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Abstract

This thesis describes, applies and compares statistical methods for recon-
struction of concentrations of Dissolved Inorganic Nitrogen (DIN) and Dis-
solved Inorganic Phosphorus (DIP) in Kattegat. The measurements are
taken in the period from 1993 to 1997 within the monitoring program,
which was implemented by the adoption of the Action Plan on the Aquatic
Environment in 1987.

The aim of the reconstruction methods is to estimate the concentration
of the two species for each week in the five year period, and at any loca-
tion in Kattegat. The methods are general and could be applied to other
parameters.

The spatial distribution of DIN and DIP have been computed by three
different variants of kriging, i.e. ordinary kriging, universal kriging and
cokriging. In order to have a sufficient number of observations per week,
methods for temporal reconstruction of data have to be applied prior to the
computation of spatial predictions. Two methods have been used for this
purpose, these are the General Linear Model and locally weighted regres-
sion. The methods are compared from a statistical and a physical point of
view.

Furthermore, the thesis applies different 3 dimensional approaches. These
are 3 dimensional kriging, locally weighted regression and an ARIMA model.
The first two methods are applied to raw data, i.e. measurements, while
the ARIMA model is applied to different stations, where the time series are
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temporally reconstructed by the General Linear Model. Kriging is applied
to the parameters of the model, in order identify these at any location in
Kattegat. Such 3 dimensional methods are much less developed and de-
scribed in literature compared to methods for analysis of strictly temporal
or spatial data.

Keywords:
Dissolved Inorganic Nitrogen, Dissolved Inorganic Phosphorus,
the General Linear Model, locally weighted regression, (cross)
semivariogram, anisotropy, ordinary kriging, universal kriging,
cokriging, sequential conditional simulation, ARIMA modelling



vii

Abstract (in Danish)

I dette eksamensprojekt beskrives, anvendes og sammenlignes statistiske
metoder til rekonstruktion af koncentrationen af Opløst Uorganisk Kvæl-
stof (DIN) og Opløst Uorganisk Fosfor (DIP) in Kattegat. Målingerne er
udført i perioden fra 1993 til 1997 indenfor rammen af det måleprogram,
der blev implementeret i forbindelse med vedtagelsen af Vandmiljøplanen i
1987.

Formålet med rekonstruktionsmetoderne er at estimere koncentrationen af
de to stoffer for hver uge i den 5-̊arige periode, og for enhver lokalitet i Kat-
tegat. Metoderne er generelle, og kan s̊aledes anvendes til rekonstruktion
af andre parametre.

Den spatielle fordeling af DIN og DIP er blevet beregnet med tre forskel-
lige varianter af kriging, disse er ordinær kriging, universal kriging og cok-
riging. For at have et tilstrækkeligt antal observationer pr. uge anvendes
metoder til tidslig rekonstruktion inden de spatielle prædiktioner kan bereg-
nes. To forskellige metoder er blevet anvendt til dette formål, hvilke er den
Generelle Lineære Model og lokalt vægtet regression. Metoderne sammen-
lignes fra en statistisk og fysisk synsvinkel.

Endvidere er forskellige 3 dimensionelle metoder blevet anvendt i eksamen-
projektet. Disse er 3 dimensionel kriging, lokalt vægtet regression og en
ARIMA model. De to førstnævnte kan anvendes p̊a r̊adata, dvs. målinger,
mens ARIMA modellen anvendes p̊a forskellige stationer, hvor tidsrækken
er tidsligt rekonstrueret med den Generelle Lineære Model. Kriging anven-
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des til beregning af model parametrene for en vilk̊arlig lokalitet i Kattegat.
Disse 3 dimensionelle metoder er langt mindre udviklede, og beskrevet i
litteraturen, sammenlignet med metoder til analyse af strengt tidslige eller
spatielle data.

Nøgleord:
Opløst Uorganisk Kvælstof, Opløst Uorganisk Fosfor, den Generelle
Lineære Model, lokalt vægtet regression, (kryds) semivariogram,
anisotropi, ordinær kriging, universal kriging, cokriging, sekven-
tiel betinget simulation, ARIMA modellering
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Chapter 1

Introduction

1.1 Action Plan on the Aquatic Environment

In connection with water quality and protection of the aquatic environment,
the overall goal of the Danish Government is to work towards ensuring that
the Danish watercourses, lakes and marine waters are clean and of satis-
factory quality as regards health and hygiene.

Since the mid 1980s, a number of plans of action and strategies have been
adopted. The primary goal of these was to reduce the nitrogen pollution
from agricultural sources. The Action Plan on the Aquatic Environment
(APAE) was adopted in 1987, and contained reduction targets for nitrogen
and phosphorus by 50 % and 80 % respectively, before 1993. This corre-
sponds to a reduction of annual discharge of nitrogen from 283,000 tonnes
to 141,600 tonnes, and of phosphorus from 9,120 tonnes to 1,820 tonnes.
Separate goals for reduction of nitrogen and phosphorus were set up for
three different sections, which are

• Agriculture
• Municipal wastewater treatment plants
• Individual industrial discharges

The reduction of nitrogen discharge from areas of agriculture accounted for
approximately 95 % of the total reduction of nitrogen, which is a reduction
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of 127,000 tonnes per year, and was the most critical part of the action
plan. The reduction targets for the agricultural sector were to be attained
through a number of different measures. The agricultural sector had to
establish sufficient capacity to store 9 months of manure production, in or-
der to be sure that it could be stored until the crop growth season started,
and also establish crop rotation and fertilization plans to ensure that the
nitrogen content of the fertilizer was optimally exploited and absorbed.
The fields had to have a green cover during the winter period, which could
take up nitrogen in this period. Furthermore, limits on how much livestock
manure may be applied to the fields were establised, [Danish-EPA, 2000].

It soon became clear that it would not be possible to reach the reduction
targets before 1993, and APAE was therefore further tightened in 1991 in
the Action Plan for Sustainable Agriculture, in which the time frame was
extended to year 2000. In this plan, it was assumed that APAE would
account for a reduction from agriculture of 50,000 tonnes of nitrogen per
year, and measures were set up for the remaining 77,000 tonnes.

In 1998 Parliament adopted the Action Plan on the Aquatic Environment
II (APAE II) as a supplement to APAE. This plan assumed that the Action
Plan for Sustainable Agriculture would account for a reduction from agri-
culture of 40,000 tonnes of nitrogen per year, which means that together
with APAE the total reduction would be 90,000 tonnes of nitrogen from
agriculture. In APAE II measures were set up for a reduction of 37,000
tonnes of nitrogen from agriculture before 2003, which will result in a to-
tal reduction of annual discharge of nitrogen from agriculture of 127,000
tonnes, which was the original goal of APAE in 1987. This means that if
the aim of APAE II is attained, the original goal from 1987 for reduction of
nitrogen discharge from agriculture will be reached with a delay of 10 years.

In connection with the adoption of the Action Plan on the Aquatic En-
vironment in 1987, a monitoring program was established to demonstrate
the effects of the measures contained in the plan. The monitoring program
was revised in 1992 and again in 1997-1998, and resulted in the imple-
mentation of the Danish Aquatic Monitoring and Assessment Program,
commonly referred to as NOVA-2003. NOVA-2003 contains a number of
subprograms, which are:

• Inputs and discharges to soil and water from point sources
• Atmospheric deposition on the sea
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• Agricultural monitoring catchments
• Groundwater
• Lakes
• Marine waters

Before the implementation of NOVA-2003 the marine monitoring program
aimed specifically at demonstrating effects of the Action Plan on the Aquatic
Environment, while NOVA-2003 with its subprograms encompasses the en-
vironmental quality of both surface- and groundwater in a broader sense,
[Danish-EPA, 2000]. The data that will be used in this thesis is measured
within the frame of the Nationwide Monitoring Program under the Action
Plan on the Aquatic Environment, in the period from 1993 to 1997.

1.2 Description of data

Data have been measured at 71 different stations in Kattegat during a five
year period from 1993 to 1997. The locations of the different stations in
Kattegat are shown in figure 1.1. Measurements are carried out by the
four Danish counties Frederiksborg, Western Zealand, Århus and Northern
Jutland, and by the National Environmental Research Institute of Denmark
and some Swedish institutions. A number of parameters, for describing the
environmental state, have been measured and can be separated into three
groups;

• Biomass
• Nutrients
• Physical parameters

To describe the amount and production of algae, phytoplankton biomass,
chlorophyll and primary production have been measured. The nutrient
concentrations that are measured, are the concentrations of Dissolved In-
organic Nitrogen (DIN), Dissolved Inorganic Phosphorus (DIP) and Dis-
solved Silica (DSi). The shortenings DIN, DIP and DSi will be used in this
thesis. Physical parameters are temperature and salinity, and difference in
salinity has, moreover, been calculated as the difference between salinity in
the upper and lower part of the water column.

Data, except for salinity difference and primary production, are given as
the average of measurements from the upper 10 meters of the water column.
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Primary production is measured as the uptake of CO2 by phytoplankton
per m2 per day. The units of phytoplankton biomass and chlorophyll are
µgC/l and µg/l, respectively, while DIN, DIP and DSi are measured in
µmol/l.

The uncertainty of a measurement of one of the variables is a sum of the
uncertainty, caused by microvariability, and the uncertainty for the mea-
surement itself, in the laboratory. Microvaribility is the dominating part
of the uncertainty. It describes the fact that the true value of a variable
at the same location is different within even very small intervals of time,
[Carstensen et al., 1999]. Data are inhomogeneously measured in time and
space, and this fact leads to the aim of this thesis.
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Sweden 

Zealand 

Jutland 

Figure 1.1: Location of stations in Kattegat. The names of the stations are
not shown.
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1.3 The aim of the thesis

The aim of this thesis is to apply statistical methods for temporal and
spatial reconstruction of aquatic environmental data from Katte-
gat, i.e. to estimate the missing observations in both time and space, and
thereby compute estimates for any time and location in Kattegat.

Such methods are important, since data are inhomogeneously measured
in time and space, and in order to obtain improved knowledge of biologi-
cal processes in the marine environment, the application of reconstruction
methods is necessary. Examples of the use of the reconstructed values could
be as an input for more complicated models, e.g. models for analysis of
time series, for calculating budgets for nutrients and biomass, or for cali-
bration of hydrodynamic, deterministic models. Furthermore, the methods
can be used to design monitoring programs, because it is possible to opti-
mize sampling locations in both time and space.

The reconstruction methods that will be described and applied are general,
i.e. they can be applied to any of the measured variables, but the work in
the present thesis will be limited to applying the methods to measurements
of the nutrients DIN and DIP.
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1.4 Nutrients in Kattegat

The statistical methods which are described in the thesis, are applied to
the nutrients Dissolved Inorganic Nitrogen (DIN) and Dissolved Inorganic
Phosphorus (DIP), and a short description of nutrients in Kattegat will
therefore be given, as well as a description of the transportation of water.

Kattegat is dominated by transportation of low-saline water from the Baltic
Sea and water with a high salinity from the North Sea. The difference in
salinity causes a stratification in a depth of 15-20 meters, depending on
the season and weather conditions. The general pattern of flow of water in
Kattegat is that the low-saline water, in the upper part of the water col-
umn is tranported to the north, while the high-saline water at the buttom
is transported to the south. This general pattern is strongly affected by
the wind.

1.4.1 Discharges of nutrients to Kattegat

Dissolved Inorganic Nitrogen

Dissolved Inorganic Nitrogen (DIN) is the fraction of nitrogen which is
implicitly available for biomass growth and includes nitrate NO−

3 , nitrite
NO−

2 and ammonium NH+
4 . Approximately 30 % of the total yearly dis-

charge of nitrogen to Kattegat comes from atmospheric deposition. The
atmospheric deposition is, besides the natural content of nitrogen in the
atmosphere, caused by combustion of fossil fuels at power plants and by
other industries, as well as by motorized traffic. Such combustion produces
different oxidized nitrogen species, referred to as NOx. Another source of
atmospheric deposition is ammonia, NH3, which is caused by evaporation
from fertilized fields. The atmospheric deposition in Kattegat is highest
near the eastern coast of Jutland, [Hansen et al., 2000].

Approximately 70 % of the total yearly discharge of nitrogen originates
from land based sources in Denmark and Sweden. The land based sources
can be separated into point sources, such as wastewater treatment plants
and industry, and non-point sources, e.g. cultivated fields. The main land
based input of nitrogen is from fertilized fields. Nitrogen from fields is
transported to Kattegat via rivers and fjords or by groundwater. The main
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Danish direct input is from Guden̊aen and Limfjorden, which drain large
agricultured areas in Jutland, and transport water to Kattegat. Also Göta
Elven in Sweden transports high amounts of nitrogen to Kattegat.

A part of the water which is transported to Kattegat from the North Sea,
comes from the so-called Jutland Current. This current transports water
with high concentrations of nutrients, coming mainly from the central Eu-
ropean rivers like the Rhine and the Elbe, from the German Bight towards
the north along the western coast of Jutland. Depending on weather condi-
tions, this current transports water into Kattegat, and results in increased
concentrations of nutrients in the northern part.

Dissolved Inorganic Phosphorus

Phosphate (PO3−
4 ) is the dissolved fraction of the phosphorus, which is

available for biomass growth. Phosphorus is not transported around in
the air in the same degree as nitrogen. A few years ago phosphorus was
discharged into Kattegat mainly from point sources like wastewater treat-
ment plants and industry. The building of many new wastewater treatment
plants in the 1980s has caused the fraction of phosphorus coming from point
sources to decrease, as well as the total discharge of phosphorus. Today
agriculture discharges almost the same amount of phophorus to Kattegat
as point sources. The agricultural part of the discharge is transported to
Kattegat via rivers and fjords or in the groundwater, as is the case for
nitrogen. [Danish-EPA, 2000]

1.4.2 Dynamics of nutrients

The growth of biomass in Kattegat is throughout most of the year limited
by DIN. In the spring, enhanced light conditions and increased temperature
cause growth of biomass (phytoplankton), and nutrients are depleted in the
photic surface layer. This phenomenon is often referred to as the spring
bloom. During the summer the concentration of nutrients remains low, due
to high rates of primary production. At the same time, the phytoplankton
biomass sediments out of the photic zone and sinks to the seafloor. With
the first autumn storms the water column becomes mixed, and nutrient-rich
water below the photic zone is mixed into the surface layer. This causes
the concentration of nutrients to increase in the upper part of the water
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column. In shallow water areas of Kattegat there is a flux of nutrients to
the photic zone released from the sediments. [Carstensen et al., 1999]

1.5 Former work

This section summarizes the results of the former work, that has been car-
ried out by the present author, within the area of applying statistical meth-
ods for reconstruction of data. It will be shown how the General Linear
Model (GLM) and locally weighted regression (LOESS) works, when used
for temporal reconstruction of DIN and DIP. Moreover a short summary
of the former results of spatial reconstruction will be given. It has been
found that the nutrients DIN and DIP are log-normal distributed and a
log-transformation of the measured concentrations has therefore been per-
formed prior to the statistical analysis. The theory of GLM and LOESS
is described in section 2.2 and 2.3, respectively, while the theory of spatial
reconstruction is given in chapter 3.

1.5.1 The General Linear Model

Different variants of the General Linear Model (GLM) has been applied
to DIN and DIP. These variants will be referred to as model 1, 2 and 3.
Model 1 is a two-sided analysis of variance. Exemplified for DIN it can be
written as

log(DINij) = stationi + weekj + εij (1.1)

In order to try to obtain a better fit, especially for stations located in the
open sea, model 1 was slightly modified by introducing a new qualitative
factor, called sum open. This factor has two levels, i.e. zero and one. If a
station is located in the open sea and sampling has been carried out in the
summertime, then sum open is one. In all other cases sum open is zero.
Open sea is here defined as stations located where the water depth is ≥ 30
meters. Summertime is defined as the months June, July and August. The
model is referred to as model 2, and can be written as

log(DINijk) = stationi + weekj + sum openk + εijk (1.2)

Model 2 is actually a three-sided analysis of variance. A third model has
been used which is actually the same as model 1, but applied to two different
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sets of data, where the first contains open sea stations, and the second
coastal stations. This is referred to as model 3, and can be written

log(DINij) = stationi + weekj + εij (1.3)
for depth ≥ 30 meter

log(DINij) = stationi + weekj + εij

for depth < 30 meters

The useful thing about the GLM is that it uses the information from sur-
rounding stations in the estimation. However the GLM is only able to
compute estimations for stations and weeks where measurements have been
carried out.

Model 1

The result of the temporal reconstruction when applying model 1 will be
presented for two coastal station, i.e. station 20004 and 4410, and a station
located in the open sea, i.e. station 1001. The model has been applied to
DIN and DIP.

For station 20004, shown in the upper part of figure 1.2, the estimated time
series seems to fit the observations quite well, even though it overestimates
the concentration in wintertime for the years 1993, 1995 and 1996.

On the other hand the model underestimates the concentrations for station
1001, which is shown in the lower part of figure 1.2. The reason is that
most of the observations, that are used in the estimation, are from coastal
stations, and the estimation of DIN therefore resembles the dynamics of
the coastal stations.

For station 4410, shown in figure 1.3, the overestimation of the model is
very large. This station is located in the county of Northern Jutland, which
has a high detection limit for DIN, and this fact is probably the reason for
the overestimation. The problem of the detection limits will be discussed
further in section 2.2.1.

The temporal reconstruction by applying model 1 has been done for DIP
for the stations 20004, 4410 and 1001, and is shown in figure 1.4 and 1.5.
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Figure 1.2: Observed DIN concentrations and the reconstructed time series
for stations 20004 and 1001 when applying model 1.
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Figure 1.3: Observed DIN concentrations and the reconstructed time series
for station 4410 when applying model 1.

By comparing the upper and lower part of figure 1.4, the temporal recon-
struction of DIP for station 1001, which is an open sea station, seems to
be the most accurate. This is the opposite of what was the case for DIN,
and the opposite of what would be expected. One reason could be, that
the sampling frequency of DIP at station 1001 is very high, which results
in a better reconstruction. Furthermore, the recirculation of DIP is greater
than for DIN, and therefore the difference in concentrations between open
sea and coastal stations is not as big, as is the case for DIN. The model
underestimates the DIP concentrations for station 20004. The modelling of
DIP at station 4410 works much better than was the case for DIN, because
the detection limit for DIP in the county of Northern Jutland is lower and
more reasonable.
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Figure 1.4: Observed DIP concentrations and the reconstructed time series
for stations 20004 and 1001 when applying model 1.
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Figure 1.5: Observed DIP concentrations and the reconstructed time series
for station 4410 when applying model 1.

Model 2 and 3

The results when applying models 2 and 3 are not shown here, but a few
comments will be given. Models 2 and 3 were applied to take into account
the difference in concentrations between coastal and open sea stations. The
difference between the results obtained from model 1 and 2 is inconsider-
able, and the introduction of an additional parameter in model 2 cannot
be justified.

Model 3 fits better than model 1 and 2, but it does not reconstruct the
same amount of data, i.e. it does not fill out as many gaps in the time
series, as the two other models. The reason is that the estimation is based
on fewer observations, and the model is not able to calculate an estimate
for weeks where no observations have been done. This is a disadvantage
because the aim of applying the GLM method is to fill out gaps in the time
series.
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Comparison of the models

The three models have been evaluated using cross validation. In this
method a single year from one station is left out of the model estima-
tion each time. Five stations are considered, these are stations 4410, 413,
190004, 1001 and 20004. Afterwards the estimated values are assigned
to data, which were left out of the estimation. Exemplified by DIN the
goodness of the model is calculated as

Goodness Of Model =
5∑

i=1

5∑
j=1

(
1

m− 1

m∑
k=1

( ̂log(DINijk) − log(DINijk))2
)

(1.4)
In (1.4) i is the index of station, j is the index of year and k is the index
of the m residuals for a given combination of year and station. The result
of the cross validation is shown in table 1.1, and shows that model 3 is the
best for describing the dynamics of DIN, while model 1 is the best for DIP.
The result of the cross validation together with the amount of temporal

Variable Model Goodness of model
DIN 1 39.2660
DIN 2 38.2706
DIN 3 37.3285
DIP 1 24.4280
DIP 2 24.4465
DIP 3 25.3985

Table 1.1: Results of cross validation of model 1, 2 and 3 for DIN and DIP.

reconstruction, which were computed by the different models, lead to the
recommendation of model 1 for temporal reconstruction.

1.5.2 Locally weighted regression

Locally weighted regression (LOESS) only uses information from the sta-
tion under consideration, and it can therefore only be used for the stations
with the highest sampling frequencies. The number of data points to use
in the local regression is given as a fraction of the total number of observa-
tions, and is determined by Akaike’s information criterion, see section 2.3.
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This fraction is referred to as the bandwidth. A second order polynomia is
used for the local fitting, and the parameters of the polynomia are found
by weighted least squares, where the weight is high for data points close to
the point where we want to compute an estimation.

Akaike’s information criterion for DIN as a function of the size of the local
area is shown in figure 1.6 for station 20004 and 1001, and the following
values of the bandwidth are used:

Station 20004: 0.18
Station 1001: 0.18

This means that 18% of the total number of data points are used in the local
estimation for both stations. The result of the temporal reconstruction of
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Figure 1.6: Akaike’s information criterion for DIN, used for determination
of the size of the local area. Left: Station 20004. Right: Station 1001.

DIN is shown in figure 1.7. This estimation is a smoother curve, than what
was found when using the GLM, and it does not estimate the extreme peaks
which seem to be caused by overfitting of the GLM.
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Figure 1.7: Result of temporal reconstruction of DIN using LOESS. Upper:
Station 20004. Lower: Station 1001.
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1.5.3 Spatial reconstruction

The spatial reconstruction was based on the estimations from the GLM,
and was computed by ordinary kriging and cokriging assuming isotropy.
The methods gave very similar results. The highest concentrations were
calculated in the coastal areas, especially along the eastern coast of Jutland
and in the north-eastern part of Kattegat.
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1.6 Content of thesis and reading guide

It is the intention of the present author to write a thesis which can be
read by people with interest in marine ecology and environment and by
statisticians, although the main part of the work is within statistics. The
thesis consists of seven chapters, which are:

Chapter 1: Introduction
Chapter 2: Temporal data analysis
Chapter 3: Spatial data analysis
Chapter 4: Spatiotemporal data analysis
Chapter 5, 6 and 7: Discussion, conclusion and future work

• The introduction has been given in the present chapter, and is about
the Action Plan on the Aquatic Environment, the former work that
has been carried out and a description of data that will be used for
the analysis. This chapter is not very theoretical and does not assume
any particular skills within statistics.

• Chapter 2 and 3 describe how gaps in time series at the different
stations in Kattegat are filled out by estimated values, and how to
predict the size of a physical magnitude at any location in space, from
a number of point observations. Each of the two parts are split up
into a number of sections, each one describing a method for either
temporal or spatial reconstruction of data. The theory of the meth-
ods is described in each section, and the result of the application
of the theory is shown in the same section. This is done to avoid
having one big part describing the theory, and afterwards another
part showing the results. The theory of many of the methods implies
some statistical knowledge, although the aim has been to write these
sections in an understandable way. The results of each chapter are
summarized at the end.

• What is done in chapter 2 and 3, is to estimate the size of a physical
magnitude at any time and location in two steps, i.e. first a temporal
reconstruction is computed, and afterwards the results from this are
used in the spatial reconstruction. Chapter 4 describes how these two
steps can be directly combined. Some of the methods are basically
the same as those that are used in chapter 2 and 3, and the theory is
therefore not repeated.
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• The last chapters discuss the performance of the methods, and from
this discussion, make the final conclusions of the work, which has
been done. At the end suggestions for future work are given.
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Chapter 2

Temporal data analysis

2.1 Introduction to temporal data analysis

Temporal data analysis includes methods for estimating the size of a phys-
ical magnitude Z at any time t, i.e. reconstruction of time series by filling
out gaps with estimated values. The temporal resolution that will be used
is one week. It is not possible to use a higher resolution because the sam-
pling frequency is not high enough. The dynamics of nutrients and biomass
is fast, and consequently a lower resolution, of e.g. one month, is too low
to describe the dynamics in a reasonable way.

Two different approaches will be used for reconstruction; these are the
General Linear Model (GLM) and locally weighted regression (LOESS).
Temporal reconstruction using GLM can only be done, at locations and for
weeks, where measurements have been carried out, while LOESS is able to
compute weekly estimations for stations with a high sampling frequency.
GLM uses information from the surrounding stations, while LOESS only
uses data from the station under consideration.
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2.2 The General Linear Model

This section describes how temporal reconstruction is calculated using the
General Linear Model (GLM). The results will not be presented and ex-
plained here, because the most important part of these has already been
given in section 1.5.1. Instead it will be shown how different substitutions,
of values below the detection limit, affect the result of the estimation, and
the effect of the choice of time interval will also be examined. Temporally
reconstructed values are used as the basis for the spatial interpolation.

The dependent variable in the linear model can be affected by qualitative
or quantitative factors, where qualitative factors refer to non-numerical val-
ues or levels, and quantitative factors refer to numerical values. The linear
model that will be used, is the following.

Zij = stationi · weekj · εij (2.1)

The temporal reconstruction will be done for variables Z, which are as-
sumed to be log-normal distributed and the multiplicative model (2.1) be-
comes additive as shown in (2.2).

log(Zij) = stationi + weekj + εij (2.2)

i is the index of station, and goes from 1 to the number of stations in the
model, and j is the index of week, and goes from 1 to the number of weeks
in the model. The fitted value of Z can only be calculated for weeks and
stations where measurements of Z have been carried out. The model does
not contain any cross effects since the highest sampling frequency is one
week.

Both week and station are qualitative factors, and the model is actually
a 2-sided analysis of variance. The model can be described with a matrix
notation in a general form.

Y = X · β + ε (2.3)

The vector Y contains the log-transformed n observations of Z. ε has mean
0 and a variance σ2Σ, and it contains n elements. X is the designmatrix
with dimension n × k containing indicator variables. Indicator variable
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means a one for a combination of week and station for which a measure-
ment has been done, and a zero at all the other places in the matrix. This
means that the designmatrix has two ones in each row. β is a vector con-
taining the k parameters of the model. β is estimated as

β̂ = (XT Σ−1X)−1XT Σ−1Y (2.4)

with a dispersion matrix

D(β̂) = σ2(XTΣ−1X)−1 (2.5)

The dispersion matrix in (2.5) has the dimension k × k. The fitted log-
transformed data are calculated as

Ŷf = Xf · β̂ (2.6)

Xf has the dimension m× k, where m is the number of possible combina-

tions of the two factors week and station. Ŷf contains m elements and has
the dispersion matrix

D(Ŷf ) = XfD(β̂)Xf
T (2.7)

with a dimension of m×m. The fitted values of Z can now be calculated
as

Ẑf = exp (Ŷf + diag(D(Ŷf ))/2) (2.8)

The calculation operations in (2.8) are done for each element in the vectors,
[Edwards, 1985], [Edwards, 1984] and [Carstensen et al., 2000].

2.2.1 Results

When GLM is used for temporal reconstruction, the size of the detection
limit is an important factor for the stations, where this magnitude is high.
Statistically the detection limit defines the limit below which measurements
are assumed to be zero, i.e. it defines the lowest concentration which can
be measured. Detection limits depend on the measured variable and the
laboratory that performs the analysis. In the four Danish counties Århus,
Northern Jutland, Western Zealand and Frederiksborg, concentrations be-
low the detection limit are given the value of the detection limit. The
detection limits are not known, but have been found as cut-off values, by
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County DIN DIP
Århus 0.71 0.065

Northern Jutland 1.43 0.065
Western Zealand 0.32 0.048

Frederiksborg 0.93 0.16

Table 2.1: Detection limits for DIN and DIP in four danish counties, found
as cut-off values.

investigating plots of the variables against time. The values for the four
Danish counties are shown in table 2.1 for DIN and DIP. Table 2.1 shows
that the detection limit for DIN in Northern Jutland county is high. This
means that the lowest possible concentration of DIN is 1.43 µmol/l in this
county. The general level of concentrations at stations in Northern Jutland
county is therefore high, and results in an overestimation when using GLM.
Furthermore, the measured summer concentrations of DIN at the stations
in Northern Jutland are much higher than corresponding concentrations at
other stations. This might be due to problems with the measurements or
the sampling, e.g. contamination of the samples, which results in a lot of
measurements in the interval from 1.43 µmol/l to 3.0 µmol/l.

It is shown in section 1.5.1, that the temporal reconstruction of DIN using
GLM works quite well for stations 190004 and 1001. Here measurements
below the detection limit are substituted by random numbers between zero
and the detection limit, from a uniform distribution. The result of the
corresponding computation for station 4410 in Northern Jutland county is
shown at the upper plot in figure 2.1. This shows that the GLM is overes-
timating the concentration of DIN, due to the problems listed above. The
lower plot shows the reconstruction of DIP for the same station. In this
case the GLM performs much better.

One could try to improve the result, by substituting the measurements
below the detection limit in another way, and also cope with the many
high measurements of summer concentrations, by substituting these as well.
Two examples are shown in figure 2.2. Note that the y-axes in the figure
are scaled differently, and also different from figure 2.1. The upper part
shows the result after substituting all measurements below 2 µmol/l, by
random numbers between 0 and 0.1 from a uniform distribution, while the
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Figure 2.1: Temporal reconstruction at station 4410 using GLM. Upper:
DIN. Lower: DIP.
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Figure 2.2: Temporal reconstruction at station 4410 using GLM. Upper:
The results in the case where measurements below 2 µmol/l are substituted
by random numbers between 0 and 0.1 from a uniform distribution. Lower:
The result in the case where measurements below 3 µmol/l are substituted
by random numbers between 0 and 0.1 from a uniform distribution.
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lower part shows a similar substitution of all measurements below 3 µmol/l.
Thus it is assumed that the concentration of DIN is almost 0 in summer-
time. It is seen that allowing the concentration of DIN to reach 0 in the
summer significantly improves the estimation.

The low concentrations of DIN could also be computed by modelling,
i.e. by an observed relationship between DIN and a number of indepen-
dent variables. Significant relationships have been found between the log-
transformed concentrations of DIN and temperature for the four stations
of Northern Jutland, where measurements of DIN have been taken. These
are 3302, 3310, 4402 and 4410. An example of the modelling is shown in
figure 2.3, which is based on measurements from stations 4402 and 4410,
because the regression line can be assumed to be the same for these two
stations. The regression line on the figure is given by

Figure 2.3: The relationship between log-transformed DIN and temperature
for the stations 4402 and 4410.

log(DIN) = 2.14 − 0.079 · Temp (2.9)

The main problem is that both log(DIN) and temperature are measured
with uncertainty. If instead temperature is modelled as a function of



28 Chapter 2. Temporal data analysis

log(DIN), the regression line is given by

Temp = 14.25 − 4.11 · log(DIN) ⇐⇒
log(DIN) = 3.47 − 0.2435 · Temp (2.10)

As shown in (2.10), the equation can be recalculated to describe log(DIN)
as a function of temperature, and the two equations for computing log(DIN)
are not the same. If either (2.9) or (2.10) is used to compute low values
of log(DIN), it results in a bad temporal reconstruction for the four stations.

Instead it is assumed that the concentration of DIN is almost 0 in summer-
time, and all measurements below 2 µmol/l are therefore substituted by
random numbers between 0 and 0.1 from a uniform distribution. In order
not to substitute measurements which are actually correct, values in the
interval between 2 µmol/l and 3 µmol/l are not substituted. Some of these
are from spring and autumn, and they are therefore more realistic.

To obtain a high amount of information, a weekly temporal resolution
will be used. This resolution is high compared to the sampling frequency.
Consequently the individual estimations are based on a small number of
observations, and extreme measurements therefore result in extreme esti-
mations, i.e. GLM is overfitting. Instead a lower temporal resolution could
be used, which results in a smoother curve of the reconstructed values, as
shown in figure 2.4 and 2.5 for the time intervals one, two and four weeks.

The model corresponding to each of the three different time intervals has
been evaluated using cross validation, in the same way as described in
section 1.5.1, i.e. measurements from a single year and station are left out
of the estimation each time. Five stations are considered, these are station
4410, 413, 190004, 1001 and 20004. Afterwards the estimated values are
assigned to data, which were left out of the estimation, and the goodness
of the model is calculated as

Goodness Of Model =
5∑

i=1

5∑
j=1

(
1

m− 1

m∑
k=1

( ̂log(DINijk) − log(DINijk))2
)

(2.11)
In (2.11) i is the index of station, j is the index of year and k is the
index of the m residuals for a given combination of year and station. The
result of the cross validation is shown in table 2.2. The GLM performs
slightly better when time intervals of two and four weeks are used. The
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Figure 2.4: Temporal reconstruction of DIN at station 20004 using GLM
with different time intervals. Upper: The results for a time interval of one
week. Lower: The result for a time interval of two weeks.
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Figure 2.5: Temporal reconstruction of DIN at station 20004 using GLM
with a time interval of four weeks.

Time interval Goodness Of Model
1 week 39.266
2 weeks 36.672
4 weeks 37.400

Table 2.2: Cross validation of the General Linear Model for three different
intervals of time.
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disadvantage is that estimated values are not computed each week, and the
weekly temporal resolution will therefore be kept.

2.3 Locally weighted regression

This section describes how temporal reconstruction is calculated using lo-
cally weighted regression (LOESS). The results will not be presented and
explained here, because the most important part of these is shown in sec-
tion 1.5.2. LOESS will in this thesis be applied to 1 and 3 dimensional data.
The theory described in this section is general, and will not be repeated
when applying LOESS in 3 dimensions.

LOESS is a nonparametric estimation method, which computes an un-
known regression function. Suppose that the dependent variable is de-
scribed by n observations of yi. The dependent variable is a function of p
independent variables. The n corresponding observations of the indepen-
dent variables are denoted by xi = (xi1, . . . , xip). In the case of temporal
reconstruction, the dependent variable is only a function of one independent
variable, i.e. time. The relationship between observations of the dependent
variable yi and observations of the independent variables xi is

yi = g(xi) + εi (2.12)

where g is the regression function and εi are independent normal distributed
variables with a mean 0 and a variance σ2

ε .

The idea of LOESS is that data within a neighbourhood around a point
x in the p-dimensional space can be approximated by fitting a regression
surface, i.e. a regression function ĝ(x), to data. The estimation of the
dependent variable ŷ in the point x is given by ĝ(x). The approximation
is done by weighted least squares, where points in the neighbourhood are
weighted according to the distance from x. Points close to x are given a
higher weight than those further away. The size of the neighbourhood is
chosen by the value of a smoothing parameter f = q/n, which is the frac-
tion of the total number of observations n, that are used in LOESS. The
parameter f is usually called the nearest neighbour bandwidth. The above
definition of f means that the q nearest neighbours are used. The locally
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weighted regression requires a weight function, which is often defined as

W (u) =
{

(1 − |u|3)3 |u| < 1
0 |u| > 1 (2.13)

The weight corresponding to the ith observation in the neighbourhood of
a point x is calculated as

wi(x) = W

(‖ x− xi ‖
d(x)

)
(2.14)

where ‖ x − xi ‖ is the Euclidean distance between x and xi. d(x) is the
distance of the q-nearest xi to x. By combining (2.13) and (2.14) it is
seen that the weights wi(x) decrease when xi increase in distance from x,
[Cleveland, 1979], [Cleveland, 1988] and [Nielsen, 1997]. If the independent
variables x are in the 1-dimensional space, and polynomias of second order
are used in the estimation, then the estimated value ŷi can be written as

ŷi = ĝ(xi) = β0 + β1xi + β2x
2
i (2.15)

The values of β are found by minimizing (2.16).∑
i

wi(x)(yi − ŷi)2 (2.16)

When applying LOESS the bandwidth f has to be chosen. This can be
done using Akaike’s information criterion (AIC). Different variants of AIC
have been suggested. In the case of a parametric regression AIC is given
as

AIC = n log σ̂ε
2 + 2(p+ 1) (2.17)

where n is the number of observations, p is the number of parameters and
σ̂ε

2 given as

σ̂ε
2 =

1
n

n∑
i=1

(yi − ŷi)2 (2.18)

The common idea of the different AIC variants, is that the criterion is a
function of the goodness of the fit and the complexity of the model, i.e. the
criterion has the form

log(σ̂ε
2) + ψ(L) (2.19)

where ψ is a so-called penalty function, which decreases by increasing
smoothness of the fit. L is the smoothing matrix, that satisfies

ŷ = Ly (2.20)
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Akaike’s information criterion is a general method for determination of
the number of parameters in a model. It could also be used to calculate
the goodness of model for the GLM approach. When using LOESS it
is very important to incorporate the complexity of the model. If not, one
could continue to improve the estimation by lowering the bandwidth, which
causes an overfitting. The principle is shown in figure 2.6. The smoothing

0
0

σ2

Penalty 
AIC     

Figure 2.6: The principle of Akaike’s information criterion.

parameter is selected as the one that minimizes the criterion, i.e. as the
one corresponding to the minimum of the AIC curve in figure 2.6. For
nonparametric regression methods the trace of the matrix L, i.e. the sum
of the diagonal elements,

∑
lii, can be interpreted as the effective number

of parameters. In this case AIC is

AIC = n log σ̂ε
2 + 2(trace(L) + 1) where

σ̂ε
2 =

1
n

n∑
i=1

(yi − ŷi)2 =
yT (I − L)T (I − L)y

n
(2.21)

The AIC criterion has a tendency to include too many parameters, lead-
ing to an overfitting. This bias can be corrected for by introducing a
new variant of AIC, called AICc1, which is shown in equation (2.22),
[Hurvich and Simonoff, 1998], [Awad, 1996] and [McQuarrie et al., 1997].

AICc1 = n log(σ̂ε
2) + n

δ1/δ2(n+ ν1)
δ21/δ2 − 2

(2.22)

where
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• n = the number of observations.
• δ1 = trace(I − L)T (I − L)
• δ2 = trace((I − L)T (I − L))2

• ν1 = trace(L)

2.3.1 Results

Estimations of the concentrations of DIN and DIP have been computed
using locally weighted regression in one dimension. A second order polyno-
mia is used, and the bandwidth is found by AICc1. The computation can
only be done at the stations with the highest sampling frequencies, i.e. at
24 stations in Kattegat. The stations and optimal bandwidths are shown
in appendix B. Univariate statistics for AICc1 are shown in table 2.3.

Variable Minimum Maximum Mean Variance
log(DIN) 0.12 0.38 0.25 0.0023
log(DIP) 0.12 0.33 0.23 0.0028

Table 2.3: Univariate statistics of AICc1 for the one dimensional LOESS.

2.4 Summary of temporal data analysis

Two methods for temporal reconstruction of DIN and DIP have been ap-
plied. These are the General Linear Model (GLM) and locally weighted
regression (LOESS). The GLM uses the information from surrounding sta-
tions, while LOESS only uses information from the station under consider-
ation. A temporal resolution of one week is used, i.e. weekly estimations
are computed by both methods.

The results of temporal reconstruction using GLM are shown in section
1.5.1, while the importance of substitution of DIN concentrations below
the detection limit has been examined in this chapter. The detection limit
of DIN in the county of Northern Jutland is high, and the GLM therefore
overestimates the concentration of DIN for stations in this county. To al-
low the concentration to reach 0 in the summer, it was chosen to substitute
all values below 2 µmol/l by random numbers between 0 and 0.1 from a
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uniform distribution.

It has also been examined how the estimation of DIN depends on the choice
of time interval, when GLM is used for temporal reconstruction. The es-
timation is improved when time intervals of two and four weeks are used,
compared to a weekly resolution, but weekly estimations are not computed,
and consequently we do not obtain the same amount of information. The
weekly temporal resolution is therefore kept.

Estimations computed by LOESS do not depend a lot on the choice of
time interval or the way that measurements below the detection limit are
substituted. When applied to temporal data, it can only be used at sta-
tions with a high sampling frequency. The bandwidth, i.e. the fraction
of observations to include in the local regression, is optimized by a bias
corrected version of Akaike’s information criterion.

By applying the two methods for temporal reconstruction of data, we have
computed two sets of data which can be used for weekly spatial predic-
tions. These datasets consist of reconstructed data for weeks where no
measurement has been carried out, while the measured value is used for
weeks where sampling has been done. The next chapter describes methods
for computing spatial predictions, which is based on the two sets of data,
as illustrated in figure 2.7. The sets of data generated by GLM contain a
higher number of observations, i.e. reconstructed or measured values, than
the corresponding dataset generated by LOESS. The number of observa-
tions for each week in the two cases are:

GLM: 65
LOESS: 24

The reason for computing spatial predictions based on both sets of data,
is that we want to examine whether or not the spatial distribution of DIN
and DIP can be computed from only 24 observations per week, i.e. from
data temporally reconstructed by LOESS. This would indicate that mea-
surements from stations with a low sampling frequency are unnecessary.
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Figure 2.7: Principle of the computation of predictions. The temporally
reconstructed data are used to compute spatial predictions.
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Chapter 3

Spatial data analysis

3.1 Introduction to spatial data analysis

The section gives an introduction to spatial statistics, which includes meth-
ods for predicting the size of a physical magnitude Z at any location s.
Kriging is such a method, which uses the spatial correlation in data for
prediction of the spatial distribution of a physical magnitude. Predictions
are done on the basis of a number of point observations Z(si) at locations
si. An unknown value of the magnitude at location s0 can be calculated as

Ẑ(s0) =
n∑

i=1

λiZ(si) (3.1)

where λi is the weight for the i’th point observation and n is the number of
point observations. It is often required that

∑
λi = 1, and in this case the

kriging predictor is a weighted mean of the point observations where the
observations which are close to Z(s0) are given a higher weight than those
further away. This is done in a way that minimizes the prediction variance.
Figure 3.1 shows the prediction problem. The computation of the kriging
weights is based on a semivariogram, which describes the spatial variabil-
ity of a physical magnitude. Before the weights λi and kriging predictions
can be calculated, the semivariogram has to be computed and modelled.
The spatial prediction therefore consists of the intermediate steps shown
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Figure 3.1: The prediction problem of kriging.
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Figure 3.2: The different steps for computing kriging predictions.
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in figure 3.2. In spatial statistics observations of a physical magnitude are
considered as realizations of a stochastic process. At each location in a
domain D a regionalized measureable variable z(s) exists, which is a real-
ization of a stochastic variable Z(s). The quantity of stochastic variables
{Z(s)|s ∈ D} makes up a stochastic function Z. The stochastic variable
Z(s) has a mean given by

E[Z(s)] = µ(s) (3.2)

and a function of covariance given by

Cov[Z(s+ h), Z(s)] = C(s, h) (3.3)

where h is a vector characterized by a length, which is called the separation
distance, and a direction between observations. The separation distance is

h =
√

∆x2 + ∆y2 + ∆z2 =
√
h2

x + h2
y + h2

z (3.4)

A stochastic function is first order stationary if the mean of the function is
constant µ(s) = µ in the domain D. In this case the function of covariance
is written as

C(s, h) = E[(Z(s+ h) − µ)(Z(s) − µ)] (3.5)

Second order stationarity is obtained if the mean is constant µ(s) = µ, and
the function of covariance only depends on the distance between observa-
tions, i.e. C(s, h) = C(h). C(0) = σ2

z is the variance of the stochastic
variable Z(s). In many practical applications of kriging, a hypothesis of
second order stationarity of Z, with a finite variance C(0) = σ2

z is not sat-
isfied by data. Instead, the intrinsic hypothesis is assumed to be fulfilled.
The intrinsic hypothesis is less stringent. It assumes that the first order
increments of Z have a finite variance, which means that the increments
themselves are second order stationary. If the function of covariance of Z
is second order stationary, the intrinsic hypothesis will always be fulfilled,
but the opposite is not true. The intrinsic hypothesis leads to the definition
of the semivariogram, [Nielsen, 1994] and [Ersbøll, 1994].

3.2 Spatial variability

Determination of the spatial variability is often based on a semivariogram,
while the spatial variability between two correlated physical magnitudes is



40 Chapter 3. Spatial data analysis

described by the cross semivariogram. This section goes through estimation
and modelling of the semivariogram and cross semivariogram. Furthermore
it is shown how anisotropy is taken into account. Modelling of semivari-
ograms and cross semivariograms is done in the same way, and to denote
this the term (cross) semivariogram is used. The estimation and modelling
of the semivariogram is computed for Dissolved Inorganic Nitrogen (DIN)
and Dissolved Inorganic Phosphorus (DIP).

3.2.1 Estimation of the semivariogram

When the intrinsic hypothesis is assumed the variance of increments of Z
defines a new function called the semivariogram, which is used to describe
the spatial variability of data. The semivariogram is defined as

γ(h) =
1
2
var[Z(s + h) − Z(s)] =

1
2
E[(Z(s+ h) − Z(s))2] (3.6)

The semivariogram only depends on the distance between observations, and
is independent of the location of point observations. This means that the
semivariogram is a constant function in the area under consideration. If
second order stationarity is assumed the relationship between the function
of covariance and the semivariogram is given as

γ(h) = C(0) − C(h) (3.7)

where C(0) = σ2
z is the variance of the stochastic variable Z. To esti-

mate the semivariogram, ergodicity of the increments of Z are assumed.
The ergodic assumption is said to be fulfilled if a second order stationary
process’s second order variation can be estimated consistently, i.e. the es-
timated semivariogram γ̂(h) converges to the true semivariogram, as the
sample size increases. If the process is assumed to be second order sta-
tionary, and Z is normally distributed, then the ergodic assumption can be
examined by plotting the function of covariance. If C(h) → 0 for h → ∞
the process can be assumed to be ergodic. If this is not the case it might
mean, that the estimation is unreliable, no matter how large the sample
size is, [Cressie, 1993]. The estimation of the semivariogram is calculated
in the following way

γ̂(h) =
1

2N(h)

N(h)∑
k=1

[z(sk + h) − z(sk)]2 (3.8)
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where N(h) is the number of pairs of observations separated by the distance
h. With n observations the number of pairs becomes N(h) = n(n−1)

2 .
Equation (3.8) is often referred to as the classical estimator. Another way
of estimating the semivariogram is by using the robust estimate.

γ̂(h) =
1
2

(
1

N(h)

∑N(h)
i=1 |z(s+ h) − z(s)|1/2

)4

(
0.457 + 0.494/N(h)

) (3.9)

This estimate is more resistant to outliers. By estimating and plotting
both kinds of semivariograms, the influence of outliers can be examined,
[Cressie, 1993].

3.2.2 Estimation of the cross semivariogram

The spatial variability between two correlated physical magnitudes is de-
scribed by the cross semivariogram. When the intrinsic hypothesis is as-
sumed, it is defined as

γij(h) = γji(h) =
1
2
E[(Zi(s+ h) − Zi(s))(Zj(s+ h) − Zj(s))] (3.10)

where i and j denote two different variables. Moreover the cross semivari-
ogram is symmetric in h, i.e.

γij(h) = γij(−h) (3.11)

An estimator of the cross semivariogram is

γ̂ij(h) =
1

2N(h)

N(h)∑
k=1

[zi(sk + h) − zi(sk)][zj(sk + h) − zj(sk)] (3.12)

where N(h) is the number of pairs of observations separated by the distance
h. The estimation can also be based on semivariograms, by introducing a
new variable Zi(s) + Zj(s), and estimating the semivariogram γ̂i+j(h) for
this. In this case the estimator becomes

γ̂ij(h) =
1
2
[γ̂i+j(h) − γ̂i(h) − γ̂j(h)] (3.13)

The estimated (cross) semivariogram is often referred to as experimental
or empirical, [Cressie, 1993].
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3.2.3 Modelling the (cross) semivariogram

Modelling of semi- and cross semivariograms is done in the same way. To
denote this the term (cross) semivariogram is used. The estimated (cross)
semivariogram is fitted with a model, and the best model is used in the
kriging estimation. The most widely used models are the spherical, the
exponential and the Gaussian model. Other models for fitting a (cross)
semivariogram exist, but will not be presented here. The spherical model
is given by

γ∗(h) =




0 h = 0
C0 + C1

(
3
2

h
R − 1

2
h3

R3

)
0 < h < R

C0 + C1 h ≥ R

(3.14)

where C0 is called the nugget effect, R is the range and C0 +C1 is the sill.
The nugget effect is caused by measurement errors and microvaribility. The
sill C0 + C1 is defined as σ2 = limh→∞γ(h). The form of the exponential
model is given by

γ∗(h) =

{
0 h = 0
C0 + C1

(
1 − exp(− h

R )
)

0 < h
(3.15)

and the Gaussian model by

γ∗(h) =

{
0 h = 0
C0 + C1

(
1 − exp(− h2

R2 )
)

0 < h
(3.16)

The three (cross) semivariogram models are shown in figure 3.3. The es-
timated (cross) semivariogram can also be modelled as a sum of the basic
models, γ∗i (h), presented above

γ∗(h) =
n∑

i=1

γ∗i (h) (3.17)

In this case each basic model γ∗i (h) is called a nested structure. When
modelling the (cross) semivariogram it is important not to use too many
nested structures, because this would lead to an overfitting of the estimated
semivariogram.
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Figure 3.3: Spherical, Gaussian and exponential (cross) semivariogram
models. The model parameters are: R=2 , C0=0.5 , C1=3.

If only a single structure is used for modelling the estimated (cross) semivar-
iogram, some rules for choosing the best kind of model exist. The estimated
(cross) semivariogram often shows a parabolic behaviour near the origin,
and the Gaussian model will in this case provide the best fit, see figure 3.3.
The Gaussian model without a nugget effect has a tendency to lead to a
singular solution when the kriging system of linear equations is solved. A
nugget effect 6= 0 should therefore always be specified when the Gaussian
model is used. If, on the other hand, the estimated (cross) semivariogram
has linear behaviour near the origin, the exponential or spherical model
should be used, [Isaaks and Srivastava, 1989].

Traditionally fitting of the (cross) semivariogram is done by eye, because it
has been shown that predictions computed by kriging are reasonably insen-
sitive to the specification of the (cross) semivariogram model. However to
get most information out of data, the best model should be used, and the
fitting of the model parameters by eye should, instead, be used as start-
ing values in the optimization algorithm, [Cressie, 1985]. The best (cross)
semivariogram model can be found using the least squares criterion, i.e.
the model parameters are taken as being those, which minimize the sum of
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the squared residuals.

k∑
j=1

[γ̂(hj) − γ∗(hj , θ)]2 (3.18)

In (3.18) γ̂(hj) is the estimated value of the (cross) semivariogram in lag j,
and γ∗(hj , θ) the value of the (cross) semivariogram model in lag j. The un-
known parameters are denoted by θ. Instead of this criterion [Cressie, 1985]
suggests minimizing the weighted sum of squares

k∑
j=1

N(hj)
[ γ̂(hj)
γ∗(hj , θ)

− 1
]2

(3.19)

N(hj) is the number of pairs of data in lag j. The criterion in (3.19) gives
higher weights to (cross) semivariogram values, where the estimation is
based on a higher number of data pairs.

Now that the different (cross) semivariogram models and the parameters
have been introduced, it will be explained how the kriging predictions are
affected by the choice of model and model parameters. We recall from
section 3.1 that the kriging prediction at location s0 in calculated as

Ẑ(s0) =
n∑

i=1

λiZ(si) (3.20)

where λi is the weight for the i’th point observation and n is the number
of point observations. Figure 3.3 shows that the Gaussian model computes
lower values of the semivariance for small separation distances compared
to the exponential. This means that points close together are modelled
as being more correlated when the Gaussian model is used, and points
close to s0 are therefore given higher weights λi, than the weights for the
same points, when the exponential model is used. The prediction therefore
becomes more local when using the Gaussian model compared to the expo-
nential. The spherical model is even more local, because the slope of this
(cross) semivariogram function is steeper for small separation distances, i.e.
it reaches the constant sill for a lower value of h.

Increasing the nugget effect, while the other parameters are kept constant,
causes the kriging weights to be more similar, because smaller weights are
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given to points close to s0. This means that higher weights must be given to
points further away from s0. If the nugget effect is decreased the opposite
argumentation is used. Changing the sill, while the other parameters are
kept constant, does not affect the kriging weights, but the kriging variance
is changed, i.e. increasing the sill increases the kriging variance. Changing
the range, while the other parameters are kept constant, is known to have
only a minor effect on the kriging weights, [Isaaks and Srivastava, 1989]. If
the range is decreased more points will be uncorrelated, and the prediction
becomes more local. When the range is changed the effect on the kriging
variance is more important than the effect on the kriging weights. Increas-
ing the range means that data points are more correlated, and the kriging
variance is therefore decreased. The largest kriging variance occurs when
all data points are uncorrelated.

3.2.4 Handling anisotropy

The observed spatial correlation or variability, described by the (cross)
semivariogram, is not always the same in different directions. This is due
to the underlying physical process, which evolves differently in space. The
phenomenon is referred to as anisotropy and results in different (cross)
semivariograms in different directions. The directional (cross) semivari-
ograms are estimated by only including pairs of data which are located in
a certain direction relative to each other. In case of isotropy, where the
spatial correlation is the same in all directions, the omnidirectional (cross)
semivariogram, based on all data pairs is used for describing the spatial
variability.

In literature there is some disagreement about the terminology used for
describing the different kinds of anisotropy. Traditionally the term geo-
metric anisotropy is used when the range changes with direction, while
the sill is constant. This is the kind of anisotropy mostly observed in na-
ture. [Journel and Huijbregts, 1978] use the term zonal anisotropy for all
kinds of anisotropy that are not geometric, e.g. the sill or both sill and
range change with direction. [Zimmerman, 1993] uses the more descrip-
tive terms range anisotropy, sill anisotropy and nugget anisotropy, while
[Isaaks and Srivastava, 1989] use geometric anisotropy to describe changes
of range with direction and constant sill, and zonal anisotropy when the
sill changes while the range remains constant. In this thesis the last def-
initions of geometric- and zonal anisotropy will be used. However only
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geometric anisotropy will be described in the following part of the section,
because this is the kind of anisotropy which is mostly observed in nature.
An example of geometric anisotropy is shown in figure 3.4. Anisotropy is
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Figure 3.4: (Cross) semivariograms for two different directions, showing
geometric anisotropy.

described by a direction and an anisotropy ratio. The first thing to do
is to identify the directions for the maximum and minimum range. This
can be done by investigating a contour map of the (cross) semivariogram
surface. These directions determine the axes of anisotropy, i.e. the axes
of a new coordinate system. The anisotropy ratio is the maximum range
divided by the minimum. Anisotropy ratios > 2-3 change the kriging pre-
dictions markedly, compared to the situation where the area is considered
as isotropic, [Kaluzny et al., 1998]. We now want to achieve isotropy by
making a rotation and a recalculation of the data coordinate system. The
original data coordinate system is rotated until the axes of the coordinate
system coincide with the axes of anisotropy. In the case of a three dimen-
sional system, two rotations are done, as shown in figure 3.5. The rotation
angles are given by the directions of maximum and minimum range. The
new components of the separation distance, using a matrix formulation,
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Figure 3.5: The rotation of the data coordinate system. The definition of
v1 and v2 is shown.

are given by
 h′x
h′y
h′z


 =


 cos(v1) cos(v2) sin(v1) cos(v2) sin(v2)

− sin(v1) cos(v1) 0
− cos(v1) cos(v2) − sin(v1) sin(v2) cos(v2)





 hx

hy

hz



(3.21)

Equation (3.21) rotates the data coordinate system, given by the original
axes x, y and z, into new axes x′′, y′ and z′, which define the anisotropic
coordinate system.

The recalculation is done by dividing the components, hx, hy and hz, of
the original separation distance h by the directional ranges, ax, ay and az,
i.e. changing the separation distance from h to h1 = h/a. In two and three
dimensions the new separation distance becomes

h1 =

√
(
hx

ax
)2 + (

hy

ay
)2 and h1 =

√
(
hx

ax
)2 + (

hy

ay
)2 + +(

hz

az
)2 (3.22)

Zonal anisotropy can be catered for by dividing the separation distance
with a large value of the directional range. To obtain a new coordinate
system in which the (cross) semivariogram is isotropic, both a rotation and
a recalcuation has to be done, i.e

h′1 = TRh (3.23)
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where

h′1 =


 h′1x

h′1y

h′1z


 , h =


 hx

hy

hz


 , T =




1
ax

0 0
0 1

ay
0

0 0 1
az


 ,

R =


 cos(v1) cos(v2) sin(v1) cos(v2) sin(v2)

− sin(v1) cos(v1) 0
− cos(v1) cos(v2) − sin(v1) sin(v2) cos(v2)




The new separation distance becomes

htransformed =
√
h

′2
1x + h

′2
1y + h

′2
1z (3.24)

3.2.5 Results

The spatial variability has been determined for the variables DIN and DIP
for data, reconstructed or measured, from four different weeks. The four
weeks represent the four seasons, and are

Week 1776: A week in the middle of January 1994.
Week 1837: A week in the middle of March 1995.
Week 1854: A week in the middle of July 1995.
Week 1919: A week in the middle of October 1996.

Both omnidirectional and directional semivariograms are estimated and
modelled. The optimal parameters and semivariogram model are found as
those which minimize the sum of the squared residuals. The parameters of
the omnidirectional semivariograms are shown in table 3.1, for data which
are measured or temporally reconstructed by GLM, while table 3.2 shows
the parameters for data which are measured or temporally reconstructed
by LOESS. A larger range is found when data are temporally reconstructed
by LOESS.

Figure 3.6 and 3.7 shows estimated and modelled omnidirectional semi-
variograms for log-transformed DIN and DIP for a week in the middle of
January 1994. The semivariogram in figure 3.6 is based on values which
are measured or reconstructed by GLM, while the semivariogram in figure
3.7 is based on values which are measured or reconstructed by LOESS.

The spherical semivariogram model is preferred, since the experimental
semivariogram seems to be linear near the origin.
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Week Variable Model Range Sill Nugget effect

1776 log(DIN) Spherical 19 0.50 0.10
1776 log(DIP) Spherical 25 0.20 0.10

1837 log(DIN) Spherical 22 0.52 0.25
1837 log(DIP) Spherical 34 0.32 0.00

1854 log(DIN) Spherical 15 0.90 0.20
1854 log(DIP) Spherical 19 0.40 0.00

1919 log(DIN) Spherical 42 0.79 0.30
1919 log(DIP) Spherical 34 0.41 0.00

Table 3.1: Type of semivariogram model and the parameters range, sill
and nugget effect of omnidirectional semivariograms. Data are temporally
reconstructed with GLM.

Week Variable Model Range Sill Nugget effect

1776 log(DIN) Spherical 97 1.10 0.00
1776 log(DIP) Spherical 70 0.20 0.00

1837 log(DIN) Spherical 48 0.20 0.00
1837 log(DIP) Spherical 152 0.45 0.05

1854 log(DIN) Spherical 30 3.90 0.70
1854 log(DIP) Spherical 72 1.30 0.20

1919 log(DIN) Spherical 92 1.80 0.60
1919 log(DIP) Spherical 30 0.45 0.05

Table 3.2: Type of semivariogram model and the parameters range, sill
and nugget effect of omnidirectional semivariograms. Data are temporally
reconstructed with LOESS.
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Figure 3.6: Omnidirectional semivariograms, based on values which are
measured or reconstructed by GLM, for a week in the middle of January
1994. Upper: Log-transformed DIN. Lower: Log-transformed DIP.
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Figure 3.7: Omnidirectional semivariograms, based on values which are
measured or reconstructed by LOESS, for a week in the middle of January
1994. Upper: Log-transformed DIN. Lower: Log-transformed DIP.
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When GLM is used for temporal reconstruction a nugget effect is found
for log-transformed DIN for all the four weeks, while it is only found for
log-transformed DIP in the winter-week. The range of both log-transformed
DIN and DIP are for most weeks found to be between 20 to 40 kilometers.

The spatial variability does not differ very much between the seasons, when
GLM is used for temporal reconstruction. The reason is that data are
dominated by reconstructed values. Purely reconstructed data result in
the same semivariogram for different weeks. According to equation (2.2),
reconstructed data from one week are computed by adding a constant con-
tribution from the factor week to the different values of the factor station.
This means that the only difference between reconstructed data from two
different weeks is the addition of another constant, corresponding to the
factor week.

When LOESS is used for temporal reconstruction a greater variability of
the semivariogram model between the four weeks are found. The range is
found to be higher, with values in the interval from 30 to 152 kilometers.

To identify the anisotropy directions in Kattegat, maps of the semivari-
ogram surface have been computed for log-transformed DIN and DIP in
the four weeks. This has only been done for data temporally reconstructed
by GLM, because this results in a dataset with more points within one
week. The set of data reconstructed by LOESS only includes values for
stations with high sampling frequencies, and the number of data points
within one week is not high enough to compute any directional semivari-
ograms based on these values. The maps of the semivariogram surface are
shown in figure 3.8 for a week in the middle of January 1994, while maps
for the three other weeks are shown in appendix C. The maps in figure
3.8 make it easy to determine the directions of anisotropy. The highest
range is found in the direction 135 degrees clockwise from the north, while
the perpendicular direction, i.e. 45 degrees clockwise from the north, gives
the minimum range for both variables. Consequently semivariograms have
been estimated and modelled in these directions. In this thesis we will
only allow for geometric anisotropy. When modelling the range in different
directions it is therefore assumed that the sill and nugget effect are the
same. The spherical semivariogram model is used, since this was found
to be the best for fitting the experimental omnidirectional semivariogram.
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Figure 3.8: Maps of the semivariogram surface in a week in the middle of
January 1994. Data are temporally reconstructed by GLM. Upper: Log-
transformed DIN. Lower: Log-transformed DIP.



54 Chapter 3. Spatial data analysis

The result of modelling of the range in different directions is shown in table
3.3 for the two variables and four weeks. Figure 3.9 shows estimated and

Week Variable Direction Range

1776 log(DIN) 135 40.0
1776 log(DIN) 45 17.0
1776 log(DIP) 135 34.0
1776 log(DIP) 45 22.0

1837 log(DIN) 135 55.0
1837 log(DIN) 45 13.0
1837 log(DIP) 135 73.0
1837 log(DIP) 45 24.0

1854 log(DIN) 135 21.0
1854 log(DIN) 45 5.00
1854 log(DIP) 135 23.0
1854 log(DIP) 45 17.0

1919 log(DIN) 135 59.0
1919 log(DIN) 45 27.0
1919 log(DIP) 135 34.0
1919 log(DIP) 45 34.0

Table 3.3: Range for directional semivariograms. Data are temporally re-
constructed by GLM.

modelled directional semivariograms for log-transformed DIN and DIP for
a week in the middle of January 1994. The anisotropy ratio is given as the
range in the 135 degree direction, which is the highest range, divided by
the range in the 45 degree direction, and is shown in table 3.4. In general
anisotropy ratios higher than 2-3 change the kriging predictions consider-
ably. The highest anisotropy ratios are found for DIN in the spring and
autumn-week. Since temporally reconstruction with LOESS does not result
in enough data points for computing weekly directional semivariogram, the
same anisotropy ratios and directions of anisotropy will be assumed when
using LOESS for computing spatial predictions.

The cross semivariogram has been estimated and modelled for the same
four weeks as the semivariogram. The depth of water, measured in meters
is used as the secondary variable. Other secondary variables have been
tried, e.g. salinity. However the estimated cross semivariogram between
log-transformed DIN and salinity, as well as between log-transformed DIP
and salinity, did not show any spatial correlation. Table 3.5 shows the
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Figure 3.9: Directional semivariograms in the directions of anisotropy, for
a week in the middle of January 1994. Data are temporally reconstructed
by GLM. Upper: Log-transformed DIN. Lower: Log-transformed DIP.
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Week Variable Range

1776 log(DIN) 2.35
1776 log(DIP) 1.55

1837 log(DIN) 4.23
1837 log(DIP) 3.04

1854 log(DIN) 4.20
1854 log(DIP) 1.35

1919 log(DIN) 2.19
1919 log(DIP) 1.00

Table 3.4: Anisotropy ratios given as the range in the 135 degree direction
divided by the range in the 45 degree direction.

type of model, and the estimated values of the parameters, when data are
temporally reconstructed by GLM. The models are very similar for the
different weeks, but a very high range of the cross semivariogram between
log-transformed DIP and depth of water is found for the spring week. The
cross semivariograms have been computed for different directions, and it
has been found that it can be assumed to be isotropic. The cross semi-

Week Variables Model Range Sill Nugget effect

1776 Depth/log(DIN) Spherical 40 -8.0 0.0
1776 Depth/log(DIP) Spherical 42 -2.1 -0.1

1837 Depth/log(DIN) Spherical 52 -8.0 0.0
1837 Depth/log(DIP) Spherical 148 -1.3 0.0

1854 Depth/log(DIN) Spherical 36 -7.5 0.0
1854 Depth/log(DIP) Spherical 48 -2.8 0.0

1919 Depth/log(DIN) Spherical 54 -12.0 -2.0
1919 Depth/log(DIP) Spherical 38 -2.8 0.0

Table 3.5: Type of cross semivariogram model and the parameters range,
sill and nugget effect of omnidirectional cross semivariograms. Data are
temporally reconstructed with GLM.

variograms for the winter week are shown in figure 3.10. It has also been
tried to estimate the corresponding cross semivariograms for data tempo-
rally reconstructed by LOESS. Due to lack of observations, i.e. only 24
observations are available for each week, these cross semivariograms did
not make sense. For some lags negative values of the cross semivariance
were found, while positive values were found for other lags. Finally the
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Figure 3.10: Omnidirectional cross semivariograms, based on values which
are measured or reconstructed by GLM, for a week in the middle of January
1994. Upper: Depth/log(DIN). Lower: Depth/log(DIP).



58 Chapter 3. Spatial data analysis

semivariogram of the secondary varible, i.e. depth of water, has also been
estimated and modelled. This has been done using a spherical semivar-
iogram model with the parameters; range=80, C0+C1=568 and nugget
effect=8. The semivariogram has been estimated in different directions,
and based on this analysis, the area is assumed to be anisotropic. The
omnidirectional semivariogram is shown in figure 3.11.
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Figure 3.11: Omnidirectional semivariogram for depth of water, which is
used as a secondary variable, when computing spatial predictions using cok-
riging.
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3.3 Ordinary kriging

In the following it will be shown how the weights in equation (3.1) are
calculated for ordinary kriging. In ordinary kriging the mean is unknown,
and assumed to be constant for all the observations which are used in the
estimation of Ẑ(s0), i.e. the model is

Z(s) = µ+ ε(s) (3.25)

We recall from equation (3.1) that the estimation in a point s0 is calculated
as

Ẑ(s0) =
n∑

i=1

λiZ(si) (3.26)

The true value is denoted by Z(s0), and we have

E(Ẑ(s0) − Z(s0)) = 0 =⇒
E(Ẑ(s0)) = E(Z(s0)) (3.27)

The goal is to minimize the error of the estimation, i.e.

Minimize E[(Ẑ(s0) − Z(s0))2] (3.28)

To obtain an unbiased estimate, the sum of the weights has to be 1, i.e.∑
i

λi = 1 (3.29)

The minimization given by (3.28) with the constraint (3.29), is calculated
by introducing a Lagrange parameter m. This converts the constrained
minimization problem into an unconstrained, and gives the following sys-
tem of linear equations∑

j

λjγ(si − sj) +m = γ(si − s0)

∑
i

λi = 1 (3.30)

Equation (3.30) can be written in matrix form


0 γ12 . . . γ1n 1
γ21 0 . . . γ2n 1
.
..

.

..
. . .

.

..
.
..

γn1 γn2 . . . 0 1
1 1 . . . 1 0
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λ2
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λn
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Here γ(si−sj) is denoted γij . The diagonals in the matrix is 0 since γii = 0.

The ordinary kriging variance is given by

σ2
ok =

∑
i

λiγ(si − s0) +m (3.31)

In appendix D it is shown how the calculation from equation (3.28) to
(3.30) is done, and the reader is therefore referred to this for more details.
See also [Cressie, 1993], [Deutsch and Journel, 1992] and [Marsily, 1986].

3.3.1 Results

In the following the results when applying ordinary kriging to DIN and DIP
will be shown for a week in the winter- and summerperiod (week 1776 and
1854). The results for a week in spring and autumn are shown in appendix
E. Data which are used as the basis for predicting the spatial distribution of
the variables, are constructed by GLM or LOESS, i.e. both reconstruction
methods are used for temporal reconstruction. This means that we get
two maps of the spatial distribution for each week, one based on temporal
reconstruction using LOESS, and another based on data constructed by
GLM. It will also be shown how the models can be evaluated and compared.
For weeks where measurements of the variables have been carried out, these
are used instead of the reconstructed values.1

Dissolved Inorganic Nitrogen

Spatial predictions of the concentration of DIN are computed for the log-
transformed data, and the predictions are back transformed using equation
(3.32).

D̂IN = exp( ̂log(DIN) + V ( ̂log(DIN))/2) (3.32)

Figure 3.12 shows the spatial distribution of DIN in the winter using GLM
for temporal reconstruction. High concentrations are calculated along the
eastern coast of Jutland, especially in Hevring Bay and in the north/western
part of Kattegat, as well as in the north/eastern part of Kattegat near the
Swedish coast.

1The two sets of data will be referred to as temporally reconstructed by GLM or
LOESS, even though the reconstructed values are only used for weeks where no mea-
surements have been carried out
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Figure 3.12: Spatial distribution of DIN for a week in the middle of January
1994 computed by ordinary kriging. Temporal reconstruction is computed
by GLM. Upper: Kattegat is assumed to be isotropic. Lower: Kattegat is
assumed to be anisotropic.
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The high concentrations of DIN in Hevring Bay can be caused by upwelling.
This phenomenon is known to take place when low-saline water from the
Baltic Sea enters Kattegat through Øresund. The low-saline water flows on
top of the lower layer of water with a higher salinity, and therefore increases
the pressure on this high-saline water. The pressure generates a vertical
movement of water, in the eastern direction, at the bottom of the sea, and
causes an upwelling of high-saline water in Hevring Bay.

Another reason for the concentrations in Hevring Bay can be that water
from Guden̊aen is discharged into Kattegat through Randers Fjord. The
water has a high content of nutrients, because Guden̊aen drains large areas
of agriculture in Jutland.

The high concentrations in the north/western part of Kattegat is caused
by the Jutland Current, described in section 1.4.1, which occasionally flows
into Kattegat. This current transports water with high concentrations of
nutrients from the central European rivers, towards the north along the
western coast of Jutland. In general the atmospheric deposition of nitro-
gen species on Kattegat is larger in the western part of Kattegat, than
by the Swedish, which also causes the concentration of DIN to be higher
by the eastern coast of Jutland. The high concentrations of DIN in the
north/eastern part of Kattegat is due to discharge of freshwater from Göta
Elven.

The upper map in figure 3.12 is computed for the case where Kattegat is
assumed to be isotropic with respect to DIN. It has been found in section
3.2.5 that this is not the case. The north/western-south/eastern direction
has the largest range, while the perpendicular direction has the smallest.
When we correct for this anisotropy, the lower map in figure 3.12 is ob-
tained. It is seen that the contours are tilted towards the direction of the
higher range, meaning that observations located in this direction relative
to each other are more likely to be the same. Figure 3.13 shows one of the
very useful properties of applying kriging for determination of the spatial
distribution, i.e. we are able to calculate the uncertainty, in this case given
by the standard deviation, of the predictions. The back transformation of
the variances are calculated using equation (3.33).

S(D̂IN) =
√

exp[2 · ̂log(DIN) + V ( ̂log(DIN))](exp[V ( ̂log(DIN))] − 1)
(3.33)
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Figure 3.13: Standard deviation of predictions of DIN for a week in the
middle of January 1994 computed by ordinary kriging. Temporal recon-
struction is computed by GLM. Upper: Kattegat is assumed to be isotropic.
Lower: Kattegat is assumed to be anisotropic.
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The two maps in figure 3.13 correspond to the maps of concentrations
of DIN shown in figure 3.12. The standard deviations are low near the
location of observations. Again the contours are tilted, when the anisotropy
of DIN is taken into account, and, as expected, the standard deviations are
lower in the anisotropy case. Consequently, the model which incorporates
anisotropy seems to be better than the one, where the area is considered
as isotropic.

The upper map in figure 3.14 shows the spatial distribution of DIN, in the
case where the temporal reconstruction is computed using LOESS. The
predicted concentrations are lower than what is found for data constructed
by GLM. Moreover high concentrations are found in the open sea, which do
not seem to be reasonable. This is also found for the concentration of DIN
for a week in the middle of March 1995. This map is shown in figure E.1 in
appendix E. High concentrations are also found in the innermost part of
Hevring Bay, indicating that the area of Kattegat, which is influenced by
the discharge from Guden̊aen, is not as large as it seems to be when GLM
is used for temporal reconstruction.

The lower map in figure 3.14 shows the corresponding standard deviations.
The values seem to be lower than the standard deviations computed when
GLM is used for temporal reconstruction of data. This might be due to
the larger range estimated when LOESS is used.

Figure 3.15 shows the spatial distribution of DIN for a week in the middle
of July 1995. The prediction, which is based on data temporally recon-
structed by GLM is shown on the upper map, while the prediction based
on data generated by LOESS is on the lower map. The pattern of the
spatial distribution of DIN is found to be the same in both cases, with
the highest concentrations along the eastern coast of Jutland, and in the
north/eastern part of Kattegat. However the concentrations on the lower
map are higher,especially in the coastal areas. The computation of the
spatial distribution of concentrations of DIN based on LOESS does only
contain 24 observations. This means that extreme observations are able
to dominate the prediction, and cause results which do not seem to be
reasonable. This might also be the reason for the computation of high con-
centrations of DIN in the open sea, shown in figure 3.14.

The spatial distribution of the concentration of DIN for a week in the
middle of October 1996 is shown in figure E.2 in appendix E. Here the
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Figure 3.14: Spatial distribution of the concentration of DIN, and the stan-
dard deviation of the predictions, computed by ordinary kriging, for a week
in the middle of January 1994. Temporal reconstruction is computed by
LOESS. Upper: Spatial distribution of the concentration of DIN. Lower:
Standard deviation of the predictions.
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Figure 3.15: Spatial distribution of DIN for a week in the middle of July
1995 computed by ordinary kriging. Upper: Temporal reconstruction by
GLM. Lower: Temporal reconstruction by LOESS.
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same pattern of the spatial distribution is found as in figure 3.15, but the
estimated concentrations are of the same order of magnitude when GLM
and LOESS are used for temporal reconstruction.

Reconstruction Week
P

(DIN −[DIN)2 m Goodness Of Model

GLM 1776 2189 16 136.8
GLM 1837 1424 19 74.95
GLM 1854 2.50 19 0.136
GLM 1919 14.8 17 0.871

Total 3630 71 51.13

LOESS 1776 296.1 16 18.51
LOESS 1837 191.6 17 11.27
LOESS 1854 136.2 18 7.567
LOESS 1919 35.28 17 2.075

Total 659.2 68 9.694

Table 3.6: Cross validation of ordinary kriging model for DIN.

The kriging models, for the two different cases of temporal reconstruction
of data, can be evaluated and compared for each of the four different weeks
using cross validation. This is done by leaving a single value of log(DIN)
out of the model each time. Afterwards the predicted value at the same
location is assigned to the left out observation, and back transformed using
equation (3.32). The Goodness Of Model is calculated as

Goodness Of Model =
1
m

m∑
k=1

(DINk − D̂INk)2 (3.34)

where m is the number of observations and DIN are the original, mea-
sured concentrations of DIN. This means that locations represented by a
reconstructed value are not included in the goodness of model. The cross
validation shows that the computation of the spatial distribution of DIN is
better when GLM is used for temporal reconstruction for the summer -and
autumn weeks, while the computation for winter and spring seems to be
better when LOESS is used. The values of the Goodness of Model cannot
be directly compared to those found in section 1.5.1 and 2.2.1.
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Dissolved Inorganic Phosphorus

The spatial predictions of the concentration of DIP are, in the same way
as for DIN, computed for the log-transformed data, and the predictions are
back transformed.

Figure 3.16 shows the spatial distribution of DIP in the winter using GLM
and LOESS for temporal reconstruction. The upper map shows that high
concentrations are calculated along the eastern coast of Jutland and in the
north/eastern part of Kattegat near the Swedish coast. This spatial pattern
can be explained by the same phenomena as described for DIN, although
phosphorus is not supplied from the atmosphere.

The lower map shows relatively high concentrations of DIP in the open
sea, when data for the spatial prediction are temporally reconstructed by
LOESS. This is also found for DIN in figure 3.14 and does not seem to be
reasonable. The pattern of the spatial distribution of DIP shown in figure
3.16, is also what is found for a week in the middle of March 1995, and
shown in figure E.3 in appendix E.

The standard deviations of the spatial predictions in figure 3.16 are shown
in figure 3.17. These values are lower when the temporal reconstruction is
computed by LOESS, because of the higher range used in this case.

The general pattern of the spatial distribution of DIP in summertime,
shown in figure 3.18, is seen to be very similar for both kinds of tempo-
ral reconstruction, although the high concentrations, in the south/eastern
part of Kattegat near the Swedish coast, are not found when GLM is used
for temporal reconstruction. Also the level of concentrations is within the
same order of magnitude.

The kriging models, for the two different cases of temporal reconstruction
of data, have been evaluated and compared for each of the four different
weeks, in the same way as it was done for DIN. The cross validation shows
that the computation of the spatial distribution of DIP is better when
LOESS is used for temporal reconstruction, compared to GLM for all the
four weeks.
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Figure 3.16: Spatial distribution of DIP for a week in the middle of January
1994 computed by ordinary kriging. Upper: Temporal reconstruction by
GLM. Lower: Temporal reconstruction by LOESS.
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Figure 3.17: Standard deviation of predictions of DIP for a week in the
middle of January 1994 computed by ordinary kriging. Upper: Temporal
reconstruction by GLM. Lower: Temporal reconstruction by LOESS.
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Figure 3.18: Spatial distribution of DIP for a week in the middle of July
1995 computed by ordinary kriging. Upper: Temporal reconstruction by
GLM. Lower: Temporal reconstruction by LOESS.
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Reconstruction Week (DIP −[DIP )2 m Goodness Of Model

GLM 1776 2.440 16 0.153
GLM 1837 1.355 18 0.075
GLM 1854 0.042 19 0.0022
GLM 1919 0.755 17 0.044

Total 4.592 70 0.066

LOESS 1776 0.322 16 0.0201
LOESS 1837 0.514 17 0.0302
LOESS 1854 0.035 19 0.0018
LOESS 1919 0.541 17 0.0318

Total 1.412 69 0.0205

Table 3.7: Cross validation of ordinary kriging model for DIP.

3.4 Universal kriging

The term universal kriging is used when the mean field can be described
by a trend model. Spatial predictions are modelled as

Z(s) = µ(s) + ε(s) (3.35)

where s is the location, given by x and y coordinates. This means that
ordinary kriging is also universal kriging, with a ”trend” model described
by the constant mean. The trend component µ(s) can be modelled as a
function of coordinates, x and y, in the 2-dimensional case, and x, y and z
in the 3-dimensional case. This is shown in (3.36).

µ(s) =
L∑

l=0

alfl(s), f0(s) = 1 (3.36)

The functions fl(s) are known, while the parameters al are unknown, but
can be estimated from data. Usually low-order polynomias are used for
describing µ(s), such as the first order polynomia

µ(s) = µ(x, y) = a0 + a1x+ a2y + a3xy (3.37)

The computation of Z at an unmeasured location s0 is similar to the esti-
mation in the case of ordinary kriging.

Ẑ(s0) =
n∑

i=1

λiZ(si) (3.38)
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In this case we have

E(Ẑ(s0)) =
n∑

i=1

L∑
l=0

λiZalfl(si) (3.39)

The goal is to minimize the error of the estimation

Minimize E[(Ẑ(s0) − Z(s0))2] (3.40)

In order to obtain an unbiased estimate the following constraint is used
n∑

i=1

λifl(si) = fl(s0), l = 0, · · · , L (3.41)

By introducing L Lagrange parameters, ml, we get the following system of
linear equations

n∑
i=1

λiγ(si − sj) +
L∑

l=0

mlfl(sj) = γ(sj − si), j = 1, · · · , n
n∑

i=1

λifl(si) = fl(s0), l = 0, · · · , L (3.42)

expressed in terms of the semivariogram, [Journel and Rossi, 1989] and
[Clausen, 1980]. Written in matrix form we get


0 γ21 · · · γn1 f0(s1) · · · fL(s1)
γ12 0 · · · γn2 f0(s2) · · · fL(s2)
.
..

.

..
. . .

.

..
.
..

. . .
.
..

γ1n γ2n · · · 0 f0(sn) · · · fL(sn)
f0(s1) f0(s2) · · · f0(sn) 0 · · · 0
.
..

.

..
. . .

.

..
.
..

. . .
.
..

fL(s1) fL(s2) · · · fL(sn) 0 · · · 0







λ1

λ2

.

..
λn

m0

.

..
mL




=




γ10

γ20

.

..
γn0

f0(s0)
.
..
fL(s0)




The universal kriging variance is given by

σ2
uk =

n∑
i=1

λiγ(si − s0) +
L∑

l=0

λlfl(sj), j = 1, · · · , n (3.43)

The use of universal kriging seems reasonable compared to ordinary kriging
where the mean is assumed to be constant. But universal kriging is associ-
ated with some theoretical problems, which has lead to only a minor use of
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the method. The problem is that the trend model and the semivariogram
have to be estimated at the same time. To estimate the semivariogram of
the residuals defined by

γ̂(h) =
1
2
E[(z(s+ h) − µ(s+ h)) − (z(s) − µ(s))]2 (3.44)

the trend model µ(s) is needed. To compute the trend model we need to
know the system of universal kriging equations, given by (3.42). Moreover
the experimental semivariogram of residuals underestimates the true semi-
variogram. If the semivariogram of residuals is estimated anyway, it is still
not straightforward to compute the trend or the true underlying semivar-
iogram. However universal kriging can still be used, if it is assumed that
the underlying semivariogram is known, [Armstrong, 1984].

3.4.1 Results

In the following the results when applying universal kriging to DIN and
DIP will be shown for a week in the winter- and summerperiod (week 1776
and 1854), in the same way as it was done in the case of ordinary kriging.
The results for a week in spring and autumn are shown in appendix F.
Data which are used as the basis for predicting the spatial distribution of
the variable, are constructed by GLM or LOESS, i.e. both reconstruction
methods are used for temporal reconstruction.

Dissolved Inorganic Nitrogen

Figure 3.19 shows the estimation of the trend, µ(s), of DIN in the winter
week, based on data temporally reconstructed by GLM. The trend repre-
sents the deterministic part of the universal kriging model, and is computed
as

µ(s) = µ(x, y) = a0 + a1x+ a2y + a3x
2 + a4y

2 + a5xy (3.45)

where the values of a0, · · · , a5 are found from data. The map of the trend
shows high concentrations of DIN in the coastal areas. The concentration
decreases with a nearly constant gradient from the coastal area to the mid-
dle of the area of Kattegat. When adding the stochastic part, ε(s), of the
kriging model to the trend, the upper map in figure 3.20 is obtained, while
the lower map shows the spatial distribution of DIN, in the case where the
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Figure 3.19: Computation of the trend of DIN in the universal kriging
model for a week in the middle of January 1994. Data are temporally
reconstructed by GLM.
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predictions are based on data temporally reconstructed by LOESS.

Like at the corresponding map computed by ordinary kriging, this also
shows high concentrations of DIN in the open sea. However when using
universal kriging, the highest concentrations found in the open sea are not
higher than in the coastal areas, and the map computed by universal kriging
is therefore more understandable than the corresponding map computed by
ordinary kriging.

The standard deviations of the predictions in figure 3.20 are shown in figure
3.21. The values of the standard deviation are not as high when LOESS
is used for temporal reconstruction compared to GLM. This is due to the
longer range used in the computation, when data are temporally recon-
structed by LOESS.

The spatial distribution of DIN in summertime is shown in figure 3.22.
The same spatial pattern is seen on both maps, but the concentrations in
the coastal areas are extremely overestimated, when data are temporally
reconstructed by LOESS. This is due to the extrapolation, which is caused
by the inclusion of a trend in the kriging model. This extrapolation becomes
extreme in the case where data are based on LOESS, because of the small
number of observations. The same is seen in figure F.2 in appendix F,
which shows the spatial distribution of DIN for a week in the middle of
October 1996.

The kriging models, for the two different cases of temporal reconstruction
of data, have been evaluated and compared for each of the four different
weeks, in the same way as described for DIN in section 3.3.1. The cross
validation shows that the computation of the spatial distribution of DIN
is better when GLM is used for temporal reconstruction for the summer
-and autumn weeks, while the computation for winter and spring is better
when LOESS is used. The values of the Goodness Of Model when using
universal kriging, can also be compared to those calculated when ordinary
kriging is used for determination of the spatial distribution of DIN. These
numbers are shown in table 3.6. It is seen that the model is not improved
by inclusion of a trend in the kriging model. Actually only the computation
of the spatial distribution of DIN in wintertime, based on data temporally
reconstructed by GLM, is improved.
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Figure 3.20: Spatial distribution of DIN for a week in the middle of January
1994 computed by universal kriging. Upper: Temporal reconstruction by
GLM. Lower: Temporal reconstruction by LOESS.
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Figure 3.21: Standard deviation of predictions of DIN for a week in the
middle of January 1994 computed by universal kriging. Upper: Temporal
reconstruction by GLM. Lower: Temporal reconstruction by LOESS.
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Figure 3.22: Spatial distribution of DIN for a week in the middle of July
1995 computed by universal kriging. Upper: Temporal reconstruction by
GLM. Lower: Temporal reconstruction by LOESS.
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Reconstruction Week
P

(DIN −[DIN)2 m Goodness Of Model

GLM 1776 1426 16 89.13
GLM 1837 3688 19 194.1
GLM 1854 2.915 19 0.153
GLM 1919 60.54 17 3.561

Total 5177 71 72.92

LOESS 1776 346.9 16 21.68
LOESS 1837 278.8 17 16.40
LOESS 1854 240.7 17 14.16
LOESS 1919 179.9 17 10.58

Total 1046 67 15.61

Table 3.8: Cross validation of universal kriging model for DIN.

Dissolved Inorganic Phosphorus

Figure 3.23 shows the estimation of the trend, µ(s), of DIP in the win-
ter week, based on data temporally reconstructed by GLM. The trend is
computed in the same way as in the case of DIN. As for DIN, the highest
values of the trend are found in the coastal areas, but for DIP the gradi-
ent of the trend is in the north/western-south/eastern direction, with the
highest concentrations in the north/western part of Kattegat.

When adding the stochastic part, ε(s), of the kriging model to the trend,
the upper map in figure 3.24 is obtained, while the lower map shows the
spatial distribution of DIP, in the case where the predictions are based on
data temporally reconstructed by LOESS. The lower map shows the high-
est concentrations of DIP in the open sea, which is not rational from a
physical point of view, but is probably due to the relatively small number
of observations, in the case where predictions are based on data temporally
reconstructed by LOESS. The upper map is very similar to the correspond-
ing one, computed by ordinary kriging.

The standard deviations of the predictions in figure 3.24 are shown in fig-
ure 3.25. As in the case of prediction of DIN, the values of the standard
deviation are not as high when LOESS is used for temporal reconstruction
compared to GLM. This is due to the longer range used in the computation,
when data are temporally reconstructed by LOESS. The spatial distribu-
tion of DIP in summertime is shown in figure 3.26. Almost the same spatial
pattern is seen on both maps. Compared to the corresponding map com-
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Figure 3.23: Computation of the trend of DIP in the universal kriging model
for a week in the middle of January 1994. Data are temporally reconstructed
by GLM.
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Figure 3.24: Spatial distribution of DIP for a week in the middle of January
1994 computed by universal kriging. Upper: Temporal reconstruction by
GLM. Lower: Temporal reconstruction by LOESS.
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Figure 3.25: Standard deviation of predictions of DIP for a week in the
middle of January 1994 computed by universal kriging. Upper: Temporal
reconstruction by GLM. Lower: Temporal reconstruction by LOESS.
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puted by ordinary kriging, higher concentrations of DIP in coastal areas
are shown on the lower map in figure 3.26. This is due to the extrapolation
caused by the inclusion of a trend in the kriging model.

The kriging models, for the two different cases of temporal reconstruction
of data, have been evaluated and compared for each of the four different
weeks, in the same way as described for DIN in section 3.3.1. The cross
validation shows that the computation of the spatial distribution of DIN
is better when GLM is used for temporal reconstruction for the summer
-and autumn weeks, while the computation for winter and spring is better
when LOESS is used. The values of the Goodness Of Model when using
universal kriging, can also be compared to those calculated when ordinary
kriging is used for determination of the spatial distribution of DIP. These
numbers are shown in table 3.7. It is seen that the model is not improved
by inclusion of a trend in the kriging model.

Reconstruction Week (DIP −[DIP )2 m Goodness Of Model

GLM 1776 3.045 16 0.190
GLM 1837 1.533 18 0.085
GLM 1854 0.034 19 0.0018
GLM 1919 1.456 17 0.086

Total 6.068 70 0.087

LOESS 1776 0.478 16 0.030
LOESS 1837 0.610 17 0.036
LOESS 1854 0.140 18 0.0077
LOESS 1919 2.409 17 0.142

Total 3.637 68 0.053

Table 3.9: Cross validation of universal kriging model for DIP.
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Figure 3.26: Spatial distribution of DIP for a week in the middle of July
1995 computed by universal kriging. Upper: Temporal reconstruction by
GLM. Lower: Temporal reconstruction by LOESS.
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3.5 Cokriging

Cokriging can be used when measurements of more than one variable, e.g.
Z1 and Z2 have been done. The prediction of Ẑ1 is done, not only on
the basis of Z1, but also on measurements of Z2. In this section, the
case where measurements of Z1 and Z2 are used to predict the primary
variable Ẑ1, will be explained. Z2 is in this case the secondary variable.
This can be generalized to prediction of Ẑ1 from N variables. The reader
is referred to [Cressie, 1993], [Myers, 1982] and [Marcotte, 1991] regarding
this discussion. In the case of cokriging an additional index is needed to
describe the variable. The prediction of the variable Z1 at the location s0
is given by

Ẑ1(s0) =
n∑

j=1

λj
1Z1(sj) +

m∑
l=1

λl
2Z2(sl) (3.46)

j and l are indices of locations for observations of the two variables Z1 and
Z2. Z1 and Z2 do not have to be measured at the same locations, and m
and n are not neccesarily equal. Like in the case of ordinary and universal
kriging, the function that we want to minimize is

Minimize E[(Ẑ1(s0) − Z1(s0))2] (3.47)

To obtain an unbiased estimate the following constraints are needed

n∑
j=1

λj
1 = 1 and

m∑
l=1

λl
2 = 0 (3.48)

If both Z1 and Z2 are intrinsic, the cokriging equations become

−
n∑

j=1

λj
1γ11(si − sj) −

m∑
l=1

λl
2γ12(si − sl) −m1 = −γ11(s0 − si)

for i = 1, · · · , n

−
n∑

j=1

λj
1γ21(sk − sj) −

m∑
l=1

λl
2γ22(sk − sl) −m2 = −γ12(s0 − sk)

for k = 1, · · · ,m
(3.49)
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where m1 and m2 are Lagrange multipliers. The variance of the prediction
is calculated as

σ2
cok =

n∑
j=1

λj
1γ11(s0 − sj) +

m∑
l=1

λl
2γ12(s0 − sl) +m1

3.5.1 Results

In the following the results when applying cokriging to DIN and DIP will be
shown for a week in the winter- and summerperiod (weeks 1776 and 1854).
The results for a week in spring and autumn are shown in appendix G.
Data which are used as the basis for predicting the spatial distribution of
the variable, are temporally reconstructed by GLM. It has been attempted
to perform cokriging based on data temporally reconstructed by LOESS,
but it did not result in a rational spatial distribution of neither DIN nor
DIP. The depth of water at each station is used as the secondary variable.
This means that we have 71 measures of the secondary variable and 65 of
the primary.

Dissolved Inorganic Nitrogen

Figure 3.27 shows the spatial distribution, and corresponding map of stan-
dard deviations, of DIN in the winter. The same spatial pattern, as com-
puted by ordinary or universal kriging, is seen. The high concentrations in
the north-eastern and north-western part of Kattegat, are not as high as
predicted by the other two variants of kriging, while the high concentra-
tions by the eastern coast of Jutland, near Randers Fjord and Limfjorden,
are higher when cokriging is used compared to ordinary kriging. This is
due to the additional information included in the model, i.e. when the
depth of water is lowered, the concentration of DIN should increase. The
lower map in figure 3.27 shows that the computed standard deviations of
the predictions are lower compared to those computed by the other variants
of kriging. Again this is due to the additional information included in the
model.

The spatial distribution of DIN in the summer is shown in figure 3.28. The
same spatial pattern and order of magnitude of the concentration of DIN,
as computed by ordinary or universal kriging when data are temporally
reconstructed by GLM, is seen.
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Figure 3.27: Upper: Spatial distribution of DIN for a week in the middle of
January 1994 computed by cokriging. Temporal reconstruction is computed
by GLM. Lower: Corresponding map of the standard deviation.
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Figure 3.28: Spatial distribution of DIN for a week in the middle of July
1995 computed by cokriging. Temporal reconstruction is computed by GLM.
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The cokriging model for DIN has been evaluated by cross validation in the
same way as described in section 3.3.1. Only the primary variable is left
out of the model when cross validation is performed. The values of the
Goodness Of Model in table 3.10 can be compared with those calculated
for ordinary and universal kriging. If we only consider the results, for the
cases where data are temporally reconstructed by GLM, cokriging seems to
perform better than the two other kriging variants. However the Goodness
Of Model is lower when data are temporally reconstructed by LOESS. The
performance of the different models is discussed further in chapter 5.

Week
P

(DIN −[DIN)2 m Goodness Of Model

1776 1239 16 77.40
1837 1162 19 61.20
1854 2.32 19 0.120
1919 15.5 17 0.91

Total 2419 71 34.10

Table 3.10: Cross validation of cokriging for DIN.
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Dissolved Inorganic Phosphorus

Figure 3.29 shows the spatial distribution, and corresponding map of stan-
dard deviations, of DIP in the winter. The same spatial pattern, as com-
puted by ordinary or universal kriging, is seen. However the highest con-
centrations of DIP in the north-western part of Kattegat, are higher than
those predicted by the other two variants of kriging. The lower map in
figure 3.29 shows the computed standard deviations of the predictions. For
DIN it was found that these were lower when spatial predictions are com-
puted by cokriging, compared to ordinary and universal kriging. For DIP
the standard deviations are of the same order of magnitude when the dif-
ferent variants of kriging are used.

The spatial distribution of DIP in the summer is shown in figure 3.30. The
same spatial pattern and order of magnitude of the concentration of DIN,
as computed by ordinary or universal kriging when data are temporally
reconstructed by GLM, is seen.

The cokriging model for DIP has been evaluated by cross validation in
the same way as described in section 3.3.1. Only the primary variable is
left out of the model when cross validation is performed. The values of
the Goodness Of Model in table 3.11 can be compared with those calcu-
lated for ordinary and universal kriging. If only the results, for the cases
where data are temporally reconstructed by GLM, are considered, cokrig-
ing seems to perform better than the two other kriging variants. It also
seems to perform better than universal kriging, in the case where data are
temporally reconstructed by LOESS, while ordinary kriging based on data
reconstructed by LOESS seems to be better, when only cross validation is
used as a Goodness Of Model criterion. The performance of the different
models is discussed further in chapter 5.

Week (DIP −[DIP )2 m Goodness Of Model

1776 1.55 16 0.097
1837 1.10 18 0.061
1854 0.041 19 0.0022
1919 0.80 17 0.047

Total 3.49 70 0.050

Table 3.11: Cross validation of cokriging for DIP.
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Figure 3.29: Upper: Spatial distribution of DIP for a week in the middle of
January 1994 computed by cokriging. Temporal reconstruction is computed
by GLM. Lower: Corresponding map of the standard deviation.
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Figure 3.30: Spatial distribution of DIP for a week in the middle of July
1995 computed by cokriging. Temporal reconstruction is computed by GLM.
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3.6 Sequential conditional simulation

What has been done until now is to compute the best possible predictions,
by minimizing the prediction variance. This section deals with computa-
tion of the spatial distribution of a physical magnitude using sequential
conditional simulation. This method produces a number of equally proba-
ble computations, referred to as realizations. Each realization reproduces
the sample histogram -and semivariogram, while only the sample mean
is reproduced when predictions are computed as described in the previous
sections. The calculation of a number of realizations provides a good assess-
ment of uncertainty, e.g. from 100 realizations one can make a histogram
of 100 simulated values for each location. It can be shown that the average
of a large number of realizations at a given location, is the best possible
solution, i.e. the solution that can be computed by kriging. A histogram,
of e.g. 100 realizations from a given location, describes the uncertainty
with which we know the size of the physical magnitude at a given location.
If a stochastic function is given by Z(s), then the multivariate distribution
of Z(s) at the locations s1, s2, · · · , sn can be expressed as the product of
its n univariate conditional distributions.

f(s1, s2, · · · , sn; z1, z2, · · · , zn) =
f(s1; z1) × f(s2; z2 | Z(s1) = z1) × · · · · · ·
×f(sn; zn | Z(sα) = zα, α = 1, · · · , n− 1) (3.51)

This means that f(s2; z2 | Z(s1) = z1) represents the probability dis-
tribution of Z(s2) given that the outcome of Z(s1) is equal to z1. Each
realization, z(s), is made up by drawing random values from each of the
previous univariate and conditional distributions, e.g. the realization z1 is
drawn at random from the distribution f(s1; z1), while the next realization,
z2, which is drawn from the conditional distribution f(s2; z2 | Z(s1) = z1),
depends on the simulated value z1, and the method is therefore called se-
quential conditional simulation.

Multiple realizations can only be drawn if the distribution function is fully
characterized. This is overcome by Gaussian sequential conditional simula-
tion, which applies the sequential conditional simulation in (3.51) using the
multivariate normal distribution, which is fully described by its covariance,
i.e.

C(s, h) = E[(Z(s+ h) − µ)(Z(s) − µ)] (3.52)
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Data are transformed prior to simulation into data which are normally
distributed. Such a transformation is called a normal score transforma-
tion, and transformed data are referred to as normal score data. After the
analysis a back transformation into original values is made. The transfor-
mation/back transformation can be written as

y(s) = φ{z(s)}
z(s) = φ−1{y(s)} (3.53)

where z is original data, y is transformed data and Φ is the normal score
transformation.

Simple kriging with a semivariogram model for the normal score data is
used for computation of each realization. This method is very similar to or-
dinary kriging, described in section 3.3. In simple kriging a constant known
mean is assumed, and kriging is performed for the residuals, i.e. predictions
are calculated in the following way, [Rossi et al., 1993], [Caers, 2000] and
[Deutsch and Journel, 1992].

ˆz(s0) − µ =
n∑

i=1

λi[z(si) − µ] (3.54)

3.6.1 Results

In the following the results of Gaussian sequential conditional simulation
will be presented for DIN in wintertime, i.e. week 1776. Data for the com-
putation are measured or temporally reconstructed by GLM. The method
has also been applied to the corresponding set of data for DIP, but in order
not to include too many figures in the text, these are shown in appendix
H. The use of the method aims at exemplifying how knowledge of uncer-
tainty of prediction at a given location in Kattegat can be obtained. The
estimated semivariogram of the normal score data has been modelled by a
spherical semivariogram model, with a nugget effect of 0.4, a sill of 1 and a
range of 17 kilometers. The estimated and modelled semivariogram of the
normal score data is shown in figure 3.31.
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Figure 3.31: Semivariogram for log-transformed normal score DIN data.
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The semivariogram of the normal score data is used to compute 100 realiza-
tions of DIN. To check whether or not the semivariogram of the simulated
log-transformed concentrations of DIN is reproduced, it has been computed
for two of the 100 realizations and is shown in figure 3.32. When comparing
the semivariograms in figure 3.32 with the upper semivariogram in figure
3.6, a good agreement is found. Also the histograms of the two realizations,
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Figure 3.33: Histogram of log-transformed observations of DIN. Data are
measured or reconstructed by GLM.

shown in figure 3.34 seem to be very similar to the one for the observed
data, which is given in figure 3.33.

The two realizations of DIN are shown in figure 3.35, and it is seen that we
do not obtain the same smooth map of the concentration of DIN, as is the
case when the best possible solution is found using kriging.

From all the 100 realizations it is possible to obtain knowledge of uncer-
tainty in any point in Kattegat. As an example the locations marked on the
map in figure 3.36 have been chosen, and a histogram of the 100 simulated
values at these two locations has been drawn.
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ferent realizations.
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Figure 3.35: Mapping of two different realizations of DIN.
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Figure 3.36: The two locations where the histogram of 100 different realiza-
tions has been plotted.

The histograms for the two locations are shown in figure 3.37. It is seen
that both the standard deviation and the mean of the simulated values at
the northern location is larger than for the southern. The coefficient of
variance (CV) can be calculated as the standard deviation divided by the
mean in order to account for the difference in mean value. This results in:

Southern location: CV=32.89/23.69=1.39
Northern location: CV=46.80/26.09=1.79

For DIP the corresponding results are shown in appendix H. For this
variable a greater coefficient of variance is found for the southern location.
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3.7 Summary of spatial data analysis

In this chapter different methods for computing the spatial distribution of
DIN and DIP have been described, applied and compared for four different
weeks, representing the four seasons of the year. Data for the computation
are temporally reconstructed by GLM or LOESS, when no measurement
has been carried out. For weeks where measurements are available, these
are used instead of the reconstructed values. Both GLM and LOESS are
used for temporal reconstruction in order to examine whether or not the
24 stations with the highest sampling frequencies are sufficient to compute
weekly maps of the spatial distribution of DIN and DIP.

Prior to the computation of predictions, the spatial variability has been
described by estimation and modelling the semivariogram. This showed
that Kattegat is anisotropic with respect to both variables. Data are more
spatially correlated in the south/east - north/west direction, while the low-
est correlation is found in the perpendicular direction. The range of the
estimated semivariogram depends largely on the method used for temporal
reconstruction, i.e. much higher ranges are found when data are temporally
reconstructed by LOESS.

When ordinary kriging is used to compute the spatial distribution of DIN
and DIP based on temporal reconstruction by GLM, high concentrations
are found along the eastern coast of Jutland and in the north/eastern part of
Kattegat. This seems rational from a physical point of view. When data for
the spatial predictions are temporally reconstructed by LOESS, the highest
concentrations are predicted in the open sea, which is not understandable.
This phenomenon is explained by the low number of observations.

When universal kriging is used to compute the spatial distribution of DIN
and DIP based on temporal reconstruction by GLM, high concentrations
are predicted along the eastern coast of Jutland and in the north/eastern
part of Kattegat, and the maps are very similar to those computed by
ordinary kriging. When data for the spatial predictions are temporally re-
constructed by LOESS, too high concentrations are predicted in the open
sea. In the summer the trend causes a dramatically overestimation of the
concentration of both DIN and DIP in the coastal areas.

The use of cokriging has only been based on data temporally reconstructed
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by GLM using the depth of water as a secondary variable. The pattern
of the spatial distribution of DIN and DIP is found to be the same as
computed by ordinary -and universal kriging when data are temporally re-
constructed by GLM.

Table 3.12 summarizes the results of the cross validation. It is seen that
cokriging is the best method for computing the spatial distribution of DIN,
if GLM is used for temporal reconstruction. However the use of LOESS
seem to be preferably, which does not agree with the fact, that these results
are difficult to explain from a physical point of view. The same is seen for
DIP, but in this case cokriging with GLM-data is preferably compared to
universal kriging with LOESS-data. The performance of the models will
be further discussed in chapter 5.

Variable Kriging Reconstruction Goodness Of Model

DIN Ordinary GLM 51.13
DIN Universal GLM 72.92
DIN Cokriging GLM 31.10

DIN Ordinary LOESS 9.694
DIN Universal LOESS 15.61

DIP Ordinary GLM 0.066
DIP Universal GLM 0.087
DIP Cokriging GLM 0.050

DIP Ordinary LOESS 0.021
DIP Universal LOESS 0.053

Table 3.12: Comparison of Goodness Of Model values for DIN and DIP.

The kriging methods compute the optimal spatial predictions, by mini-
mizing the prediction variance. The last section of this chapter shows how
Gaussian sequential conditional simulation can be used to obtain knowledge
of uncertainty of the predictions. This is done by computing 100 equally
probable realizations. The method is not used to make any conclusions
about the performance of the different models.
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Chapter 4

Spatiotemporal data
analysis

4.1 Introduction to spatiotemporal data analysis

Spatiotemporal data refers to spatial data measured over time. Tradition-
ally such datasets have been analyzed as strictly temporal or spatial data,
either by excluding a part of the dataset in the computation or by elim-
inating the temporal or spatial dimensions in some way, e.g. the spatial
dependence could be removed by computing spatial averages, leading to
the use of time series models. The strictly spatial predictions are often
computed by kriging, while time series models or some kind of regression
model compute temporal predictions. These statistical methods have been
applied to numerous datasets, and are described in many books, see e.g.
[Cressie, 1993], [Isaaks and Srivastava, 1989] and [Shumway, 1988].

Alternatively the prediction could be computed using a spatiotemporal
method, which includes both the temporal and the spatial dimensions, i.e.
it includes more of the information from the dataset. This principle is il-
lustrated in figure 4.1, which can be compared to the two step predictions
illustrated in figure 2.7. Such statistical methods are much less developed
than methods for analyzing strictly spatial or temporal data. This chapter
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describes and tests different methods for analyzing spatiotemporal data.

Compute predictions in 3 dimensionsMeasurements

Figure 4.1: Principle of the computation of predictions in 3 dimensions.

4.2 Kriging in three dimensions

Kriging can be extended into three dimensions by using a semivariogram
model, which describes the spatial variability in three dimensions. A gen-
eral description of the theory of kriging and the semivariogram is given in
chapter 3, and will therefore not be described further in this chapter. This
section goes through the estimation and modelling of the semivariogram in
three dimensions for log-transformed DIN and DIP. Furthermore ordinary
kriging is applied for computing spatiotemporal predictions of the variables.
Other variants of kriging could also have been used. Only measurements
are used in the analysis, i.e. no method for temporal reconstruction of data
is used prior to the spatiotemporal kriging model.

4.2.1 The three dimensional semivariogram

Dissolved Inorganic Nitrogen

The semivariogram of log-transformed DIN has been estimated and mod-
elled in three dimensions, by including time in the separation distance. A
time step of one week is used, and the separation distance is

h =
√
h2

x + h2
y + h2

t (4.1)

where t is time. The main problem of including time in the semivariogram
is that one week is not the same as one kilometer. However this can be
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accounted for by including anisotropy in the model, i.e. allowing for dif-
ferent spatial correlation in different directions. The way to do this is first
to identify the directions of anisotropy in the horizontal plane, i.e. the
plane defined by x and y. Afterwards the search angle is dipped in steps
of 45 degress in order to find the vertical anisotropy direction, see figure
3.5. The horizontal directions of anisotropy are found by turning the search
angle in steps of 45 degrees in the horizontal plane. The isotropic nugget
effect and sill are found to be 0.3 and 3.3 respectively, when the spherical
semivariogram model is used. The direction with the highest range=73
kilometers is found to be 45 degrees clockwise from the north, i.e. in
the north/east-south/west direction, while the direction with the lowest
range=55 kilometers is the perpendicular direction, i.e. 135 degrees clock-
wise from the north. Estimated and modelled horizontal semivariograms
with highest and lowest range are shown in figure 4.2.

After the horizontal directions of anisotropy have been identified, the co-
ordinate system is rotated according to these. When the search angle is
dipped vertically in steps of 45 degress, the ranges shown in table 4.1 are
found. The lowest range is found in a direction perpendicular to the hori-

Vertical rotation Range

45 degrees 26
90 degrees 18
135 degrees 27

Table 4.1: Estimated anisotropic ranges for log-transformed DIN, when the
search angle is dipped into the vertical plane.

zontal plane, which means that no further rotation is needed.



108 Chapter 4. Spatiotemporal data analysis

0 20 40 60 80 100 120 140 160
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

h

γ(
h)

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

h

γ(
h)

Figure 4.2: Estimated and modelled horizontal semivariograms for log-
transformed DIN. Upper: Search angle is 45 degrees clockwise from the
north. Lower: Search angle is 135 degrees clockwise from the north.

Dissolved Inorganic Phosphorus

The semivariogram of log-transformed DIP has been estimated and mod-
elled in three dimensions, in the same way as for log-transformed DIN. The
horizontal directions of anisotropy are found by turning the search angle
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in steps of 45 degrees in the horizontal plane. The isotropic nugget ef-
fect and sill are found to be 0.4 and 1.7 respectively, when the spherical
semivariogram model is used. The north/south direction, with a range of
100 kilometers, is found to be the direction with the highest range, while
the direction with the lowest range is the perpendicular direction, i.e. the
east/west direction. The range in this direction is found to be 66 kilome-
ters. Estimated and modelled horizontal semivariograms with highest and
lowest range are shown in figure 4.3.

A rotation of the horizontal coordinate system is not performed since the
directions of anisotropy coincide with the axes of the coordinate system.
The search angle is dipped vertically in steps of 45 degrees, and the ranges
shown in table 4.2 are found. The lowest range is found in a direction per-

Vertical rotation Range

45 degrees 32
90 degrees 17
135 degrees 30

Table 4.2: Estimated anisotropic ranges for log-transformed DIP, when the
search angle is dipped into the vertical plane.

pendicular to the horizontal plane, which means that no rotation is needed.
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Figure 4.3: Estimated and modelled horizontal semivariograms for log-
transformed DIP. Upper: Search angle is in north/south direction. Lower:
Search angle is in east/west direction.
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4.2.2 Ordinary kriging in three dimensions

Dissolved Inorganic Nitrogen

The spatial distribution of DIN computed by 3 dimensional kriging, for a
winter- and a summer week, is shown in figure 4.4, while the corresponding
maps for a spring- and a autumn week are shown in figure I.1 in appendix
I. When the results for the winter week are compared to those computed
in the 2 dimensional case, it is seen that the computed concentrations of
DIN are in the same order of magnitude. The high concentrations in the
northern part of Kattegat, computed by ordinary- and universal kriging
in 2 dimensions, are not shown in the upper part of figure 4.4. It is also
seen that we are not able to compute predictions in an area by the Swedish
coast, when using the 3 dimensional model, because the number of points
in the search area is not high enough to compute a stable result. For the
week in spring the same area without predictions is found. The computed
concentrations of DIN in this week, are of the same order of magnitude when
using ordinary kriging in 2 and 3 dimensions. The computed concentrations
in summertime seem to be too high, compared to what is usually found in
Kattegat in the summer, and they are higher than what is computed by
the 2 dimensional ordinary kriging model.

The 3 dimensional kriging models can be evaluated using cross validation,
in the same way as it is done for the single weeks in the 2 dimensional case,
i.e. a single value of log(DIN) is left out of the model each time. Afterwards
the predicted value at the same location, given by x, y and t, is assigned to
the left out observation, and back transformed using equation (3.32). The
Goodness Of Model can be calculated as

Goodness Of Model =
1
m

m∑
k=1

(DINk − D̂INk)2 (4.2)

where m is the number of observations of DIN in the five year period. The
cross validation results in a Goodness Of Model of 23.78, which can be com-
pared to corresponding numbers computed by ordinary kriging, universal
kriging and cokriging in two dimensions. This comparison is shown in table
4.3. The 3 dimensional kriging model seeems to perform better than the
2 dimensional, when GLM is used for temporal reconstruction. However
2 dimensional kriging based on data temporally reconstructed by LOESS
seems to be the best model.
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Figure 4.4: Spatial distribution of DIN, computed by three dimensional
ordinary kriging. Upper: A week in the middle of January 1994. Lower:
A week in the middle of July 1995.
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Dimension Kriging Reconstruction Goodness Of Model

2 Ordinary GLM 51.13
2 Universal GLM 72.92
2 Cokriging GLM 34.10

2 Ordinary LOESS 9.694
2 Universal LOESS 15.61

3 Ordinary 23.78

Table 4.3: Comparison of Goodness Of Model values for DIN.

Dissolved Inorganic Phosphorus

The spatial distribution of DIP computed by 3 dimensional kriging, for a
winter- and a summer week, is shown in figure 4.5, while the corresponding
maps for a spring- and a autumn week are shown in figure I.2 in appendix
I. A very good agreement, between the results computed with the 2 and 3
dimensional model, is found for all the four weeks. Both the order of mag-
nitude and the spatial distribution of concentrations of DIP are found to be
very similar. The 3 dimensional kriging model has been cross validated, and
a value of the Goodness Of Model of 0.0324 is found. As for DIN, this value
can be compared to those computed by the 2 dimensional kriging models.
Such a comparison is shown in table 4.4. The 3 dimensional kriging model

Dimension Kriging Reconstruction Goodness Of Model

2 Ordinary GLM 0.066
2 Universal GLM 0.087
2 Cokriging GLM 0.050

2 Ordinary LOESS 0.021
2 Universal LOESS 0.053

3 Ordinary 0.032

Table 4.4: Comparison of Goodness Of Model values for DIP.

seems to perform better than the 2 dimensional, when GLM is used for
temporal reconstruction, and also better than universal kriging based on
data temporally reconstructed by LOESS. However 2 dimensional ordinary
kriging based on data temporally reconstructed by LOESS seems to be the
best model. The performance of the models will be further discussed in
chapter 5.
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Figure 4.5: Spatial distribution of DIP, computed by three dimensional or-
dinary kriging. Upper: A week in the middle of January 1994. Lower: A
week in the middle of July 1995.
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4.3 Locally weighted regression in three dimen-
sions

Locally weighted regression can also be used in three dimensions by in-
cluding time in the prediction. The theory of locally weighted regression
is described in section 2.3. Polynomias of second order are used in the
estimation, and the predicted value, ŷi, can therefore be written as

ŷi = ĝ(xi) = β0 + β1xi1 + β2xi2 + β12xi1xi2 + β11x
2
i1

+ β22x
2
i2 + β13xi1xi3 + β23xi2xi3

+ β123xi1xi2xi3 + β33x
2
i3 (4.3)

where xi = (xi1, xi2, xi3) are independent variables in the 3-dimensional
space. Only original, measured values are used in the analysis. xi1 and
xi2 are the UTM coordinates given in kilometers. The values of these are
within the range from 578 to 736 for the x-coordinates, and from 6190 to
6416 for the y-coordinates. The values of the 260 weeks in the five year
period are given as the number of weeks after the first of January 1960,
i.e. going from 1722 to 1981. When computing predictions in 3 dimensions
we are faced with the problem that one kilometer is not the same as one
week. In the 3 dimensional kriging model this is dealt with by including
anisotropy. In this case the values of weeks will be divided by a constant
a.

When using locally weighted regression for prediction of concentrations in
1 dimension, the local area is given by the timeinterval including a certain
fraction, defined by the bandwidth, of the total number of measurements.
In 3 dimensions the local area is given by the cube, which includes a cer-
tain fraction of the total number of measurements. As in the 1 dimensional
case, the size of the local area is defined by the bandwidth.

4.3.1 Dissolved Inorganic Nitrogen

The optimization of the two parameters, the constant a and the bandwidth,
is done by computing Akaike’s information criterion (AIC), for different
combinations of the parameters, to find the minimum value of AIC. The
results are shown on the greyscale map in figure 4.6, where light colours
represent high values. It is seen that AIC is almost independent of a for
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values of the bandwidth higher than 0.16. The minimum of AIC is found
for a bandwidth of 0.2 and a value of the constant a of 10. It has also been
attempted to compute AIC for higher values of the bandwidth and other
values of the constant a, which resulted in higher values of AIC.
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Figure 4.6: Greyscaled map of Akaike’s information criterion (AIC), used
for optimization of the two parameters, i.e. bandwidth and constant, in the
3 dimensional locally weighted regression for log-transformed DIN. Light
colours represent high values of AIC.

The spatial distribution of DIN, for a week in the middle of January 1994,
computed by locally weighted regression, is shown in figure 4.7. Very low
concentrations are found in the southern part of Kattegat. These are much
too low for the wintertime. Furthermore the spatial distribution is very
scattered, i.e. the model does not compute the smooth map of the con-
centrations like the kriging model. The same is found when mapping the
spatial distribution for the other weeks, and these results will therefore not
be shown. The map in figure 4.7 indicates that the local areas, defined
by the bandwidth, are too small. The size of the local areas has therefore
been increased by increasing the bandwidth to 0.4. However this does not
improve the results considerably. The main problem of the method seems
to be that we are predicting the concentration of DIN in a 3 dimensional
grid of 350,000 points, based on less than 2,000 measurements.

The optimal combination of the two parameters results in the plot of resid-
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Figure 4.7: Spatial distribution and corresponding plot of residuals for DIN
for a week in the middle of January 1994, computed by locally weighted
regression in 3 dimensions. The following values of the two parameters are
used: Bandwidth=0.2, a=10.
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uals against the predicted value, shown in figure 4.7. The residuals seem
to be higher for low predicted values, i.e. a trend seems to be present.

4.3.2 Dissolved Inorganic Phosphorus

As for DIN, the optimization of the two parameters, the constant a and
the bandwidth, is done by computing Akaike’s information criterion (AIC)
for different combinations of the parameters, to find the minimum value
of AIC. The results are shown on the greyscale map in figure 4.8, where
light colours represent high values. The minimum of AIC is found for a
bandwidth of 0.28 and a value of the constant a of 10. However the value
of AIC seems to be almost independent of a, for values higher than 5. The
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Figure 4.8: Greyscaled map of Akaike’s information criterion (AIC), used
for optimization of the two parameters, i.e. bandwidth and constant, in the
3 dimensional locally weighted regression for log-transformed DIP. Light
colours represent high values of AIC.

spatial distribution of DIP, for a week in the middle of January 1994, com-
puted by locally weighted regression, is shown in figure 4.9. As for DIN
the lowest concentrations are found in the southern part of Kattegat. The
computed spatial distribution of DIP is very scattered, which is the same as
found when modelling the concentration of DIN. The same is found when
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mapping the spatial distribution for the other weeks, and these results will
therefore not be shown.

The optimal combination of the two parameters results in the plot of resid-
uals against the predicted value, shown in figure 4.9. As for DIN a trend
in the residuals seems to be present.
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Figure 4.9: Spatial distribution and corresponding plot of residuals for DIP
for a week in the middle of January 1994, computed by locally weighted
regression in 3 dimensions. The following values of the two parameters are
used: Bandwidth=0.28, a=10.
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4.4 ARIMA processes

This section is about modelling of ARIMA processes, and is included in the
spatiotemporal part of the thesis, because it uses the temporal correlation
in data in an improved way, compared to what has been done until now.
The model will be applied to different stations, and the model parameters
can be seen as regionalized variables, thus kriging can be used to determine
the parameters at any location in Kattegat.

ARIMA processes are linear, and can be illustrated as shown in figure
4.10.

Y(t)

System
White noise

Figure 4.10: Sketch of a linear stochastic process.

The linear stochastic process is defined as

Yt − µ =
∞∑

i=0

ψiεt−i (4.4)

where εt is white noise, i.e. it is a sequence of uncorrelated stochastic
variables, which are identically distributed with a mean of 0 and a constant
variance σ2

ε . A class of linear stochastic processes, which are often applied
to time series, is ARMA and ARIMA processes. An ARMA(p,q) process is
a combination of an autoregressive process of order p, AR(p), and a moving
average process of order q, MA(q). This is given as

(Yt−Y )+φ1(Yt−1−Y )+· · ·+φp(Yt−p−Y ) = εt+θ1εt−1+· · ·+θqεt−q (4.5)

where εt is white noise. By introducing the back shift operator, B, equation
(4.5) can be written as.

φ(B)(Yt − Y ) = θ(B)εt (4.6)
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When analyzing time series it is often found that data cannot be described
by a stationary process. This is overcome by computing differences. The
model is called ARIMA, and can be written as

φ(B)∇d(Yt − Y ) = θ(B)εt, d ∈ N (4.7)

where ∇d = (1−B)d and εt is white noise. A special class of ARIMA models
are used to model time series containing periodic components, which tend
to repeat with a period of S. These are referred to as ARIMA models with
seasonality, and can be written as

φ(B)Φ(Bs)∇d∇D
s (Yt − Y ) = θ(B)Θ(Bs)εt (4.8)

where φ, Φ, θ and Θ are polynomias, and ∇D
s = (1 −Bs)D is the seasonal

difference operator. The order of the ARIMA model is identified from
the autocorrelation (ACF) -and partial autocorrelation function (PACF),
and afterwards the parameters of the model can be estimated. Different
methods for estimation of the parameters exist, e.g. maximum likelihood,
unconditional least squares or conditional least squares. In this thesis con-
ditional least squares will be used. For further information about identi-
fication and estimation, see [Shumway, 1988]. It should always be tested
whether or not the model parameters are significantly different from 0. If
the parameters are denoted θ̂i, with a variance σ̂2

θi
, then the hypotheses

H0 : θi = 0 against H1 : θi 6= 0 (4.9)

may be tested using the statistic

T =
θ̂i

σ̂θi

(4.10)

which is t-distributed with f = N − p− q− 1 degrees of freedom, where N
is the number of observations, that the estimation of θ̂i is based on.

4.4.1 Results

In the following the results of the application of ARIMA models will be
shown for DIN. The method could be applied to DIP as well, but this has
not been done. Prior to applying ARIMA models to different stations in
Kattegat, the General Linear Model is used to fill out gaps in the time
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series, in order to obtain a resolution of one week.

The estimation of ARIMA models will be exemplified for station 1001.
The autocorrelation function (ACF) and partial autocorrelation function
(PACF) for log-transformed DIN at station 1001 are shown in figure 4.11
for 60 lags, representing 60 weeks. ACF indicates that a seasonal non-
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Figure 4.11: Left: ACF for log-transformed DIN at station 1001. Right:
PACF for log-transformed DIN at station 1001.

stationarity with a period of 52 is present. This means that we have yearly
variations of log-transformed DIN, and that we should compute ACF and
PACF for ∇52Yt = ∇52 log(DIN)t. These are shown in figure 4.12. Both

Lag

A
C

F

0 10 20 30 40 50 60

-0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Series : diff.log.DIN

Lag

P
ar

tia
l A

C
F

0 10 20 30 40 50 60

-0
.3

-0
.2

-0
.1

0.
0

0.
1

0.
2

0.
3

 Series : diff.log.DIN

Figure 4.12: Left: ACF for seasonal differenced log-transformed DIN at
station 1001. Right: PACF for seasonal differenced log-transformed DIN
at station 1001.
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ACF and PACF are strongly significant in lag 52, indicating that this sea-
sonality should be included in the model. This can be done in different
ways, and the models can be compared by computing Akaike’s information
criterion. It has been found that the following model results in a good
description of log-transformed DIN.

(1 + φ1B)∇52(Yt − Y ) = (1 + Θ1B
52)εt (4.11)

For station 1001 and 20004, representing an open sea -and a coastal station,
respectively, the parameters are shown in table 4.5. The results of applying

Station Y φ1 Θ1

1001 0.0204 -0.3577 -0.4725
20004 -0.06609 -0.2369 -0.5295

Table 4.5: Parameters of ARIMA models for station 1001 and 20004.

the model to DIN at station 1001 and 20004 are shown in figure 4.13. The
model is not able to compute estimates for the first year, i.e. 1993, because
of the seasonality.

The order of the model is assumed to be the same for all stations, i.e. all
the time series can be described by (4.11). This assumption has been tested
for three other stations, and seems to be reasonable. The parameters of
the model for all the stations are shown in appendix J.

Now that we have estimated the parameters at different stations, kriging
can be used to compute these at any given location in Kattegat. In order
to calculate the back transformation from log-transformed DIN to DIN, we
also have to determine the standard deviation by kriging. The semivari-
ograms, of the parameters and the standard deviation, have been estimated
and modelled. These are shown in figure 4.14, and the parameters of the
semivariogram models are shown in table 4.6. Isotropy is assumed, and
the semivariograms have therefore been estimated by including all pairs of
data.

The results of kriging the parameters as well as the standard deviation are
shown in figure 4.15 and 4.16.
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Figure 4.13: The results of applying ARIMA models to DIN. Upper: Station
20004. Lower: Station 1001.
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Figure 4.14: Estimated and modelled semivariograms for parameters of
ARIMA models and standard deviation. Upper left: Semivariogam for Y .
Upper right: Semivariogam for standard deviation. Lower left: Semivari-
ogram for φ1. Lower right: Semivariogram for Θ1.

Parameter Model Range Sill Nugget effect

Y Spherical 53 0.0006 0.00025
φ1 Spherical 141 0.0062 0.0037
Θ1 Spherical 48 0.00165 0.00080

Standard Deviation Spherical 47 0.020 0.015

Table 4.6: Type of semivariogram model and the range, sill and nugget
effect for the parameters of ARIMA models.
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Figure 4.15: Kriging of parameters of ARIMA models. Upper: Y . Lower:
Standard deviation.
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4.5 Other statistical methods

This section describes 4 different methods, found in the literature, which
have been successfully applied to spatiotemporal data. This is done to
show examples of other statistical methods which could have been applied
in this thesis. When describing the different methods, different notations
are used, according to the notation used by the authors.

[Geer and Zuur, 1997] apply the transfer function model to groundwater
heads (output), by using the precipitation excess as input. The model is
applied to individual time series. The model parameters can be seen as re-
gionalized variables, thus kriging can be used to determine the parameters
at any location in the area under consideration. It is seen that this method
is very similar to the ARIMA approach, described in the previous section.
It was the intension of the present author to describe concentrations of
DIN by the transfer function model, using wind energy as input. However
after prewhitening and filtration of the input and output series no cross
correlations were found to be significant. The method might be usefull if
other input variables are used, and the principle of modelling of transfer
functions is therefore described in the following.

The transfer function model describes the relationship between an input,
Xt, which is a stochastic variable, and an output, Yt, which is encumbered
with noise Nt. The process can be illustrated as shown in figure 4.17. The

Figure 4.17: Sketch of an input-output process.
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transfer function relates an output series to a certain input by

(Yt − Y ) =
ω(B)
δ(B)

Bb(Xt −X) +
θ(B)
ϕ(B)

ε(t) (4.12)

where εt is a white noise process, b is a delay parameter, and B is the back
shift operator. Furthermore;

δ(B) = 1 + δ1B + · · · + δrB
r

ω(B) = ω0 + ω1B + · · · + ωsB
s

ϕ(B) = 1 + ϕ1B + · · · + ϕpB
p

θ(B) = 1 + θ1B + · · · + θqB
q

The output of the system is assumed to be stable, and independent on
future values of the input series. Moreover no feedback is included, which
means that the input does not depend on the output. It is assumed that
the noise Nt, can be described by an ARMA model, given as

Nt + ϕ1Nt−1 + · · · + ϕpNt−p = εt + θ1εt−1 + · · · + θqεt−q =⇒
ϕ(B)Nt = θ(B)εt (4.13)

where εt is a white noise process, [Geer and Zuur, 1997] and [Shumway, 1988].
The impulse response function is given by

h(B) =
ω(B)
δ(B)

Bb

= h0 + h1B + h2B
2 + · · · (4.14)

where hi is the impulse weight for lag i. If we use

Nt =
θ(B)
ϕ(B)

ε(t) (4.15)

the transfer function can be written as

(Yt − Y ) = h(B)(Xt −X) +Nt (4.16)

The impulse response function is estimated by using the Cross Covariance
Function (CCF) as an estimate of the impulse response function, when the
input series is white noise, i.e. we have to ensure that this is the case.
This is done by filtering the input and output series, in a way which makes
the input series a white noise process. This method is called prewhitening.
Thus the estimation of the impulse response function is made in different
steps, as shown in the following;
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1. The input series is fitted by an ARMA model;

ϕ(B)(Xt −X) = θ(B)αt

2. The input series is prewhitened;

αt = θ(B)−1ϕ(B)(Xt −X)

3. The output series is prewhitened by the same model;

βt = θ(B)−1ϕ(B)(Yt − Y )

4. The impulse response function, ĥk, is estimated by;

ĥk = Cαβ(k)
Cαα(0) = Cαβ(k)

S2
α

By estimating the impulse response function the integer values r, s and b
can be identified, and the parameters of the model estimated. Afterwards
the noise, Nt, can be fitted by an ARIMA model. This section will not go
into details about the estimation. For this discussion the reader is referred
to [Shumway, 1988]. Some examples of the impulse response function and
corresponding transfer function are shown in figure 4.18.

[Rouhani and Myers, 1990] and [Rouhani and Wackernagel, 1990] describe
problems within the area of spatiotemporal analysis of data. The problems,
by extending the estimation to the spatiotemporal space, are among other
things caused by the fundamental difference between spatial and spatiotem-
poral processes. The one dimensional temporal data is ordered, with past,
present and future. The two or three dimensional spatial data does usually
not exhibit such an order. Further more the spatial and temporal scales are
different, and can not be compared in a physical sense. A solution to this
problem is to split the spatiotemporal correlation into a sum of the spatial
and temporal components. Another problem of analysis of spatiotemporal
data is lack of procedures for modelling of semivariograms and covariances.

[Huang and Cressie, 1996] use a spatiotemporal model to predict snow wa-
ter equivalents (SWE). The Kalman filter is used to incorporate past and
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Figure 4.18: Examples of the impulse response and transfer function.
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current data in the prediction. The model is given by

Zt = St + εt (4.17)

St is assumed to be a temporally and spatially stationary normally dis-
tributed process with mean zero. Zt, St and εt are vectors with dimension
n × 1, where n is the number of locations. St is described by an autore-
gressive process of order p

St(s) = α1St−1(s)+α2St−2(s)+ · · ·+αpSt−p(s)+ηt(s), s ∈ D (4.18)

The model is now given by 4.17 and 4.18, where Zt = (Zt(s1), · · · , Zt(sn))T

is a vector containing observations of SWE for the n locations in D at time
t, and St = (St(s1), · · · , St(sn))T is the corresponding vector of the state
variable for the n locations. εt is a white-noise process, independent of St,
and ηt(s) is assumed to be a temporally and spatially stationary normally
distributed process with mean zero. The Kalman filter is used to update
the state variable St = (St(s1), · · · , St(sn))T , when new observations are
available. The optimal spatiotemporal predictor for St(S0) is computed
for locations where measurements have been done, as well as for locations
where no observations are available.

[Carroll et al., 1997] describe a spatiotemporal model, which is applied to
measurements of ozone at eleven different stations, where the time series
contain a substantial number of missing observations. The model is given
by

Y (x, t) = g(t) + ε(x, t) (4.19)
where g(t) is a deterministic function while ε(x, t) is a random function,
which takes into account both the spatial and temporal variation. g(t) is
in this case modelled by

g(t) = αhour + βmonth + γ1temp(t) + γ2temp
2(t) (4.20)

where temp is the temperature at time t, αhour accounts for the overall
hourly level and βmonth for the overall monthly level of ozone. The random
function ε(x, t) is modelled by the spatiotemporal covariance function, given
by

Cov(ε(x1, t1), ε(x2, t2)) = σ2ρ(d, v) (4.21)
where d is the distance between location x1 and x2, and v = |t2 − t1| is the
time lag between two times. The correlation function in (4.21) is given by

ρ(d, v) =
{

1 if d = v = 0
φd

vψv otherwise (4.22)
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where

log(ψv) = a0 + a1v + a2v
2 (4.23)

log(φv) = b0 + b1v + b2v
2 (4.24)

[Meiring et al., 1998] use an approach which is very similar to the one de-
scribed by [Carroll et al., 1997], but [Meiring et al., 1998] incorporate the
spatial variation in the function describing the trend, i.e. the function
which corresponds to g(t).

[Haas, 1995] and [Haas, 1998] describe and apply a spatiotemporal model
for analyzing wet sulfate deposition data, which the authors call MCSTK1.
The spatiotemporal locations are given by X = (x, y, t). The prediction is
done locally, e.g. for a point X0 = (x0, y0, t0), which means that only the
observations which are closest to the point X0 in space and time, are used
in the prediction. The neighborhood is defined in the following way

1 tearliest and tlatest is the time of the earliest and latest observation in
the dataset. The temporal interval of the neighborhood is given by
mT = tu − tL, where the upper limit tu is {min(tlatest, t0 +mT /2)},
and the lower limit is {max(tearliest, tu−mT )}. This selection results
in nI observations within the temporal interval.

2 The nI observations are sorted according to their spatial distance
from (x0, y0). After this initial sorting, observations from a particu-
lar location are sorted according to their temporal distance from t0.
The two sortings result in a list of sorted observations numbered from
1 to nI .

3 The observation set of the neighborhood is then defined as the first
nc observations in the sorted list.

The temporal interval mT is chosen so that second order stationarity along
the temporal dimension within the neighborhood holds. Within the neigh-
borhood a random variable of the observed spatiotemporal process is mod-
elled by

Yc(X) = µ(X ,βc) + ψ(µ(X ,βc),X)Rc(X) (4.25)

µ(X,βc) is the spatiotemporal drift parameterized by components of the
vector βc. Rc(X) is the spatiotemporal residual process, which is second

1Moving Cylinder SpatioTemporal Kriging
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order stationary within the neighborhood, and ψ(µ(X ,βc),X) is a model
of heteroscedasticity. ψ(·) is estimated only at the prediction location, X0,
with an nonparametric estimator. Consequently no parametric form of ψ(·)
is modelled. For the wet sulfate deposition data the model is given by

Yc(X) = (β0 + β1x+ β2y + β3x
2 + β4y

2 + β5xy)−1

+ β6t+ βj+6ψ(µ(X ,βc), t)Rc(X) j = 1, · · · , 4 (4.26)

The covariance function within the neighborhood is given by

Cov[Rc(X1), Rc(X2)] = CS,T (g((x1, y1)′, (x2, y2)′), h(t1, t2)) (4.27)

The function g is the spatial lag, while h is the temporal lag. The spa-
tiotemporal semivariogram is related to the covariance function in (4.27)
in the following way

γS,T (g, h) =
1
2
var[Rc(X1) −Rc(X2)] = CS,T (0, 0) − CS,T (g, h) (4.28)

The product of the spatial, CS(·), and temporal, CT (·), covariance func-
tions is a separable spatiotemporal covariance function with associated spa-
tiotemporal semivariogram

γS,T (g, h) = CS(0)γT (h) + γS(g)CT (0) − γS(g)γT (h) (4.29)
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4.6 Summary of spatiotemporal data analysis

In this chapter three different approaches for reconstruction of concentra-
tions of DIN and DIP have been tested. The methods combine the temporal
and spatial dimensions, i.e. they are 3 dimensional.

The main problem of using such methods, is to find the optimal relationship
between the correlation of data in the different dimensions. In three dimen-
sional ordinary kriging this is dealt with by computing semivariograms in
different directions, and use these to include anisotropy in the model. The
results obtained by applying the method to DIP seem to be good, and
the maps of the weekly distribution of this parameter are very similar to
those computed in 2 dimensions, based on data temporally reconstructed
by the General Linear Model. However for DIN the 3 dimensional kriging
approach is not able to compute predictions in winter and spring in an area
by the Swedish coast, and the results obtained for this variable do not seem
to be rational from a physical point of view.

Other approaches, which have been attempted, is locally weighted re-
gression in 3 dimensions and modelling of the transfer function. Locally
weighted regression did not result in a reasonable reconstruction, while the
ARIMA model seems to give good results. This method has been applied
to DIN at different stations, and kriging is used to determine the parame-
ters of the model at any location in Kattegat. The General Linear Model
is used to reconstruct time series of DIN. This is done in order to obtain
a resolution of one week, and means that the method cannot be applied
to raw data, like the other 3 dimensional methods, and it seems to be the
main disadvantage of the method.

In the end of the chapter other spatiotemporal methods, found in the lit-
erature, are presented. These have been successfully applied to other sets
of data measured in both time and space.
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Chapter 5

Discussion

This chapter discusses the different methods which have been applied in
this thesis. The discussion is based on the Goodness Of Model values
which are computed by cross validation, but also on the fact that, from the
measurements, we have some physical knowledge of the level and spatial
distribution of concentrations of DIN and DIP in Kattegat. The spatial
distribution has been determined by both 2 -and 3 dimensional statistical
methods.

Data for the 2 dimensional methods are temporally reconstructed by GLM
or LOESS, when no measurement has been carried out. For weeks where
measurements are available, these are used instead of the reconstructed
values. Both GLM and LOESS are used for temporal reconstruction in
order to examine whether or not the 24 stations with the highest sampling
frequencies are sufficient to compute weekly maps of the spatial distribu-
tion of DIN and DIP.

From the cross validation of the 2 dimensional methods it is found that
temporal reconstruction using LOESS in general results in lower values of
the Goodness Of Model, i.e. from this point of view it seems to be better
to use LOESS prior to the computation of the spatial distribution of DIN
and DIP. However, from a computational and physical point of view, some
disadvantages have been found:
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• When ordinary kriging is used to compute the spatial distribution of
DIN and DIP, too high concentrations of the species are found in the
open sea.

• Universal kriging results in a dramatic overestimation of the concen-
tration of DIN and DIP in coastal areas.

• Data temporally reconstructed by LOESS cannot be used to compute
the spatial distribution of DIN and DIP by cokriging.

These disadvantages are explained by the lack of observations when LOESS
is used for temporal reconstruction of data. It could also be due to the
locations of the 24 stations with the highest sampling frequencies. These
locations are shown in figure 5.1. It is seen that a lot of these stations are
located in coastal areas, and that only three stations, marked with crosses
(×), are located in a large area in the eastern part of Kattegat. The stations
which are located very close to the coast, e.g. the 5 stations by the coast
of Zealand, are not very useful. For this purpose it would have been an
advantage if they were located in the open sea.

The above mentioned disadvantages of using LOESS for temporal recon-
struction of data, are not only due to lack of observations, but also caused
by the skewed geographical distribution of stations with a high sampling
frequency. This also explains the high values of the ranges found when mod-
elling the semivariogram for data temporally reconstructed by LOESS. This
set of data is highly dominated by coastal stations, which are expected to
have very similar levels of concentrations of DIN and DIP. A large fraction
of the coastal stations are located far from each other, e.g. stations by
the coast of Zealand and stations in the northern part of Kattegat. These
stations far from each other, with similar levels of concentrations, lead to
the high values of the semivariance for high lag numbers, and consequently
leading to large ranges of the semivariograms.

With the present locations of these stations, it means that we have to use
a method for temporal reconstruction of data, which uses the information
from surrounding stations, i.e. a method which can be used to estimate the
time series for stations where only a few measurements have been carried
out, in order to compute weekly maps of the spatial distribution of DIN
and DIP.
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Figure 5.1: Location of stations with high sampling frequencies. LOESS for
temporal reconstruction can be applied to these stations.



140 Chapter 5. Discussion

The General Linear Model is such a method, which is able to compute
estimations for all weeks and stations where measurements have been car-
ried out. The major disadvantage of the model is that it does not include
any temporal or spatial correlation. Furthermore it tends to overfit, i.e.
both the week -and station effect can be influenced dramatically by ex-
treme observations, shown as peaks on the reconstructed time series. It
might improve the temporal reconstruction if the week effect is computed,
not only by observations from a single week, but also by observations from
surrounding weeks. Similarly the station effect should be computed as a
function of surrounding stations.

From the above discussion it is seen that, if we want to compute weekly
maps of the spatial distribution of DIN and DIP, a method for temporal re-
construction of data, which includes information from surrounding stations,
should be used prior to the computation of spatial predictions. When the
General Linear Model is used, the three different kriging methods, which
have been applied, give results that are very similar, and understandable
from a physical point of view. The values of the Goodness Of Model can
therefore be used to find the most suitable method. From this it is seen
that cokriging, with the depth of water as secondary variable, should be
used for computing the weekly spatial distribution of DIN and DIP.

It has also been attempted to model the spatial distribution of DIN and
DIP by 3 dimensional methods, which include time in the prediction. Three
dimensional kriging seems to work very well, from a statistical and phys-
ical point of view, when applied to DIP, while it does not give rational
results, from a physical and computational point of view, when applied
to DIN. The main problem when using these kinds of models, is to find
the optimal relationship between the spatial correlations in the different
dimensions. Moreover, when modelling the 3 dimensional semivariogram,
the distance between observations are difficult to interpret, because it in-
cludes a time component. In 2 dimensions this distance is simply given in
kilometers. Methods for reconstruction of data in three dimensions are not
widely used, and consequently only a sparse amount of literature about the
subject exists.

In this thesis maps of the spatial distribution of DIN and DIP have been
shown for 4 different weeks representing the 4 seasons of the year. Such
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maps could be computed for any of the 260 weeks in the five year period,
and presented as a ”movie”. Such a ”movie” could be used to identify
major differences between weeks.
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Chapter 6

Conclusion

This thesis describes, applies and compares statistical methods for recon-
struction of measured concentrations of Dissolved Inorganic Nitrogen (DIN)
and Dissolved Inorganic Phosphorus (DIP) in Kattegat. The methods are
general, thus the application, for reconstruction of these two species, can
be seen as examples. They could have been applied to other parameters.
Two types of methods are considered. These are:

• Methods, where the reconstruction is computed in two steps. Firstly
a method is used to fill out gaps in time series by estimated values,
and these values are used to compute weekly maps of the spatial dis-
tribution of the variables.

• Three dimensional methods, where the reconstruction is computed in
one step, by including all three dimensions, i.e. both time and the
two spatial dimensions.

In order to obtain a weekly frequency, the General Linear Model and locally
weighted regression have been used for reconstruction of time series. The
General Linear Model uses the information from the surrounding stations,
and it can be used for temporal reconstruction at 65 different stations. On
the other hand locally weighted regression only uses data from the station
under consideration, and it can therefore only be applied to the 24 stations
with the highest sampling frequencies.
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Based on the estimations, computed by the two methods, weekly maps
of the spatial distribution of DIN and DIP have been computed. This is
done by using three different variants of kriging, i.e. ordinary kriging, uni-
versal kriging and cokriging, and the results are compared from a statistical
and a physical point of view. This showed that the spatial predictions of
DIN and DIP should be computed by cokriging, based on data temporally
reconstructed by the General Linear Model.

Locally weighted regression cannot be used, when the aim is to compute
weekly maps of the spatial distribution. This is due to lack of observations,
as well as the skewed geographical distribution of stations with a high sam-
pling frequency.

It has also been attempted to reconstruct in time and space using 3 dimen-
sional methods, referred to as spatiotemporal methods. Three dimensional
kriging can be used to reconstruct DIP, as a good alternative to the General
Linear Model together with cokriging. On the other hand 3 dimensional
kriging of DIN did not give good results.
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Chapter 7

Future work

This chapter shortly describes how some of the statistical methods used in
this thesis can be used for design of monitoring programs.

A lot of programs for monitoring of environmental data are characterized
by a huge number of measurements. These measurements do not necce-
sarily result in the information, which is the aim of the monitoring. One
reason is that calculations of the amount of data, which is neccesary to
obtain the desired information, have not been done.

Such calculations could be based on the methods presented in this the-
sis, e.g.

• The General Linear Model, as described in this thesis, or a more
advanced version of it, as suggested in the discussion, can be used
to determine the sampling frequency, which is neccesary to compute
estimates with a desired certainty. Cross validation can be used to
examine the gain of additional sampling.

• Kriging can be used to determine the optimal locations of stations in
Kattegat, as well as the number of stations, neccesary for obtaining
a given certainty. Cross validation can be used to examine the gain
of including additional stations in the monitoring program.
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• Gaussian sequential conditional simulation seems to be a good method
for this purpose, e.g. a measure of the total variation can be com-
puted from a given number of stations.

The information and knowledge obtained, from a study of the use of sta-
tistical methods for design of monitoring programs, can be used both by
Danish institutions and by the many countries, which are about to start
up environmental monitoring programs. Furthermore, the information can
be applied within other areas than the marine, which has been the topic of
this thesis, e.g. monitoring of pollution of air.
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Appendix A

Software and programming

This appendix is a list of the software that has been used for the compu-
tations in this thesis. The programs are not shown, but people who want
to use these, can get them by contacting the author. Temporal reconstruc-
tion of time series is computed using SAS, all geostatistics, except cross
validation of cokriging, has been done by GSLIB1, which is a free pack-
age of Fortran-programs. Executable files are available at www.gslib.com.
Plotting of maps and time series has been done in Matlab and S-plus.

1Geostatistical Software Library
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• SAS-macro for optimization of the bandwidth in 1 dimensional LOESS.

• SAS-macro for temporal reconstrucion by LOESS.

• SAS-macro for temporal reconstrucion by GLM.

• SAS-program for cross validation of GLM.

• SAS-macro for computing locally weighted regression in 3 dimensions.

• SAS-program for computing ordinary kriging predictions.

• SAS-program for estimation of semivariograms.

• SAS-macro for modelling of transfer functions.

• SAS-macro for identification and estimation of ARIMA models.

• Various Matlab-programs for plotting of semivariograms and contour-
maps.

• Matlab-program for optimization of parameters in semivariogram mod-
els.

• Matlab-program for cross validation of cokriging.

• S-plus function for optimization of the bandwidth in 3 dimensional
LOESS.

• S-plus function for non-linear optimization of parameters in semivar-
iogram models.

• Various parameter files for GSLIB.
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Appendix B

Bandwidth for 1
dimensional loess

Bandwidth for 1 dimensional loess determined from Akaike’s Information
Criteria (AIC). The computation has been done for log-transformed DIN
and DIP.
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Station log(DIN) log(DIP)
1001 0.28 0.23
1004 0.25 0.19
1007 0.24 0.24
1008 0.26 0.25
1009 0.25 0.25

190004 0.24 0.12
1937 0.26 0.27
1939 0.24 0.27
1993 0.21 0.30
20004 0.24 0.21
3302 0.24 0.24
3310 0.31 0.21
403 0.22 0.21
409 0.19 0.20
413 0.12 0.12
415 0.23 0.27
418 0.28 0.22
4402 0.26 0.19
4410 0.21 0.17
905 0.21 0.15
921 0.22 0.21
922 0.29 0.27
925 0.26 0.28

HALVAD 0.38 0.33

Table B.1: Bandwidth for 1 dimensional loess.
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Appendix C

Semivariogram surface

To determine the directions of anisotropy, maps of the semivariogram sur-
face have been computed. In this appendix these are shown for log-transformed
DIN and DIP, for a week in the middle of March 1995, a week in the middle
of October 1996 and a week in the middle of July 1995. The corresponding
maps for a week in the middle of January 1994 are shown in the text.
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C.1 Log-transformed DIN
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Figure C.1: Maps of the semivariogram surface of log-transformed DIN for
a week in the middle of October 1996.



C.1 Log-transformed DIN 153

0.5

1

1.5

2

2.5

3

3.5

−100 −80 −60 −40 −20 0 20 40 60 80 100

−100

−80

−60

−40

−20

0

20

40

60

80

100

0.5

1

1.5

2

2.5

3

3.5

−100 −80 −60 −40 −20 0 20 40 60 80 100

−100

−80

−60

−40

−20

0

20

40

60

80

100

Figure C.2: Maps of the semivariogram surface of log-transformed DIN.
Upper: A week in the middle of March 1995. Lower: A week in the middle
of July 1995.
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Figure C.3: Maps of the semivariogram surface of log-transformed DIP for
a week in the middle of October 1996.



C.2 Log-transformed DIP 155

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

−100 −80 −60 −40 −20 0 20 40 60 80 100

−100

−80

−60

−40

−20

0

20

40

60

80

100

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

−100 −80 −60 −40 −20 0 20 40 60 80 100

−100

−80

−60

−40

−20

0

20

40

60

80

100

Figure C.4: Maps of the semivariogram surface of log-transformed DIP.
Upper: A week in the middle of March 1995. Lower: A week in the middle
of July 1995.
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Appendix D

The system of ordinary
kriging equations

This appendix shows in greater details than in the text how the system of
ordinary kriging equations is calculated.

The goal is to minimize the error of the estimation, i.e.

Minimize E[(Ẑ(s0) − Z(s0))2] (D.1)

To obtain an unbiased estimate, the sum of the weights has to be 1, i.e.∑
i

λi = 1 (D.2)

The expression in (D.1) can be rewritten
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E[(Ẑ(s0) − Z(s0))2] = E[(
∑

i

λiZ(si) − Z(s0))2]

= E[(
∑

i

λiZ(si) −
∑

i

λiZ(s0))2]

= E[(
∑

i

λi(Z(si) − Z(s0)))2]

= E[
∑

i

λi(Z(si) − Z(s0))
∑

j

λj(Z(sj) − Z(s0))]

=
∑

i

∑
j

λiλjE[(Z(si) − Z(s0))(Z(sj) − Z(s0))]

(D.3)

From the definition of the semivariogram it is known that

γ(si − sj) =
1
2
E[(Z(si) − Z(sj))2]

=
1
2
E[((Z(si) − Z(s0)) − (Z(sj) − Z(s0)))2]

=
1
2
E[(Z(si) − Z(s0))2] +

1
2
E[(Z(sj) − Z(s0))2]

−E[(Z(si) − Z(s0))(Z(sj) − Z(s0))]
= γ(si − s0) + γ(sj − s0)

−E[(Z(si) − Z(s0))(Z(sj) − Z(s0))]
(D.4)

By combining (D.3) and (D.4) we get

E[(Ẑ(s0) − Z(s0))2] = −
∑

i

∑
j

λiλjγ(si − sj) +
∑

i

∑
j

λiλjγ(si − s0)

+
∑

i

∑
j

λiλjγ(sj − s0)

=
∑

i

∑
j

λiλjγ(si − sj) + 2
∑

i

λiγ(si − s0)

(D.5)
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The last equal-sign is true according to (D.2) and because∑
i

λiγ(si − s0) =
∑

j

λjγ(sj − s0) (D.6)

To minimize equation (D.5) with the constraint (D.2) a Lagrange multiplier
m is introduced, and the expression that will be minimized becomes

1
2
E[(Ẑ(s0) − Z(s0))2] −m[

∑
i

λi − 1] (D.7)

The minimization is done by calculating the partial derivatives with respect
to m and λi, and we get∑

j

λjγ(si − sj) +m = γ(si − s0)

∑
i

λi = 1 (D.8)
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Appendix E

Spatial distribution using
ordinary kriging

This appendix shows the spatial distribution of DIN and DIP, for a week in
the middle of March 1995 and a week in the middle of October 1996, when
ordinary kriging is applied to data, which are temporally reconstructed by
GLM or LOESS. The corresponding results for a week in the middle of
January 1994 and a week in the middle of July 1995 are shown in the text.

E.1 Dissolved Inorganic Nitrogen
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Figure E.1: Spatial distribution of DIN for a week in the middle of March
1995 computed by ordinary kriging. Upper: Temporal reconstruction by
GLM. Lower: Temporal reconstruction by LOESS.
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Figure E.2: Spatial distribution of DIN for a week in the middle of October
1996 computed by ordinary kriging. Upper: Temporal reconstruction by
GLM. Lower: Temporal reconstruction by LOESS.
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E.2 Dissolved Inorganic Phosphorus
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Figure E.3: Spatial distribution of DIP for a week in the middle of March
1995 computed by ordinary kriging. Upper: Temporal reconstruction by
GLM. Lower: Temporal reconstruction by LOESS.
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Figure E.4: Spatial distribution of DIP for a week in the middle of October
1996 computed by ordinary kriging. Upper: Temporal reconstruction by
GLM. Lower: Temporal reconstruction by LOESS.
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Appendix F

Spatial distribution using
universal kriging

This appendix shows the spatial distribution of DIN and DIP, for a week in
the middle of March 1995 and a week in the middle of October 1996, when
universal kriging is applied to data, which are temporally reconstructed by
GLM or LOESS. The corresponding results for a week in the middle of
January 1994 and a week in the middle of July 1995 are shown in the text.

F.1 Dissolved Inorganic Nitrogen
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Figure F.1: Spatial distribution of DIN for a week in the middle of March
1995 computed by universal kriging. Upper: Temporal reconstruction by
GLM. Lower: Temporal reconstruction by LOESS.
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Figure F.2: Spatial distribution of DIN for a week in the middle of October
1996 computed by universal kriging. Upper: Temporal reconstruction by
GLM. Lower: Temporal reconstruction by LOESS.
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F.2 Dissolved Inorganic Phosphorus
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Figure F.3: Spatial distribution of DIP for a week in the middle of March
1995 computed by universal kriging. Upper: Temporal reconstruction by
GLM. Lower: Temporal reconstruction by LOESS.
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Figure F.4: Spatial distribution of DIP for a week in the middle of October
1996 computed by universal kriging. Upper: Temporal reconstruction by
GLM. Lower: Temporal reconstruction by LOESS.
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Appendix G

Spatial distribution using
cokriging

This appendix shows the spatial distribution of DIN and DIP, for a week
in the middle of March 1995 and a week in the middle of October 1996,
when cokriging is applied to data, which are temporally reconstructed by
GLM. The corresponding results for a week in the middle of January 1994
and a week in the middle of July 1995 are shown in the text.

G.1 Dissolved Inorganic Nitrogen

G.2 Dissolved Inorganic Phosphorus
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Figure G.1: Spatial distribution of DIN computed by cokriging of data tem-
porally reconstructed by GLM. Upper: A week in the middle of March 1995.
Lower: A week in the middle of October 1996.
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Figure G.2: Spatial distribution of DIP computed by cokriging of data tem-
porally reconstructed by GLM. Upper: A week in the middle of March 1995.
Lower: A week in the middle of October 1996.
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Appendix H

Sequential conditional
simulation

This appendix shows the results of applying Gaussian sequential conditional
simulation to DIP in wintertime, i.e. week 1776. Data for the computation
are measured or temporally reconstructed by GLM. The figures presented
in the appendix correspond to those in section 3.6.1, and the reader is
therefore referred to this section for an explanation of the figures. The
use of the method aim at exemplifying how knowledge of uncertainty of
prediction at a given location in Kattegat can be obtained. This is done
by computing 100 realizations, and calculating the coefficient of variance
(CV), given as the standard deviation divided by the mean, for two different
locations, which are shown in figure 3.36. The coefficients of variance for
the two locations are:

Southern location: CV=0.39/0.84=0.46
Northern location: CV=0.36/0.83=0.43
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Figure H.5: Mapping of two different realizations of DIP.
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Appendix I

Kriging in three dimensions

This appendix shows the spatial distribution of DIN and DIP, for a week
in the middle of March 1995 and a week in the middle of October 1996,
when 3 dimensional ordinary kriging is applied to data. The corresponding
results for a week in the middle of January 1994 and a week in the middle
of July 1995 are shown in the text.

I.1 Dissolved Inorganic Nitrogen
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Figure I.1: Spatial distribution of DIN, computed by three dimensional or-
dinary kriging. Upper: A week in the middle of March 1995. Lower: A
week in the middle of October 1996.
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I.2 Dissolved Inorganic Phosphorus
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Figure I.2: Spatial distribution of DIP, computed by three dimensional or-
dinary kriging. Upper: A week in the middle of March 1995. Lower: A
week in the middle of October 1996.
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Appendix J

Parameters of ARIMA
models
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Station Y φ1 Θ1

HALVAD -0.065853144 0.4491854983 0.6074326427
L3 -0.069390589 0.4755571523 0.6039239959
L4 -0.070243257 0.4746997095 0.6051380139
L9 -0.070522971 0.4796859482 0.5930382353
N13 -0.06998247 0.4774552891 0.5949711052
N14 -0.069828729 0.4763022492 0.5957045618
N15 -0.070522971 0.4796859482 0.5930382353
N6 -0.070522971 0.4796859482 0.5930382353
N7 -0.064132579 0.4516444718 0.6240987142
P23 -0.064408115 0.459618356 0.6002236392
SI1 -0.069919182 0.4764689321 0.6018432374
SI2 -0.06206171 0.4301832339 0.5979627799
SI3 -0.070989451 0.4776637555 0.5979386351
SI4 -0.068626445 0.4764916063 0.6102238303
SI5 -0.071491614 0.4808991244 0.5972848729

SKALKORG -0.070602001 0.4772147383 0.5994974422
VALO -0.070536548 0.4658915657 0.6000686432
1001 0.0204411423 0.3576985125 0.4725439007
1002 -0.072490194 0.4783844372 0.5891424642
1004 -0.082972796 0.350435192 0.6968119704
1005 -0.070680788 0.4705666323 0.602467007
1007 -0.031682435 0.3063432442 0.5870834593
1008 -0.017803566 0.3091940073 0.4662645754
1009 -0.092823066 0.3587425331 0.5876345988
1141 -0.0699125 0.4751962962 0.6245302466
1142 -0.067943467 0.4718834796 0.5841680901
1143 -0.067676024 0.4795756285 0.5933581213
1230 -0.070994874 0.4761576129 0.5916681022
1234 -0.068926184 0.4797879837 0.5969140113
1257 -0.070522971 0.4796859482 0.5930382353

159092 -0.066099942 0.4751909984 0.6037267766

Table J.1: Parameters of ARIMA models for different stations.
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Station Y φ1 Θ1

190004 -0.042884484 0.3509501125 0.5410606363
1937 -0.069938841 0.3664904373 0.5553456235
1939 -0.076105158 0.3293855848 0.573568466
1993 -0.07941904 0.2664234561 0.5980550835
2000 -0.066094167 0.2369445433 0.5294629416
3302 -0.081331235 0.4295985908 0.5233236363
3310 -0.055173947 0.3969640934 0.5184890495
4002 -0.070522971 0.4796859482 0.5930382353
4010 -0.070522971 0.4796859482 0.5930382353
4017 -0.067481942 0.4851601328 0.5862742778
4023 -0.07208619 0.4756070877 0.599310311
403 -0.092094125 0.363244175 0.6560973097
4039 -0.070522971 0.4796859482 0.5930382353
406 -0.070522971 0.4796859482 0.5930382353
407 -0.070748842 0.4804300145 0.5945983934
4080 -0.077135757 0.4318895026 0.6070128598
4088 -0.071342241 0.473607908 0.5995557558
4089 -0.069570573 0.4703660415 0.6015347508
409 -0.117966171 0.3731339527 0.5365301495
413 -0.159254609 0.4013042786 0.5414548325
415 -0.097019308 0.3200963346 0.5360907285
416 -0.069618523 0.4813871707 0.5955561
418 -0.061632269 0.3925385411 0.6624372443
421 -0.070522971 0.4796859482 0.5930382353
4402 -0.10010693 0.2812385037 0.6113284623
4410 -0.076981892 0.3372927095 0.6639191491
727 -0.070511943 0.4791584578 0.591744479
905 -0.03030104 0.3101930785 0.6342209964
921 -0.106397629 0.2197114094 0.6102793882
925 -0.078876367 0.2878338342 0.6237615613

ALVSBROA -0.070670962 0.4458692581 0.6031289154
OVF1 -0.062625474 0.4588513382 0.6144431682

Table J.2: Parameters of ARIMA models for different stations.
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