiologist.

Figure 9.3 shows how putting visual emphasis on cortical structure facili-
tates the visual detection of cortical asymmetry.

An alternative would have been to use a more advanced and accurate seg-
mentation tool, such as FMRIB’s Automated Segmentation Tool (see section
10.2). FAST takes about 45 minutes segmenting a standard MR image on the
fastest settings, and even that is considered fast in the field of automated tis-
sue segmentation. Since the prototype is supposed to be an interactive tool,
advanced segmentation techniques are thus out of the question.

It should be noted, that the cortical detection algorithm described in this
section does not perform a voxel-wise tissue segmentation. It only approx-
imates the cortical structure so as to be able to emphasize it for facilitating
detection of asymmetry of the cortical structure.

9.5 Data

The preprocessing program and the main part of the prototype are both capa-
ble of reading data in the simple file and Analyze formats, provided the inten-
sity values be represented using 16-bit signed integers using little-endian byte
ordering or 32-bit ieee floating point numbers. Internally, intensities are repre-
sented using 16-bit signed integers.

The loaded data consists of:

� Three run-length encoded volume files (containing intensity and gradi-
ent information), each corresponding to a principal slicing direction.

� One (unencoded) volume file containing voxel intensities, used for pla-
nar slicing and display.

� One (unencoded) volume file containing gradient correlation.
� One (unencoded) brain mask (generated by Brain Extraction Tool).

The gradient correlation file is optional, as is the brain mask. However,
without the gradient correlation, automatic symptom detection is disabled,
and without the brain mask, curvilinear reformatting is disabled.

Each of the above four items represent approximately 18 megabytes of data
for a 256�256�140voxel volume, totalling 72 megabytes of data loaded when
optional features are enabled.

9.6 Performance and Requirements

The main program allocates 18 to 20 bytes per voxel loaded, plus an additional
7 Mb for textures and intermediate storage. This means that, using a normal
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256 � 256 � 140 voxel volume as data source, the program takes up approxi-
mately 180 megabytes of memory.

On the development computer, an AMD 1.3 GHz CPU equipped system
with 512 megabytes of RAM, the rendering speed was about 3 frames per sec-
ond when simultaneously updating both displays. This is barely enough for
hassle-free interaction.

The development system is equipped with a graphics card capable of ac-
celerating OpenGL graphics in hardware. Although OpenGL is only used to
draw three texture mapped quadrilaterals (2d, 3d, and depth images) as well
as for one colour buffer read operation and one depth buffer write operation,
hardware acceleration has significant impact on frame rates.

In the current implementation, the OpenGL driver takes by far the largest
portion of the frame time:

60% of the frame time is used by the OpenGL driver performing the colour
buffer read and the depth buffer write.

25% of the frame time is used by the OpenGL driver uploading the appropri-
ate textures to graphics memory.

This leaves only 15% of the frame time for everything else, such as travers-
ing the volume to form the intermediate images, converting depth informa-
tion, etc. The OpenGL buffer reads/writes are notoriously slow, in part be-
cause a graphics pipeline flush and stall are needed. Although most modern
graphics hardware supports it, there is not yet a render-to-texture mechanism
in OpenGL3. By optimizing these issues alone (e.g. by performing the warped
mapping in software, thus bypassing the driver), frame rates in the twenties
are estimated to be achievable on the development system.

Updating the array of detected voxels after a change of parameters takes
about 10 seconds on the development system. A slight improvement may
expected to arise from optimizing the distance transform implementation for
speed.

At a slight cost in speed, memory consumption may also be approximately
halved by packing data in a more efficient manner. As an example: Each voxel
in the brain mask contains one bit of information (brain/non-brain), yet its
internal format is 16-bit signed integer.

3Sadly, even the OpenGL version 1.3 specifications released 14th of August 2001 contain no
render-to-texture feature.
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Chapter 10

Results

This chapter describes the results so far obtained. The purpose of the tests,
which were performed by the author of this thesis, who is not a radiologist,
was to verify the diagnosis made by a radiologist. At the time of writing, the
MR images of four patients, each with a diagnosis of focal cortical dysplasia,
have been subject to verification by the developed prototype. Owing to this
limited amount of practical experience, an optimal range of parameter values
cannot be said to have arisen. Each of the four cases are shown in the following
section.

10.1 Detection of Dysplastic Lesions

Figure 10.1 shows four axial slices, each from different patients with focal dys-
plasia. Although visually different, they were detected using parameter sets
differing only in intensity threshold values (a change necessitated by the dif-
ferent intensity histograms of the four volumes). The remaining parameters
were:

Gradient correlation, lower limit 0:3
Gradient correlation, upper limit 0:8
Cluster size, lower limit 2 mm
Cluster size, upper limit 1

The upper limit on cluster size being at infinity is equivalent to having no
upper limit.

The detection of the dysplastic lesions in B, C, and D were fairly robust
to varying parameter sets. A slight varation to the parameters of A leads to
multiple false detections (refer to figure 10.2). In the leftmost image, the lower
threshold of the gradient correlation has been lowered to 0.2 (all other param-
eters comply with the above table). A number of false detections appear in
areas of very soft edges, e.g. in the basal ganglia. The findings in the basal
ganglia may easily be disregarded by the experienced user, but the remaining
detections require separate consideration. Conversely, when raising the up-
per limit on correlation (right image), false detections appear in areas around
harder edges. Magnified versions of figure 10.1A and 10.2 may be found on
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A B

C D

Figure 10.1: Detected focal dysplasias verified by a radiologist. Dysplastic lesions are
framed.

pages 86–88 in the appendix.

Unfortunately, the prototype has as yet been used only to verify previously
made diagnoses – the acid test of actually making a diagnosis awaits the near
future.

10.2 Effects of Intensity Nonuniformity

Owing to inhomogeneous receiver coil sensitivity, inhomogeneous main field
and RF field, and inhomogeneous magnetic susceptibility (“magnetizability”)
of the scanned object, spatial intensity variation unrelated to the anatomic
structure may arise. This variation, or bias, typically leads to a clearly visible
decrease in intensity level and tissue contrast at the top and bottom of sagittal
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Figure 10.2: Axial slices demonstrating the effects of parameter variation in patient A.
Left: Lower correlation threshold set to 0:2. Right: Upper correlation threshold set to
0:9. The dysplasia is indicated with white arrows, false detections with black arrows.
Magnified versions of these images can be found on pages 87-88 of the appendix.

Figure 10.3: Sagittal (left) and coronal slices showing false detections caused by in-
tensity nonuniformity. Magnified versions of these can be found on page 89 of the
appendix.
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and coronal views. Whereas the decrease in intensity level may not have great
significance on the visual interpretation of brain images, the results of compu-
tational procedures may suffer a great deal. This type of nonuniformity may
be seen as a “shadow” at the top of the brain depicted in figure 7.1.

For the following two reasons, the method described in this thesis can be
expected to have a significant amount of false detections when used on such
nonuniform images:

� The general decrease in intensity makes white matter voxels have lumi-
nance values in the gray matter area, so that everything seems to be gray
matter.

� The decrease in tissue contrast gives rise to a decrease in the signal-to-
noise ratio, making every remaining edge seem fuzzy.

This expectation proves to hold in practice: figure 10.3 shows a considerable
amount of false detections due to image bias. Note, that the false detection on
figure 9.2 is also caused by this kind of intensity nonuniformity.

The FMRIB software library (from where Brain Extraction Tool originates)
contains a tissue segmentation program capable of performing for bias correc-
tion. This program, called FAST (FMRIB’s Automated Segmentation Tool, see
[Zhan00]), has been used to correct a biased image. Unfortunately, the number
of false detections did not decrease significantly using this corrected image,
most probably because the tissue contrast in the parts of the original image
affected the most by this bias had already inreparably deteriorated.

A comprehensive evaluation of nonuniformity correction methods can be
found in [Arno01].
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Chapter 11

Summary

Manual detection of the development disorder of the cerebral cortex, known as
focal cortical dysplasia (FCD), may take several days of combing through mag-
netic resonance (MR) data, even for a clinical expert. An algorithm to assist in
the detection by 3D image analysis has been presented. This algorithm detects
two key symptoms of FCD, namely thickening of the cortex and poor differen-
tiation of gray matter versus white matter. To facilitate manual verification of
detections, the algorithm has been embedded in a graphics system combining
conventional planar as well as curvilinear slice view to facilitate interpretation
of data. A strong point in the algorithm is the fact that it is three-dimensional
in nature, as opposed to the inspection by a human user, who is restricted to
examining a few two-dimensional surfaces at a time. It should be noted, how-
ever, that the method presented here constitutes a tool for assisting a clinical
examiner, and not for automatically making diagnoses.

The results so far are few, but encouraging.

11.1 Main Contributions

In summary, the main contributions of this thesis are as follows:

� A method for fast automatic detecting of key symptoms of focal cortical
dysplasia.

� Automation of the type of curvilinear reformatting introduced in [Bast99].
� Extension of the shear-warp rendering method to achieve the appropriate

behaviour when interacting with subsequently added graphical objects.
� Demonstration of the use of texture mapping hardware to perform the

affine 2D warp required by shear-warp rendering.

11.2 Possible Improvements

The method reports a fair amount of noise as well as some strong false find-
ings. The former is characterized by the erroneous detection of small clusters
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(typically consisting of a single voxel) and most may be disregarded when tak-
ing their size into consideration. The latter are caused by the following:

� Restricting the program to consider local geometry information only; to
have no knowledge of the global tissue anatomy. False detections in the
basal ganglia (also consisting of gray matter), for example, belong to this
class

� Intensity nonuniformity. This is easily identified as a general decrease in
intensity and contrast

If these types of false findings are disregarded, the remaining detections
are usually few, and may be accepted or rejected manually. Whether or not
experience will teach radiologists to unconsciously disregard the false findings
of these types, only time will tell.

The program has been assessed by a radiologist, and general navigation
and positioning of slices was found to cause inconvenience. A few simple nav-
igational tools were suggested to solve the problem, see section 11.4.

11.3 Benefits

The method is able to detect visually different dysplastic lesions using the same
set of parameters. Using other parameter sets, it should be possible to facilitate
the detection of other abnormalities such as tumours and subtle cerebral hem-
orrhages. The algorithm uses simple (and thus fast) image analysis techniques
and may easily be extended to detect other features.

By being an inherently three-dimensional algorithm, it is capable of help-
ing a radiologist “see through” the flat images on a computer screen, thereby
reducing the effect of the reduced dimensionality of conventional MR analysis
tools.

The graphics system, having a 2D as well as a 3D image with indication of
contours and trouble spots is reported as being “very appealing”.

11.4 Future Work

Obviously, the method still needs much testing in order to pin down feasible
parameter ranges, as well as to provide the radiologist with the experience
needed to swiftly discern different classes of findings. Further issues of future
work include:

� Tools for orientation. A simple indication of the object coordinate system
was suggested, as well as a means of correlating the images of the 2D and
3D displays.

� Reducing the number of false detections.
� Optimizing other parameters, such as the filter kernels and differential

molecules.
� Extending the algorithm to provide valid results for data volumes con-

sisting of non-isotropic voxels.
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� Optimizing the graphics system for speed. A dramatic increase is as-
sumed possible.

� To let graphics hardware perform the 2D zooming as described in section
5.3.

� To sacrifice imaging quality for speed when interacting with the object,
and then to render at maximum quality once the interaction stops (also
described in section 5.3).

� To introduce alternative measures of cluster size to improve the detec-
tion of cortical thickening regardless of shape and natural variations in
cortical thickness.

� Displaying the periphery of detected clusters to emphasize cluster sizes
and shapes.

� By finding local maxima in the distance-to-nearest-non-t-voxel volume,
the approximate size and location of dysplasias can be determined. This
way, the program would be able to lead the radiologist directly to the
strongest detections.

11.5 Conclusion

The object of this work reported here was to develop a tool to assist a radiolo-
gist in the localization of subtle focal cortical dysplastic lesions. An algorithm
capable of detecting key symptoms of such disorders was developed along
with a graphics system to support verification of findings by visual inspection.
Much experimental work is needed to determine whether or not the method is
valuable, yet the results so far are encouraging.

The development continues.





Appendix A

Selected Images

This following pages contain blow-ups of the more detailed images of this the-
sis. The images have been enhanced using an image manipulation program to
compensate for the lack of colour in this reproduction.
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Figure A.1: Magnification of part of figure 9.2. Screenshot with detected dysplasia
(cf. figure 10.1C), showing the curvilinear slice 18 mm from the surface. The detected
dysplasia is indicated with a white arrow. Note the false detection (indicated with a
black arrow) at the top of the brain (see section 10.2).
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Figure A.2: Magnification of part of figure 9.2. Screenshot with detected dysplasia (cf.
figure 10.1C), showing the intersection of the curvilinear slice and the planar slice as a
gray curve. The detected dysplasia is indicated with a white arrow.
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Figure A.3: Blowup of figure 10.1A. Detected focal dysplasia verified by a radiologist.
The dysplastic lesion is framed.
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Figure A.4: Magnification of figure 10.2A. Axial slice demonstrating the effects of
parameter variation in patient A. Lower correlation threshold set to 0:2. The dysplasia
is indicated with white arrows, false detections with black arrows.
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Figure A.5: Magnification of figure 10.2B. Axial slice demonstrating the effects of
parameter variation in patient A. Upper correlation threshold set to 0:9. The dysplasia
is indicated with white arrows, false detections with black arrows.
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Figure A.6: Magnification of figure 10.3. Sagittal (top) and coronal slices showing
false detections caused by intensity nonuniformity.





Appendix B

Resources on the Internet

The following addresses are valid at the time of writing (August 2001), but ow-
ing to the dynamic nature of the internet, this may change in time.

� The FMRIB Software Library (Brain Extraction Tool):
http://www.fmrib.ox.ac.uk/fsl

� A technical report on the Brain Extraction Tool (on-line version of [Smit00]):
http://www.fmrib.ox.ac.uk/analysis/research/bet/bet/

� Abstract on detection of Focal Cortical Dysplasia by Voxel-Based Mor-
phometry (on-line version of [Hupp01]):
http://www.academicpress.com/www/journal/hbm2001/9991.html

� Article on template-based ray casting (on-line version of [Lee97]):
http://cglab.snu.ac.kr/˜chlee/template.ps

� Philip Lacroute’s Ph.D thesis on shear-warp rendering (on-line version of
[Lacr95]):
http://www-graphics.stanford.edu/papers/lacroute thesis/

� Article on volumetric rendering using hardware accelerated pixel shad-
ing (on-line version of [Enge01]):
http://wwwvis.informatik.uni-stuttgart.de/˜engel/pre-integrated/
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