
GENERALIZED
METHODS

FOR
CALIBRATION

Michael Rasmussen

LYNGBY 2001

EKSAMENSPROJEKT
NR. 2001/03

IMM



Trykt af IMM, DTU



1

Abstract

In chemometrics traditional calibration in case of spectral measurements
express a quantity of interest (e.g. a concentration) as a linear combina-
tion of the spectral measurements at a number of wavelengths. Often the
spectral measurements are performed at a large number of wavelengths and
in this case the number of coefficients in the linear combination is magni-
tudes larger than the number of observations. Traditional approaches to
handling this problem includes Principal Components Regression, (PCR),
Partial Least Squares regression, (PLS), Ridge Regression, (RR) and vari-
able selection. They are all presented with theory and application. Least
Absolute Shrinkage and Selection Operator, (LASSO), which has recently
been improved to handle sigular design matrices, is also presented here.
Furthermore a new approach that combines these methods with B-spline
basis functions is presented.

The empirical work is done using NIR-spectra for gasoline and wheat.
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value decomposition, regularization, minimum length least squares, princi-
pal components regression, partial least squares regression, cyclic subspace
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Chapter 1

Introduction

The developments of measurement instrument technology in many areas
of science has made it easier to generate large data sets. The computer
revolution makes it possible to handle these data sets numerically. The
tool to extract quantitative information i.e. transforming data sets into
information and knowledge is statistics.

Calibration can be described by the following situation:

• There are typically two types of measurements or observations for
each item.

1. An expensive or laborious characteristic y.
2. A quick and cheap measurement x.

x is used as an indirect measurement of y, that is estimate or predict
the corresponding unknown y when x has been measured.
• The model for the relationship between y and x; is often assumed to

be a linear regression of x on y or y on x, where in the latter case a
joint distribution for (x, y) is assumed.
• A calibration (training) sample of complete pairs (x, y) is needed to

build a model.

In the typical chemical situation the concentration y of one or several sub-
stances jointly should be determined. The ”true” concentrations are known
for a number of calibration samples obtained either by specially prepared
reference samples or from other traditional chemical methods. The x-values
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are measurements of absorption, reflection or transmission of light, that are
easily and quickly obtained by an instrument. The multivariate character
appears when the light is measured at several different wavelengths jointly.
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Chapter 2

Gasoline example

2.1 Data

This data set contains 60 gasoline samples with specified octane numbers,
see figure 2.1. Samples were measured using diffuse reflectance (R) as
log(1/R) from 900 to 1700 nm in 2 nm intervals. So we have n = 60 and
p = 401. The results for this example will be presented along with the
introduction of the different methods. The data set can be obtained from
ftp://ftp.clarkson.edu/pub/hopkepk/chemdata/kalivas.
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Nir spectra of 60 gasoline samples, measured in 2 nm intervals from 900 to 1700 nm

Figure 2.1: 60 NIR spectra of gasoline
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Chapter 3

Calibration and the Least
Squares method

3.1 Introduction

The n-observation linear regression model is

y = Zθθθ + εεε (3.1)

where θθθ = (α,βββT )T is a (p+1) vector of parameters to be estimated, y is an
(n×1) vector of dependent variables, Z = [1 X] is an n×(p+1) matrix with
ith row (1, xTi ), i = 1, . . . , n, containing the independent variables, where
each row of the matrix X contains the measurements for a given sample and
each column the measurements for a given variable and εεε is an n×1 vector
containing error terms assumed to follow an n-dimensional multivariate
normal distribution with E[εεε] = 0 and V [εεε] = Iσ2. For the estimation of
θθθ in equation (3.1) the full rank case requires that the n × (p + 1) matrix
Z = [1 X] is such that n ≥ (p+ 1) and is of full rank (p+ 1).

An ordinary least squares, (OLS), estimator is expressed by

θ̂θθ = arg min
θ

[(y − Zθθθ)T (y − Zθθθ)] (3.2)
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The solution is given by the ”normal” equations,

ZTZθθθ = ZTy (3.3)

If Z is of full rank then all (p+ 1) parameters are uniquely estimated by

θ̂θθ = (ZTZ)−1ZTy (3.4)

see [11] and [7]

Proof:

L = [(y − Zθθθ)T (y − Zθθθ)]

dL

dθθθ
= −2ZTy + 2ZTZθθθ

dL

dθθθ
= 0⇒

0 = −ZTy + ZTZθθθ ⇔
ZTZθθθ = ZTy ⇔
θθθ = (ZTZ)−1ZTy

see [63] p. 26

3.1.1 Properties of the OLS estimator

The OLS estimator given by equation (3.4) has the following properties

• It is an unbiased estimate (central), E[θ̂θθ] = θθθ since

E[θ̂θθ] = E[(ZTZ)−1ZTy]

= E[(ZTZ)−1ZT (Zθθθ + εεε)]

= (ZTZ)−1(ZTZ)θθθ

= θθθ

(3.5)
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• V [θ̂θθ] = E[(θ̂θθ − θθθ)(θ̂θθ − θθθ)T ] = σ2(ZTZ)−1 since

θ̂θθ − θθθ = (ZTZ)−1ZTy − θθθ
= (ZTZ)−1ZT (Zθθθ + εεε)− θθθ
= (ZTZ)−1ZTεεε⇒

V [θ̂θθ] = E[(ZTZ)−1ZTεεεεεεTZ(ZTZ)−1]

= (ZTZ)−1ZTE[εεεεεεT ]Z(ZTZ)−1

= σ2(ZTZ)−1

(3.6)

• It provides unbiased estimates of the elements of θθθ which have the
minimum variance of any linear function of the observations (Gauss-
Markov). An estimator with this property is also called BLUE (Best,
amongst Linear, Unbiased, Estimators). See [37] p. 33 and [11] p.
87.

It is good numerical procedure to center all variables, that is

y = y − 1ȳ ,

n∑

i=1

Zij = 0, j = 1, . . . , p.

where ȳ =
∑n

i=1(yi)/n is the mean of y. The model may then be presented
in a slightly different parametrization

y = Xβββ + εεε (3.7)

From now on X, (n×p), and y, (n×1), are assumed to be centered. Often
the explanatory variables are standardized to give the different variables
the same influence to the modeling. The general opinion is that if the
variables are on different scales it is important to do it, otherwise it is not
recommended, [56].

3.2 Minimum Length Least Squares

When there are more variables than observations the estimator, β̂̂β̂β, cannot
be determined uniquely due to dependency in (XTX), which causes (XTX)
to be singular and then the inverse of (XTX) does not exist. When working
with the experimental setup described in the introduction we are often



16 Chapter 3. Calibration and the Least Squares method

dealing with near-collinearities in X. Near-collinearities are approximate
linear dependencies between the columns of X and are essentially constant
for all responses y. They are a consequence of duplication of information
that is provided by the variables. More formally, if there exist k linearly
independent nonzero vectors wj = (w1j , . . . , wnj)

T such that

n∑

q=1

wqjxq = 0 j = 1, . . . , k (3.8)

then the columns of X are said to be collinear. The closer the linear combi-
nations in equation (3.8) are to zero, the stronger are the near-collinearities
and the more damaging are their effects on the OLS estimator, [58]. As
shown in [10] pp. 4.57-58, [28] p. 56 and [63] p. 29 this will lead to an
estimate with a large variance

p∑

j=1

V [β̂ββj ] = σ2trace(XTX)−1

This has prompted research into biased regression estimators. The estima-
tors attempt to introduce a small bias into the regression estimator while
greatly reducing the variance appearing in the OLS estimator. The first to
be introduced here is known as the Minimum Length Least Squares, which
is the minimum 2-norm solution.

The observed x-vectors span only an n-dimensional Euclidian subspace of
the potential p-dimensional. The idea is now that the x-variables do not
vary independently, but are very much correlated, and that all essential
sources of variation for x should show up in the n-dimensional subspace,
hopefully including those connected with the explainable part of the varia-
tion in y, [7] p. 52 and [11] p. 258. The key to produce the MLLS solution
is rank-retaining factorizations of X, [18] p. 230.

3.2.1 Range and Null spaces

Let S be a set containing vectors of dimension n, then S is a subspace of
Rn if, for any scalars α1 and α2:

x,y ∈ S implies α1x + α2y ∈ S (3.9)
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This property implies that every subspace must contain the zero vector,
(α1 = α2 = 0). Given a subspace S, a set of k vectors {aj}, j = 1, . . . , k is
said to span S if every vector x in S can be written as a linear combination
of the set of vectors. The set of all n-vectors that are linear combinations
of the columns of the n × p matrix X is called the range space of X, and
will be denoted by R(X):

y ∈ R(X) if and only if there exists βββ ∈ Rp such that y = Xβββ

R(X) is a subspace of Rn. Consider any two vectors y1,y2 ∈ R(X), by
definition of R(X) it must hold that y1 = Xβββ1 and y2 = Xβββ2 for some
βββ1 and βββ2. Because X is a linear transformation for any scalars α1, α2 we
have:

α1y1 + α2y2 = α1Xβββ1 + α2Xβββ2 = X(α1βββ1 + α2βββ2) ∈ R(X)

Which means that R(X) satisfies (3.9). The set of all p-vectors that are
linear combinations of the (transposed) rows of X defines a subspace of
vectors expressible as XTv for some n-vector v. This subspace is denoted
by R(XT ) and is defined as follows:

βββ ∈ R(XT ) if and only if there exists v ∈ Rn such that βββ = XTv

The column rank of a matrix X (the dimension of R(X)) is the maximum
number of linearly independent columns of X. Similarly, the row rank of
a matrix is the maximum number of linearly independent rows. The row
and column ranks of a matrix must be equal and their common value is
called the rank of the matrix, r. Any matrix X defines two other important
subspaces apart from R(X) and R(XT ). For an n× p matrix X, the set of
all n-vectors orthogonal to vectors in R(X) is called the null-space of XT ,
denoted by N (XT ). Elements of N (XT ) is defined as follows

z ∈ N (XT ) if and only if XT z = 0

The null-space of X itself, N (X), is the subspace consisting of all p-vectors
q such that Xq = 0. Because N (XT ) and R(X) contain only the zero
vector in common the expression of any non-zero n-vector y in the following
form is unique:

y = yR + yN , with yR ∈ R(X),yN ∈ N (XT )
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and the vectors yR and yN satisfy:

yTRyN = 0 and yTy = yTRyR + yTNyN

Turning to R(XT ), any nonzero p-vector, βββ, similarly has a unique repre-
sentation of the form

βββ = βββR +βββN

Where βββR ∈ R(XT ) and βββN ∈ N (X). A summary of the four fundamen-
tal subspaces from a rank-retaining factorization, X = GH, is given in
Table 3.1

Subspace Basis Dimension Specification
R(X) G n× r
N (XT ) K n× (n− r) GTK = 0
R(XT ) L p× r LTZ = 0
N (X) Z p× (p− r) HTZ = 0

Table 3.1: The four subspaces

The theory above is from [18] pp. 17-20, p. 241.

3.2.2 Rank-retaining factorizations

Let X be a nonzero n× p matrix of rank r. When X has full column rank
(r = p), any solution of y = Xβββ is unique. In contrast there are infinitely
many solutions if r < p. It can be desirable to compute the solution of
minimum Euclidian length (MLLS). The procedures to be described are
required only when r < p, see [18] pp. 187-196. Any n × p matrix X can
be written as X = GH, where G is n × r and H is r × p both with rank
r, [18] p. 187. This rank-retaining form of writing X is used to derive a
representation of the MLLS solution. G has linearly independent columns
and H has linearly independent rows, which means that the matrices GTG
and HHT are r × r and nonsingular. Assume the existence of a vector
βββ (now representing the MLLS solution) satisfying Xβββ = y that lies in
R(XT ), i.e., such that βββ = XTv for some vector v. Since y lies in R(X) it
also lies in R(G), so we have y = Gs for a unique r-vector s. Substituting
the expressions X = GH, βββ = XTv and y = Gs into the relation Xβββ = y,
we have

Xβββ = XXTv = GHHTGTv = Gs = y (3.10)
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Because G has linearly independent columns it can be cancelled from both
sides of (3.10), which gives

HHTGTv = s or GTv = (HHT )−1s (3.11)

Recall the assumption βββ = XTv, and XT = HTGT , then a new expression
for βββ is obtained by multiplying (3.11) with HT

βββ = HTGTv = HT (HHT )−1s or (3.12)

βββ = HT z , where HHT z = s and Gs = y (3.13)

For the Least Squares problem,(3.2), that determines the smallest possible
Euclidian norm of the residuals, ρρρ = y −Xβββ, ρρρ and y are both n-vectors
and can according to 3.2.1 be written as:

y = yR + yN , where yR = XyX (3.14)

ρρρ = ρρρR + ρρρN , where ρρρR = XρρρX (3.15)

here the notation cX refers to any p-vector satisfying cR = XcX . Combin-
ing the definition of ρρρ as y −Xβββ with (3.14) and (3.15) we have

ρρρ = ρρρR + ρρρN = y −Xβββ = yR + yN −Xβββ

= yR −Xβββ + yN

According to the definition of range and null-space, 3.2.1, the range-space
and null-space components of the residual must satisfy

ρρρR = yR −Xβββ and ρρρN = yN

Since yN is retained in its entirety in the residual, ‖y − Xβββ‖2 will be
minimized when the two-norm of its range-space component, ‖yR −Xβββ‖2
is as small as possible. Since yR ∈ R(X) by definition, a vector βββ must
exist such that Xβββ = yR. For this βββ the entire range-space component
of y is removed by subtraction of Xβββ, which means that y − Xβββ = yN ,
and the Euclidian norm of the residual is equal to its lower bound ‖yN‖2.
This leads to two equivalent characterizations of the optimal Least Squares
solution

βββ minimizes ‖y −Xβββ‖22
if and only if XT (y −Xβββ) = 0 (3.16)

and

if and only if Xβββ = yR and y −Xβββ = yN (3.17)
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see [18] pp. 218-220. (3.17) shows that the MLLS solution must be the
solution to the system Xβββ = yR. In the expressions (3.12) and (3.13),
one only needs to replace y with yR. These expressions cannot be used
directly to find the MLLS solution since the Least Squares problem, (3.2),
is stated in terms of the vector y itself, and not its range-space component
yR. Therefore we need to obtain the vector s satisfying Gs = yR from the
original vector y. N (XT ) and N (GT ) are the same, so GTv = 0 for any
vector in N (XT ). Since yN ∈ N (XT ) it follows that

GTy = GT (yR + yN ) = GTyR (3.18)

With the substitution of y with yR in (3.12) and (3.13), yR is defined as
Gs

GTGs = GTyR = GTy (3.19)

Since GTG is nonsingular, it follows that s must be the unique solution of

GTGs = GTy namely s = (GTG)−1GTy (3.20)

Now yR can be defined as

yR = Gs = G(GTG)−1GTy (3.21)

Substituting the expression for s in (3.12) we have obtained a representation
for the MLLS solution expressed only in terms of G, H and y:

βββ = HT (HHT )−1s = HT (HHT )−1(GTG)−1GTy (3.22)

Any ill-conditioning in X will be reflected in G and H, and the occurrence
of GTG and HHT can cause numerical difficulties. There are several rank-
retaining forms of X that can be used to avoid this problem.

3.2.3 The complete orthogonal factorization

The rank-retaining form, X = GH, of the QR factorization is

X = QrRPT , with G = Qr and H = RPT

where Qr (the first r columns of the orthogonal matrix Q) has orthonormal
columns, R is an r × p upper triangle, and P is a permutation. The
orthogonality of the columns of Qr means that the product GTG is simply



3.2 Minimum Length Least Squares 21

QT
r Qr = Ir, where Ir is the r-dimensional identity matrix. The expression

GTG−1GT appearing in (3.20) simplifies, and s and yR, (3.21), are given
by

s = QT
r y and yR = QrQ

T
r y (3.23)

The matrix HHT is RPTPRT = RRT , so the identical expression for the
MLLS solution, (3.22), is

βββ = PRT (RRT )−1QT
r y (3.24)

If X is ill-conditioned this result will also be numerically unstable due to
the matrix RRT . The way to deal with this problem is to split R into R11

and R12, where R12 has p− r columns. If R happened to be non-singular,
(i.e., if R12 were of dimension zero), then RRT would disappear:

(RRT )−1 = R−TR−1 , so that RT (RRT )−1 = RTR−TR−1 = R−1

An orthogonal matrix V that annihilates R12 when applied to R on the
right, can be constructed by a sequence of Householder transformations,
(see [18] pp. 121-122)

RV =
(

R11 R12

)
V =

(
R̄ 0

)

where R̄ is an r× r non-singular upper triangle matrix. Since V is orthog-
onal the following holds

R =
(

R̄ 0
)
VT

and RRT can be expressed as

RRT =
(

R̄ 0
)
VTV

(
R̄T

0

)
=
(

R̄ 0
)( R̄T

0

)
= R̄R̄T (3.25)

The expression RT (RRT )−1, from (3.24), can be written as:

RT (RRT )−1 = V

(
R̄T

0

)
(R̄R̄T )−1 = V

(
R̄−1

0

)
(3.26)

The undesirable RRT appears no longer and the MLLS solution in (3.24)
can now be written as:

βββ = PV

(
R̄−1

0

)
QT
r y = PV

(
R̄−1QT

r y
0

)
(3.27)



22 Chapter 3. Calibration and the Least Squares method

So by first computing the QR factorization of X and then reducing R it
is possible to compute the MLLS solution without squaring the condition
number. The complete orthogonal factorization of X leads to the rank-
retaining factorization

X = GH , with G = Qr and H =
(

R̄ 0
)
VTPT

3.2.4 The Singular Value Decomposition

The Singular Value Decomposition, SVD, is also a complete orthogonal
decomposition. It is another way to handle the MLLS problem with an
ill-conditioned data-matrix X. if X is a real n× p matrix, then there exist
orthonormal matrices U = [u1, . . . , un] ∈ Rn×n and V = [v1, . . . , vp] ∈
Rp×p such that

UTXV = Σ = diag(σ1, . . . , σt) ∈ Rn×p, σ1 ≥ · · · ≥ σt ≥ 0 (3.28)

where t = min(n, p). The σj are the singular values of X. The vectors uj
and vj are the j th left singular vector and the j th right singular vector,
respectively. For proof see [19] Thm. 2.5.1.

The SVD reveals a great deal about the structure of a matrix. If the SVD
of X is given as above, and r is defined as

σ1 ≥ · · · ≥ σr > σr+1 = · · · = σt = 0

then

rank(X) = r,

R(X) = R([u1, · · · , ur]),
N (X) = R([vr+1, · · · , vp]),

Rr(X) = R(XT ) = R([v1, · · · , vr]),
Nr(X) = N (XT ) = R([ur+1, · · · , un])

which are the four fundamental subspaces from Table 3.1. Moreover if
Ur = [u1, . . . , ur], Σr = diag(σ1, . . . , σr) and Vr = [v1, . . . , vr] then the
SVD expansion of X is

X = UrΣrV
T
r =

r∑

j=1

σjujv
T
j (3.29)
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see [19] p. 72. From (3.28) it follows that

XTX = VΣTΣVT (3.30)

XXT = UΣΣTUT . (3.31)

Thus σ2
j = 1, . . . , t are eigenvalues, λ, of the symmetric matrices XTX and

XXT , and vj and uj are the corresponding eigenvectors.

The rank-retaining form X = GH of the SVD is

X = GH , with G = Ur and H = ΣrV
T
r (3.32)

Due to the orthogonality of U and V, GTG = Ir and HHT = ΣrΣ
T
r . By

inserting this into (3.22) a new expression for the MLLS solution is derived

βββ = VrΣ
−1
r UTy =

r∑

j=1

uTj y

σj
vj (3.33)

which minimizes ‖y−Xβββ‖2 and has the smallest 2-norm of all minimizers.
For the proof see [19] Thm. 5.5.1.

3.2.5 Moore-Penrose generalized inverse

The SVD can be used to define a matrix X+ ∈ Rp×n which will be referred
to as the Moore-Penrose generalized inverse or the pseudo-inverse of X:

X+ = VΣ−1UT (3.34)

where

Σ−1 = diag

(
1

σ1
, . . . ,

1

σr
, 0, . . . , 0

)
∈ Rp×n

(3.33) can now be written as

βββ = X+y (3.35)

Typically, X+ is defined to be the unique matrix A ∈ Rp×n that satisfies
the four Moore-Penrose conditions

(i) XAX = X (iii) (XA)T = XA
(ii) AXA = A (iv) (AX)T = AX

(3.36)
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see [10] p. 1.35. Combining (ii) and (iii) with (3.34), one gets

βββ = X+y = X+(XT )+XTy (3.37)

= VΣ−1UTU(ΣT )−1VTXTy (3.38)

= V(ΣTΣ)−1VTXTy (3.39)

which resembles more the OLS expression from (3.4), [62].
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Chapter 4

Regularization methods

4.1 Introduction

In the case of more explanatory variables than observations, (n < p), the
MLLS is known as a regularization method or shrinking method. These
methods produce biased estimates but with smaller variance. It is still
Least Squares estimation where we minimize the residual sum of squares,
but now with a limit on the squared length of β̂ββ. The new cost function
can be written as

β̂ββ = arg min
β

[(y −Xβββ)T (y −Xβββ)] subject to

p∑

j=1

β2
j ≤ t. (4.1)

where the constraint
∑p

j=1 β
2
j ≤ t is equivalent to the addition of a penalty

term λ
∑p

j=1 β
2
j , where λ is the Lagrange multiplier varying with the bound

t on the norm of the parameters, see [60].

β̂ββ = arg min
β

[
(y −Xβββ)T (y −Xβββ) + λ

p∑

j=1

β2
j

]
(4.2)

See [57] and [64]. The most popular regularization methods are Ridge
Regression, (RR), Principal Component Regression, (PCR), and Partial
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Least Squares regression, (PLS). In the notation of Frank and Friedman,

[15], the estimator, β̂ββ, for these three methods can be expressed in a general
form by using (3.30) to express XTX as

XTX =

r∑

j=1

λjvjv
T
j (4.3)

where λj are the positive eigenvalues of XTX, then

β̂ββ =

r∑

j=1

f(λj)α̂jvj ; α̂j =
1

λj
zj (4.4)

where f(λj) are shrinkage factors, the α̂j are the coefficients of the OLS
estimator in the principal directions vj and the zj = vTj XTy are the canon-
ical covariances, [8]. f(λj) will be derived along with the introduction for
the three aforementioned methods.

4.1.1 Model selection by cross-validation

For comparison of models intended for prediction it is highly inadequate
to look just at model fit. There exist many methods for selecting a model
based on some validation criterion. Cross-validation is a method for model
selection according to the predictive ability of the models. The data set is
split into two parts, where the first part of the data contains nc observations
which are used for fitting a model (calibration), and the second part that
consists of nv = n−nc observations is reserved for assessing the predictive
ability of the model (validation). There are

(
n
nv

)
different ways to split the

data set. Cross-validation selects the model with the best average predictive
ability based on all (or some) different ways of data splitting.

The main focus of researchers’ attention has for a long time been on the
choice nv = 1. This type of cross-validation is called leave-one-out cross-
validation. It has been shown1 that this particular type of cross-validation
is asymptotically equivalent to other methods for model selection, such as
the Akaike information criterion (AIC) (Akaike 1974) [1], the Cp (Mallows
1973) [39], the jackknife and the bootstrap (Efron 1983) [12]. Furthermore,

1Stone 1977a, [55]
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the leave-one-out cross-validation is known to be too conservative in the
sense that it tends to select an unnecessarily large model2.

Five-fold crossvalidation is one of many ways of partitioning the data and
is the method which will be used in the following, it has been suggested by
Breiman, [5], and Shao, [54] as an alternative to the methods mentioned
above. The data is split into five different sets, the calibration part consists
consecutively of 4 different parts, and the validation data is the part left out
of the calibration data. When splitting the data it is important to construct
the groups in a way that the response-variables span approximately the
same levels. For the gasoline example this is achieved by sorting the octane
numbers in ascending order and then numbering them successively from 1
to 5 in order to get five sets that cover approximately the same range.
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Figure 4.1: Partition of the octane observations in the gasoline data

2see [54] p. 486., [5] and [6]
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For comparing the results of the methods we need a measure to judge
the goodness of prediction. In the literature there are several equivalent
measures. Suppose the calibration data is split into s sets then

• RSS =
∑s
i=1(yi − ŷī)

T (yi − ŷī)
• MSEP = RSS/n
• RMSEP =

√
MSEP

where ŷī are the fitted values for the ith split in the cross-validation. See
[7] p. 54 and [56] chap.3. This procedure will be fair if

• the relation between y and x remains the same.
• future x-vectors are alike the calibration ones.

MSEP = E[(y − ŷ)2] = E[(y −Xβ̂ββ)2] (4.5)

= V [y −Xβ̂ββ] + (E[y −Xβ̂ββ])2 (4.6)

see [63]. As seen above it can be an advantage to allow a little bias if
this can reduce the variance. The Root Mean Squared Error of Prediction,
RMSEP, will be used here.

4.2 MLLS applied to gasoline example

The parameter estimate for the MLLS solution based on the full data set
when applied to the gasoline problem is shown in Figure 4.2. The regression
coefficients in Figure 4.2 oscillate wildly with the wavelength at a high
amplitude. This is due to the presence of near-collinearities. The cross-
validated RMSEP-value is shown in Table 4.1

Method ‖β̂ββ‖2 RMSEP
MLLS 217.7 0.34

Table 4.1: RMSEP-value for the MLLS solution.
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Chapter 5

Ridge Regression

5.1 Introduction

The Ridge regression, (RR), method was introduced as a method for sta-
bilizing estimates in the presence of near-collinearity. RR produces a non-
central estimate with smaller variance than the OLS estimate. The idea
of adding a constant to the diagonal elements of the XTX matrix became
popular when presented by Hoerl & Kennard (1970) in [28].

5.2 Theory

Again the linear regression model from (3.7) is considered, with the usual
assumptions about X, βββ and εεε. The Ridge estimate is given as the solution
to (4.2), [19] p. 565, which for k > 0 must satisfy

β̂ββRR = (XTX + kI)−1XTy (5.1)

Adding to XTX a multiple of I has a stabilizing effect, [15]. For k = 0 the
Ridge estimate will be identical to the OLS estimate. See [28] p. 57, [7]
p. 56, [10] p. 4.61 and [11] chap.6.7. The relationship of a Ridge estimate,
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β̂ββRR, to an OLS estimate, β̂ββ, is given by the following linear transformation

β̂ββRR = (I + k(XTX)−1)−1β̂ββ (5.2)

= Zβ̂ββ (5.3)

β̂ββRR is not unbiased since

E[β̂ββRR] = Zβββ

[10] p. 4.61. The covariance matrix of β̂ββRR is

V [β̂ββRR] = σ2(XTX + kI)−1XTX(XTX + kI)−1 (5.4)

[10] p. 4.61. Here it is obvious that for k → ∞ we have V [β̂ββRR] → 0.

To look at β̂ββRR from the point of view of mean square error the following
expression is obtained by application of the expectation operator and (5.2)

E[L2
1] = E[(β̂ββRR −βββ)T (β̂ββRR −βββ)] (5.5)

= E[(β̂ββ −βββ)TZTZ(β̂ββ −βββ)]

+ (Zβββ −βββ)T (Zβββ − βββ)
(5.6)

= σ2trace(XTX)−1ZTZ

+βββT (Z− I)T (Z− I)βββ
(5.7)

= σ2[trace(XTX + kI)−1

− ktrace(XTX + kI)−2]

+ k2βββT (XTX + kI)−2βββ

(5.8)

= σ2

p∑

i=1

λi
(λi + k)2

+ k2βββT (XTX + kI)−2βββ

(5.9)

[28] p. 60, where the last part of (5.9) is the squared distance from Zβββ to βββ.
It will be zero when k = 0, since Z is then equal to I. Thus k2βββT (XTX +

kI)−2βββ can be considered the square of a bias introduced when β̂ββRR is used

instead of β̂ββ. The first term in (5.9) can be shown to be the total variance
of the estimate. From (5.2) and (5.4) we get

V [β̂ββRR] = Z(XTX)−1XTV [y]X(XTX)−1ZT

= σ2Z(XTX)−1ZT
(5.10)
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The sum of the diagonal elements of (5.10) is the sum of all variances of

β̂ββRRi . The total variance decreases as k increases while the squared bias

increases with k. By noticing that σ2
∑p
i=1

λi
(λi+k)2 is a decreasing function

of k, while k2βββT (XTX + kI)−2βββ is increasing, we have that there exist

values of k for which the mean square error is less for β̂ββRR than for β̂ββ, [10]
p. 4.61-62, [11] p. 316 and [28] p. 60.

By using the SVD, (3.29), it is clear that (5.1) can be expressed as

β̂ββRR = (VΣ2VT + kI)−1XTy ; k > 0 (5.11)

by adding k to the diagonal elements of Σ2 (5.11) can be written as

β̂ββRR =

r∑

j=1

1

λj + k
vTj XTyvj ; k > 0 (5.12)

this means that the function f(λ), in (4.4), determining the shrinking fac-
tors must be

f(λ) =
λ

λ+ k
; k > 0 (5.13)

Relating this to (4.4) where α̂j represents the unbiased OLS estimate, it is
clear that RR is a shrinking method. The method is now clear, by itera-
tively selecting values of k > 0, we introduce a small bias and substantially
reduce the variance, thereby improving the RMSEP-value. The optimal
value of k is found for the smallest RMSEP-value.

5.3 Bayesian Motivation

For RR the parameters βi are assumed to be independent normally dis-
tributed with mean zero and known variance σ2

β . The posterior density of
βββ is proportional to the likelihood times the prior, that is, proportional to

exp(−1/2){(y−Xβββ)T (y −Xβββ)/σ2 +βββTβββ/σ2
β} (5.14)

The exponential argument is quadratic in βββ and thus βββ is normal a poste-
riori. Completing the square in the quadratic form in βββ this multivariate
normal posterior has mean β̂ββRR and covariance matrix

σ2(XTX + kI)−1 (5.15)
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where k = σ2/σ2
β. If σ2

β is very large then the prior variances of the βi

are large and k is near zero, whence the posterior mean, β̂ββRR, approaches
the MLLS solution. The implication of this Bayesian motivation is that
the Ridge estimator will tend to do well if these prior assumptions are
met. For RR to perform optimal the regression coefficients should be clus-
tered around zero and look like a random sample from a zero mean normal
distribution, [7] p. 61.

5.4 Ridge applied to gasoline example

For the Ridge method the optimal model was found by iterating through
values of k chosen on an equally spaced grid on the logarithmic scale, see
Figure 5.1.

10
−4

10
−3

10
−2

0.235

0.24

0.245

0.25

0.255

0.26

0.265

0.27

0.275

0.28

0.285

R
M

S
E

P

log10(k)

Figure 5.1: RMSEP as a function of log10(k)
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Method Regularization parameter ‖β̂ββ‖2 RMSEP

Ridge k = 0.002 ‖β̂ββ‖2 = 27.48 0.24

Table 5.1: Result for Ridge Regression.

For k = 0.002 the Ridge method is applied to the full data set, and the
resulting parameter estimate can be seen in Figure 5.2. It is clear to see
how the variation in the parameter estimate decreases when k increases.
Remember that Ridge regression approximates the MLLS estimate1 for
k → 0.

The Ridge method provides a smoother parameter estimate than MLLS.
To see this consider the SVD of X: (X = UΣVT ). In the gasoline example
the singular values range from 1.61 to 0.002, the rows of X are weighted
averages of the columns of the right singular vectors, V. Figure 5.3 shows
the first three and the last three columns of V. Note that the columns
corresponding to the larger singular values are much smoother than the
columns corresponding to the smaller singular values.

The MLLS estimate which in (3.33) was formulated as βββ = VrΣ
−1
r UT

r y will
obviously tend to be rough, since the rougher columns of V are multiplied
by larger elements of Σ−1. Providing that k is not chosen too small, the
Ridge estimate, (5.11), will be smoother since the rough columns of V have
smaller multipliers, see [22].

1See Figure 4.2
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Chapter 6

Principal Components
Regression

6.1 Introduction

Principal Components Regression, PCR, forms a new set of canonical vari-
ables by canonical variance analysis of XTX. The new variables, called
the principal components, are used to predict the response variables. As
shown earlier the variance of the least squares estimate becomes very large
when the x-variables are almost linear dependent. In PCR this is avoided
by choosing a smaller amount of the canonical variables.

6.2 Theory

By using the spectral decomposition, SVD, we can define the PCR estimate
as:

β̂ββPCR =

( K∑

j=1

(1/λj)vjvj
T

)
XTy ;K = 1, . . . , r (6.1)

where vj are the eigenvectors of XTX and λj are the corresponding eigen-
values. r is the rank of XTX and corresponds to the number of nonzero
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eigenvalues. The singular value decomposition, SVD, leads to a new ex-
pression for (3.7)

t = UTy = ΣVTβββ + UTεεε (6.2)

Due to the properties of U the error term is unaffected by this transforma-
tion. Using (3.34) and letting VTβββ = ααα, the model becomes

tj =
√
λjαj + εj , j ≤ K (6.3)

tj = εj , j > K (6.4)

[7] p.58. The PCR estimate, α̂PCR, of this model is

α̂j,PCR =
tj√
λj
, j ≤ K (6.5)

α̂j,PCR = 0, j > K (6.6)

For α-coefficients corresponding to zero eigenvalues the least squares esti-
mator is indeterminate, but is zero for the minimum length least squares
estimator. Thus the PCR estimate is equal to the MLLS estimate if all
the eigenvalues are used, otherwise α̂PCR is shrunken towards zero. The
shrinking function f(λ) from (4.4) is obviously

f(λ) = 1 ;λj ≥ λK (6.7)

= 0 ;λj < λK (6.8)

6.3 Selection principles

In most applications of PCR, principal components (PC’s) are included in
regression models in sequence according to respective variances, i.e. the
magnitude of singular values associated with respective PC’s. A suitable
number of PC’s is determined by the predictive ability obtained through
cross-validation. This principle of selection is often referred to as top-down
selection, e.g [36]. In [29] it is concluded that other selection principles are
necessary, since there is no guarantee that the low-variance components are
unimportant. Brown, [7] briefly mentions another selection strategy that
includes those PC’s most correlated with the response variables. This strat-
egy has been investigated in [36], it will here be denoted Correlation-PCR,
(CPCR). A third selection strategy from [36] is called Forward Selection
PCR (FSPCR). The FSPCR can be described as follows:
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Step 1: Compute all the PC’s of X using a SVD as done with PCR and
CPCR.

Step 2: Determine the first PC producing the minimum RMSEP-value in
a cross-validation, or for another chosen criterion.

Step 3: Based on this best single PC subset, the best two PC subset is iden-
tified as the one providing the minimum criterion from all possible
two PC combinations containing the best single PC.

Step 4: Analogous to step 3, the best third PC to augment the best two
PC subset is identified.

Step 5: The process continues until all PC’s have been included in the
model. The best model should be that with the lowest criterion.

The underlying assumption of FSPCR is that the most predictive compo-
nents should be included in the model in the early stage of the sequential
process and should not be excluded from the model as the number of PC’s
increases.

It is important to mention that the FSPCR method should only be com-
pared when an external validation set is present. FSPCR based only on
the cross-validated RMSEP-values tend to adapt to specific features of the
data1. For PCR and CPCR the number of components is determined by
use of cross-validation whereas for FSPCR the cross-validation is used to
determine which components are to be included in the model. This can
result in overfitting and therefore a fair comparison of the methods is not
possible without an external validation set. Nevertheless the results for the
FSPCR method applied to the gasoline example are shown.

6.4 PCR applied to gasoline example

The PCR methods are tested for a number of principal components. The
result of this is seen in Figure 6.1.

1See [36] p.22
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Figure 6.1: The RMSEP value is plotted as a function of the number of
principal components. The optimal number of principal components for the
PCR-method is 13, for the CPCR-method it is 7, and the FSPCR-method
has it’s minimum RMSEP-value for 26 components.

Method Regularization parameter RMSEP
PCR No. of comps.= 13 0.23
CPCR No. of comps.= 7 0.26
FSPCR No. of comps.= 26 0.17

Table 6.1: Results for PCR, CPCR and FSPCR
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Figure 6.2: The β̂ββ estimate plotted for the three methods . Notice the in-
crease in the variation of β̂ββ when PC’s corresponding to the smaller eigen-
values are chosen.

Table 6.2: Order of the PC’s chosen by the methods, (only the first
15 PC’s are shown). The absolute correlation is also shown.

FSPCR order CPCR order |r|
4 4 0.7155
3 3 0.5185
1 1 0.4358
2 2 0.0794
10 9 0.0731
41 11 0.0587
5 42 0.0378
38 12 0.0370
29 17 0.0316
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46 25 0.0305
40 5 0.0297
39 38 0.0295
42 27 0.0260
27 30 0.0241
8 37 0.0227

6.4.1 Comments to the PCR methods

FSPCR and CPCR perform better than PCR for the first several PC’s.
After this, CPCR produces worse results compared to PCR. The first 4
principal components are the same for all three methods. Comparing the
PCR and the CPCR method reveals that the top-down selection in this case
is the best choice for choosing the principal components. The parameter
estimates for Ridge and PCR look very much alike, see Figure 5.2 and 6.2.
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Chapter 7

Partial Least Squares
Regression

7.1 Introduction

Partial Least Squares regression, (PLS), was first introduced in the 1960s by
Herman Wold. PLS uses a number of factors as well as PCR. In PCR only
the explanatory variables are used to form these, (principal components),
whereas in PLS the calculation of the factors uses both the explanatory
and the response variables, (found by canonical covariance analysis on X
and y). PLS is often just presented as an algorithm. The original PLS
algorithm , [24], has been shown to be related to the conjugate gradient
method1 for inverting matrices, by S. Wold, [61], this relation has been
explored in detail by Manne (1987), [40].

1See [19] pp.519-523
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7.2 Theory

The matrix X of n observations on p explanatory variables can be described
in a bilinear factor form

X = t1vT1 + t2vT2 + · · ·+ tKvTK + εεεK (7.1)

where ti is of length n and vi is a p-vector. The idea behind PLS is that the
relationship between X and y is conveyed through the orthogonal factors,
thus we have

y = t1b1 + t2b2 + · · ·+ tKbK + fK (7.2)

for scalar bi. Conditions need to be imposed for uniqueness. Forcing ti
to be mutually orthogonal in Rn and vi to be mutually orthogonal in Rp
will lead to the traditional PCR which bases choice on eigenvalues, since
then ti would be the eigenvectors of XXT and vi the eigenvectors of XTX,
i.e the factors are based on X alone. Due to this property there are two
different algorithms for PLS depending on whether ti or vi are determined
as orthogonal. They both lead to the same result. The algorithm presented
below is based on ti being orthogonal in Rn.

7.3 PLS-algorithm

In [7] and [24] PLS is described as a two-stage approach. The first stage
of PLS determines the K ≤ r, r = min(n, p), factors ti of length n to be
included in the regression. The ith factor ti = Xwi is chosen to maximize
tTi y subject to the constraints that |wi| = 1 and that ti is orthogonal
to the space spanned by the basis {t1, t2, . . . , ti−1}. In the second stage
ordinary least squares is applied to the regression of y on the factors ti, i =
1, 2, . . . ,K. Imposing the condition that the scores, ti, are to be orthogonal
in Rn gives the following algorithm, [24] p.588. By choosing a maximum
number of, K, factors, the aim now is to find representations of (7.1) and
(7.2). By writing εεε0 = X and f0 = y one must have

εεεi = εεεi−1 − tiv
T
i (7.3)

fi = fi−1 − tibi (7.4)
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for i=1,. . .,K. ti, vi and bi are determined by induction. ti is deter-
mined as a linear combination of the x-residuals from the previous step. In
particular for i=1

t1 =

p∑

j=1

xjwj1 = Xw1 (7.5)

where w1 is a p-dimensional weight-vector. To secure that t1 is highly
correlated with y, the choice for each component wj1 is made proportional
to the covariance between xj and y

wj1 = xTj y, i.e.: w1 = XTy (7.6)

so in general
ti = εεεi−1wi (7.7)

wi = εεεTi−1fi−1 (7.8)

then vi and bi are determined such that a best possible fit in (7.3) and
(7.4) is obtained. For i=1, the best possible fit to y = t1b1 + f1 is given by
the regression coefficient b1 = yT t1/t

T
1 t1. So in general

vi = εεεTi−1ti/t
T
i ti (7.9)

bi = fTi−1ti/t
T
i ti (7.10)

The new residuals, εεεi and fi are then found from (7.3) and (7.4). The
second stage of PLS regresses y on the factors ti, i = 1, 2, . . . ,K. This
involves minimizing the sum of squares

(
y −

K∑

i=1

biti

)T(
y −

K∑

i=1

biti

)
= (y −XβββPLS)T (y −XβββPLS) (7.11)

with respect to bi, where βββPLS =
∑K

i=1 biwi is the PLS parameter vector,
[8]. If now x0 = (x01, x02, . . . , x0p)

T is a new spectrum, and e0 = x0 − x̄
with x̄ = (x̄1, . . . , x̄p)

T , then the factors and residuals are

ti0 = eTi−1wi, ei = ei−1 − ti0vi (7.12)

and prediction of the corresponding unknown response-variable is then

ŷK0 = ȳ +

K∑

i=1

ti0bi = ȳ +

K∑

i=1

ti0(tTi ti)
−1tTi y (7.13)
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where K is based on some cross-validatory method, [24]. From [24] p. 595
we have that

span{w1, . . . , wK} = span{XTy, (XTX)XTy, . . . , (XTX)K−1XTy}
(7.14)

which in the numerical litterature is known as a Krylov sequence2. The di-
mension of the space spanned by this sequence will be the maximal number
of factors that the PLS-algorithm can give, which is equal to the number
of eigenvectors in XTX with non-zero components along XTy.3 So an
alternative form for β̂ββPLS is

β̂ββPLS =

K∑

i=1

γ̂i(X
TX)i−1XTy (7.15)

where the parameters γ̂i minimize equation (7.11), [8]. Using the SVD of

X, it follows from [15], that β̂ββPLS is given by (4.4) with shrinkage funtion

f(λ) =

K∑

i=1

γ̂iλ
i (7.16)

see [15] and [8].

An interesting aspect of the PLS solution is that (unlike RR and PCR)
it not only shrinks the OLS solution in some eigendirections (f(λ) ≤ 1)
but expands in others (f(λ) > 1). For a K-component PLS solution the
OLS solution is expanded in the subspace defined by the eigendirections
associated with the eigenvalues closest to the Kth eigenvalue. Directions
associated with somewhat larger eigenvalues tend to be slightly shrunk, and
those with smaller eigenvalues are substantially shrunk, see [15] p. 121.

7.4 PLS applied to gasoline example

The RMSEP-values for different number of PLS components is shown in
Figure 7.1. The result is shown in TABLE 7.1.

2See [19] pp. 476-477
3See [24] p. 595.
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Figure 7.1: The RMSEP value is plotted as a function of the number of
PLS factors. The optimal number of PLS factors is 7.
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Figure 7.2: Parameter estimate, β̂̂β̂β, for PLS.

Method Regularization parameter RMSEP
PLS No. of comps.= 7 0.23

Table 7.1: Result for PLS.
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PLS obtains the same RMSEP-value as PCR. PLS uses 7 components com-
pared to the 13 principal components which was optimal for PCR.

7.5 Summary of Ridge, PCR and PLS

Ridge regression, PCR and PLS are seen to operate in a similar fashion.
Their principal goal is to shrink the parameter estimate away from the
MLLS solution. It is shown above how the methods produce biased esti-
mates. The effect of this bias is to pull the parameter estimate away from
the MLLS solution toward directions in which the data have larger spread.
The degree of this bias is regulated by the value of the model selection
parameter. For Ridge regression, setting k = 0 yields the MLLS solution,
whereas k > 0 introduces increasing bias along with increased shrinkage of
the length of the parameter estimate. In PCR the degree of bias is con-
trolled by the value of K, that is the number of eigenvectors used in (6.2).
If K = r, (rank of XTX), one obtains the MLLS solution. For K < r,
bias is introduced. For PLS the situation is similar to that of PCR. The
degree of bias is regulated by the number of components used. The MLLS
solution is obtained for K = r.

Frank & Friedman, [15] and Helland, [24]4, have done a thorough compar-
ative study on the behavior of the three methods. Their general conclusion
is that when the methods are applied to problems involving data with high
collinearity in which the variance of the estimates tends to dominate the
bias, the solutions and hence the performance tends to be quite similar.
That PLS uses fewer components than PCR is generally seen when the
methods are used for calibration purposes. In any case, either method
is free to choose its own number of components (bias-variance trade-off)
through cross-validation. Both PCR and PLS span a full (but not the
same) spectrum of models from the most biased to the least biased (MLLS
solution). The fact that PLS tends to balance this trade-off with fewer
components is (in general) neither an advantage nor disadvantage5.

4Helland focuses solely on PCR and PLS.
5See [15] p. 122 and [24] p. 602.
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Chapter 8

Cyclic Subspace Regression

8.1 Introduction

Cyclic Subspace Regression, CSR [33], makes explicit mathematical con-
nections between PCR, PLS and MLLS. The theory leads to a simple algo-
rithm that provides not only solutions for PCR, PLS and MLLS but also a
finite number of other related methods. CSR also shows that the methods
differ only in the amount of information used from the calibration data.
The motivation for developing this algorithm comes from the work done by
Manne, [40] & Helland, [24] where it is shown that PLS is tied to a cyclic
subspace of the matrix XTX, see (7.14). The main idea of CSR is to start
with a complete singular value decomposition of X and then to generate
subspaces of the full row and column spaces by a Krylov procedure.1

For methods like PCR and PLS the parameter estimate in (3.7) can be
written as

β̂̂β̂β = R(RTXTXR)−1RTXTy (8.1)

for some (p×K) matrix R defining the subspace onto which x is projected,
[26] p. 239. PCR results from (8.1) by letting the columns of R be K
eigenvectors of (XTX). As shown by Helland, [24], PLS fits into (8.1) by
taking R = (XTy, (XTX)XTy, . . . , (XTX)K−1XTy)

1See [19] pp. 476-477.
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8.2 Theory

In what follows it is assumed that X is n× p, y is n× 1, and βββ is p× 1. A
linear relationship of the form y = Xβββ is believed to hold and rank(X) =
r ≥ 1. Then the matrices XTX and XXT have r nonzero eigenvalues, λ.
Associated with these eigenvalues are two sets of orthonormal eigenvectors.
Let U and V denote these, see 3.2.4. Recall from 3.2 that y can be written
as y = yR + yN . By combining (3.23) and (3.32) yR can be written as

yR =

r∑

i=1

yTuiui (8.2)

This representation of y combined with the SVD of X implies that

XTy =
r∑

i=1

σiy
Tuivi (8.3)

where σi =
√
λi. Now let l be a fixed integer satisfying 1 ≤ l ≤ r and form

the following vector

βββl = XTUUTy =

l∑

i=1

σiy
Tuivi (8.4)

where l signifies the amount of information extracted from the singular
directions v1, . . . ,vr in (8.4). Associated with βββl is the following l-dimen-
sional cyclic XTX-invariant subspace of R(XT )

Xl = span{βββl, (XTX)βββl, . . . , (X
TX)l−1βββl} (8.5)

which is tied to the theory regarding PLS, see (7.6) and (7.14). Let j be a
fixed integer satisfying 1 ≤ j ≤ l ≤ r. Define

Aj
l = (βββl, (X

TX)βββl, . . . , (X
TX)j−1βββl) (8.6)

and set
Bj
l = XAj

l (8.7)

Aj
l is a p × j matrix obtained by using the first j vectors from the above

representation of the subspace Xl. The notation on Bj
l identifies that it

results from Aj
l . (8.4) always has a unique solution in R(XT ). Suppose
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βββl in (8.4) is sought from a particular subspace W ∈ R(XT ). Then (8.4)
may be incapable of producing such a solution as the unique solution in
R(XT ) may not live in W . To assure that such a solution can be found it
is necessary to form the matrix

Aj
l

(
(Aj

l )
TAj

l

)−1
(Aj

l )
T (8.8)

which is a projection of Rp onto W ∈ R(XT ). Having set Bj
l = XAj

l the
following matrix

Bj
l

(
(Bj

l )
TBj

l

)−1
(Bj

l )
T (8.9)

is a projection of Rn onto R(XAj
l

(
(Aj

l )
TAj

l

)−1
(Aj

l )
T ). The equation

Bj
l

(
(Bj

l )
TBj

l

)−1
(Bj

l )
Ty = XAj

l

(
(Aj

l )
TAj

l

)−1
(Aj

l )
Tβββ (8.10)

has a unique solution coming from the sought subspace W ∈ R(XT ) spec-
ified by the factors l and j. The parameter estimate of the CSR, βββCSR,
from use of the first j factors taken from the l-dimensional subspace Xl

can now be written as

βββCSR = Aj
l

(
(Bj

l )
TBj

l

)−1
(Bj

l )
Ty (8.11)

see [33]. By varying l and j this procedure can produce (r2 + r)/2 differ-
ent parameter estimates. As mentioned in the introduction this algorithm
produces results for PCR and PLS amongst others. Results generated by
CSR corresponds to PCR when l = j, PLS when l = r, and MLLS when
l = j = r, see [33].

8.3 CSR applied to gasoline example

The (r2 + r)/2 models were generated, and based on the RMSEP-values
from the five-fold cross-validation, the best model was found to be the one
consisting of 7 factors based on 19 eigenvectors from the SVD. The result
is shown in Table 8.1.
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Figure 8.1: Parameter estimate, β̂̂β̂β, for CSR.

Method Regularization parameter RMSEP
CSR No. of eigenvectors and factors = 19 and 7 0.23

Table 8.1: Results for CSR.
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Chapter 9

Subset Selection

9.1 Introduction

Subset Selection, (SS), is a variable selection method which focuses on se-
lecting a number of coefficients and to set others to zero. SS can provide
easily interpreted models and aids the reduction in variance of the regres-
sion estimator, β̂ββ.

Miller, [43], has given some reasons for using only a subset of the available
variables:

• to estimate or predict at a lower cost by reducing the number of
variables on which the data are to be collected;
• to predict more accurately by eliminating uninformative variables;

and
• to estimate regression coefficients with smaller standard errors (par-

ticularly when some of the variables are highly correlated).

9.2 Theory

The regression problem may be solved using subset selection as follows,
[44]. Given a set of explanatory variables X1, X2, . . . , Xp, the aim is to find
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a subset of variables X(1), X(2), . . . , X(k), with k < p that minimizes

S =
n∑

i=1


yi −

k∑

j=1

β̂(j)xi(j)




2

(9.1)

where xi(j) is the ith observation of the variable X(j) in the final subset

of selected variables. β̂(j) is the least squares regression coefficient for the
corresponding selected variable. Determining the optimal value of k is an
ongoing problem, and more details on defining correct stopping rules can
be seen in [44]. The problem of finding the optimal set of explanatory
variables is a 2p problem, where p is the number of measured wavelengths.
This is a very computational demanding problem which has spurred the
development of a number of more or less heuristic selection methods. One
of these methods is forward selection. For this method the first variable
selected is the variable Xj for which

S1 =

n∑

i=1

(
yi − β̂jxij

)2

(9.2)

is minimized, where β̂j minimizes S1 for variable X(j). β̂j is given by

β̂j =

∑n
i=1 xijyi∑n
i=1 x

2
ij

(9.3)

This leads to the following value of S1

S1 =

∑n
i=1 y

2
i − (

∑n
i=1 xijyi)

2

∑n
i=1 x

2
ij

(9.4)

and hence the first selected variable is the one that maximizes

(
∑n

i=1 xijyi)
2

∑n
i=1 x

2
ij

=
‖xTj y‖21
‖xj‖22

(9.5)

Dividing this expression by ‖yi‖2 the cosine of the angle between xj and
y is obtained, since the mean has been subtracted from each variable this
value represents the correlation between the variable Xj and the response
y, see [44] p. 45.
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This first selected variable, which is forced into all further subsets, is de-
noted X(1). The residuals y − x1β̂1 are orthogonal to X(1). Therefore in
order to work out which variable is to be included next, the orthogonal
space to X(1) is searched. From each variable, Xj , other than the one
already selected the following expression is formed

xj.(1) = xj − β̂j.(1)x1 (9.6)

where β̂j.(1) is the least squares coefficient of Xj on X(1). Now in expression

(9.5) y is replaced with y − x(1)β̂(1) and xj is replaced with xj.(1). The
variable Xj.(1) which maximizes (9.5) is the next to be included. This
ensures that the new variable selected is that which has the largest partial
correlation in absolute value with y after X(1) has been fitted, see [44] p.
46. This process is repeated until a subset of variables X(1), X(2), . . . , X(k)

has been selected.

This procedure is advantageous because the required sums of squares and
vector products can be obtained from previous calculations, making the
whole process less computationally expensive.

Other subset selection methods exist, such as Efroymson’s algorithm (step-
wise regression) and backward elimination of variables, see [44], [11].

Subset selection, however, may not always be satisfactory because it can
be variable, since the final subset of selected variables can change dramat-
ically for small changes in the original data y. A stability investigation
by Breiman, [5], categorizes the subset selection procedures as unstable
whereas a method like Ridge regression is considered to be a stable method.
A new method called Mean Subset that overcomes the instability issues of
subset selection has been proposed in [65].

9.3 Forward Selection applied to gasoline exam-
ple

Using the 5-fold cross-validation to choose the number of variables, k, re-
sults in the following Figure 9.1
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Figure 9.1: RMSEP as a function of the number of variables

Method Regularization parameter RMSEP
FSR No. of variables = 17 0.25

Table 9.1: RMSEP-value for the forward selection method.
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The optimal number of variables is 17 for the forward selection method.
With just 17 out of 401 variables it is possible to obtain good predictions
of octane. The resulting parameter estimate is seen in Figure 9.2.
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Figure 9.2: Parameter estimate, β̂̂β̂β, for the forward Selection method.
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Chapter 10

LASSO Regression

10.1 Introduction

Least Absolute Shrinkage and Selection Operator, (LASSO), is a method
developed by Robert Tibshirani in 1996, [57]. The LASSO minimizes the
residual sum of squares subject to the sum of the absolute value of the
coefficients being less than a constant. The constraints in the model allows
for coefficients that are exactly zero1, so it embodies the advantageous
features of both Ridge Regression and Subset Selection.

10.2 Definition

The LASSO estimate, β̂ββ, is defined as a constrained optimization problem
by

β̂ββ = arg min
βββ

1

2

[
(y −Xβββ)T (y −Xβββ)

]
subject to

p∑

j=1

|βj | ≤ t (10.1)

1For a good geometrical interpretation of this see [64]
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where t ≥ 0 is a hyper-parameter. A closely related optimization problem
is

β̂ββ = arg min
βββ


1

2
(y −Xβββ)T (y −Xβββ) + λ

p∑

j=1

|βj |


 (10.2)

where λ is the Lagrange parameter. This problem is the same as (10.1)
because for a given λ, 0 ≤ λ <∞, there exists a t ≥ 0 such that they both
share the same solution. LASSO limits the length of the p parameters, βββ,
with

∑p
i=1 |βj | ≤ t, where t is some constant. t controls the amount of

shrinkage that is applied to the estimates. Let β̃ββ be the full least squares
estimate and let t0 =

∑ |β̃j |. Values of t < t0 will cause shrinkage of the
solutions towards zero, and as mentioned earlier some may be exactly zero,
see [57] p. 271.

The optimization problem (10.1), that consists in finding a vector that opti-
mizes (i.e. minimizes or maximizes) a linear objective function subject to a
finite set of linear constraints is easily stated, solving it numerically though
is no trivial exercise. There are 2p inequality constraints, corresponding to
the 2p different possible signs for the βjs. When p is large it is not prac-
tical possible to solve this problem by direct application, [57] p. 268. The
algorithm proposed by Tibshirani2 is adequate for moderate values of n
but is not the most efficient possible. This effect is greatly magnified when
a technique like cross-validation is used to select an appropriate value of
t. Moreover, Tibshiranis algorithm is not usable at all when applied to a
problem where p > n, see [49] and [50].

10.3 Convex duality and the LASSO

In [49] and [50] the problem (10.1) is treated as a convex programming
problem and the dual optimization problem is derived.

Problem (10.1) can be written as

minimizeβββ f(βββ) (10.3)

subject to
g(βββ) ≥ 0 (10.4)

2Available in Fortran with an S-plus interface from STATLIB at
http://www.stat.unipq.it/pub/stat/stalib/S/lasso
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where

f(βββ) =
1

2
(y −Xβββ)T (y −Xβββ) =

1

2
rT r (10.5)

and

g(βββ) = t−
p∑

j=1

|βj | (10.6)

Here r = r(βββ) is the vector of residuals corresponding to βββ and g(βββ) is
implicitly a function of t, which is treated as fixed in the following. f is
continous and the region of feasible β vectors is compact so a solution to
(10.3), (10.4) is guaranteed to exist, [49] p. 322.

Treating (10.3), (10.4) as a convex programming problem the Lagrangian
is, (see [14] p. 198)

L(βββ, λ) = f(βββ)− λg(βββ) (10.7)

If
L∗(βββ) = sup

λ≥0
L(βββ, λ) (10.8)

is defined, then

L∗(βββ) =

{
f(βββ) if g(βββ) ≥ 0,

∞ if g(βββ) < 0.
(10.9)

Hence minimizing L∗(βββ) is equivalent to solving (10.3), (10.4). L∗(βββ) is
called the primal problem and f(βββ) is called the primal objective function.
For λ ≥ 0 the dual objective objective function is defined to be

L∗(λ) = inf
βββ
L(βββ, λ), (10.10)

and the dual problem is
maximize

λ≥0
L∗(λ), (10.11)

If λ ≥ 0 is fixed, then L(βββ, λ) is a convex function in βββ and L(βββ, λ) → ∞
as ‖βββ‖1 → ∞. Hence L(·, λ) has at least one minimum and β̄ββ minimizes
L(βββ, λ) if and only if the p-dimensional null-vector is an element of 3

∂βββL(β̄ββ, λ) = −XT r + λv, (10.12)

3(10.12) is in the optimization litterature known as the Kuhn-Tucker conditions
(1951), see e.g. [38] p. 19 or [14] p. 200
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Here v = (v1, . . . , vp)
T is of the following form:

vi ∈ [−1, 1] if βi = 0 or vi =

{
1 if βi > 0,

−1 if βi < 0

Thus, if β̄ββ minimizes L(βββ, λ) for a given value of λ, then

0 = −XT r̄ + λv, (10.13)

for some v of the form described above and r̄ = r(β̄ββ) = y − Xβ̄ββ. The
form of v implies that vT β̄ββ = ‖β̄ββ‖1 and thus it follows from (10.13) that
if β̄ββ minimizes L(βββ, λ), then λ = r̄TXβ̄ββ/‖β̄ββ‖1. Alternatively if β̄ββ 6= 0,
then ‖v‖∞ = 1 and from (10.13) it shows that λ = ‖XT r̄‖∞. These two
expressions for λ will be used below to derive a new expression for the dual
function.

L∗(λ) = L(β̄ββ, λ) =
1

2
r̄T r̄− r̄TXβ̄ββ

‖β̄ββ‖1
(t− ‖β̄ββ‖1)

=
1

2
r̄T r̄ + r̄TXβ̄ββ − t r̄

TXβ̄ββ

‖β̄ββ‖1

=
1

2
yTy − 1

2
β̄ββ
T

(XTX)β̄ββ − t r̄
TXβ̄ββ

‖β̄ββ‖1
=

1

2
yTy − 1

2
β̄ββ
T

(XTX)β̄ββ − t‖XT r̄‖∞
and if the following is defined

h̃(βββ) =
1

2
yTy − 1

2
βββT (XTX)βββ − tr

TXβββ

‖βββ‖1
h̄(βββ) =

1

2
yTy − 1

2
βββT (XTX)βββ − t‖XT r‖∞

then the dual function can be written as

L∗(λ) = L(β̄ββ, λ) = h̄(β̄ββ) = h̃(β̄ββ) for any β̄ββ for which 0 ∈ ∂βββL(β̄ββ, λ)

So β̄ββ is a solution to (10.3), (10.4) if and only if it satisfies (10.13), see
[49] p. 323. For the equivalent Ridge regression solution λβ̄ββ replaces λv in
(10.13).
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10.4 LASSO as Bayes estimate

The tendency for the LASSO method to produce estimates that are either
zero or large can be reflected by deriving the LASSO estimate as the Bayes
posterior mode under independent double-exponential priors for the βjs.

f(βj) =
1

2τ
exp

(−|βj |
τ

)
(10.14)

Here τ = 1/λ, see [11] p. 88. The double-exponential density puts more
mass near 0 and in the tails. This reflects the greater tendency of the
LASSO to produce estimates that are either large or 0, see [57] p. 277.
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Figure 10.1: The normal density (· · · ) is the prior distribution of βj used
by the Ridge method. The double-exponential density (-) is the prior dis-
tribution of βj used by the LASSO method.

10.5 Algorithm

The algorithm based on the theory above can be sketched as follows: 4

4See [49] and [50] for the detailed description. A C-implementation with an S-plus
interface can be found on http://www.stat.unipq.it/pub/stat/stalib/S/lasso2
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(1) Setup

• Create α = {i : βi 6= 0}, which is an index vector indicating which of
the coefficients are non-zero.
• P is a permutation matrix that collects the non-zero components of
βββ in the first |α| positions. This is equivalent to moving all the non-
zero coefficients in βββ to the start of the βββ vector. In mathematical
notation, βββ = PT

(
βββα
0

)
.

• Let θθθα = sign(βββα) have entry 1 if the corresponding entry in βββα is
positive and −1 otherwise.

(2) Main step

To obtain the next iterate from the current βββ, solve

minimize
h

f(βββ + h) (10.15)

subject to θθθTα(βββα + hα) ≤ t and h = PT

(
hα
0

)
(10.16)

Let the solution to this optimization problem be β̄ββ = βββ+h, then check β̄ββ for
sign feasibility. If sign(β̄ββα) = θθθα then β̄ββ is sign feasible, which implies that

‖β̄ββ‖1 = β̄ββ
T
αθθθα and hence by (10.15) and (10.16), β̄ββα satisfies the constraint.

If β̄ββ is not sign feasible, then it is not guaranteed that ‖β̄ββα‖1 ≤ t, so a
modification is needed.

(3) Iterations

• IF β̄ββ is not sign feasible then
1. Find the smallest γ, 0 < γ < 1 for which ∃ some k ∈ α such

that 0 = βk + γhk. This moves to the first new zero component
in descent direction h.

2. Update α by deleting k, and set βββ = βββ + γh. Reset βββα and θθθα,
which will both now be feasible in terms of the constraint and
solve the main step for a new h.

3. Iterate until β̄ββ is sign feasible.
• ELSE β̄ββ is sign feasible

1. Calculate

v̄ =
XT r̄

‖XT r̄‖∞
= PT

(
v̄1

v̄2

)

where r̄ = r(β̄ββ) = y −Xβ̄ββ
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2. -IF |(v̄1)i| = |θi| for i ∈ α and −1 ≤ (v̄2)i ≤ 1 for i /∈ α then β̄ββ
is a solution.
STOP.

-ELSE
(a) Find s such that (v̄2)s has maximal value.
(b) Update α by adding s to it. Update βββα by appending 0 as

the last element. Append sign(v̄2)s to θθθα.
(c) Solve the main step and iterate.

10.6 LASSO applied to gasoline example

For the LASSO method the optimal model was found by iterating through
values of t chosen on an equally spaced grid on the logarithmic scale, see
Figure 10.2.
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Figure 10.2: RMSEP as a function of log10(t)
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Method Regularization parameter RMSEP
MLLS

∑
(|βi|)=3783.4; λ = 2.7e− 15 0.70

LASSO
∑

(|βi|)=210.5; λ = 3.7e− 03 0.27

Table 10.1: RMSEP-values for the MLLS and the LASSO method.

Like the previous method, the forward selection method, LASSO produces
an estimate where most of the parameters are exactly equal to zero, see Fig-
ure 10.3. The forward selection method and LASSO select variables within
approximately the same range of the spectrum, except for the very last part
of the spectrum which is only included in the LASSO estimate. The forward
selection method produces a slightly better RMSEP-value than LASSO,
which might indicate that the last part of the spectrum contains no further
information regarding the prediction of octane. That the Ridge method
does well here could hint at the fact that information about the octane
number probably is spread out over the whole spectrum, since Ridge re-
gression implicitly assumes that the parameters are normally distributed.5

However, variable selection methods tend to work best in situations char-
acterized by true parameter vectors with components consisting of a very
few (relatively) large (absolute) values6.

5This interpretation has been used in [64]
6Frank and Friedman, [15] p. 110
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Figure 10.3: Parameter estimates for the MLLS solution for the LASSO
(Top figure), and LASSO (Bottom figure)
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Chapter 11

Adaptive Ridge Regression

11.1 Introduction

Adaptive Ridge Regression, (ARR), is a special form of Ridge regression,
balancing the quadratic penalization on each parameter of the model. ARR
is equivalent to LASSO in the sense that both procedures produce the same
estimate.

11.2 Theory

Adaptive Ridge is a modification of the Ridge estimate, (5.1), which is
defined by the quadratic constraint

∑p
j=1 β

2
j ≤ t. As mentioned in 5.2 it is

the solution to

β̂ββ = arg min
β

[
(y −Xβββ)T (y −Xβββ) + λ

p∑

j=1

β2
j

]
(11.1)

where λ is the Lagrange multiplier varying with the bound t on the norm
of the parameters. As mentioned in 5.3 the Bayes prior distribution for the
Ridge estimate is a normal distribution with variance proportional to 1/λ.
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If all covariates are not equally relevant this is not appropriate. In [21] the
following modification to (11.1) is proposed

(β̂ββ, λ̂λλ) = arg min
(βββ,λλλ)

[
(y −Xβββ)T (y −Xβββ) +

p∑

j=1

λjβ
2
j

]
(11.2)

Here, each coefficient has its own prior distribution. The priors are normal
distributions with variances proportional to 1/λj . To avoid simultaneous
estimation of these p hyper-parameters by trial, the constraint

1

p

p∑

j=1

1

λj
=

1

λ
, λj > 0 (11.3)

is applied on λλλ = (λ1, . . . , λp)
T , where λ is a predefined value. This con-

straint is a link between the p prior distributions. Their mean variance
is proportional to 1/λ. The adaptivity stems from the fact that values
of λj are automatically induced from the data. Adaptivity refers here to

penalization balance on each coefficient, β̂j , not to the tuning of λ.

11.3 The equivalence to LASSO

ARR and LASSO are equivalent, in the sense that they yield the same esti-
mate. To see this the ARR estimate is defined by another parametrization.
(11.2) and (11.3) in their present form may lead to divergent solutions for
λλλ, (λj →∞). Thus new variables are defined

γj =

√
λj
λ
βj , and cj =

√
λ

λj
for j = 1, . . . , p (11.4)

Then optimization problem (11.2) with constraint (11.3) can be written as




(ĉ, γ̂γγ) = arg min(c,γγγ)

[
(y −Xcγγγ)T (y −Xcγγγ) + λ

∑p
j=1 γ

2
j

]

subject to
∑p

j=1 c
2
j = p , cj ≥ 0

(11.5)

with the following optimality conditions

∀j,
{ ∑n

i=1 xij
(∑p

k=1 β̂kxik − yi
)

+ λ
p sign(β̂j)

∑p
k=1 |β̂k| = 0

or β̂j = 0
(11.6)



11.3 The equivalence to LASSO 73

The optimality conditions are the normal equations of the problem

β̂ββ = arg min
β

[
(y −Xβββ)T (y −Xβββ) +

λ

p
(

p∑

k=1

|βk|)2
]

(11.7)

The estimate (11.7) is equivalent to the LASSO estimate, (10.2). The
ARR estimate is thus the LASSO estimate. The only difference in their
definition is that ARR uses the constraint (

∑p
k=1 |βk|)2/p ≤ t2 instead of∑p

k=1 |βk| ≤ t.
Proof of equivalence:1

The corresponding Lagrangian, L, of (11.5) is

L(c, γγγ) =
[
(y−Xcγγγ)T (y−Xcγγγ)+λ

p∑

j=1

γ2
j

]
+ν




p∑

j=1

c2j − p


−ξT c (11.8)

which for notational reasons will be written as

L(c, γγγ) = Cemp(c, γγγ) + λ

p∑

j=1

γ2
j + ν




p∑

j=1

c2j − p


− ξT c (11.9)

where ν and ξ are the Lagrange multipliers corresponding respectively to
the equality and the positivity constraints on {cj} from (11.5). The normal
equations to (11.9) are thus





∂L

∂γ
=
∂Cemp(c, γγγ)

∂γ
+ 2λγ

∂L

∂c
=
∂Cemp(c, γγγ)

∂c
+ 2νc− ξ

(11.10)

From the relation βββ = diag(c)γγγ, a relation between the partial derivatives
of Cemp with respect to c and γγγ is stated





∂Cemp
∂γγγ

= diag(c)
∂Cemp
∂β

∂Cemp
∂c

= diag(γγγ)
∂Cemp
∂β

(11.11)

1The proof of equivalence is unpublished material, but is available at
www.hds.utc.fr/˜grandval.
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From this system the following equation is formed

diag(γγγ)
∂Cemp(c, γγγ)

∂γγγ
= diag(c)

∂Cemp(c, γγγ)

∂c
(11.12)

This equation is used to derive a relationship between ĉj and γ̂j , indepen-
dently of Cemp and the Lagrange multipliers:





diag(γ̂γγ)
∂L

∂γγγ
= diag(γ̂γγ)

∂Cemp(ĉ, γ̂γγ)

∂γγγ
+ 2λdiag(γ̂γγ)γ̂γγ

diag(ĉ)
∂L

∂c
= diag(ĉ)

∂Cemp(ĉ, γ̂γγ)

∂c
+ 2νdiag(ĉ)ĉ− diag(ĉ)ξξξ

(11.13)

A Lagrange multiplier is zero for inactive constraints, therefore diag(ĉ)ξ =
0. As (11.12) holds for (ĉ, γ̂γγ), and optimality of (ĉ, γ̂γγ) implies ∂L

∂γγγ = ∂L
∂c = 0,

then, from (11.13) it follows that

∀j ĉ2j =
λ

ν
γ̂2
j (11.14)

The equality constraint in (11.5) on {cj} implies:

∀j ĉj =

√
p|γ̂j |√∑p
k=1 γ̂

2
k

(11.15)

This equation is used to give the optimality conditions as a function of the
original variables β̂j . As |β̂j | = ĉj |γ̂j |, it follows that

|β̂j | =
√
pγ̂2
j√∑p

k=1 γ̂
2
k

⇒ |β̂j |∑p
k=1 |β̂k|

=
γ̂2
j∑p

k=1 γ̂
2
k

⇔ ĉ2j =
d|β̂j |∑p
k=1 |β̂k|

(11.16)

This value of ĉj is now plugged into the first equation of system (11.10)
evaluated at (ĉ, γ̂γγ), using the first equation of system (11.11):

∀j ĉj
∂Cemp
∂βj

(β̂j) + 2λγ̂j = 0 (11.17)

Therefore, either ĉj = γ̂j = β̂j = 0 or
∂Cemp
∂βj

(β̂j) + 2λ
γ̂j
ĉj

= 0. From
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(11.16), γ̂j/ĉj can be written using βββ as follows:

γ̂j
ĉj

= γ̂j ĉj
1

ĉ2j

= β̂j

∑p
k=1 |β̂k|
p|β̂j |

=
1

p
sign(β̂j)

p∑

k=1

|β̂k|. (11.18)

The optimality conditions are thus

∀j,





∂Cemp
∂βj

(β̂j) + 2
λ

p
sign(β̂j)

∑p
k=1 |β̂k| = 0

or βj = 0,

(11.19)

which are recognized as the normal equation of

Cemp(βββ) +
λ

p

(
p∑

k=1

|β̂k|
)2

= 0 (11.20)

for any empirical cost Cemp. �

11.4 Adaptive Ridge Regression applied to gaso-
line example

By iterating through values of λ on the logarithmic scale, the following
results are obtained:
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Figure 11.1: RMSEP as a function of log10(λ)
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Method Regularization parameter RMSEP
Adaptive Ridge

∑
(|βi|)=222.5; λ = 1.2e− 5 0.27

Table 11.1: RMSEP-values for the Adaptive Ridge method.
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Figure 11.2: Parameter estimates for the Adaptive Ridge solution.

Due to the discretization of λ, the ARR result, (
∑

(|βi|)), is not exactly
identical to the LASSO result.

The publicly available algorithms to produce LASSO solutions when deal-
ing with a singular design matrix is at the moment, (at least to my know-
ledge), restricted to the following:

1. lasso2 (http://www.stat.unipq.it/pub/stat/stalib/S/lasso2)
2. arrfit (http://www.hds.utc.fr/˜grandval/arrfit.m)2

3. lasso (http://www.imm.dtu.dk/˜hoe/files/lasso.m)3

They are all based on different theory but produce exactly the same so-
lution. lasso2 is considerably faster than arrfit and lasso, but has the
disadvantage of a more complicated installation procedure compared to
the other two algorithms that can be used directly as any other standard
Matlab function.

2This algorithm provides the Adaptive Ridge solution.
3This algorithm has been used in [64].
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Chapter 12

Basis-Function Regression

12.1 Introduction

As a continuous-wavelength alternative the linear combination of the spec-
tral values can be replaced with an integral over the range of the wave-
lengths of an unknown coefficient-function multiplied by the spectral mea-
surements. The unknown function can then be approximated by a linear
combination of some basis functions (e.g. B-splines). The problem then be-
comes a linear regression problem where the number of regressors depend
on the number of basis functions and not the number of wavelengths.

The approach was first suggested by Hastie and Mallows, [22], who focused
on smoothing splines for estimation of the coefficient-function. Similarly
Goutis, [20], used smoothing splines to estimate a coefficient-function in the
case where the predictive information is related to the second derivative of
the spectrum. Marx and Eilers, [41], project the spectral measurements
onto a moderate number of equally spaced B-spline bases. This approach
is very similar to the approach presented here. However, the difference
being that (i) the underlying model is formulated using an integral over
the wavelengths, and (ii) the number of basis functions is not restricted to
be less than the number of observations. For near-continuous measurements
(i) is largely a technicality which allows, in a simple way, to study what
happens if the predictive ability is related to derivatives of the spectra
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rather than the actual spectra.

12.2 Model

The spectra are measured at a number of wavelengths λj ; j = 1, . . . , p. The
measurements of the characteristic quantity is called yi; i = 1, . . . , n and
the measured spectrum corresponding to yi is called ai(λj); j = 1, . . . , p.
The model, (3.1), is here presented in a slightly altered version.

yi = β0 +

p∑

j=1

βjai(λj) + ei; i = 1, . . . , n (12.1)

where ei; i = 1, . . . , n are the model errors which are assumed to be inde-
pendently identical distributed (iid.) random variables, and βj ; j = 0, . . . , p
are some coefficients which must be determined from data. Model (12.1) is
a linear regression model. However, as measurement equipment get more
advanced the spectra are measured at an increasing number p of wave-
lengths, so that each spectrum often can be considered known for every
wavelength λ ∈ [λ, λ]. Therefore, the number of regressors p is often mag-
nitudes larger than the number of observations n. Conceptually, it could
be more convenient to use a model which explicitly regard the spectra as
functions ai(λ); i = 1, . . . , n of the bandwidth λ. As a generalization of
(12.1) it is convenient to replace the summation with an integral over the
interval of wavelengths, i.e. to use the model

yi = β0 +

∫ λ

λ

β(λ)ai(λ)dλ + ei, (12.2)

where the coefficient β0 and the function β(·) must be determined from
data, c.f. Section 12.3. It is interesting to note that if it is suspected that
some predictive ability is related to the first- and second-order derivatives
of the spectra rather than the spectra itself (12.2) can still be used if the
range of wavelengths over which the spectra is measured is wide enough.

To see this consider the model

yi = β0 +

∫ λ

λ

(
φ0(λ)ai(λ) + φ1(λ)

dai
dλ

(λ) + φ2(λ)
d2ai
dλ2

(λ)

)
dλ+ei, (12.3)
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which take into account both the actual spectra and its first- and second
order derivatives. Assuming that the derivatives exists, simple calculations
(partial integration) show that (12.3) can be written

yi = β0

+

(
φ1(λ)− dφ2

dλ
(λ)

)
ai(λ)−

(
φ1(λ)− dφ2

dλ
(λ)

)
ai(λ)

+ φ2(λ)
dai
dλ

(λ)− φ2(λ)
dai
dλ

(λ)

+

∫ λ

λ

(
φ0(λ)− dφ1

dλ
(λ) +

d2φ2

dλ2
(λ)

)
ai(λ)dλ + ei. (12.4)

Given that the range of the wavelengths is so large that all important
wavelengths are covered then φ1(λ) = φ1(λ) = φ2(λ) = φ2(λ) = 0. In this
case the second line in (12.4) vanish and the term inside the parenthesis in
the integral is a function of λ which can be handled by β(λ) in (12.2). If
not all important wavelengths are covered it is necessary to extent (12.2)
with regression terms containing ai(λ), ai(λ), dai

dλ (λ), and dai
dλ (λ) in order

to take first- and second-order derivatives of ai(λ) into account.

12.3 Approximations

To be able to determine the scalar β0 and the function β(·) in (12.2) from
data the function is approximated by a linear combination of a set of basis
functions, such as B-spline basis functions, natural spline basis functions,
or wavelet basis functions [4].

β(λ) = BT (λ)θθθ, (12.5)

where B(λ) = [b1(λ) . . . bm(λ)]T are the basis functions and θθθ = [θ1 . . . θm]T

are some coefficients to be determined from data. With (12.2) and (12.5)
simple calculations show that

yi = β0 +
m∑

k=1

θkxki + ei, (12.6)

where

xki =

∫ λ

λ

bk(λ)ai(λ)dλ; k = 1, . . . ,m; i = 1, . . . , n, (12.7)
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does not depend on θθθ and can be determined from the measurements of
the spectra at the wavelengths λj ; j = 1, . . . , p by use of the trapezoid rule
of integration.

xki =
1

2

p−1∑

j=1

(λj+1 − λj) [bk(λj)ai(λj) + bk(λj+1)ai(λj+1)] (12.8)

It is seen that, handled this way, the calibration problem is not dependent
on p as long as the spectra is measured at fine enough intervals to allow the
integrals in (12.7) to be evaluated with reasonable precision. Furthermore,
although p > n, the number of basis functions can often be chosen so that
m < n, whereby (12.6) becomes an ordinary regression problem. One may
choose to use n < m < p, in this case PCR, PLS, Ridge regression, LASSO,
and other shrinkage methods may be applied.

As noted in [41], the application of models like (12.6) regularize estimation
as compared to models like (12.1). However, depending on the spectra, the
regressors in (12.6) may still be near-collinear. Figure 12.1 shows a cubic
B-spline basis with six equally spaced knots covering the interval 900 to
1700 nm, this results in m = 8. It is seen that the basis-functions are non-
zero only for wavelengths around their maximum, this is the key feature by
which (12.5) becomes a good approximation. However, if ai(λ) is constant
across i for some wavelengths then the nature of the basis-functions may
result in collinearity of the regressors (12.7). It is therefore suggested that
instead of using model (12.6) directly the regressors are replaced by their
principal components. If variable selection techniques are then applied to
the principal components both problems where m < n and m ≥ n can be
handled.

The type of basis functions used influence the type of functions which can
be approximated by (12.5). A B-spline basis of order n result in β(·) having
continuous derivatives up to order n, i.e. a cubic B-spline basis is of order 2.
This also holds for a natural spline basis, but here β(·) has the additional
property that it is linear outside [λ, λ]. Opposed to this a wavelet basis can
be used to approximate a function with sharp peaks.
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Figure 12.1: Cubic B-spline basis with six equally spaced knots (four in-
ternal) covering the interval 900 to 1700 nm.

12.4 Basis Function Regression applied to gaso-
line example

The results from Ridge, PCR, PLS, LASSO and FSR are summarized in
Table 12.1. PLS, PCR and Ridge produce the best results. Figure 12.2
shows the parameter estimates plotted against their corresponding wave-
lengths. The estimates are obtained using the tuning-parameters listed in
Table 12.1 together with the full data set.

Method Regularization parameter RMSEP
Ridge k = 0.002 0.24
PCR No. of components = 13 0.23
PLS No. of components = 7 0.23
LASSO

∑
(|β|)=210.5 0.27

FSR No. of variables = 17 0.25

Table 12.1: RMSEP-values for the regularization methods.

The model defined by (12.6) and (12.8), is now used with b1(λ), . . . , bk(λ)
generated using a linear, quadratic and cubic B-spline basis with knots
placed equidistantly over the range of wavelengths. If the number of basis-
functions is restricted to be less than the number of observations, n, it
results in a standard linear regression problem which can be solved using
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Figure 12.2: The 60 NIR spectra, together with the parameter estimates
for Ridge, PCR, PLS, LASSO.and forward selection regression.
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ordinary least squares. If the number of basis-functions is allowed to ex-
ceed the number of observations PCR, PLS, Ridge, LASSO or FSR can be
applied.

The same setup as mentioned earlier is used to find the best model. The
approach is straightforward, find the RMSEP-values for a fixed regulariza-
tion parameter and varying number of basis-functions, now fix the regu-
larization parameter to another value and find new RMSEP-values. This
produces a matrix of RMSEP-values; find the smallest RMSEP-value and
the corresponding value for the regularization parameter and the number of
basis-functions. As an example LASSO has the optimum for

∑
(|θ|)=17.15

and 33 internal knots for the cubic B-spline basis; Figure 12.3 indicates the
curvature of the RMSEP-surface around the optimum.
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Figure 12.3: The RMSEP-values for LASSO for fixed number of internal
knots (left) and fixed value for

∑
(|θ|) (right) using a cubic B-spline basis.

The RMSEP-values are listed in Tables 12.2, 12.3 and 12.4. Contrary
to the traditional methods it is seen that LASSO and FSR in combination
with the spline bases perform best and that all the spline methods are
superior to the traditional methods listed in Table 12.1. Comparing the
best results until now with Tables 12.2, 12.3 and 12.4 results in a 17%
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reduction in RMSEP-values when using spline basis functions. The simple
OLS-solution results in a 13% reduction.

Method Regularization parameter Knots RMSEP
Linear Spline-OLS 8 0.20
Linear Spline-Ridge k = 0.0110 8 0.20
Linear Spline-PCR No. of components = 7 8 0.20
Linear Spline-PLS No. of components = 7 8 0.20
Linear Spline-LASSO

∑
(|θ|) = 12.65 38 0.19

Linear Spline-FSR No. of variables = 9 57 0.19

Table 12.2: RMSEP-values for some regularization methods combined with
linear basis-functions.

Method Regularization parameter Knots RMSEP
Quad. Spline-OLS 6 0.20
Quad. Spline-Ridge k=0.0083 6 0.20
Quad. Spline-PCR No. of components = 7 6 0.20
Quad. Spline-PLS No. of components = 7 6 0.20
Quad. Spline-LASSO

∑
(|θ|) = 9.54 48 0.19

Quad. Spline-FSR No. of variables = 11 80 0.19

Table 12.3: RMSEP-values for some regularization methods combined with
quadratic basis-functions.

Figure 12.4, 12.5 and 12.6 show the estimates of β(λ) = BT (λ)θθθ. The
estimates are obtained using the tuning-parameters listed in Tables 12.2,
12.3 and 12.4 together with the full data set. For the OLS solutions curves
indicating two times the pointwise standard error are also shown (obtained
by disregarding that the number of internal knots are selected by use of
cross-validation). For all but LASSO and FSR the estimates are quite
similar. Comparing the standard error bands of the OLS-solution with
the LASSO and the FSR-solution reveals that LASSO and FSR selects
basis-functions corresponding to wavelengths for which the OLS-solution is
significantly different from zero.
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Method Regularization parameter Knots RMSEP
Cubic Spline-OLS 4 0.21
Cubic Spline-Ridge k=0.0008 4 0.20
Cubic Spline-PCR No. of components = 7 4 0.20
Cubic Spline-PLS No. of components = 7 4 0.20
Cubic Spline-LASSO

∑
(|θ|)=17.15 33 0.19

Cubic Spline-FSR No. of variables = 11 37 0.19

Table 12.4: RMSEP-values for some regularization methods combined with
cubic basis-functions.

12.5 Comments

When the number of basis functions are low the knot placement may have
large influence; it may move the valleys and peaks1. To avoid this the
smoothing splines solution used by [20] and [22] may be applied. The P -
spline approach by [41] provides a mix between these two approaches. All
these approaches result in estimates of the parameter-function which have
approximately the same degree of smoothness for all wavelengths for which
the spectral measurements are performed. There is no reason to believe
that this is desirable.

The B-spline-LASSO approach is one solution to the problem just outlined.
Another solution would be to use wavelet basis functions together with
LASSO. Since wavelets cover a large range of scales and positions, they may
be more appropriate than B-splines. As yet another solution an adaptive
knot-placement procedure could be applied together with standard linear
regression. It is however not clear how to construct such a procedure.

For people using the traditional multivariate calibration techniques the
main problem of applying the techniques presented here is the generation
of the spline bases. In S-PLUS2 and R3 these can be generated with the
built-in functions bs (B-splines) or ns (natural splines). In Matlab4 one can
use bsplval.m by Dr. Graeme A. Chandler, Mathematics Department, The
University of Queensland, Australia. A ZIP-archive containing this func-
tion can be downloaded as www.maths.uq.edu.au/˜gac/mn309/mfilez.zip

1See [23] pp. 251-254
2(www.splus.mathsoft.com)
3(www.r-project.org)
4(www.mathworks.com)
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and in www.maths.uq.oz.au/˜gac/mn309/bspl.html examples of how to ap-
ply it can be found.
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Figure 12.4: Estimated parameter-functions using OLS, Ridge, PCR, PLS,
LASSO and forward selection regression together with linear B-spline bases.
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Figure 12.5: Estimated parameter-functions using OLS, Ridge, PCR, PLS,
LASSO and forward selection regression together with quadratic B-spline
bases.
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Figure 12.6: Estimated parameter-functions using OLS, Ridge, PCR, PLS,
LASSO and forward selection regression together with cubic B-spline bases.



92 Chapter 12. Basis-Function Regression

12.6 Range selection using the BFR estimates

Prior knowledge about which wavelengths are important for the prediction
of a certain response is very valuable. Such knowledge would help to reduce
the complexity of the problem, and it might even make it possible to do
an exhaustive search for an optimal subset if the number of important
wavelengths is small enough5. A method for selecting specific intervals of
the spectrum using PLS has been suggested, see [48].

An attempt to identify an important wavelength range for prediction of
octane is done by using the estimates resulting from using forward selection
combined with the B-spline bases. The idea is that where the estimate is
different from zero actually identifies the regions that are important for
prediction of octane. In Figure 12.4 the estimate for the linear spline-FSR
method is used to select a new and smaller range onto which the methods
MLLS, Ridge, PCR, PLS, LASSO and FSR will be applied. The range
obtained from the estimate is

[1128 : 1156, 1186 : 1242, 1358 : 1428, 1628 : 1658]

There are 96 of the original 401 wavelengths contained in this range, see
Figure 12.7 for a graphical display of the range. The results for using this
range are shown in Table 12.5. The parameter estimates can be seen in
Figure 12.8. To check whether the results for the selected range are purely
coincidential the methods have also been applied to the complementary set
of wavelengths, see Table A.1 for RMSEP-values and Figure A.2 for the
parameter estimates.

5With the computational power available today it is possible to perform exhaustive
search for all model sizes, if the number of variables is less than 30.
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Method Regularization parameter RMSEP % improvement

MLLS ‖β̂̂β̂β‖2 = 827.8 0.37 −9%
Ridge k = 4.32× 10−4 0.20 17%
PCR No. of components = 7 0.19 17%
PLS No. of components = 5 0.19 17%
LASSO

∑
(|θ|) = 236.45 0.20 26%

FSR No. of variables = 17 0.25 0%

Table 12.5: RMSEP-values for some regularization methods on the reduced
range. The %-wise reduction in the RMSEP-value for each of the methods
is also tabulated.
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Figure 12.7: The full range spectra (top figure) and the selected range for
prediction of octane (bottom figure).
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regression.
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The results clearly show that information about which part of the spec-
tra that is important for the prediction of octane, indeed is contained in
the regions found by using the linear spline-FSR estimate. Using the tra-
ditional methods on the reduced range results in large reductions of the
RMSEP-values for all the methods except MLLS6 and forward selection
regression. The wavelengths selected by the forward selection method on
the full spectrum are all but the last two included in the reduced range,
so of course the new model does not deviate much from the full-spectrum
model7. Removing uninformative parts of the spectrum also reveals how
unstable the MLLS estimate is when used for prediction purposes. Due
to the nature of the basis function regression it is only possible, with the
present implementation, to apply the method to a connected range of wave-
lengths. Therefore it is not possible to show results for the spline methods
on the selected range in this case.

That the basis function regression also can be used to select a range on
which the traditional methods do better than in the full-spectrum case,
makes it possible to develop faster instruments by employing a few critical
regions of the entire spectrum. A reduction in the number of explanatory
variables also helps in the interpretation of the models.

12.7 Summary for the gasoline example

The results for the gasoline example are summarized in Table 12.6. When
the traditional methods are applied to the full spectrum they are quite suc-
cessfull in shrinking the solution away from the MLLS solution in directions
that captures the variation of octane. LASSO and FSR are also quite suc-
cessfull in selecting single wavelengths which carry information regarding
the variation of octane.

LASSO is not the best method when applied to the full spectrum, but
in combination with the spline basis functions LASSO is always among
the two best methods. The spline methods are in all cases better than
the traditional methods based on the full spectrum. This indicates that
a smoothing of the parameter estimates is desirable in this case. When
using the linear spline-FSR estimate as a tool to select certain regions of

6The estimate for MLLS applied to the reduced spectrum can be seen in Figure A.1
7The wavelengths selected by the forward selection method in the two cases are shown

in Table A.2
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the spectrum all results except for forward selection, are improved substan-
tially. The best methods on the reduced range result in a 17% reduction
in the RMSEP-value compared to the best full-spectrum method.
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Table 12.6: Results for the gasoline example.

Method Regularization param. Knots RMSEP

MLLS ‖β̂ββ‖2 = 217.7 0.34
Ridge k = 0.002 0.24
PCR No. of comps.= 13 0.23
CPCR No. of comps.= 7 0.26
PLS No. of comps.= 7 0.23
CSR Eigenv./factors=19/7 0.23
FSR No. of var. = 17 0.25
LASSO

∑
(|βi|)=210.5 0.27

Linear Spline-OLS 8 0.20
Linear Spline-Ridge k = 0.0110 8 0.20
Linear Spline-PCR No. of comps. = 7 8 0.20
Linear Spline-PLS No. of comps. = 7 8 0.20
Linear Spline-LASSO

∑
(|θ|) = 12.65 38 0.19

Linear Spline-FSR No. of var. = 9 57 0.19
Quad. Spline-OLS 6 0.20
Quad. Spline-Ridge k=0.0083 6 0.20
Quad. Spline-PCR No. of comps. = 7 6 0.20
Quad. Spline-PLS No. of comps. = 7 6 0.20
Quad. Spline-LASSO

∑
(|θ|) = 9.54 48 0.19

Quad. Spline-FSR No. of var. = 11 80 0.19
Cubic Spline-OLS 4 0.21
Cubic Spline-Ridge k=0.0008 4 0.20
Cubic Spline-PCR No. of comps. = 7 4 0.20
Cubic Spline-PLS No. of comps. = 7 4 0.20
Cubic Spline-LASSO

∑
(|θ|)=17.15 33 0.19

Cubic Spline-FSR No. of var. = 11 37 0.19

Reduced MLLS ‖β̂̂β̂β‖2 = 827.8 0.37
Reduced Ridge k = 4.32× 10−4 0.20
Reduced PCR No. of comps. = 7 0.19
Reduced PLS No. of comps. = 5 0.19
Reduced LASSO

∑
(|θ|) = 236.45 0.20

Reduced FSR No. of var. = 17 0.25
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Chapter 13

Wheat example

13.1 Data

This set of data origins from a Near-InfraRed, (NIR), analysis of wheat. It
contains 100 samples with specified protein and moisture content. Samples
were measured using diffuse reflectance (R) as log(1/R) from 1100 nm to
2500 nm in 2 nm intervals (n = 100 and p = 701)1. The spectra are shown
in Figure 13.1.

1The data set can be obtained from
ftp://ftp.clarkson.edu/pub/hopkepk/chemdata/kalivas
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Figure 13.1: 100 NIR spectra for wheat, measured in 2nm. intervals from
1100nm. to 2500nm.

13.1.1 Pretreatment of data

In Figure 13.1 the spectra have clearly shifted, this is due to unequal par-
ticle sizes. By differencing the columns of X the constants and sudden
shifts which are not important to the regression are removed, [41] p. 2.
Figure 13.2 shows the first-order differenced spectra.
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Figure 13.2: The first-order differenced spectra.
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13.1.2 Setup for 5-fold cross-validation

The data is split into five different sets, the calibration part consists con-
secutively of 4 different parts, and the validation data is the part left out
of the calibration data. When splitting the data it is important to con-
struct the groups in a way that the response-variables span approximately
the same levels. For the wheat example this is achieved by sorting the
moisture and protein levels in ascending order and then numbering them
successively from 1 to 5 in order to get five sets that cover approximately
the same range. The relatively large number of observations, (100), makes
it possible to reserve some of the observations for an external validation
set. After the observations have been sorted in ascending order every third
observation is extracted for the external validation set, see Figure 13.3 and
13.4.
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Figure 13.3: The 5-fold cross-validation splits, and the external validation
set for moisture.
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Figure 13.4: The 5-fold cross-validation splits, and the external validation
set for protein.

13.2 Results

For all the methods the tuning parameter is determined using the cross-
validated RMSEP-values. The estimate used to predict the external val-
idation set is based on the full data set excluding the external validation
set.

13.2.1 MLLS applied to wheat example

The parameter estimates for the MLLS solution for moisture and protein
are shown in Figure 13.5.
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Figure 13.5: Parameter estimates, β̂ββ, for MLLS.
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The estimates in Figure 13.5 oscillates as in the gasoline example. The
reason for this is explained in Section 5.4. The RMSEP-values are shown
in Table 13.1 and 13.2 for moisture and protein respectively.

Method ‖β̂ββ‖2 RMSEP

MLLS ‖β̂ββ‖2 = 1.01× 103 0.27

Table 13.1: RMSEP-value for the MLLS solution for the moisture model.

Method ‖β̂ββ‖2 RMSEP

MLLS ‖β̂ββ‖2 = 2.55× 103 0.54

Table 13.2: RMSEP-value for the MLLS solution for the protein model.
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13.2.2 Ridge applied to wheat example

For the Ridge method the optimal value was found by iterating through
values of k chosen on an equally spaced grid on the logarithmic scale, see
Figure 13.6.
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Figure 13.6: The RMSEP values for the Ridge method applied to the
moisture and protein data as a function of log10(k).
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The RMSEP-values for the moisture and the protein data are shown in
Table 13.3 and 13.4. The Ridge estimates for moisture and protein re-

Method Regularization parameter ‖β̂ββ‖2 RMSEP

Ridge k = 1.79× 10−6 ‖β̂ββ‖2 = 7.42× 102 0.27

Table 13.3: Ridge results for moisture.

Method Regularization parameter ‖β̂ββ‖2 RMSEP

Ridge k = 6.28× 10−7 ‖β̂ββ‖2 = 2.08× 103 0.54

Table 13.4: Ridge results for protein.

spectively is shown in Figure 13.7. Comparing the Ridge estimate to the
MLLS estimate for moisture they look very much alike. The extra regu-
larization implied by the Ridge method is reflected in the squared length
of β̂ββ. The regularization parameter, k, is chosen very small in both cases.
Remember that, as k → 0 the Ridge estimate is shown earlier to approx-
imate the MLLS estimate. The RMSEP-values for MLLS and Ridge are
the same for both moisture and protein.
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Figure 13.7: Parameter estimates, β̂ββ, for Ridge.
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13.2.3 PCR applied to wheat example

The PCR method with three different selection strategies was tested for a
number of principal components. The result of this for both the moisture
and the protein model is seen in Figure 13.8. The RMSEP-values for the
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Figure 13.8: The RMSEP values for the moisture and protein model as
a function of the number of principal components for the three different
selection strategies.

prediction of moisture and protein, are shown in Table 13.5 and 13.6.
The parameter estimates for the three selection strategies are shown in
Figure B.1, B.2 and B.3.
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Method Regularization parameter RMSEP
PCR No. of components = 23 0.27
CPCR No. of components = 17 0.28
FSPCR No. of components = 27 0.26

Table 13.5: PCR results for moisture.

Method Regularization parameter RMSEP
PCR No. of components = 29 0.57
CPCR No. of components = 30 0.56
FSPCR No. of components = 36 0.60

Table 13.6: PCR results for protein.

Table 13.7: Order of the PC’s chosen by the CPCR and FSPCR
method for moisture (only the first 15 are shown). The absolute
correlation is also shown.

CPCR order for moisture |r| FSPCR order for moisture
3 0.6773 3
2 0.6450 2
5 0.3030 1
1 0.0985 5
7 0.0603 4
17 0.0489 6
16 0.0442 7
6 0.0400 20
21 0.0338 21
12 0.0333 14
52 0.0303 23
14 0.0298 22
22 0.0254 17
38 0.0251 12
4 0.0249 13
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Table 13.8: Order of the PC’s chosen by the CPCR and FSPCR
method for protein (only the first 15 are shown). The absolute
correlation is also shown.

CPCR order for protein |r| FSPCR order for protein
2 0.5973 2
1 0.4394 1
10 0.2081 12
12 0.2022 13
11 0.1942 15
13 0.1841 41
8 0.1830 22
19 0.1798 37
18 0.1666 24
7 0.1484 16
4 0.1341 29
5 0.1268 20
24 0.1190 23
46 0.0977 14
56 0.0973 28
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Comments to the PCR methods

For the prediction of moisture the forward selection strategy is the best.
FSPCR and PCR choose the same first 7 components. The CPCR method
has 5 of the first 7 components equal to the other two methods. The
components corresponding to some of the largest singular values are also
the ones with the largest absolute correleation with moisture. Of the first
15 components chosen by CPCR and FSPCR 12 components are the same.

For protein the PCR and CPCR methods perform best, but the results for
MLLS and Ridge are better. Only the first 2 components are the same
for the three methods and of the first 15 chosen by CPCR and FSPCR
only 5 components are the same. Regardless of the selection approach,
prediction of protein requires more components than prediction of moisture
and the selected components are much different. That the three methods
choose so differently among the principal components could imply that
information lies in all the principal components. The smoothness in the
RMSEP-values with increasing number of components is an artifact of the
selection criterion. In Figure 13.8 FSPCR for protein is consistently better
than PCR and CPCR. If this is the result of overfitting it would explain
the bad prediction result when the FSPCR estimate is used to predict the
external validation set.

13.2.4 PLS applied to wheat example

The RMSEP-value for increasing number of PLS components is shown in
Figure 13.9.
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Figure 13.9: The RMSEP value as a function of the number of PLS com-
ponents for the moisture model, (top figure), and protein model, (bottom
figure).
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Method Regularization parameter RMSEP
PLS No. of components = 7 0.28

Table 13.9: PLS results for moisture.

Method Regularization parameter RMSEP
PLS No. of components = 9 0.55

Table 13.10: PLS results for protein.

The tendency for PLS to use fewer components than PCR is very outspoken
for both the moisture and the protein model. In both cases the PCR
methods use from three to four times more components than PLS but
as mentioned in Section 7.5 this is (in general) neither an advantage nor
disadvantage. The resulting parameter estimates are shown in Figure 13.10,
they look very much alike the ones produced by MLLS, Ridge and the PCR
methods.
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Figure 13.10: Parameter estimates, β̂ββ, for PLS
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13.2.5 CSR applied to wheat example

Method Regularization parameter RMSEP
CSR No. of eigenvectors and factors = 35 and 34 0.28

Table 13.11: CSR results for moisture.

Method Regularization parameter RMSEP
CSR No. of eigenvectors and factors = 50 and 34 0.54

Table 13.12: CSR results for protein.

13.2.6 FSR applied to wheat example

For a number of variables ranging from 1 to rank(X) the RMSEP-values
for the different models are shown in Figure 13.11 As seen in Table 13.13
FSR finds that the optimal number of variables for predicting moisture is
7. From the estimate in Figure 13.12 one can see that all the variables are
selected from within two small areas. Since the RMSEP-value for FSR is
larger than for the other methods, more information regarding moisture is
most likely contained in other regions as well. For protein FSR selects 12

Method Regularization parameter RMSEP
FSR No. of variables = 7 0.34

Table 13.13: RMSEP-values for the forward selection method for the mois-
ture model.

variables, which result in a RMSEP-value equal to the one obtained using
MLLS, Ridge and the CSR method.
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Figure 13.11: RMSEP as a function of the number of variables

Method Regularization parameter RMSEP
FSR No. of variables = 12 0.54

Table 13.14: RMSEP-values for the forward selection method for the pro-
tein model.
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Figure 13.12: Parameter estimates, β̂̂β̂β, for the forward selection method.
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13.2.7 LASSO applied to wheat example
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Figure 13.13: The RMSEP values for the LASSO method applied to the
moisture and protein data as a function of log10(t).

The LASSO method is better at predicting moisture than FSR but is in-
ferior to the other methods. The LASSO estimate has the largest absolute
values for wavelengths neighboring those selected by FSR. Besides that,
LASSO selects variables in a few other areas of the spectrum. Since the
Ridge method works better than both LASSO and FSR the important in-
formation regarding prediction of moisture is probably spread throughout
the entire spectrum, see [64].

For prediction of protein the LASSO method selects variables from nearly
all areas of the entire spectrum. LASSO and FSR provide competitive
results for the prediction of protein compared to the other methods.
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Method Regularization parameter RMSEP
LASSO

∑
(|βi|) = 8.09× 103; λ = 8.44× 10−5 0.30

Table 13.15: LASSO results for moisture.

Method Regularization parameter RMSEP
LASSO

∑
(|βi|) = 1.33× 104; λ = 4.20× 10−4 0.56

Table 13.16: LASSO results for protein.
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Figure 13.14: Parameter estimates, β̂ββ, for LASSO
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13.2.8 BFR applied to wheat example

As in the gasoline example the basis functions used are linear, quadratic
and cubic B-spline basis-functions. The results for the prediction of mois-
ture using OLS, Ridge, PCR, PLS LASSO and FSR in combination with
linear, quadratic and cubic B-spline basis-functions are shown respectively
in Table 13.17, 13.19 and 13.21. The results for the prediction of protein
with the same methods are shown in Table 13.18, 13.20 and 13.22.

Method Regularization parameter Knots RMSEP
Linear Spline-OLS 13 0.31
Linear Spline-Ridge k = 2.95× 10−5 40 0.30
Linear Spline-PCR No. of components = 14 45 0.32
Linear Spline-PLS No. of components = 8 31 0.33
Linear Spline-LASSO

∑
(|θ|)= 546.2 80 0.30

Linear Spline-FSR No. of variables = 12 58 0.31

Table 13.17: RMSEP-values for moisture for some regularization methods
combined with the linear B-spline basis-function regression.

Method Regularization parameter Knots RMSEP
Linear Spline-OLS 14 0.77
Linear Spline-Ridge k = 1.0× 10−10 192 0.47
Linear Spline-PCR No. of components = 51 191 0.46
Linear Spline-PLS No. of components = 27 191 0.44
Linear Spline-LASSO

∑
(|θ|)=3.43× 103 106 0.37

Linear Spline-FSR No. of variables = 7 122 0.53

Table 13.18: RMSEP-values for protein for some regularization methods
combined with the linear B-spline basis-function regression.
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Parameter functions, BT(λ)θ for linear B−spline basis for moisture model.
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Figure 13.15: Estimated coefficient-functions using OLS, Ridge, PCR, PLS,
LASSO, and FSR together with linear B-spline bases for the moisture
model.
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Parameter functions, BT(λ)θ for linear B−spline basis for protein model.
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Figure 13.16: Estimated coefficient-functions using OLS, Ridge, PCR, PLS,
LASSO, and FSR together with linear B-spline bases for the protein model.
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Method Regularization parameter Knots RMSEP
Quad. Spline-OLS 13 0.27
Quad. Spline-Ridge k = 2.2× 10−5 38 0.30
Quad. Spline-PCR No. of components = 14 38 0.32
Quad. Spline-PLS No. of components = 7 58 0.31
Quad. Spline-LASSO

∑
(|θ|)=167.7 23 0.31

Quad. Spline-FSR No. of variables = 3 17 0.35

Table 13.19: RMSEP-values for moisture for some regularization methods
combined with the quadratic B-spline basis-function regression.

Method Regularization parameter Knots RMSEP
Quad. Spline-OLS 12 0.60
Quad. Spline-Ridge k = 1.0× 10−11 219 0.47
Quad. Spline-PCR No. of components = 50 284 0.51
Quad. Spline-PLS No. of components = 26 219 0.47
Quad. Spline-LASSO

∑
(|θ|)=4.5× 103 143 0.34

Quad. Spline-FSR No. of variables = 8 139 0.54

Table 13.20: RMSEP-values for protein for some regularization methods
combined with the quadratic B-spline basis-function regression.
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Parameter functions, BT(λ)θ for quadratic B−spline basis for moisture model.
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Figure 13.17: Estimated coefficient-functions using OLS, Ridge, PCR, PLS,
LASSO, and FSR together with quadratic B-spline bases for the moisture
model.
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Parameter functions, BT(λ)θ for quadratic B−spline basis for protein model.
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Figure 13.18: Estimated coefficient-functions using OLS, Ridge, PCR, PLS,
LASSO, and FSR together with quadratic B-spline bases for the protein
model.
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Method Regularization parameter Knots RMSEP
Cubic Spline-OLS 11 0.30
Cubic Spline-Ridge k = 2.02× 10−5 43 0.30
Cubic Spline-PCR No. of components = 14 43 0.32
Cubic Spline-PLS No. of components = 7 69 0.31
Cubic Spline-LASSO

∑
(|θ|)=215.4 27 0.31

Cubic Spline-FSR No. of variables = 5 37 0.29

Table 13.21: RMSEP-values for moisture for some regularization methods
combined with the cubic B-spline basis-function regression.

Method Regularization parameter Knots RMSEP
Cubic Spline-OLS 25 0.50
Cubic Spline-Ridge k = 1.0× 10−12 266 0.46
Cubic Spline-PCR No. of components = 51 263 0.49
Cubic Spline-PLS No. of components = 20 266 0.48
Cubic Spline-LASSO

∑
(|θ|)=4.7× 103 128 0.37

Cubic Spline-FSR No. of variables = 8 153 0.56

Table 13.22: RMSEP-values for protein for some regularization methods
combined with the cubic B-spline basis-function regression.
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Parameter functions, BT(λ)θ for cubic B−spline basis for moisture model.
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Figure 13.19: Estimated coefficient-functions using OLS, Ridge, PCR, PLS,
LASSO, and FSR together with cubic B-spline bases for the moisture
model.
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Parameter functions, BT(λ)θ for cubic B−spline basis for protein model.

1200 1400 1600 1800 2000 2200 2400
−400

−200

0

200

400

B
T
(λ

)θ

1200 1400 1600 1800 2000 2200 2400
−400

−200

0

200

400

B
T
(λ

)θ

1200 1400 1600 1800 2000 2200 2400
−400

−200

0

200

400

B
T
(λ

)θ

1200 1400 1600 1800 2000 2200 2400
−500

0

500

1000

B
T
(λ

)θ

1200 1400 1600 1800 2000 2200 2400
−500

0

500

1000

B
T
(λ

)θ

Wavelength (nm)

Spline−OLS +− 2 stderr 

Spline−PCR 

Spline−PLS 

Spline−LASSO 

Spline−Ridge 

Spline−FSR 

Figure 13.20: Estimated coefficient-functions using OLS, Ridge, PCR, PLS,
LASSO, and FSR together with cubic B-spline bases for the protein model.
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Summary of BFR results

The spline methods do in general not perform as well on the moisture data
as the traditional methods. The B-spline basis functions are obviously not a
suitable transformation. The simple OLS solution does however in a single
case produce a competitive result. The predictive ability of the methods
Ridge, PCR and PLS is in all cases diminished when used in combination
with the B-spline bases. Forward selection is improved in combination with
the linear and cubic B-splines. When LASSO is used in combination with
the B-spline basis the prediction results are the same as for the normal
LASSO.

For protein the picture is quite different, first of all the number of knots
chosen by the methods is much higher than for moisture. The spline-OLS
solution, which is constrained to select no more basis functions than the
number of observations, clearly deviates from the other solutions. The
spline methods perform very well on the protein data. LASSO is greatly
improved and produce the best results. Ridge, PCR and PLS are also im-
proved substantially in all cases. The spline-LASSO estimate now indicates
that most of the variation of protein can be explained using the first part of
the spectrum, whereas the spline-FSR estimates indicate the same regions
as the FSR estimate. This is also reflected in the results for FSR. The best
spline-method results in a 37% reduction of the RMSEP-value compared
to the best otained previously.

13.2.9 Range selection using the BFR estimates

Moisture

The best of the spline results for the moisture case is the cubic Spline-FSR
method. In Figure 13.19 the estimate for the cubic Spline-FSR method
indicates that just one area of the spectrum is of interest, this contradicts
the other estimates which indicate that important information is contained
in the last part of the spectrum as well. Therefore the estimate from the
cubic Spline-LASSO method is used to select a new and smaller range to
which the methods MLLS, Ridge, PCR, PLS, LASSO and FSR will be
applied. The range obtained from the estimate is

[1778 : 2128, 2298 : 2478]
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There are 267 of the original 701 wavelengths contained in this range2.
The results for using this range is shown in Table 13.23 and the param-
eter estimates can be seen in Figure 13.21. To check whether the results
for the selected range are purely coincidential the methods have also been
applied to the complementary set of wavelengths, see Table B.1 for the
RMSEP-values. The RMSEP-values using the traditional methods on the

Method Regularization parameter RMSEP % improvement

MLLS ‖β̂̂β̂β‖2 = 1.53× 103 0.29 −7%
Ridge k = 1.42× 10−6 0.26 4%
PCR No. of components = 12 0.26 4%
PLS No. of components = 5 0.27 4%
LASSO

∑
(|θ|) = 8.11× 103 0.30 0%

FSR No. of variables = 7 0.34 0%

Table 13.23: RMSEP-values for moisture on the reduced range. The %-wise
reduction in the RMSEP-value for each of the methods is also tabulated.

full spectrum were not improved in combination with the B-spline bases,
but using the spline estimate to select a new set of wavelengths did improve
the methods slightly. The slight improvement could be the result of a sim-
pler model i.e. decreased variance of the parameter estimates, so whether
or not the spline-LASSO estimate actually identifies an important set of
wavelengths is not certain.

2See Figure B.4 for graphical display of the range
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Figure 13.21: The 100 NIR spectra on the reduced range and the parameter
estimates for Ridge, PCR, PLS, LASSO and forward selection regression
for the moisture model.
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Protein

The best of the spline results for the protein case come from the Spline-
LASSO method. The best result is obtained in combination with the
quadratic B-spline basis. In Figure 13.18 the estimate from the quadratic
Spline-LASSO method is used to select a new and smaller range to which
the methods MLLS, Ridge, PCR, PLS, LASSO and FSR will be applied.
It turns out that the small peaks in the estimate carry only little or none
information for the prediction of protein. This observation makes it diffi-
cult to use an automized procedure for selecting the range. By selecting
the areas where the estimate has the largest peaks the following range is
obtained:

[1122 : 1206, 1228 : 1284]

There are 72 of the original 701 wavelengths contained in this range3. The
results for using this range is shown in Table 13.24 and the parameter
estimates can be seen in Figure 13.22. To check whether the results for the
selected range are purely coincidential the methods have also been applied
to the complementary set of wavelengths, see Table B.2 for the RMSEP-
values. For Ridge, PCR and PLS the best results are obtained when applied

Method Regularization parameter RMSEP % improvement

MLLS ‖β̂̂β̂β‖2 = 2.83× 104 0.68 −26%
Ridge k = 3.0× 10−8 0.32 41%
PCR No. of components = 16 0.30 47%
PLS No. of components = 6 0.29 47%
LASSO

∑
(|θ|) = 5.46× 104 0.38 32%

FSR No. of variables = 34 0.38 30%

Table 13.24: RMSEP-values for protein on the reduced range. The %-wise
reduction in the RMSEP-value for each of the methods is also tabulated.

to the reduced range, they are also the overall best results for prediction of
protein. FSR is also greatly improved when forced to select variables from
the first part of the spectrum. The MLLS solution has for both moisture
and protein the same predictive power in the full spectrum situation. The
above result clearly shows that when uninformative parts of the spectrum
are removed, the shrinkage induced by the other regularization methods

3See Figure B.4 for graphical display of the range
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result in estimates with much better predictive ability than the MLLS
solution4.

4See Figure B.5 and B.6 for the MLLS solutions for respectively moisture and protein
when applied to the reduced range.
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Figure 13.22: The 100 NIR spectra on the reduced range and the parameter
estimates for Ridge, PCR, PLS, LASSO and forward selection regression
for the protein model.
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13.3 Summary for the wheat example

The results for the wheat example are summarized in Table 13.25 and 13.26.
When used for predicting moisture the methods generally performed worse
or just as good when used in combination with the B-spline bases. Since
Ridge regression is among the best methods, the information regarding
moisture is probably spread throughout the entire spectrum. Shrinking
the solutions away from the MLLS solution by using e.g. Ridge, PCR or
PLS does not have any predictive advantage. Even though the selection of
a smaller range does result in slight improvements, it is very likely just to be
the result of a simpler model, which compensates for the loss of information
by being more robust. This is also indicated in Table B.1 which shows that
the methods do almost as well on the complementary set of wavelengths.

For protein none of the methods do better than MLLS, this is also indicated
by the small regularization for most of the methods. The spline methods
do in all cases improve the traditional methods based on the full spectrum.
This indicates that a smoothing of the parameter estimates indeed is desir-
able in this case. When using the Spline-LASSO estimate as a tool to select
certain regions of the spectrum all results, except for LASSO, are further
improved. The best method on the reduced range result in a 47% reduction
in the RMSEP-value compared to the best full-spectrum method.
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Method Regularization param. Knots RMSEP

MLLS ‖β̂ββ‖2 = 1.01× 103 0.27
Ridge k = 1.79× 10−6 0.27
PCR No. of comps. = 23 0.27
CPCR No. of comps. = 17 0.28
FSPCR No. of comps. = 27 0.26
PLS No. of comps. = 7 0.28
CSR Eigv/factors = 35/34 0.28
FSR No. of var. = 7 0.34
LASSO

∑
(|βi|) = 8.09× 103 0.30

Linear Spline-OLS 13 0.31
Linear Spline-Ridge k = 2.95× 10−5 40 0.30
Linear Spline-PCR No. of comps. = 14 45 0.32
Linear Spline-PLS No. of comps. = 8 31 0.33
Linear Spline-LASSO

∑
(|θ|)= 546.2 80 0.30

Linear Spline-FSR No. of var. = 12 58 0.31
Quad. Spline-OLS 13 0.27
Quad. Spline-Ridge k = 2.2× 10−5 38 0.30
Quad. Spline-PCR No. of comps. = 14 38 0.32
Quad. Spline-PLS No. of comps. = 7 58 0.31
Quad. Spline-LASSO

∑
(|θ|) = 167.7 23 0.31

Quad. Spline-FSR No. of var. = 3 17 0.35
Cubic Spline-OLS 11 0.30
Cubic Spline-Ridge k = 2.02× 10−5 43 0.30
Cubic Spline-PCR No. of comps. = 14 43 0.32
Cubic Spline-PLS No. of comps. = 7 69 0.31
Cubic Spline-LASSO

∑
(|θ|)=215.4 27 0.31

Cubic Spline-FSR No. of var. = 5 37 0.29

Reduced MLLS ‖β̂̂β̂β‖2 = 1.53× 103 0.29
Reduced Ridge k = 1.42× 10−6 0.26
Reduced PCR No. of comps. = 12 0.26
Reduced PLS No. of comps. = 5 0.27
Reduced LASSO

∑
(|θ|) = 8.11× 103 0.30

Reduced FSR No. of var. = 7 0.34
Table 13.25: Results for the wheat example for moisture.
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Method Regularization param. Knots RMSEP

MLLS ‖β̂ββ‖2 = 2.55× 103 0.54
Ridge k = 6.28× 10−7 0.54
PCR No. of comps. = 29 0.57
CPCR No. of comps. = 30 0.56
FSPCR No. of comps. = 36 0.60
PLS No. of comps. = 9 0.55
CSR Eigv./factors = 50/34 0.54
FSR No. of var. = 12 0.54
LASSO

∑
(|βi|) = 1.33× 104 0.56

Linear Spline-OLS 14 0.77
Linear Spline-Ridge k = 1.0× 10−12 192 0.47
Linear Spline-PCR No. of comps. = 51 191 0.46
Linear Spline-PLS No. of comps. = 27 191 0.44
Linear Spline-LASSO

∑
(|θ|)=3.43× 103 106 0.37

Linear Spline-FSR No. of var. = 7 122 0.53
Quad. Spline-OLS 12 0.60
Quad. Spline-Ridge k = 1.0× 10−12 219 0.47
Quad. Spline-PCR No. of comps. = 50 284 0.51
Quad. Spline-PLS No. of comps. = 26 219 0.47
Quad. Spline-LASSO

∑
(|θ|)=4.5× 103 143 0.34

Quad. Spline-FSR No. of var. = 8 139 0.54
Cubic Spline-OLS 25 0.50
Cubic Spline-Ridge k = 1.0× 10−12 266 0.46
Cubic Spline-PCR No. of comps. = 51 263 0.49
Cubic Spline-PLS No. of comps. = 20 266 0.48
Cubic Spline-LASSO

∑
(|θ|)=4.7× 103 128 0.37

Cubic Spline-FSR No. of var. = 8 153 0.56

Reduced MLLS ‖β̂̂β̂β‖2 = 2.83× 104 0.68
Reduced Ridge k = 3.0× 10−8 0.32
Reduced PCR No. of comps. = 16 0.30
Reduced PLS No. of comps. = 6 0.29
Reduced LASSO

∑
(|θ|) = 5.46× 104 0.38

Reduced FSR No. of var. = 34 0.38
Table 13.26: Results for the wheat example for protein.
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Chapter 14

Summary

Although the examples presented here do not cover all possible calibration
situations, they give a reasonable idea of how the considered calibration
techniques perform.

The solutions produced by Ridge, PCR, PLS and CSR when applied di-
rectly to the gasoline example are all very similar and they all give similar
RMSEP-values. The CPCR solution looks more like the MLLS solution,
this is due to the inclusion of a principal component corresponding to one of
the smaller eigenvalues. Nevertheless the exclusion of other principal com-
ponents results in a better prediction compared to MLLS. A characteristic
property of these methods is that none of them will produce an estimate
where any of the parameters are equal to zero.

The LASSO method has been shown to produce parameter estimates where
some of the values are zero while others are quite large (compared to e.g.
PLS or Ridge estimates). Ridge regression limits the squared length of the
estimate, (L2 norm), whereas LASSO limits the absolute length of the esti-
mate, (L1 norm). LASSO is conceptually placed between Ridge regression
and subset selection. The subset selection procedure used here is forward
selection. FSR finds a solution by selecting a set of explanatory variables
of a specified size, that minimizes the ordinary least squares criteria. When
LASSO and FSR is applied to the gasoline example they select variables
within approximately the same range of the spectrum, except for the very



140 Chapter 14. Summary

last part of the spectrum which is only included in the LASSO estimate.
LASSO has the largest RMSEP-value and FSR is almost as good as Ridge,
PCR and PLS.

In the wheat example NIR spectra are used to predict the amount of mois-
ture and protein in wheat. When applied to predict moisture MLLS, Ridge,
PCR, CPCR, FSPCR, PLS and CSR have more or less the same predic-
tive ability. The solutions for LASSO and FSR are quite different which is
reflected in the RMSEP-values. LASSO does almost as good as the other
methods whereas the 7 variables chosen by FSR from the cross-validation
result in the largest RMSEP-value.

For prediction of protein LASSO and FSR choose quite different subsets
of variables but both methods predict just as well as the other methods.
One should note that for both moisture and protein the MLLS solution
gives just as good predictions as any of the other methods applied to the
full spectrum. Shrinking the solution away from the MLLS solution using
Ridge, PCR or PLS does not have any predictive advantage.

The basis function regression using B-spline basis functions was applied to
the gasoline data. The spline results are similar whether linear, quadratic
or cubic B-spline bases are used. The number of internal knots chosen
is relatively small. This results in very smooth parameter functions. For
Spline-OLS, -Ridge, -PCR and -PLS the estimates look very similar. The
prediction results are also similar and in all cases better than what was
obtained using the previous methods. For Spline-LASSO and -FSR the
number of internal knots chosen is much larger than for the other methods.
This results in estimates where small parts of the function is different from
zero. Both Spline-LASSO and -FSR have sligthly smaller RMSEP-values
than the other spline methods.

When using the parameter function from Spline-FSR to select ranges of
the spectrum and thereafter applying Ridge, PCR, PLS and LASSO to
the reduced set of explanatory variables smaller RMSEP-values are ob-
tained compared to the full spectrum case. For FSR the same result is
obtained because the wavelengths selected from the full spectrum are al-
most all contained in the reduced set of wavelengths. The RMSEP-values
obtained using the spline methods are the same as the ones obtained using
the reduced range.

When predicting moisture using the basis function regression no reduction
in the RMSEP-value is obtained. It is possible that another basis function
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would be more appropriate (e.g. wavelet basis). When the Spline-LASSO
estimate is used to select a reduced set of wavelengths only a small reduction
in the RMSEP-value is achieved and this is most likely just the effect of a
simpler model which compensates for the loss of information by being more
robust.

Smoothing the estimate is an advantage when predicting protein. In all
cases reduction in the RMSEP-value is achieved. The best result is for
Spline-LASSO which results in a 37% reduction of the best RMSEP-value.
Relatively many basis functions are needed to predict well. This shows the
importance of combining a regularization method with the basis function
regression and thereby being able to choose a number of basis functions
which exceed the number of samples. The Spline-OLS result clearly reflects
the need for many basis functions in this case. The selection of a smaller
set of wavelengths is very successfull here which is reflected in the 47%
reduction in the best RMSEP-value from the full spectrum case.

14.1 A calibration strategy

A strategy to select a suitable calibration technique for a given calibration
problem will be suggested here. It should be mentioned that the proposed
strategy cannot be considered general, as it is based on a limited, though
relatively representative, set of data.

The strategy is based on the grouping among the methods revealed by the
results above.

1. • Ridge
• PLS
• PCR

2. • LASSO
• FSR (or any other variable selection method)

3. • Spline-LASSO
• Spline-FSR (or any other variable selection method)

The proposed strategy is simply to use one method from each group pre-
sented above. The reason for using methods from group 1 and 3 is a
consequence of the results obtained by the gasoline and wheat example.
The reason for also using a method from group 2 is to cover the case where
only a few explanatory variables carry all the information of variation in



142 Chapter 14. Summary

the response variable.1 If a good result is obtained using one of the spline
methods it is implied that a smaller range should be extracted and tested
on one of the methods from both group 1 and 2. Thereby a simpler and
more robust model can be obtained.

14.2 Further enhancements

• As mentioned in Section 12.5 the B-spline basis approach is just one
solution to the basis function regression. Another solution would
be to use wavelet basis functions together with methods like e.g.
LASSO. Since wavelets cover a large range of scales and positions,
they may be more appropriate than B-splines. Polynomials or cosi-
nusoids are also possible alternatives.

• As yet another improvement an adaptive knot-placement procedure
could be developed, thereby making non-equidistant knot placement
possible.

• Finally, make the basis function regression work on the reduced range
if it is not continous.

1An example where only 3 out of 926 explanatory variables yield the best prediction
is found in [64]
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Chapter 15

Conclusion

The aim has been to present some of the traditional and newest methods
for multivariate calibration and compare the quality of prediction obtained
with these methods. Furthermore, a new method that replaces the linear
combination of the spectral values with an integral over the range of the
wavelengths of an unknown coefficient-function multiplied by the spectral
measurements, has been introduced. The idea is not new, the approach was
first suggested by Hastie and Mallows, [22]. Marx and Eilers, [41], project
the spectral measurements onto a moderate number of equally spaced B-
spline bases. This approach is very similar to the approach presented here.
However, the main difference here is that the number of basis functions is
not restricted to be less than the number of observations.

The NIR data sets analyzed here, gasoline and wheat, has been published
as intended reference data sets, [30]. Although this analysis is far from
being exhaustive, the data sets do represent typical calibration problems
that can be encountered in practice.

The conclusions made are only valid for the calibration situation studied,
i.e., when new samples will be situated within the calibration domain. The
results for Ridge, PCR and PLS are considered as benchmark results for
comparison with other calibration techniques. They are the most widely
used methods for calibration. Numerous studies have shown that these
methods produce similar estimates and prediction results when applied to
problems involving data with high collinearity in which the variance of the
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estimate tends to dominate the bias, see e.g. [7], [15], [56] or [63]. The re-
sults from the examples presented here confirm this conclusion. The results
for the different selection strategies for PCR indicate that the top-down se-
lection strategy is the most stable, that is also concluded by Kalivas [36].
Cyclic subspace regression, CSR, is most importantly a simple algorithm
that provides not only solutions for PCR, PLS and MLLS but also a fi-
nite number of other related methods. In the examples presented here the
CSR solution always obtains results that are just as good as for Ridge,
PCR and PLS. The newest developments of LASSO by Osborne [49], has
been presented here. The new theory leads to a very fast algorithm that
makes it possible to perform the calibration on a standard PC. Applying
LASSO directly to the examples here do not result in better predictions
than by using Ridge, PCR and PLS. In [64] it has been shown that LASSO
works better than Ridge and PLS when only a moderate number of wave-
lengths are needed to predict the response variable. FSR also works best
if all the variation of the response variable can be described by just a few
explanatory variables. The new method presented here, basis function re-
gression, leads in two of the cases to better results than the benchmark
methods. Here B-spline basis functions have been used. Generally it works
best in combination with either LASSO or FSR. It has been shown that
the estimates resulting from combining LASSO or FSR with the B-spline
bases can be used to identify smaller parts of the entire spectrum that con-
tains explanatory variables which are important for predicting the response
variable. Large improvements of the benchmark results can sometimes be
gained by applying e.g. Ridge to this reduced set of explanatory variables.

Based on the results a calibration strategy has been proposed with the basis
function regression as an important new tool.

All the methods presented here have been implemented in Matlab and will
be made publicly available on http://www.imm.dtu.dk/˜hoe.

Finally I hope this thesis can act as a help to future students of this area
by being used as an introduction to the traditional multivariate methods
of calibration and as a stepstone to future research into new methods or
improvements of the existing.
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Appendix A

Gasoline

900 1000 1100 1200 1300 1400 1500 1600 1700
−300

−200

−100

0

100

200

300

β

Wavelength (nm)

MLLS 

Figure A.1: Parameter estimates, β̂ββ, for MLLS applied on the reduced
range.

Full spectrum Reduced Spectrum
1208 1208
1196 1196
1214 1214
1190 1190
1216 1216
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1192 1192
1210 1210
1194 1194
1206 1206
1362 1362
1234 1234
1360 1360
1236 1236
1358 1358
1238 1238
1356 1364
1244 1426

Table A.2: Wavelengths selected by the forward selection method.
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Figure A.2: The 60 NIR spectra for the complementary set of wavelengths,
together with the parameter estimates for Ridge, PCR, PLS, LASSO and
forward selection regression.



148 Appendix A. Gasoline

Method Regularization parameter RMSEP % improvement
Ridge k = 1.84× 10−6 0.27 −13%
PCR No. of components = 43 0.26 −13%
PLS No. of components = 23 0.27 −17%
LASSO

∑
(|θ|) = 497.70 0.30 −11%

FSR No. of variables = 5 0.31 −24%

Table A.1: RMSEP-values for some regularization methods on the comple-
mentary set of wavelengths.
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Appendix B

Wheat
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Figure B.1: Parameter estimates, β̂ββ, for PCR.
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Figure B.2: Parameter estimates, β̂ββ, for CPCR.
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Figure B.3: Parameter estimates, β̂ββ, for FSPCR
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Figure B.4: The first-order differenced spectra (top figure), the selected
range for moisture (middle figure) and the selected range for protein (bot-
tom figure).
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Figure B.5: Parameter estimates, β̂ββ, for MLLS applied on the reduced
range for moisture.
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Figure B.6: Parameter estimates, β̂ββ, for MLLS applied on the reduced
range for protein.
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Method Regularization parameter RMSEP % improvement
Ridge k = 8.69× 10−7 0.28 −4%
PCR No. of components = 29 0.28 −4%
PLS No. of components = 7 0.28 0%
LASSO

∑
(|θ|) = 9.46× 103 0.30 0%

FSR No. of variables = 13 0.32 6%

Table B.1: RMSEP-values for moisture on the complementary set of wave-
lengths.
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Method Regularization parameter RMSEP % improvement
Ridge k = 6.87× 10−7 0.62 −15%
PCR No. of components = 30 0.64 −12%
PLS No. of components = 8 0.61 −11%
LASSO

∑
(|θ|) = 1.49× 104 0.68 −21%

FSR No. of variables = 9 0.57 −6%

Table B.2: RMSEP-values for protein on the complementary set of wave-
lengths.
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Appendix C

Some Matlab functions

C.1 Ridge Regression

function [b] = ridge(X,y,k)

% function [b] = ridge(X,y,k)

% Input: X is a (n x p) matrix with p explanatory variables.

% y is a (n x 1) vector with the response variables.

% k is the Ridge parameter.

% Output: b is the parameter estimate for Ridge Regression.

[n,p] = size(X);

[n1,collhs] = size(y);

if n~=n1,

error(’The number of rows in Y must...

equal the number of rows in X.’);

end

b = inv(X’*X + k*eye(p))*X’*y;
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C.2 Principal Components Regression

function [b] = pcr(X,y,comp)

% function [b] = pcr(X,y,comp)

% Input: X is a (n x p) matrix with p explanatory variables

% y is a (n x 1) vector with the response variables

% comp is the number of PC’s to be used.

% Output: b is the parameter estimate for the

% principal component regression.

[n,p] = size(X);

[n1,collhs] = size(y);

if n~=n1,

error(’The number of rows in Y must...

equal the number of rows in X.’);

end

[U,S,V] = svd(X);

lambda = diag(diag(S));

b=V(:,1:comp)*inv(lambda(1:comp,1:comp))*U(:,1:comp)’*y;

function [b,index,Y] = cpcr(X,y,comp)

% function [b] = cpcr(X,y,comp)

% Input: X is a (n x p) matrix with p explanatory variables

% y is a (n x 1) vector with the response variables

% comp is the number of PC’s to be used.

% Output: b is the parameter estimate for the principal

% component regression using a correlation strategi

% on the PC’s and the y’s.

% index contains the number corresponding to the

% size of the eigenvalues.

% Y contains the correlation values.
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[n,p] = size(X);

[n1,collhs] = size(y);

if n~=n1,

error(’The number of rows in Y must...

equal the number of rows in X.’);

end

index=[];

[U,S,V] = svd(X);

lambda = diag(diag(S));

nmy=norm(y);

r=rank(X);

for i=1:r

corr(i) = abs((U(1:n1,i)’*y)/(norm(U(1:n1,i))*nmy));

end

[Y,I] = sort(corr’);

index=I(end-comp+1:end);

b=V(:,I(end-comp+1:end))*inv(lambda(I(end-comp+1:end),...

I(end-comp+1:end)))*U(:,I(end-comp+1:end))’*y;

C.3 Partial Least Squares Regression

function [b] = pls(X,Y,comp)

% Input: X is a (n x p) matrix with p explanatory variables

% y is a (n x 1) vector with the response variables

% comp is the number of components to be used.

% Output: b is the parameter estimate for the

% partial least squares regression.

[n,p] = size(X);

[n1,p1] = size(Y);
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if n~=n1,

error(’The number of rows in Y must...

equal the number of rows in X.’);

end

x = X;

y = Y;

I = eye(p);

w = zeros(p,comp);

u = zeros(n,comp);

for i = 1:comp

w(:,i) = x’*y;

w(:,i) = w(:,i)/norm(w(:,i));

r(:,i) = x * w(:,i);

x = x - r(:,i) * w(:,i)’;

y = y - r*(r\y);

end

cw = r\Y;

b = w * cw;

C.4 Cyclic Subspace Regression

function [b] = csr(X,y)

% function [b] = csr(X,y)

% Input: X is a (n x p) matrix with p explanatory variables

% y is a (n x 1) vector with the response variables

% Output: b is the parameter estimate for the

% cyclic subspace regression.

% Step 1: Perform SVD on X

[U,S,V] = svd(X);

[n,m] = size(X);

Xs = X;

ys = y;
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% Step 2

k = rank(X);

for l=1:k

% Perform CSR algorithm

X = Xs;

P = U(:,1:l)*U(:,1:l)’;

y = P*ys;

W = zeros(length(y),1);

Z = zeros(length(X’*y),1);

for i = 1:l

a = X’*y;

z = a/norm(a);

Z = [Z z];

b = X*z;

w = b/norm(b);

W = [W w];

X = (eye(size(U))-w*w’)*X;

y = (eye(size(U))-w*w’)*y;

end

W = W(:,2:l+1);

Z = Z(:,2:l+1);

for j=1:l

XP = W(:,1:j)*W(:,1:j)’*Xs*Z(:,1:j)*Z(:,1:j)’;

b = pinv(XP)*ys;

end

C.5 Forward Selection Regression

function [b,SS] = fsr(X,y,k)

% FUNCTION [b] = fsr(X,y)

% Input: X is a (n x p) matrix with p explanatory variables

% y is a (n x 1) vector with the response variables

% k is the number of variables to choose.

% Output: b is the parameter estimate for the

% Forward selection regression.
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% SS is a vector containing the chosen variables.

[n,p] = size(X);

[n1,collhs] = size(y);

if n~=n1,

error(’The number of rows in Y must equal ...

the number of rows in X.’);

end

nmy = norm(y);

set = 1:p;

pcorr = zeros(length(set),1);

for i = set

corr(i) = norm(X(:,i)’*y,1)^2/(norm(X(:,i))^2*nmy);

end

[Y1,I1] = max(abs(corr));

SS(1) = I1;

Xbest = X(:,I1);

betabest = inv(Xbest’*Xbest)*Xbest’*y;

set = setdiff(set,I1);

for j = 2:k

for i = 1:length(set)

taeller(i) = norm( (X(:,set(i)) - ...

( inv(X(:,set(i))’*X(:,set(i)) ) *...

X(:,set(i))’ * Xbest * Xbest))’ * ...

( y-Xbest*betabest ),1 )^2;

naevner(i) = norm(X(:,set(i)) - ( inv(X(:,set(i))’*...

X(:,set(i)) ) * X(:,set(i))’ *...

Xbest * Xbest ))^2;

pcorr(i,1) = (taeller(i)/naevner(i))/...

norm(y-Xbest*betabest)^2;
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end

[Y2,I2] = max(abs(pcorr));

Xbest = X(:,set(I2));

betabest = inv(Xbest’*Xbest)*Xbest’*y;

SS(j) = set(I2);

set = setdiff(set,set(I2));

pcorr = zeros(length(set),1);

end

b=inv(X(:,SS)’*X(:,SS))*X(:,SS)’*y;

C.6 Adaptive Ridge Regression

function [beta,msr] = arrfit(X,y,lambda,precision)

%ARRFIT Adaptive Ridge Regression linear fit to data

% ARRFIT(X,y,lambda) finds the coefficients BETA, of

% the linear fit to the data, X(i,:)*BETA ~= y(i),

% minimizing the following expression:

%

% sum((X*BETA-y).^2) + lambda * sum(abs(BETA))^2

%

% [BETA,MSR] = ARRFIT(X,y,lambda,precision) returns the

% coefficients BETA and the mean squares residuals MSR.

%

% X is the vector or matrix of input data, y is the

% vector of output data.

% lambda (default=1) is a scalar or vector of

% penalization coefficients. If lambda is a vector,

% each column of BETA and MSR corresponds to the

% respective value of lambda. precision (default=1e-2)

% is an optional parameter of the procedure. It is a

% measure of the absolute and relative precisions

% required for BETA.

% 22/06/98 Y. Grandvalet
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if nargin < 4;

precision = 1e-2;

if nargin < 3;

lambda = 1;

if nargin < 2;

error(’ARRFIT requires at...

least two input arguments.’);

end;

end;

end;

precision = precision.^2;

% Check that matrix (X) and vector (y)

% have compatible dimensions

[n,d] = size(X);

[ny,dy] = size(y);

if ny~=n,

error(’The number of rows in y must equal...

the number of rows in X.’);

end

if dy ~= 1,

error(’y must be a vector, not a matrix’);

end

% Check that (lambda) has correct dimensions

[nl,dl] = size(lambda);

if dl ~= 1 & nl ~= 1,

error(’lambda must be a scalar or vector.’);

end

[nl] = max([nl,dl]);

% Check that (precision) has correct dimensions

if length(precision) ~= 1,

error(’precision must be a scalar.’);

end
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% Initializations

beta = zeros(d,nl);

XX = (X’*X);

Xy = (X’*y);

for i=1:nl

if lambda(i)==Inf;

beta(:,i) = zeros(d,1);

else;

Lambda = lambda(i)*ones(d,1);

U = chol(XX + diag(Lambda));

betanew = U\(U’\Xy);

stop = 0;

while (~stop);

betaold = betanew;

normbetaold = abs(betaold)./mean(abs(betaold));

ind = find( normbetaold > precision );

Lambda(ind) = (d*lambda(i))./normbetaold(ind);

betanew = zeros(d,1);

U = chol(XX(ind,ind) +...

diag(Lambda(ind)));

betanew(ind) = U\(U’\Xy(ind));

stop = max( abs(betaold-betanew)./...

(1+abs(betanew)) ) < precision;

end

beta(:,i) = betanew;

end;

end;

if nargout > 1

msr = sum( (X*beta - y(:,ones(nl,1))).^2 )/n;

end;
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