
IMM
INFORMATICS AND MATHEMATICAL MODELLING

Technical University of Denmark
DK-2800 Kongens Lyngby – Denmark

J. No. RS
31.1.2002
HBN/ms

ROBUST SUBROUTINES FOR
NON-LINEAR OPTIMIZATION

Kaj Madsen

Hans Bruun Nielsen

Jacob Søndergaard

TECHNICAL REPORT

IMM-REP-2002-02

IMM

Contents

1. Introduction 3

1.1. Problem Formulation . 3

1.2. Checking the Gradients . 3

1.3. Examples . 5

1.4. Test Functions . 6

1.5. Modifications . 7

2. Unconstrained Optimization 8

2.1. MINF. Minimization of a Scalar Function . 8

2.2. MINL2. Minimization of the `2-Norm of a
Vector Function (Least Squares) . 12

2.3. MINL1. Minimization of the `1-Norm of a
Vector Function . 16

2.4. MININF. Minimization of the `∞-Norm of a
Vector Function . 20

3. Constrained Optimization 23

3.1. MINCF. Constrained Minimization of a Scalar Function 23

3.2. MINCL1. Linearly Constrained Minimization
of the `1-Norm of a Vector Function . 27

3.3. MINCIN. Linearly Constrained Minimax
Optimization of a Vector Function . 31

References 36

1. Introduction

This report presents a package of robust and easy-to-use Fortran subroutines for solving unconstrained
and constrained non-linear optimization problems. The intention is that the routines should use the
currently best algorithms available. All routines have standardized calls, and the user does not have
to worry about special parameters controlling the iteration. For convenience we include an option for
numerical checking of the user’s implementation of the gradient.

The present report is a new and updated version of a previous report NI-90-06 with the same title.
The software changes are listed in Section 1.5.

1.1. Problem Formulation

We consider minimization of functions of vector arguments, F : IRn 7→ IR. The function may be a
norm of vector valued function f : IRn 7→ IRm. For the scalar case the user must provide a subroutine,
which – for a given x – returns both the function value F (x) and the gradient g(x) ∈ IRn, defined by

g =

∂F

∂x1
...

∂F

∂xn

 . (1.1)

In case of a vector function the user’s subroutine must return the vector f(x) and the Jacobian matrix
J(x) ∈ IRm×n, defined by

J =

∂f1

∂x1
· · · ∂f1

∂xn
...

...
∂fm

∂x1
· · · ∂fm

∂xn

 , (1.2)

i.e., the ith row in J is the gradient of fi, the ith component of f .

For an efficient performance of the optimization algorithm the function and the gradients must be
implemented without errors. It is not possible to check the correctness of the implementation of F
(or f), but we provide the possibility of checking the corresponding gradient (or Jacobian).

1.2. Checking the Gradients

This is done by difference approximations. First, consider a scalar function F (x): For given x and
steplength h we compute

DF
j = (F (x+hej) − F (x))/h

DB
j = (F (x) − F (x−1

2hej))/(1
2h)

DE
j = (DF

j + 2DB
j))/3

 , j = 1, . . . , n , (1.3)

where ej is the jth unit vector (the jth column of I), and the superscripts stand for Forward, Backward
and Extrapolated difference approximation, respectively.

We assume that F is three times continuously differentiable with respect to each of its arguments.
Then a Taylor expansion from x shows that

F (x) + ηej) = F (x) + η
∂F

∂xj
(x) + 1

2η2 ∂2F

∂x2
j

(x) + O(η3)

= F (x) + ηgj(x) + η2Sj(x) + O(η3) . (1.4)

4 1.2. Gradient Check

Inserting this in (1.3) we see that

DF
j = gj + hSj + O(h2)

DB
j = gj − 1

2hSj + O(h2)

DE
j = gj + O(h2)

with Sj = 1
2

∂2F

∂x2
j

(x) . (1.5)

Now, let Gj denote the jth component of the gradient as returned from the user’s subroutine, and
let

Gj = gj − ψj , (1.6)

where ψj = ψj(x) is zero if the implementation is correct. Inserting this in (1.5) we get

δF
j ≡ DF

j − Gj = ψj + hSj + O(h2) ,

δB
j ≡ DB

j − Gj = ψj − 1
2hSj + O(h2) ,

δE
j ≡ DE

j − Gj = ψj + O(h2) .

(1.7)

If ψj = 0, Sj 6= 0 and h is so small that the last term in each right-hand side of (1.7) can be
neglected, then we can expect δB

j ' −1
2δF

j and δE
j to be of the order of magnitude (δF

j)2. Also, if
the approximation is recomputed with h replaced by θh, where 0 < θ < 1, then both δF

j and δB
j are

reduced by a factor θ, while δE
j is reduced by a factor θ2.

If ψj 6= 0 and h is sufficiently small, then the error will be recognized by δF
j ' δB

j ' δE
j ' ψj .

The computed values are affected by rounding errors. Especially, instead of F (z) we get fl(F (z)) =
F (z) + ε. The best that we can hope for is that |ε| ≤ u · |F (x)|, where u is the “unit round-off”.
(The subroutines use REAL*8 corresponding to u = 2−53 ' 10−16 on most computers). This has the
consequence that for the computed difference approximations (1.7) should be replaced by

|δF
j | ≤ |ψj + hSj | + Ajh

−1 + O(u) + O(h2) ,

|δB
j | ≤ |ψj − 1

2hSj | + Ajh
−1 + O(u) + O(h2) ,

|δE
j | ≤ |ψj | + Bjh

−1 + O(u) + O(h2)) ,

(1.8)

where Aj and Bj are positive values, that depend on F and x, but not on h. In the case of correct
implementation of the gradient, (1.8) shows that for large h the errors are dominated by truncation
error, while effects of rounding errors dominate if h is too small. Assuming that |Sj | and Aj are of the
same order of magnitude, the smallest error with the forward and backward difference approximations
is obtained with h ' √

u‖x‖. Similarly, we can expect that |δE
j | is minimal for h ' 3

√
u‖x‖.

In order to enhance accuracy the one-sided difference approximations in (1.3) should be computed
by the formulae

DF
j =

F (x+hej) − F (x)
ĥj

, DB
j =

F (x) − F (x−1
2hej)

h̃j

, (1.9a)

where ĥj and h̃j are the actual steps,

ĥj = fl(fl(xj+h) − xj), h̃j = fl(xj − fl(xj−1
2h)) . (1.9b)

Note that if |h| is too small, then we get ĥj = 0 and/or h̃j = 0. In that case the gradient checker gives
an error return.

1. Introduction 5

The subroutines MINF and MINCF deal with scalar functions of vector variables. If they are called
with the option of checking the gradient, then they return {δA

j , jA} defined by

jA = argmax
j = 1, . . . , n

{|δA
j |}, δA = δA

jA (1.10)

for A = F, B, E, i.e. δA is the extreme value and jA is its position.

The other subroutines deal with problems where F (x) is some norm of a vector function f(x). In
this case it is relevant to check the implementation of the Jacobian J(x), (1.2). The ith row in J is
the gradient of fi, the ith component of f , and a straightforward generalization of (1.3) is

DF
ij = (fi(x+hej) − fi(x))/h

DB
ij = (fi(x) − fi(x−1

2hej))/(1
2h)

DE
ij = (DF

ij + 2DB
ij)/3

 ,

{
i= 1, . . . , m
j = 1, . . . , n

, (1.11)

leading to

δF
ij ≡ DF

ij − Jij = ψij + hSij + O(h2) + O(uh−1) ,

δB
ij ≡ DB

ij − Jij = ψij − 1
2hSij + O(h2) + O(uh−1) ,

δE
ij ≡ DB

ij − Jij = ψij + O(h2) + O(uh−1) ,

(1.12)

where Jij is the (i, j)th element in the implemented Jacobian, ψij is its error and Sij = 1
2∂2fi/∂x2

j .
If the subroutines are called with the option of checking the Jacobian, they return δA, iA, jA for
A = F, B, E defined as in (1.10).

1.3. Examples

First, consider the scalar problem (n = 2)

F (x) = cos x1 + e2x2 , g(x) =

[
− sinx1

2e2x2

]
, (1.13)

implemented by the subroutine (note the sign error in g1)

SUBROUTINE FDF(N,X,DF,F)

c Scalar function with gradient error

INTEGER N

DOUBLE PRECISION X(N),DF(N),F,E

INTRINSIC COS,EXP,SIN

E = EXP(2D0 * X(2))

F = COS(X(1)) + E

DF(1) = SIN(X(1))

DF(2) = 2D0 * E

RETURN

END

If we call e.g. MINF with the checking option and h = 10−3, we get the results

Max|DF| = 1.4778E+01, δF = -1.6832E+00, F = 1 ,
δB = -1.6828E+00, B = 1 ,
δE = -1.6829E+00, F = 1 ,

indicating an error in the first element of the computed gradient. After correcting the error we get

δF = 1.4788E-02, δB = -7.3866E-03, δE = 4.9273E-06

6 1.4. Test Functions

h δF jF δB jB δE jE

1 3.24E+01 2 -5.44E+00 2 7.19E+00 2
1.0E-01 1.58E+00 2 -7.15E-01 2 5.06E-02 2
1.0E-02 1.49E-01 2 -7.36E-02 2 4.94E-04 2
1.0E-03 1.48E-02 2 -7.39E-03 2 4.93E-06 2
1.0E-04 1.48E-03 2 -7.39E-04 2 4.93E-08 2
1.0E-05 1.48E-04 2 -7.39E-05 2 6.38E-10 2
1.0E-06 1.48E-05 2 -7.39E-06 2 -1.38E-09 2
1.0E-07 1.49E-06 2 -7.34E-07 2 -5.86E-09 1
1.0E-08 4.71E-08 2 -1.31E-07 2 -7.13E-08 2
1.0E-09 7.57E-07 2 -1.68E-06 1 -1.09E-06 1
1.0E-10 -4.58E-06 2 -7.01E-06 1 -4.05E-06 1
1.0E-11 2.21E-05 2 -1.67E-04 1 -1.08E-04 1
1.0E-12 1.18E-03 2 1.18E-03 2 1.18E-03 2

Table 1.1. Gradient check with varying h

and jF = jB = jE =2. This agrees with expectation: δB ' −1
2δF and δE is orders of magnitude

smaller.

To illustrate the behaviour for varying steplength we give results in Table 1.1 for the extreme
values of of the differences for h = 1, 10−1, · · · , 10−12.

For large values of h (the first two rows) the results are dominated by truncation error. Then
follows a series of results where the δA behave as described above and δA(0.1h) ' 0.1δA(h) for the
forward and backward approximation, while δE(0.1h) ' 0.01δE(h). Finally, for the smallest h-values
rounding errors dominate. For the one-sided approximations this happens for h ' 10−7 ' 10

√
u and

for the extrapolated approximation the turning point is h ' 10−5 ' 2 3
√

u, where u = 2−53 ' 10−16 is
the unit round-off used for the computations. This agrees with the discussion after (1.8).

1.4. Test Functions

Many of the examples in this report use the following set of functions, f : IR2 7→ IR3, originally given
by Beale [1],

f1(x) = 1.5 − x1(1 − x2)

f2(x) = 2.25 − x1(1 − x2
2)

f3(x) = 2.625 − x1(1 − x3
2)

(1.14)

1. Introduction 7

1.5. Modifications

The following modifications were made compared with the version of the package described in [12],

1◦ MINF is completely new. It provides an option for warm start and requires a smaller workspace.

2◦ MINL2 is completely new and requires a smaller workspace.

3◦ The gradient checker has been changed in all subroutines so that the difference approximations
are more accurate (cf. (1.9)) and the extreme differences are returned with their sign.

4◦ The LP solver in MINCIN has been replaced by a corrected version, dated June 2001.

5◦ The subroutines dealing with vector functions return both F (x) and f(x). The old versions
returned f(x) only.

6◦ The subroutines MINCL1 and MINCIN return the values of the constraints together with F (x) and
f(x).

8 2.1. MINF

2. Unconstrained Optimization

2.1. MINF. Minimization of a Scalar Function

Purpose. Find x∗ that minimizes F (x), where x = [x1, . . . , xn]> ∈ IRn is the vector of unknown
parameters and the scalar objective function F is twice continuously differentiable. The user must
supply a subroutine that evaluates F (x) and the gradient g(x). There are options for checking the
implementation of g and for warm start of the algorithm.

Method. The algorithm is a quasi-Newton method with BFGS updating of the inverse Hessian1) and
soft line search,, see e.g. [3, Chapters 9 (and 6)] or [15, Chapters 3, 4 and 8]. This is combined with a
trust region type monitoring of the input to the line search algorithm, see [14].

Remark. The user has to give an initial value for ∆, the length of the step h between two consecutive
iterates. Ideally, a step of this length is accepted by the line search, and during iteration this “trust
region radius” is adjusted by the output from the line search algorithm, see [14, Section 2.3].

The algorithm is not very sensitive to ∆0, the initial value of this parameter. If the function F is
almost linear, then we recommend to use a value for ∆0, which is an estimate of the distance between
x0 and the solution x∗. Otherwise, we recommend ∆0 = 0.1‖x0‖.
Origin. MINF is a modified version of the subroutine UCMINF, [14]. The modification was made to
make it consistent with the other routines in the present package.

Use of other Subprograms. The subroutine calls the following BLAS (see [4]) subroutines and
functions
Level 0: LSAME XERBLA

Level 1: DAXPY DCOPY DDOT DNRM2 DSCAL IDAMAX

Level 2: DSPMV DSPR DSPR2

Copies of these were obtained from
http://www.netlib.org/blas/blas.tgz

and are included in the file minf.f. At lines 65, 261 and 370 you can find instructions about how to
modify the file if BLAS is available on your computer.

Use. The subroutine call is

CALL MINF(FDF,N,X,DX,EPS,MAXFUN,W,IW,ICONTR)

The parameters are

FDF SUBROUTINE written by the user with the following declaration

SUBROUTINE FDF(N,X,DF,F)

REAL*8 X(N),DF(N),F

It must calculate the value of the objective function and its gradient at the point x =
[X(1), . . . , X(N)]> and store these numbers as follows,

F = F (x), DF(J) =
∂F

∂xJ
(x), J = 1, . . . N

The name of this subroutine (which can be chosen freely by the user) must appear in an
EXTERNAL statement in the calling program.

N INTEGER. Number of unknowns, n. Must be positive. Is not changed.

X REAL*8 ARRAY with N elements. The use depends on the entry value of ICONTR.

1) The Hessian H(x) is the matrix of second derivatives, Hij =
∂2F

∂xi∂xj
.

2. Unconstrained Optimization 9

ICONTR > 0 : On entry : Initial approximation to x∗.
On exit : Computed solution.

ICONTR ≤ 0 : Point at which the Jacobian should be checked. Not changed.

DX REAL*8. The use depends on the entry value of ICONTR.
ICONTR > 0 : “Trust region radius”, see Remark above.

On entry : DX = ∆0. Must be positive.
On exit : Final trust region radius.

ICONTR ≤ 0 : Gradient check with DX used for h in (1.3). Must be significantly nonzero.
Is not changed.

EPS REAL*8. Used only if the entry value of ICONTR is positive. Desired accuracy.
The algorithm stops when it suggests to change the iterate from xk to xk+hk with
‖hk‖ < EPS·(‖xk‖ + EPS). Must be positive. Is not changed.

MAXFUN INTEGER. Used only if the entry value of ICONTR is positive.
On entry : Upper bound on the number of calls of FDF. Must be positive.
On exit : Number of calls of FDF.

W REAL*8 ARRAY with IW elements. Work space.
On entry: If ICONTR>2, then W(4N+1,..,4N+1

2N(N+1)) should hold (an approximation to)
the lower triangle of the inverse of H(X), stored columnwise. This matrix must be positive
definite.
If ICONTR≤2, then entry values of W are not used.

On exit with ICONTRentry > 0:
W(1) = F (X), the computed minimum,
W(2) = max |gi(X)| ,
W(3) = length of the last step,
W(4,..,N+3) = g(X), the gradient at X,
W(4N+1,..,4N+1

2N(N+1)): lower triangle of the final approximation to the inverse Hessian,
stored columnwise.

On exit with ICONTRentry ≤ 0: Results of the gradient check are returned in the first 7
elements of W as follows, cf. (1.10)

W(1) Maximum element in |DF|.
W(2), W(5) δF and jF .
W(3), W(6) δF and jF .
W(4), W(7) δF and jF .

In case of an error the indices W(5..7) point out the erroneous gradient component.

IW INTEGER. Length of work space W. Must be at least
max{1

2n(n+11), 7}. if ICONTRentry ≤ 2
n · max{n+1, 1

2(n+11)} otherwise.
Is not changed.

ICONTR INTEGER. On entry : Controls the computation,
ICONTR ≤ 0 : Check gradient. No iteration.
ICONTR > 0 : Start minimization with the inverse Hessian D initialized to the unit matrix if

ICONTR≤2. Otherwise, D0 is given in W(4N+1,..,4N+1
2N(N+1)).

If ICONTR = 2 or ICONTR > 3, then information is printed during the iteration.

On exit : Information about performance,
ICONTR = 0 : Successful call.
ICONTR = 2 : Iteration stopped because too many iterations were needed, see MAXFUN.
ICONTR = 3 : Iteration stopped by zero step from the line search.

10 2.1. MINF

ICONTR < 0 : Computation did not start for the following reason,
ICONTR = −2 : N ≤ 0
ICONTR = −4 : |DX| is too small
ICONTR = −5 : EPS ≤ 0
ICONTR = −6 : MAXFUN ≤ 0
ICONTR = −7 : Given D is not positive definite
ICONTR = −8 : IW is too small

Example. Minimize

F (x) = sin(x1x2) + 2ex1+x2 + e−x1−x2 .

PROGRAM TINF

**

* Test MINF. 27.1.2002

**

IMPLICIT NONE

INTEGER ICONTR,IW,MAXFUN,N

DOUBLE PRECISION DX,EPS,X(2),W(18)

EXTERNAL FDF

C ... Set parameters

DATA N, IW, MAXFUN, EPS, X

& /2, 18, 25, 1D-10, 1D0,2D0/

ICONTR = 0

C ICONTR = 1

IF (ICONTR .LE. 0) THEN

C ... Check gradients

DX = 1D-3

CALL MINF(FDF,N,X,DX,EPS,MAXFUN,W,IW,ICONTR)

IF (ICONTR .LT. 0) THEN

WRITE(6,10) -ICONTR

ELSE

WRITE(6,20) W(1), W(2),INT(W(5))

WRITE(6,30) ’Backward’, W(3),INT(W(6))

WRITE(6,30) ’ Extrap.’, W(4),INT(W(7))

ENDIF

ELSE

C ... Optimize

DX = 1D0

CALL MINF(FDF,N,X,DX,EPS,MAXFUN,W,IW,ICONTR)

IF (ICONTR .LT. 0) THEN

WRITE(6,10) -ICONTR

ELSE

WRITE(6,40) ICONTR,MAXFUN, X(1),X(2), W(1),W(2)

ENDIF

ENDIF

10 FORMAT(’Parameter number’,I3,’ is outside its range’)

20 FORMAT(’Test of gradient. Max|DF| = ’,1P1D11.4/

& ’Max difference, Forward :’,1P1D12.4,’ at j =’,I3)

30 FORMAT(18X,A8,’ :’,1P1D12.4,’ at j =’,I3)

40 FORMAT(’Optimization. ICONTR =’,I2,’.’,I4,’ calls of FDF’

& /’ x =’,1P2D17.9/’F(x) =’,1P1D17.9,4X,

& ’||g(X)|| =’,1P1D10.2)

STOP

END

SUBROUTINE FDF(N,X,DF,F)

INTEGER N

DOUBLE PRECISION X(N),DF(N),F, C,E

INTRINSIC COS,SIN,EXP

C = COS(X(1) * X(2))

2. Unconstrained Optimization 11

E = EXP(X(1) + X(2))

F = SIN(X(1) * X(2)) + 2D0*E + 1D0/E

DF(1) = X(2)*C + 2D0*E - 1D0/E

DF(2) = X(1)*C + 2D0*E - 1D0/E

RETURN

END

We get the results

Test of gradient. Max|DF| = 3.9705E+01

Max difference, Forward : 1.9663E-02 at j = 2

Backward : -9.8262E-03 at j = 2

Extrap. : 3.6214E-06 at j = 1

These results indicate that there is no error in the gradient, and changing the initial value of ICONTR
from 0 to 1 we get

Optimization. ICONTR = 0. 14 calls of FDF

x = -1.438523785E+00 1.091950195E+00

F(x) = 1.828427125E+00 ||g(X)|| = 1.69E-12

12 2.2. MINL2

2.2. MINL2. Minimization of the `2-Norm of a
Vector Function (Least Squares)

Purpose. Find x∗ that minimizes F (x), where

F (x) = 1
2

m∑
i=1

(fi(x))2 . (2.1)

Here x = [x1, . . . , xn]> ∈ IRn is the vector of unknown parameters and fi, i= 1, . . . , m is a set of
functions that are twice continuously differentiable. The user must supply a subroutine that evaluates
f(x) and the Jacobian J(x). There is an option for checking the implementation of J.

Method. MINL2 uses the Levenberg-Marquardt algorithm, see e.g. [5, Section 5.2]: At the current
iterate x a step h is computed as the solution to

(J>J + µI)h = −J>f ,

where f and J are the vector function and its Jacobian evaluated at x. The damping parameter µ is
updated during iteration [13], and its initial value is given by

µ0 = τ · max{diag(J>
0 J0)} , (2.2)

where τ is given by the user (parameter DX) and J0 = J(x0). We recommend to use τ = 10−4 if x0 is
believed to be close to x∗, otherwise τ = 1.

Iteration stops when

‖h‖2 < ε(‖x‖2 + ε) , (2.3)

where ε is given by the user (parameter EPS).

Origin. The subroutine was written specially for this package. It is based on the Matlab function
marquardt, [13].

Use of other Subprograms. The subroutine calls the following BLAS (see [4]) subroutines and
functions
Level 0: LSAME XERBLA

Level 1: DAXPY DCOPY DDOT DNRM2 DSCAL IDAMAX

Level 2: DGEMV DTRSV

Level 3: DGEMM DSYR

Copies of these were obtained from
http://www.netlib.org/blas/blas.tgz

and are included in the file minl2.f. At lines 63, 233 and 275 you can find instructions about how to
modify the file if BLAS is available on your computer.

Use. The subroutine call is

CALL MINL2(FDF,N,M,X,DX,EPS,MAXFUN,W,IW,ICONTR)

The parameters are

FDF SUBROUTINE written by the user with the following declaration

SUBROUTINE FDF(N,M,X,DF,F)

REAL*8 X(N),DF(M,N),F(N)

It must calculate the values of the functions and their gradients at the point
x = [X(1), . . . , X(N)]> and store these numbers as follows,

2. Unconstrained Optimization 13

F(I) = fI(x), I= 1, . . . , M,

DF(I,J) =
∂fI
∂xJ

(x),

{
I = 1, . . . ,M
J = 1, . . . ,N

The name of this subroutine (which can be chosen freely by the user) must appear in an
EXTERNAL statement in the calling program.

N INTEGER. Number of unknowns, n. Must be positive. Is not changed.

M INTEGER. Number of functions, m. Must be positive. Is not changed.

X REAL*8 ARRAY with N elements. The use depends on the entry value of ICONTR.
ICONTR > 0 : On entry : Initial approximation to x∗.

On exit : Computed solution.
ICONTR ≤ 0 : Point at which the Jacobian should be checked. Not changed.

DX REAL*8. The use depends on the entry value of ICONTR.
ICONTR > 0 : On entry : The initial damping parameter is given by (2.2) with τ = DX.

Must be positive.
On exit : The τ -value given by (2.2) with µ0 replaced by the current µ-value and
J0 replaced by J(X). Can be used for an ensuing warm start.

ICONTR ≤ 0 : Check of Jacobian matrix with DX used for h in (1.11). Must be significantly
nonzero. Is not changed.

EPS REAL*8. Used only when ICONTRentry>0.
On entry : Desired accuracy: used for ε in (2.3). Must be positive.
On exit : If EPS was chosen too small, then the iteration stops when there is indication that
rounding errors dominate, and EPS = 0.0, ICONTR = 2 are returned. Otherwise not changed.

MAXFUN INTEGER. Used only if the entry value of ICONTR is positive.
On entry : Upper bound on the number of calls of FDF. Must be positive.
On exit : Number of calls of FDF.

W REAL*8 ARRAY with IW elements. Work space. Entry values are not used.
Exit values depend on the entry value of ICONTR,
ICONTRentry > 0 :
W(1) = F (X), defined by (2.1),
W(2) = max |gi(X)| ,
W(3) = length of the last step,
W(4,..,M+3) : fI(X), I= 1, . . . , M,
W(M+4,..,M+M*N+3) : Jacobian J(X), stored columnswise,
W(M+M*N+4,..,M+N+M*N+3) : gradient g(X).

ICONTRentry ≤ 0 : Results of the gradient check are returned in the first 10 elements of W as
follows, cf. (1.10)

W(1) Maximum element in |DF|.
W(2), W(5), W(6) δF , iF , jF .
W(3), W(7), W(8) δB, iB, jB.
W(4), W(9), W(10) δE , iE , jE .

In case of an error the indices point out the erroneous element of the Jacobian matrix.

IW INTEGER. Length of work space W. Must be at least
If ICONTR > 0 then 2m(n+1) + n(n+3)
Otherwise, 2m(n+2) + n + 10

Is not changed.

14 2.2. MINL2

ICONTR INTEGER. On entry : Controls the computation,
ICONTR = 1 : Start minimization.
ICONTR = 2 : Start minimization and print information during the iteration.
ICONTR ≤ 0 : Check gradient. No iteration.

On exit : Information about performance,
ICONTR = 0 : Successful call.
ICONTR = 2 : Iteration stopped because too many iterations were needed, see MAXFUN, or be-

cause rounding errors dominate, see EPS.
ICONTR < 0 : Computation did not start for the following reason,

ICONTR = −2 : N ≤ 0
ICONTR = −3 : M ≤ 0
ICONTR = −5 : |DX| is too small in case of gradient check, or

DX ≤ 0 in case of optimization
ICONTR = −6 : EPS ≤ 0
ICONTR = −7 : MAXFUN ≤ 0
ICONTR = −9 : IW is too small

Example. Minimize

F (x) = 1
2

3∑
i=1

f2
i (x) ,

where the fi are given by (1.14), page 6.

PROGRAM TINL2

**

* Test MINL2. 30.1.2002

**

IMPLICIT NONE

INTEGER I,ICONTR,IW,M,MAXFUN,N

DOUBLE PRECISION DX,EPS,X(2),W(36)

EXTERNAL FDF

C ... Set parameters

DATA N, M, IW, MAXFUN, EPS, X

& /2, 3, 36, 25, 1D-10, 2*1D0 /

ICONTR = 0

C ICONTR = 1

IF (ICONTR .LE. 0) THEN

C ... Check Jacobian

DX = 1D-3

CALL MINL2(FDF,N,M,X,DX,EPS,MAXFUN,W,IW,ICONTR)

IF (ICONTR .LT. 0) THEN

WRITE(6,10) -ICONTR

ELSE

WRITE(6,20) W(1), W(2),INT(W(5)), INT(W(6))

WRITE(6,30) ’Backward’, W(3),INT(W(7)),INT(W(8))

WRITE(6,30) ’ Extrap.’, W(4),INT(W(9)),INT(W(10))

ENDIF

ELSE

C ... Optimize

DX = 1D0

CALL MINL2(FDF,N,M,X,DX,EPS,MAXFUN,W,IW,ICONTR)

IF (ICONTR .LT. 0) THEN

WRITE(6,10) -ICONTR

ELSE

WRITE(6,40) ICONTR,MAXFUN,X(1),X(2)

WRITE(6,50) W(1),W(2), (W(I), I=4,M+3)

ENDIF

2. Unconstrained Optimization 15

ENDIF

10 FORMAT(’Parameter number’,I3,’ is outside its range’)

20 FORMAT(’Test of Jacobian. Max|DF| =’,1P1D12.4/’Max difference’,

& 5X,’Forward :’,1P1D12.4,’ at i,j =’,I2,’,’,I2)

30 FORMAT(18X,A8,’ :’,1P1D12.4,’ at i,j =’,I2,’,’,I2)

40 FORMAT(’Optimization. ICONTR =’,I2,’.’,I4,’ calls of FDF’

& /’ x =’,1P2D17.9)

50 FORMAT(’F(x) =’,1P1D17.9,’, norm(g(x)) =’,1P1D9.2

& /’f(x) =’,1P3D17.9)

STOP

END

SUBROUTINE FDF(N,M,X,DF,F)

INTEGER N,M

DOUBLE PRECISION X(N),DF(M,N),F(M)

F(1) = 1.5D0 - X(1)*(1D0 - X(2))

F(2) = 2.25D0 - X(1)*(1D0 - X(2)**2)

F(3) = 2.625D0 - X(1)*(1D0 - X(2)**3)

DF(1,1) = X(2)-1D0

DF(1,2) = X(1)

DF(2,1) = X(2)**2 - 1D0

DF(2,2) = 2D0*X(1)*X(2)

DF(3,1) = X(2)**3 - 1D0

DF(3,2) = 3D0*X(1)*X(2)**2

RETURN

END

We get the results

Test of Jacobian. Max|DF| = 3.0000E+00

Max difference Forward : 3.0010E-03 at i,j = 3, 2

Backward : -1.4998E-03 at i,j = 3, 2

Extrap. : 5.0000E-07 at i,j = 3, 2

These results indicate that there is no error in the Jacobian, and changing the initial value of ICONTR
from 0 to 1 we get

Optimization. ICONTR = 0. 13 calls of FDF

x = 3.000000000E+00 4.999999999E-01

F(x) = 3.540144388E-21, norm(g(x)) = 3.17E-11

f(x) = -5.231232114E-11 2.579603198E-13 6.590632207E-11

16 2.3. MINL1

2.3. MINL1. Minimization of the `1-Norm of a
Vector Function

Purpose. Find x∗ that minimizes F (x), where

F (x) =
m∑

i=1

| fi(x) | . (2.4)

Here x = [x1, . . . , xn]> ∈ IRn is the vector of unknown parameters and fi, i= 1, . . . , m is a set of
functions that are twice continuously differentiable. The user must supply a subroutine that evaluates
f(x) and the Jacobian J(x). There is an option for checking the implementation of J.

Method. The algorithm is iterative. It is based on successive linearizations of the nonlinear functions
fi, combining a first order trust region method with a local method which uses approximate second
order information, see [9].

Origin. Subroutine L1NLS from [7].

Remark. The trust region around the the current x is the ball centered at x with radius ∆ defined
so that the linearizations of the nonlinear functions fi are reasonably accurate for all points inside the
ball. During iteration this bound is adjusted according to how well the linear approximations centered
at the previous iterate predict the gain in F .

The user has to give an initial value for ∆. If the functions are almost linear, then we recommend
to use an estimate of the distance between x0 and the solution x∗. Otherwise, we recommend
∆0 = 0.1‖x0‖.

Use. The subroutine call is

CALL MINL1(FDF,N,M,X,DX,EPS,MAXFUN,W,IW,ICONTR)

The parameters are

FDF SUBROUTINE written by the user with the following declaration

SUBROUTINE FDF(N,M,X,DF,F)

REAL*8 X(N),DF(M,N),F(N)

It must calculate the values of the functions and their gradients at the point
x = [X(1), . . . , X(N)]> and store these numbers as follows,

F(I) = fI(x), I= 1, . . . , M,

DF(I,J) =
∂fI
∂xJ

(x),

{
I = 1, . . . ,M
J = 1, . . . ,N

The name of this subroutine (which can be chosen freely by the user) must appear in an
EXTERNAL statement in the calling program.

N INTEGER. Number of unknowns, n. Must be positive. Is not changed.

M INTEGER. Number of functions, m. Must be positive. Is not changed.

X REAL*8 ARRAY with N elements. The use depends on the entry value of ICONTR,
ICONTR > 0 : On entry : Initial approximation to x∗.

On exit : Computed solution.
ICONTR ≤ 0 : Point at which the Jacobian should be checked. Not changed.

DX REAL*8. The use depends on the entry value of ICONTR,
ICONTR > 0 : Radius of trust region, see Remark above.

On entry : DX = ∆0. Must be positive.
On exit : Final trust region radius.

2. Unconstrained Optimization 17

ICONTR ≤ 0 : h in (1.11) for check of Jacobian matrix. Must be significantly nonzero. Is not
changed.

EPS REAL*8. Used only when ICONTR > 0. Must be positive.
On entry : Desired accuracy: The algorithm stops when it suggests to change the iterate
from xk to xk+hk with ‖hk‖ < EPS·‖xk‖.
On exit : If EPS was chosen too small, then the iteration stops when there is indication that
rounding errors dominate, and EPS = 0.0, ICONTR = 2 are returned.

MAXFUN INTEGER. Used only if the entry value of ICONTR is positive.
On entry : Upper bound on the number of calls of FDF. Must be positive.
On exit : Number of calls of FDF.

W REAL*8 ARRAY with IW elements. Work space. Entry values are not used.
Exit values depend on the entry value of ICONTR,
ICONTRentry > 0 :
W(1) = F (X), defined by (2.4),
W(2,..,M+1) : fI(X), I= 1, . . . , M,
W(2M+1,..,2M+M*N) : Jacobian J(X), stored columnswise..

ICONTRentry ≤ 0 : Results of the gradient check are returned in the first 10 elements of W as
follows, cf. (1.10)

W(1) Maximum element in |DF|.
W(2), W(5), W(6) δF , iF , jF .
W(3), W(7), W(8) δB, iB, jB.
W(4), W(9), W(10) δE , iE , jE .

In case of an error the indices point out the erroneous element of the Jacobian matrix.

IW INTEGER. Length of work space W. Must be at least 2mn+5(n2+m+1)+11n. Is not changed.

ICONTR INTEGER. On entry : Controls the computation,
ICONTR > 0 : Start minimization.
ICONTR ≤ 0 : Check Jacobian. No iteration.

On exit : Information about performance,
ICONTR = 0, 1 : Successful call.
ICONTR = 2 : Iteration stopped because too many iterations were needed, see MAXFUN, or round-

ing errors dominate, see EPS.
ICONTR < 0 : Computation did not start for the following reason,

ICONTR = −2 : N ≤ 0
ICONTR = −3 : M ≤ 0
ICONTR = −5 : |DX| is too small in case of gradient check, or

DX ≤ 0 in case of optimization
ICONTR = −6 : EPS ≤ 0
ICONTR = −7 : MAXFUN ≤ 0
ICONTR = −9 : IW < 2mn + 5(n2 + m + 1) + 11n

Example. Minimize

F (x) =
3∑

i=1

|fi(x)| ,

where the fi are given by (1.14), page 6.

18 2.3. MINL1

PROGRAM TINL1

**

* Test MINL1. 31.1.2002

**

IMPLICIT NONE

INTEGER I,ICONTR,IW,M,MAXFUN,N

DOUBLE PRECISION DX,EPS,X(2),W(74)

EXTERNAL FDF

C ... Set parameters

DATA N, M, IW, MAXFUN, EPS, X

& /2, 3, 74, 25, 1D-10, 2*1D0 /

ICONTR = 0

C ICONTR = 1

IF (ICONTR .LE. 0) THEN

C ... Check Jacobian

DX = 1D-3

CALL MINL1(FDF,N,M,X,DX,EPS,MAXFUN,W,IW,ICONTR)

IF (ICONTR .LT. 0) THEN

WRITE(6,10) -ICONTR

ELSE

WRITE(6,20) W(1), W(2),INT(W(5)), INT(W(6))

WRITE(6,30) ’Backward’, W(3),INT(W(7)),INT(W(8))

WRITE(6,30) ’ Extrap.’, W(4),INT(W(9)),INT(W(10))

ENDIF

ELSE

C ... Optimize

DX = .1D0

CALL MINL1(FDF,N,M,X,DX,EPS,MAXFUN,W,IW,ICONTR)

IF (ICONTR .LT. 0) THEN

WRITE(6,10) -ICONTR

ELSE

WRITE(6,40) ICONTR,MAXFUN

WRITE(6,50) X(1),X(2), W(1), (W(I), I=2,M+1)

ENDIF

ENDIF

10 FORMAT(’Parameter number’,I3,’ is outside its range’)

20 FORMAT(’Test of Jacobian. Max|DF| =’,1P1D12.4/’Max difference’,

& 5X,’Forward :’,1P1D12.4,’ at i,j =’,I2,’,’,I2)

30 FORMAT(18X,A8,’ :’,1P1D12.4,’ at i,j =’,I2,’,’,I2)

40 FORMAT(’Optimization. ICONTR =’,I2,’.’,I4,’ calls of FDF’)

50 FORMAT(’ x =’,1P2D17.9/’F(x) =’,1P1D17.9/’f(x) =’,1P3D17.9)

STOP

END

SUBROUTINE FDF(N,M,X,DF,F)

INTEGER N,M

DOUBLE PRECISION X(N),DF(M,N),F(M)

F(1) = 1.5D0 - X(1)*(1D0 - X(2))

F(2) = 2.25D0 - X(1)*(1D0 - X(2)**2)

F(3) = 2.625D0 - X(1)*(1D0 - X(2)**3)

DF(1,1) = X(2)-1D0

DF(1,2) = X(1)

DF(2,1) = X(2)**2 - 1D0

DF(2,2) = 2D0*X(1)*X(2)

DF(3,1) = X(2)**3 - 1D0

DF(3,2) = 3D0*X(1)*X(2)**2

RETURN

END

2. Unconstrained Optimization 19

We get the results

Test of Jacobian. Max|DF| = 3.0000E+00

Max difference Forward : 3.0010E-03 at i,j = 3, 2

Backward : -1.4998E-03 at i,j = 3, 2

Extrap. : 5.0000E-07 at i,j = 3, 2

These results indicate that there is no error in the Jacobian, and changing the initial value of ICONTR
from 0 to 1 we get

Optimization. ICONTR = 0. 10 calls of FDF

x = 3.000000000E+00 5.000000000E-01

F(x) = 0.000000000E+00

f(x) = 0.000000000E+00 0.000000000E+00 0.000000000E+00

20 2.4. MININF

2.4. MININF. Minimization of the `∞-Norm of a
Vector Function

Purpose. Find x∗ that minimizes F (x), where

F (x) = max
i

|fi(x) | . (2.5)

Here x = [x1, . . . , xn]> ∈ IRn is the vector of unknown parameters and fi, i= 1, . . . , m is a set of
functions that are twice continuously differentiable. The user must supply a subroutine that evaluates
f(x) and the Jacobian J(x). There is an option for checking the implementation of J.

Method. The algorithm is iterative. It is based on successive linearizations of the nonlinear functions
fi and uses constraints on the step vector. The linearized problems are solved by a linear programming
technique, see [11].

Origin. The main part of the subroutine was written by K. Madsen and was published as VE01AD
in the the Harwell Subroutine Library [10]. We use K. Madsen’s original subroutine SUB1W which is
consistent with the other subroutines in the present package

Remark. The user has to give an initial value for ∆, which appears in the constraint ‖h‖ ≤ ∆, where
h is the step between two consecutive iterates. During iteration this bound (trust region radius) is
adjusted according to how well the current linear approximations predict the actual gain in F .

If the functions fi are almost linear, then we recommend to use a value for ∆0, which is an estimate
of the distance between x0 and the solution x∗. Otherwise, we recommend ∆0 = 0.1‖x0‖.

Use. The subroutine call is

CALL MININF(FDF,N,M,X,DX,EPS,MAXFUN,W,IW,ICONTR)

The parameters are

FDF SUBROUTINE written by the user with the following declaration

SUBROUTINE FDF(N,M,X,DF,F)

REAL*8 X(N),DF(M,N),F(N)

It must calculate the values of the functions and their gradients at the point
x = [X(1), . . . , X(N)]> and store these numbers as follows,

F(I) = fI(x), I= 1, . . . , M,

DF(I,J) =
∂fI
∂xJ

(x),

{
I = 1, . . . ,M
J = 1, . . . ,N

The name of this subroutine (which can be chosen freely by the user) must appear in an
EXTERNAL statement in the calling program.

N INTEGER. Number of unknowns, n. Must be positive. Is not changed.

M INTEGER. Number of functions, m. Must be positive. Is not changed.

X REAL*8 ARRAY with N elements. The use depends on the entry value of ICONTR.
ICONTR > 0 : On entry : Initial approximation to x∗.

On exit : Computed solution.
ICONTR ≤ 0 : Point at which the Jacobian should be checked. Not changed.

DX REAL*8. The use depends on the entry value of ICONTR,
ICONTR > 0 : Radius of trust region, see Remark above.

On entry : DX = ∆0. Must be positive.
On exit : Final trust region radius.

ICONTR ≤ 0 : h in (1.11) for check of Jacobian matrix. Must be significantly nonzero. Is not
changed.

2. Unconstrained Optimization 21

EPS REAL*8. Used only when ICONTRentry > 0. Must be positive.
On entry : Desired accuracy: The algorithm stops when it suggests to change the iterate
from xk to xk+hk with ‖hk‖ < EPS·‖xk‖.
On exit : If EPS was chosen too small, then the iteration stops when there is indication that
rounding errors dominate, and EPS = 0.0, ICONTR = 2 are returned.

MAXFUN INTEGER. Used only if the entry value of ICONTR is positive.
On entry : Upper bound on the number of calls of FDF. Must be positive.
On exit : Number of calls of FDF.

W REAL*8 ARRAY with IW elements. Work space. Entry values are not used.
Exit values depend on the entry value of ICONTR,
ICONTRentry > 0 :
W(1) = F (X), defined by (2.5),
W(2,..,M+1) : fI(X), I= 1, . . . , M,
W(2M+1,..,2M+M*N) : Jacobian J(X), stored columnswise..

ICONTRentry ≤ 0 : Results of the gradient check are returned in the first 10 elements of W as
follows, cf. (1.10)

W(1) Maximum element in |DF|.
W(2), W(5), W(6) δF , iF , jF .
W(3), W(7), W(8) δB, iB, jB.
W(4), W(9), W(10) δE , iE , jE .

In case of an error the indices point out the erroneous element of the Jacobian matrix.

IW INTEGER. Length of work space W. Must be at least 2mn+n2 +14n+4m+11. Is not changed.

ICONTR INTEGER. On entry : Controls the computation,
ICONTR > 0 : Start minimization.
ICONTR ≤ 0 : Check gradient. No iteration.

On exit : Information about performance,
ICONTR = 0, 1 : No problems encountered.
ICONTR = 2 : Iteration stopped because too many iterations were needed, see MAXFUN, or round-

ing errors dominate, see EPS.
ICONTR < 0 : Computation did not start for the following reason,

ICONTR = −2 : N ≤ 0
ICONTR = −3 : M ≤ 0
ICONTR = −5 : |DX| is too small in case of gradient check, or

DX ≤ 0 in case of optimization
ICONTR = −6 : EPS ≤ 0
ICONTR = −7 : MAXFUN ≤ 0
ICONTR = −9 : IW < 2mn + n2 + 14n + 4m + 11

Example. Minimize

F (x) = max
i

| fi(x) | ,

where the fi are given by (1.14), page 6.

PROGRAM TININF

**

* Test MININF. 31.1.2002

**

IMPLICIT NONE

INTEGER I,ICONTR,IW,M,MAXFUN,N

DOUBLE PRECISION DX,EPS,X(2),W(67)

EXTERNAL FDF

22 2.4. MININF

C ... Set parameters

DATA N, M, IW, MAXFUN, EPS, X

& /2, 3, 67, 25, 1D-10, 2*1D0 /

ICONTR = 0

C ICONTR = 1

IF (ICONTR .LE. 0) THEN

C ... Check Jacobian

DX = 1D-3

CALL MININF(FDF,N,M,X,DX,EPS,MAXFUN,W,IW,ICONTR)

IF (ICONTR .LT. 0) THEN

WRITE(6,10) -ICONTR

ELSE

WRITE(6,20) W(1), W(2),INT(W(5)), INT(W(6))

WRITE(6,30) ’Backward’, W(3),INT(W(7)),INT(W(8))

WRITE(6,30) ’ Extrap.’, W(4),INT(W(9)),INT(W(10))

ENDIF

ELSE

C ... Optimize

DX = .1D0

CALL MININF(FDF,N,M,X,DX,EPS,MAXFUN,W,IW,ICONTR)

IF (ICONTR .LT. 0) THEN

WRITE(6,10) -ICONTR

ELSE

WRITE(6,40) ICONTR,MAXFUN

WRITE(6,50) X(1),X(2), W(1), (W(I), I=2,M+1)

ENDIF

ENDIF

10 FORMAT(’Parameter number’,I3,’ is outside its range’)

20 FORMAT(’Test of Jacobian. Max|DF| =’,1P1D12.4/’Max difference’,

& 5X,’Forward :’,1P1D12.4,’ at i,j =’,I2,’,’,I2)

30 FORMAT(18X,A8,’ :’,1P1D12.4,’ at i,j =’,I2,’,’,I2)

40 FORMAT(’Optimization. ICONTR =’,I2,’.’,I4,’ calls of FDF’)

50 FORMAT(’ x =’,1P2D17.9/’F(x) =’,1P1D17.9/’f(x) =’,1P3D17.9)

STOP

END

SUBROUTINE FDF(N,M,X,DF,F)

INTEGER N,M

DOUBLE PRECISION X(N),DF(M,N),F(M)

F(1) = 1.5D0 - X(1)*(1D0 - X(2))

F(2) = 2.25D0 - X(1)*(1D0 - X(2)**2)

F(3) = 2.625D0 - X(1)*(1D0 - X(2)**3)

DF(1,1) = X(2)-1D0

DF(1,2) = X(1)

DF(2,1) = X(2)**2 - 1D0

DF(2,2) = 2D0*X(1)*X(2)

DF(3,1) = X(2)**3 - 1D0

DF(3,2) = 3D0*X(1)*X(2)**2

RETURN

END

We get the results

Test of Jacobian. Max|DF| = 3.0000E+00

Max difference Forward : 3.0010E-03 at i,j = 3, 2

Backward : -1.4998E-03 at i,j = 3, 2

Extrap. : 5.0000E-07 at i,j = 3, 2

These results indicate that there is no error in the Jacobian, and changing the initial value of ICONTR
from 0 to 1 we get

Optimization. ICONTR = 0. 11 calls of FDF

x = 3.000000000E+00 5.000000000E-01

F(x) = 0.000000000E+00

f(x) = 0.000000000E+00 0.000000000E+00 0.000000000E+00

3. Constrained Optimization 23

3. Constrained Optimization

3.1. MINCF. Constrained Minimization of a Scalar Function

Purpose. Find x∗ that minimizes F (x), where the vector of unknown parameters x = [x1, . . . , xn]> ∈
IRn must satisfy the following non-linear equality and inequality constraints,

ci(x) = 0 , i = 1, 2, . . . , Leq ,

ci(x) ≥ 0 , i = Leq+1, . . . , L .

The objective function F and the constraint functions {ci} must be twice continuously differentiable.
The user must supply a subroutine that evaluates F (x), {ci(x)} and the gradients of F and {ci}.
There is an option for checking the implementation of these gradients.

Method. The algorithm is iterative. It is based on successively approximating the non-linear prob-
lem with quadratic problems, i.e. at the current iterate the objective function is approximated by a
quadratic function and the constraints are approximated by linear functions. The algorithm uses the
so-called “Watch-dog technique” as described in [2] and [16]. The quadratic programming algorithm
is described in [17]

Origin. Harwell subroutine VF13AD [10].

Use. The subroutine call is

CALL MINCF(FDFCDC,N,L,LEQ,X,DX,EPS,MAXFUN,W,IW,ICONTR)

The parameters are

FDFCDC SUBROUTINE written by the user with the following declaration

SUBROUTINE FDFCDC(N,N1,L,X,F,DF,C,DC)

REAL*8 X(N),F,DF(N),C(L),DC(L,N1)

where N1 = N+1. It must calculate the value of the objective function and its gradient at
the point x = [X(1), . . . , X(N)]> and store these numbers as follows,

F = F (x),

DF(J) =
∂F

∂xJ

(x) , J = 1, . . . N

C(I) = cI , I = 1, . . . L

DC(I,J) =
∂cI
∂xJ

(x) , I = 1, . . . L andJ = 1, . . . N

The name of this subroutine (which can be chosen freely by the user) must appear in an
EXTERNAL statement in the calling program.

For internal reasons in the minimization routine the number of columns in ARRAY DC must
be exactly one more than actually addressed. This number, N1 = N+1, is transported to
SUBROUTINE FDFCDC as its second parameter.

It is essential that the equality constraints (if any) are numbered first.

N INTEGER. Number of unknowns, n. Must be positive. Is not changed.

L INTEGER. Number of constraints, L. Must be positive. Is not changed.

LEQ INTEGER. Number of equality constraints, Leq. Must satisfy 0 ≤ LEQ ≤ min{L, N}. Is not
changed.

X REAL*8 ARRAY with N elements. The use depends on the entry value of ICONTR.

24 3.1. MINCF

ICONTR > 0 : On entry : Initial approximation to x∗.
On exit : Computed solution.

ICONTR ≤ 0 : Point at which the gradients should be checked. Not changed.

DX REAL*8. Used only when ICONTR ≤ 0 on entry, in which case DX is used for h in (1.3) for
checking the gradients of the objective function and the constraints.
Must be significantly nonzero. Is not changed.

EPS REAL*8. Used only when ICONTR > 0 on entry. Desired accuracy of the results: Iteration
stops when the Kuhn-Tucker conditions are satisfied within a tolerance of EPS.
Must be positive. Is not changed.

MAXFUN INTEGER. Used only if the entry value of ICONTR is positive.
On entry : Upper bound on the number of calls of FDF. Must be positive.
On exit : Number of calls of FDF.

W REAL*8 ARRAY with IW elements. Work space. Entry values are not used.
Exit values depend on the entry value of ICONTR,
ICONTRentry > 0 :
W(1) = F (X), the computed minimum.
W(I+1) = cI(X), I = 1, . . . , L

ICONTRentry ≤ 0 : Results of the gradient check are returned in the first 17 elements of W as
follows, cf. (1.10)

Objective function:
W(1) Maximum element in |DF|.
W(2), W(9) δF and jF .
W(3), W(10) δB and jB.
W(4), W(11) δE and jE .
Constraints:
W(5) Maximum element in |DC|.
W(6),W(12),W(13) δF and jF .
W(7),W(14),W(15) δB and jB.
W(8),W(16),W(17) δE and jE .

In case of an error the indices W(9..17) point out the erroneous gradient component.

IW INTEGER. Length of work space W. Must be at least 5
2n(n+9) + (n+8)L + 15. Is not changed.

ICONTR INTEGER. On entry : Controls the computation,
ICONTR = 1 : Start minimization.
ICONTR = 2 : Start minimization and print information during the iteration.
ICONTR ≤ 0 : Check gradient. No iteration

On exit : Information about performance,
ICONTR = 1 : Successful call.
ICONTR = 2 : Iteration stopped because too many iterations were needed, see MAXFUN.
ICONTR = 3 : Iteration stopped because more than 5 calls of FDFCDC was needed in one line

search. Check your gradients.
ICONTR = 4 : Iteration stopped because an uphill search direction was suggested. Check your

gradients.
ICONTR = 5 : Iteration failed because it was not possible to find a starting point satisfying all

constraints.
ICONTR < 0 : Computation did not start for the following reason,

ICONTR = −2 : N ≤ 0
ICONTR = −3 : L ≤ 0
ICONTR = −4 : LEQ < 0 or LEQ > min{L, N}
ICONTR = −6 : |DX| is too small

3. Constrained Optimization 25

ICONTR = −7 : EPS ≤ 0
ICONTR = −8 : MAXFUN ≤ 0
ICONTR = −9 : IW < 5

2n(n+9) + (n+8)L + 15

Example. Minimize

F (x) = sin(x1x2) + 2ex1+x2 + e−x1−x2

subject to the constraints

c1(x) ≡ 1 − x2
1 − x2

2 ≥ 0

c2(x) ≡ x2 − x3
1 ≥ 0

c3(x) ≡ x1 + 2x2 ≥ 0

PROGRAM TINCF

**

* Test MINCF. 9.10.2000

**

IMPLICIT NONE

INTEGER ICONTR,IW,L,MAXFUN,N,I

DOUBLE PRECISION DX,EPS,X(2),W(100)

EXTERNAL FDFCDC

C ... Set parameters

DATA N, L, IW, MAXFUN, EPS, DX, X

& /2, 3,100, 25, 1D-10, 1D-3, 1D0,2D0/

ICONTR = 0

C ICONTR = 1

IF (ICONTR .LE. 0) THEN

C ... Check Jacobian

DX = 1D-3

CALL MINCF(FDFCDC,N,L,0,X,DX,EPS,MAXFUN,W,IW,ICONTR)

IF (ICONTR .LT. 0) THEN

WRITE(6,10) -ICONTR

ELSE

WRITE(6,20) ’ function ’,’DF’,W(1)

WRITE(6,30) W(2),INT(W(9))

WRITE(6,40) ’Backward’, W(3),INT(W(10))

WRITE(6,40) ’Extrap.’, W(4),INT(W(11))

WRITE(6,20) ’constraint’,’DC’,W(5)

WRITE(6,50) W(6),INT(W(12)),INT(W(13))

WRITE(6,60) ’Backward’, W(7),INT(W(14)),INT(W(15))

WRITE(6,60) ’Extrap.’, W(8),INT(W(16)),INT(W(17))

ENDIF

ELSE

C ... Optimize

CALL MINCF(FDFCDC,N,L,0,X,DX,EPS,MAXFUN,W,IW,ICONTR)

IF (ICONTR .LT. 0) THEN

WRITE(6,10) -ICONTR

ELSE

WRITE(6,70) ICONTR,MAXFUN

WRITE(6,80) X(1),X(2), W(1), (W(I+1),I=1,L)

ENDIF

ENDIF

10 FORMAT(’Parameter number’,I3,’ is outside its range’)

20 FORMAT(’Test of ’,A10,’ gradient. Max|’,A2,’| =’,1P1D12.4)

30 FORMAT(11X,’Max difference, Forward :’,1P1D12.4,

& ’ at j =’,I2)

40 FORMAT(29X,A8,’ :’,1P1D12.4,’ at j =’,I2)

50 FORMAT(11X,’Max difference, Forward :’,1P1D12.4,

& ’ at i,j =’,I2,’,’,I2)

26 3.1. MINCF

60 FORMAT(29X,A8,’ :’,1P1D12.4,’ at i,j =’,I2,’,’,I2)

70 FORMAT(’Optimization. ICONTR =’,I2,’.’,I4,’ calls of FDF’)

80 FORMAT(’ x =’,1P2D17.9/’F(x) =’,1P1D17.9/

& ’c(x) =’,1P3D17.9)

STOP

END

SUBROUTINE FDFCDC(N,N1,L,X,F,DF,C,DC)

INTEGER N,N1,L

DOUBLE PRECISION X(N),F,DF(N),C(L),DC(L,N1), CC,EE

INTRINSIC COS,SIN,EXP

CC = COS(X(1) * X(2))

EE = EXP(X(1) + X(2))

F = SIN(X(1) * X(2)) + 2D0*EE + 1D0/EE

DF(1) = X(2)*CC + 2D0*EE - 1D0/EE

DF(2) = X(1)*CC + 2D0*EE - 1D0/EE

C ... Constraints

C(1) = 1D0 -X(1)**2 - X(2)**2

C(2) = X(2) - X(1)**3

C(3) = X(1) + 2D0*X(2)

DC(1,1) = -2D0 * X(1)

DC(1,2) = -2D0 * X(2)

DC(2,1) = -3D0 * X(1)**2

DC(2,2) = 1D0

DC(3,1) = 1D0

DC(3,2) = 2D0

RETURN

END

We get the results

Test of function gradient. Max|DF| = 3.9705E+01

Max difference, Forward : 1.9663E-02 at j = 2

Backward : -9.8262E-03 at j = 2

Extrap. : 3.6214E-06 at j = 1

Test of constraint gradient. Max|DC| = 4.0000E+00

Max difference, Forward : -3.0010E-03 at i,j = 2, 1

Backward : 1.4998E-03 at i,j = 2, 1

Extrap. : -5.0000E-07 at i,j = 2, 1

These results indicate that the gradients of both the objective function and the constraints are imple-
mented correctly, and changing the initial value of ICONTR from 0 to 1 we get

Optimization. ICONTR = 1. 11 calls of FDF

x = -8.264473889E-01 5.630139549E-01

F(x) = 2.389516015E+00

c(x) = -3.051107544E-15 1.127490155E+00 2.995805209E-01

3. Constrained Optimization 27

3.2. MINCL1. Linearly Constrained Minimization
of the `1-Norm of a Vector Function

Purpose. Find x∗ that minimizes F (x), where

F (x) =
m∑

i=1

| fi(x) | , (3.1a)

and where the vector of unknown parameters x = [x1, . . . , xn]> ∈ IRn must satisfy the following linear
equality and inequality constraints,

ci(x) ≡ a>
i x + bi = 0 , i = 1, 2, . . . , Leq ,

ci(x) ≡ a>
i x + bi ≥ 0 , i = Leq+1, . . . , L

(3.1b)

for given vectors {ai} and scalars {bi}. The fi, i=1, . . . , m is a set of functions that are twice
continuously differentiable. The user must supply a subroutine that evaluates f(x) and the Jacobian
J(x). There is an option for checking the implementation of J.

Method. The algorithm is iterative. It is based on successive linearizations of the on-linear functions
fi, combining a first order trust region method with a local method that uses approximate second
order information, see [9].

Origin. Subroutine L1NLS by Jørgen Hald [7].

Remarks. The trust region around the the current x is the ball centered at x with radius ∆ defined
so that the linearizations of the nonlinear functions fi are reasonably accurate for all points inside the
ball. During iteration this bound is adjusted according to how well the linear approximations centered
at the previous iterate predict the gain in F .

The user has to give an initial value for ∆. If the functions are almost linear, then we recom-
mend to use an estimate of the distance between x0 and the solution x∗. Otherwise, we recommend
∆0 = 0.1‖x0‖.

A solution is said to be “regular” when it is a strict local minimum, i.e. there exists a positive
number K such that

F (x) − F (x∗) ≥ K‖x − x∗‖
for any feasible x near x∗. Otherwise, the solution is said to be “singular”.

Use. The subroutine call is

CALL MINCL1(FDF,N,M,L,LEQ,B,A,X,DX,EPS,MAXFUN,W,IW,ICONTR)

The parameters are

FDF SUBROUTINE written by the user with the following declaration

SUBROUTINE FDF(N,M,X,DF,F)

REAL*8 X(N),DF(M,N),F(N)

It must calculate the values of the functions and their gradients at the point
x = [X(1), . . . , X(N)]> and store these numbers as follows,

F(I) = fI(x), I= 1, . . . , M,

DF(I,J) =
∂fI
∂xJ

(x),

{
I = 1, . . . ,M
J = 1, . . . ,N

The name of this subroutine (which can be chosen freely by the user) must appear in an
EXTERNAL statement in the calling program.

N INTEGER. Number of unknowns, n. Must be positive. Is not changed.

28 3.2. MINCL1

M INTEGER. Number of functions, m. Must be positive. Is not changed.

L INTEGER. Number of constraints, L. Must be positive. Is not changed.

LEQ INTEGER. Number of equality constraints, Leq. Must be positive, less than N and at most L.
Is not changed.

B REAL*8 ARRAY with L elements. Vector with the constant terms in the constraints (3.1b),
B(I) = bI, I = 1, . . . , L .

Is not changed.

A REAL*8 2-dimensional ARRAY with L rows and N columns. Matrix with with the coefficients of
the constraints (3.1b) arranged rowwise,

A(I,J) = a
(I)
J , I = 1, . . . , L, J = 1, . . . , N .

Is not changed.

X REAL*8 ARRAY with N elements. The use depends on the entry value of ICONTR.
ICONTR > 0 : On entry : Initial approximation to x∗.

On exit : Computed solution.
ICONTR ≤ 0 : Point at which the gradients should be checked. Not changed.

DX REAL*8. The use depends on the entry value of ICONTR,
ICONTR > 0 : Radius of trust region, see Remarks above.

On entry : DX = ∆0. Must be positive.
On exit : Final trust region radius.

ICONTR ≤ 0 : Check of Jacobian matrix with DX used for h in (1.11). Must be significantly
nonzero. Is not changed.

EPS REAL*8. Used only when ICONTR > 0. Must be positive.
On entry : Desired accuracy: The algorithm stops when it suggests to change the iterate

from xk to xk+hk with ‖hk‖ < EPS·‖xk‖.
If EPS was chosen too small, then the iteration stops when there is indication
that rounding errors dominate, and ICONTR = 2 is returned.

On exit : Length of the last step in the iteration.

MAXFUN INTEGER. Used only if the entry value of ICONTR is positive.
On entry : Upper bound on the number of calls of FDF. Must be positive.
On exit : Number of calls of FDF.

W REAL*8 ARRAY with IW elements. Work space.
Entry values are not used, and exit values depend on the entry value of ICONTR,
ICONTRentry > 0 :
W(1) = F (X) defined by (3.1a),
W(2,..,M+1) : fI(X), I= 1, . . . , M,
W(M+2,..,M+M*N+1) : Jacobian J(X), stored columnswise..
W(M+M*N+2,..,M+M*N+L+1) : cI(X), I= 1, . . . , L.

ICONTRentry ≤ 0 : Results of the gradient check are returned in the first 10 elements of W as
follows, cf. (1.10)

W(1) Maximum element in |DF|.
W(2), W(5), W(6) δF , iF , jF .
W(3), W(7), W(8) δB, iB, jB.
W(4), W(9), W(10) δE , iE , jE .

In case of an error the indices point out the erroneous element of the Jacobian matrix.

IW INTEGER. Length of work space W. Must be at least
2mn + 5n2 + 5m + 10n + 4L. Is not changed.

ICONTR INTEGER. On entry : Controls the computation,

3. Constrained Optimization 29

ICONTR > 0 : Start minimization.
ICONTR ≤ 0 : Check gradient. No iteration.

On exit : Information about performance,
ICONTR = 0 : Successful call. Regular Solution.
ICONTR = 1 : Successful call. Singular Solution.
ICONTR = 2 : Iteration stopped because too many iterations were needed, see MAXFUN, or round-

ing errors dominate, see EPS.
ICONTR = 3 : The subroutine failed to find a point x satisfying all constraints. The feasible

region is presumably empty.
ICONTR < 0 : Computation did not start for the following reason,

ICONTR = −2 : N ≤ 0
ICONTR = −3 : M ≤ 0
ICONTR = −4 : L < 0
ICONTR = −5 : LEQ < 0 or LEQ > L or LEQ ≥ N

ICONTR = −9 : |DX| is too small in case of gradient check, or
DX ≤ 0 in case of optimization

ICONTR = −10 : EPS ≤ 0
ICONTR = −11 : MAXFUN ≤ 0
ICONTR = −13 : IW<2mn+5n2+5m+10n+4L

Example. Minimize

F (x) =
3∑

i=1

|fi(x)| ,

subject to the constraint

c(x) ≡ −x1 + x2 + 2 ≥ 0 .

The fi are given by (1.14), page 6.

PROGRAM TINCL1

**

* Test MINCL1. 30.1.2002

**

IMPLICIT NONE

INTEGER I,IC,ICONTR,IW,L,LEQ,M,MAXFUN,N

DOUBLE PRECISION A(1,2),B(1),DX,EPS,X(2),W(71)

EXTERNAL FDF

C ... Set parameters

DATA N, M, L, LEQ, IW, MAXFUN, A, B, EPS, X

& /2, 3, 1, 0, 71, 25, -1D0,1D0, 2D0, 1D-10, 2*1D0/

ICONTR = 0

ICONTR = 1

IF (ICONTR .LE. 0) THEN

C ... Check Jacobian

DX = 1D-3

CALL MINCL1(FDF,N,M,L,LEQ,B,A,X,DX,EPS,MAXFUN,W,IW,ICONTR)

IF (ICONTR .LT. 0) THEN

WRITE(6,10) -ICONTR

ELSE

WRITE(6,20) W(1), W(2),INT(W(5)), INT(W(6))

WRITE(6,30) ’Backward’, W(3),INT(W(7)),INT(W(8))

WRITE(6,30) ’ Extrap.’, W(4),INT(W(9)),INT(W(10))

ENDIF

ELSE

C ... Optimize

30 3.2. MINCL1

DX = .1D0

CALL MINCL1(FDF,N,M,L,LEQ,B,A,X,DX,EPS,MAXFUN,W,IW,ICONTR)

IF (ICONTR .LT. 0) THEN

WRITE(6,10) -ICONTR

ELSE

WRITE(6,40) ICONTR,MAXFUN

WRITE(6,50) X(1),X(2), W(1)

IC = M+1 + M*N

WRITE(6,60) (W(I),I=2,M+1), (W(I),I=IC+1,IC+L)

ENDIF

ENDIF

10 FORMAT(’Parameter number’,I3,’ is outside its range’)

20 FORMAT(’Test of Jacobian. Max|DF| =’,1P1D12.4/’Max difference’,

& 5X,’Forward :’,1P1D12.4,’ at i,j =’,I2,’,’,I2)

30 FORMAT(18X,A8,’ :’,1P1D12.4,’ at i,j =’,I2,’,’,I2)

40 FORMAT(’Optimization. ICONTR =’,I2,’.’,I4,’ calls of FDF’)

50 FORMAT(’ x =’,1P2D17.9/’F(x) =’,1P2D17.9)

60 FORMAT(’f(x) =’,1P3D17.9/’c(x) =’,1P3D17.9)

STOP

END

SUBROUTINE FDF(N,M,X,DF,F)

INTEGER N,M

DOUBLE PRECISION X(N),DF(M,N),F(M)

F(1) = 1.5D0 - X(1)*(1D0 - X(2))

F(2) = 2.25D0 - X(1)*(1D0 - X(2)**2)

F(3) = 2.625D0 - X(1)*(1D0 - X(2)**3)

DF(1,1) = X(2)-1D0

DF(1,2) = X(1)

DF(2,1) = X(2)**2 - 1D0

DF(2,2) = 2D0*X(1)*X(2)

DF(3,1) = X(2)**3 - 1D0

DF(3,2) = 3D0*X(1)*X(2)**2

RETURN

END

We get the results

Test of Jacobian. Max|DF| = 3.0000E+00

Max difference Forward : 3.0010E-03 at i,j = 3, 2

Backward : -1.4998E-03 at i,j = 3, 2

Extrap. : 5.0000E-07 at i,j = 3, 2

These results indicate that the gradients of the {fi} are implemented correctly, and changing the
initial value of ICONTR from 0 to 1 we get

Optimization. ICONTR = 0. 9 calls of FDF

x = 2.366025404E+00 3.660254038E-01

F(x) = 5.759618943E-01

f(x) = -9.638557313E-17 2.009618943E-01 3.750000000E-01

c(x) = 0.000000000E+00

3. Constrained Optimization 31

3.3. MINCIN. Linearly Constrained Minimax
Optimization of a Vector Function

Purpose. Find x∗ that minimizes F (x), where

F (x) = max
i

{ fi(x) } , (3.2a)

and where the vector of unknown parameters x = [x1, . . . , xn]> ∈ IRn must satisfy the following linear
equality and inequality constraints,

ci(x) ≡ a>
i x + bi = 0 , i = 1, 2, . . . , Leq ,

ci(x) ≡ a>
i x + bi ≥ 0 , i = Leq+1, . . . , L ,

(3.2b)

for given vectors {ai} and scalars {bi}. The fi, i=1, . . . , m is a set of functions that are twice
continuously differentiable. The user must supply a subroutine that evaluates f(x) and the Jacobian
J(x). There is an option for checking the implementation of J.

Method. The algorithm is iterative. It is based on successive linearizations of the on-linear functions
fi, combining a first order trust region method with a local method that uses approximate second
order information, see [8].

Origin. Subroutine MLA1QS by Jørgen Hald [7].

Remarks. The trust region around the the current x is the ball centered at x with radius ∆ defined
so that the linearizations of the nonlinear functions fi are reasonably accurate for all points inside the
ball. During iteration this bound is adjusted according to how well the linear approximations centered
at the previous iterate predict the gain in F .

The user has to give an initial value for ∆. If the functions are almost linear, then we recom-
mend to use an estimate of the distance between x0 and the solution x∗. Otherwise, we recommend
∆0 = 0.1‖x0‖.

A solution is said to be “regular” when it is a strict local minimum, i.e. there exists a positive
number K such that

F (x) − F (x∗) ≥ K‖x − x∗‖
for any feasible x near x∗. Otherwise, the solution is said to be “singular”.

MINCIN can also be used to compute a linearly constrained minimizer of the `∞-norm of f ,

F (x) = max
i

| fi(x) | . (3.3a)

For that purpose we introduce the extended vector function f̂ : IRn 7→ IR2m defined by

f̂i(x) =

{
fi(x) for i = 1, 2, . . . , m

−fi−m(x) for i = m+1, . . . , 2m
. (3.3b)

It is easily seen that max
i=1, . . . , 2m

{f̂i(x)} = max
i=1, . . . , m

{|fi(x)|}.

Use. The subroutine call is

CALL MINCIN(FDF,N,M,L,LEQ,B,A,X,DX,EPS,MAXFUN,W,IW,ICONTR)

The parameters are

FDF SUBROUTINE written by the user with the following declaration

32 3.3. MINCIN

SUBROUTINE FDF(N,M,X,DF,F)

REAL*8 X(N),DF(M,N),F(N)

It must calculate the values of the functions and their gradients at the point
x = [X(1), . . . , X(N)]> and store these numbers as follows,

F(I) = fI(x), I= 1, . . . , M,

DF(I,J) =
∂fI
∂xJ

(x),

{
I = 1, . . . ,M
J = 1, . . . ,N

The name of this subroutine (which can be chosen freely by the user) must appear in an
EXTERNAL statement in the calling program.

N INTEGER. Number of unknowns, n. Must be positive. Is not changed.

M INTEGER. Number of functions, m. Must be positive. Is not changed.

L INTEGER. Number of constraints, L. Must be positive. Is not changed.

LEQ INTEGER. Number of equality constraints, Leq. Must be positive, less than N and at most L.
Is not changed.

B REAL*8 ARRAY with L elements. Vector with the constant terms in the constraints (3.2b),
B(I) = bI, I = 1, . . . , L .

Is not changed.

A REAL*8 2-dimensional ARRAY with L rows and N columns. Matrix with with the coefficients of
the constraints (3.2b) arranged rowwise,

A(I,J) = a
(I)
J , I = 1, . . . , L, J = 1, . . . , N .

Is not changed.

X REAL*8 ARRAY with N elements. The use depends on the entry value of ICONTR.
ICONTR > 0 : On entry : Initial approximation to x∗.

On exit : Computed solution.
ICONTR ≤ 0 : Point at which the gradients should be checked. Not changed.

DX REAL*8. The use depends on the entry value of ICONTR,
ICONTR > 0 : Radius of trust region, see Remarks above.

On entry : DX = ∆0. Must be positive.
On exit : Final trust region radius.

ICONTR ≤ 0 : Check of Jacobian matrix with DX used for h in (1.11). Must be significantly
nonzero. Is not changed.

EPS REAL*8. Used only when ICONTR > 0. Must be positive.
On entry : Desired accuracy: The algorithm stops when it suggests to change the iterate

from xk to xk+hk with ‖hk‖ < EPS·‖xk‖.
If EPS was chosen too small, then the iteration stops when there is indication
that rounding errors dominate, and ICONTR = 2 is returned.

On exit : Length of the last step in the iteration.

MAXFUN INTEGER. Used only if the entry value of ICONTR is positive.
On entry : Upper bound on the number of calls of FDF. Must be positive.
On exit : Number of calls of FDF.

W REAL*8 ARRAY with IW elements. Work space.
Entry values are not used, and exit values depend on the entry value of ICONTR,
ICONTRentry > 0 :
W(1) = F (X) defined by (3.2a),
W(2,..,M+1) : fI(X), I= 1, . . . , M,
W(M+2,..,M+M*N+1) : Jacobian J(X), stored columnswise..
W(M+M*N+2,..,M+M*N+L+1) : cI(X), I= 1, . . . , L.

3. Constrained Optimization 33

ICONTRentry ≤ 0 : Results of the gradient check are returned in the first 10 elements of W as
follows, cf. (1.10)

W(1) Maximum element in |DF|.
W(2), W(5), W(6) δF , iF , jF .
W(3), W(7), W(8) δB, iB, jB.
W(4), W(9), W(10) δE , iE , jE .

In case of an error the indices point out the erroneous element of the Jacobian matrix.

IW INTEGER. Length of work space W. Must be at least 4mn+5n2+8m+8n+4L+3. Is not changed.

ICONTR INTEGER. On entry : Controls the computation,
ICONTR > 0 : Start minimization.
ICONTR ≤ 0 : Check gradient. No iteration.

On exit : Information about performance,
ICONTR = 0 : Successful call. Regular Solution.
ICONTR = 1 : Successful call. Singular Solution.
ICONTR = 2 : Iteration stopped because too many iterations were needed, see MAXFUN,

or rounding errors dominate, see EPS.
ICONTR = 3 : The subroutine failed to find a point x satisfying all constraints. The feasible

region is presumably empty.
ICONTR < 0 : Computation did not start for the following reason,

ICONTR = −2 : N ≤ 0
ICONTR = −3 : M ≤ 0
ICONTR = −4 : L < 0
ICONTR = −5 : LEQ<0 or LEQ>L or LEQ≥N

ICONTR = −9 : |DX| is too small in case of gradient check, or
DX ≤ 0 in case of optimization

ICONTR = −10 : EPS ≤ 0
ICONTR = −11 : MAXFUN ≤ 0
ICONTR = −13 : IW<4mn+5n2+8m+8n+4L+3

Example. Minimize

F (x) = max
i

| fi(x) | ,

subject to the constraint

c(x) ≡ −x1 + x2 + 2 ≥ 0 .

The fi are given by (1.14), page 6. This is a problem of computing a linearly constrained minimizer
of the `∞-norm of f , and we extend the vector f to f̂ as defined in (3.3b).

PROGRAM TINCIN

**

* Test MINCIN. 30.01.2002

**

IMPLICIT NONE

INTEGER I,IC,ICONTR,IW,L,LEQ,M,MAXFUN,N

DOUBLE PRECISION A(1,2),B(1),DX,EPS,X(2),W(91)

EXTERNAL FDF

C ... Set parameters

DATA N, M, L, LEQ, IW, MAXFUN, A, B, EPS, X

& /2, 6, 1, 0, 91, 25, -1D0,1D0, 2D0, 1D-10, 2*1D0/

ICONTR = 0

ICONTR = 1

IF (ICONTR .LE. 0) THEN

34 3.3. MINCIN

C ... Check Jacobian

DX = 1D-3

CALL MINCIN(FDF,N,M,L,LEQ,B,A,X,DX,EPS,MAXFUN,W,IW,ICONTR)

IF (ICONTR .LT. 0) THEN

WRITE(6,10) -ICONTR

ELSE

WRITE(6,20) W(1), W(2),INT(W(5)), INT(W(6))

WRITE(6,30) ’Backward’, W(3),INT(W(7)),INT(W(8))

WRITE(6,30) ’ Extrap.’, W(4),INT(W(9)),INT(W(10))

WRITE(7,20) W(1), W(2),INT(W(5)), INT(W(6))

WRITE(7,30) ’Backward’, W(3),INT(W(7)),INT(W(8))

WRITE(7,30) ’ Extrap.’, W(4),INT(W(9)),INT(W(10))

ENDIF

ELSE

C ... Optimize

DX = .1D0

CALL MINCIN(FDF,N,M,L,LEQ,B,A,X,DX,EPS,MAXFUN,W,IW,ICONTR)

IF (ICONTR .LT. 0) THEN

WRITE(6,10) -ICONTR

ELSE

WRITE(6,40) ICONTR,MAXFUN

WRITE(6,50) X(1),X(2), W(1)

IC = M+1 + M*N

WRITE(6,60) (W(I),I=2,M+1), (W(I),I=IC+1,IC+L)

ENDIF

ENDIF

10 FORMAT(’Parameter number’,I3,’ is outside its range’)

20 FORMAT(’Test of Jacobian. Max|DF| =’,1P1D12.4/’Max difference’,

& 5X,’Forward :’,1P1D12.4,’ at i,j =’,I2,’,’,I2)

30 FORMAT(18X,A8,’ :’,1P1D12.4,’ at i,j =’,I2,’,’,I2)

40 FORMAT(’Optimization. ICONTR =’,I2,’.’,I4,’ calls of FDF’)

50 FORMAT(’ x =’,1P2D17.9/’F(x) =’,1P2D17.9)

60 FORMAT(’f(x) =’,1P3D17.9/6X,1P3D17.9/’c(x) =’,1P3D17.9)

STOP

END

SUBROUTINE FDF(N,M,X,DF,F)

INTEGER N,M,I,J

DOUBLE PRECISION X(N),DF(M,N),F(M)

F(1) = 1.5D0 - X(1)*(1D0 - X(2))

F(2) = 2.25D0 - X(1)*(1D0 - X(2)**2)

F(3) = 2.625D0 - X(1)*(1D0 - X(2)**3)

DF(1,1) = X(2)-1D0

DF(1,2) = X(1)

DF(2,1) = X(2)**2 - 1D0

DF(2,2) = 2D0*X(1)*X(2)

DF(3,1) = X(2)**3 - 1D0

DF(3,2) = 3D0*X(1)*X(2)**2

C ... Supply with -f

DO 20 I = 1, 3

DO 10 J = 1, 2

10 DF(I+3,J) = -DF(I,J)

20 F(I+3) = -F(I)

RETURN

END

3. Constrained Optimization 35

We get the results

Test of Jacobian. Max|DF| = 3.0000E+00

Max difference Forward : 3.0010E-03 at i,j = 3, 2

Backward : -1.4998E-03 at i,j = 3, 2

Extrap. : 5.0000E-07 at i,j = 3, 2

These results indicate that the gradients of the {fi} are implemented correctly, and changing the
initial value of ICONTR from 0 to 1 we get

Optimization. ICONTR = 1. 15 calls of FDF

x = 2.366025404E+00 3.660254038E-01

F(x) = 3.750000000E-01

f(x) = -9.638557313E-17 2.009618943E-01 3.750000000E-01

9.638557313E-17 -2.009618943E-01 -3.750000000E-01

c(x) = 0.000000000E+00

36 References

References

[1] E.M.L. Beale (1958): On an Iterative Method of Finding a Local Minimum of a Function of
More than one Variable. Princeton Univ. Stat. Techn. Res. Group, Techn. Rep. 25.

[2] R.M. Chamberlain, C. Lemarechal, H.C. Pedersen and M.J.D. Powell (1982): The Watchdog
Technique for Forcing Convergence in Algorithms for Constrained Optimization. Mathemati-

cal Programming Study 16, 1 – 17.
[3] J.E. Dennis and R.B. Schnabel (1983): Numerical Methods for Unconstrained Optimization and

Nonlinear Equations. Prentice Hall Series in Computational Mathematics.
[4] J. Dongarra, C.B. Moler, J.R. Bunch and G.W. Stewart. (1988): An Extended Set of Fortran

Basic Linear Algebra Subprograms, ACM Trans. Math. Soft. 14, 1–17.
[5] R. Fletcher (1987): Practical Methods of Optimization, 2nd edition. Wiley.

[6] J. Hald (1981a): MMLA1Q, a Fortran Subroutine for Linearly Constrained Minimax Optimiza-
tion. Report NI-81-01, Institute for Numerical Analysis (now part of IMM), Technical University
of Denmark.

[7] J. Hald (1981b): A 2-Stage Algorithm for Nonlinear `1 Optimization. Report NI-81-03, Institute
for Numerical Analysis (now part of IMM), Technical University of Denmark.

[8] J. Hald and K. Madsen (1981): Combined LP and Quasi-Newton Methods for Minimax Opti-
mization. Mathematical Programming 20, 49 – 62.

[9] J. Hald and K. Madsen (1985): Combined LP and Quasi-Newton Methods for Nonlinear `1

Optimization. SIAM J. Numer. Anal. 20, 68 – 80.
[10] Harwell Subroutine Library. (1984). Report R9185, Computer Science and Systems Division,

Harwell Laboratory, Oxfordshire, OX11 ORA, England.
[11] K. Madsen (1975): An Algorithm for Minimax Solution of Overdetermined Systems of Nonlinear

Equations. J. IMA 16, 321 – 328.
[12] K. Madsen, O. Tingleff, P.C. Hansen and W. Owczarz (1990): Robust Subroutines for Non-

Linear Optimization. Report NI-90-06, Institute for Numerical Analysis (now part of IMM),
Technical University of Denmark.

[13] H.B. Nielsen (1999): Damping Parameter in Marquardt’s Method. Report IMM-REP-1999-05,
IMM, DTU. Available at
http://www.imm.dtu.dk/∼hbn/publ/TR9905.ps

[14] H.B. Nielsen (2000): UCMINF – an Algorithm for Unconstrained Nonlinear Optimization. Re-
port IMM-REP-2000-19, IMM, DTU. Available at
http://www.imm.dtu.dk/∼hbn/publ/TR0019.ps

[15] J. Nocedal and S.J. Wright (1999): Numerical Optimization. Springer, New York.

[16] M.J.D. Powell (1982): Extension to Subroutine VF02AD. In R.F. Drenik and F. Kozin (eds.),
“System Modeling and Optimization”, Lecture Notes in Control and Informations

Sciences 38, Springer-Verlag, 529 – 538.
[17] M.J.D. Powell (1985): On the Quadratic Programming Algorithm of Goldfarb and Idnani.

Mathematical Programming Study 25, 46 – 61.

