
Automatic selection of tuning parameters in wind
power prediction

Lasse Engbo Christiansen (lec@imm.dtu.dk)
Henrik Aalborg Nielsen (han@imm.dtu.dk)

Torben Skov Nielsen (tsn@imm.dtu.dk)
Henrik Madsen (hm@imm.dtu.dk)

Informatics and Mathematical Modelling
Technical University of Denmark

DK-2800 Kongens Lyngby

May 22, 2007

Report number: IMM-Technical Report-2007-12
Project title: Intelligent wind power prediction systems
PSO Project number: FU 4101
Ens. journal number: 79029-0001

1

http://www.imm.dtu.dk/~lec
mailto:lec@imm.dtu.dk
http://www.imm.dtu.dk/~han
mailto:han@imm.dtu.dk
http://www.imm.dtu.dk/~tsn
mailto:tsn@imm.dtu.dk
http://www.imm.dtu.dk/~hm
mailto:hm@imm.dtu.dk
http://www.imm.dtu.dk
http://www.dtu.dk

Contents

1 Introduction 5

2 Unbounded optimization of variable forgetting factor RLS 6

2.1 Introduction 6

2.2 Revised SD-RLS . 6

2.2.1 Unbounded optimization of the forgetting factor 6

2.2.2 Deriving the general algorithm 7

2.3 Simulation results . 9

2.4 Discussion 11

3 RLS cond. par. model with adaptive bandwidth 13

3.1 Introduction 13

3.1.1 Background. 13

3.1.2 Framework . 13

3.2 Local optimization of bandwidth . 14

3.2.1 Gauss-Newton optimization 15

3.2.2 Using Gaussian weight function 15

3.2.3 Example: Piecewise linear function 16

3.2.4 Fitting points in higher dimensions 17

3.2.5 Using tri-cube weight function . 18

3.3 Discussion 18

4 Conclusion 19

2

References 22

3

Summary

This document presents frameworks for on-line tuning of adaptive estimation procedures. First,
introducing unbounded optimization of variable forgetting factor recursive least squares (RLS)
using steepest descent and Gauss-Newton methods. Second, adaptive optimization of the band-
width in conditional parametric ARX-models.

It was found that the steepest descent approach was more suitable in the examples considered.
Further a large increase in the stability when using the proposed transformation of the forgetting
factor as compared to the standard approach using a clipper function is observed. This becomes
increasingly important when the optimal forgetting factor approaches unity.

Adaptive estimation in conditional parametric models are also considered. A similar approach
is used to develop a procedure for on-line tuning of the bandwidth independently for each fitting
point. Both Gaussian and tri-cube weight functions have been used and for many applications
the tri-cube weight function with a lower bound on the bandwidth is preferred.

Overall this work documents that automatic tuning of adaptiveness of tuning parameters is
indeed feasible and makes it easier to initialize these classes of systems, e.g. when predicting
the power production from new wind farms.

4

1 Introduction

The wind power forecasting system developed at DTU - the Wind Power Prediction Tool
(WPPT) - predicts the power production in an area using a two stage approach. First mete-
orological forecasts of wind speed and wind direction are transformed into predictions of power
production for the area using a power curve like model. Then the final power prediction for
the area is calculated using an optimal weight between the currently observed production in the
area snd the production predicted using the power curve model. Furthermore, some adjustments
for diurnal variations are carried out (See Madsen et al. (2005) for details).

The power curve model is a conditional parametric model whereas the weighting between ob-
served and predicted production from the power curve is modelled by a traditional linear model.
For on-line applications it is advantageous to allow the model estimates to be modified as data
becomes available, hence recursive methods are used to estimate the parameters/functions in
WPPT.

No model estimation is required prior to installing WPPT at a new location, however a number
of tuning parameters have to be selected. These include the forgetting factor of the recursive
estimation and the bandwidth used in the conditional parametric representation of the power
curve.

This report contains the derivations of two algorithms for automatic selection of the tuning
parameters. The description of both algorithms are followed by examples with simulated data
representing reoccuring problems in wind power prediction. The first part is on to tuning of the
forgetting factor and the second part is on tuning of the bandwidth.

Each part has its own discussions and the report includes a combined conclusion in the end.

5

2 Unbounded optimization of variable forgetting factor RLS

2.1 Introduction

Recursive least squares (Ljung and S¨oderström, 1983) are successfully applied in many applica-
tions. Often exponential forgetting with a fixed forgetting factor is used but in some cases there
is not enough information to chose the optimal forgetting factor and it may vary with time due
to changes in the model. In such cases it might be appropriate to use an extended RLS algorithm
incorporating a variable forgetting factor (VFF). Among the first to suggest a variable forgetting
was Fortescue et al. (1981). They suggested a feed-back from the squared prediction error to the
forgetting factor such that a large error results in a faster discounting of the influence of older
data. The basic drawback with exponential forgetting is its homogeneity in time. One effect
of that is covariance blowup, when certain parts of the covariance matrix grows exponentially
due to lack of new information about the corresponding parameters (Fortescue et al., 1981). An
alternative to exponential forgetting is linear forgetting where variation of the parameters are
described by a stochastic state space model (Peters and Antoniou, 1995). A survey of general
estimation techniques for time-varying systems is found in Ljung and Gunnarsson (1990).

Numerous extended RLS algorithms with variable forgetting factors are available in the litera-
ture, these includes gradient of parameter estimates (Cooper, 2000), steepest descent algorithms
(Malik, 2003; So et al., 2003), and a Gauss Newton update algorithm (Song et al., 2000). See
also (Haykin, 1996).

To be a valid RLS algorithm the forgetting factor has to fulfill:0 < λ ≤ 1. The gradient
methods, steepest descent and Gauss Newton, uses sharp boundaries for the forgetting factor.
This may cause problems as the estimate of the gradient (and Hessian) do not incorporate this.
In this section a new unbounded formulation of the steepest descent update of the forgetting
factor is presented and simulations are used to show that this approach is more stable. The
extension to a Gauss Newton update of the forgetting factor is presented and discussed.

2.2 Revised SD-RLS

2.2.1 Unbounded optimization of the forgetting factor

As mentioned above the implemented upper bound for the forgetting factor is often made us-
ing a sharp boundary also called a clipper function. This is problematic since the underlying
algorithms essentially are developed for unbounded optimization problems. The clipper func-
tion has been observed to destabilize the optimization of the forgetting factor causing unwanted
rapid reductions of the forgetting factor after hitting the boundary at unity. To circumvent this
we propose a new formulation optimizing a transformed forgetting factor,gt, in λ(gt) instead
of optimizing the forgetting factor,λt. The functionλ(g) must be an everywhere increasing

6

function preferably mapping the real axis to the interval:[λ−;λ+].

Inspired by the relation between the effective number of observationsNeff (Also calledmemory
time constant(Ljung, 1999)) and the forgetting factor:

λ = 1 − 1

Neff
, Neff > 1 (1)

we propose the sigmoid:

λ(g) = 1 − 1

Nmin + exp(g)
, g ∈ R andNmin > 1 (2)

whereNmin is giving the lower bound onλ and the upper bound is unity. The exponential is
incorporated to allowgt ∈ R.

2.2.2 Deriving the general algorithm

The standard RLS algorithm (Ljung and S¨oderström, 1983) with inputxt, observations,yt,
using the inverse correlation matrixP t−1, and usingλ(gt−1) is given by:

kt =
P t−1xt

λ(gt−1) + xT
t P t−1xt

(3)

ξt = yt − xT
t θt−1 (4)

θt = θt−1 + ktξt (5)

P t = λ−1(gt−1)(I − ktx
T
t)P t−1 (6)

wherekt is the gain,ξt is theá priori prediction error, andθt is the vector of parameter estimates.

To adjust the forgetting factor the ensemble averaged cost function (Haykin, 1996, Sec. 16.10)

Jt =
1

2
E[ξt(θ)2] (7)

is used. The first order derivative with respect tog is needed in order to derive a steepest descent
algorithm:

∇g,t =
∂Jt

∂g
= E

[
∂ξt(θ)

∂g
ξt(θ)

]
(8)

Note that here we take the derivative with respect tog without a time index. This corresponds to
considering the situation whereg, and thereby the forgetting factor, is changing slowly. Defining

ψt ≡
∂θt

∂g
, M t ≡ ∂P t

∂g
, λ′(g) ≡ dλ(g)

dg
(9)

Inserting Eq. 4 in Eq. 8 yields

∇g,t = −E [xT
t ψt−1ξt(θ)

]
(10)

7

In order to derive the Gauss Newton algorithm the second order derivative ofJt(θ) with respect
to g is needed:

Ht =
∂

∂g
∇g,t = − ∂

∂g
E
[
xT

t ψt−1ξt(θ)
]

= E

[
(xT

t ψt−1)
2 − xT

t

∂ψt−1

∂g
ξt(θ)

]
(11)

A recursive estimate ofψt−1 can be found using Eq. 14 below.∂ψt−1

∂λ
in the second term only

depends on information up to timet − 1 and assuming thatθ is close to the true value, thenξt
will be almost white noise (with zero mean and independent of the information set up to time
t − 1). Thus, the expectation of the second term is close to zero and the first term guarantees
Ht > 0. A good approximation is therefore:

Ht = E
[
(xT

t ψt−1)
2
]

(12)

For further details see Ljung and S¨oderström (1983). Simple exponential smoothing can be
used to obtain a recursive estimate ofHt (Song et al., 2000):

Ht = (1 − α)Ht−1 + α(xT
t ψt−1)

2 (13)

whereα is the learning rate also used as stepsize when updatinggt (Eq. 17, below).

The update equation forψt is found by differentiating Eq. 5, usingkt = P txt, which can be
realized by using Eq. 6 and solving forkt to get Eq. 6, and inserting Eq. 4:

ψt = (I − ktx
T
t)ψt−1 +M txtξt (14)

and similarly the update forM t is found by differentiating Eq. 6:

M t =
λ′

λ
(ktk

T
t − P t) +

1
λ

(I − ktx
T
t)M t−1(I − ktx

T
t)T (15)

And using:

∂

∂g

(
ktx

T
t P t−1

)
= ktx

T
t M t−1 +

∂kt

∂g
xT

t P t−1 =

ktx
T
t M t−1 +M t−1xtk

T
t − λ′ktk

T
t − ktx

T
t M t−1xtk

T
t

Approximating∇g,t by using the current estimate

∇g,t = −xT
t ψt−1ξt (16)

then the steepest descent update ofgt yields

gt = gt−1 + αxT
t ψt−1ξt (17)

8

The proposed algorithm is given by using Eq. 2 in

kt =
P t−1xt

λ(gt−1) + xT
t P t−1xt

(18)

ξt = yt − xT
t θt−1 (19)

θt = θt−1 + ktξt (20)

P t = λ−1(gt−1)[I − ktx
T
t]P t−1 (21)

M t = λ−1(gt−1)[I − ktx
T
t]M t−1[I − ktx

T
t]T +

λ−1(gt−1)λ
′(gt−1)

(
ktk

T
t −P t

)
(22)

gt = gt−1 + αxT
t ψt−1ξt (23)

ψt = [I − ktx
T
t]ψt−1 +M txtξt (24)

Note thatλ′(g) only appears in the update ofM t.

The algorithm can be extended to a Gauss Newton algorithm by substituting Eq. 23 by:

Ht = (1 − α)Ht−1 + α(ψT
t−1xt)

2 (25)

gt = gt−1 + αxT
t ψt−1ξt/Ht (26)

2.3 Simulation results

A simulation study was carried out to compare the stability of the steepest descent and Gauss-
Newton variable forgetting factor algorithms using direct bounded update ofλt and unbound
optimization ofgt. The simulation model is given by:yt = btxt + et, wherebt is a time
varying parameter given by:bt = 1.5 + 0.5 cos(2πft) with f = 10−4. xt is autoregressive:
xt = 0.975xt−1 + 0.025st with st i.i.d. uniformly distributed on[1; 2]. Finally, et is Gaussian
i.i.d. noise with zero mean and standard deviation 0.7. This is a simple but very noisy system
approximating the noise level when forecasting power production in wind farms. With the
chosen very high noise level in combination with the chosen frequency in the change of the
parameter a simple optimization of squared one step prediction errors on the last half of the
data showed that 0.99 is the optimal fixed forgetting factor.

To illustrate the effect of introducing the unbounded optimization in the steepest descent algo-
rithm we used the above simulation model to find near optimalα’s for both versions,αbound =
6 · 10−6 andαunbound = 0.5, usingλ ∈ [0.6; 1] andNmin = 3, respectively. These settings
were then used on a model withbt being a constant equal to 1.5, and hence estimating the true
model. A trace of the memory length for the two versions can be seen in Fig. 1. It’s seen that the
unbounded version makes an almost linear increase of the memory length whereas the version
with bounds at unity and 0.6 has a very fluctuating memory, indeed many of the peaks reaches
an infinite memory length (λ = 1). This unstable behavior is the result of not including the
bounds in the optimization.

9

0 2 4 6 8 10

x 10
4

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Samples

M
em

or
y

le
ng

th

Figure 1: Comparing unbound (black) and bounded (gray) versions of the steepest descent
algorithm on a simulation with a constant model usingα’s optimal for the sinusoid.

To investigate the effect of changing the initial conditions and the the length of the transient at
different values ofα the cumulative sum of squared one step prediction errors was calculated,
see Fig. 2. Starting at the true parameter (1.5 + 0.5 × cos(0) = 2) there is hardly any initial
phase as the line is approximately linear from the beginning, this was independent ofα within
a wide range (See Fig. 3). If instead starting at a wrong value of the parameter the value ofα
determines how fast the forgetting factor can be changed. For largeα’s e.g. 10 the cumulative
sum becomes linear quite fast but the slope is higher than for lowerα’s so it is not optimal.
Usingα = 10−6 is slightly better than1 and the transient lasts less than 1500 samples in both
cases.

Disregarding the initial transient (2000 samples in this case) the sum of squared one step predic-
tion errors (SSPE) over a wide range ofα’s is shown in Fig. 3, this corresponds to the average
slope in Fig. 2. Forα ∈ [10−6; 0.6] the SSPE is less than 1.015 times the sum of squared mea-
surement errors (SSE= Σe2t). And less than 1.010 times SSE in most cases. This should be
compared with the optimal fixed forgetting factor of 0.99 resulting in SSPE 1.0083 times the
SSE.

When using the Gauss Newton extension both in the bounded and unbounded setting the optimal
α is about10−4. This value results in a very smooth Hessian. Hence it cannot adjust the Hessian
when needed. Furthermore, a smallα makes it more important to choose a good initial value
of the Hessian. In this noisy setting it was decided not to use the Gauss Newton algorithm but

10

0 2000 4000 6000 8000 10000
0

1000

2000

3000

4000

5000

6000

Samples

C
um

 S
um

(e
2)

th
0
=2, a=1e−2

th
0
=1, a=1e−6

th
0
=1, a=1

th
0
=1, a=10

0 500 1000 1500
0

200

400

600

800

Figure 2: Comparing the cumulative sum of squared one step prediction errors for different
initial settings (th0) and different step lengths (a). The lines should be straight after a transient
and the lower the slope the better the model.

may be appropriate for other applications.

2.4 Discussion

We find that the steepest descent algorithm in the unbounded setting is the better but both
bounded and Gauss-Newton algorithms can all be tweaked to similar performance on the simple
model used for illustration. The differences are seen when challenging the methods in different
ways. The main motivation for this work was tuning a forgetting factor with an optimal value
close to unity, i.e. using a model close to the true model. In such cases the upper bound will be
hit when using the original formulation and the model will become somewhat unstable as was
seen in Fig. 1. Unbounded optimization resulted in a smooth increase in the memory length.

It was expected that the Gauss-Newton algorithms would outperform the steepest descent al-
gorithms. However, this were not observed, one reason is thatα is both used to smoothen the
estimate of the Hessian and as the step length in the update ofλ. As the value ofα has to be
relatively low due to the high noise level the estimate of the Hessian is adjusted too late com-
pared to the gradient estimates. Experiments with a different (larger) smoothing constant for the
Hessian resulted in a more varying forgetting factor. However, it was not possible to identify a
more optimal algorithm than just using the proposed unbounded steepest descent algorithm.

11

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

alpha

S
S

P
E

/S
S

E

Figure 3: Changes in the sum of squared one step prediction errors (SSPE). Calculated removing
a transient of 2,000 samples and normalized by the sum of squared measurement errors (SSE
= Σe2t).

In summary we find that when using a variable forgetting factor one should avoid hitting bound-
aries that are hidden for the optimizing scheme. One new solution reformulating the problem
as an unbounded optimization has been presented and tested both using steepest descent and
Gauss-Newton variable forgetting factor recursive least squares algorithms. Simulation results
indicate that for noisy systems where the model used is close to the true model, as is the case for
wind power predictions, steepest descent updates of an unbounded parameter is most suitable.
On topα can be chosen within a wide range with only a small impact on performance.

12

3 RLS cond. par. model with adaptive bandwidth

3.1 Introduction

3.1.1 Background

When using local polynomial regression in a conditional parametric model a number of distinct
points are set as fitting points for the local polynomials. The question addressed in this section
is how to optimize the bandwidth at each of these fitting points. First a local formulation is
used estimating the bandwidth at each point independent of all other points. Second a global
approach where the bandwidth is given as a polynomial over the fitting points is outlined.

3.1.2 Framework

In the conditional parametric ARX-model (CPARX-model) with responseys as presented by
Nielsen et al. (2000) the explanatory variables are split in two groups. One group of variables
xs enter globally through coefficients depending on the other group of variablesus, i.e.

ys = xT
s θ(us) + es, (27)

whereθ(·) is a vector of coefficient-functions to be estimated andes is the noise term.

The functionsθ(·) in (27) are estimated at a number of distinct points by approximating the
functions using polynomials and fitting the resulting linear model locally to each of thesefitting
points. To be more specific letu denote a particular fitting point. Letθj(·) be the j’th element
of θ(·) and letpd(j)(u) be a column vector of terms in the correspondingd-order polynomial
evaluated atu. The method is given by the following iterative algorithm.

zT
t =

[
x1,tp

T
d(1)(ut) . . . xp,tp

T
d(p)(ut)

]
(28)

λ
(i)
eff,t = 1 − (1 − λ)Wu(i)(ut) (29)

ξt = yt − zT
t φ̂t−1(u

(i)) (30)

Ru(i),t = λ
(i)
eff,tRu(i),t−1 +Wu(i)(ut)ztz

T
t (31)

φ̂t(u
(i)) = φ̂t−1(u

(i)) +Wu(i)(ut)R
−1
u(i),t

ztξt (32)

θ̂jt(u
(i)) = pT

d(j)(u
(i)) φ̂j,t(u

(i)); j = 1, . . . p (33)

WhereWu(i)(ut) is the weight function used for fitting the local polynomials. Nielsen et
al. used a tri-cube weight function (Defined as(1 − (‖ut − u(i)‖/h(i))3)3 if ‖ut − u(i)‖ <
h(i) and zero otherwise). For further details and explanations see Nielsen et al. (2000).

13

In this section a generic weight function is used in the derivation and the tri-cube and Gaussian
weight functions are used as examples. In the remaining part of this section the indexu(i)

indicating the fitting point has been omitted to simplify the expressions. Thus only considering
one fitting point.

3.2 Local optimization of bandwidth

The idea is to optimize the bandwidth for each fitting point separately. And the bandwidth is to
be optimized for each time step. It was chosen to use the expected weighted square of the one
step prediction error:

Jt =
1

2
E[Wt(ut)ξ

2
t (ut)] (34)

as the objective function. In order to make an unconstrained optimization of the bandwidth it
was chosen to optimizegt in:

ht = exp(gt) (35)

To do the optimization the derivative of the objective function with respect tog is needed:

∇g,t =
∂Jt

∂g
= E

[
1

2

∂Wt(ut)

∂g
ξ2

t (ut) +Wt(ut)
∂ξt

∂g
ξt

]
(36)

In the followingu is the fitting point for which the bandwidth is being optimized andut is the
value at timet. The subscriptu is omitted when writingφ andψ. Defining

ψt ≡
∂φt

∂g
, M t ≡ ∂Rt

∂g
, Vt(ut) ≡ ∂Wt(ut)

∂g
(37)

and using Eq. 30 the gradient can be written as:

∇g,t = E

[
1

2
Vt(ut)ξ

2
t −Wt(ut)z

T
t ψ̂t−1ξt

]
(38)

A recursive estimate ofψt can be obtained by differentiation of Eq. 32:

ψt = ψt−1 + Vt(ut)R
−1
t ztξt −Wt(ut)R

−1
t M tR

−1
t ztξt −

Wt(ut)R
−1
t ztz

T
t ψ̂t−1 (39)

Likewise,M t can be estimated by differentiation of Eq. 31:

M t = λeff,tM t−1 + Vt(ut)ztz
T
t (40)

What remains to make a steepest descent algorithm is the weight function and it’s derivative.

14

3.2.1 Gauss-Newton optimization

A possible extension is to use second order derivatives of the objective function to do the opti-
mization with a Gauss-Newton algorithm. Using the same notation as above:

∇2
g,t =

∂2Jt

∂g2
=

∂

∂g
∇g,t

=
∂

∂g
E

[
1

2
Vt(ut)ξ

2
t −Wt(ut)z

T
t ψ̂t−1ξt

]

= E

[
1

2

∂Vt(ut)

∂g
ξ2

t − 2Vt(ut)z
T
t ψ̂t−1ξt−

Wt(ut)z
T
t

∂ψ̂t−1

∂g
ξt +Wt(ut)z

T
t ψ̂t−1z

T
t ψ̂t−1

]
(41)

It can be argued that close to the true set of parameters the expectation of the second and third
terms are zero (See Ljung and S¨oderström (1983)).

Based on the experience with the Gauss-Newton approach for adjusting the forgetting factor it
was decided to focus on the steepest descent algorithm.

3.2.2 Using Gaussian weight function

It was chosen to test the algorithm using a Gaussian kernel. It’s easy to implement and has
global support. Using Eq. 35 the Gaussian weight function is given by:

Wt(ut) =
1

exp(gt)
√

2π
exp

(
−1

2

(‖u− ut‖
exp(gt)

)2
)

(42)

Notice that pre-multiplying by the inverse bandwidth ensures that the integral is independent
of the bandwidth. Besides the weight function the first order derivative with respect togt is
needed:

Vt(ut) =
∂Wt(ut)

∂gt

= Wt(ut)

((‖u− ut‖
exp(gt)

)2

− 1

)
(43)

Note that the derivative changes sign being positive for‖u−ut‖ > exp(gt) and negative when
closer to the fitting point.

The last part missing is an update ofgt and using the current estimate in Eq. 38 the steepest
descent update is given by:

gt = gt−1 − α

(
1

2
Vt(ut)ξ

2
t −Wt(ut)z

T
t ψ̂t−1ξt

)
(44)

15

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Samples

B
an

dw
id

th

Figure 4: Using a Gaussian weight function to optimize the bandwidth at nine fitting points.
Both steepest descent traces and fix bandwidth optimized on the last half of the data are shown.
The 4 boundary points are blue and green, the central point is purple, the neighbour points of
the central point are light blue and light green, and the remaining two points are black and red.

3.2.3 Example: Piecewise linear function

To test the ability to adjust the bandwith the following continuous piecewise linear function was
used:

θ(u) =

{
1 , 0 ≤ u ≤ 1
u , 1 < u ≤ 2

(45)

in combination withyt = xtθ(ut) + et, wherext ∈ U [1; 2], ut ∈ U [0; 2], andet ∈ N(0, 0.252).

The trace of the bandwidth using the Gaussian weight function and a steepest descent update
of the bandwidths individually for 9 fitting points distributed evenly from0 to 2 and using local
linear regression at each point can be seen in Fig. 4. On top of the nine traces of the bandwidth
as optimized by steepest descent is corresponding lines showing the optimal fixed bandwidth
measured over the last 5,000 samples. It is seen that the steepest descent does find the optimal
value relatively fast when the initial value is not too far from the optimal value. The only
trace that didn’t converge within this timespan is the purple, corresponding tou = 1 where the
change in slope is. That particular line is still converging after 10,000 samples so it should have
been started at a more appropriate level if fast convergence was of interest, alternatively a larger
α could have been chosen. Here the main focus was to show that it does converge towards

16

u

B
an

dw
id

th

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

80

100

120

140

160

180

200

220

Figure 5: The objective function used for the lines in Fig. 4 for a range of fixed bandwidths and
fitting points. The darker the lower value of the objective function.

the optimal value. Fig. 5 shows the value of the objective function as a function of the fitting
point,u, and the bandwidth. The optimal bandwidth is the darkest cell in a vertical line over the
chosen fitting point. The horizonal lines in Fig. 4 are examples of such optimal bandwidths. It is
important to notice that if the initial bandwidth is set too high, e.g. above 0.6 foru ∈ [0.6; 1.4],
the algorithm will converge to a local minimum as it is taking small steps along the gradient.

3.2.4 Fitting points in higher dimensions

In the above the Euclidean distance was used in the weight function. Thus there should be no
problems with a higher dimensionalu as long as there is only one scaling parametergt. On the
other hand there are cases where this does not hold, e.g. having wind direction and wind speed
as the elements ofu. In those cases a product weight function should be used. Then there is a
scaling parameter for each dimension (gt = [g1,t, g2,t, . . .]

T) the dimension ofψt,M t, andV t

is increased by one leading to a gradient vector rather than a scalar.

17

3.2.5 Using tri-cube weight function

In many cases it is preferable to use a weight function with non global support, i.e. only giving
non zero weights to those points within the bandwidth from the fitting point. One such function
is the tri-cube weight function:

Wt(ut) =

{
0 , nt ≥ 1

140
81 exp(gt)

(1 − n3
t)

3
, nt < 1 (46)

Wherent = ‖u − ut‖/ exp(gt) is the normalized distance to the fitting point. Again, it is
important to notice that the weight function is normalized so that the integral is independent of
the bandwidth. One motivation for the tri-cube weight function is that it has continuous zero,
first, and second order derivatives and that having non global support reduces the computational
burden in most settings.

Again the derivative is needed:

Vt(ut) =

{
0 , nt ≥ 1

140
81 exp(gt)

(1 − n3
t)

2
(10n3

t − 1) , nt < 1 (47)

and there is a change of sign as for the derivative of the Gaussian weight function. The two
derivatives plotted as a function of the normalized distance can be seen in Fig. 6.

For comparison the same nine fitting points as used for the example with the Gaussian weight
function was used. Fig. 7 shows the traces of the estimates of the bandwidth including horizontal
lines over the last 5000 samples to show the optimal fixed values. Instead of using Eq. 35 a
minimal bandwidth,h0, was implemented as:

ht = h0 + exp(gt) (48)

It was chosen to useh0 = 0.1 and hence the optimal bandwidth of 0.05 for the purple line
cannot be optained. The choice ofh0 corresponds to disallowing the lowest row in Fig. 8. In
practice such a low bandwidth should not be used when the fitting points are as distant as in the
present example. The weight functions of two neighboring fitting points should overlap, this
can be obtained by increasing the number of fitting points or increasing the minimal bandwidth.
When using the tri-cube weight function the optimal bandwidths are about three times as high
as for the Gaussian weight function. Nevertheless the two behaves more or less the same as can
also be seen in Fig. 8 (to be compared with Fig. 5) showing the sum of the weighted squares of
one step prediction errors for fixed fitting point and bandwidth.

3.3 Discussion

The present section shows the derivation of a RLS based estimation of a conditional parametric
model with variable bandwidth at each fitting point. A steepest descent approach was used to

18

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Distance (h=1)

d
W

 /
d

g

Tri−cube
Gaussian

Figure 6: Comparing the derivative of the weight functions with respect tog.

optimize the bandwidth after each sample. An extension to using Gauss-Newton optimization
has been suggested.

Both Gaussian and tri-cube weight functions have been put into this framework. The Gaussian
is easy to implement and has global support which makes sure that all observations have a non
zero weight and thus provides information irrespective of the bandwidth. The advantage of
the tri-cube is that it does not have global support which reduces the computational burden. A
lower bound on the bandwidth was needed to ensure numerical stability when using the tri-
cube weight function but not when using the Gaussian weight function. The reason for this
is probably due to the non-global versus global support. In most cases where predictions are
of interest a lower bound should be considered based on the intra distance between the fitting
points to assure a reasonable overlap of the weight functions.

4 Conclusion

It’s been shown that it is feasible to make automatic tuning of the adaptiveness of tuning param-
eters in two classes of models. First for the forgetting factor of a recursive least squares (RLS)
model and second for the bandwidth in a RLS based estimation of a conditional parametric

19

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Samples

B
an

dw
id

th

Figure 7: Using a tri-cube weight function to optimize the bandwidth at nine fitting points. Both
steepest descent traces and fix bandwidth optimized on the last half of the data are shown.

model.

A discussion of the implementation in each of the two classes of models can be found by the
end of the previous two sections.

Both classes have been tested using simulation studies representing common problems in nu-
merical prediction of wind power production. It is suggested that further work should focus on
higher dimensional properties of the suggested methods and inparticular on real life implemen-
tations of the algorithms.

20

u

B
an

dw
id

th

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

200

250

300

350

400

450

500

Figure 8: The objective function based on a tri-cube weight function which was used for the
lines in Fig. 7 for a range of fixed bandwidths and fitting points. The darker the lower value of
the objective function.

21

References

J. E. Cooper. On-line physical parameter estimation with adaptive forgetting factors.Mechani-
cal Systems and Signal Processing, 14(5):705–730, 2000.

T. R. Fortescue, L. S. Kershenbaum, and B. E. Ydstie. Implementation of self-tuning regulators
with variable forgetting factors.Automatica, 6:831–835, 1981.

S. Haykin.Adaptive Filter Theory. Prentice Hall, 3rd edition, 1996.
L. Ljung. System Identification - Theory for the User. Prentice Hall, 2nd edition, 1999.
L. Ljung and S. Gunnarsson. Adaption and tracking in system identification – a survey.Auto-

matica, 26:7–22, 1990.
L. Ljung and T. S¨oderström. Theory and Practice of Recursive Identification. MIT Press, 1983.
Henrik Madsen, Henrik Aalborg Nielsen, and Torben Skov Nielsen. A tool for predicting

the wind power production of off-shore wind plants. InProceedings of the Copenhagen
Offshore Wind Conference & Exhibition, Copenhagen, October 2005. Danish Wind Industry
Association.http://www.windpower.org/en/core.htm .

M. B. Malik. State-space recursive least-squares with adaptive memory. InProc. ISPA03, pages
146–151, 2003.

Henrik Aalborg Nielsen, Torben Skov Nielsen Alfred K. Joensen, Henrik Madsen, and Jan
Holst. Tracking time-varying-coefficient functions.International Journal of Adaptive Con-
trol and Signal Processing, 14:813–828, 2000.

S. D. Peters and A. Antoniou. A parallel adaption algorithm for recursive-least-squares adaptive
filters in nonstationary environments.IEEE Transactions on signal processing, 43(11):2484–
2495, 1995.

C. F. So, S. C. Ng, and S. H. Leung. Gradient based variable forgetting factor RLS algorithm.
Signal Processing, 83:1163–1175, 2003.

S. Song, J.-S. Lim, S. Baek, and K.-M. Sung. Gauss Newton variable forgetting factor recursive
least squares for time varying parameter tracking.Electronics Letters, 36(11):988–990, 2000.

22

http://www.windpower.org/en/core.htm

	1 Introduction
	2 Unbounded optimization of variable forgetting factor RLS
	2.1 Introduction
	2.2 Revised SD-RLS
	2.2.1 Unbounded optimization of the forgetting factor
	2.2.2 Deriving the general algorithm

	2.3 Simulation results
	2.4 Discussion

	3 RLS cond. par. model with adaptive bandwidth
	3.1 Introduction
	3.1.1 Background
	3.1.2 Framework

	3.2 Local optimization of bandwidth
	3.2.1 Gauss-Newton optimization
	3.2.2 Using Gaussian weight function
	3.2.3 Example: Piecewise linear function
	3.2.4 Fitting points in higher dimensions
	3.2.5 Using tri-cube weight function

	3.3 Discussion

	4 Conclusion
	References

