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Summary

Conditional parametric models with time-varying coefficient functions may be used in fore-

casting tasks, by proposing a mean for adaptive mean regression of nonlinear and nonsta-

tionary processes. Though, when using a classical least square criterion for the estimation

of coefficient functions, estimates are affected by the presence of significant noise, and pos-

sibly outliers, in the response/explanatory variables. This is indeed the case if these models

are used for forecasting wind power production, which is a nonstationary, nonlinear and

bounded process. A method for an adaptive and robust estimation of coefficient functions

is proposed in the present document. An asymmetric but convex M-type estimator is intro-

duced in order to deal with non-Gaussian distributions of residuals, which may be skewed

and heavy-tailed. A recursive formulation is given for the estimates to be adaptive. Also,

a local M-type estimator is proposed, in order to account for the weighting present in local

polynomial regression. Finally, a simple nonparametric method is described for an adap-

tive scaling of the introduced local M-type estimator. An original feature of that M-type

estimator is that instead of specifying a threshold point, one gives a proportion of residuals

that may be considered as suspicious. The nice properties of the method are highlighted on

semi-artificial datasets corresponding to wind speed measurements and simulated power

output for a wind farm in Denmark. Validation results are also given on real-world data

from the Middelgrunden wind farm in Denmark, on an exercise consisting in the model-

ing of the conversion function from meteorological forecasts of wind speed to wind power

measurements, consequently used for forecasting purposes.
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1 Introduction

Let {yi}, i = 1, . . . , N , be an observed time series, and consider a general regression of the

form

yi = g(xi) + ǫi, i = 1, . . . , N (1)

where x⊤
i = [x1

i . . . xk
i . . . xl

i] is a vector of l explanatory variables at time i. xi may include

lagged values of the response variable y, or alternatively historical or forecast values of

explanatory variables, i.e. variables that are known to have an influence on the process of

interest. The noise term {ǫi}, i = 1, . . . , N , is a sequence of independent and identically

distributed (i.i.d.) random variables with unknown distribution F . It is assumed that F
has a zero mean and a finite variance σ2

ǫ . In the following, it is assumed that both x- and

y-values can be normalized. Therefore, they are all contained in the unit interval, while

ǫi ∈ [−1, 1], ∀i.

If using a conditional parametric model for g, then Equation (1) can be rewritten as

yi = x⊤
i θ(ui) + ǫi, i = 1, . . . , N (2)

where θ is a vector of coefficient functions to be estimated. In the formulation given by

the above Equation, explanatory variables at time i are sorted into two groups xi and ui,

such that the resulting model is conditional to u. In practice, the curse of dimensionality

imposes that the dimension of u has to be low, say 1 or 2 (for a discussion on that issue,

see Hastie and Tibshirani (1990, pp. 83-84)). In the case where the considered process is

nonstationary, the θ-functions are referred to as time-varying coefficient functions. For

their adaptive estimation, Nielsen et al. (2000) proposed a method that is a combination of

local polynomial regression and recursive least-squares with exponential forgetting. This

estimation method is nonparametric since no assumption is made about the form of the

θ-functions. Also, it is adaptive in time since these functions are updated every time an

observation becomes available.

For real-world test cases, available measured data may contain a significant noise compo-

nent, whose distribution may be skewed, heavy-tailed, and possibly include outliers. This

results in affecting the estimation of the θ-functions. Focus is given here to robustifying the

estimation method initially introduced by Nielsen et al. (2000). In practice, the objective

function to be minimized is generalized to a broader class of loss functions. This yields an

M-type estimator θ̂
†

with convex loss functions, which is inspired by the now classical M-

estimator introduced by Huber (1981). In addition, θ̂
†

is locally robustified by accounting

for the influence of weighted residuals, the weights being given from the local polynomial

regression. Finally, the threshold points of the bounded-influence loss function are adap-

tively scaled from a nonparametric estimation of the distribution of potential residuals for

the current model estimates. The two additional parameters of the method are m the num-

ber of residuals for the estimation of residual distributions, and a parameter α that gives

the proportion of residuals to be considered as suspicious.

In a first Section, the main features of the approach introduced by Nielsen et al. (2000)

are described. This approach is then generalized in Section 3 to a broader class of loss

functions, including the bounded-influence ones, by formulating the related M-type esti-
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mator. Also, it is explained how to locally robustify this M-type estimator for the specific

case of local polynomial regression. The nonparametric method for an adaptive scaling of

the threshold points of the local M-type estimator follows in Section 4, after relaxing the

symmetry constraint on the definition of the Huber loss function. In Section 6, simluations

on semi-artificial datasets allow us to highlight and evaluate the properties of the proposed

adaptive local M-type estimator θ̂
†
. The nonlinear process considered is wind power pro-

duction. It is nonstationary owing to the very nature of wind (and due to the changes in

the site configuration and environment). Moreover, the conversion of wind to power makes

wind power production a nonlinear and bounded process. A survey on the modeling and

forecasting of wind power production is given by Giebel et al. (2003). These datasets are

composed by hourly wind speed measures and simulated power output for a multi-MW

wind farm in Denmark, over a period covering 10.000 hours. For validation purposes, the

proposed methods are also applied on a second dataset (Section 7), composed by meteo-

rological forecasts and related power measurements for another multi-MW wind farm in

Denmark, with the same aim of modeling the conversion of wind to power. Concluding

remarks are gathered in Section 8, as well as perspectives for further developments.

2 Adaptive local estimation of time-varying coefficient func-

tions

The method introduced by Nielsen et al. (2000) consists in a combination of local poly-

nomial regression and recursive weighted least-squares with exponential forgetting, for

adaptively estimating the θ-functions in Equation (2). They are estimated by locally fitting

linear models at a number of distinct points u(j) = [u1
(j) . . . uk

(j) . . . ul
(j)]

⊤, j = 1, . . . , J , re-

ferred to as fitting points, where the variables uk
(j) are those that condition the regression

model. [.]⊤ denotes the transposition operator. It is first described how local polynomial

approximation and weighted least-squares are used for a conditional estimation of the θ-

functions. The recursive formulation for an adaptive estimation of these functions follows.

2.1 Local polynomial estimates

Let us focus on a single fitting point u(j) only. The local polynomial approximation zi of the

vector of explanatory variables xi at ui is given by:

z⊤i = [x1
i p

⊤
d (ui) . . . xk

i p
⊤
d (ui) . . . xl

ip
⊤
d (ui)] (3)

where pd(ui) corresponds to the d-order polynomial evaluated at ui. In parallel, write

φ(j) = φ(u(j)) = [φ⊤
(j),1 . . . φ⊤

(j),k . . . φ⊤
(j),l]

⊤ (4)

the vector of local coefficients at u(j), where the element vector φ(j),k is the vector of local

coefficients related to the local polynomial approximation of the k-th explanatory variable,

that is, xk
i pd(ui). Using local polynomial approximations translates to assuming that the

coefficient functions are sufficiently smooth functions. They remain unknown though. Note

that it has already been argued in Fan et al. (1994) that having d = 1 instead of d = 0 (i.e.
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having an estimator based on local linear fit instead of local constant fit) was already a

robustification of local polynomial estimators. This can be straightforwardly extended to

the case of d > 1.

The linear model

yi = z⊤i φ(j), i = 1, . . . , N (5)

is fitted using weighted least-squares

φ̂(j) = arg min
φ(j)

N
∑

i=1

wi,(j)ρ(yi − z⊤i φ(j)) (6)

where ρ is a quadratic loss function, i.e. such that ρ(ǫ) = ǫ2/2, and the weights wi,(j) are

assigned by a Kernel function of the following form:

wi,(j) = K(ui,u(j)) =
∏

k

T

(

|uk
i − uk

(j)|k
hk

(j)

)

(7)

In the above, |.|k denotes a chosen distance on the k-th dimension of u, and h(j) is the

bandwidth for that particular fitting point u(j). It appears reasonable to have different

dependence of the bandwidth h on (j) for each dimension k of u. h(j) = [h1
(j) . . . hk

(j) . . . hl
(j)]

may be determined using a nearest-neighbour principle or with a rule derived from the

expert knowledge on the density of the data as a function of (j). In parallel, T can be

defined as a tricube function, i.e.

T : v ∈ R
+ → T (v) ∈ [0, 1], T (v) =

{

(1 − v3)3, v ∈ [0, 1]
0 , v > 1

, (8)

as introduced and discussed by e.g. Cleveland and Devlin (1988).

The elements of θ(j) are finally estimated by:

θ̂(j) = θ̂(u(j)) = p⊤
d (u(j))φ̂(j), j = 1, . . . , J (9)

And, for a given ui, the corresponding coefficient functions θ̂(ui) are obtained by linear-

type interpolation of the coefficient functions. For instance if dim(u) = 1, they are obtained

by linear interpolation of the coefficient function values at the two fitting points forming

the smallest interval that covers ui.

2.2 Adaptive estimation from a recursive formulation

In order to obtain a recursive formulation for the estimation of the coefficient functions, let

us introduce a modified version fn of the objective function to be minimized at any time

step n. For each fitting point u(j), j = 1, . . . , J , fn writes

fn(u(j)) =
n
∑

i=1

βn,(j)(i)wi,(j)ρ(yi − z⊤i φ(j)) (10)
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where βn,(j) is a function that permits exponential forgetting of past observations. More

precisely, we have:

βn,(j)(i) =

{

λeff
n,(j)βn−1,(j)(i − 1), 1 ≤ i ≤ n − 1

1 , i = n
(11)

In the above definition, λeff
n,(j) is the effective forgetting factor for the fitting point u(j), which

is a function of the weight wn,(j), i.e.

λeff
n,(j) = 1 − (1 − λ)wn,(j) (12)

This effective forgetting factor ensures that old observations are downweighted only when

new information is available. This will be further explained in a following part of the

present Paragraph.

The local coefficients φ̂n,(j) at time n for the model described by Equation (2) are then given

by:

φ̂n,(j) = arg min
φ(j)

fn(u(j)) = arg min
φ(j)

n
∑

i=1

βn,(j)(i)wi,(j)ρ(yi − z⊤i φ(j)) (13)

The recursive formulation for an adaptive estimation of the local coefficients φ̂n,(j) (and

therefore of θ̂n,(j), by using Equation (9) at each time-step) leads to the following three-

step updating procedure:

ǫn,(j) = yn − x⊤
n θ̂n−1,(j) (14)

φ̂n,(j) = φ̂n−1,(j) + ǫn,(j)wn,(j)

(

Rn,(j)

)−1
z⊤n (15)

Rn,(j) = λeff
n,(j)Rn−1,(j) + wn,(j)znz

⊤
n (16)

where λeff
n,(j) is again the effective forgetting factor. One sees that when the weight wn,(j)

equals 0 (thus meaning that the local estimates should not be affected by the new infor-

mation), then we have φ̂n,(j) = φ̂n−1,(j) and Rn,(j) = Rn−1,(j). This confirms the role of

the effective forgetting factor, that is to downweight old observations, but only when new

information is available.

For initializing the recursive process, the matrices R0,(j), j = 1, . . . , J , can be chosen as

R0,(j) = ξ.Ir, ∀j (17)

where ξ is a small positive number and Ir is an identity matrix of size r. Note that r is

equal to the order of the chosen model in Equation (2) times the order of the polynomials

used for local approximation. In parallel, the coefficient functions are usually initialized

with a vector of zeros, or alternatively from a best guess on the target regression.

7



3 Robustifying the estimation of coefficient functions

In real-world applications, the time-series of the response variable {yi}, i = 1, . . . , N , as

well as those of the considered explanatory variables {xi}, i = 1, . . . , N , and {ui}, i =
1, . . . , N , may contain a non-negligible noise component. This noise may come from the

measurements devices; or alternatively, it may be related to the prediction error in the

forecast of explanatory variables used as input. Some of the values can even be outliers,

i.e. data that can be deemed as abnormal in regard to the general observed behavior of the

time-series.

The previously described method for tracking the coefficient functions lacks robustness if

dealing with skewed and heavy-tailed residual distributions. It is known that in this case

estimators based on a classical quadratic criterion are not optimal. Some methods have

therefore appeared in the literature in order to robustify usual regressors. A condensed and

nice description of the main features of robust statistics is given by Hampel (2001). These

methods include among others variations of Least Median of Squares (LMS) (Rousseeuw,

1984; Rousseeuw and Leroy, 1987), or the so-called L1 method (Wang and Scott, 1994) (that

is, by replacing the quadratic loss function, equivalent to a L2 norm, by the absolute value

loss function). Though, most of these methods rely on the concepts of M-estimators (e.g.

Huber (1981), Hampel et al. (1986), and a wealth of follow-up papers). Originally, M-

estimators are derived from the principle of “generalized maximum likelihood”, and were

introduced for regression with residual distributions that slightly deviate from Gaussian.

Even though, they have been found suitable (if appropriately scaled) for a large panel of

contaminated or heavy tailed distributions (Kelly, 1992). In parallel, they have also been

considered for nonparametric function fitting, and referred to as M-type estimators (see

Fan et al. (1994); Fan and Jiang (1999); Welsh (1994) among others). Note that few robus-

tification approaches consider a potential noise in both explanatory and response variables

(e.g. the bivariate-LMS (del Rı́o et al., 2001)). In most of the cases, it is assumed that the

explanatory variables are error-free.

In the following, the above method for an adaptive estimation of local coefficients is robus-

tified, by proposing the M-type estimator φ̂
∗
n,(j) corresponding to φ̂n,(j). The particular case

of the Huber loss function is considered. It is finally explained why it is not the residu-

als but the weighted residuals that should influence the estimator, resulting in a locally

robustified M-type estimator φ̂
∗∗
n,(j).

3.1 Generalization of the method to bounded-influence and convex loss
functions

The M-type estimator φ̂
∗
n,(j), for a recursive estimation of the local coefficients in condi-

tional parametric models such as that given by Equation (2), corresponds to the estimate

that minimizes an objective function that is pretty similar to that of Equation (10). For a

given fitting point u(j), this objective function writes

φ̂
∗
n,(j) = arg min

φ(j)

n
∑

i=1

β∗
n,(j)(i)wi,(j)ρm(yi − z⊤i φ(j)) (18)
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except that here, if denoting by Ψm the derivative of ρm, the main peculiarity of the Ψm-

function is that its output is bounded:

Ψm : u ∈ R → Ψm(u) ∈ [Minf,Msup] (19)

Also, it is considered that ρm is convex and consequently, if denoting by Ψ′
m the derivative

of Ψm, we have

Ψ′
m : u ∈ R → Ψ′

m(u) ∈ [0,M ′
sup] (20)

for almost all u, since Ψ′
m may not be defined for some points if ρm is a piecewise function.

Note that in general, the distribution of residuals F is assumed to be symmetric, and there-

fore ρm is defined as a symmetric function, (translating to Minf = −Msup). In a following

Section, that constraint on the symmetry of F will be relaxed. Hereafter, even if Ψm is

written as a function of some other variables than ǫ, Ψ′
m will denote the derivative of Ψm

with respect to ǫ.

Moreover, in the definition of the M-type estimator given above, the function β∗
n,(j) for an

exponential forgetting of old observations is a robustified version of βn,(j). Indeed, in order

to be consistent with the definition of the effective forgetting factor introduced in Equa-

tion (12), λeff,∗
n,(j) has to be given by

λeff,∗
n,(j) = 1 − 1

M ′
sup

(1 − λ)Ψ′
m(ǫn,(j))wn,(j) (21)

In the robust version of the estimation method, the effective forgetting factor insures that

old observations are not downweighted as long as non-suspicious new information is not

available. In turn, Equation (20) insures that λeff,∗
n,(j) ∈ [0, 1], and thus that the definition of

λeff,∗
n,(j) is consistent with that of a forgetting factor. The function β∗

n,(j) is obtained by using

this robust version of the effective forgetting factor λeff,∗
n,(j) in the definition of Equation (11).

Similarly to the calculations done for obtaining the recursive formulation given by Equa-

tions (15) and (16), that is by using a Newton-Raphson step, one can straightforwardly

obtain a recursive formulation for the estimation of φ̂
∗
n,(j), which are updated with

φ̂
∗

n,(j) = φ̂
∗

n−1,(j) + Ψm(ǫn,(j))wn,(j)

(

R∗
n,(j)

)−1
z⊤n (22)

while the updating formula for the R∗
n,(j)-matrices writes

R∗
n,(j) = λeff,∗

n,(j)R
∗
n−1,(j) + Ψ′

m(ǫn,(j))wn,(j)znz
⊤
n (23)

such that the local residual ǫn,(j) at time n is still calculated with Equation (14).

This recursive formulation of the optimization problem given by Equation (18) actually

consists in a generalization of the recursive formulation described in Paragraph 2.2 for

a broader class of loss functions. A theoretical study of the asymptotic properties (in-

cluding asymptotic Normality, strong and weak consistency) of the class of M-type es-

timators such as φ̂
∗
n,(j) has been carried out by Fan and Jiang (1999) in the i.i.d. case,

by Cai and Ould-Saı̈d (2003) in the context of stationary time-series, and by Beran et al.
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(2002) for the specific case of long-memory error processes.

3.2 A recursive M-type estimator based on the Huber loss function

An example of a convex and bounded influence ρm-function is that of the Huber loss func-

tion. It combines a quadratic and a linear criterion:

ρm(ǫ, c) =

{

ǫ2

2 , |ǫ| ≤ c

c|ǫ| − c2

2 , |ǫ| > c
(24)

with the c-parameter, usually referred to as the threshold point, which controls the tran-

sition from quadratic to linear. Consequently, the related Ψm-function is an odd function

given by

Ψm(ǫ, c) = ρ′m(ǫ) =

{

ǫ , |ǫ| ≤ c
c sign(ǫ), |ǫ| > c

(25)

and its derivative Ψ′
m is

Ψ′
m(ǫ, c) = ρ′′m(ǫ) =

{

1, |ǫ| ≤ c
0, |ǫ| > c

(26)

The Huber loss function is symmetric and such that Msup = −Minf = c. In addition, the

upper bound on the derivative of the Ψm equals 1.

One sees that if using the Huber loss function in Equation (18) then the objective function

to be minimized is equivalent to using a classical least-square criterion for residuals whose

absolute value is smaller than that of the threshold point. In such case, the updating

formula for R∗
n,(j) and φ̂

∗
n,(j) (cf. Equations (23) and (22)) are equivalent to those given by

Equations (16) and (15), respectively. However, that loss function goes from quadratic to

linear for larger residual values, and Equation (23) becomes

R∗
n,(j) = R∗

n−1,(j) (27)

which means that the newly available information about the model performance is not

used for updating R∗
n−1,(j). Similarly, the updating formula for the local coefficients then

writes

φ̂
∗

n,(j) = φ̂
∗

n−1,(j) + c sign(ǫn,(j))wn,(j)

(

R∗
n,(j))

)−1
z⊤n (28)

which translates to considering an upper bound on possible model errors, and, when this

upper bound is reached, the magnitude of the error is no more considered for model adap-

tation.

By using a ρm-function like the Huber one, the optimization problem formulated by Equa-

tion (18) admits a unique minimum. This would not be the case if considering the so-

called redescending Ψm-functions, such as the Tuckey or Welsh ones (see discussion by

Antoch and Ekblom (1995)). Indeed, the initialization of the recursive procedure would

turn into a crucial point. This is the reason why we only consider the use of convex loss
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functions here. Though, note that even if we focus on Huber-type loss functions, the pro-

posed methodology could be easily extended to other convex loss functions.

Our choice for the Huber loss function is motivated by the fact that we aim at producing

model outputs that would minimize a Mean Square Error (MSE) criterion. It is known that

the loss function used for estimating the parameters of a model should be the same than

that used for the evaluation of the model outputs on an independent test set (Granger,

1993; Weiss, 1996). The Huber loss function is quadratic in the range of residual values

that are not considered as suspicious and its use is thus consistent with the aim of esti-

mating the minimum-MSE regressor.

3.3 Local robustification of the M-type estimator

M-estimators have originally been introduced for linear models. When dealing with con-

ditional parametric models, one actually works with several linear models that are locally

fitted at a certain number of fitting points. And, at given time n, the estimates of the local

coefficients at any fitting point u(j) such that wn,(j) > 0 are updated. The adaptation of

the local coefficients is weighted by the value of the Kernel function wn,(j) = K(un,u(j)) (cf.

Equation (7)). It would seem reasonable to envisage the definition of M-type estimators

whose loss function would depend on wn,(j). Let us refer to that proposal as the local ro-

bustification of the M-type estimator, and denote by c̃(w) the weight-dependent threshold

point. The resulting estimator φ̂
∗∗

n is called here a local M-type estimator. Note that such

proposal differs from that of Chan and Zhang (2004), who described an adaptive bandwidth

method for the robustification of M-type estimators in nonparametric function fitting. In

this method, local bandwidths are determined by using the intersection of confidence in-

tervals rule.

In the case for which un = u(j), the related weight wn,(j) equals one, and this corresponds

to the usual case for which the threshold point would be the user-defined one, i.e. c̃(1) = c.
Then, the weight wn,(j) decreases as the distance (relatively to the chosen bandwidth h(j))

between u(j) and un gets larger. Therefore, the influence of residuals calculated for un

values being pretty far from u(j) is already downweighted. It would hence seem reasonable

not to downweight them a second time with the loss function being in its linear part. Our

proposal is hence that the threshold point moves towards infinity as the weight goes to

zero:

c̃ : w ∈ [0, 1] → c̃(w) ∈ R
+ (29)

such that c̃ is a monotocally increasing function, with

c̃(1) = c, and c̃(w) → ∞ when w → 0 (30)

One notices that if defining the c̃-function as c̃(w) = cw−1/2, we then have

wn,(j)ρm(ǫn,(j), c̃(wn,(j))) =

{ (

ǫn,(j)
√

wn,(j)

)2
, |ǫn,(j)

√
wn,(j)| ≤ c

ǫn,(j)
√

wn,(j), |ǫn,(j)
√

wn,(j)| > c
(31)
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which is indeed equivalent to applying the usual Huber loss function to the weighted resid-

ual ǫn,(j)
√

wn,(j) :

wn,(j)ρm(ǫn,(j), c̃(wn,(j))) = ρm

(

ǫn,(j)
√

wn,(j), c
)

(32)

Note that even if in our proposal for the definition of the c̃-function c̃ is not defined for

w = 0, this is not an issue when injected in the definition of the loss function ρm.

Finally, the local M-type estimator φ̂
∗∗
n,(j) is obtained by including the above proposal in the

definition of the M-type estimator φ̂
∗
n,(j). φ̂

∗∗
n,(j) is given by the vector of local coefficients

that minimizes at time n the following objective function

φ̂
∗∗

n,(j) = arg min
φ(j)

n
∑

i=1

β∗∗
n,(j)(i)ρm

((

yi − z⊤i φ(j)

)

√

wi,(j), c
)

(33)

where ρm is the Huber loss function. And, regarding the recursive formulation for that

M-type estimator, the updating Equation (22) for the local coefficients φ̂
∗∗

n,(j) becomes

φ̂
∗∗

n,(j) = φ̂
∗∗

n−1,(j) + Ψm

(

ǫn,(j)
√

wn,(j), c
)(

R∗∗
n,(j)

)−1
z⊤n (34)

while that for the covariance matrix R∗
n,(j) (cf. Equation (23)) is modified as

R∗∗
n,(j) = λeff,∗∗

n,(j) R
∗∗
n−1,(j) + Ψ′

m

(

ǫn,(j)
√

wn,(j), c
)

znz
⊤
n (35)

The function β∗∗
n,(j) for an exponential forgetting of past observations is also a modified

version of β∗
n,(j) that takes into account the local robustification. Indeed, it is now based on

the effective forgetting factor λeff,∗∗
n,(j) , defined as:

λeff,∗∗
n,(j) = 1 − (1 − λ)Ψ̆′

m

(

ǫn,(j)
√

wn,(j), c
)

(36)

4 Adaptive scaling of the M-type estimator

Scaling the M-type estimator consists in choosing a suitable value for the threshold point,

i.e. that would permit to minimize an error criterion such as the Mean Square Error (MSE)

for instance. An unappropriate choice for c might lead to a higher MSE than that of the

non-robust estimates. For a discussion on the effects of this scaling on a robust estimator’s

performance, we refer to Kelly (1992).

In the literature, the choice of a suitable threshold point is often either left to the reader,

given by a rule of thumb, or the result of some sensitivity analysis on the performance

of the M-type estimator depending on c. For instance, when introducing a robust Huber

adaptive filter, Petrus (1999) noticed that the minimum MSE was attained for threshold

values close to the Mean Absolute Deviation (MAD) of the input, and proposed this choice

as a first rule of thumb.
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In most of the cases, the scaling of the M-type estimator is not adaptive. A few examples

for a time-varying scaling of M-type estimators are the use of an annealing scheme (Li,

1996; Li et al., 1998) (which is thus time-varying, but not adaptive), a scaling based on

a robust recursive estimator of variance (Zou et al., 2000a,b) (which cannot be suitable if

avoiding an assumption on the distribution of residuals), and the use of past collected resid-

uals for estimating a range of potential error values of the current model (Chen and Jain,

1994). This last possibility makes the scaling adaptive, but the range of potential errors

is estimated from the residuals of past models: it is unlikely that this collection of resid-

uals would represent the distribution of potential residuals for the current model. In the

following, a simple method is proposed for the scaling of the M-type estimator, which is

based on an empirical (and hence nonparametric) estimation of the residual distribution.

An original feature of the resulting adaptive M-type estimator is that instead of defining

the threshold points, one defines a proportion α of residuals that may be considered as

suspicious.

For building the adaptive M-type estimator, it is necessary to consider that the process {ǫi},

i = 1, . . . , N , is nonstationary. For the example of wind power production, this assumption

is reasonable, since it is known that the residual distribution is influenced by the season,

changing in the surroundings of a considered site, etc. Therefore, the distribution of resid-

uals is now considered as conditional to n. Denote by Fn the distribution function of ǫn,

and by Gn the related cumulative distribution function. In a first stage, the constraint on

the symmetry of the bounded-influence loss function is relaxed. Then, the non-parametric

approach to an adaptive scaling of the M-type estimator by having time-varying threshold

points is described.

4.1 Relaxing the symmetry constraint on the loss function

The asymmetric Huber loss function ρ̆m that is introduced below consists in a generaliza-

tion of the classical Huber loss function. The M-estimator introduced by Huber (1981) is

originally designed for estimating a better regressor when the distribution F of the resid-

uals slightly deviates from Normal. Our motivation for introducing the asymmetric Huber

loss function is that Fn may also deviate from being symmetric. This is indeed the case

when considering nonlinear and bounded processes such as wind generation. A thorough

study of the prediction errors in wind power prediction is available in (Pinson, 2006). De-

note by c = [c−, c+]⊤ the vector of inferior and superior threshold points. ρ̆m(ǫ, c) is then

defined as:

ρ̆m(ǫ, c) =











c−ǫ − c−
2

2 , ǫ < c−

ǫ2

2 , ǫ ∈ [c−, c+]

c+ǫ − c+
2

2 , ǫ > c+

(37)

For ρ̆m to be a suitable loss function, i.e. such that ρ̆m(ǫ, c) > 0, ∀ǫ, a necessary condition

on c is that c− < 0 and c+ > 0. Lindström et al. (1996) introduced a similar generalization

of the Huber loss function, and showed the asymptotic Normality of the related Kernel M-

type estimator. This can be extended to the case of the M-type estimators φ̂
∗
n,(j) and φ̂

∗∗
n,(j)

that would use the loss function ρ̆m defined above.
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An illustration of the asymmetric Huber loss function ρ̆m and of the related Ψ̆m-function is

given in Figure 1. The interest of introducing an M-type estimator based on an asymmetric

loss function is to better deal with skewed and heavy-tailed distributions as possible devi-

ations from Normality. Residuals that are considered as suspicious are not downweighted

in the same way if they are negative or positive outliers.

Writing the recursive formulation of the asymmetric M-type estimator would lead to up-

dating formulas that would be simply given by using Ψ̆m and Ψ̆′
m instead of Ψm and Ψ′

m

in Equations (22) and (23) respectively. The effective forgetting factor for the asymmetric

case is straighforwardly obtained by rewriting Equation (21) with Ψ̆′
m instead of Ψ′

m. The

asymmetric Ψ̆m-function and its derivative write:

Ψ̆m(ǫ, c) =







c−, ǫ < c−

ǫ , ǫ ∈ [c−, c+]
c+, ǫ > c+

(38)

and

Ψ̆′
m(ǫ, c) =

{

1, ǫ ∈ [c−, c+]
0, otherwise

(39)

4.2 Time-varying threshold points

Define α the user-defined parameter that corresponds to the proportion of residuals to be

considered as suspicious. Then, denote by cn(α) = [c−n (α), c+
n (α)]⊤ the vector of threshold

points at time n, which is a function of the proportion parameter α. Finally, θ̂
†
n is the M-

type estimator of the coefficient functions based on the asymmetric loss function introduced

in the above Paragraph.

At a given time n are available the vectors of explanatory variables xn and un, the response

variable value yn, and a model output value ŷn|n−1 = x⊤
n θ̂

†
n−1(un). The residual ǫn at that

time is calculated as

ǫn = yn − ŷn|n−1 = yn − x⊤
n θ̂

†

n−1 (40)

Then, instead of collecting the past residuals as proposed by Chen and Jain (1994), an

empirical estimate of the distribution of potential residuals for the current estimates θ̂
†

n−1

is obtained by applying this model to the past m vectors of explanatory variables. The

simulated residual ǫ̃
(n−1)
n−i , by using θ̂

†
n−1 for predicting yn−i at time n − i − 1 is given by

ǫ̃
(n−1)
n−i = yn−i − x⊤

n−iθ̂
†
n−1, i = 1, . . . ,m (41)

The estimate F̂n of the empirical distribution of the residuals for θ̂
†

n−1 then puts a proba-

bility 1/m on each of the simulated residuals:

F̂n(ǫ) → {ǫ̃(n−1)
n−i , i = 1, . . . ,m | P

(

ǫ = ǫ
(n−1)
n−i

)

= 1/m} (42)
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FIGURE 1: The ‘usual’ quadratic and asymmetric Huber loss functions (top), as well as their deriva-

tives (bottom). The thresholds points c− and c+ locate the negative and positive transitions from

quadratic to linear criteria. Here these points are such that c− = -0.25 and c+ = 0.3. Negative resid-

uals larger than c− (in absolute value) and positive residual larger than c+ are then downweighted

when updating the model estimates.
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Given the proportion α of residuals that may be considered as suspicious, one obtains the

two thresholds points c−n (α) and c+
n (α) by picking the quantiles with proportion (α/2) and

(1 − α/2) of the distribution F̂n:

cn(α) = [Ĝ−1
n (α/2) Ĝ−1

n (1 − α/2)]⊤ (43)

By doing so, the threshold points are not symmetric. Though, the related M-type estimator

may be considered as symmetric since there will be asymptotically the same proportion of

positive and negative residuals downweighted.

The loss function, the related Ψ̆m-function, as well as its derivative at time n, are finally

given by ρ̆m(ǫ, cn(α)), Ψ̆m(ǫ, cn(α)) and Ψ̆′
m(ǫ, cn(α)) respectively, for which the two addi-

tional user-defined parameters are α and m.

5 The adaptive local M-type estimator

This Section summarizes the above developments by defining the adaptive local M-type

estimator, and by giving the necessary steps at time n for a robust estimation of the

time-varying coefficient functions in the conditional parametric model formulated by Equa-

tion (2).

5.1 Definition

Formally, the adaptive local M-type estimator φ̂
†
n,(j) of the local coefficients corresponds to

the estimates that minimize at time n the following objective function:

φ̂
†
n,(j) = arg min

φ(j)

n
∑

i=1

β†
n,(j)(i)ρ̆m

((

yi − z⊤i φ(j)

)

√

wi,(j), cn(α)
)

(44)

with the loss function ρ̆m(ǫ, c) defined by Equation (37) and cn(α) obtained with Equa-

tion (43). The related M-type estimator for the coefficient functions, denoted by θ̂
†
n,(j), is

readily given by applying Equation (9) to φ̂
†
n,(j).

The Ψ̆m-function and its derivative, which are are necessary for updating the estimates of

the local coefficients, are already defined by Equations (38) and (39).

Finally, the function β†
n,(j) in Equation (44), which permits an exponential forgetting of past

observations that are not considered as suspicious, is such that

β†
n,(j)(i) =

{

λeff,†
n,(j)β

†
n−1,(j)(i), 1 ≤ i ≤ n − 1

1 , i = n
(45)

with

λeff,†
n,(j) = 1 − (1 − λ)Ψ̆′

m

(

ǫn,(j)
√

wn,(j), c
(α)
n

)

(46)
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5.2 Algorithm for an adaptive estimation

For initializing the estimation method, one may follow the proposal of Paragraph 2.2, that

is to have the matrices R
†
0,(j), j = 1, . . . , J , being equal to an identity matrix times a small

constant. And, regarding the initial estimates θ̂
†

0,(j), one may choose them as a vector of

zeros, or as a best guess on the target regression.

Prior to the application of the estimation method, one has to define a set of J fitting points

u(j), at which the coefficient functions are to be estimated. Each of these fitting points is

associated to a bandwidth h(j). Also, one has to choose the order d of the local polynomial

approximation at the fitting points. Finally, the two additional parameters for robustifying

the adaptive estimation are the proportion α of residuals to be considered as suspicious,

and m the number of simulated residuals to be calculated for estimating the threshold

points.

At time n, the necessary steps for updating the local polynomial estimates of the coefficient

functions are:

step 1: Adaptive scaling of the local M-type estimator

Compute the m simulated residuals following Equation (41), and from the

estimate F̂n of the distribution of simulated residuals, determine the two

threshold points c−n (α) and c+
n (α) with Equation (43).

step 2: Updating of the local estimates of the coefficient functions

Loop over all fitting points u(j), j = 1, . . . , J , such that wn,(j) > 0, and:

• Determine the local explanatory variables zn corresponding to a local polynomial ap-

proximation of xn at u(j) (cf. Equation (3)),

• Compute the local residual ǫn,(j) corresponding to the use of the estimates at u(j) for

predicting yn, as in Equation (14),

• Calculate the effective forgetting factor given by Equation (46),

• Update the matrix R
†
n−1,(j) with

R
†
n,(j) = λeff,†

n,(j)R
†
n−1,(j) + Ψ̆′

m

(

ǫn,(j)
√

wn,(j), cn(α)
)

znz
⊤
n (47)

• Update the vector of local coefficients with

φ̂
†
n,(j) = φ̂

†
n−1,(j) + Ψ̆m

(

ǫn,(j)
√

wn,(j), cn(α)
) (

R
†
n,(j)

)−1
z⊤n (48)

• Obtain the updated local polynomial estimates θ̂
†
n,(j) of the coefficients functions at

fitting point u(j) with Equation (9):

θ̂
†
n,(j) = p⊤

d (u(j))φ̂
†
n,(j) (49)
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For a given ui, the corresponding coefficient functions θ̂
†
(ui) are obtained by linear-type

interpolation of the coefficient functions.

6 Simulations

In this Section, simulation results on semi-artificial datasets are used for highlighting the

properties of the introduced adaptive M-type estimator. The process that is considered

is the power production from a 21MW wind farm, Klim in North Jutland. This process

is nonstationary, nonlinear and bounded. The response variable is the available power

output at the level of the wind farm, averaged on an hourly basis. For estimating that

power production, wind speed measurements from a meteorological mast (also averaged

on an hourly basis) are used as an explanatory variable. Both time-series cover a period of

N hours (N = 10000). They are normalized so that they take values in the unit interval.

At time step i, the wind speed and power values are be denoted by ui and yi respectively.

6.1 Data

Simulations are based on semi-artificial data. By semi-artificial is meant that the wind

speed measurements are the real measurements from the meteorological mast at the wind

farm, but that the related power values are obtained by transformation through a modeled

power curve. It is assumed that the wind speed measurements are noise-free. At any time

step i, the relation between wind speed ui and the noise-free power output yi is given by the

nonlinear (and nonstationary) power curve gi(u), which is a function of wind speed only:

yi = gi(ui), i = 1, . . . , N (50)

In the following, it is explained how the nonstationary power curve is modeled. The noise

that has been added for obtaining simulated but realistic dataset of wind speed and related

power is consequently described.

6.1.1 Model for the power curve

A double exponential function is used here for modeling the power curve gi(ui), defined as

gi(ui) = exp
(

−τ1
i exp

(

−τ2
i ui

))

, i = 1, . . . , N (51)

so that the shape of that power curve is controled at any time i by the parameters τ i =
[τ1

i τ2
i ]⊤. These parameters are chosen to evolve linearly from τ⊤

0 = [10 40] to τ⊤
N = [11 40].

The resulting nonstationary power curve over the N time steps is depicted in Figure 6.1.1.

Note that by considering that the conversion process is a function of wind speed only, we

assume that other variables e.g. wind direction do not have any influence on that conver-

sion process. This may not be true for real-world test cases. Though, the interest of the
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semi-artificial data is that the noise-free power curve, which is the target regression, is

available and can be used for evaluating the various estimators.
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FIGURE 2: The nonstationary power curve. The conversion process is modeled by a double exponen-

tial function, whose parameters τ linearly vary from [10 40] to [11 40] over the dataset.

6.1.2 Noise on the power data

In order to obtain the simulated power output for the wind farm, two different types of

noises to be added to the pure power data are envisaged. The noise sequences {ǫi} and {ξi}
are such that:

• {ǫi} is an additive Gaussian noise with zero mean, and whose standard deviation σǫ
i

is a function of the level of the reponse variable, i.e.

ǫi ∼ N (0, σǫ
i
2), σǫ

i = νǫ
0 + 4. ∗ y∗i (1 − y∗i )ν

ǫ
1 (52)

Such additive noise simulates a permanent noise in the measurement process, and

we assume that the dispersion of this noise is directly influenced by the slope of the

power curve. This is why an inverse U-shaped function is chosen.

• {ξi} is an impulsive noise of the same form than {ǫi},

ξi ∼ N (0, σξ
i

2
), σξ

i = νξ
0 + 4. ∗ y∗i (1 − y∗i )ν

ξ
1 (53)

except that this noise is added at random locations characterized by a binary se-

quence {Ii}. The proportion of data corrupted by this impulsive noise is given by π.

Such noise simulates the presence of outliers in the measurement data. They may

originate from electronic transmission problems for instance.
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Finally, the simulated power data {ỹi} are obtained by adding these two noises to the noise-

free power data {yi}:

ỹi = yi + ǫi + ξiIi, i = 1, . . . , N (54)

Simulated power data larger than 1 or lower than 0 are forced to the bounds of the unit

interval. The noise in the resulting dataset obviously deviates from being Gaussian.

The first dataset considered for simulation is composed by the wind speed data {ui} and

the simulated power output {ỹi} for the wind farm, for which the noise parameters are

[νǫ
0 νǫ

1] = [0.004 0.9] for the additive noise, and [π νξ
0 νξ

1 ] = [0.2 0.012 0.2] for the impulsive

noise. This dataset is depicted in Figure 3(a).

6.1.3 Noise on the wind speed data

In a second stage, we consider the possibility that a noise component may also be present in

the wind speed data. The time-series of corrupted wind speed data is denoted by {ũi}. This

time-series is obtained by adding an additive and an impulsive noise of the same forms

than those used for corrupting the power data:

ũi = ui + ǫi + ξiIi, i = 1, . . . , N (55)

Note that the inverse U-shaped function used for modeling the standard deviation of the

noise as a a function of wind speed may not be realistic, though it has the benefit of in-

creasing the difficulty of the estimation task.

The second dataset considered for simulation is composed by the wind speed data {ũi} and

the simulated power output for the wind farm {ỹi}. The parameters that define the noise

on the power data are those that have been given in the above Paragraph. Concerning

wind speed data, the noise parameters are chosen as [νǫ
0 νǫ

1] = [0.005 0.04] for the additive

noise, and [πνξ
0νξ

1 ] = [0.2 0.01 0.015] for the impulsive noise. The resulting simulated process

is shown in Figure 3(b).

6.2 Methodology for model selection and evaluation

Our aim in the present work is to estimate the MSE-regressor for the semi-artificial data

described in the above Paragraph. Since the process considered consists in the sole con-

version from wind speed to power (the potential influence of other explanatory variables

e.g. wind direction is neglected), the chosen model for both datasets is the minimal version

of the conditional parametric model formulated in Equation (2), which then reduces to a

conditional nonparametric model. This writes

yi = θ(ui) + ǫi, i = 1, . . . , N. (56)

The order of the polynomial extension considered for local polynomial regression is chosen

to be 2.
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(a) Simulated dataset 1: noise is added to power data only.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

normalized wind speed

no
rm

al
iz

ed
 w

in
d 

po
w

er

 

 

corrupted
noise free

(b) Simulated dataset 2: noise is added to both wind speed and power data.

FIGURE 3: Noise-free and corrupted power curves. Wind speed measurements are from a meteoro-

logical mast at Klim in North Jutland. A nonstationary power curve is used for obtaining time-series

of power output, yielding a ‘pure’ power curve. Data are then corrupted with (controlled) additive

and impulsive noises. Both dataset include 10000 time-steps.
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For adaptively estimating the coefficient functions θ(u), the performance of various estima-

tors described in the above Sections are compared in the following. All these estimators are

primarily based on the adaptive local estimator φ̂ for which a set of parameters, including

the fitting points u(j), the bandwidth h(j) at each fitting point, and the forgetting factor λ,

is to be selected. The fitting points are chosen to be uniformly spread on the unit interval:

u(j) =
j − 1

J − 1
, j = 1, . . . , J, (57)

so that we only have to select J the number of these fitting points. Then, because we know

that the density of the data is inversely proportional to the level of y, our proposal for the

definition of h(j) is such that:

h(j) = h0 + h1(j − 1), j = 1, . . . , J, (58)

so that the constant h0 and the scale factor h1 have to be selected.

In practice, the four parameters J , h0, h1 and λ, are determined by using one-fold cross-

validation: the first 2000 time-steps are considered as a training set and the following

2000 time-steps are used for cross-validation. The optimal set of parameters is chosen to

be the one that minimizes a MSE criterion over the cross-validation set. This optimal set

is obtained by trial and error. This optimal set of parameters is then used for defining the

various M-type estimators. This actually yields four competing estimators, which are the

local adaptive estimator θ̂, the related M-type estimator θ̂
∗
, the local M-type estimator θ̂

∗∗

and the adaptive local M-type estimator θ̂
†
. Only θ̂ is used over the training set. That

vector of coefficient functions is then used as an initialization for all type of estimators,

which are updated recursively.

Over the evaluation set, which thus consists in the last 6000 time-steps (since the cross

validation set is not considered for the evaluation), the model outputs are evaluated with

both a Normalized Mean Absolute Error (NMAE) and a Normalized Root Mean Square

Error (NRMSE) criterion. Even if our aim is clearly to obtain a minimum-MSE estimator,

the MAE criterion may better inform on the error reduction since it would give less weight

to large errors related to suspicious data. The choice of error criteria for evaluating wind

power prediction models has been further discussed by Madsen et al. (2005).

6.3 Results

6.3.1 Noise on power data only (dataset 1)

The optimal adaptive local estimator θ̂ Using the cross-validation procedure, the

optimal set of parameters for the adaptive local estimator θ̂ is found to be:

[J h0 h1 λ] = [20 0.03 2.3 0.991]

The performance of θ̂ on the evaluation set, when defined by this set of parameters, is

summarized by the value of the NMAE and NRMSE criteria:
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NMAEr (%) = 4.3887, NMAEt (%) = 0.6384,

NRMSEr (%) = 7.6817, NRMSEt (%) = 0.8233,

with Xr and Xt corresponding to the values of the error criteria when model outputs are

evaluated against the corrupted and true power data, respectively.

Performance of the M-type estimators θ̂
∗

and θ̂
∗∗

In a first stage, the benefits from

robustifying the adaptive local estimator by introducing the related M-type estimator θ̂
∗
,

as well as the benefits resulting from the local robustification, are discussed.

The additional parameter for the M-type estimators θ̂
∗

and θ̂
∗∗

is the threshold point c of

the loss function. It is considered here that in practice c would be a user-defined parameter,

and therefore we want to see what the variations of the error criteria are, depending on the

chosen value for c. The evolution of the NRMSE criterion for θ̂
∗

and θ̂
∗∗

as a function of c,
is depicted in Figure 4 (with Figure 4(a) giving NRMSEt and Figure 4(b) giving NRMSEr),

with c varying from 1 down to 0.08.

Let us focus on the performance of the two robust estimators against the pure power data.

For both M-type estimators, NRMSEt decreases until a limit threshold point is reached, for

which further lowering the threshold value has the consequence of dramatically affecting

the performance of the M-type estimators. Their performance is rather sensitive to the

choice of the threshold point. From the shape of the various curves, it can be seen that

there is a optimal value for c that results in the lowest RMSEs. That optimal threshold

point is c = 0.17 for both estimators. In parallel, notice that for all values of c, the NRMSEt

of the local M-type estimator θ̂
∗∗

is lower or at worst equal to that of the estimator θ̂
∗

that

is not locally robustified. This clearly illustrates the benefits from our proposal for local

robustification introduced in Paragraph 3.3. This local robustification permits a better

trade-off in the discrimination of residuals.

Performance of the adaptive local M-type estimator θ̂
†

In a second stage, the adap-

tive local M-type estimator θ̂
†

is used for approximating the true regression g(u) from the

corrupted power data, in order to show the benefits from an adaptive scaling of the local

M-type estimator θ̂
∗∗

. The additional parameters for θ̂
†

are the number m of simulated

residuals, and the proportion α of residuals to be considered as suspicious. Owing to the

large size of the dataset (which is consistent with wind power forecasting applications, for

which time-series usually consist of thousands of time-steps), m can be set to a sufficiently

large value, say m = 1000. Then, it is studied how the chosen value for α impacts the

performance of θ̂
†
. Figures 5(a) and 5(b) depict the evolution of the error criteria NRMSEt

and NRMSEr as a function of α. They are compared to the NRMSEs of the local adaptive

estimator θ̂ and of the optimal local M-type estimator θ̂
∗∗

(thus for c = 0.17).

Even for α = 0, some residuals may be considered as suspicious, if their value is outside

of the range of simulated residuals. If choosing that value for α, this translates to dis-

card extreme outliers only. Then, as we have noticed in the above Paragraph with the

c-parameter, the evolution of the two error criteria with α are U-shaped functions. There is

thus a unique value of α for which the NRMSEt or NRMSEr are minimum. Also, one sees
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(b) NRMSEr - Performance against simulated power data.

FIGURE 4: Evolution of the NRMSE criteria as a function of the threshold c. NRMSE is calculated

against the pure and simulated power data. Results are for the M-type estimator θ̂
∗

and the local

M-type estimator θ̂
∗∗

. Both M-type estimators are compared to the local adaptive estimator θ̂.
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FIGURE 5: Evolution of the NRMSE criteria as a function of the α-parameter for the dataset 1.

Results are for the adaptive local M-type estimator θ̂
†
. They are also compared to the NRMSE values

obtained with the θ̂ estimator, and the optimal local M-type estimator θ̂
∗∗

.
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that these U-shaped functions are much more flat than those for the evolution of the error

criteria as a function of c: the adaptive M-type estimator is less sensitive to the choice of

the proportion parameter. This is because for low values of c, a slight decrease of that pa-

rameter signifies a large proportion of residuals that are additionally discarded for model

adaptation. Inversely, when using α as a control parameter, one directly determines that

proportion. Here, the optimal performance in term of minimum NRMSEt is reached for

α = 0.13.

The minimum NRMSEt for all the competing estimators, as well as the related values of

the other criteria, are gathered in Table 1. M-type estimators exhibit lower values for all

error criteria, whether if evaluated against the corrupted or noise-free power data. One

can appraise the steady error reduction (for both NRMSEt and NMAEt) when going from

the estimators θ̂ to θ̂
†
, which illustrates the additional benefits from robustification, local

robustification, and adaptive scaling. But again, the error reduction is more significant

when the various criteria are calculated against the pure power data than if computed

against the corrupted data. Here for instance, the reduction in NRMSEt is of 10.28% when

going from θ̂ to θ̂
†
, while it is of only 0.2% if checking the reduction in NRMSEr. Even

if the NMAEr permits to better reveal the error reduction (diminution of 0.43%), it is not

really representative.

TABLE 1: Minimum values of the NRMSEr and related values of the other evaluation criteria for

the adaptive local estimator θ̂ and various M-type estimators, on dataset 1.

θ̂ θ̂
∗

θ̂
∗∗

θ̂
†

NMAEr 4.3887 4.3832 4.3786 4.3698

NMAEt 0.6384 0.6310 0.6047 0.5743

NRMSEr 7.6817 7.6755 7.6722 7.6652

NRMSEt 0.8233 0.8109 0.7784 0.7387

6.3.2 Noise on both wind speed and power (dataset 2)

The second dataset corresponds to a more realistic situation for which a noise component

would be present in both the explanatory and the response variables. Even if the main

assumption of the M-type estimators introduced above is that the noise component is on

the response variable only, the various estimators are applied here in order to evaluate

their performance on a more realistic test case.

In a first stage the same type of cross validation procedure is used for determining the

optimal set of parameters for the local adaptive estimator θ̂. This optimal set is found to

be:

[J h0 h1 λ] = [20 0.028 1.2 0.987]

Then, a study similar to that presented in the above Paragraph is carried out in order to

appraise the influence of the choice of the parameters of the M-type estimators on their
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resulting performance. The behavior of the NRMSE curves is similar, leading to a single

optimal parameter c or α for each estimator. For that reason, the various curves are not

shown here. The minimum RMSEt is reached for c = 0.15 and c = 0.13 for the M-type

estimator θ̂∗ and its local version θ̂
∗∗

, respectively, while that minimum value is reached

for a proportion α = 0.28 for the case of the adaptive local M-type estimator θ̂
†
. This means

that more data need to be considered as suspicious, which is indeed consistent with the fact

that dataset 2 is more corrupted. The minimum NRMSEt for all the competing estimators,

as well as the related values of the other criteria, are gathered in Table 2.

TABLE 2: Minimum values of the NRMSEr and related values of the other evaluation criteria for

the adaptive local estimator θ̂ and various M-type estimators, on dataset 2.

θ̂ θ̂
∗

θ̂
∗∗

θ̂
†

NMAEr 7.14 6.97 6.96 6.92

NMAEt 2.39 2.00 1.99 1.74

NRMSEr 11.48 11.48 11.49 11.50

NRMSEt 2.98 2.51 2.51 2.10

On a general basis, the level of error is much higher than for the previous test case for

which only power data where affected by a noise component. But also, the diminution of

the error criteria is more significant, except for the NRMSEr that exhibits a slight increase

when robustifying and adaptively scaling the estimators. This criterion is not representa-

tive of the better ability of the estimators to approximate the true regression. Inversely,

the decrease in NMAEr reflects that ability. This is in line with the discussion on error

criteria for the evaluation of wind power forecasting models in Madsen et al. (2005).

In parallel, one sees that a large share of the error reduction is due to the introduction of

the M-type estimator θ̂
∗
, and to the adaptive scaling. The effects of the local robustification

are less visible in this case. This is because data points affected by a large noise component

on the wind speed are used to update the local coefficients at a wrong fitting point anyways,

and are generally discarded owing to the adaptive scaling of the M-type-estimator. The

local robustification have then some effect on the smaller residuals only, and the benefits

are thus smaller. The reduction in NRMSEt when going from θ̂ to θ̂
†

is of 26.30% for this

test case.

7 Validation results

7.1 Data and exercise

For validation purposes, focus is given in a second stage to a second Danish wind farm,

Middelgrunden, which is a 20MW wind farm located few hundred meters off the coast of

Sjælland at the level of København. For this wind farm, our aim is to apply the developed

methods to real-world data, in order to appraise what the benefits from applying the robust

adaptive estimation methods may be in operational conditions. The dataset considered is
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composed by meteorological forecasts of wind speed, provided by Hirlam for a grid node

close to the location of the wind farm, and by related power measurements. The raw power

measurements correspond to the available power at the level of the wind farm. However,

they may not be consistent with the power curve for the wind farm if all turbines are

not available. Since this information on wind turbine availability is also monitored, it

has been used for correcting the power dataset i.e. for rescaling power measurements. In

operational conditions, power measurements (or meteorological measurements) may not

be corrected by automatic procedures, and this is expected to affect the performance of

prediction methods relying on these data for updating their model parameters. We will

talk then in the following about two types of dataset, which will referred to as the ‘raw’

and ‘corrected’ ones. They are both composed by 1150 data points. Wind speed and power

data are normalized by their maximum values.

The exercise consists in modeling the regression curve from wind speed forecasts to power,

which can be consequently used for forecasting purposes. The wind direction variable is

not considered in this exercise, though it would be used in real operayion conditions. The

(randomly) chosen forecast horizon is of 12-hour ahead. For modeling this curve, the first

500 hundred data points of the corrected dataset are used. The adaptive local estimator

θ̂ is fitted on these datapoints, with the aim of minimizing a quadratic criterion. The

fitting points are uniformly distributed on the unit interval, and their number is set to 20.

The bandwidth for each fitting point is controled by a constant h0 and a scale factor h1 as

in the simulation exercises presented above. After determining the optimal model for the

conversion function of wind speed to power, i.e. that which minimizes a quadratic criterion,

on the training set, it is evaluated on the remaining 650 data points. For comparison, two of

the robust estimators introduced in the present report, i.e. the local M-type estimator θ̂
∗∗

,

and the adaptive local M-type estimator θ̂
†
, are also applied and evaluated. The sensitivity

of their performance depending on the choice of their parameters is also studied.

The second part of the exercise consists in fitting the adaptive local estimator θ̂ to the

650 last raw data points, in order to mimick the fact that when models are setup for online

applications, often only raw data are used both the initial estimation and online adaptation

of the model parameters. This may then affect the quality of the resulting predictions.

Therefore, the same two robust estimators are also applied in order to quantify the benefits

of robustification for real-world datasets.

7.2 Results and comments

7.2.1 Results on the ‘clean´ dataset

As expressed above, the aim in this Paragraph is to estimate the optimal local adaptive

model θ̂ on the training set composed by clean data only, and to evaluate its performance

on the evaluation set that is also composed by clean data only. An optimization by trial and

error leads to setting h0 and h1 to 0.06 and 8, respectively. Finally, the optimal forgetting

factor is found to be 0.98. The performance of θ̂ for 12-hour ahead prediction of wind

power production from the wind speed forecasts is quantified by using NMAE and NRMSE

criterion. Their value over the evaluation set is given in Table 3. Note that these values are

at the level of what can be seen in the state-of-the-art for wind power forecasting methods,
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see e.g. (Madsen et al., 2005).

The same h0, h1 and λ parameters are used for defining the two robust estimators θ̂
∗∗

and

θ̂
†
. Then, the influence of the parameter c and α, which permit to control the loss criterion

for θ̂
∗∗

and θ̂
†

respectively, on the estimators’ performance is studied. The number m of

simulated residuals is set to 300. The aim is to minimize a quadratic criterion — thus

the NRMSE error measure. Minimum values are obtained for c = 0.06 and α = 0.38. The

corresponding NRMSE and NMAE values over the evaluation set are given in Table 3. The

descrease in NRMSE and NMAE exist when robustifying the ‘classical’ adaptive local esti-

mator θ̂, though its magnitude is small. As it was discussed in Section 6, error measures

calculated against real-world data may not reveal the benefits from robustification.

TABLE 3: Minimum values of the NRMSE and related values of the other evaluation criteria for the

adaptive local estimator θ̂, the local M-type estimator θ̂
∗∗

, and the adaptive local M-type estimator

θ̂
†
, on the ‘clean’ dataset for the Middelgrunden test case and for the 12-hour ahead look-ahead time.

θ̂ θ̂
∗∗

θ̂
†

NMAE 9.700 9.520 9.540

NRMSE 14.848 14.797 14.766

In order to have a visually appraise the difference between the estimated functions for

the conversion of wind speed to power, Figure 7.2.1 depicts the functions obtained at the

end of the evaluation set by applying the three estimators θ̂, θ̂
∗∗

, and θ̂
†
. These power

curves appear similar. But, an important detail is that those obtained with θ̂
∗∗

and θ̂
†

are lower for low power values and higher for large power values. While it is known that

θ̂ lacks discrimitation ability, which means that it is locally biased (Pinson, 2006), this

aspect is improved by robustifying this estimator. This improvement is more significant if

considering the adaptive robust estimator θ̂
†
.

7.2.2 Results on the ‘raw´ dataset

The same exercise is then carried out with ‘raw’ data. The optimization procedure yields

the same parameter h0 and h1 for defining the bandwidth, while the optimal forgetting

factor has a slightly lower value, λ = 0.975. This reduction of the effective number of

observations used for adaptive model estimation is a natural consequence of the lower

quality of the data.

The two robust estimators are applied on this dataset, and the sensitivity of the choice

of the parameters c and α on the NRMSE and NMAE error measures is studied. The

evaluation of the error measures as a function of c for the local robust estimator θ̂
∗∗

, and as

a function of α for adaptive robust estimator θ̂
†

are depicted in Figures 7 and 8, respectively.

The evolution of the NRMSE error measure when descreasing the value of the threshold

parameter c is surprising, as one notices that for a large range of c-values the NRMSE of

the robust estimator is higher than that of the adaptive local estimator θ̂. Though, if look-
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FIGURE 6: Estimated models (at the end of the evaluation set) for the conversion of wind to power

with the adaptive local estimator θ̂ the local M-type estimator θ̂
∗∗

, and adaptive local M-type esti-

mator θ̂
†
.

ing at the evolution of the NMAE criterion, one sees that it significantly decreases for lower

values of c. A minimum value of the NRMSE is obtained for c = 0.11. For comparison, the

evolution of the NRMSE and NMAE criteria is much more smooth for the adaptive robust

estimator θ̂
†
. This confirms the simulation results presented in Section 6, as well as the

operation interest of applying this estimator, since it will be less sensitive to an error in the

choice of the optimal value for the proportion parameter α. The minimum NRMSE value is

obtained for α = 0.48, thus indicating that a larger share of the residuals are downweighted

for model adaptation than when working with the ‘clean’ dataset. The performance of the

three competing estimators, that is, their minimum NRMSE and the related NMAE value,

is gathered in Table 4. Again, the decrease in both criteria exists, though it is not of large

magnitude. The lower NMAE values confirm that the robust estimators are more central

though. In addition, an interesting point is that the perormance of the adaptive local es-

timator θ̂ is only slightly affected when being fitted on the raw data instead of the clean

ones.

TABLE 4: Minimum values of the NRMSE and related values of the other evaluation criteria for the

adaptive local estimator θ̂, the local M-type estimator θ̂
∗∗

, and the adaptive local M-type estimator

θ̂
†
, on the ‘raw’ dataset for the Middelgrunden test case and for the 12-hour ahead look-ahead time

θ̂ θ̂
∗∗

θ̂
†

NMAE 9.736 9.588 9.568

NRMSE 14.854 14.846 14.815
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FIGURE 7: Evolution of the NRMSE and NMAE criteria as a function of the threshold poarameter c.

The results correspond to the case for which the local M-type estimator θ̂
∗∗

is applied to an evaluation

set composed by raw data, with basis the adaptive local estimator θ̂ fitted on a training set of raw

data.
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FIGURE 8: Evolution of the NRMSE and NMAE criteria as a function of the α-parameter. The

results correspond to the case for which the adaptive local M-type estimator θ̂
†

is applied to an

evaluation set composed by raw data, with basis the adaptive local estimator θ̂ fitted on a training

set of raw data.
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8 Conclusions

A method for a robust and adaptive estimation of time-varying coefficient functions in

conditional parametric models has been described, on the basis of the adaptive local esti-

mation method initially introduced by Nielsen et al. (2000). Our motivation for introducing

this robust version of that method originates from our experience with wind power mod-

eling and forecasting. This process is a nonstationary process for which a non-negligible

noise component is present in both the response and explanatory variables. Even if the

primary aim of the introduced method is its application to wind power related matters, it

has been described in a generic manner, so that it may also be applied to other types of

processes.

The basis of the described approach is the proposal of an M-type estimator, which general-

izes the local estimator of Nielsen et al. (2000) for a broader class of loss functions, namely

the bounded-influence and convex ones. It was clearly explained that the main assump-

tion when using these types of robust estimators is that the noise component is on the

response variable only. Since it is argued in the literature that methods based on such a

simplistic assumption are not suitable when both explanatory variables and the response

include a noise component (Cheng and Van Ness, 1997), it will be of particular interest in

the future to benchmark the introduced M-type estimator against other robust estimation

methods for which the assumption on the noise component is relaxed (e.g. Robust Total-LS,

multivariate-LMS, etc.).

The initial M-type estimator has been enhanced by considering a local robustification, ac-

counting for the weights originating from local polynomial regression. Simulation results

have been given, on the test case of the modeling of the nonstationary conversion process

of wind speed to wind power. The datasets included wind speed measurements at the level

of a wind farm, as well as simulated wind speed and power data. The interest of using

such semi-artificial datasets was to have access to the true regression for evaluating the

performance of the proposed estimators. The simulation results have shown the interest

of introducing the M-estimator and the local robustification, by exhibiting a significantly

lower level of the MSE of these estimators. It was also argued that the effective reduction

of the estimation error against the true regression may not be visible when calculating the

error criteria against the noisy data. The elegant feature of that local robustification is

that it consists in considering the influence of the weighted residuals, the weights being

given by the local polynomial regression.

An adaptive version of the local M-estimator has been introduced, by proposing an adaptive

scaling of the threshold points of the loss function, after relaxing the symmetry constraint

on these loss functions. The two additional parameters of the adaptive local M-type estima-

tor in are the number m of simulated residuals for an empirical estimation of the residual

distribution, and the proportion α of residuals to be considered as suspicious. For the test

cases considered, the optimal performance of the estimator was not highly sensitive to

the chosen value for α. In the future, it may be envisaged to determine α from a cross-

validation procedure, along with the other parameters of the adaptive local estimator, in

order to have an optimal setting of θ̂
†

for out-of-sample applications.

The proposed robust estimators have shown to be an interesting alternative to the adap-
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tive local estimator actually used in operational wind power prediction tools e.g. WPPT

(Nielsen et al., 2002). From the validation results on real-world data, it can be concluded

that applying the introduced robust estimators will indeed be beneficial for wind power

forecasting in operational conditions. However, we have only considered a conditional non-

parametric model for the conversion of wind speed to power, and the study should now be

extended to the case of conditional parametric model that would consider other explanatory

variables as input e.g. wind direction. Finally, the proposed robust estimator should also

be implemented in operational forecasting toold e.g. WPPT, in order to verify the presented

benefits for real-world on-line forecasting applications.
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