
A PARALLEL ELLIPTIC
PDE SOLVER

Jesper Grooss

Kgs. LYNGBY 2001
EKSAMENSPROJEKT

NR. 08/2001

IMM

Preface

This thesis constitutes my Masters thesis project for a degree in Mas-
ter of Science in Engineering (M.Sc.Eng.). It was written during the
period of 1st of February to 31st of July 2001 at Informatics and Math-
ematical Modelling (IMM), Technical University of Denmark (DTU).

Supervisor on the project have been Associate Research Professor
Stefan Mayer, located at IMM and member of the Computational Hy-
drodynamics Group, a group based on a Research Frame Program on
Computational Hydrodynamics financed by the Danish Technical Re-
search Council (STVF). This thesis arise primarily due to Stefans needs
and knowledge in the field of computational hydrodynamics.

The reader is assumed to have knowledge of numerical methods
and mathematics at the level of advanced undergraduates or gradu-
ates.

I thank Stefan for his big enthusiasm and interest in the project,
and his willingness to always take his time to answer questions and
discuss problems. I also thank Jan M. Rasmussen and Michael Jacob-
sen for good advice and reading through the thesis, thereby making it
more readable.

Kgs. Lyngby, July 27th, 2001
Jesper Grooss

ii

Abstract

The problem considered is how to parallelize an elliptic PDE solver,
or to be specific: How to parallelize a Poisson solver based on a finite
volume discretization. The Poisson problem arises as a subproblem
in computational fluid dynamics (CFD). The motivation is a wish to
parallelize an existing CFD solver called NS3.

Different methods from domain decomposition are presented, and
their properties are outlined. First is presented the original method of
Schwarz, the classical alternating Schwarz method, which is based on
overlapping domains. Secondly is presented a non overlapping ap-
proach, where Dirichlet data and Neumann data are exchanged over
the boundary in odd and even iterations respectively. Finally Schur
Complement methods and the BDD preconditioner are presented. In
the literature the latter shows for a finite element approach nice prop-
erties from a parallelization point of view.

These methods of domain decomposition are adapted to fit into re-
strictions given by NS3. Numerical experiments show that the BDD
preconditioner still has the same properties using a finite volume ap-
proach, hence it is applicable to the Poisson problem at hand.

iv

Resume

Problemet, som betragtes, er hvordan man paralleliserer en elliptisk
PDE løser, eller for at være mere specifik: Hvordan man paralleliserer
en Poisson løser baseret på en finite volume diskretisering. Poisson
problemet opstår som et delproblem i numerisk strømningsdynamik
(CFD). Motivationen kommer fra et ønske om at parallelisere en eksis-
terende CFD løser ved navn NS3.

Forskellige metoder fra domæne dekomposition bliver præsenteret
sammen med hver deres egenskaber. Først præsenteres den originale
metode af Schwarz, classical alternating Schwarz metoden, som er
baseret på overlappende domæner. Dernæst præsenteres en ikke over-
lappende metode, hvor Dirichlet data og Neumann data udveksles
over domæne grænsen i hhv. ulige og lige iterationer. Til slut præsen-
teres Schur komplement metoder og BDD prækonditioneren. I littera-
turen vises at BDD prækonditioneren ved en finite element diskretis-
ering har gode egenskaber, set fra et paralleliserings synspunkt.

Disse metoder fra domæne dekomposition bliver tilpasset til be-
grænsningerne givet af NS3. Numeriske eksperimenter viser, at BDD
prækonditioneren har de samme egenskaber ved brug af en finite vol-
ume tilgang, og den er derfor anvendelig til at løse det originale Pois-
son problem.

vi

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Examples of Application 3
1.3 Outline . 4

2 The Plot 7
2.1 Navier-Stokes Equations 7
2.2 Finite Volume Discretization 9

2.2.1 Approximation of Integrals and Derivatives . . 9
2.2.2 Setting Up the System 12

2.3 Time Stepping . 12
2.3.1 The Pressure-Velocity Linking 13
2.3.2 Explicit Time Stepping 14
2.3.3 Implicit Time Stepping 15
2.3.4 Pressure Correction Scheme 15

2.4 The Discrete Poisson Operator 16
2.4.1 Dirichlet BC . 17
2.4.2 Neumann BC . 18
2.4.3 Robin BC . 19

3 The Victim 21
3.1 An NS3 Walkover . 21

3.1.1 Block Decomposition and Grid 22
3.1.2 The Solver . 22
3.1.3 A Parallel Setup 24

viii

3.1.4 Performance . 25
3.2 Problem Formulation . 26

4 Schwarz Methods 29
4.1 Classical Alternating Schwarz Method 30
4.2 Performance . 31

5 Non Overlapping Domain Decomposition 37
5.1 Stationary Iterative Block Methods 39
5.2 Shadow Variables . 42
5.3 An Approximate DN Method 49

5.3.1 A Dirichlet Step 50
5.3.2 A Neumann Step 51

5.4 The DN Method . 54
5.5 A Generalized DN Method 57

6 Schur complement methods 63
6.1 Neumann-Neumann Method 66
6.2 Balancing Domain Decomposition Method 69
6.3 BDD Method Using Shadow Variables 73
6.4 Complexity of BDD method 80

7 Computational Results 83
7.1 Notes on Implementation 84
7.2 DN Method . 85

7.2.1 Results for Two Block System in 2D 85
7.2.2 Results for 2��� 2 Block System in 2D 89
7.2.3 Performance in General 91

7.3 Schur and BDD Methods 91
7.3.1 Neumann-Neumann Method 92
7.3.2 BDD Method . 94

8 Summary 103
8.1 Matlab . 104
8.2 Classical Alternating Schwarz 105
8.3 Non Overlapping Domain Decomposition 106

ix

8.4 Schur Complement Methods 107
8.4.1 Neumann-Neumann Method 107
8.4.2 BDD Method . 108

8.5 Conclusion . 109
8.6 Further Work . 110

A Test Suite and Results 115
A.1 2 by 2 Block Setup . 115
A.2 4 by 1 Block Setup . 117
A.3 3 Blocks With a Corner 118
A.4 Results . 119

A.4.1 Non Overlapping Domain Decomposition . . . 119

B Preconditioners and Krylov Subspace Methods 123
B.1 Preconditioners . 123
B.2 Krylov Subspace Method 124

C DN Method Proofs 129
C.1 Proof for 1D . 129
C.2 Proof for Any Dimension 134

D Notes 139
D.1 Green’s Identities . 139
D.2 About Inversion of Matrices 140
D.3 About “Opposite” Matrices 142
D.4 About Zero Columns and Eigenvalues 143

E Elliptic PDE 145
E.1 Examples of the Different PDE Types 148

F Implementation 149
F.1 Matrix vector product, Su 149
F.2 BDD preconditioner . 150
F.3 Matlab files . 150

Bibliography 153

C H A P T E R 1

Introduction

How to parallelize an elliptic PDE1 solver, or to be specific; how to
parallelize a Poisson solver, is what this thesis is about. The Poisson
problem is described by the PDE

r2u = f; (1.1)

or in cartesian (x; y; z) coordinates

@2
@x2

u+

@2
@y2

u+

@2
@z2

u = f: (1.2)

It is an elliptic PDE, hence the title of the thesis.
But the first question to be answered is: Why at all solve a Poisson

problem?
A Poisson problem arise as a subproblem in computational fluid

dynamics (CFD), how is explained in Chapter 2. It is furthermore a
difficult part of a CFD solver to parallelize, due to its elliptic nature.
Therefor the first step towards a parallel CFD solver is to parallelize
the Poisson solver.

1Partial Differential Equation

2 Introduction

1.1 Motivation

In many areas of engineering fluid models are basis for design of struc-
tures with certain functionality and/or durability.

A real fluid flow problem often include fluctuations in time and
space on scales ranging over many orders of magnitude, from long
waves to tiny turbulent eddies. To include all scales, fluid models
must have a very high resolution. In practice however, even if the
highest possible resolution is applied, it is often not possible to include
the smallest scales. This has in many cases limited the use and liability
of computational fluid dynamics (CFD).

To get the best possible results, the highest possible resolution have
always been applied, hence CFD have always utilized the power of
computers to the limit. And with the power of computers increasing
almost day by day, computational fluid dynamics has become a grow-
ing discipline in engineering science.

At IMM, DTU exists a CFD program to solve fluid models. The CFD
program is special in its capability to handle moving geometries, espe-
cially a free surface. It exists only in a serial version, and it have been
the wish for some time to make a parallel version.

And that is the main motivation for this project.
The main goal of this project is therefor to :

� Explore different methods for solving an elliptic PDE, the Pois-
son problem, in parallel.

� Adapt, if possible, the methods to work within the existing CFD
solver.

� Verify that the methods parallelize well and hence will be an
improvement of the existing serial program.

Even though the motivation is from CFD, usability of this thesis is not
necessarily limited to this area. The Poisson equation arise in many
other interesting fields, and there it will usually be equally difficult to
solve. In that case a parallel approach, like the one presented here,
might be of interest. Furthermore, the process presented here may be

1.2 Examples of Application 3

applicable to other elliptic PDE’s than the Poisson problem.

1.2 Examples of Application

A Fluid is a substance which deforms when exerted to even the small-
est force. It describes a continuum, and it covers gasses and liquids.
To link this to practical aspect, consider the following applications of
fluid modelling.

The Bumblebee Paradox. “According to aerodynamic theory, a bum-
blebee cannot fly.” This was the answer a Swiss aerodynamicist gave
to a biologist in the 1930th after a back-of-the-napkin calculation dur-
ing a dinner party, the rumor says. The saying is usually continued
by: “Nobody just ever told it so.”

Time have shown however that the application of aerodynamic
principles in the 1930th, at least in the bumblebee case, were based
on assumptions, which do not hold when modelling the flight of a
bumblebee.

But still today the bumblebee challenges scientists. Modelling its
flight is not simple: It includes a moving geometry (the wing) and the
model must be of very high resolution in order to include the small
vortices around the wing, which is essential for the bumblebee to gain
the necessary lift. Recently [Wang00] have produced results of a 2D
model using “hundreds of hours of number-crunching by a super-
computer” [Sege00], which show sufficient lift for the bumblebee to
fly. They should at present be working on a 3D model [Sege00].

Wind Turbine Wing Design. According to an article in the Danish
engineering magazine, Ingeniøren [Gods01], DTU and Risø have to-
gether developed a computer program to test the design of wind tur-
bine wings. Result from the program have been held against measure-
ments in a big wind tunnel of NASAs in California, and the program
have produced very fine results.

4 Introduction

When this type of computations become more practically usable, it
is expected to cut down expenses for development of new and more
effective wing profiles.

The program is based on 3.000.000 cells, each contributing with 6
equations and 6 unknowns, which have to be solved for each timestep.

Free surface Waves. An example is the design of ships: How should
a ship hull be created such that it has certain properties, i.e. small
water resistance, the ability to sail fast even in high waves, or strength
to withstand the load from waves.

1.3 Outline

The order of the chapters follows to a great extend the path of recog-
nitions / realizations that have led me through the project.

Chapter 2 sets the plot: The equations of fluid motion, the Navier-
Stokes equations, are presented. It is shown how the equations can
be handled and why a Poisson equation becomes important. How
to apply a finite volume approximation is described, and the chapter
ends by describing the structure of the discrete Poisson operator.

Chapter 3 presents the victim: NS3, the name of the CFD solver at
hand. How NS3 decomposes the domain into blocks, creates a grid,
solves, and performs, is described. In the end of the chapter an outline
of the restrictions that this project has to work within is addressed.

Chapter 4, 5, and 6 describe the accused; different methods of do-
main decomposition. How do they work, and especially how well do
they work? And do they fit into our restrictions? Three methods will
be considered, Chapter 4 describe the classical alternating Schwarz
method, which in some sense is the original, and based on overlap-
ping domains. Chapter 5 presents a non-overlapping method. Chap-
ter 6 turns to Schur complement methods, and especially the balanc-
ing domain decomposition (BDD) method, which in a finite element
context shows almost optimal properties from a parallelization point
of view.

1.3 Outline 5

Chapter 7 consist of the testimonies: The different methods is con-
fronted with the witnesses, a suite of examples, and properties of the
methods are verified experimentally. Especially is it verified that the
almost optimal properties of the BDD method also apply in a finite
volume context.

Chapter 8 finally pronounces a sentence upon the accused: It sum-
marizes the results for the different methods, and argue that the BDD
method is applicable and hence is guilty. Also an outline of further
work is given, first of all of work to finish before a parallel implemen-
tation is started, but also some potentially interesting loose ends is
mentioned.

The Appendix consists of a number of sections, all referenced from
somewhere in the thesis. I will however mention a few here: Ap-
pendix A presents the witnesses, a suite of examples that have been
used to test the different methods. When the text refers to Example
A.1, it will actually be to Figure A.1 in Appendix A. Appendix B gives
a short survey of theory for preconditioners and Krylov subspace me-
thods. And finally Appendix E: I have a number of times been asked
what the “elliptic” in elliptic PDE means, and this appendix is devoted
to that.

C H A P T E R 2

The Plot

The purpose of this chapter is to introduce the equation of fluid mo-
tion which is the underlying basis of this work. The chapter shows
that solving a Poisson problem is a vital part when solving fluid mod-
els. The creation and structure of the discrete Poisson operator is pre-
sented, including how to implement the most common boundary con-
ditions. Guidelines for how to solve the fluid dynamic equations in
total are described, without giving specific algorithms.

Notation and concepts from this chapter will be used throughout
the thesis.

2.1 Navier-Stokes Equations

The basic equations describing fluid flows are the Navier-Stokes equa-
tions. The equations will only be stated here, for a derivation turn to
e.g. [Ande95], which has a thorough tutorial of how to derive different
versions of the equations.

Only flows of incompressible fluids will be considered. Liquids
can often be assumed incompressible, and so can a gas with veloc-

8 The Plot

ities somewhat below the speed of sound, when M < 0:3.1 When
the compressibility is neglected, the fluid density is usually assumed
constant. Also we assume the fluid to be isothermal, which implies
constant viscosity. In that case we end up with what is usually called
the Navier-Stokes equations for incompressible flow:

r � v = 0; (2.1a)

@ui
@t

+r � (uiv) = r � (�rui)� 1
�

@p
@xi

+ gi; i = 1; : : : ; d (2.1b)

where v is the fluid velocity vector, ui is the ith cartesian component of

v in the xi direction, p is the pressure, � viscosity, � density, g gravity,
and i ranges from 1 to d the dimension of the domain, usually 2 or 3.
The unknowns are the pressure p and the velocity components in the
vector v.

The equations are here presented on differential form in their carte-
sian coordinates and in conservation form.2 Equation (2.1a) is usually
referred to as the Mass equations, while the latter Equation (2.1b) is re-
ferred to as the Momentum equation, since they describe conservation
of Mass and Momentum respectively.

Note that the equations are coupled and nonlinear and in general
impossible to solve analytically.

Integrating Equations (2.1a) and (2.1b) over a volume V having
the boundary S = ÆV , and applying the divergence theorem (D.1),
transform the equations into integral form,Z

S

v � n dS = 0; (2.2a)

@
@t

Z
V

ui dV +
Z

S

(uiv)�n dS =
Z

S

(�rui)�n� p
�

ni dS+
Z

V

gi dV: (2.2b)

The integral form is the form used when applying a finite volume dis-
cretization.

1M is the Mach number. It is a dimensionless number describing the speed of the
fluid relative to the speed of sound in the fluid, M = 1 is the speed of sound.

2Conservation form is when the PDE can be written as @ui=@t+r � a(v) = 0.

2.2 Finite Volume Discretization 9

2.2 Finite Volume Discretization

In a finite volume (FV) discretization the domain is subdivided into
a number of small, disjoint, finite sized control volumes, abbreviated
CVs. We will consider a cell centered FV, where in the center of each
CV a node is defined at which the value of the unknown variables are
to be found. These node values represent the mean of the variables
over the CV.

Figure 2.1 shows a part of a grid that arise from a uniform, rectan-
gular subdivision of a 2D domain. The boundary of one CV consists of
several faces: A face is the boundary between two neighbouring CVs.
In a rectangular 2D grid the faces are named after the four corners of
the world, k = e; w; n; s, while 3D also have k = f; b (front and back).
In general the CVs can have any shape, though only quadrilateral CVs
will be treated here.

On each CV the integral form of the equations for Mass (2.2a) and
Momentum (2.2b) are imposed. The equations contain integrals which
cannot be calculated exactly since only values at the nodes are known.
Therefor these surface and volume integrals must be approximated.

In the following, approximations for the CV labeled I in Figure 2.1
is given, where 'I denotes the value of ' at the center of cell I .

2.2.1 Approximation of Integrals and Derivatives

Assume a quantity ' is known at the center of each CV. This will show
how to achieve second order accurate approximations of the integrals
when having an orthogonal, equidistant grid.

Surface Integrals. The integral of a quantity ' over a CV surface can
be split into a sum of integrals over each face of the CVZ

S

' dS =
X

k

Z
Sk

' dS: (2.3)

Only the k = w (west) face will be considered here, other faces are
treated analogously. To calculate the integral of ' on the face requires

10 The Plot

ne

nn

ns

nw
I

SW S SE

E

NENNW

se

e

s

nnw ne

sw

wW

Figure 2.1: Finite Volume mesh

' to be known on the entire surface. That is not available. To second
order the integral can be approximated by the midpoint rule,Z

Sw

' dS � 'wSw; (2.4)

'w being the midpoint value of ' on the face w and Sw the area. How-
ever, 'w is still not known, and to maintain second order accuracy,
this must be approximated also to second order. Using linear inter-
polation, an average 'w � 1

2 ('I + 'W) will accomplish this on the
rectangular equidistant grid, givingZ

Sw

' dS � 1
2

('I + 'W)Sw: (2.5)

2.2 Finite Volume Discretization 11

The quantity ' should be replaced by the flux of some quantity
through the surface, e.g. mass ' = �v � n. On a nonorthogonal grid,
the normal vector nw needs to be taken into consideration, and also a
simple average for 'w will no longer give second order accuracy.

Volume Integrals. The integral of a quantity q over a CV volume
can also be approximated to second order by the midpoint rule. Since

qI is defined to be the center value of q in the CV, the approximation
becomesZ

V

q dV � qVI � qIVI ; (2.6)

VI being the volume of the CV. This is also a second order approxima-
tion.

Derivatives. The integrals contain gradients and space derivatives
which are not known exact and also need to be approximated. To keep
second order accuracy of the integrals, the derivatives need to be ap-
proximated to at least second order. For that, a central approximation
scheme can be used, so e.g. the gradient of ' at the midpoint of a face�

@'
@x1

�
w

� 'W � 'I

xW � xI
: (2.7)

Analogously for the x2 and x3 directions.

Notes on Approximations. In the case of a nonorthogonal or non
equidistant grid, more points are needed to calculate the midpoint
value of ' to achieve second order accuracy. Otherwise the approx-
imations are in the worst case first order only.

If higher order approximations for these integrals are sought, more
points are needed in the integration domain, and higher order approx-
imations of the integrals must be used. Some can be found in [Ferzi97].

12 The Plot

2.2.2 Setting Up the System

The procedure is to approximate all integrals of the Mass equation
(2.2a) and Momentum equation (2.2b) by a midpoint rule, and further-
more approximate all needed values and derivatives of the unknowns
at this midpoint to second order.

Then it is possible to write the Mass and Momentum equation as a
function of unknowns at cell centers only. The result is one equation
for each cell and unknown variable, some containing a time deriva-
tive. Each equation for one CV will have contributions from neigh-
bouring CV cell centers.

If the problem is to solve a steady state problem, all time derivatives
can be removed from the equations. In that case only an algebraic sys-
tem of equations needs to be solved. The system nonlinear and hence
not straight forward to solve. One could use techniques with tem-
porary linearization to transform the problem into a system of linear
algebraic equations which then is solved iteratively until convergence.

Many methods to solve the nonlinear steady state problem exist,
and often a subproblem is solving a Poisson problem or Poisson-like
problem, as e.g. the SIMPLE3 method [Flet01].

Note that applying a conservation equation on each CV is the same
as applying the equation on the entire domain. This is seen by sum-
ming up all contributions of surface and volume integrals from each
CV. The volume integrals sum up to the volume integral of the entire
domain while surface integrals for inner CV faces cancel out, leaving
exactly surface integrals over the domain boundary.

2.3 Time Stepping

In the unsteady case there is also a time dimension which needs to
be discretized. A simple time discretization can be written as ti+1 =

ti+�ti. Usually a solver follows the natural perception of time in that

3Semi Implicit Method for Pressure Linked Equations

2.3 Time Stepping 13

sense that is solves completely for one time ti before proceeding to the
next ti+1.

The difficulty in the incompressible Navier Stokes equations arise
due to the lack of an independent equation for the pressure p. While
each of the Momentum equations (2.1b) involve a time derivative of
one of the velocity components, the Mass equation (2.1a) does not pro-
vide something alike for the last unknown, the pressure. In simplified
form:

0 = G(v); (2.8a)

@ui
@t

= F (v; p): (2.8b)

Instead the pressure must in some way be constructed, so that the ve-
locity field computed from the Momentum equation (2.8b) also satisfy
the Mass equation (2.8a). Some way of linking pressure and velocity
is needed.

2.3.1 The Pressure-Velocity Linking

Consider the differential form of one Momentum equation (2.1b)
@ui

@t
= �r � (uiv) +r � (�rui)� 1
�

@p
@xi

+ gi

= Fi � 1
�

@p
@xi

; i = 1; : : : ; d;

(2.9)

where Fi is just an abbreviation for terms not including the pressure.
One way of solving this is to approximate the time derivative with
some scheme, let us here consider a simple explicit Euler scheme:

un+1i � uni = �t
�

Fn
i �

1
�

@pn
@xi

�
; i = 1; : : : ; d; (2.10)

where the n superscript indicate that the values from time level n is
used. Assume that the old velocity field satisfies the Mass equation
(2.1a), then the new velocity field un+1i does in general not do that.

14 The Plot

Note that satisfying the Mass equation (2.1a) corresponds to making
the velocity field divergence free.

Consider each of the d Momentum equations (2.10) as one vector
equation, taking the divergence of the vector equation gives

r � vn+1 �r � vn = �tr �
�
Fn � 1
�

rpn
�

: (2.11)

The first term is the divergence of the new velocity field. The Mass
equation (2.1a) demands this to be zero. The second term is alike just
for the former time level, which is assumed to satisfy the Mass equa-
tion and is therefore already zero. This means that the new velocity
field will satisfy the Mass equation when constructing the pressure so
that the right hand side is zero,

0 = �r � Fn �r2pn: (2.12)

This is a Poisson equation for the pressure. Note that this was derived
using an explicit Euler scheme, but any other approximation scheme
would also have produced a Poisson equation for the pressure. Note
also that the pressure has superscript n as if it belongs to timelevel n

but its dependency is not important, and will change with the time
derivative approximation scheme used.

2.3.2 Explicit Time Stepping

This give rice to the following “algorithm” which uses explicit time
stepping. Assume that the velocity field v satisfies the Mass equation
at time level n. To calculate the new velocity field vn+1 :

1. Calculate Fn and solve the Poisson equation (2.12) to obtain pn.
2. Use pn in the Momentum equation (2.10) to calculate the new

velocity field vn+1 which will also satisfy the Mass equation.

2.3 Time Stepping 15

2.3.3 Implicit Time Stepping

Consider instead the Momentum equation (2.9) discretized using im-
plicit time stepping, e.g. a backward Euler.

vn+1 � vn = �t
�
Fn+1 � 1
�

rpn+1
�

: (2.13)

The problem of making the new velocity field satisfy the Mass equa-
tion is similarly done by requiring the divergence of the right hand
side to be zero, so again p must satisfy a Poisson equation. The diffi-
culty here is that to calculate Fn+1 and thereby pn+1, vn+1 is needed
and similar to calculate vn+1, pn+1 is needed. So it is necessary to solve
for both simultaneously. This can be done in some iterative manner
having the pressure updating as an inner loop and the velocity updat-
ing as an outer loop.

The next section will describe a way to circumvent an iterative pro-
cedure in what is called the pressure correction method.

2.3.4 Pressure Correction Scheme

Consider again Equation (2.13). Write the pressure as pn+1 = pn+�p,
and add and subtract a temporary solution v� to the left hand side,

vn+1 � v� + (v� � vn) = �t
�
F� � 1
�

rpn
�

| {z }

solve for v�

��t1
�

r(�p): (2.14)

First solve the under-braced part: Use the pressure from the previous
time level pn to calculate v�. The solution v� will not satisfy the Mass
equation and be divergence free. Consider the remaining part

vn+1 = v� ��t
1

�
r(�p): (2.15)

Requiring that vn+1 is divergence free again end up in solving a Pois-
son equation, this time for the pressure correction �p

0 = r � v� ��t
1

�
r2(�p): (2.16)

16 The Plot

This leads to the following “algorithm”:
1. Solve the nonlinear system for v� using old pressure values.
2. Solve the Poisson equation (2.16) for the pressure correction �p

3. Update the velocity field using Equation (2.15). The new velocity
field vn+1 will be divergence free and hence satisfy the Mass
equation.

Note that the solution using the pressure correction approach is not
exactly the same as solving the whole system simultaneously, hence
the calculation of v� as noted in in equation (2.14) is based on F� and
not Fn+1 as in equation (2.13).

Implicit versus Explicit
Con’s This implicit “algorithm” needs to solve two systems, and will

therefore usually be approximately double as expensive to solve
as the explicit counterpart per time step.
It is fairly complicated to implement since it requires a solver for
a nonlinear system as well, while the explicit one only needs a
Poisson solver.

Pro’s Due to the implicit approach, stability is maintained for much
larger time steps �t, implying considerably fewer timesteps for
a given time interval and hence using less computing time.

2.4 The Discrete Poisson Operator

The previous sections have shown how a Poisson problem arise. This
section will show what it looks like and how to implement different
boundary conditions.

Consider the Poisson problem,

r2u = f: (2.17)

The following assumes a 2D domain. As before, integrate over a CV
and apply the divergence theorem (D.1) to the left hand side,Z

S

ru � n dS =
Z

V

f dV: (2.18)

2.4 The Discrete Poisson Operator 17

Assume for now that an orthogonal, equidistant grid is used, so ru �

nw just picks out the gradient over the face w. Let hn be the grid spac-
ing between cell I and N , then an approximation to (2.18) isX

k=e;w;n;s
uk � uI

hk

Sk = fV: (2.19)

Due to the regular grid: Sw = Se = hn = hs, and Ss = Sn = hw = he,
and also SwSn = hnhw = V , hence the approximation (2.19) becomes

Sn
hn

(�2uI + us + un) +
Sw

hw
(�2uI + uw + ue) = fIV: (2.20)

If also hw = hn = h, then it is further reducible

�4uI + us + un + uw + ue = h2fI : (2.21)

This equation is called the stencil for a cell. If the grid is stretched,
coefficient will be different from �4 and 1 since hn will not equal hw.
Non-orthogonal grids implies that also corner neighbours, e.g. uNW ,
must be included. In general a Poisson operator in a 2D finite volume
grid creates a 9 point stencil. For interior cells, the coefficients in the
stencil sum to zero.

Note that for a rectangular grid, the operator will be the same for
finite volume as for a finite difference and finite element approach.

euI
uBC u

Figure 2.2: Face boundary condition

2.4.1 Dirichlet BC

Dirichlet boundary conditions (BC) give the value of the unknown at
the boundary

uj@
 = g: (2.22)

18 The Plot

Boundary conditions are applied at a cell boundary, the cell face, as
depicted in Figure 2.2. Here ue is not known, but if assuming linearity
then ue can be approximated by ue � 2uBC � uI , giving

ue � uI = 2(uBC � uI): (2.23)

Replacing this into the stencil (2.21) gives

�5uI + us + un + uw = h2fI � 2uBC : (2.24)

Note that the boundary condition is moved to the right hand side,
since it is a known quantity. The only difference is that ue is removed
from the stencil, and the coefficient for uI is updated with �1.

The above is only a first order approximation. To be consistent and
get overall second order accuracy, also boundary condition should be
second order accurate. A second order approximation of ue looks like;

ue � 8
3uBC � 2uI +

1
3uw. The equation for the boundary cell will then

become:

�6uI + us + un +
4

3
uw = h2fI � 8
3

uBC : (2.25)

2.4.2 Neumann BC

Neumann BC give the value of the gradient of the unknown at the
boundary

@u
@
n

����
@

= g: (2.26)

Also the Neumann boundary conditions are applied at a cell face. The
gradient over the face can be approximated by

ue � uI � hIe
@u

@n
����

BC

; (2.27)

which is a central difference second order approximation. Replacing
this in the stencil 2.21 gives

�3uI + us + un + uw = h2fI � h
@u

@n
����

BC

(2.28)

2.4 The Discrete Poisson Operator 19

Note again that the boundary condition is moved to the right hand
side, since it is a known quantity. Only difference is that ue is removed
from the stencil, and uI is updated with 1.

2.4.3 Robin BC

A Robin condition is a mixed Dirichlet and Neumann condition and
can be expressed on the form

c1ujBC + c2
@u

@n
����

BC

= g: (2.29)

For simplicity, only first order will be considered here. Using the ap-
proximations (2.23) and (2.27), then

ue =

g
c1
2 + c2
h

�
c1
2 � c2
h

c1
2 + c2
h

uI : (2.30)

Substituting this into the stencil (2.21) gives

�(4 +
c1
2 � c2
h

c1
2 + c2
h

)uI + us + un + uw = h2fI � g
c1
2 + c2
h

(2.31)

so this will produce something in between the Dirichlet and Neumann
BC stencil.

It is now possible to create one equation for each CV, producing n

linear equations with n unknowns. How to solve this efficiently in
parallel is what the thesis is really about.

C H A P T E R 3

The Victim

Many methods have been developed throughout the years to solve the
equations of fluid motion. Each method has usually its own advan-
tages and describes certain properties of the fluid motion well, while
other properties are neglected, modelled badly or not at all. Here one
method will be described, a package called NS3, which was devel-
oped at the International Research Center for Computational Hydro-
dynamics (ICCH) at the Danish Hydrolic Institute in Hørsholm. For a
reference to NS3, see [Mayer98].

3.1 An NS3 Walkover

The NS3 package solves the incompressible Navier Stokes equations.
It is based on a finite volume discretization and uses a variant of the
pressure correction scheme from Section 2.3.4. NS3 can handle moving
geometries including a free surface, which makes the procedure some-
what more complicated: The domain is discretized by a time varying
curvilinear grid, and a finite volume method needs to take the move-
ment of the grid into consideration.

22 The Victim

3.1.1 Block Decomposition and Grid

The fluid domain is decomposed into a number of disjoint subdo-
mains, blocks, on which a structured curvilinear grid can be applied.
The grid continues naturally over a block face, meaning that the grid
lines are continuous over block faces. One side of a block must have
the same block as neighbour over the entire side. An example of how
to split up and discretize a kind of T-shaped domain is shown in Fig-
ure 3.1.

Figure 3.1: Block decomposition and grid for a T-shaped domain

On this grid, a cell centered finite volume discretization is applied.

3.1.2 The Solver

The Poisson problem in NS3 is solved by a multigrid method using
standard finite volume coarsening and a V-cycle scheme.1 The coars-
est level consist of one cell per block. On every multigrid level either
point relaxation, line relaxation or a ILLU smoother is applied, de-
pending on the grid.

Some multigrid operations are local to a block, meaning that values
from neighbouring blocks are not needed to perform the operation.

1For multigrid references, see [Brig87] or [McCor94]

3.1 An NS3 Walkover 23

Other operations are not. Those that are not local, need values from
the first layers of cells of the neighbouring blocks. To accommodate
this, there is a shadow layer around every block in every multigrid
level. When an operation needs values from the neighbouring block,
the values are copied to the shadow layer beforehand, and the values
from the shadow layer are used to complete the operation. If a second
order scheme is used, the shadow layer needs to be only one cell wide.
Higher order schemes imply either a wider shadow layers or multiple
consecutive 1 layer communications. The shadow layers for the blocks
in Figure 3.1 are shown as gray in Figure 3.2.

Figure 3.2: Shadow layer

To simplify the copying of values to the shadow layer, the scheme
is created in a way, so only blocks that have direct face contact need
to copy values. Blocks that only share corner points, in 2D a vertex,
3D as well an edge as a vertex, do not couple directly and no copying
between these blocks is needed. E.g. in a 2 by 2 block setup, the di-
agonal blocks do not couple directly. This implies that the method at
block corners in general no longer is of second (or higher) order.

The different operations in the multigrid procedure are best identi-
fied by presenting a typical multigrid scheme. Below is presented the
V-cycle scheme.

24 The Victim

function V-cycle(vh,fh)
if h = coarsest level

relax vh sufficiently (*)
else

relax vh �1 times (*)
compute residual: rh = (fh �Ahvh) (*)
restrict residual to level 2h: r2h = R2h

h r
h

v2h = V-cycle(02h,r2h)
Correct: vh = vh +Rh

2hv
2h

relax vh �2 times (*)
end
return vh

end

Operations marked with a (*) need to update the shadow layer be-
forehand.

3.1.3 A Parallel Setup

The very first part of this project was to make the multigrid method
parallel in the most straight forward way.

The natural way of setting NS3 up in parallel, is to assign each
block to a computational node. In case there are more blocks than
nodes, some nodes are assigned more than one block. In case of more
nodes than blocks, the biggest blocks may be subdivided into several
smaller blocks. If only one node is available, all blocks are assigned to
that node. Blocks on the same node are called local blocks.

To update the shadow layer now implies to communicate values
between nodes. All operations in NS3 that need to communicate, are
build on the same scheme using a message passing approach. Con-
sider as an example the relax operation:

3.1 An NS3 Walkover 25

function Relax()
Update all shadow layers
for each local block

Relax local block
Update local block shadow layers

end
end

Note that local blocks are treated slightly different than the rest. In
the setup from previous section, an operation uses only old values
from neighbouring blocks, it is a block additive operation. If already
calculated values are used when available, the convergence rate in-
creases and the operation is called block multiplicative. This differ-
ence is similar to the one between the standard iterative methods Ja-
cobi (additive) and Gauss-Seidel (multiplicative). Communication be-
tween nodes in the middle of an operation is not wanted, so this is
only possible between local blocks, where updating of shadow layers
is just copying of memory. To exploit this, neighbouring blocks must
be assigned to one node when possible.

3.1.4 Performance

The performance of NS3 on a single node machine is according to its
creators quite good. NS3 relies on multigrid. Multigrid on “ugly”
grids requires strong smoothers. Strong smoothers are difficult to im-
plement over block boundaries, and fairly quickly the residual concen-
trates on the block boundaries. Some results can be found in [Mayer98].

The parallel version has not yet been thoroughly tested. However
it does not show immediate scalability. The solver on the coarsest level
presents some problems: The coarsest level is usually solved by a rel-
ative large number of relaxation sweeps. A relaxation of the entire
domain on the coarsest level involves on each block only few cells
and require therefor few flops. The number of unknowns that need to
be communicated is of same order as the number of cells, and since
communication is usually far more expensive computationally, this
presents a potential bottleneck.

26 The Victim

In case of a distributed memory machine, where the network is
relatively slow, the above bottleneck is no longer potential: Most time
is used on communication on the coarsest level.

On a shared memory machine that bottleneck might no longer ex-
ist. Before each relaxation step the nodes need to synchronize, and
the following communication between nodes should be just a copying
of memory. Apart from the synchronization this should be about as
effective as the communication in the single node case, though con-
vergence will be slower due to the additive approach.

Unfortunately a shared memory machine for us to use alone, with
an effective and optimized version of the parallel package MPI, Mes-
sage Passing Interface, has not been available. During the spring 2001
it should have been installed here at DTU, but at present this is not yet
ready.

3.2 Problem Formulation

This brings it all back to the main purpose of this project. NS3 is an
effective serial solver, but as other fluid flows modelling packages it
is very expensive computationally. The goal of this project is to find,
modify or create methods which fit into the NS3 package, are parallel
and scalable, and off course efficient.

To fit into the NS3 package means:

� The domain is decomposed in a number of blocks which do not
overlap.

� Each block uses a cell centered finite volume discretization. Di-
agonal blocks do not couple.

� Shadow variables are used to hold extra information. These do
not necessarily have to be copies of values from the neighbour-
ing blocks, but anything that improves convergence will be al-
lowed.

� Due to the smoother, the multigrid solver is very efficient on
blocks only, so multigrid should be used on blocks only. We
will assume however, that an exact solution at each block can

3.2 Problem Formulation 27

be found effectively using multigrid.

� We will allow the coefficients in the operator to be changed, as
long as the solution is not changed.

� We will allow the presence of a global coarse grid correction, if
the coarse grid dimension is small.

To be scalable, it must not suffer from communication overhead as
is the case with the present parallel version. On a single node machine
it should compare with the existing implementation.

C H A P T E R 4

Schwarz Methods

Domain decomposition is technique where the original domain is de-
composed into a set of smaller sub-domains. This is a rather old tech-
nique, the first known method was introduced by Schwarz:1

1869 H.A. Schwarz “invented” domain decomposition as a mathe-
matical tool to proof existence and uniqueness theorems for so-
lutions of general partial differential equations. Analytical solu-
tions on simple subdomains in each iteration was used to prove
solutions for complicated domains.

1965 Keith Miller proposed Schwarz method for computational pur-
poses. There existed efficient methods for solving PDEs on sim-
ple domains, but not on domains like cars and airplanes. So the
complicated domains were decomposed into simple ones and
using the Schwarz method the solution could be obtained glob-
ally.

1980- The parallel computer emerged and Schwarz methods are well
suited for it. Each computational node of the parallel computer
is assigned a subdomain to work on and the Schwarz method

1For references, see [Smith96] or [Chan94]

30 Schwarz Methods

gives the coupling of the domains and how to obtain the correct
solution over all subdomains.

Today It is well known that Schwarz methods have convergence rates
independent of the mesh parameters and thus are “optimal”. If
one refines the mesh, the convergence rate of the parallel algo-
rithm does not change. Nevertheless the convergence rates are
slow compared to other methods.

The next section will describe the original method of Schwarz and
why the convergence rates are slow.

4.1 Classical Alternating Schwarz Method

Ω Ω2
Γ

1
1Γ2

Figure 4.1: Schwarz’s original figure

The original method by Schwarz is what today is called the clas-
sical alternating Schwarz method, and it works as follows: Let the
domain be decomposed as in Figure 4.1 into two overlapping subdo-
mains,
 =
1 [
2, on which we want to solve the system

Lu = f in
; (4.1a)

u = g on @
; (4.1b)

where L is some linear PDE operator. Set �1 and �2 to be the arti-
ficial boundaries of
1 and
2 respectively. The classical alternating
Schwarz method iteratively solves for un+11 in
1 using as BC on �1

4.2 Performance 31

old values from
2, un2 ,

Lun+11 = f in
1; (4.2a)

un+11 = g on @
1 n �1; (4.2b)

un+11 = un2 j�1 on �1; (4.2c)

followed by a solve for for un+12 in
2 now using the newly computed
values of un+11 as BC on �2,

Lun+12 = f in
2; (4.3a)

un+12 = g on @
2 n �2; (4.3b)

un+12 = un+11 j�2 on �2: (4.3c)

This is a multiplicative method since values already calculated are
used when solving the next block, un+11 j�2 . If instead only old values
are used in the second solve, un1 j�2 , the method turns additive. This
procedure is easily extendible to several subdomains.

4.2 Performance

The convergence speed of this method depends strongly on the size of
the overlap
1 \
2, and the number of blocks, which is shown in the
example below.

Example 4.1: Convergence of 1D Laplace Problem Consider the fol-
lowing one dimensional Laplace problem:

u
00 = 0 in 0 < x < 1; u(0) = u(1) = 1; (4.4)

with the obvious solution u(x) = 1. Figure 4.2 shows how the iterative solu-
tion behaves when starting with zero initial guess, u0 = 0, and using a classi-
cal multiplicative alternating Schwarz method decomposed into two overlap-
ping subdomains.

Doing the same with varying sizes of the overlap, it is easily seen, e.g. in
the left part of Figure 4.3, that a smaller overlap implies slower convergence.

32 Schwarz Methods

u0
2

u2
2

u1
2

u3
2

u1
1

u3
1

u2
1

Ω2Ω1

u0
1

Figure 4.2: Evolution of solution

If the overlap is complete, that is
 =
1 =
2, then the exact solution is
achieved in one iteration. If there is no overlap, the method does not converge
at all.

Also, if the domain is decomposed into many subdomains, convergence
rapidly decreases as the number of subdomains increases, as is seen in the
right part of the figure.

Figure 4.3: Evolution of solution for the first 6 iterations

End of Example 4.1.

Note, that the convergence is independent of how each subdomain
is discretized and solved, and this is why it is called “optimal”. The
grids in each subdomain do not have to match, that is the grid nodes
do not have to coincide in the overlapping regions. They most likely
will not in domains like in Figure 4.1. One difference in a such non-
matching case is, that an interpolating operator is needed to calculate
the values of u on the artificial boundaries uni j�j , i 6= j. If the grids

4.2 Performance 33

match though, it is possible to improve convergence by e.g. a Krylov
subspace method.2

Example 4.2: Improve Convergence by Krylov Subspace Method
The problem considered is a Poisson problem

��u = xe
y in
 =]0; 2[�]0; 1[

�u = xe
y on @

(4.5)

The problem is discretized using a centered finite difference approximation,
second order, with a spacing of h = 1

N�1

. This is solved for several values
of N and the size of overlap measured in number of overlapping cells, no. A
“simple” classical alternating Schwarz is compared with a Krylov subspace
accelerated version (GMRES with a restart of 10). Both the additive and mul-
tiplicative versions are tested. Details about the preconditioners used can be
found in [Smith96], where also a similar example is presented.

The number of iterations used to decrease the residual by a factor 10�10

are recorded and the results are listed in Table 4.1. Numbers in parenthesis
indicate that convergence is almost achieved already at that point.

Table 4.1 show that convergence is independent of the grid spacing. Going
from N = 11 to N = 21 halves the grid spacing. To get the same amount
of overlap, double as many cells are needed, no should be doubled. To get
independence of the mesh spacing, (N; no) = (11; 2) should match (N;no) =

(21; 4) and (N; no) = (41; 8). This is the case for all 4 methods.
The most important to notice here is that the accelerated versions are less

sensitive to the amount of overlap than the simple. This becomes more ev-
ident as the problem grows bigger and the overlap decreases. The simple
method about doubles the number of iterations when the overlap is halved.
The accelerated version only increase slightly.

Notice the factor of 2 between the simple additive and multiplicative ver-
sions, as is also the case for the classical Jacobi and Gauss-Seidel methods.
This is almost also the case for the accelerated version, though not as evident.

This should not be used to compare the methods against each other, since
the GMRES method uses quite more computation time for each iteration com-
pared to the simple one. It is the increase in iteration count as the problem
grows, that is interesting.

2See Appendix B for an introduction to Krylov subspace methods.

34 Schwarz Methods

Simple Krylov

N no additive multiplicative additive multiplicative
1 35 18 13 7(6)

11 2 19 10(9) 8 5
4 10 5 6 3
8 5 3 4 2
1 >50 34 21 9

21 2 35 17 12 6
3 19 9 8 5(4)
8 10 5 6 3
1 >50 35 12

41 2 >50 35 21 8
3 35 17 12 6
8 19 9 8 4

Table 4.1:

At last, the multiplicative methods are not parallelizable without some
kind of additive grouping (coloring), which will give the method a parallel
performance somewhere in between the additive and multiplicative, depend-
ing on the number of groups (colors).

End of Example 4.2.

A more thorough motivation than given in Example 4.1 for the in-
creasing iteration count as function of the size of overlap and the num-
ber of blocks can be found in [Smith96] p. 24ff.

Convergence can be improved by a coarse grid correction or an-
other multigrid approach, and [Smith96] shows that convergence can
be made independent of as well the grid spacing as the block size, but
will still depend on the size of the overlap.

The classical alternating Schwarz method cannot directly be imple-
mented in NS3. It is based on overlapping blocks, and the NS3 grid
generator need to be updated to accommodate this. The method itself
is based on local block solves, and fits in that sense fine into NS3: In

4.2 Performance 35

every step, uni j�j , i 6= j is placed in the shadow of block i, and the
block is solved using this as BC.

Figure 4.4: Domain decomposition

C H A P T E R 5

Non Overlapping Domain
Decomposition

The main interest for this project is in non overlapping domain de-
composition. The extra calculation due to the needed overlap is not
wanted, and the grid generator in NS3 can as mentioned earlier not
handle overlapping blocks.

The classical alternating Schwarz method does not converge with-
out overlap, so another approach is necessary.

Inspired at first by a simple 1D example like Example 5.1 presented
to me by Stefan Mayer, and secondly by [Rice98a] which formalized
this to any dimension, the following approach is investigated: At odd
iterations Dirichlet values are exchanged between blocks, while at even
iterations Neumann values are exchanged. Let us formalize this.

Decompose the domain into two blocks,
 =
1 [
2,
1 \
2 = 0,
separated by the boundary � = @
1 \ @
2. A such interior boundary

� will be called an interface. A solution to the system (4.1) is sought.

At odd iteration, solve the following system, exchanging Dirichlet

38 Non Overlapping Domain Decomposition

data over �

Lun+11 = f in
1; un+11 = �un1 + (1� �)un2 on �; (5.1a)

Lun+12 = f in
2; un+12 = �un1 + (1� �)un2 on �; (5.1b)

while a even iterations solve instead the following exchanging Neu-
mann data over �

Lun+11 = f in
1;

@un+11
@n1

= �
@un1

@n1
+ (1� �)

@un2
@n1

on �; (5.2a)

Lun+12 = f in
2;

@un+12
@n2

= �
@un1

@n2
+ (1� �)

@un2
@n2

on �; (5.2b)

where ni is the outward normal vector to �. The � and � parameters
decide how to weight the values from the two blocks. This will be
referred to as the DN (Dirichlet-Neumann) method.

Example 5.1: Convergence of 1D Laplace Problem Using DN Me-
thod Consider the following one dimensional Laplace problem:

u
00 = 0 in 0 < x < 1 u(0) = 0; u(1) = 1 (5.3)

Figure 5.1 shows how the iterative solution behaves when starting with zero
initial guess, u0 = 0, and the DN method with � = � = 1

2

is used.

Ω2Ω1

u0
1 u1

1 u0
2

u1
2

u2
1

u2
2

Figure 5.1: Convergence of 1D Laplace problem using DN method

5.1 Stationary Iterative Block Methods 39

In the first iteration, u(�) = 0 is used as BC. The second iteration uses an
average of the derivative of u1 at � weighted between the two blocks which
equals exactly the derivative of the solution. Hence the correct solution is
found in 2 iterations.

If the two blocks are not equally big, other values of � and � can produce
the correct result in also 2 iterations. Though, � and � are subject for opti-
mization.

Discretization within the block does not change the convergence behavior.
End of Example 5.1.

The rest of this chapter is devoted to implementing the DN me-
thod in a linear algebra context. It will be based on the formulation
of stationary iterative methods, which therefor will be introduced in
the first section. Secondly the notion of shadow variables will be for-
malized, in order to model the shadow variables as the are used in
NS3.

5.1 Stationary Iterative Block Methods

This section will state some basic theory for stationary iterative me-
thods, for reference see [Bark92].

Consider the system

Au = f : (5.4)

Split A into two matrices A =M+N, and rearrange.

Mu = f �Nu (5.5)

If M is nonsingular, then this can be the basis for an iterative solver,
namely:

Mun+1 = f �Nun (5.6)

Subtracting (5.5) from (5.6) and introducing the error vector ek = uk�

u gives

Men+1 = �Nen (5.7)

40 Non Overlapping Domain Decomposition

The evolution of the error is determined by

en+1 = Gen (5.8)

where G = �M�1N. The matrix G is usually called the iteration
matrix. This can be shown to converge if and only if �(G), the spectral
radius of G, is less than one: The largest absolute eigenvalue of G

must be less than one,

�(G) = max
i

j�ij < 1: (5.9)

Proof: Denote the eigensolutions of G by

(�i;wi); i = 1; : : : ; n (5.10)

Assume for simplicity that the eigenvectors are linearly independent.
Then any initial error can be expressed on the form

e0 = c1w1 + c2w2 + � � �+ cnwn (5.11)

and

ek =Gke0 =

nX
i=1

ci�
k
iwi (5.12)

where ek ! 0 if and only if j�ij < 1, all i �

The proof indicates that the smaller spectral radius, the faster ek

goes towards zero, and the faster convergence. The task is to find a
splitting, where the System (5.6) is easy to solve, i.e. a property of M,
while �(G) is as small as possible.

Consider a splitting of A on the form

A = Ab +AL +AU (5.13)

where Ab is the block diagonal, AL the strictly lower block triangu-
lar and AU the strictly upper block triangular part of A. Below is
presented some examples of the use of these in stationary iterative
methods.

5.1 Stationary Iterative Block Methods 41

Example 5.2: The block Jacobi method is an additive method and uses
only old values to calculate new values, which is equivalent to

M = Ab; N = AL +AU (5.14)

The block Gauss-Seidel method is a multiplicative method and reuses val-
ues already calculated, which is equivalent to

M = Ab +AL; N = AU (5.15)

As is the case with the standard iterative methods of Jacobi and Gauss-
Seidel, Jacobi uses approximately twice as many iterations to converge, while
the Gauss-Seidel being multiplicative is not possible to parallelize without
some kind of additive grouping (coloring).

End of Example 5.2.

From a parallelization point of view, stationary iterative methods
are in general not optimal. If A is dense, then usually also N will be
dense for M to be easy to invert. For every block to be able to update
the right hand side of the iterative procedure (5.6), it is required that
the entire preliminary solution uk is known to this block, in order to
calculate the relevant part of Nuk. In a parallel environment this will
imply a lot of communication, which in many cases will introduce a
bottleneck.

However, if A arises from a second order approximation of a lin-
ear partial differential operator of at most second order (Poisson op-
erator), it will be sparse and only nearest neighbour interaction is in-
cluded. N will have entries corresponding to cells at the block inter-
face which depend on cells from the neighbouring blocks. Only values
at the interface need to be communicated between only neighbouring
blocks to be able to calculate the relevant part of Nuk.

In case of the Poisson operator, the splittings in Example 5.2 used
in a stationary iterative method produce a method which is equivalent
to the classical alternating Schwarz method with a one cell overlap.

42 Non Overlapping Domain Decomposition

5.2 Shadow Variables

This section will formalize the notion of shadow variables in a linear
algebra context. It introduces a way to construct the shadow variables
to represent the block coupling, and make each block solver indepen-
dent of values from other blocks. Consider the system

Au = f : (5.16)

Example 5.3 presents the idea of how to create and use shadow vari-
ables.

Example 5.3: Construction of Shadow Variables in 1D Consider a 1D
problem decomposed into two blocks. Split the solution vector into two parts
corresponding to the two blocks, u = [u1 u2]T . Write system (5.16) as�

A11 A12

A21 A22

��
u1
u2

�
=

�
f1
f2

�
: (5.17)

Since the system only include nearest neighbour interaction, the matricesA12

and A21 have only one nonzero column each. Therefor let us look at each
column of the matricesAij :�

a111 � � � a
n1
11 a112

a
n1
21 a122 � � � a

n2
22

��
u1
u2

�
=

�
f1
f2

�
; (5.18)

where n1 and n2 are the number of unknowns in u1 and u1 respectively.
Introduce the two shadow variables us1 and us2: Set us1 to equal the first

value of the vector u2, while us2 is set to equal the last value of u1, us1 = (u2)1

and us2 = (u1)n1 . Add these new variables and equations to the system2
664

a111 � � � a
n1
11 a112

a
n1
21 a122 � � � a

n2
22

1 �1

1 �1
3

775
2

664
u1
u2

us1
us2

3
775 =

2
664

f1
f2

0
0

3
775 : (5.19)

Since the shadow variables are exactly copies of variables next to the interface,
the following system will have the same solution:2

664
a111 � � � a

n1
11 a112

a122 � � � a
n2
22 a

n1
21

1 �1

1 �1
3

775
2

664
u1
u2

us1
us2

3
775 =

2
664

f1
f2

0
0

3
775 : (5.20)

5.2 Shadow Variables 43

Note that no change have been made to the block diagonal part of A, the
two matrices A11 and A22 are not touched. However, we have made each
block independent of variables from the other block, and instead dependent
on its own shadow variables, thereby represented the coupling between the
blocks through the shadow variables.

End of Example 5.3.

Let us generalize the procedure in Example 5.3, using a more com-
pact notation. Assume the domain is decomposed into k non-overlap-
ping blocks, and assume furthermore that the elements of the solution
vector u are ordered block wise.

Besides the unknowns in u, each block furthermore has a shadow
layer, whose unknowns we will add to the set of unknowns. Let the
vector us consist of all the shadow unknowns, then define a new ex-
panded solution vector as ~u = [u us]T .

For this new solution vector ~u we wish to make a system matrix

As of the form

As~u =
�
B C

R �I
��
u
us

�
=

�
f
0

�
; (5.21)

where: The matrix B is the block diagonal part of A consisting of k

blocks

B =
2

64 B1

. . .

Bk

3
75 : (5.22)

The [R �I] rows correspond to the copying of variables to the
shadow variables and C is the use of the shadow variables in each
block.

It is a requirement that the u part of the expanded solution vector
also solves the original system (5.16). Note especially that a system
of the form Bu = f can be solved in parallel because of the block
diagonal structure of B.

44 Non Overlapping Domain Decomposition

To solve the expanded system (5.21), invert As. This can be done
analytically in a block context and the result is1

�
u
us

�
=

�
~B�1 ~B�1C

R ~B�1 �I+R ~B�1C

� �
f
0

�
; ~B = B+CR: (5.23)

Consider only the part of the solution vector, u, corresponding to the
solution of the original system:

u = ~B�1f = (B+CR)�1f : (5.24)

This should have the same solution as before the decomposition u =

A�1f , so a requirement is that

B+CR = A (5.25)

Note that the new formulation allow a more general usage of the
shadow variables than in Example 5.3: The matrices B, C, and R can
be chosen freely as long as they fulfill the requirement (5.25).

The following will continue Example 5.3 in case of more than 1D, and
show how to create and use the shadow variables in general.

A straight forward way to produce the form of Equation (5.21) is
by moving the non block diagonal part of A “to the right”. In case of
2 blocks, this will look like

A =
�
A11 A12

A21 A22

�
! As =

2
664

A11 0 C12 0

0 A22 0 C21

0 ~I12 �I 0

~I21 0 0 �I
3

775 ; (5.26)

whereC12 isA12 with all columns having only zero elements removed,
and ~I12 is an identity matrix where rows have been removed corre-
sponding to the removed columns of A12. Similar for C21 and ~I21.

1For the inversion, see Equation (D.15) in Appendix D.2

5.2 Shadow Variables 45

The system matrix As obeys Equation (5.25), since the ~Iij take each
columns of Cij and place it where it originally came from in A.

Instead of removing zero columns, it is possible to remove zero
rows. Then the non block diagonal is moved down instead of right,
producing:

A =
�
A11 A12

A21 A22

�
! As =

2
664

A11 0 ~J12 0

0 A22 0 ~J21

0 R12 �I 0

R21 0 0 �I
3

775 : (5.27)

If A is symmetric, then Rij = CT
ij and ~Iij = ~JTij . It is possible to

change between Equation (5.26) and (5.27) by a suitable series of row
and column operations on rows and columns corresponding to the
shadow variables, using a kind of Gaussian elimination. However, we
will mostly use the procedure in Equation (5.26).

The process of creating shadow variables and form a system like
in Equation (5.26) can be generalized to systems decomposed in more
than two blocks, giving 4 matrices ~Iij , ~Iji, Cij and Cji for all pair of
blocks (i; j) with a common interface.

In this context, the classical alternating Schwarz method can be
implemented, as is shown in Example 5.4 below.

Example 5.4: Classical Alternating Schwarz This example will show
how to implement the classical alternating Schwarz method with one cell
overlap, using a stationary iterative method and the setup in Equation (5.26).
That is we want to split up the system matrix in Equation (5.26) into a sum of
two matrices,As =M+N.

The purpose of N is to copy the necessary values of uk to the shadow
variables for the next iteration uk+1

s ,

u
k+1

s =
�
~I12

~I21

�
u

k
: (5.28)

46 Non Overlapping Domain Decomposition

The splitting of As into

M =
2

664
A11 C12

A22 C21

�I

�I

3
775 ; N =

2
664 ~I12

~I21

3
775 ; (5.29)

will accomplish this in the Jacobi case.
Note that the coefficients in Equation (5.28) for ~uk go into the lower part

of N, while coefficients for ~uk+1 go into the lower part of M. That is how it
generally works when making an M+N splitting.

The block Gauss-Seidel method reuses values already calculated, which is
equivalent to

M =
2

664
A11 C12

A22 C21

�I

~I21 �I

3
775 ; N =

2
664 ~I12

3
775 (5.30)

These two splittings used in a stationary iterative method are equivalent
to the additive and multiplicative versions of the classical alternating Schwarz
method with a one cell overlap.

End of Example 5.4.

The next Example 5.5 below is intended to show how the different
matrices actually look for a specific 2 by 2 block decomposition of a
square.

Example 5.5: The Structure of the system matrix A The left part of
Figure 5.2 shows a 2 � 2 block domain decomposition with the block num-
bering. The vector in the left bottom indicate where the numbering of cells
start within each block, and which is the main direction for the numbering.
In this case the numbering continues naturally over the vertical interface be-
tween block 1 and 2, but over the horizontal interface, the numbering order is
no longer natural.

The right part of the figure shows a “spy of A“: At which positions of the
matrixA that have nonzero elements.2 The elements far from the main diago-

2The word “spy” comes from Matlab: To plot in Matlab all nonzero elements of a

5.2 Shadow Variables 47

1 2

3 4

0 50 100 150 200 250

0

50

100

150

200

250

nz = 1380

Figure 5.2: Block domain decomposition and structure of system matrix

nal corresponds exactly to cells at the horizontal interface where the number-
ing of cells does not continue naturally.

0 50 100 150 200 250 300

0

50

100

150

200

250

300

nz = 1508

Figure 5.3: Structure of system matrix with shadow variables

In Figure 5.3, shadow variables have been introduced, and a structure like
Equation (5.26) has been achieved.

End of Example 5.5.

Let us summarize what we have done so far in this section:

matrix A as in the right part of Figure 5.2 is done by typing spy(A); In some Matlab
circles spy has become a concept more than a command.

48 Non Overlapping Domain Decomposition

� The use of shadow variables as a copy of values from neighbour-
ing blocks have been formalized. A procedure to create the ma-
trix As has been given. The one in Equation (5.26) will be used
if not otherwise specified.

� Given the system (5.21) and a splitting of As into M + N, the
iterative procedure (5.6) can solve this system. A basic step in
this procedure is the solution of

un+1 =M�1f(un): (5.31)

The matrixM consists of the block diagonal matrixB, which can
be solved in parallel using local block solvers. It will be assumed
that local block solvers are available.

Note that the solution to the original system is intact.

We have shown how to implement a classical alternating Schwarz me-
thod with one cell overlap. However, we want to obtain better conver-
gence, hence a question that arise is: What can be done to As without
changing the solution to the original system? The intention is to only
apply operations on As that do not change the solution of the orig-
inal system, to guarantee that the new system produces the correct
solution. Secondly, how is the splitting into M +N done so that the
iterative procedure (5.6) converges as fast as possible to the correct so-
lution? And finally, how can this implement the DN method?

First of all: What can be done directly to As?

� Row operations do not change the solution. To avoid updating
the right hand side also, only rows with zero right hand side will
be scaled or added to other rows. The bottom rows of Equation
(5.21) corresponding to the shadow variable equations are cre-
ated with zero right hand side, which implies that the [R �I]

rows of As can be added to any other row.

� Column operations on columns corresponding to the shadow
variables, [CT �I]T . The shadow variables were originally
introduced as copies of values from neighbouring blocks, but
any meaning given to these variables will be allowed as long as
it improves convergence.

5.3 An Approximate DN Method 49

How the splitting is done to implement the DN method will be
addressed in the following sections. The presentation is based on a
two block system, but can be extended to many blocks by repeating
the procedure for every block to block interface.

We will start by introducing the notation which will be used in the
sections to come.

xsxb ys yb

Figure 5.4: Boundary cell and shadow layer

Two blocks, X and Y will be considered. Cells in X are split into
cells in the interior and cells on the interface, x = [xi xb]

T . The shadow
variables of X will be called xs. Similar for Y . This is depicted in
Figure 5.4. The system (5.21) or its special case (5.26) will be written as2

664
B1 0 Cx 0

0 B2 0 Cy

0 ~Iy �I 0

~Ix 0 0 �I
3

775
2

664
x
y
xs
ys

3
775 =

2
664

fx
fy
0
0

3
775 : (5.32)

The ~Ix picks out the cells at the interface, xb = ~Ixx, and similar yb =

~Iyy. The last rows of the system matrix in Equation (5.32), the copy-
ing of values from neighbouring blocks, simply state element-vice that

(yb)i � (xs)i = 0 or (xs)i = (yb)i.

5.3 An Approximate DN Method

This section will show how to implement the DN method in the con-
text from previous section. The DN method consist of two steps, a
Dirichlet step and a Neumann step. The two steps is presented one by
one.

50 Non Overlapping Domain Decomposition

5.3.1 A Dirichlet Step

The stationary iterative methods used so far are based on an update
of the shadow variables using the newly calculated values from the
neighbouring block,

xk+1s = ykb ; (5.33a)

yk+1s = xkb : (5.33b)

A generalization is to update with a mixture of the old shadow value
and the interface value from the neighbouring block,

xk+1s = �ykb + (1� �)xks ;

yk+1s = �xkb + (1� �)yks :

(5.34a)

This can be accomplished by multiplying the shadow rows by �2
664

B1 0 Cx 0

0 B2 0 Cy

0 �~Iy ��I 0

�~Ix 0 0 ��I
3

775 ; (5.34b)

and split using the same M as for the classical alternating Schwarz
splitting (5.29),

M =
2

664
B1 Cx

B2 Cy

�I
�I

3
775 ; (5.34c)

N =
2

664 �~Iy (1� �)I

�~Ix (1� �)I
3

775 : (5.34d)

Note that the updating of shadow variables (5.34a) can be written

5.3 An Approximate DN Method 51

as

0 =
� �I

�I
� �
xs
ys

�k+1

+
�
�~Iy (1� �)I

�~Ix (1� �)I
�2664
x
y
xs
ys

3
775

k
; (5.35)

where as in Example 5.4 the coefficients for the unknowns at level k+1

go into the lower part of M and the coefficients for the unknowns at
level k go into the lower part of N.

Alone, the procedure can be viewed as a kind of underrelaxation.
Choosing e.g. � = 1

2 will correspond to implementing a classical al-
ternating Schwarz method with only � = 1

2 cell overlap, hence giving
slower convergence.

5.3.2 A Neumann Step

As in the DN method, the even steps should implement a Neumann
boundary condition on the block interface. Consider the difference
over the interface, yb � xb. From each side of the interface this can be
approximated by

xk+1s � xk+1b = �(ykb � yks) + (1� �)(xks � xkb);

yk+1s � yk+1b = �(xkb � xks) + (1� �)(yks � ykb):

(5.36a)

This can be accomplished in a similar way as in the Dirichlet step. First
add up the two shadow block rows and multiply these new rows by

�, 2
664

B1 0 Cx 0

0 B2 0 Cy

�~Ix �~Iy ��I ��I

�~Ix �~Iy ��I ��I
3

775 : (5.36b)

52 Non Overlapping Domain Decomposition

The splitting will this time be different, since we want xs � xb in M to
implement the Neumann condition,

M =
2

664
B1 Cx

B2 Cy

~Ix �I

~Iy �I
3

775 (5.36c)

N =
2

664 �(1� �)~Ix �~Iy (1� �)I ��I

�~Ix �(1� �)~Iy ��I (1� �)I
3

775 (5.36d)

The matrix in Equation (5.36b) is singular, since the last block rows
are the same. To complete the system, equations telling e.g. xs = yb

are needed. M is regular, hence the stationary iterative method can
be applied regardless of the singularity of the system, though conver-
gence is no longer guaranteed.

[Bark92] states the following theory for stationary iterative me-
thods when applied to singular systems:

� The system must be consistent, that is having a right hand side
which belongs to the range of As, f 2 R(As).

� The iteration matrix G = M�1N for a singular system has as
many eigenvectors with modulus 1 as the dimension of the null-
space, and the method will converge if

– no eigenvalues are bigger than one, and
– all eigenvalues with modulus 1 are real,

i.e. no complex eigenvalue of length 1 must exist.
It have been experimentally verified that all matrices of the form in

Equation (5.36b) satisfy the latter. It can most likely be proven always
to be the case, but no effort has been put into that here. It can be moti-
vated by the fact that the system in Equation (5.36b) for each block is
an approximation of a real problem with Neumann boundary condi-
tions, and since nature always provides a solution to a real problem,
the system should also have a solution.

5.3 An Approximate DN Method 53

The Dirichlet and Neumann steps presented do not strictly implement
the two steps in the DN method as formulated in the beginning of this
chapter, for two reasons: First of all, the DN method uses a global
weighting for both blocks, e.g. for the Dirichlet step,

xk+1s = �ykb + (1� �)xks ;

yk+1s = (1� �)xkb + �yks :

(5.37a)

while the Dirichlet and Neumann steps presented here uses a local
weighting, which is not alike for both blocks, compare above equation
with Equation (5.34a). To implement a global weighting instead, the
system matrix is handed slightly different. Only the Dirichlet step will
be presented here,2

664
B1 0 Cx 0

0 B2 0 Cy

0 �~Iy ��I 0

(1� �)~Ix 0 0 (�1 + �)I
3

775 : (5.37b)

The M is the same,

M =
2

664
B1 Cx

B2 Cy

�I
�I

3
775 ; (5.37c)

N =
2

664 �~Iy (1� �)I

(1� �)~Ix �I
3

775 : (5.37d)

Again, compare with the splitting in equation (5.34c) and (5.34d). In
the case of � = � = 1

2 , the two formulations coincide.
Secondly, the two steps both implement a boundary condition, but

not in a way that boundary conditions are usually implemented. The
Dirichlet step uses the value of the neighbouring cell, and not on the
interface where the boundary condition usually would be applied. We
will motivate later that this is an approximation of the usual way to
implementing boundary conditions, hence the name of the method.

54 Non Overlapping Domain Decomposition

5.4 The DN Method

This section will show how to implement boundary conditions on the
interface, using shadow variables and applying only operations that
do not change the original solution.

While in the previous section no changes have been made to the
block diagonal system B of the expanded system (5.21), this section
will change this.

Section 2.4 shows that adding or subtracting from the diagonal at
interface cell equations is equivalent to some kind of a boundary con-
dition on the interface. Both Dirichlet (1st order), Neumann (2nd or-
der) and Robin (1st order) boundary conditions can be implemented
this way.

Adding to all interface cell diagonal elements is done through
the operation

~B1 = B1 + ~ITx
~Ix: (5.38a)

The operation adds times a shadow rows to specific rows in B1. Re-
placing by a matrix having 1; : : : ; n on the correct diagonal entries
corresponds to using a different value of for each shadow row. The
use of a matrix will be necessary in case of a nonorthogonal grid.

Equation (5.38a) adds only to the B part of Equation (5.21), the C

part has to be updated similarly for this to be a valid row operation on
the entire system. The complete procedure carried out by multiplying
the system matrix in Equation (5.32) from the left with2

664
I 0 0 ~ITx

0 I ~ITy 0

0 0 I 0

0 0 0 I

3
775 ; (5.38b)

resulting in a new system matrix2
664

~B1 0 Cx �~ITx

0 ~B2 �~ITy Cy

0 ~Iy �I 0

~Ix 0 0 �I
3

775 : (5.38c)

5.4 The DN Method 55

The natural splitting of the new system matrix (5.38c) will be:

M =
2

664
~B1 Cx �~ITx

~B2 �~ITy Cy

�I

�I
3

775 (5.38d)

N =
2

664 ~Iy

~Ix

3
775 : (5.38e)

On a regular grid = �1 will implement a Dirichlet step while = 1

will implement a Neumann step.
The classical alternating Schwarz method with a half cell overlap

is implemented using = �1. The DN method is implemented using

 = �1 at odd iterations and = 1 at even iterations. There are
no parameters deciding a weighting of values from each block as in
the section about the approximative version. A weighting might be
added to the method by implementing the boundary condition not on
the actual block interface but on an artificial boundary moved slightly
toward one of the blocks.

The DN method in Example 5.1 shows 2 iteration convergence for
a 1D problem, and [Hadj00] proofs that this is the case for a hyper-
cube in any dimension decomposed in two equally big hypercubes.
A somewhat similar proof based on system (5.38c) is presented in Ex-
ample C.1, while a proof for any dimension is given in Example C.2.
The proofs are a bit lengthy, which is the reason to their position in the
appendix.

The proofs show that the combination of a Dirichlet step and Neu-
mann step works well for two blocks.

Let us just for a moment consider the Dirichlet step and the Neu-
mann step alone.

56 Non Overlapping Domain Decomposition

Example 5.6: Eigenvalues of Iteration Matrices Consider a 2D quadri-
lateral domain of size 2� 1 having pure Dirichlet boundaries. The domain is
discretized using 32� 16 cells, and decomposed into two equally big blocks.

We wish to find the eigenvalues of the iteration matrix, since this will tell
us about convergence for each step separately.

The matrices M and N are created and the iteration matrix G = M�1N

is explicitly formed for both steps, named GD and GN for the Dirichlet and
Neumann step respectively.

Figure 5.5 plots eigenvalue distribution forGD ,GN , and their product.

0 500
−1

−0.5

0

G
D

0 500

0

5

10

G
N

0 500
−5

0

5
x 10

−16

G
D

 G
N

Figure 5.5: Eigenvalues for DN iteration matrices

The left plot shows the absolute value of all eigenvalues to be less than
one: The Dirichlet step alone will converge, slowly though, since the absolute
biggest eigenvalue is fairly close to one, having the largest at 0.905.

The middle plot shows many eigenvalues with absolute value above 1,
the biggest of 9.5. The Neumann step alone do not converge, on contrary it
diverges very rapidly. It would have been nice if both steps were guaranteed
to converge, but that is not the case.

The right plot (notice the factor 10�16 on the vertical axis) shows the prod-
uct of the two to be zero apart from rounding errors.

If refining the discretization, e.g. using 64� 32 cells, the same picture will
arise, differing only in scale: The Dirichlet step eigenvalues will be closer to
one, the Neumann step eigenvalues will be scaled by about a factor two, but
the product of the two is still zero.

End of Example 5.6.

The eigenvalues presented in Example 5.6 show that especially the

5.5 A Generalized DN Method 57

Neumann step alone is not stable when using a stationary iterative
procedure.

5.5 A Generalized DN Method

The DN method works fine for a 2 block setup. However a 2 � 2

block system is somewhat more tricky to handle. As mentioned, NS3
does not include any coupling between blocks diagonally over a ver-
tex point, and there would usually not be so on a regular grid anyway.
Hence, using the names of blocks and interfaces in Figure 5.6, infor-

3

4C

2

1 B

D

A

Figure 5.6: Interface numbering

mation from block A must pass either block B or C before block D get
to know about it. The information is in a sense delayed by one iter-
ation, and this delay may cause growing oscillations, as Example 5.7
shows.

Example 5.7: Divergence of DN Method Consider a 2 � 2 block setup
as in Example A.1, with Dirichlet boundary data on all boundaries.

Applying the DN method shows to diverge. Figure 5.7 shows a plot of 6
consecutive preliminary solutions. The Neumann steps (even iterations) cre-
ate oscillations while the Dirichlet steps try to even the oscillations out.

This is also the case for approximative DN method, unless under relax-
ation values of the parameters are chosen on the Neumann step, � < 0:5.

End of Example 5.7.

The Neumann step in a 2 � 2 block setup, or in general when an

58 Non Overlapping Domain Decomposition

−1
0

1 −1 −0.5 0 0.5 1

−2

−1

0

1
it. 1

−1
0

1 −1 −0.5 0 0.5 1

−2

−1

0

1
it. 2

−1
0

1 −1 −0.5 0 0.5 1

−2

−1

0

1
it. 3

−1
0

1 −1 −0.5 0 0.5 1

−5

0

5
it. 4

−1
0

1 −1 −0.5 0 0.5 1

−2

−1

0

1
it. 5

−1
0

1 −1 −0.5 0 0.5 1

−10

0

10
it. 6

Figure 5.7: Divergence for 2 step method

interior vertex is present, is highly unstable. However the Dirichlet
step is always stable. The idea is to mix the two steps to get sufficient
stability and fast convergence. For that we need to generalize the DN
method.

Consider a 2�2 block setup and number the interfaces as in Figure 5.6.
The generalized DN method will allow different data to be exchanged
over different interfaces in the same step. Introduce the following no-
tation, O = [1 0 0 1]: A row with a zero at the ith position me-
ans that Dirichlet data is exchanged over ith interface, and similar a
one at jth position indicates the exchange of Neumann data over in-
terface j. So the row vector O implies exchange of Dirichlet data over
second and third interface and Neumann data over first and fourth.
Furthermore several rows of this type may be collected in a matrix,
telling for each row how data is exchanged in each step. Such a matrix

5.5 A Generalized DN Method 59

will be called a direction matrix.
The DN method as presented so far will have the direction matrix

O1 =
�
0 0 0 0

1 1 1 1
�

; (5.39a)

since only Dirichlet data is exchanged in the first step and only Neu-
mann in the second.

The following will present the direction matrices, that will used in nu-
merical experiments later.

The two block case shows that it is possible to control oscillation
over one Neumann interface. Therefor we want in each step to either;

� let the horizontal interfaces 2 and 3 exchange Dirichlet data and
the vertical interfaces 1 and 4 exchange Neumann data, or

� let the horizontal interfaces 2 and 3 exchange Neumann data and
the vertical interfaces 1 and 4 exchange Dirichlet data.

Thereby only one long interface at a time exchanges Neumann data.
This can be implemented by using the direction matrix

O2 =
�
0 1 1 0

1 0 0 1
�

: (5.39b)

We will also consider the following direction matrix

O3 =
2

664
0 0 0 0

1 0 0 1

0 1 1 0

1 1 1 1
3

775 : (5.39c)

The motivation for O3 is as follows: In the case of a regular grid, if
a two block system can obtain a solution in 2 iterations, then a 2 � 2

block system may obtain a solution in 4 iterations by:

� Set Dirichlet BC at the horizontal interfaces 2 and 3 and use the
2 iteration DN method for a two block setup to produce an exact
solution for both the top and bottom pairs of blocks.

60 Non Overlapping Domain Decomposition

� Set Neumann BC at the horizontal interfaces 2 and 3 and use
again the 2 iteration DN method for a two block setup to produce
an exact solution for both the top and bottom pairs of blocks.

In total four iterations when having a regular grid.
To complete the investigation for the 2�2 block setup, the last case

that will be considered is the direction matrix

O4 =
�
1 0 1 0

0 1 0 1
�

(5.39d)

These are the direction matrices that will be tested in the 2 � 2 block
case. As the result section shows later, this can produce a solution
quite effectively.

However, for more general setup it has not been possible to pro-
duce iteration matrices that behave significantly better than the classi-
cal alternating Schwarz method, and is independent of the mesh spac-
ing.

This way of mixing the exchange of Dirichlet and Neumann data can
be applied to as well the approximative DN method, as to the DN me-
thod it self. Therefor in the rest of the thesis, any DN method must
given with a direction matrix in order to make the method well de-
fined.

5.5 A Generalized DN Method 61

C H A P T E R 6

Schur complement
methods

Theory and notation is based on the presentation in [Smith96], which
itself is based on a finite element approach. This implies that the in-
terface between two blocks is represented by a number of nodes in
the grid as depicted in Figure 6.1. This approach will be used in the

14

12

13

4

3

1

2

15

5

6

7

8

9

10

11

Figure 6.1: Finite element grid

presentation of the Schur complement methods.
Consider the symmetric positive definite system

Au = f : (6.1)

64 Schur complement methods

A Poisson problem discretized by a finite element method produces
a symmetric positive definite system, since the Laplace operator be-
haves equally in any direction and any region.1 The system may be
only semidefinite, e.g. for a Poisson problem with pure Neumann BC.

Split up the domain
 in several non overlapping blocks
i. De-
note nodes on the interface as uB and nodes in the interior as uI .
This partitioning can also be applied on the unknowns for each block

u(i) = [u
(i)
I u

(i)
B]T , where each element of uB occur as unknown in at

least two blocks. For example will the nodes numbered 14 and 15 in
Figure 6.1 be unknowns to both blocks, and hence a part of as well u(1)

as u(2).
Let Ri pick out the nodes relating to block i, u(i) = Riu, while ~Ri

pick out the nodes on uB relating to block i, u(i)B = ~RiuB . The tilde is
used to indicate that ~Ri works on the interface variables.

In a two block the system (6.1) may be written on the form2
64 A

(1)
II 0 A

(1)
IB

0 A
(2)
II A

(2)
IB

A
(1)
BI A

(2)
BI A

(1)
BB +A

(2)
BB

3
75

2
64 u

(1)
I
u

(2)
I
uB

3
75 =

2
64 f

(1)
I
f

(2)
I
fB

3
75 : (6.2)

For each block a local system matrix can be obtained of the form

A(i) =
"
A

(i)
II A

(i)
IB

A
(i)
BI A

(i)
BB

#
: (6.3)

A direct factorization of the two block system (6.2) would start by
eliminating the A(i)

BI ’s,2
64 A

(1)
II 0 A

(1)
IB

0 A
(2)
II A

(2)
IB

0 0 S(1) + S(2)
3

75
2

64 u
(1)
I
u

(2)
I
uB

3
75 =

2
64 f

(1)
I
f

(2)
I
g

3
75 ; (6.4)

1For references, see in [Bren94] or
http://math.nist.gov/mcsd/savg/tutorial/ansys/FEM/

Schur complement methods 65

where the Schur complement matrices are defined as

S(i) = A
(i)
BB �A(i)
BIA

(i)
II

�1
A

(i)
IB ; (6.5)

and the right hand side

g = fB �
2X

i=1
A

(i)
BIA

(i)
II

�1
f

(i)
I : (6.6)

If solving first the Schur complement for uB

(S(1) + S(2))uB = g; (6.7)

what is left, is a back solve for the interior nodes in each block in Equa-
tion (6.4).

This we will generalize to an arbitrary number of blocks, in which
case the system matrix will have the form2

66664
A

(1)
II A

(1)
IB

~R1

. . .
...

A
(k)
II A

(k)
IB

~Rk

~RT
1A

(1)
BI � � � ~RT
kA

(k)
BI

Pk
i=1

~RT
i A

(i)
BB

~Ri

3
77775 : (6.8)

The ~Ri are necessary since in general every element of uB no longer
relates to every block.

A direct factorization will again start by eliminating the blocks be-
low the diagonal, the ~RT

i A
i
BI ’s, and as in Equation (6.4) produce the

Schur complement system
kX

i=1
~RT
i S

(i) ~Ri
!

uB = fB �
kX

i=1
~RT
i A

(i)
BIA

(i)
II

�1
f

(i)
I ; (6.9)

or in short just

SuB = g: (6.10)

66 Schur complement methods

Having solved the Schur complement system and obtained the values
on the interface uB , what is left, is for each block to back solve for the
interior variables,

A
(i)
II u

(i)
I = f

(i)
I �A(i)
IB

~RiuB ; 8 i: (6.11)

The explicit formation and inversion of the Schur complement is
expensive, since each of the Schur complements S(i) in general are
dense, though of much smaller size than the original A. For large
systems an iterative procedure to solve the Schur complement should
be applied.

The next section introduces the Neumann-Neumann method to
solve the Schur complement system. This and other iterative methods
for solving the Schur complement system can be found in [Smith96].

The method is presented in the context of Krylov subspace me-
thods: According to Appendix B, to apply a Krylov subspace method
to the system (6.10), it is necessary to provide routines to:

� Compute the matrix vector product w = Sv.

� Compute an approximative solution w = Bv, where the precon-
ditioner B approximates S�1.

6.1 Neumann-Neumann Method

Consider first the ability to apply S to a vector. By using the definition
of the Schur complements (6.5) and (6.9),

Sv =

kX

i=1
~RT
i

�
A

(i)
BB �A(i)
BIA

(i)
II

�1
A

(i)
IB

�
~Ri

!
v (6.12)

produces this without having to form any of the S(i)’s explicitly.
Secondly, a Krylov method needs a preconditioner. The Neumann-

Neumann method uses a preconditioner B, which in a two block case
is

S�1 = (S(1) + S(2))�1 � (S(1)
�1
+ S(2)

�1
) = B: (6.13)

6.1 Neumann-Neumann Method 67

The motivation for using this preconditioner is simple: If the two
blocks are mirrors of each others, then 1

2S = S(1) = S(2), hence B =

S�1 and B will be an optimal preconditioner for S. If the two blocks
are not mirrors, the preconditioner does no longer produce the exact
solution, but it will usually still be a good preconditioner.

In the general case of more than two blocks,

S�1 � B = D

kX

i=1
~RT
i S

(i)�1 ~Ri
!

D; (6.14)

where D is a diagonal scaling matrix, (D)�1i;i is the number of blocks
that share node (uB)i. In general, one may use

B =

kX

i=1
Di
~RT
i S

(i)�1 ~RiDi
!

; (6.15)

to make a weighting between blocks possible. Best convergence seems
to be obtained when

Pk
i=1Di = I, according to [Smith96].

The action of the inverse of S(i) on a vector can be calculated with-
out explicitly forming each S(i). Consider the factorization

A(i) =
"
I 0

A
(i)
BIA

(i)
II

�1

I
�
A

(i)
II 0

0 S(i)
� "
I A

(i)
II

�1
A

(i)
IB

0 I

#
; (6.16)

one can calculate the inverse

A(i)�1 ="
I �A(i)
II

�1
A

(i)
IB

0 I

#"
A

(i)
II

�1

0

0 S(i)
�1

#"
I 0

�A(i)
BIA

(i)
II

�1

I
#

(6.17)

Putting this together produces in short form

A(i)�1 =
�
xx xx

xx S(i)
�1

�
; (6.18)

68 Schur complement methods

hence

S(i)
�1
v =

�
0 I
�
A(i)�1

�
0
v

�
; (6.19)

which reads: Expand v by padding with zeros for interior unknowns,
solve the local block problem for all unknowns, and take out only the
solution at the interface.

Equations (6.12) and (6.19) provide what is sufficient to apply a
Krylov subspace method to the Schur system (6.10).

To summarize the Neumann-Neumann method: The application of

S(i) on a vector (6.12) involves a solve of the system A
(i)
II for the in-

terior variables u(i)I using Dirichlet boundary conditions on u(i)B . The
application of S(i)

�1

on a vector (6.19) involves a solve of the system

A(i) for all the variables u(i) using a Neumann boundary condition
on u(i)B . Since the preconditioner is based on solutions to Neumann
problems on all blocks, the method is called the Neumann-Neumann
method.

If a block
i is an interior block or has Neumann conditions on the
original domain boundaries, then S(i) and also A(i) are singular. A
pseudo inverse or some kind of regularization must be applied.

For a smaller number of blocks, the Neumann-Neumann precon-
ditioner used in a Krylov subspace method shows quite good perfor-
mance.

However, for large number of blocks, convergence decrease rapidly
as 1

k

, k being the number of blocks, see [Smith96]. The following
section on balancing domain decomposition will show how to add a
coarse grid problem to improve convergence.

6.2 Balancing Domain Decomposition Method 69

6.2 Balancing Domain Decomposition Method

The Balancing domain decomposition (BDD) method2 was originally
introduced in [Mand93a]. The method adds a coarse grid problem, us-
ing the null space of S(i). Let Zi span the null space of S(i), N(S(i)) �

R(Zi). Since the null space of the Poisson problem is known, N(S(i)) =

R(Zi) will be used. Then g is said to be balanced if

ZTi
~RiDg = 0; 8 i: (6.20)

That is, the restriction (and weighting) of g to each block must be or-
thogonal to all columns of Zi, i.e. be orthogonal to the null space of

S(i). The process of balancing a vector g is to find a vector w such that

s = g� Sw is balanced.
The BDD preconditioner computing z = Bg is based on the fol-

lowing steps: Balance the right hand side g by solving for �j ;

ZTi
~RiD

0
@g� S kX

j=1
D ~RT
j Zj�j

1
A = 0; i = 1; : : : ; k; (6.21a)

and set
s = g � S

kX
j=1

D ~RT
j Zj�j ; s(i) = ~RiDs; (6.21b)

which is now balanced. The balancing of g will be called the pre-
balancing step. Find any solution to the local problems

S(i)u
(i)
B = s(i); 8 i: (6.21c)

Each of these are consistent due to the balancing step. Average the
solution

uB =

kX
i=1

D ~Riu
(i)
B : (6.21d)

2Sometimes called Balancing Neumann-Neumann

70 Schur complement methods

Since any solution to (6.21c) is allowed, this is in general not a feasible
solution. So balance the residual by solving for �j ;

ZTi
~RiD

0
@g � S

0
@uB +

kX
j=1

D ~RT
j Zj�j

1
A

1
A = 0; i = 1; : : : ; k; (6.21e)

and finally update the result

z = uB +

kX
i=1

D ~RiZi�i: (6.21f)

The last balancing procedure will be called the post-balancing step.
Usually the input gwill be the residual for the preliminary solution

at hand, while the output z is an estimate of the error of the prelimi-
nary solution.

Let us take a look at the two balancing steps. Note that for each block

i, uB is balanced when

0 = ZTi
~R1DuB = (D ~RT
1 Zi)

TuB ; i = 1; : : : ; k: (6.22)

This indicate that instead of restricting each vector to a block, the same
result is achieved by expanding Zi to match the size of uB , padded
appropriately with zeros, and scaled withD. Collect all the null spaces

Zi by defining

Q =
�
D ~RT
1 Z1 � � � D ~RT
kZk

�
; (6.23)

in which case Equation (6.22) becomes QTuB = 0. The pre-balancing
step (6.21a) can be rewritten as

QT (g � SQ�) = 0; (6.24)

or

(QTSQ)� = QTg: (6.25)

6.2 Balancing Domain Decomposition Method 71

Similar for the post-balancing step (6.21e)

(QTSQ)� = QT (g � SuB): (6.26)

The process of balancing a vector v (6.25) corresponds to solving
a problem with the coarse grid operator A0 = QTSQ using the right
hand side QTv. The post-balancing step (6.21e), or (6.26), can be in-
terpreted as a coarse level step of a two level algorithm of Galerkin
type: The residual on the fine grid is restricted to a coarse grid, where
a coarse grid correction is computed, and the solution is updated with
the coarse grid correction in Equation (6.21f).

If for a block i, S(i) is nonsingular, then Zi, �i and �i are void and
the ith part of the sum in the balancing equations (6.21a) and (6.21e) is
left out. This especially implies that if all blocks are nonsingular, then
BDD is the same as the Neumann-Neumann method, and there is no
coarse grid correction to improve convergence.

In theory, if using a Krylov type iterative method, the initial residual
should be balanced as in the post-balancing (6.21e) and (6.21f) using
the new z as start guess for uB . Then the pre-balancing step (6.21a)
can be omitted, since the residual produced by a Krylov type iterative
method automatically is balanced. This can be shown by induction:
Assume the residual is balanced at step i, meaning

QT ri = 0: (6.27)

The result from the preconditioner, which is the error estimate for the

ith step, is balanced in the post-balancing step (6.21e) such that

QT (ri � Sei) = 0; (6.28)

and the solution and residual are updated according to

ui+1 = ui + ei; (6.29)

ri+1 = g� Sui+1: (6.30)

72 Schur complement methods

The new residual is balanced since

QT ri+1 = QT (g � Sui+1) = QT (g � Sui � Sei)

= QT (ri � Sei)

; (6.31)

which is zero due to the post-balancing (6.28).
In practice however, due to rounding errors, omitting the pre bal-

ancing step might prevent the method in achieving very accurate so-
lutions, so care must be taken.3

According to [Smith96] it is possible for certain model problems to
show that the condition number of the BDD preconditioned system
grows like O((1 + log(H

h
))2), h being the characteristic grid size and

H the characteristic block size, in both 2 and 3 dimensions. Secondly
by modifying the scaling Di, the condition number can be bound in-
dependently of jumps in the coefficients of the PDE between blocks,
see also [Mand93a]. Furthermore, a strength of as well the Neumann-
Neumann method as the BDD method is that knowledge of which
nodes are on faces, edges or vertices, is not needed, as is not the case
for many other Schur complement preconditioners.

The BDD method as presented here relies on the original system to be
symmetric. If A is symmetric, then also all A(i) are symmetric, and
hence also all S(i). The latter can be seen from the definition of the
Schur complements (6.5).

The symmetry is required of the following reason [Bark92]: For a
singular system to be consistent it is necessary for the right hand side

f to belong to the range of A, f 2 R(A). Also

R (A) = N
�
AT

�?
: (6.32)

If A is symmetric, then R(A) = N(A)?. To make a right hand side of
a symmetric system consistent, it is therefor sufficient to remove any
part of the right hand side that lies in the null space.

3For e.g. Example A.7 (in a 7 block setup) it was only possible for GMRESto reduce
the residual by about a factor 10�6

6.3 BDD Method Using Shadow Variables 73

In the case where A is not symmetric, then instead any part of the
right hand side that lies in the null space of the transposed system
must be removed. Hence, if A is not symmetric then all the S(i)’s are
not symmetric either, and to apply the BDD method it is in general
necessary to know the null space of the transpose of S(i) and instead
create Zi such that

N
�
S(i)

T
�
� R(Zi): (6.33)

6.3 BDD Method Using Shadow Variables

As well the Neumann-Neumann method as the BDD method is based
on a finite element discretization, where the interfaces are represented
by a number of nodes. In a finite volume discretization, no nodes
can in the same manner represent the interfaces. The purpose of this
section is to adapt the finite volume discretization to the BDD method.

uB b
(2)ub

(1)u

Figure 6.2: Shadow layer using average

A First Attempt. Let us make a set of artificial cells on the interfaces,
their value defined by the average of cells on each side. These artificial
cells uB will be put into the shadow layer at each block, u1s and u2s,

uB = u(1)s = u(2)s =
1

2
(u

(1)
b + u

(2)
b): (6.34)

Add the new unknowns and equations to the system2
4 A11 A12 0

A21 A22 0

~I1 ~I2 �2I
3

5
2

4 u(1)

u(2)

uB

3
5 =

2
4 f (1)

f (2)
0

3
5 ; (6.35)

74 Schur complement methods

where ~Ii pick out the u(i)b of u(i), u(i)b = ~Iiu
(i). This system will typi-

cally have a structure similar to Figure 6.3, i.e. for every nonzero col-
umn ofA21 there will be an entry in ~I1. By the use of the shadow rows

Figure 6.3: Structure of matrix. Dotted lines indicate interfaces.

it is possible to eliminate the non block diagonal parts A21 and A12,2
4 B1 0 2C1

0 B2 2C2

~I1 ~I2 �2I
3

5
2

4 u(1)

u(2)

uB

3
5 =

2
4 f (1)

f (2)
0

3
5 ; (6.36)

where C1 as previously is defined as A12 with all zero columns re-
moved, and Bi = Aii �Ci

~Ii.
Each block will get a system matrix of the form (6.3) as

A(i) =
�
Bi 2Ci

~Ii �I
�

: (6.37)

Now the system is set up exactly as is the case for the BDD method,
though the finite volume discretization does not in general make a
symmetric system. And anyway, if a regular grid is used and symme-
try is obtained for the original matrix A, then Ci = ~ITi , and due to the
coefficient 2 in front of Ci, A(i) will never be symmetric.

Assume that block i is singular. The null space of A(i) and hence
also S(i) is known, and as is always the case for the Poisson problem,
it is the constant vector.

However, applying the BDD method to the above system turns out
in general not to converge. The reason is that all of the singular cases

6.3 BDD Method Using Shadow Variables 75

in Equation (6.21c) do no longer get a right hand side which have a so-
lution, the local systems are not consistent. This is somewhat expected
due to the lack of symmetry.

Let us take a step back, and look at some properties of the Poisson
problem and a finite volume discretization.

It can be shown that a Poisson problem with pure Neumann boun-
dary conditions is consistent, if the right hand side forcing, including
the boundary conditions on the original boundary, sum up to zero.
Said in another way: Sources, sinks and in- and outflow through boun-
daries must balance. Look at the Poisson problem, integrate over the
domainZ

f d
 =

Z

r2u d
; (6.38)

and apply the special case of Green’s first identity (D.3) on the right
hand side to getZ

f d
�

Z
@

@u
@n

dS = 0; (6.39)

which state exactly the condition to be satisfied. If the system is con-
sistent, then the solution is unique up to a constant. This consistency
property should be inherited by any discrete Poisson operator.

We have verified experimentally that a finite volume discretization
of a pure Neumann problem, even though it does not produce a sym-
metric system, has the property that

R(A) = N(A)?; (6.40)

in which case N(A) = N(AT). The property have been verified on
examples from Appendix A having pure Neumann BC. It can proba-
bly be proven always to be the case, but no effort has been put into
that here. An argument is that due to the conservative approach in
the finite volume discretization, flux through a face between cell i and

j, Fij , is treated symmetrically in the sense that Fij = �Fji. The sys-
tem A is build from these fluxes, hence some of the properties of this

76 Schur complement methods

symmetry might be inherited by A. I have heard a saying stating that
conservatism is a weak form of symmetry, a poor mans symmetry.
These tests rectify the saying.

A Second Attempt. Let us return to the breakdown of the BDD me-
thod. A deeper analysis shows that the orthogonality condition (6.40)
no longer holds for all S(i). An example is presented in Example 6.1 in
the end of this section. To make the BDD method work, the constant
vector so far used in Zi should be replaced by the null space of the
transpose of S(i), which is not known.

Remember that it is possible to make a finite volume discretiza-
tion on the entire domain, which will produce an operator that fulfills
the orthogonality condition (6.40). Thus, it should be possible also for
the individual blocks by imposing an appropriate finite volume dis-
cretization on each block.

Therefor, let us consider the shadow cells as part of a usual conser-
vative finite volume discretization by inserting the shadow cells be-
tween two blocks as in Figure 6.2, which is infinitesimally thin: The
area of the faces facing other shadow cells, in Figure 6.2 the north and
south cells, are infinitesimally and contributions from here to the op-
erator are zero. Flux through and area of face east and west are alike
and equals the flux over the interface. Introducing these new shadow
variables and equations into the system will produce something very
alike the former,

2
4 A11 A12 0

A21 A22 0

^D~I1 ^D~I2 �2 ^DI
3

5
2

4 u(1)

u(2)

uB

3
5 =

2
4 f (1)

f (2)
0

3
5 ; (6.41)

where ^D is a diagonal scaling matrix, scaling the rows as to implement
exactly an infinitesimally thin cell, (^D)jj matches the flux into (u

(1)
b)j

through the interface. The structure is the same as in figure (6.3), and

6.3 BDD Method Using Shadow Variables 77

eliminating the non block diagonal part is no different than before;2
4 B1 0 2C1

0 B2 2C2

^D~I1 ^D~I2 �2 ^DI
3

5
2

4 u(1)

u(2)

uB

3
5 =

2
4 f (1)

f (2)
0

3
5 : (6.42)

This system shows experimentally to have property (6.40) as the usual
finite volume discretization have. The block matrix for each block

A(i) =
�
Bi 2Ci

^D~Ii � ^DI
�

: (6.43)

This turns out to produce Schur complements with the necessary or-
thogonality property R(S(i)) = N(S(i))?, consult e.g. again Example
6.1. Note that the condition has only been shown to hold experimen-
tally.

The BDD method applied to the system with the new artificial in-
terface cells works nicely.

A Correction to A(i). An experimental analysis as Example 6.1 of

A(i) from the second attempt shows that R(A(i)) 6= N(A(i))?, indicat-
ing problems. But even though A(i) in equation (6.19) is used to solve
the Schur system, S(i), then the balancing of the right hand side si is
sufficient to produce a vector [0 si]T as right hand side to A(i) which
is consistent.

The “defect” ofA(i) can be fixed. The system (6.43) does not strictly
correct implement a FV discretization on a single block: Following the
setup in Figure 6.2, the flux through the east face of u(1)b is calculated
using the gradient uB�u(1)b , which 2nd order accurate in between the
two cell centers. The face is unfortunately located at the center of uB .

Locally for each block, the center of uB can be moved artificially
away from the interface by multiplying A(i) from the left with�
I Ci
^D�1

0 I

�
; (6.44)

78 Schur complement methods

producing a corrected ~A(i)

~A(i) =
�
I Ci
^D�1

0 I

��
Bi 2Ci

^D~Ii � ^DI
�

=
�
Aii Ci

^D~Ii � ^DI
�

: (6.45)

This will implement a boundary condition not on the interface, but
somewhere else. It also changes the way to produce the solution of
the Schur complement systems similarly,

S(i)
�1
v =

�
0 I
� � Aii Ci

^D~Ii � ^DI
��1 �
Ci
^D�1v

v

�
: (6.46)

The system matrix ~A(i) shows to have the structure of a “correct”
FV discretization, e.g. it shows experimentally to fulfill the orthogo-
nality condition R(~A(i)) = N(~A(i))?, even though it is not symmetric.

Example 6.1: Fulfilling the Orthogonality Condition The example is
based on Example A.3 having Dirichlet conditions on the west boundary of
the bottom left block and homogeneous Neumann elsewhere. All but the bot-
tom left block yield singular Schur complements.

We will investigate the matrices A(i) and S(i) for the singular block in the
bottom right corner.

The objective is to show which attempts in this section that make the ma-
trices A(i) and S(i) fulfill the orthogonality condition (6.40). The three at-
tempts that are tested, are:

� The first attempt using an average to create the interface variables.

� The second attempt creating the interface variables as a part of a finite
volume discretization.

� The third attempt including a correction of A(i) to implement a “cor-
rect” finite volume discretization on each block.

Each sub-figure in Figure 6.4 shows the projection of the range on the null
space: All eigenvectors except the one corresponding to the zero eigenvalue
are projected onto the constant vector. The projection is carried out for the
three approaches mentioned above and for as well A(i) as S(i). If a matrix
fulfills the orthogonality condition (6.40), then the projection should be zero
for all eigenvectors spanning the range.

6.3 BDD Method Using Shadow Variables 79

0 100 200 300 400
0

0.1

0.2

0.3

0.4

A
i

A
ve

ra
ge

0 20 40 60 80
0

0.2

0.4

0.6

0.8

S
i

A
ve

ra
ge

0 100 200 300 400
0

0.05

0.1

0.15

0.2

F
V

0 20 40 60 80
0

1

2

3

4
x 10

−14

F
V

0 100 200 300 400
0

1

2

3

4
x 10

−13

"c
or

re
ct

"
F

V

0 20 40 60 80
0

1

2

3

4
x 10

−14

"c
or

re
ct

"
F

V

Figure 6.4: Projection of the range at null space

� In the first attempt neitherA(i) nor S(i) fulfills the orthogonality condi-
tion, and as mentioned previously the method does not work.

� In the second attempt S(i) but not A(i) fulfills the condition. However
the method works fine.

� When correcting A(i), both fulfill the condition, and the method still
works fine.

Whether ~A(i) or A(i) is used to solve the local Neumann problems does
not make any difference.4

End of Example 6.1.

Note if there is no diagonal cell dependence over the interface, e.g.

4Apart from that Matlab produces far less warnings when using ~A(i)

80 Schur complement methods

when the grid is orthogonal, then

Ci =
�
^D~Ii

�T
= ~ITi ^D; (6.47)

or

Ci
^D�1 = ~ITi (6.48)

If the grid furthermore is sufficiently regular, e.g. equidistant then

^D = I and Ci = ~ITi .

6.4 Complexity of BDD method

The objective of this section is to outline the computational complexity
of the BDD method. We do not include all details, but as a measure
of complexity we count the number of algebraic systems that need to
be solved. This will be counted as local block solves. We will distin-
guish between solves with Dirichlet and Neumann BC and call them
local Dirichlet solve or local Neumann solve respectively. Also we will
count the number of coarse grid solves.

The method consist of two basic steps. Assume the domain is de-
composed into k blocks. The first basic step is to compute the matrix
vector product Sv (6.12), which involves k local Dirichlet solves.

The second basic step is to apply the preconditioner to compute an
approximate solution as described in Equations (6.21). It involves:

� A coarse grid solve (6.21a).

� A matrix vector product S� including k local Dirichlet solves
(6.21b).

� k local Neumann solves (6.21c).

� A second matrix vector product SuB including k local Dirichlet
solves (6.21e).

� A second coarse grid solve (6.21e).
In total 2k local Dirichlet solves, k local Neumann solves, and two
coarse grid solves

6.4 Complexity of BDD method 81

Before a Krylov subspace method can be started, some initialization
must be done:

� The right hand side g must be created as in Equation (6.9). In
total k local Dirichlet solves.

� The coarse grid operatorA0 = QTSQ must be created. For each
column in Q we must apply the matrix vector product (6.12),
which involves k local Dirichlet solves each. Since there will
usually be O(k) columns in Q, this will imply in total O(k2) lo-
cal Dirichlet solves. However, most of the local solves will have
a zero right hand side and thereby also a zero solution, which
can be exploited. Then only O(dck) local solves are necessary, dc

being the dimension of the decomposition.
In total O((1 + dc)k) local Dirichlet solves for initialization.

A Krylov method usually for each iteration apply the matrix vector
product once, and the preconditioner once, in total 3k local Dirichlet
solves, k local Neumann solves, and two coarse grid solves per itera-
tion.

Finally to obtain the solution on the interior, we must perform a
back solve (6.11) involving k local Dirichlet solves.

Then the computations are done, the solution is found.

C H A P T E R 7

Computational Results

The purpose of this chapter is to verify properties stated in previous
chapters by numerical experiments

For the classical alternating Schwarz methods, no numerical exper-
iments have been made, because the method does not fit appropriately
into the NS3 context. It will be mentioned however, if a classical alter-
nating Schwarz method arise as a special case of another method.

Computations have been carried out on the machine Newton in
the G-databar at DTU. This is a Sun Enterprise 6500, a 24 processor
machine each being 400 MHz/8MB cache Sun UltraSparc II CPU’s,
running Solaris SunOS 5.7.

The G-databar is shared among all students at DTU, and therefor
timings depend on the average load of the machine.1 Timings are sub-
ject to some degree of averaging and should be taken as guidelines
only.

1This is the case even though the Matlab function cputime should return the time
used by Matlab only.

84 Computational Results

7.1 Notes on Implementation

Implementation is done in Matlab, using Matlabs sparse matrix data
structures. Matlab 6.0 (R12) is available, and timings have been made
using Matlabs cputime function.

A suite of test examples are listed in Appendix A. All test examples
originate from NS3: Grids and systems matrices are created in NS3.
Routines to dump NS3 data to a file and Matlab routines to read the
same data into Matlab have been provided by Stefan Mayer. Data
from NS3 include nonzero coefficient of the system matrix, row and
column indexes of these nonzero coefficients, a right hand side, and
grid positions for cell centers in 2D.

Local block solutions, that is in the Schur method case; solutions
to the local Dirichlet problems (6.12) and the local Neumann prob-
lems (6.19), are based on the backslash operator in Matlab. The name
“backslash operator” originates from the Matlab syntax, where a sys-
tem Au = f is solved for u by typing

> u = A n f;

The backslash operator is also called “left matrix divide”. When the
backslash operator fails to produce a solution, Matlabs Krylov method
GMRES is applied instead.

The Krylov method used to solve the Schur complement system, is
chosen to be Matlabs GMRES, using a restart of 10.

Emphasis in the implementation is on general structures rather
than efficiency. The objective is to exploit properties of different me-
thods, and it is an important property that new ideas are fast and easy
to implement and test. Another reason to take timings as guidelines
only.

Matlab implementation of the two basic parts of the BDD method
is presented in Appendix F. The matrix vector product (6.12) is pre-
sented in F.1, while the BDD preconditioner is presented in F.2.

7.2 DN Method 85

7.2 DN Method

We will consider the generalized DN method in as well the approxi-
mative as the exact formulation.

Results listed with the parameters � and � are produced by the
approximative method, while results listed with are produced by
the exact method.

We will state two results for each test. The first is the error reduc-
tion factor for the last 12 iterations, as to approximate the asymptotic
error reduction factor. The second is the overall error reduction factor.
Since the error is usually reduced faster in the first couple of iterations,
the overall factor is usually better than the asymptotic.

We will first consider a two block setup to verify whether two it-
eration convergence can be achieved in the regular case, and to see
how much an irregular grid and different sized blocks influence con-
vergence.

Secondly we will address a 2 � 2 block setup to see performance
for different iteration matrices.

7.2.1 Results for Two Block System in 2D

Test grids for the two block setup constitute the two lower blocks of
the examples in Appendix A.1.

The tests have Dirichlet conditions on the original domain boun-
dary, and the domain is discretized using a regular grid of 32 � 16

cells, if not otherwise specified.
The first tests will consider only the regular Example A.1.

Classical Alternating Schwarz. First we examine the performance
of the classical alternating Schwarz method by using only Dirichlet
steps in the DN method.

A variant with 1 cell overlap arises from the Dirichlet step (5.34)
of the approximative DN method using � = 1, while a 1
2 cell overlap
arises when setting = �1 in the DN method (5.38).

Results for the two cases are listed in Table 7.1. As expected, when

86 Computational Results

D. par. Error reduction factor
1 cell overlap � = 1:0 0.826 0.768

1
2 cell overlap = �1:0 0.903 0.841

Table 7.1: Classical alternating Schwarz

the overlap is increased from 1
2 cell to 1 cell, convergence speed in-

crease similarly.
Note that the setup here is the same as in Example 5.6: The asymp-

totic error reduction factor for the DN method of 0.903 match the largest
absolute eigenvalue for the iteration matrix, found in the example to
be 0.905.

Two Iteration Convergence of the DN Method. The next objective
is to verify that two iteration convergence can be obtained by the DN
method also in 2D, as was possible in 1D in Example 5.1. The direction
matrix is

O =
�
0 0

1 1
�

: (7.1)

Several choices of parameters of the approximative method, � and �,
have been explored, some are listed in Table 7.2. The DN method pro-

D. par. N. par. Error reduction factor

� = 0:5 � = 0:5 0.333 0.279
DN � = 0:5 � = 0:6 0.310 0.270

1 = �1:0 2 = 1:0 2 it.

Table 7.2: DN method

duces a solution in two iterations, however the approximative method
does not. Best convergence speed is actually not even achieved for the
natural parameters � = � = 0:5, but they are close to optimal. Conver-
gence is a lot better than with the classical alternating Schwarz method
though.

7.2 DN Method 87

Dependence on Grid Spacing. The two tests above is repeated with
a finer discretization using 64� 32 cells. That is grid spacing is halfed
in both directions.

In the classical alternating Schwarz methods, the overlap is halfed,
and so convergence speed should be halfed. Results are in Table 7.3,
and behave as expected. Note especially that 1=2 cell overlap in Table

D. par. Error reduction factor
1 cell overlap � = 1:0 0.906 0.842

1
2 cell overlap = �1:0 0.949 0.883

Table 7.3: Classical alternating Schwarz with finer discretization

7.1 match the one cell overlap in Table 7.3.

Using again the iteration matrix O (7.1) from above, the DN method
produces Table 7.4.

D. par. N. par. Error reduction factor

64� 32 � = 0:5 � = 0:5 0.258 0.210
128� 64 � = 0:5 � = 0:5 0.156 0.129

64� 32 1 = �1:0 2 = 1:0 2 it.

Table 7.4: DN method with finer discretization

As expected, the DN method case gives two iteration convergence,
i.e. it is independent of grid spacing. It might be a bit surprising
though, that convergence improves for the approximative version. The
argument is: As the grid spacing is decreased, the values communi-
cated over the boundary are defined closer and closer to the interface.
In the limit, values are defined at the interface, in which case the ap-
proximative and exact method are alike. Loosely speaking, the ap-
proximative method converges towards the exact method as the grid
spacing is decreased, and is thereby a better and better approximation
of the exact method, hence the name “approximative”.

88 Computational Results

Non Regular Grids. To complete the 2 block case, we finally con-
sider non regular grids and different sized blocks, to give an idea of
how the DN method works for more general examples. Table 7.5 lists
results for Example A.3 where the blocks are not equally big, and Table
7.6 lists results for Example A.4 where also the grid is nonorthogonal.

D. par. N. par. Error reduction factor
classical � = 1 0.830 0.738

1 = �1:0 0.906 0.805
DN � = 0:5 � = 0:5 0.347 0.278

� = 0:6 � = 0:5 0.309 0.252

1 = �1 2 = 1 0.290 0.261

Table 7.5: Blocks of different size, Example A.3

D. par. N. par. Error reduction factor
classical � = 1 0.363 0.329

1 = �1:0 0.535 0.486
DN � = 0:5 � = 0:5 0.430 0.430

� = 0:7 � = 0:5 0.348 0.309

1 = �1 2 = 1 0.193 0.193

Table 7.6: Blocks of different size and a irregular grid, Example A.4

Notice the following which is the case for results in both tables:

� The classical methods using 1 cell overlap is about twice as fast
as if using only 1

2 cell overlap.

� The DN method does not any longer produce a solution in two
iterations. However, the error reduction factor is small, and only
two iterations is used to decrease the error by more than one
decade.

� The DN method is superior to the approximative DN method.

� For the approximative DN method, the natural parameters are
not necessarily the optimal. Here an trial and error approach
have been used to find optimal parameters, but this might not

7.2 DN Method 89

always be possible. Choosing optimal parameters have some
influence, as is most evident in Table 7.6.

Note that the parameters in the DN method are not optimizable.
If other values than �1 are chosen, the method converges very slowly
or not at all. This have been verified experimentally.

Making the same test on 3D examples produce somewhat similar re-
sults. It have not been tested extensively, so no results will be pre-
sented here.

7.2.2 Results for 2��� 2 Block System in 2D

Test grids in the 2� 2 block setup are the examples in Appendix A.1.
The domains have Dirichlet BCs on all boundaries, and the domains
are discretized using 32� 32 cells.

Tests have been made with the direction matrices from Section
5.5, which I will rewrite here. In addition the matrix O0 is created
to exchange Dirichlet data only, implementing a classical alternating
Schwarz method.

O0 =
�
0 0 0 0

�
: (7.2a)

O1 =
�
0 0 0 0

1 1 1 1
�

: (7.2b)

O2 =
�
0 1 1 0

1 0 0 1
�

: (7.2c)

O3 =
2

664
0 0 0 0

1 0 0 1

0 1 1 0

1 1 1 1
3

775 : (7.2d)

O4 =
�
1 0 1 0

0 1 0 1
�

: (7.2e)

These direction matrices have been applied using both the approx-
imative and the exact DN method to Example A.1, Example A.2, and

90 Computational Results

Example A.4.
Results are listed in Appendix A.4.1.

Note especially that convergence for the regular grid of Example A.1
was achieved in only 3 iterations using O4, and in 4 iterations using

O3. This is a very strong result.
The following list will summarize results and conclusions from the

tables in Appendix A.4.1 for each of the 5 iteration matrices:

� As have always been the case, the O0 case is twice as good for
the approximative DN method compared to the DN method.

� The O1 case diverges for all examples using the DN method, as
is also the case in Example 5.7.
The approximative method diverges for many choices of param-
eters. Using sufficient underrelaxation on the Neumann param-
eter, � < 0:5, can make the method behave fairly well. Therefor
some optimization is needed to find the best choices of the pa-
rameters.
However, it should be possible to get fairly good results with
the DN method, if underrelaxation is applied, i.e. the new result
is a weighted sum of the Neumann result and the result from
previous iteration. This has not been tried.

� The O2 is very stable. It is actually a bit to conservative, in the
sense that fastest convergence is achieved using over-relaxation
parameters, � > 0:5 and � > 0:5, and still it is not very effi-
cient. Some optimization is needed here to find the best choice
of parameters.

� The O3 using the DN method gives 4 iteration convergence on
the regular grid. Actually any combination of the 4 rows in O3

will accomplish this. The matrix furthermore gives fast conver-
gence for the other grids. For the approximative DN method,
it converges for most choices of � and �. The optimal parame-
ters are close to the natural (� = � = 0:5). If not, the natural
parameters give close to optimal behavior.

� The O4 is by far the best. The DN method gives 3 iteration con-
vergence on the regular grid and very good convergence on the

7.3 Schur and BDD Methods 91

others. Also the approximative DN method gives very fine re-
sults, having optimal parameters close to the natural, or again:
The natural parameters give close to optimal behavior. The ap-
proximative DN method is not quite as fast as the DN method.

7.2.3 Performance in General

It has not been possible to produce fast convergence for a general
setup.

I have especially tried to make results for a 3D setup of 2 � 2 �

2 blocks, but without success. Convergence could no be improved
significantly comparing with a classical alternating Schwarz method
with a one cell overlap.

The failure to produce results in a general setup is a major draw-
back of the method.

7.3 Schur and BDD Methods

The tests we will go through here are designed to verify that properties
stated in [Smith96] of almost independence of discretization, and for
the BDD method almost independence of block decomposition, also
apply to a finite volume discretization.

Since the Krylov method GMRES is used to iterate globally, the er-
ror in each iteration is not available as in the previous section. GMRES
returns the norm of the residual, however the difference between the
residual and the error might be several orders of magnitude depend-
ing on the system.

We will declare convergence when the original residual has been
decreased by a factor 10�10, and as a measure record the number of
iterations used. If the residual is decreased by this factor, then the
error will usually decrease similarly.

We will also list the time used by the GMRES method. Initializa-
tion and setup of the Schur system are not timed. It is the time used for
a single processor, and should thereby give an idea of the efficiency of

92 Computational Results

the preconditioner. Remember that timings should be taken as guide-
lines only.

At last, the condition number of the matrix product BS is calcu-
lated, when possible, i.e. when all blocks are nonsingular. The prod-
uct is a kind of iteration matrix for a Krylov type iterative method,
and its condition number relates directly to convergence speed. Un-
fortunately if any block is singular, then S(i) is singular and its inverse
has a condition number which is infinite, which the preconditioner,

B =
P
(S(i))�1, inherits. Hence the condition number does not pro-

vide any usable information when singular blocks are present.
The right hand side has added noise at a level corresponding to its

norm, var(noise) = jjf jj2. It is necessary to add noise to the system,
otherwise in many of the examples the 3D case will behave like a 2D
or 1D case: The BCs do usually not vary, hence there will be no vari-
ation in the 3rd dimension. Furthermore, the energy in white noise is
equally distributed on all scales, hence if a method can converge fast
with noise as the right hand side, then it can most likely converge fast
with any right hand side.

7.3.1 Neumann-Neumann Method

Independence of Discretization. We will start by considering the
examples that the DN method was exposed to in last section, namely
the 2� 2 block setup, in both 2D and 3D:

Example Examples of Appendix A.1 in both 2D and 3D
BC Dirichlet on W,E,N, and S. 3D version has homoge-

neous Neumann on F and B.
Forcing Random
Discr. Varying
Block dec. 2� 2 (�1) blocks
Results 2D: Table 7.7. 3D: Table 7.8

The �(BS) denote the condition number of the matrix productBS.
The two tables show that in both 2D and 3D the following properties
hold:

� Almost independence of the grid spacing. Table 7.7 reveals that

7.3 Schur and BDD Methods 93

Ex. # cells # it. cpu time �(BS)

32� 32 5 2.7 4.48
A.1 64� 64 5 17 6.35

128� 128 6 145 8.99
A.2 32� 32 5 5.0 4.67
A.3 32� 32 6 5.0 3.81
A.4 32� 32 6 5.8 4.28

Table 7.7: 2D case

Ex. # cells # it. cpu time �(BS)

A.1 10� 10� 10 8 3.1 2.48
A.2 10� 10� 10 8 2.9 2.81
A.3 10� 10� 10 6 2.3 1.65
A.4 10� 10� 10 7 2.7 1.92

Table 7.8: 3D case

a decrease in the grid spacing increase only slightly the condi-
tion number and the number of iterations used. It would have
been best of course, if there was no increase. Theory state the the
number of iterations grow like O((1 + log(H=h))=H) [Smith96],
so the increase seems to conform with theory.

� How the grid is constructed within each block has a somewhat
subtle influence on convergence. Going from a regular grid to a
non regular grid, from Example A.1 to A.2 or from Example A.3
to A.4, increases the condition number slightly, almost without
affecting the iteration count though. The conclusion must be that
the grids inside the blocks do not matter much.

Decreasing Performance as the Number of Block Grows. This test
will show the implications of lacking a coarse grid correction, hence if
increasing the number of blocks in any dimension, convergence will
deteriorate. The example is based on the oblong Example A.5, and the
following test show the deterioration of convergence as the number of

94 Computational Results

blocks in the horizontal direction increases.
Example A.5.
BC Pure Dirichlet.
Forcing Random.
Discr. 32� 32 cells, regular grid.
Block dec. k � 1 blocks
Results Table 7.9

k � 1 # it. cpu time �(BS)

2� 1 1 1.7 1.0

4� 1 3 2.6 1.004

8� 1 6 3.1 1.16

16� 1 12 4.6 2.31

Table 7.9: 2D case

Results in Table 7.9 verify that the iteration number grows like

O(1 + log(H=h)=H), which in this case is almost the same as O(1=H).
Also notice the growth in the condition number.

7.3.2 BDD Method

The BDD method adds a coarse grid correction, and should therefor
be more or less independent of the number of blocks and the block
size. For certain model problems is is possible to show, that the condi-
tion number grows like O((1+ log(H=h))2) [Smith96]. Hence iteration
count is almost independent of as well the grid spacing h and the block
size H .

Independence of Number of Blocks in 1D This first test shows how
a coarse grid correction makes a difference. It is Example A.5 without
noise, and decomposed in the horizontal direction only.

7.3 Schur and BDD Methods 95

Example A.5 2D with 1D properties.
BC Homogeneous Dirichlet at east and west, homoge-

neous Neumann elsewhere.
Forcing Constant.
Discr. 64� 16 cells, regular grid.
Block dec. k � 1 blocks
Results Table 7.10.

k � 1 # it. cpu time

2� 1 1 1.07

4� 1 1 1.27

8� 1 1 0.86

16� 1 1 0.64

Table 7.10: 2D case

Since the BCs have no variation in the 2nd dimension and further-
more the forcing over the entire domain is constant (no noise), there
will be no variation in the second dimension. It will behave as a 1D
problem. Results in Table 7.10 show that for this 2D case with 1D
properties, convergence is achieved in one iteration for any number of
blocks.

Checkerboard Decomposition The next test will apply a checker-
board decomposition on Example A.1 in 2D.

Example A.1 in 2D.
BC Dirichlet at south, Neumann elsewhere.
Forcing Random.
Discr. 48� 48 cells, regular grid.
Block dec. k � k blocks, checkerboard pattern.
Results Table 7.11.

The results in Table 7.11 verify the independence of block number
and block size. Even timings stay constant, or decrease, at least in the
beginning. Timings is commented in more detail later.

96 Computational Results

k � k # it. cpu time

2� 2 5 7.4

3� 3 15 15.0

4� 4 15 13.3

6� 6 17 12.8

8� 8 17 14.2

12� 12 16 20.5

16� 16 15 36.6

Table 7.11: 2D case

Decomposing Only in One Directions This test is alike the first test
of the BDD method, apart from noise is added to the right hand side,
giving 2D variation.

Example A.5 in 2D.
BC Dirichlet at east and west, homogeneous Neumann

elsewhere.
Forcing Random.
Discr. 96� 24 cells, regular grid.
Block dec. k � 1 blocks
Results Table 7.12.

k � 1 # it. cpu time

2� 1 1 1.8

4� 1 3 5.1

8� 1 6 6.6

16� 1 11 8.7

32� 1 33 30

48� 1 52 44

Table 7.12: 2D case

Table 7.12 shows that it is not sufficient to decompose in just one
direction.

7.3 Schur and BDD Methods 97

However if we decompose evenly in both direction:
Example A.5 in 2D.
BC Dirichlet at east and west, homogeneous Neumann

elsewhere.
Forcing Random.
Discr. 96� 24 cells, regular grid.
Block dec. 4k � k blocks
Results Table 7.13.

4k � k # it. cpu time

4� 1 3 5.0

8� 2 11 10.5

16� 4 16 30
32� 8 14 41

48� 12 12 84

Table 7.13: 2D case

Then Table 7.13 reveal that iteration count again is independent of
the block decomposition, as for the checkerboard test earlier.

Note especially the cpu timings in Table 7.13. They are increasing
quite heavily as the number of blocks grows. The same is the case for
the checkerboard decomposition results in Table 7.11.

Consider the last test in Table 7.13: The domain is discretized in

96� 24 = 2304 cells. These are decomposed into 48� 12 = 576 blocks
having each 2 � 2 = 4 cells. The decomposition produces in total
1092 block to block interfaces2, which each add 2 shadow variables to
the number of unknowns, in total 2184 extra unknowns. Hence there
are about as many shadow variables as interior variables. The system
has grown to double size, and the extra time needed to calculate the
solution to these extra variables has become significant. Furthermore
Matlab must take care of many small matrices, and many loops grows
big, hence there is most likely some administrative overhead included
in order to handle that many blocks.

247 � 12 + 48 � 11 = 1092

98 Computational Results

Blocks With High Aspect Ratio Table 7.12 shows that it is not suf-
ficient to decompose in just one direction, but what if only one block
has a high aspect ratio?

Example A.5 in 3D.
BC Dirichlet at east and west, homogeneous Neumann

elsewhere.
Forcing Random.
Discr. 128� 5� 3 cells, regular grid.
Block dec. 3� 1� 1 blocks, the middle block width is decreased,

its width compared to the total width is given as as-
pect ratio.

Results Table 7.14.

Aspect ratio # it. cpu time

1 : 3 2 3.1

1 : 5 2 3.1

1 : 7 3 4.3

1 : 13 5 6.9

1 : 21 6 7.9

1 : 31 8 10.1

1 : 65 10 12.1

1 : 128 12 15.8

Table 7.14: 2D case

Table 7.14 shows an increase in the iteration count as the aspect ra-
tio gets worse. However the iteration count do not increase as heavily
as in Table 7.12, where also the aspect ratio gets worse as more blocks
are used.

Other Examples

The last two examples are provided to show that the method works for
more general grids and decompositions than a rectangular grid using
a 2� 1 or 2� 2 block decomposition.

7.3 Schur and BDD Methods 99

The first example is the 2� 2� 2 block decomposition, which we have
not yet found a way to solve using the DN method.

Example A.1 and A.2 in 3D.
BC Dirichlet at front, homogeneous Neumann elsewhere.
Forcing Random.
Discr. 10� 10� 10 cells, regular grid.
Block dec. 2� 2� 2 blocks
Results Table 7.15.

Example # it. cpu time
A.1 13 9.7
A.2 15 9.0

Table 7.15: 2� 2� 2 block decomposition

Table 7.15 shows that the iteration counts compare with any of the
other tests so far, on as well a regular as a not so regular grid.

The last test is an example of how a grid is typically created close to a
corner.

Example A.7 in 3D.
BC Dirichlet at east boundary of top right block, inhomo-

geneous Neumann on west boundary of top left, ho-
mogeneous Neumann elsewhere.

Forcing Random.
Discr. In 3 block setup: Top left block: 6 � 18 � 4 cells, top

right block: 18� 18� 4 cells, bottom block 18� 6� 4

cells, irregular orthogonal grid.
Block dec. k + 1� 1 blocks
Results Table 7.16.

Table 7.16 again compare with iteration count for the other tests.
Note however that the block decomposition is only refined in one di-
rection, hence the iteration count grows with the number of blocks.

100 Computational Results

k # it. cpu time
3 17 67.4
5 18 42.6
7 22 35.5

Table 7.16: 2D case

7.3 Schur and BDD Methods 101

C H A P T E R 8

Summary

This project is in some sense far from over. It have been like a journey
with a given destination, but without map showing the paths.

During the process many paths have been visited. Most have been
turned down. Maybe because they ended blind, but usually we turned
around before we knew were it lead; at the turning point it was eval-
uated as another dead end, or another long way round. Therefor a lot
of paths are left relatively unexplored.

Also the destination has not yet been reached, NS3 is not yet par-
allel.

The objective of this chapter is to summarize what have been ac-
complished so far. I will relate it to articles on the subject if I have
found any. Also I will outline subjects which need further investiga-
tion.

Subjects for further investigation split into two categories: The
work to be done to implement a parallel Poisson solver in NS3, and
work which from another point of view may be interesting. The for-
mer will be presented in a separate section, while the latter is ad-
dressed as a part of the specific subject.

104 Summary

8.1 Matlab

There have been several problems with Matlab, mainly with the Mat-
lab backslash operator used to solve a system Au = f . The problems
arise when the system matrix is singular, and the system is consistent.
In this case, there is an infinity of solutions.

A singular matrix represented in Matlab is usually due to rounding
errors only close to singular.

In the process of calculating the solution to the singular system,
the backslash operator might encounter a zero, which is used in a di-
vision. The division by zero produces a Inf value, Matlabs represen-
tation of infinity. The Inf value, when encountered in other expres-
sions, will produce again either Inf or NaN, “not a number”, and the
result returned from the operator is usually a vector of NaN values.
The method has broken down. The break down of the method does
not depend on whether the right hand side is consistent or not.

However, if not a strict zero is encountered due to the rounding
errors, the backslash operator has no problem in finding one of the
solutions to the system. This difference in behavior from a break down
case to a near break down case seems not well justified.

In case of a consistent system, a Krylov subspace method can be
used, and it will find a solution. However, for the systems considered
here, the backslash operator usually out-competes a Krylov subspace
method in the time used to find a solution, and is therefor preferred.

One solution to this dilemma is simply to add noise of very small
magnitude (close to machine precision) to the diagonal of the system
matrix, just enough to make sure that the backslash operator never
encounters a strict zero. This will usually only alter the solution at the
same magnitude, and will usually be acceptable. Another solution is
to examine the result from the backslash operator, and if it contains
NaNvalues, then try again with a Krylov subspace method. Both are
not very nice brute force solutions, but they work.

As for singular inconsistent system, there exist no solution to the
system. The backslash operator produces a result of order 1=eps, eps
being the machine precision of Matlabs double precision arithmetic.

8.2 Classical Alternating Schwarz 105

A result which is unusable. It would have been better if Matlab had
returned a solution in a least squares sense, as it does when the system
matrix is under- or over-determined.1 So, if a solution in a least square
sense is sought, simply remove an arbitrary row from the system ma-
trix, making the system under-determined, and then use the backslash
operator to solve the system. This works well, but have not been used
in testing. A Krylov subspace method for inconsistent systems will
not converge at all.

For as well consistent as inconsistent singular system, another ap-
proach to solve the above problems is to use regularization methods
[Hans98].

Apart from the problems about the singular system, Matlab have been
a very effective tool in the development and test of the different me-
thods. There have been more time to thoughts and development than
if method and test should have been implemented in an ordinary pro-
gramming language.

8.2 Classical Alternating Schwarz

According to [Smith96], classical alternating Schwarz methods in con-
junction with multigrid have in practice the following properties: If
the problem size and the number of computational nodes are both
doubled, then it will take the same time to compute the solution. But it
is not fully scalable: If increasing the number of computational nodes

p to solve the same problem, the solution time will not be proportional
to 1=p.

Otherwise there is not much to say about the method. It does not
fit into NS3, which is the main reason that it have not been explored
more extensively here.

1According to Matlabs help text and Matlabs Function Reference for the backslash
operator

106 Summary

8.3 Non Overlapping Domain Decomposition

This have lead to some interesting result in the 2 � 2 block case: 3
iteration convergence. It is not something I have seen addressed in
any articles, where on contrary several seem to work with the case
of 2 blocks [Hadj00], [Rice98a], [Rice98b], [Doug97]. As is stated in
[Doug97], “the authors are still considering the case when interior ver-
tices occur”.

This, I believe, is just as worthy of an exploration as the 2 block
case. It might lead to further insight into why examples with interior
vertices sometimes behave very poor according to e.g. Example 5.7,
and how this may be circumvented.

Otherwise the non overlapping method presented here has not per-
formed satisfactory. It lacks several features before it is applicable to
more general geometries and NS3:

� It is in general difficult, if not impossible, to decide which di-
rection matrix to use. For simple cases experience may give an
idea of how to construct it, but for cases with many blocks in a
complex setup, it might be difficult to get even fair convergence.

� It is not straight forward how to accelerate the method by e.g.
a Krylov method. Two consecutive steps are usually not alike,
which is a requirement for a standard Krylov method. Therefor
either a special Krylov method must be applied, or all the differ-
ent steps should be grouped into one big step, which is then fed
to a standard Krylov method. Since a combination of all steps
may be very unstable, care must be taken.

� The method needs a coarse grid correction in order to get con-
vergence independent of the number of blocks. How this coarse
grid should be created is yet to be explored. Some initial at-
tempts to use the same technique as the BDD method have failed,
and arguments from multigrid theory can motivate why: The
error is not smooth on the fine grid before it is restricted to the
coarse grid. Most likely another approach is necessary.

� Finally, at present the method converge slowly or not at all, if

8.4 Schur Complement Methods 107

some blocks are singular. Therefor procedures to handle the sin-
gular cases must be provided.

8.4 Schur Complement Methods

The data imported from NS3 do not include flux through each cell
face. It has therefor not been possible to create the interface variables
for general systems, since their creation is based on the flux over the
interface. Though, if no diagonal cell dependencies exist over the in-
terface, the flux can be retracted from the system matrix. Hence it has
only been possible to test examples which do not include diagonal
cell dependencies over the interface. This is the case for an orthogo-
nal grid. The non orthogonal examples tested with the BDD method
have been especially designed not to have diagonal cell dependencies.
However, test to verify that it works in general should be applied.

In [Smith96] is given several algorithms for solving the Schur comple-
ment. Most behave asymptotically like the BDD method. However,
a method called the Vertex Space Method or Copper Mountain Algo-
rithm shows to have condition number and thereby convergence rate
independent of mesh as well as block decomposition. It adds several
local solvers associated with points near vertices in 2D, and near ver-
tices and edges in 3D. It may be worth to investigate whether these
extra solvers make a difference in practice compared to the BDD pre-
conditioner and if so, whether the effort to adapt NS3 to implement
these local solvers is worth the work.

8.4.1 Neumann-Neumann Method

What is the difference between the Neumann-Neumann method and
the original DN method? Both methods solve a Dirichlet problem fol-
lowed by a Neumann problem, however the Neumann-Neumann me-
thod performs well while the DN method does not converge in gen-
eral.

108 Summary

The difference between the two can be found in their formulation:
The Neumann-Neumann method is formulated as preconditioner de-
signed to fit into an accelerated method like a Krylov method. If the
Neumann-Neumann preconditioner is used instead in a stationary it-
erative method, then it will not converge in general but behave like the
DN method. Hence the DN method will most likely perform just as
well, if it could be formulated as a preconditioner to a Krylov method.

The Neumann-Neumann method will however still have an ad-
vantage: The global Krylov method works only on the interface vari-
ables. The number of interface variables is much less than the number
of interior variables, hence the complexity of the Krylov method is
small compared with a Krylov method on all variables.

The Neumann-Neumann methods has not been exposed to examples
with singular blocks. Nothing special have been done to improve
convergence when singular blocks are present, hence convergence at
present is very bad and do not compare with other methods.

Thus the Neumann-Neumann method has not been tested on e.g.
a checkerboard decomposition.

The Neumann-Neumann methods shows to perform fine for a smaller
number of blocks. However as already mentioned the method lacks
a coarse grid correction to improve performance when the number of
blocks increase. The BDD method solves this, however many other
methods exist which address this problem, see e.g. [Dryja93].

8.4.2 BDD Method

The BDD method shows to perform well for even a large number of
blocks. Results indicate that performance of the method in a finite
volume formulation as presented here corresponds with performance
stated for a finite element approach in [Smith96] and [Mand93a].

However some things need to be kept in mind: It is important to
decompose evenly in all directions. Whether it should be even in do-
main size or in number of cells in each block have not been addressed.

8.5 Conclusion 109

Further testing must show.

Note that the BDD preconditioner can be used as a preconditioner
for a single processor machine as well, if considering the computing
timings. Especially Table 7.10 show that computing times are almost
halfed going from 1 to 16 blocks.

The BDD method allows geometries of very general shape, more gen-
eral than NS3 can create.

Even though the BDD preconditioner is general, it is restricted
to problems where the null space of the operator, or in unsymmet-
ric cases the null space of the orthogonal operator, is known or com-
putable. This is the case for the Poisson problem, but for other elliptic
problems the null space may not be known in advance. If so, the null
space can be computed: Assume S(i) is singular, then the null space of
its transpose can be found by solving

(S(i))Tv = 0 (8.1)

at least as many times as the dimension of the null space, using a
Krylov method and different random start vectors v. All the solutions

v should span the null space [Bark92].

As a remark, I will mention that the BDD have already been applied to
the incompressible Stokes equation in [Pava96], where computational
results conform with theory. [Pava96] is based on a discretization us-
ing mixed finite or spectral elements.

8.5 Conclusion

Let us return to the very first sentence of this thesis: How to parallelize
a Poisson solver. There is no doubt for me that the BDD method can
do this efficiently:

� The restrictions from NS3 are obeyed.

110 Summary

– The method is based on local solvers.
– The coarse grid dimension is minimal, only one variable

per block.

� The method is based on an accelerated Krylov subspace method.
The Krylov method iterate only on the interface variables, whos
number is much smaller than the entire number of variables.

� Communication between blocks is only on the finest level.
The main motivation was to parallelize the NS3 package. How-

ever, there have not been enough time during this project to actually
implement the BDD method in NS3, and there are still things to inves-
tigate before an actual implementation starts. Therefor it has not been
possible to compare the method against the existing implementation
on a single node machine.

How will NS3 respond to the BDD method? The biggest addition
to NS3 is from my knowledge of the program the implementation of
a Krylov subspace method. I do not believe that this is a very difficult
thing to do. The local block solvers more or less already exist in the
package. However, each block should be able to solve both a Dirichlet
and a Neumann problem of slightly different size, which will intro-
duce some changes in order to do this efficiently.

8.6 Further Work

Some areas still need to be investigated in order to implement the BDD
method most effectively in NS3. Some will be mentioned here:

� Explore the different Krylov subspace methods, and find the one
fitted the best for this Poisson problem.
In NS3 the transpose is available. GMRES does not use this.
Therefor there might be more efficient solvers, that take advan-
tage of this. Furthermore, another method may simply perform
better than GMRES in general for the Poisson problem.

� Parallelize the Krylov subspace method.
One way to implement the BDD method is to have one compu-
tational node which handle the Krylov subspace algorithm on

8.6 Further Work 111

all the interface variables, and let this node send data to the re-
maining nodes to compute exact block solutions. This is just an
ordinary sequential Krylov subspace method using some paral-
lel subroutines to compute matrix vector products and to apply
a preconditioner.
However, it is most likely more efficient if a distributed version
of a Krylov subspace method is implemented, having e.g. all
inner products calculated locally and then apply some commu-
nication to find the global inner product.
A subject for further investigation is to explore whether a Krylov
subspace method can be parallelized effectively. In [Haase96] is
described a parallel GMRES, another useful reference may be
[Erhel95].

� NS3 can handle moving grids. Moving grids imply that the sys-
tem matrix changes for each iteration. Strictly it is necessary
to update the balancing procedures (coarse grid operator) each
time the system has changed.
However this might be computationally too expensive.
Hence an examination of when it is possible/sufficient to reuse
a no longer exact coarse grid operator, and how this influence
convergence, may save valuable computing time.

� The effect of inexact block solvers.
In this work, only exact block solvers have been applied. Com-
puting only an approximate solution on each block will spare
some computing time per iteration at the expense of an increase
in the number of iterations of the global method.
Whether the time spared in solving each block inexact compen-
sates for the increase in iteration count is unknown in our case.
The problem of inexact versus exact block solvers is addressed in
[Brak98] (based on a finite volume staggered grid discretization
decomposed in a Scwarz like manner with minimal overlap and
without a coarse grid correction). [Brak98] conclude that inexact
subdomain solvers can reduce computing time.

� The optimal decomposition, that is how to balance the discretiza-
tion and the block decomposition.

112 Summary

In order to get more computing power, we would like to include
more computational nodes and thereby we would also like a
matching block decomposition.
However, the more blocks, the more extra interface variables we
need to solve for. As argued previously, the number of interface
variables should be so small, so that the extra time used to com-
pute a solution to these extra variables must not be significant
compared to solving for the original variables.
Furthermore, the more blocks and interface variables, the more
communication is needed. Communication is usually expensive,
and should not be a bottleneck. Hence, communication time
must in some way match computation time.
In other words, there will be an optimal decomposition giving
the smallest computation time. Guidelines of how to crate an
optimal decomposition as a function of discretization and num-
ber of computational nodes can be valuable.
[Chan95] address a somewhat similar problem, finding the opti-
mal coarse grid size for an additive Schwarz preconditioner to a
Krylov subspace method.

� Consider a case where there are more blocks than computational
nodes. Then blocks on the same node may use results from other
blocks already calculated, e.i. for blocks on the same node the
method should be multiplicative.
This is of special interest in cases where only one or few compu-
tational nodes are available.
The question is whether the BDD preconditioner exists in a semi
or full multiplicative version. And if it does, whether it improves
convergence significantly, especially in the one node case.

8.6 Further Work 113

!
?

A P P E N D I X A

Test Suite and Results

The following presents the suite of test examples which is used for
numerical experiments. Outer lines indicate domain boundaries and
lines in the domain indicate block boundaries, interfaces. Dashed or
dash-dotted lines indicate optional interfaces, i.e. when the domain
can be split up into a different number of blocks. Markers (+) indicate
the center of each finite volume cell, the position at which the mean
value for the unknown in entire cell is determined.

A.1 2 by 2 Block Setup

All of the 2 � 2 block domains presented here have a 3D extension.
The 3D version is a regular equidistant extension of the 2D version.

The examples come with different boundary conditions, so boun-
dary conditions must be specified when the examples are used.

A 2 � 1 block setup can be achieved by decomposing only by e.g.
the vertical interface, or by using the two bottom blocks only.

Figure A.1 and A.2 also exist in a cubic 2�2�2 block setup, where
all 8 blocks share a common corner point (vertex) located exactly in
the center of the cube.

116 Test Suite and Results

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure A.1: Regular grid

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure A.2: Irregular grid

−1 0 1 2 3 4 5 6 7 8 9 10
−1

0

1

Figure A.3: Blocks of different size with regular grid

−1 0 1 2 3 4 5 6 7 8 9 10
−1

0

1

Figure A.4: Blocks of different size with irregular grid

A.2 4 by 1 Block Setup 117

A.2 4 by 1 Block Setup

The 4 � 1 block domains exist also both in 2D and 3D version, again
the 3D versions being a regular equidistant extension of the 2D ver-
sion.

If not otherwise specified, the west and east boundaries have Dirich-
let conditions while north and south (and front and back in 3D) have
homogeneous Neumann conditions.

−4 −3 −2 −1 0 1 2 3 4
−1

−0.5

0

0.5

1

Figure A.5: Oblong domain, regular grid

−4 −3 −2 −1 0 1 2 3 4
−1

−0.5

0

0.5

1

Figure A.6: Oblong domain, irregular grid

118 Test Suite and Results

A.3 3 Blocks With a Corner

This example shows how a discretization may be created when a cor-
ner is present. The discretization is finer close to be able to include
more details of how the fluid flows around the corner.

Only a 3D version have been explored. The west boundary of the
top-left block has inhomogeneous Neumann condition while the east
boundary of the top-right block has Dirichlet condition. The remain-
ing boundaries have a homogeneous Neumann condition.

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure A.7: 3 blocks with a corner

A.4 Results 119

A.4 Results

This appendix will present results which were to lengthy to put into
the result section.

A.4.1 Non Overlapping Domain Decomposition

Tables presented here are results from Section 7.2.2 for the 3 different
examples A.1, A.2, and A.4.

To recapitulate: Results listed with the parameters � and � are pro-
duced by the approximative DN method, while results listed with

are produced by the exact DN method.

120 Test Suite and Results

Example A.1 Regular grid.

D. par. Error reduction factor

O0 � = 1 0.929 0.874

1 = �1:0 0.950 0.904

Table A.1: Classical alternating Schwarz

D. par. N. step Error reduction factor

O1 � = 0:5 � = 0:3 0.605 0.581

1 = �1:0 2 = 1:0 diverges

Table A.2: DN method

D. par. N. par. Error reduction factor

� = 0:5 � = 0:5 0.788 0.719

O2 � = 0:5 � = 0:7 0.610 0.570

1 = �1 2 = 1 0.861 0.781

Table A.3: DN method

D. par. N. par. Error reduction factor

� = 0:5 � = 0:5 0.559 0.513

O3 � = 0:4 � = 0:5 0.601 0.507

1 = �1 2 = 1 4 it.

Table A.4: DN method

D. par. N. par. Error reduction factor

� = 0:5 � = 0:5 0.608 0.472

O4 � = 0:6 � = 0:5 0.481 0.441

1 = �1 2 = 1 3 it.

Table A.5: DN method

A.4 Results 121

Example A.2 Irregular grid.

D. par. N. par. Error reduction factor

O0 � = 1 0.965 0.917

1 = �1 0.973 0.934

Table A.6: Classical alternating Schwarz

D. par. N. par. Error reduction factor

O1 � = 0:4 � = 0:3 0.624 0.600

1 = �1 2 = 1 divergent

Table A.7: DN method

D. par. N. par. Error reduction factor
� = 0:5 � = 0:5 0.810 0.760

O2 � = 0:5 � = 0:7 0.620 0.580

1 = �1 2 = 1 0.865 0.803

Table A.8: DN method

D. par. N. par. Error reduction factor

� = 0:5 � = 0:5 0.600 0.560

O3 � = 0:4 � = 0:5 0.665 0.540

1 = �1 2 = 1 0.714 0.653

Table A.9: DN method

D. par. N. par. Error reduction factor

� = 0:5 � = 0:5 0.600 0.560

O4 � = 0:4 � = 0:5 0.652 0.540

1 = �1 2 = 1 0.326 0.324

Table A.10: DN method

122 Test Suite and Results

Example A.4 Blocks of different size and irregular grid.

D. par. N. par. Error reduction factor

O0 � = 1 0.971 0.920

1 = �1 0.980 0.933

Table A.11: Classical alternating Schwarz

D. par. N. par. Error reduction factor

O1 � = 0:4 � = 0:4 0.640 0.576

1 = �1 2 = 1 divergent

Table A.12: DN method

D. par. N. par. Error reduction factor

� = 0:5 � = 0:5 0.781 0.673

O2 � = 0:7 � = 0:5 0.617 0.613

1 = �1 2 = 1 0.743 0.675

Table A.13: DN method

D. par. N. par. Error reduction factor

� = 0:5 � = 0:5 0.630 0.556

O3 � = 0:5 � = 0:4 0.598 0.555

1 = �1 2 = 1 0.510 0.471

Table A.14: DN method

D. par. N. par. Error reduction factor

� = 0:5 � = 0:5 0.672 0.554

O4 � = 0:6 � = 0:5 0.471 0.484

1 = �1 2 = 1 0.356 0.336

Table A.15: DN method

A P P E N D I X B

Preconditioners and
Krylov Subspace Methods

B.1 Preconditioners

Consider a system of the form
Au = f ; (B.1)

Denote the error for an approximate solution uk by ek = u� uk, then

Aek = A(u� uk) = f �Auk = rk; (B.2)

where rk is called the residual. If having an approximate solver B for
above error equation, then

ek � Brk (B.3)

can be used in an iterative correcting procedure of the form

uk+1 = uk + ek = uk +B(f �Auk); (B.4)

giving a new (and hopefully better) approximate solution. The matrix

B (or sometimes its inverse) is called a preconditioner.

124 Preconditioners and Krylov Subspace Methods

B.2 Krylov Subspace Method

Consider again the system (B.1). Given an initial vector u0, the corre-
sponding residual is r0 = f �Au0. Then system (B.1) can be written
as

A(u� u0) = r0: (B.5)

The Krylov subspaces based on A and u0 is defined as

Kk = span

�
r0;Ar0;A
2r0; : : : ;A
k�1r0
	
: (B.6)

Let the vectors v1; : : : ;vk be a basis for Kk. That is the vectors vi

are linearly independent and they span the kth Krylov subspace. Set

Vk = [v1; : : : ;vk]. We seek an approximation to the exact solution u

on the form

uk = u0 + c1v1 + � � �+ ckvk = u0 +Vkck : (B.7)

Unless by chance u�u0 2 Kk, no such approximation satisfies system
(B.5), i.e. makes

A(uk � u0) = r0; (B.8)

since uk is only a projection of the exact solution to a k dimensional
subspace. The idea is now to project the system (B.8) into a kth dimen-
sional subspace, where the system can be solved.

Therefor, define yet another subspace of dimension k having the
basis w1; : : : ;wk, and set Wk = [w1; : : : ;wk]. Project system (B.8) to
the subspace spanned byWk and use the definition of the approxima-
tion (B.7);

WT
kA(Vkck) =WT
k r0: (B.9)

Solve this system for ck and set the approximation

uk = u0 +Vkck : (B.10)

The projection approach above is only possible if WT
kAVk is non-

singular. Fortunately [Bark92] shows that it is not only nonsingular
but also symmetric positive definite (SPD), if choosing

B.2 Krylov Subspace Method 125

� Wk = Vk when A is SPD,

� Wk = AVk when A is nonsingular.

Suppose for now that

wT
i Avj

�
= 0 if i 6= j

6= 0 if i = j

; (B.11)

then the two sets wi and vi are said to be orthogonal with respect to

A. With this assumption the matrixWT
kAVk is a diagonal matrix, and

the solution to the system (B.9) is given component wise as

ci =

wT
i r0

wT
i Avi

; i = 1; : : : ; k: (B.12)

If the two sets do not satisfy assumption (B.11), then just change to
another basis. Simply compute two new basis’s ~vi and ~wi spanning

Vk and Wk respectively, which do satisfy the assumption. This is an
orthogonalization procedure with assumption (B.11) as the orthogo-
nal condition, and one way to build the new sets is by using a Gram
Schmidt process.

This have brought us in a position to be able to sketch how a typical
Krylov subspace method works: Provide an initial solution u0, and
decide howVk andWk should relate toKk. While the approximative
solution is not precise enough, do:

� Expand the Krylov subspace by one dimension.

� Create basis’s for Vk andWk which are orthogonal with respect
to A, using an orthogonalization process.

� Solve the diagonal system (B.9), and compute a new approxi-
mate solution (B.10).

Note especially that if n is the dimension of the system, thenKn spans
the entire solution space, hence the the exact solution is guaranteed
after at most n iterations.

We will now look at the work required to compute the next ap-
proximate solution.

126 Preconditioners and Krylov Subspace Methods

� To expand the Krylov subspace, it is necessary to compute one
matrix vector product, namely A(Ak�1r0).

� The orthogonalization procedure is based on inner products. The
procedure needs to compute one inner product for each vi and

wi. Since the set of vi and wi grows with the dimension of the
Krylov subspace, the work increases similarly. However, if A

is SPD, then the orthogonalization of Kk can reuse computa-
tions from the orthogonalization of Kk�1. Furthermore vi = wi,
hence the procedure needs only to compute one inner product,
and there is no need to save the vi vectors [Bark92].
If A is not SPD, the vectors vi and wi are usually created such
that only one inner product for each pair is necessary, that is k

inner products.

� The diagonal elements of the diagonal system must be computed.
This can be done at the cost of one inner product per diagonal
element, so again the work increases with the dimension of the
Krylov subspace. If again A is SPD, the diagonal elements from
the previous iteration can be reused, so only one new element
must be calculated, at the cost of one inner product.
Finally an update from the previous approximative solution to
the new is needed.

A method that implement the procedure for a SPD system, is the
Conjugate Gradient (CG) method. It uses for each iteration; one matrix-
vector product, 2 inner products and 3 vector updates.

Implementations for non SPD systems usually suffer from the fact
that the number of inner products grows with the dimension of the
subspace. The method GMRES (Generalized Minimum RESidual) uses
for each iteration; one matrix-vector product, k + 1 scalar products, k

saxpy operations,1 a vector scaling, and a usually small dimensional
least squares problem [Hanke00].

Most non SPD implementations exist in restarted or truncated ver-
sions. Restarted, meaning that at some point the approximative solu-
tion uk is used as a new start guess u0 and the procedure is started

1A saxpy reads; “scalar a times x plus y”, (w = ax+ y)

B.2 Krylov Subspace Method 127

from scratch. Truncated, meaning that only a fixed number of the lat-
est vk is saved and processed. Convergence is usually no longer guar-
anteed for restarted and truncated versions, but they usually perform
well.

Preconditioned Krylov Methods A Krylov subspace method can be
applied in conjunction with a preconditioner. Consider what is called
the preconditioned system

BAu = Bf ; (B.13)

which has the same solution as (B.1). Instead apply a Krylov subspace
method to the preconditioned system. This can be done without ex-
plicitly forming the product BA.

Using a preconditioner may improve convergence speed greatly,
depending on the preconditioner used. Convergence speed is closely
related to the condition number of the system.2 If a system converges
very slowly, the condition number is big. Now, B is an approximative
solver, so B � A�1, hence BA is “close” to identity. The identity
matrix has unity eigenvalues and therefor a condition number of one.
However, BA is usually not close to identity, but the preconditioning
can make the condition number much smaller than that of the original
system, and hence improve convergence.

Let us sum up: For a Krylov subspace method to work, it is required
to provide procedures:

� to compute the product v = Au to obtain the residual.

� to compute an approximate solution v = Bu

It is shown in [Bark92] that good preconditioners have the same prop-
erties as good splittings, A = M + N, used in stationary iterative
methods. Therefor, B = M�1 is usually a good choice of a precondi-
tioner.

2The factor between the smallest and the largest singular value of the system.

128 Preconditioners and Krylov Subspace Methods

Krylov Type Iterative Methods There exist many Krylov type iter-
ative methods, a haste look in the literature have produced the fol-
lowing list. Methods for general system include: GCR, GMRES, FOM,
ORTHOMIN, CGNR, CGNE, CGLS, LSQR, BiCG, BiCGStab, QMR,
TFQMR, CGS. For symmetric but not necessarily positive definite sys-
tems the methods MINRES, SYMMLQ, can be used, while for symmet-
ric positive definite systems there seems to be only one choice, the CG
method. All of the methods may be used in conjunction with a precon-
ditioner. This is just methods mentioned in [Bark92] and [Hanke00],
many more exist.

Why so many different methods? For efficiency, meaning the time
it takes to obtain a satisfactory solution. The methods differ for exam-
ple in their memory requirement, work per iteration, orthogonaliza-
tion procedure, whether the transpose are available, and in their nu-
merical stability. Having for example a matrix with almost nonorthog-
onal columns, rounding errors may cause one method to break down,
while another method may be less sensitive and produce a satisfactory
solution.

One should keep in mind that all methods have their strengths and
drawbacks, so none is preferable to another in the general case - which
method to use depends entirely on the problem to solve.

For references on Krylov subspace methods, see [Bark92] or [Hanke00].

A P P E N D I X C

DN Method Proofs

This appendix presents two examples, which proof that 2 iteration
convergence can be achieved for the DN method. The first example
is for the one dimensional case, while the second is in any dimension.

The examples are referenced from Section 5.4.

C.1 Proof for 1D

Example C.1: 2 Iteration Solution to 1D Poisson Problem The proof
is based on finding eigenvalues of the iteration matrix for a double step in-
cluding both a Dirichlet and a Neumann step.

First find the iteration matrix G for a single step, the inverse of M from
Equation (5.38d) is needed,

M

�1 =
2

664
~B�1
1 0 ~B�1
1 Cx � ~B�1
1 ~ITx

0 ~B�1
2 � ~B�1
2 ~ITy ~B�1
2 Cy

0 0 �I 0

0 0 0 �I

3
775 : (C.1)

130 DN Method Proofs

This will produce the iteration matrix

G =M

�1
N =

2
664

� ~B�1
1 ~ITx ~Ix ~B�1
1 Cx
~Iy 0 0

~B�1
2 Cy
~Ix � ~B�1
2 ~ITy ~Iy 0 0

0 �~Iy 0 0

�~Ix 0 0 0

3
775 : (C.2)

Let Gd denote the iteration matrix for the odd iterations using d, and

Gn denote the iteration matrix for the even iterations using n. The iteration
matrix for a double step is the product of the iteration matrices for the two
individual steps,

GdGn =2
664

D�1
1 d~I

T
x
~IxN
�1
1 n~I

T
x
~Ix +D
�1
1 Cx
~IyN
�1
2 Cy
~Ix

�D�1
2 Cy
~IxN
�1
1 n~I

T
x
~Ix �D
�1
2 n~I

T
y
~IyN
�1
2 Cy
~Ix

xx
xx

�D�1
1 d~I

T
x
~IxN
�1
1 Cx
~Iy �D
�1
1 Cx
~IyN
�1
2 n~I

T
y
~Iy 0 0

D�1
2 Cy
~IxN
�1
1 Cx
~ITy +D�1
2 d~I

T
y
~IyN
�1
2 n~I

T
y
~Iy 0 0

xx 0 0

xx 0 0

3
775 ; (C.3)

where D�1
i = ~B�1
i from Gd and N�1
i = ~B�1
i from Gn . The Cx and ~Ix are

alike in both iteration matrices and do not need to be distinguished. Details
about the last rows are omitted, since in an eigenvalue analysis they give no
contribution due to the corresponding zero columns, see Appendix D.4 for
proof.

The two step iteration matrix (C.3) is general, but to continue, some as-
sumptions are needed: A 1D Poisson with Dirichlet boundary conditions,
discretized using a regular grid, and decomposed in two equally big blocks.
Because of the regular grid and symmetry around the interface, then the fol-
lowing holds: Ci = ~ITi . TheC have only one column and ~I only one row both
with one element of unity on either first or last position. The matrices ~B1 and

~B2 are opposite matrices,1 and similar are the pairs D1, D2 and N1, N2 and
their inverse.

4 nonzero blocks of the two step iteration matrix (C.3) need to be calcu-
lated. Taken bit by bit:

1See definition of opposite matrices in Appendix D.3

C.1 Proof for 1D 131

� Each product of the formD�1C orD�1~IT produces a matrix with only
one column by picking out a specific column of D�1.

� Then the product (D�1C)~I places this column at a specific column in a
new matrix of the same size as D�1, while all other columns are zero
columns.

� Furthermore two matrices having only one column as described above
are multiplied together,

� and finally added with a another matrix product.

The procedure for each of the 4 blocks are pinned out in Equations (C.5), where

dij is the j’th column ofD�1
i , and dij;k is the k’th element of dij and similar for

N�1
i , nij and nij;k .

132 DN Method Proofs

D
�

1
1

~ IT x
~ I x

=
� 0�

��
0

d
1 n

� N
�

1
1

~ IT x
~ I x

=
� 0�

��
0

n
1 n

� !

d

n

� 0�
�
�0

n
1 n

;n
d

1 n

�

(C
.4

a)

D
�

1
1

C
x
~ I y

=
� d1 n

0
��

�0
� N

�
1
2

C
y
~ I x

=
� 0�

��
0

n
2 1

� !
� 0�

�
�0

n
2 1
;1
d

1 n

�

(C
.4

b)

D
�

1
1

~ IT x
~ I x

=
� 0�

��
0

d
1 n

� N
�

1
1

C
x
~ I y

=
� n1 n

0
��

�0
� !

�

d

� n1 n
;n

d
1 n

0
��

�0
�

(C
.4

c)

D
�

1
1

C
x
~ I y

=
� d1 n

0
��

�0
� N

�
1
2

~ IT y
~ I y

=
� n2 1

0
��

�0
� !

�

n

� n2 1
;1
d

1 n
0

��
�0

�

(C
.4

d
)

D
�

1
2

~ IT x
~ I x

=
� 0�

��
0

d
2 1

�
N

�
1
1

~ IT x
~ I x

=
� 0�

��
0

n
1 n

� !
�

n

� 0�
�
�0

n
1 n

;n
d

2 1

�

(C
.4

e)

D
�

1
2

C
x
~ I y

=
� d2 1

0
��

�0
�

N
�

1
2

C
y
~ I x

=
� 0�

��
0

n
2 1

� !
�

d

� 0�
�
�0

n
2 1
;1
d

2 1

�

(C
.4

f)

D
�

1
2

~ IT x
~ I x

=
� 0�

��
0

d
2 1

�
N

�
1
1

C
x
~ I y

=
� n1 n

0
��

�0
� !

� n1 n
;n

d
2 1
0

��
�0

�

(C
.4

g)

D
�

1
2

C
x
~ I y

=
� d2 1

0
��

�0
�

N
�

1
2

~ IT y
~ I y

=
� n2 1

0
��

�0
� !

d

n

� n2 1
;1
d

2 1
0

��
�0

�

(C
.4

h)

C.1 Proof for 1D 133

Putting this together will produce the two stop iteration matrix

GdGn =2
664

0 (dnn
1
n;n + n21;1)d

1
n (�dn

1
n;n � nn

2
1;1)d

1
n 0 0 0

0 (�nn
1
n;n � dn

2
1;1)d

2
1 (n1n;n + dnn

2
1;1)d

2
1 0 0 0

0 x x 0 0 0

0 x x 0 0 0

3
775 :

(C.5)

There are only nonzeros in the two columns corresponding to cells at the in-
terface. All eigenvalues except two will therefor be zero. The last two eigen-
values will depend only on the 2� 2 block around the diagonal,�

(dnn
1
n;n + n21;1)d

1
n;n (�dn

1
n;n � nn

2
1;1)d

1
n;n

(�nn
1
n;n � dn

2
1;1)d

2
1;1 (n1n;n + dnn

2
1;1)d

2
1;1

�
: (C.6)

The eigenvalues depends on one element of each of the Di and Ni matrices:

n1n;n, n21;1 , d1n;n and d21;1. Eigenvalues for a 2� 2 system can be determined by
the equation

0 = �2 � ��+�; (C.7)

where � is the trace and � the determinant of the 2 � 2 block. This will have
zero eigenvalues if the trace and determinant are both zero. Remember that

D1 and D2 are opposite and so also N1 and N2, hence n1n;n = n21;1 = n and
d1n;n = d21;1 = d. The trace and determinant can therefor be expressed as

� = 2(dn + 1)nd = 0 (C.8)

� = (dn + 1)2n2d2 � (�d � n)
2
n

2
d

2

= (dn � d � n + 1)2n2d2

= (d � 1)(n � 1)n2d2 = 0: (C.9)

This system has two zero solutions, namely for

d = 1; n = �1 or d = �1; n = 1: (C.10)

This corresponds exactly to one Neumann step followed by one Dirichlet step.
Whether the first step is the Neumann or the Dirichlet does not matter.

Note that in this 1D case, the only demand for this to work, is if n1n;n = n21;1

and d1n;n = d21;1. This might be accomplished with other assumptions than

134 DN Method Proofs

those used here. E.g. since the solution on the interface does not depend on
how the inner of each block is discretized, then the inner block discretization
do not matter. We have experimentally verified this by stretching a grid on
the first 1

4

of the interval, and still only 2 iterations is needed.
If n1n;n 6= n21;1 and d1n;n 6= d21;1, then this ends up as a two parameter

optimization problem, which in general is very difficult to solve. Especially
since d1n;n and d21;1 depends on d, and n1n;n and n21;1 depends on n.

This proof is inspired by [Hadj00]. There are however some differences in the
two proofs: In [Hadj00] the systems for the Dirichlet and Neumann step are
created independently, and not from the same system as we have done. This
make it possible for them to implement the exchange of data with a weighting
between each block much like the updating (5.37). Furthermore the values of

d1n;n, d21;1, n1n;n, and n21;1 are calculated explicitly as a function of two weight-
ing parameters. Thereby it is possible to find the trace and determinant as a
function of the weighting parameters, and minimize the eigenvalues, which
they generalize to any dimension including blocks of different size. Similar
weighting parameters are not included this formulation.

End of Example C.1.

C.2 Proof for Any Dimension

Example C.2: 2 Iteration Solution to Poisson Problem in Any Di-
mension Consider a Poisson operator with pure Dirichlet boundary condi-
tions on a domain in any dimension of size [0; 1]n.

Assume the grid is regular, that is orthogonal with constant grid spacing
in all directions. Number the cells in a natural way. The matrix of the resulting
algebraic system will by symmetric due to the regular grid. Split the domain
into two equally big blocks by halfing in one dimension, splitting the solution
vector in two equally big vectors x and y. This time we will number the cells
such that cells at the interface are “in the middle”

u =
�
xi xb yb yi

�T
; (C.11)

where subscript i indicate interior cells and b cells at the interface.

C.2 Proof for Any Dimension 135

0 50 100 150 200 250 300 350 400 450 500

0

50

100

150

200

250

300

350

400

450

500

nz = 2872

Figure C.1: Spy of matrix

Split up the system as in Equation (5.32) and proceed as in Section 5.4. The
iteration matrix (5.38c), I will rewrite here:

2
664

~B1 0 Cx �~ITx

0 ~B2 �~ITy Cy

0 ~Iy �I 0

~Ix 0 0 �I

3
775 (5.38c)

Due to the regular grid and symmetry around the interface the matrices have
a lot of structure: Cx = ~ITx , ~B1 and ~B2 are opposite as defined in Section
D.3 and symmetric. An example of a spy of the matrix (showing nonzero
elements) can be seen in Figure C.1. The splitting into M and N will follow
Section 5.4 and Equation (5.38d) and (5.38d). The inverse ofM is presented in
Equation (C.1). Let us take a look at its structure in this case.

M

�1 =
2

666666664

x
x

yy

3
777777775

(C.12)

The two block matrices are opposite, and furthermore they have the structure

136 DN Method Proofs

such that

M

�1 =
2

666666664

x
x

xx

3
777777775

(C.13)

This structure is a property of the regular grid and symmetry around the inter-
face, and this is the vital assumption for this proof. To get the iteration matrix,

M is multiplied by N to give the iteration matrix (C.2), which I will rewrite
here, replacingCx = ~ITx .

G =M

�1
N =

2
664

� ~B�1
1 ~ITx ~Ix ~B�1
1

~ITx~Iy

~B�1
2

~ITy ~Ix � ~B�1
2 ~ITy ~Iy

�~Iy

�~Ix

3
775 (C.14)

Consider the products on the form ~ITx~Ix. Let us take a look at two of the
combinations

~ITx~Ix =
" #

~ITx ~Iy =
" #

; (C.15)

all nonzero values have the value one. Such matrices pick out certain columns
of ~B�1

i and places these columns in another column. The result is an iteration
matrix G of the form

G =
2

6666666664

zz
xxzz

xx

3
7777777775

: (C.16)

Why now the z’s? The iteration matrix (C.14) include a parameter, so that
zz = � xx .

C.2 Proof for Any Dimension 137

Now it is time to consider two consecutive steps using two different values
of : The Dirichlet step uses = �1 and the Neumann = 1. Consider the
middle part of G. If setting S = xx in the Dirichlet step and similar T = xx 2

in the Neumann step, then the center part of the iteration matrix for the two
steps have the form

^GD =
�
S S

S S

�
^GN =

�
�T T

T �T

�
(C.17)

Multiplying these two together gives exactly the zero matrix. So the product
of the entire two will produce a two step iteration matrix on the form

GDGN =
2

666666664

3
777777775

: (C.18)

The matrix of this structure has both zero trace and zero determinant, and
have therefor purely zero eigenvalues. Hence the exact solution is achieved
after just these two iterations.

Note that this proof is based on the structure of the system matrix. This
structure only appears when using a regular grid and there is symmetry around
the interface. However, if that is the case, this proof holds for any dimension.

End of Example C.2.

2S andT are not identical since the ~B’s depend on the values used.

138 DN Method Proofs

A P P E N D I X D

Notes

D.1 Green’s Identities

The basic tool for deriving Green’s identities is the divergence theo-
rem, Z

r � F d
 =

Z
@

F � n dS; (D.1)

where n is the unit outward pointing normal vector on @
.
From the product rule r � (vru) = rv � ru+ vr2u and by use of

the divergence theorem, Green’s first identity (G1) ariseZ
@

v
@u

@n
dS;=

Z

rv � ru d
 +
Z

vr2u d
; (D.2)

where @u
@n

= n � ru. This is valid for any solid region
 and any pair
of functions u and v. Set especially v = 1 to getZ

@

@u
@n

dS;=
Z

r2u d
: (D.3)

140 Notes

The middle term in G1 does not change if u and v are interchanged.
So by writing G1 for u and v and again for v and u, and subtract the
two, Green’s second identity (G2) ariseZ

ur2v � vr2u d
 =

Z
@

u
@v

@n
� v

@u
@n

dS; (D.4)

which is valid under same circumstances as G1. See [Stra92].

D.2 About Inversion of Matrices

Lemma D.1 The inverse of a symmetric matrix will again be symmetric.

Proof: The definition of the inverse of a matrix A is a matrix A�1 that
obeys

AA�1 = A�1A = I: (D.5)

Transposing gives�
AA�1

�T
=

�
A�1A

�T
= I; (D.6)�

A�1
�T
AT = AT

�
A�1

�T
= I; (D.7)

which define the inverse of AT , so�
AT

��1
=

�
A�1

�T
: (D.8)

Therefore, ifA is symmetric,A = AT , then A�1 = (AT)�1 = (A�1)T ,
and so the inverse is symmetric. �

Lemma D.2 Permuting the rows of matrix A using a permutation matrix

P corresponds to permuting the columns of A�1 with PT .

Proof: Reordering the rows is done by multiplying P from the left.

B = PA: (D.9)

D.2 About Inversion of Matrices 141

Use the definition of the inverse ofA, and insert the identity I = P�1P

in the middle.�
A�1P�1

�
(PA) = I; (D.10)�

A�1PT
�
(PA) = I: (D.11)

So the inverse of B is the inverse of A multiplied from the right with

PT , which is a reordering of the columns:

B�1 = A�1PT : (D.12)

�

Consider a matrix on the form2
664

A1;1 A1;2 A1;3 A1;4

A2;1 �I

A3;1 �I

A4;1 �I
3

775 : (D.13)

Defining

~A = A1;1 +A1;2A2;1 +A1;3A3;1 +A1;4A4;1 (D.14)

will give the inverse as

2
664

~A�1 ~A�1A1;2

~A�1A1;3

~A�1A1;4

A2;1
~A�1 �I+A2;1
~A�1A1;2 A2;1
~A�1A1;3 A2;1
~A�1A1;4

A3;1
~A�1 A3;1
~A�1A1;2 �I+A3;1
~A�1A1;3 A3;1
~A�1A1;4

A4;1
~A�1 A4;1
~A�1A1;2 A4;1
~A�1A1;3 �I+A4;1
~A�1A1;4

3
775

(D.15)

Proof: By insertion into the definition of the inverse (D.5) �

142 Notes

D.3 About “Opposite” Matrices

Definition D.3 (Opposite matrices) Having a matrix

A = [a1 � � � an] ; (D.16)

then the “opposite” matrix is defined as

B = [b1 � � �bn] ; (D.17)

where b1 is an with elements in opposite order and similar for b2, an�1 and
so on. On matrix form

B = PoAPo; Po =
2

64 1
...

1

3
75 : (D.18)

Element wise if A is of size n� n, the matrices are opposite when

ai;j = bn�i+1;n�j+1: (D.19)

Lemma D.4 If the two matricesA andB are opposite and nonsingular, then
the inverse of A will be opposite to the inverse of B.

Proof: Use Equation (D.18):

B�1 = (PoAPo)
�1 (D.20)

= PT
oA

�1PT
o (D.21)

= PoA
�1Po: (D.22)

�

Because of Lemma D.4, we get in Example C.1, that when A1 and

A2 are opposite, then (A�12)1;1 = (A�11)n;n, which is why it all works
out fine in the example.

D.4 About Zero Columns and Eigenvalues 143

D.4 About Zero Columns and Eigenvalues

Lemma D.5 If the i’th column (row) of a matrix A is a zero column (row),
then the corresponding i’th row (column) does not influence the eigenvalues
of the system.

Proof: Consider a matrix with a zero column2
4 A11 0 A13

aT21 0 aT23

A31 0 A33

3
5 : (D.23)

If � is an eigenvalue, thenAv = �v or (A��I)v = 0, which only have
nonzero solutions whenA��I is singular. Singularity also implies the
determinant jA��Ij = 0. A standard procedure to find all eigenvalues
is to subtract � from the diagonal, set the determinant to zero and solve
for �, ������

A11 � �I 0 A13

aT21 �� aT23

A31 0 A33 � �I
������ = 0: (D.24)

Following the rules of linear algebra then

�
���� A11 � �I A13

A31 A33 � �I
���� = 0; (D.25)

so every row corresponding to a zero column have no effect on any of
the eigenvalues. The proof for a zero row follows same procedure. �

For reference, consult a linear algebra book, e.g. [Eisi93].

144 Notes

A P P E N D I X E

Elliptic PDE

This section will define and describe the different types of linear sec-
ond order PDE’s. It is mainly based on [Stra92]. We will use the nota-
tion ux = @xu = @u=@x.

Consider a second order PDE of the form
auxx + buxy + cuyy + dux + euy + fu+ g = 0; (E.1)

Consider now an equation substituting x for ux and x2 for uxx, omit-
ting lover order terms:

ax2 + bxy + cy2 + � � � = 0: (E.2)

Depending on a, b, and c, assuming they are not all zero, this will
describe either an ellipse, a parabola or a hyperbola. In each of the
three cases Equation (E.2) can be reduced by a coordinate transform
to x2 + y2 + � � � = 0, x2 + � � � = 0, or x2 � y2 + � � � = 0 respectively.
The same can be applied to a second order PDE, transforming the PDE
into one of the canonical forms:

� b2 � 4ac < 0 : Elliptic, and (E.1) can be transformed to

uxx + uyy + � � � = 0; (E.3)

146 Elliptic PDE

� b2 � 4ac = 0 : Parabolic, and (E.1) can be transformed to

uxx + � � � = 0; (E.4)

� b2 � 4ac > 0 : Hyperbolic, and (E.1) can be transformed to

uxx � uyy + � � � = 0; (E.5)

This is the definition in 2D.

Let us consider the second order PDE (E.1) in a linear algebra context.
The PDE using matrix notation can be written as

�
@x @y

� � a 1
2b

1
2b c

� �
@x

@y
�

u = r(u); (E.6)

where r(u) contain all remaining lower order terms. To Transform the
second order PDE into one of its canonical forms corresponds to make
an eigenvalue decomposition of the coefficient matrix.

In general, a second order PDE in any dimension n can be written
as

�
@x1 � � � @xn

� 264 a11 � � � a1n

...
. . .

...

an1 � � � ann
3

75
2

64 @x1

...

@xn
3

75u = r(u): (E.7)

Call the matrix A, the following defines the type of the PDE:

� The PDE is elliptic, if all eigenvalues of A have the same sign.
Then A is positive (or negative) definite.

� The PDE is parabolic if one eigenvalue is zero, and the rest have
the same sign.

� The PDE is hyperbolic if one eigenvalue have opposite sign of
all the others, but none are zero. If there are at least two positive
and two negative, the PDE is sometimes called ultra-hyperbolic.

If the coefficient matrix A depends on the position x, then a PDE
may be elliptic in some regions, parabolic in others, and hyperbolic
somewhere else.

Elliptic PDE 147

The different types of PDEs have quite different behavior, which can
be described by their characteristic lines. The characteristic lines are
said to limit the domain of influence: If the characteristic lines are
drawn through a point (x0; y0), then the solution in that point can only
influence the solution at other points within the characteristic lines,
the gray region in Figure E.1. Often, the y-axis is the time axis. Note

c2

(x ,y)0

c

0 x

1

y

Figure E.1: Domain of influence

that the lines may be curves in some cases. The characteristic lines set
the speed of propagation of the system.

Returning to the two dimensional case, then the characteristic lines
are defined as

@y
@x

=
b�pb2 � 4ac

2a

: (E.8)

� If now the PDE is hyperbolic, b2�4ac > 0, then two characteristic
lines exist, which is exactly the case in Figure E.1.

� If however the PDE is parabolic, b2 � 4ac = 0, then there is only
on characteristic line. For simplicity, assume that also b = 0 (oth-
erwise transform first to one of the canonical forms), then the
characteristic line is horizontal. The domain of influence have
become the entire half plane above the line, the speed of propa-

148 Elliptic PDE

gation has become infinite. Any forcing at (x0; y0) will influence
the solution in any point (x; y) for y > y0.

� If finally the PDE is elliptic, b2 � 4ac < 0, there are no real char-
acteristic lines. Still the speed of propagation is infinite, but now
the domain of influence is the entire domain.

E.1 Examples of the Different PDE Types

Hyperbolic. The wave equation is hyperbolic. If we fire a canon,
the sound will expand in spheres with a finite speed and reach the
listener nearby almost immediately, while a listener (not too) far away
will only hear the sound seconds later. The speed of propagation is
limited by the speed of sound.

Parabolic. An example is the diffusion equation, which describes
how e.g. heat is transported within some media.

If at a specific time t0 at one point, a rod is heated at the middle,
that will have an immediate effect on the temperature at the entire rod.
The effect is only from t0 and forward, not for time before t0.

Elliptic. This is for example the Laplace or Poisson equation. It often
is used to describe a steady state, for example the steady state form of
an elastic surface fixed at the boundary, e.g. a soap film.

If at one point some extra weight is added to the surface, or some
points at the fixed boundary is moved down, this will force down the
surface at all points.

System including time as one of the dimensions are never elliptic,
since we cannot change the past. Such systems can at most be parabolic.

A P P E N D I X F

Implementation

This appendix will list two Matlab functions, the two basic steps of the
BDD method: The matrix vector product (6.12), and the BDD precon-
ditioner in equations (6.21).

Also a list of Matlab files, that have been used throughout the
project is given, with a short description of the use. This is mostly
for my own reference.

F.1 Matrix vector product, Su

function Su=Sufun(u_B,A_II,A_IB,A_BI,A_BB,A_i,Rt,D,A0,Rt0,n_block,Rs)

Su = zeros(size(u_B));
for i=1:n_block

Su = Su + Rt{i}*(A_BB{i}*(Rt{i}’*u_B));
Su = Su - Rt{i}*(A_BI{i} * (A_II{i} \ (A_IB{i}*(Rt{i}’*u_B))));

end

150 Implementation

F.2 BDD preconditioner

function u_B=MSufun(g,A_II,A_IB,A_BI,A_BB,A_i,Rt,D,A0,Q,n_block,Rs)

u_B = zeros(size(g));
gamma_u_B = [];

s = g;
if size(A0,1)

u01 = A0 \ (Q’*s);
gamma_u_B = full(Q * (u01));
s = g - Sufun(gamma_u_B,A_II,A_IB,A_BI,A_BB,A_i,Rt,D,A0,Q,n_block);

end
s = D*s;
for i = 1:n_block

rhs_i = (Rs{i}*([zeros(size(A_II{i},2),1) ; Rt{i}’*s]));
u_i = A_i{i} \ rhs_i;
u_B = u_B + Rt{i}*u_i(size(A_II{i},2)+1 : end);

end
u_B = D*u_B;

if size(A0,1)
r = g - Sufun(u_B,A_II,A_IB,A_BI,A_BB,A_i,Rt,D,A0,Q,n_block);
u02 = A0 \ (Q’*r);
u_B = u_B + Q * (u02);

end

F.3 Matlab files

This section give an overview over the files that have been made. They
are ordered by importance to the project.

dumpread.m Script to read in files from NS3. This script decide which
data to read in, and returns a right hand side and the system ma-
trix. Uses function and scripts in the readdumpdir directory.

dn.m Script that implements the DN method, as well the approxima-
tive as the exact.

bdd.m Script that implements the BDD method.
MSufun.m Function that implement the BDD preconditioner. This

function is given as argument to GMRES.
Sufun.m Function that implement the matrix-vector productSu. This

function is given as argument to GMRES.
balancing.m Function to balance a vector using a coarse grid operator

F.3 Matlab files 151

A0 and a restriction operator Q.
blk ize.m Function to add extra variables representing shadow layer

and create a block diagonal matrix for the DN method, as in
Equation (5.26). Used by dn.m .

blk ize r.m Function to add extra variables representing shadow layer
and create a block diagonal matrix for the DN method, as in
Equation (5.27).

blk ize schur av.m Function to add extra variables representing shadow
layer and create Schur complement matrices, as presented in the
section on Schur complement methods. Used by bdd.m

P cr.m Function to permute from one 2D checkerboard decomposi-
tion to another. Used to produce different checkerboard sizes
for the tests in Section 7.3.2.

checkerboard.m Function to create a 2D checkerboard permutation
matrix: The matrix permute from a natural ordering to a n �m

block setup. Used by P cr.m .
plotgrid.m Script to plot the grid which is read from NS3. Plot is only

2D, projecting the last dimension.
blk unroll.m Function to create a solution matrix from a solution vec-

tor. The solution matrix can be used in plot commands in Mat-
lab, like mesh. Works only for quadrangular domains in 2D.

comm celim.m Function to perform a special kind of Gaussian elim-
ination of the

�
C �D �T part of Equation (5.21) to produce a

kind of identity matrix on the C part.
comm cbelim.m Function alike the comm celim.m apart from it does

only work on the neighbour shadow variables, not its own.
comm rbelim.m Function to perform a special kind of Gaussian elim-

ination of the

�
R �D �T part of Equation (5.21) to produce a

identity matrix on the D part.
alt schwarz.m Script that have produced results in Example 4.2. Shows

importance of overlap for alternating Schwarz methods. Both
additive/multiplicative, and Krylov subspace method GMRES(10)
is tested.

DN eigvals.m Script that compute the eigenvalues of iteration matri-
ces for each step of the DN method. The script have produced

152 Implementation

Figure 5.5.
conv overlap 2blk.m Script to show how fast a 2 block domain de-

composition solver communicating only Dirichlet data converges
depending on the overlap of the domains. Results from this are
not presented, since they are out-competed by the alt schwarz.m.

schur eigvec proj.m Script to produce results for Example 6.1
Finally there are the directory readdumpdir , which contains files that
read NS3 datafiles into Matlab arrays. Function and scripts in this
directory are used by dumpread.m , and provided by Stefan Mayer.

The Gaussian elimination function are not presented anywhere in the
report, since they have not been to much practical use. They are im-
plemented using (optional) pivoting, and (optimal) norming of the di-
agonal element, with some warnings in singular or close to singular
cases.

Bibliography

[Ande95] John D. Anderson, JR., Computational Fluid Dynamics, The
Basics with Applications, McGraw-Hill Book Co, 1995.

[Axel84] O. Axelsson, V.A. Barker, Finite Element Solution of Boun-
dary Value Problems, theory and computation, Academic Press
Inc, 1984

[Bark92] V. A. Barker, H. 62, Iterative Methods for Sparse Systems of
Linear Equations, IMM, Technical University of Denmark, 1992.

[Brak98] E. Brakkee, C. Vuik, P. Wesseling, Domain Decomposition
for the Incompressible Navier-Stokes Equations: Solving subdo-
main problems accurately and inaccurately, Int. J. Numer. Meth.
Fluids 26, p 1217-1237, 1998.

[Bren94] Susanne C. Brenner, L. Ridgway Scott, The Mathematical
Theory of Finite Element Methods, Springer, 1994

[Brig87] William L. Briggs, A Multigrid Tutorial, SIAM, 1987.
[Chan94] Tony F. Chan, Tarek P. Mathew, Domain Decomposition Al-

gorithms, Acta Numerica p. 61-143, 1994.
[Chan95] Tony F. Chan, Jian Ping Shao, Parallel Complexity of Do-

main Decomposition Methods and Optimal Coarse Grid Size,
Parallel Computing vol. 21 p. 1033-1049, 1995.

[Doug97] J. Douglas JR, C.-S. Huang, An Accelerated Domain Decom-
position Procedure Based on Robin Transmission Conditions, BIS
37:3, p. 678-686, 1997.

[Dryja93] Maksymilian Dryja, Olof B. Widlund, Schwarz Methods of
Neumann-Neumann Type for Three-Dimensional Elliptic Finite
Element Problems, Technical Report TR1993-626, Computer Sci-

154 Bibliography

ence Department, Courant Institute of Mathematical Sciences,
New York University, 1993.

[Eisi93] Jens Eising, Lineær Algebra, Matematisk Institut, Technical
University of Denmark, 1993

[Erhel95] J. ERHEL, A Parallel GMRES Version for General Sparse
Matrices, Electronic Transactions on Numerical Analysis 3, p.
160-176, 1995.

[Ferzi97] Joel H. Ferziger, Milovan Peric, Computational Methods for
Fluid Dynamics, Springer-Verlag Berlin Heidelberg, 1997.

[Flet01] C. A. J. Fletcher, Computational Techniques for Fluid Dynam-
ics 2, Springer, 1991.

[Gods01] Bjørn Godske, Test kan revolutionere vindmølleindustrien,
Ingeniøren, friday July 6th 2001.

[Hadj00] A. Hadjidimos, D. Noutsos, M. Tzoumas, Nonoverlapping
Domain Decomposition: A linear algebra viewpoint, Mathemat-
ics and Computers in Simulation 51, p. 597-625, 2000.

[Hanke00] Michael Hanke, Lecture Notes: Advanced Numerical Me-
thods, Royal Institute of Technology, Stockholm, Department of
Numerical Analysis and Computer Science, February 28, 2000.

[Hans98] Per Christian Hansen, Rank-Deficient and Discrete Ill-Posed
Problems. Numerical Aspects of Linear Inversion., SIAM, 1998.

[Haase96] G. Haase, An Incomplete Factorization Preconditioner
Based on a Non-Overlapping Domain Decomposition Data Dis-
tribution, Institusbericht Nr. 510, Institut für Mathematic, Jo-
hannes Kepler Universität Linz, 1996.

[Mayer98] Stefan Mayer, Antoine Garapon, Lars Sørensen, A Frac-
tional Step Method for Unsteady Free-Surface Flow with Appli-
cations to Non-Linear Wave Dynamics, Int. Journ. for Num. Me-
thods in Fluids, vol. 28, no. 2, p. 293-315, 1998.

[Mand93a] Jan Mandel, Balancing Domain Decomposition, Comm.
on Applied Numercial Methods 9, p. 233-241, 1993.

[Mand93b] Jan Mandel, Marian Brezina, Balancing Domain Decom-
position: Theory and Performance in Two and Three Dimensions,
Technical Report, Center for Computational Mathematics, Uni-
versity of Colorado at Denver, 1993.

Bibliography 155

[McCor94] Stephen F. McCormick, Multigrid Methods, SIAM, second
printing, 1994.

[Niel96] Hans Bruun Nielsen, Numerisk Lineær Algebra, IMM, Tech-
nical University of Denmark, 1996.

[Pava96] Luca F. Pavarino, Olof B. Widlund, Balancing Neumann-
Neumann Methods for Incompressible Stokes Equations, SIAM
J. Numer. Anal. Vol. 33, No. 4, p. 1303-1335, 1996.

[Rice98a] J. R. Rice, E. A. Vavalis, Daoqi Yang, Analysis of a Non-
Overlapping Domain Decomposition Method For Elliptic Partial
Differential Equations, J. Comput. Appl. Math. 87:11-19, 1998.

[Rice98b] J. R. Rice, P. Tsompanopoulou, E. Vavalis, Fine Tuning In-
terface Relaxation Methods for Elliptic Differential Equations,
preprint submitted to Elsevier Science, 1998.

[Sege00] Roger SegelKen, Bumblebees finally cleared for takeoff:
Insect flight obeys aerodynamic rules, Cornell physicist proves,
http://www.news.cornell.edu/releases/March00/
APS Wang.hrs.html , 2000.
Or Yes, Bumblebees Can Fly, Computer Modeling Proves,
http://unisci.com/stories/20001/0321005.htm , 2000.

[Smith96] Barry Smith, Petter Bjørstad, William Gropp Domain De-
composition - Parallel multilevel methods for elliptic partial dif-
ferential equations, Cambrigde University Press, 1996.

[Stra92] Walter A. Strauss Partial Differential Equations, an introduc-
tion, John Wiley & Sons, Inc, 1992.

[Wang00] Z. Jane Wang, Two Dimensional Mechanism for Insect Hov-
ering, Physical Review Letters, vol. 85, num. 10, 2000.

