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Abstrat
This thesis investigates hierarhial networks. We start by onsidering teleommuniation networkswhere hierarhies exists. Teleommuniation networks an be modeled as apaitated networks;hene the hierarhial networks are de�ned based on the apaitated networks.A mathematial model is set up for a two level version of the hierarhial network problem andthe hierarhial network problem is solved to optimality for up to 15 nodes and heuristially forup to 100 nodes.The optimal solution algorithm is a branh-and-bound algorithm and the heuristi solution algo-rithm is a simulated annealing algorithm. They both solve the hierarhial network problem bysolving a number of apaitated networks and aggregating the results.Performane is measured for di�erent versions of both algorithms, and the quality of the heuristisolutions are estimated by omparing these with optimal solutions when these an be found.We onlude, that hierarhial networks using apaitated networks as the underlying network typean be meaningfully desribed and optimized. When solved heuristially, rather large networks(up to 100 nodes) an be handled easily.Keywords: Hierarhial Networks, Topologial Networks, Multilevel Networks, Capaitated Net-works, Multiommodity Flow, Network Design, Operations Researh, OR, Heuristis
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1
Chapter 1Introdution
Previously, the hierarhial network problem has been desribed as that of �nding the least ost,two-level hierarhial network, where the network must inlude a primary path from a predeter-mined starting node to a predetermined terminus node [10℄. Some artiles have followed up on theissue, e.g. [8, 9, 19, 20℄.In this thesis an entirely new de�nition of hierarhial networks is introdued. The de�nition ismotivated by teleommuniation networks whih are ordered in hierarhies of groups of telephoneswithes. The hierarhies are generally appliable to networks, however.The thesis has starting point in the following questions:

• What are hierarhies in networks?
• How an networks ontaining hierarhies be optimized?To answers these questions, we start by onsidering teleommuniation networks, where hierarhiesexist. Sine teleommuniation networks an be modeled as apaitated networks, we onsiderapaitated networks in partiular and de�ne hierarhies in this ontext.Capaitated networks are notoriously di�ult to optimize [12℄, and sine this is the kind of networkswe work with, no optimal solution is likely to be attained for large networks. Hene we aim forobtaining e�ient heuristis, whih give high quality solutions. For problems with few nodes,though, the problem is solved to optimality.We start out by desribing teleommuniation networks (hapter 2), and de�ne hierarhies and thehierarhial network problem (HNP) (hapter 3). The HNP is solved by solving a number of non-hierarhial network problems (NHNP's), i.e. HNP's with no hierarhies. Therefore we desribeand solve these problems at �rst (hapter 4 to 6).Thereafter we introdue hierarhies in the NHNP to obtain HNP (hapter 7) and solve the HNPoptimally and heuristially (hapter 8 to 10). Sine solving the HNP is done by solving a numberof NHNP's, the major problem onsidered is that of handling the hierarhies.Designing teleommuniation networks is a strategi planning proess, thus we assume that thetime allowed to solve the hierarhial network problem is in the order of hours. Real world teleom-muniation networks have hundreds of telephone swithes and are usually divided into 3 or 4 levels.The networks we solve ontain up to 100 nodes, involving 2 hierarhies, whih orrespond roughlyto the size of the top two hierarhies of teleommuniation networks.In hapter 11 tools for generating and managing networks whih are used when testing the algo-rithms are desried. The performane is measure for di�erent versions of both the optimal and the



2heuristi algorithm. The heuristi solutions are ompared with the exat solutions when these anbe found. This is done in hapter 12.Implemented ode and data used for testing are available from the author on request.



3
Chapter 2Hierarhial Networks inTeleommuniation
A teleommuniation network onsists of ables (optial or eletrial wires) and swithing andmultiplexing equipment loated at telephone swithes (or exhanges) onneting subsribers andother swithes.The network is usually divided into three levels (in some ases more levels) - a national, regionaland loal level. The national level onnets regional areas and the regional levels onnet loalareas. National, regional and loal areas ontain a number of loal swithes, and subsribers areonneted diretly to a loal swith. Regional swithes are also always loal swithes.When a subsriber dials a number to another subsriber, the other subsriber is loated, and a pathis set up between the two subsribers. Whih route to hoose is programmed into the swithingequipment, and thus setting up a path merely onsists of reserving a fration of the apaity forthe all. This is done using signalling paths in the network.If two subsribers are onneted to the same loal swith or to loal swithes, whih an onnetwithout using regional swithes, suh a onnetion is used, and regional and national swithes arenot used.If the subsribers are onneted to the same regional swith or regional swithes, whih an onnetwithout using national swithes, the all will only oupy onnetions to the regional swith andto the subsriber (see �gure 2.1).If subsribers are onneted to di�erent national swithes a all will have to go through both loal,regional and national swithes (see �gure 2.2).Muh of the tra� in the network is in fat data transmission, but the distintion between loal,regional and national transmission is still valid though the tra� pattern may di�er.Cables and the equipment failitating ommuniation over the ables (in the following just ables)have di�erent osts and apaities. In partiular, ables of type STM-1 an arry e.g. 63 2Mbitlines, and lines with more apaity than STM-1 has apaity that grows with a fator 4 as intable 2.1. A good rule of thumb when omparing pries is that setting up a able with 4 times asmuh apaity doubles the prie, for the equipment.The prie of establishing a onnetion depends mainly on the ost of digging down a able and theprie of the equipment failitating ommuniation. The physial able used for di�erent apaitiesare usually the same.



4

Cable
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Figure 2.1: Example of a regional all - some additional swithes and onnetions are shown
Cable
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Figure 2.2: Example of a national all - some additional swithes and onnetions are shownType Capaity �Prie�STM-1 63×2Mbit 155Mbit 1STM-4 4×155Mbit 620Mbit 2STM-16 4×620Mbit 2,5Gbit 4STM-64 4×2,5Gbit 10Gbit 8Table 2.1: Cable types and equipment ostsUsually higher-level swithes (e.g. national swithes) use onnetions with high apaities, butthere is no diret dependeny between swith level and onnetion type used. Thus high apaityonnetions an be established between loal swithes, if e.g. a ustomer has a need for a partiularlyhigh apaity onnetion between two plaes.The network inorporates a high degree of redundany to protet against failures. There are e.g.always 2 regional swithes in a loal area. In the loal area, the loal swithes may be onnetedin some kind of mesh struture. Alternatively they may also be onneted on a line, where theiruit allowing one broken onnetion is established through the regional swithes (see �gure 2.3).Loation of swithes, ables and apaity limits, is in pratie historially determined and has beendetermined and hanged as the network evolved. The network ontinuously evolves, new ablesand swithes are added to the network, and replaement of existing equipment with higher apaity
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Indirect connection through higher level

Cable

Local center

Regional center

Figure 2.3: Protetion in loal areasequipment is done frequently.If a network were to be built from srath, it would probably look very di�erent from the urrentnetwork. This is so sine the need for apaity has hanged over time, and thus an optimal loationof swithes and ables at some point in time may urrently not be optimal.The loation of new swithes, new ables and upgrade of swithes to inrease apaity over ablesis of major onern, but also determining how an optimal solution would look like, if starting fromsrath, would add information to the deision proess.2.1 Why do we have hierarhies?In teleommuniation networks, di�erent able apaities and hierarhies in part exist in order toallow heap, low apaity onnetions where su�ient, while allowing higher apaity ables to beused where required.In a sense this is not the reason for having hierarhies, sine this is what di�erent able apaitiesgive us, not the hierarhies. What the hierarhies ontribute with here is instead an organizationalelement, that is, it divides the network into areas whih an be handled and omprehended by sta�who maintains and modify the network.A related question is: Should hierarhies and edge apaities be tied together? That is, an aable of e.g. type STM-64 be used between e.g. two loal swithes, or are ables of this type usedbetween national swithes only?In teleommuniation networks, this is not the ase. Of ourse there is a tendeny to have highapaity ables in higher levels (e.g. national level), but it is not a must. In some ases high apaityables are set up if the apaity is needed regardless that it onnets e.g. only loal entrals.In this projet edge apaities and group levels are tied together. Also protetion against failuresis not onsidered. The hierarhial network is de�ned and desribed in the next hapter.
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Chapter 3Foundation and De�nitions
In this hapter hierarhial networks and useful terms regarding the hierarhial networks are de-�ned. The desription takes its starting point in teleommuniation networks, though di�erenesexist. The most notify worthy is the inlusion of a �ow-ost, whih is not present in teleommu-niation networks. Flow-ost is, however, a well-known and ommonly used onept in networkmodeling in general and hene has been inluded.3.1 DataThe hierarhial network problem onsist of a number of matries giving demand, ost for settingup an edge and ost for using the edge. The osts are denoted setup-ost and �ow-ost respetively.The di�erent types of levels of edges are numbered from 1 to L (indiated by l) 1 is the highestlevel (orresponding to national level in teleommuniation networks). The matries are shown inthe following table:
D Demand for eah pair of nodes.
CSl, 1 ≤ l ≤ L Cost for setting up an edge of level lbetween any pair of nodes.
CFl, 1 ≤ l ≤ L Cost per unit �ow of a level l edgebetween any pair of nodes.Thus for eah level we have a setup-ost matrix and a �ow-ost matrix, and thus for eah edge asetup-ost and a �ow-ost exists for eah level.Demand, setup-ost and �ow-ost are all undireted. The demand is desribed with an origin-destination matrix and is in some ontexts denoted ommodity. Basially it is a request forapaity between node i and node j of the given value.The apaities, whih are the same for edges of the same level, are:
Capl Capaity of level l edge.Some demands or a setup-ost and �ow-ost pair may be exluded - e.g. if there is no demandbetween two nodes or if it is not relevant to onsider an edge between two nodes.The hierarhial network design problem is that of �nding the minimum ost subset of the possibleedges and assigning a path to eah demand, suh that the apaities of eah edge is not violated.The solution should be a �hierarhial network�, whih will be de�ned shortly in setion 3.2.4. Tode�ne a hierarhial network, we need some additional onepts.



3.2 De�nitions 73.2 De�nitions3.2.1 Node LevelThe level of a node is the highest level (lowest number) of any edge inident to the node.3.2.2 The GroupLevel l groups are the sets of onneted omponents of the subgraph indued by level l edges andnodes of higher levels than l, (i.e the level number ≤ l).Usually we only speak of a group if it has more than a single node, but the de�nition does notrequire it to be so. In hierahial networks, groups of single nodes exist, if a node of level l(1 ≤ l < L) has no nodes of level l − 1 onneted.For an example of the onepts see �gure 3.1. All groups exept the level 1 group is depited. Thelevel 1 group ontains exatly the three level 1 nodes.
Level 2 node

Level 3 node

Level 1 node

Level 2 edge

Level 1 edge

Level 3 edge

Level 2 group

Level 3 group

Figure 3.1: Example of node level and groups.3.2.3 The Conentrator NodeWe say that a node is onentrator node for a group, if it is in the group and has higher level thanthe group.A node an be onentrator node in more groups, but if so, the groups have di�erent levels. Anexample of this is the top left level 1 node in �gure 3.1. This node is onentrator node for a level2 and a level 3 group (whih ontains the onentrator itself only).3.2.4 The Hierarhial NetworkA hierarhial network is a subset of edges, suh that:
• There is at most one edge between two nodes.



3.3 Demand Paths 8
• The network is onneted, hene there must exist a path from any node to any other node.The path may use edges of all levels.
• There are no edges with a lower level than both of its endpoints.
• A group has exatly one onentrator node, exept the highest level group whih has none.The last implies that a path from a node to any higher level node will have to pass through onepartiular node, namely the onentrator node of the group to whih the node belongs.3.2.5 The Hierarhial Network ProblemThe hierarhial network problem is de�ned as that of �nding the minimum ost hierarhialnetwork, whih allows for routing demand (as de�ned in the demand matrix, D) in the networkwithout exeeding the apaity limits of the edges. This inludes �nding paths for eah demand,sine this is not in general simple.The Hierarhial Network Problem is abbreviated HNP. A Non-Hierarhial Network Problem,whih is a HNP with one level only is abbreviated NHNP.The NHNP is similar to the �Capaitated Network Design Problem� desribed in e.g. [12℄ and [14℄.3.3 Demand PathsGiven an edge seletion, the path eah demand takes should be determined. Given an edge sele-tion, and the fat that the solution is a hierarhi network, the sequene of groups traversed by anayli path between two nodes is, however, unique. We say that hierarhial networks are treeswith respet to groups, where the highest level group may be onsidered the root.That the sequene of groups traversed by an ayli path between two nodes is unique an be seenfrom the following:Starting from the lowest layer (highest numbered), the level L groups are indued by level L edges,and nodes of higher level, i.e. all nodes. Hene we have a division into sets, and eah set ontainsexatly one higher level node (sine it is a hierarhial network), i.e. the onentrator node. Theonentrator nodes all have level L − 1 or higher.Level L − 1 groups are indued by level L − 1 edges and nodes of level L − 1 or higher. Henethe nodes whih are a subset of the onentrator nodes of level L. Eah level L − 1 group heneonnets as many level L groups as there are nodes in the group, and eah path in this part ofthe network is unique with respet to the groups traversed, sine eah group ontains exatly oneonentrator.In general any level l− 1 groups are indued by level l− 1 edges and nodes of level l− 1 or higher.Assuming nodes of levels lower than or equal to l an be reahed from exatly one of the nodes oflevel l−1 or higher, paths are unique with respet to group and sine there is only one onentratorin eah group, onneting the groups by level l − 1 groups will maintain that the groups traversedbetween two nodes are unique.Hene reursively, paths in a hierarhial network are unique with respet to groups.Within a group several paths may exist between two nodes. An example of this an be seen forthe top left level 2 group in �gure 3.1. Hene determining a path between two nodes an be doneby �nding the unique sequene of groups to be traversed and for eah group determining the pathto take in this group.



3.4 Capaity 93.4 CapaityEnsuring that apaity limits are not exeeded an be done for eah group in turn as desribed inthe following.For a partiular group, we remove all edges within the group, i.e. edges with both ends inident tonodes in the group. Then we will have exatly as many omponents as we had nodes in the group,and eah omponent ontains exatly one node from the group. As an example, the right-mostlevel 2 group in �gure 3.1 is onsidered. In �gure 3.2 the group edges have been removed.
Level 2 node

Level 3 node

Level 1 node

Level 2 edge

Level 1 edge

Level 3 edge

Level 2 group

Level 3 group

Nodes in the treated group

Figure 3.2: Edges removed from right-most level 2 group.A demand matrix for the group an then be built by onsidering eah pair of nodes in the group(the squares in �gure 3.2) in turn. For a given pair of nodes, the total demand between them isalulated by �rst identifying the omponents they are in. The total demand between the twonodes is then the sum of demand between all pairs of nodes, where one node is in one of theidenti�ed omponents and the other node is in the other omponent.Thus for eah group we now have a NHNP, whih an be solved and apaities an be heked. Ifdone for eah group, and no apaities are exeeded, the hierarhial network is feasible.The solution of the NHNP is the subjet of the following 3 hapters.
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Chapter 4The Non-Hierarhial NetworkProblem
In this hapter a mathematial model de�ning the Non-Hierarhial Network Problem is desribed.The de�nition is motivated by teleommuniation networks, but not limited to these. E.g. �ow-ostis introdued, though it is not used in teleommuniation networks.The NHNP problem solution is used as a building blok in the solution to the HNP problem. Thisdesription should ease understanding of the mathematial model for the HNP, whih follows inhapter 7.As mentioned earlier, the Non-Hierarhial Network Problem is similar to the �Capaitated NetworkDesign Problem� desribed in e.g. [12℄ and [14℄. These problems are in general NP-hard due to theapaities [12℄, and hene this is also the ase for the NHNP.4.1 Mathematial Model4.1.1 De�nitions
V Set of all nodes.
E Set of all edges.
i, j, k, l ∈ V - Nodes.
ij, i ∈ V, j ∈ V, i < j ∈ E - Undireted edges.We need the onept of a ut in a network. It is denoted (following [6℄) δ(A), where A ⊆ V , andis de�ned as the set of all edges whih have an endpoint in A and an endpoint in V \A.4.1.2 Data
csij , i < j Cost of setting up an edge between i and j.
cfij , i < j Cost per unit �ow on the edge between i and j.
dij , i < j Undireted demand between i and j.
cap Capaity of edges (the same for all edges).

csij is denoted the setup-ost and cfij is denoted the �ow-ost.



4.1 Mathematial Model 11We assume that the data are demand-onneted, that is no ut exists with demand equal to zero.Hene to ful�ll demands, the solution must be onneted as well. For most real world networksand teleommuniation networks in partiular, this is a reasonable assumption.4.1.3 Deision Variables
xij ∈ {0, 1} 1 if there is an edge between i and j,

(i < j) 0 otherwise.
fijkl ≥ 0 Amount of �ow on edge i to j resulting from

(i < j, k < l) demand between nodes k and l.4.1.4 Objetive FuntionThe ost of a network is the sum of osts of setting up edges and the sum of all �ow through edges:
min

∑

i,j,i<j

csij · xij +
∑

i,j,i<j,k,l,k<l

cfij · fijkl (4.1)The �rst part of the objetive funtion is denoted the total setup-ost and the seond part isdenoted the total �ow-ost.4.1.5 ConstraintsTree ConstraintWhen solving optimally we require solutions to be trees, this is done to ease the solution proess.When solving heuristially this onstraint is relaxed.Sine onnetivity is assumed, the following is enough to ensure tree solutions:
∑

i,j,i<j

xij = |V | − 1 (4.2)When the only solutions onsidered are trees, the �ow-variables (i.e. fijkl) an be uniquely de-termined sine paths are unique. In this ase they are bookkeeping variables and not deisionvariables. If the tree onstraint is relaxed, the �ow-variables are deision variables.Flow ConstraintsReall that fijkl is the amount of �ow on the edge between i and j resulting from demand betweennode k and node l. A �ow is an assignment of values to the fijkl variables, whih does not violateany onstraints in this subsetion.The onstraints are introdued one type at a time.First of all, if an edge is used (i.e. fijkl > 0), then there should be an edge between i and j(i.e. xij = 1). fijkl is required to be nonnegative, and assuming M is larger than any possibleassignment to f , the following onstraints an be used:
∀i, j, k, l, i < j, k < l : M · xij ≥ fijkl (4.3)



4.1 Mathematial Model 12The amount of �ow inident to node i and node j resulting from demand ij must equal the valueof the demand between i and j:
∀i, j, i < j :

∑

k,i<k

fikij +
∑

k,i>k

fkiij = dij (4.4)
∑

k,k<j

fkjij +
∑

k,k>j

fjkij = dij (4.5)For all demands between node k and node l, the total �ow inident to other nodes i, i 6= k, i 6= lresulting from demand kl should equal zero (if i is not on the path between k and l) or two timesthe required demand (if i is on the path between k and l). That is, either of the following 2onstraints must hold:
∀k, l, k < l, i ∈ V \{k, l} :

∑

j∈V,i<j

fijkl +
∑

j∈V,j<i

fjikl = 0 (4.6)
∑

j∈V,i<j

fijkl +
∑

j∈V,j<i

fjikl = 2dkl (4.7)This means that �ow resulting from a demand between a �xed pair of nodes, is on one path, i.e.the �ow is not split. For trees this is trivially so, sine for a pair of nodes there is exatly one path.Introduing either-or-onstraints is omputationally expensive if solving the mathematial modeldiretly (e.g. by CPLEX), sine this introdues a binary variable for eah pair of onstraints. Henethis is one of the reasons, the problem annot be solved diretly for more than a few nodes.Capaity ConstraintsCapaity onstraints ensure, that no edge has more �ow than its apaity allows. This an beexpressed as:
∀i, j, i < j : cap · xij ≥

∑

k,l,k<l

fijkl (4.8)This makes equation 4.3 unneessary, sine if for a given i,j equation 4.8 holds, then so doesequation 4.3.Notie that, sine we assume there exists no ut with demand equal to zero, equation 4.8 ensurethe network is onneted.An alternative formulation that does not use the alulated �ow but instead use uts is the follow-ing:
∀S, ∅ ⊂ S ⊂ V :

∑

ij∈δ(S)

dij ≤
∑

ij∈δ(S)

xij · cap (4.9)The formulation requires that �ow an split, and is not suitable for implementation, sine thenumber of onstraints grows exponentially with the number of nodes.
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Chapter 5Optimal Solution of the NHNPIn this hapter an algorithm for solving the NHNP to optimality is presented. The algorithm isused in solution strategies when solving the HNP, and thus understanding and being able to solvethe NHNP is ruial when solving HNP.5.1 Branh and BoundThe optimal solution strategy used is a branh and bound sheme based on Kruskal's minimumspanning tree (MST) algorithm [7℄. The desribed solution strategy will allow trees only. Treeshave in general lower setup-ost than non-trees, hene trees are among the heap solutions for agiven NHNP. Allowing trees only does limit the solution spae, hene a feasible tree solution maynot exist though a non-tree solution exists. However, solving the NHNP for trees shows to beomputationally demanding and sine we suspet it to be even more omputationally demandingfor non-trees, it will be solved heuristially instead.Notie that the NHNP without apaity limits and no �ow-ost is in fat the MST problem. Ifwe allow for apaity limits, but no �ow-ost, a MST is a lower bound on the solution value. Infat if a MST is feasible, it is the optimal solution. Thus it seems reasonable to base a solutionalgorithm, and the branhing order in partiular, on an MST algorithm.Kruskal's MST algorithm onsiders all edges ordered in inreasing order of ost, and hoose eitherto inlude or exlude the urrent edge from the MST. The edge is inluded in the MST, if it doesnot introdue a yle, otherwise it is exluded. Sine the network is undireted, this is equivalentto determining if the two endpoints of the edge are in the same omponent. If they are not in thesame omponent they are inluded in the MST, and the two omponents are merged.The idea of the branh and bound proess is to imitate this proessing, exept that when the MSTalgorithm hoose to inlude the edges, two ases are reated, one in whih the edge is inluded inthe solution and one in whih it is not.5.2 RepresentationThe NHNP onsists of some data whih are not hanged, that is setup-ost, �ow-ost and demandfor all pairs of nodes whih are represented as matries. Also we need the number of nodes, edgeapaity and initially we reate a list of edges, whih is sorted in inreasing order of setup-ost,giving the order in whih edges are onsidered.



5.3 Branh 14A partiular instane of a partial solution is alled a Net objet. The Net objet ontains, for eahedge, a spei�ation of whether the edge is inluded in the solution. In fat three ases exist: Theedge is inluded in the solution, the edge is exluded, or it is undeided. This is maintained ina matrix so that the state of an edge an be easily heked and updated. Initially all edges areundeided.Sine we require solutions to be trees we maintain disjoint sets representing omponents (asKruskal's MST algorithm does). In this way it is easy to hek if an edge an or annot beused, sine if the two edge endpoints are in the same omponent it annot be used. This is usedwhen branhing.5.3 BranhSolving a partiular Net objet is done by branhing on an undeided edge, hene reating two newNet objets, one where the edge is inluded in the solution, and one where the edge is exluded.The edge to branh on is the minimum setup-ost edge with endpoints in two di�erent omponents.Finding this edge is done by iterating through the list of edges alulated initially. The iteratorposition is reorded and given to the newly reated Net objets, suh that iteration an be ontinuedfrom the point where the edge is found.The order in whih the solution instanes are onsidered is by depth-�rst, and of the two possibil-ities, we hose �rst the one where an edge is inluded in the solution. Doing the exat opposite,that is hoosing �rst the one where an edge is exluded from the solution works muh worse, andthe usual idea of hoosing �rst the one with the lowest bound value, does at least not work better.Measuring the number of branhes needed for a few examples using the �inluded edge �rst� and�lowest bound �rst� -strategies, indiates that the �inluded edge �rst� -strategy works marginallybetter, sine it require marginally fewer branhes. In the urrent implementation, there is also anoverhead from handling the �lowest bound �rst� -strategy, hene the �inluded edge �rst� -strategyis used.When adding an edge, this results in an immediate ost inrease, namely the setup-ost of the edge.The total ost of all edges in the urrent solution is kept so that it an be used when alulating thebound. Hene the ost is updated when an edge is added, i.e. the ost is alulated inrementally.The same goes for �ow-ost, sine if an edge is added this result in an immediate ost inreaseresulting from demands, both through the added edge, but also through other edges. If a pathexists between node i and j this is the path, whih will be used for the �nal solution, sine solutionsare trees only. Hene the �ow-ost an be alulated when a path exists and reused in followingbranhes. This is desribed in the next setion.5.4 Calulating �ow-ost & deteting exeeded apaityWe keep the value of the total �ow-ost and update it eah time an edge is added. When updatingthe total �ow-ost, we traverse a path for eah demand if a path exists and if it has not beentraversed previously. Hene when V − 1 edges has been added all �ow-osts for eah demand hasbeen alulated one and the path traversed one.We keep a �ow-matrix giving the amount of �ow on eah edge, in order to be able to hek if theapaity of any edge is exeeded. Sine we traverse eah demand path exatly one, this matrixis updated at the same time and the apaity is heked. If the apaity is exeeded an infeasiblesolution has been generated, and the branh is fathomed.



5.4 Calulating �ow-ost & deteting exeeded apaity 15To speed up path proessing, we keep a suessor-matrix (or predeessor-matrix sine the networkis undireted), whih gives for any pair of nodes i and j the next node n on the path from i to
j, if suh one exists. When traversing a path, this information is used reursively, so that the thefollowing node on the path from i to j is the next node on the path from n to j until the nodereahed is j.Figure 5.1 gives an example of a network whih has been partially onneted, and indiates anedge whih is to be added.
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Figure 5.1: Example network used to exemplify how the suessor-matrix and the �ow-matrix isupdated.Figure 5.2 gives the suessor-matrix for the example network. Updates resulting from the newedge is indiated in bold. Su 1 2 3 4 5 6 71 1 22 1 23 3 4 4 4 44 3 4 5 5 55 4 4 5 6 76 5 5 5 6 57 5 5 5 5 7Figure 5.2: Suessor-matrix for the example networkIf no path exists from node i to j, then the orresponding entry in the suessor-matrix is empty.In the example, e.g. entry [1, 3] is empty sine no path exists between node 1 and 3.When an edge kl is added, the two omponents ontaining k and l denoted set k and set l arereorded. Then the suessor-matrix is updated by updating all entries orresponding to nodes iand j, where either i ∈ set k and j ∈ set l or vie versa.Assume i ∈ set k and j ∈ set l, the symmetri ase is handled the same way.The update use the fat, that for two nodes in the same omponent, the path between the twonodes is known. Hene �nding the path from node i to node j onsist of the path from node ito node k, edge kl and the path from node l to node j. The two paths are both known from theexisting suessor-matrix, and may onsist of no edges if i = k or j = l.Hene an update is done as follows: If i = k, then entry [i, j] in the suessor-matrix is updated to
l. Correspondingly if j is l, [j, i] is updated to k. In the example this orresponds to, when edge4-5 is added, updating e.g. entry [5, 3] to 4.On the other hand if i 6= k, then entry [i, j] in the suessor-matrix is updated to the value ofentry [i, k], and when j 6= l, entry [j, i] is updated to the value of entry [j, l]. In the example thisorresponds to, when edge 4-5 is added, updating e.g entry [7, 3] to 5, whih is the value of entry
[7, 5].



5.5 Bounding 16Figure 5.3 shows the �ow-matrix for the example network. dij is demand between node i and j,and added demand is indiated in bold. The �ow is only alulated in the lower left half of thematrix, sine the �ow is undireted, so less than half of the �ow matrix is used.Flow 1 2 3 4 5 6 712 d1234 d34 + d35

+d36 + d375 d35 + d36

+d37 + d45

+d46 + d476 d56 + d67

+d36 + d467 d57 + d67

+d37 + d47Figure 5.3: Flow-matrix for the example networkWhen an edge ij is added, all demands for whih a path did not exist previously, but now existsbeause of edge ij are added to the �ow-matrix. This is exatly all demands represented by allpairs of nodes where one is in set i and the other one in set j.For eah of these demands the value of the demand is added along the path they use. The path isfound using the suessor-matrix.In the example edge 4-5 is added, hene the demands to update are 3-5, 3-6, 3-7, 4-5, 4-6 and 4-7.For e.g. demand 3-5 the demand value d35 is added along the path from 3 to 5, that is edges 3-4and 4-5. The same is done for the other demands.5.5 BoundingThe bound onsists of two parts, the setup-bound and the �ow-bound. The bounding proedurereturns either a lower bound on the solution value, an exat solution, or it notes that the urrentedge seletion result in an infeasible solution. If the solution is feasible and |V | − 1 edges has beenseleted, the solution value is immediately given, sine as desribed above, the solution value isalulated inrementally eah time an edge is added. This inremental value is used for both thesetup-bound and the �ow-bound. If the solution is feasible, and less than |V | − 1 edges has beenseleted, the bound is alulated.5.5.1 Setup-ost BoundThe setup-bound part onsist of the setup-ost of edges whih has already been added and theminimum sum of setup-osts required to onnet the remaining omponents. The bound is alu-lated by �nding an MST with respet to setup-osts using edges between omponents only. Theapaity limits and the �ow-ost are ignored. If the remaining edges annot result in a onnetednetwork, the solution is infeasible, whih is deteted.5.5.2 Flow-ost BoundThe �ow part of the inrementally alulated solution value orrespond to those demands ij, wherea path exists between node i and j, sine we look for tree solutions only. Hene for those demands



5.5 Bounding 17the exat solution value is used. For demands lk where no suh path exists, we bound by alulatingthe minimum �ow-ost path from node l to k using edges, whih have not been expliitly exludedfrom the solution.An example of the �ow-bound is shown in �gure 5.4.
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Figure 5.4: Example on �ow-boundIn the example edge 1-3 is exluded from the solution, edge 1-2 and 1-4 are inluded in the solution,and for the rest of the edges, it has not been deided whether they are in the solution. Demandswhere a path exists using edges whih are in the solution use this path, i.e. demands 1-2, 1-4 and2-4. For the rest of the demands a shortest path is found and used as bound, where the path useedges that are in the solution, and edges that are yet undeided. Hene demand 1-3 use the path1-4-3, demand 2-3 use path 2-3 and demand 3-4 use path 3-4.As mentioned branhing onsists of either inluding an edge or exluding an edge from the solution.In the ase where an edge is inluded in the solution, the �ow-bound does not hange, sine thesame edges are available when bounding. However, sine an edge is added, some demands are nowinluded in the inrementally alulated exat solution value, and hene should be exluded fromthe bounding. Thus the alulated bounds for eah demand are saved, and reused if the demandis not inluded in the inrementally alulated exat solution value.5.5.3 Preventing CylesThe alulated �ow-bound does in some ases use edges, whih an immediately be seen to introdueyles. Sine it is a bound alulation, this does not invalidate the bound, but on the other handthe bound ould be improved by disallowing this.For a given branh some edges are inluded and some are exluded. Consider a shortest path usedas bound for a demand in this branh. If adding all edges on the path results in a yle, then thebound an be improved (assuming the shortest path is unique). This an be done, sine ylesare not allowed in the �nal solution. Thus for this branh, a �nal solution will not ontain all theedges of the bound path, hene an alternative bound path should be used.



5.6 Extensions 18Eah time a bound is alulated, this should be heked and a minimum ost alternative pathwhih does not introdue yles should be found. In general this is not possible to do fast, andhene no gain an be foreseen. In the ase where one edge introdue the yle, it an be done fast.An example of this is shown in �gure 5.5.
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Figure 5.5: Example on a path ontaining an edge, whih alone introdue a yleAssume the path used to bound a �ow-ost for the demand 1-5 is the path indiated by the dashedlines in the �gure. If the edges represented by the dashed lines were added to the solution, ayle would be introdued (2-3-4-2), hene a better bound on the �ow-ost an be attained bydisallowing this path.In this ase the yle is introdued by one edge namely edge 2-4, whih onnets two nodes whihare already onneted, and hene the nodes are in the same omponent. Information on omponentsare available, sine disjoint sets are maintained representing the omponents. Hene when buildingthe path used for bounding, and at some point edge ij is to be added to the path, we hek thatnode i and j is not in the same omponent. If i and j is in the same omponent, an alternativeedge is found.This interfere with the reuse of the �ow-bound desribed in setion 5.5.2. The reuse of the �ow-bound required that adding an edge ould not hange the value of the �ow bound. The �ow-boundan hange now, sine adding an edge may invalidate the hoie of other edges, hene the �ow-bound an be improved.Whether it is worth updating the �ow-bound or reusing it is unlear, but no matter what, addingthis funtionality seems to slow the proessing down. Sine introduing heks for yles in general(i.e. that multiple edges introdue yles) would be more time-onsuming, and the quality of thebound annot be expeted to improve aordingly, this has not be tried.5.6 ExtensionsThe most important extension is to get rid of the tree-requirement. Solving to optimality usingthe above sheme ould not be done immediately, sine yles would be allowed in the network.Hene demand paths are not unique, and whih path to take would have to be deided. Buildinga branh-and-bound algorithm to do this ould be done by, in addition to branhing on whetheran edge is in the solution or not, inlude branhes on whether an edge is used on the path for agiven demand.This would inrease the omputation time ompared to allowing solutions to be trees only. Sinethe omputation time is high already, this will not be pursued when solving to optimality. Insteadthe problem is solved for non-trees heuristially. This is desribed in the following hapter.
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Chapter 6Heuristi Solution of the NHNP
In this hapter a heuristi solution algorithm for the NHNP is presented. The algorithm is guar-anteed to �nd a feasible solution, if one exists, but the found solution is usually not optimal. Thesolution algorithm is used when solving the HNP and will be run many times, hene it has to berather fast.The algorithm is outlined in �gure 6.1.Chek that a feasible solution existsFind an initial tree solution whih has low setup-ostwhile solution is infeasible doAdd edgeFind demand pathsend whileRun loal searhFigure 6.1: Heuristi solution algorithm for the NHNPThe major di�erene from the optimal solution is that we allow non-trees. Doing this, we will haveto determine for eah demand whih path it takes, i.e. the fijkl variables are deision variables.The phases in the �gure are desribed in the following setions.6.1 Cheking whether a Feasible Solution ExistsNote that we assume a omplete network, and that �ows annot split. Hene heking that afeasible solution exists an be done by heking that no demand exists, whih is larger than theedge apaity. If this is the ase, then the solution ontaining all edges between nodes and witheah demand ij taking the path onsisting of exatly edge ij is feasible.On the other hand, if a demand larger than the edge apaity exists, this demand annot evenleave the node, sine no edges exist with high enough demand, and we do not allow demands tosplit.



6.2 Finding an Initial Tree Solution 206.2 Finding an Initial Tree SolutionThe initial solution found is an MST with respet to setup-osts. For networks where the setup-osts ontribute signi�antly to the objetive funtion value ompared to the �ow-ost, this is areasonable hoie. Teleommuniation networks an be modeled reasonably without any �ow-ost,hene at least in this ase it is reasonable, in fat as mentioned in setion 5.1, if there is no �ow-ostand the found MST is feasible, then the MST is an optimal solution.6.3 Finding Demand PathsGiven an edge seletion, an assignment to the �ow variables is sought whih is feasible and has alow total �ow-ost. The variable assignment is found (if one exists) indiretly by �nding the patheah demand takes.This is equivalent, sine if paths are assigned for eah demand, the �ow variable assignment anbe found by for eah demand and for eah edge in the path, to set the orresponding �ow variableequal to the value of the demand. On the other hand, given a �ow variable assignment, eah pathfor eah demand an be found by onsidering the values of the �ow variables for the orrespondingdemand. One variable for eah edge exists, and given the equations 4.4, 4.5, 4.6 and 4.7, thepositive variables orrespond to a path.Calulating the optimal assignment is omputationally expensive, and sine this is done manytimes a heuristi solution approah is used.The demand paths are assigned by onsidering demands in dereasing order of value. This is donethis way, sine high value demands are more expensive to reroute than low value demands. Foreah demand ij, the shortest feasible path between i and j is found. This is done by �rst �ndingthe shortest path between i and j.If this path is not feasible, the �rst edge where the edge apaity would be exeed if the demandwere added is identi�ed. The path should not use this edge, hene it is temporarily removed fromthe network, and the shortest path between i and j is found again. This is ontinued until eitherthe demand an be added along the found path or no path exists between i and j. In both asesthe temporary edges are added again.If a feasible path was found, demand is added, and proessing is ontinued for the rest of thedemands. If no feasible path was found, the edge with exeeded apaity found in the originalnetwork is reorded. This edge will be relieved by adding another edge as desribed in the followingsetion.6.4 Finding an Edge to AddThe edge to add should relieve the edge with exeeded apaity found above.The edge to add is found by onsidering all edges whih are not part of the solution in inreasingorder of setup ost. For eah edge ij we hek if the urrent path for demand ij uses the edge withexeeded apaity, if so this is the edge we add.There is no guarantee that suh an edge exists, a situation whih arises in pratie. An exampleof the situation, where no edge is immediately found is shown in �gure 6.2.Demands are ordered aording to value, depited in the left olumn in the �gure. One edge withexeeded apaity exists, edge 1-2. Edge 1-2 is used by demand 1-2 and demand 1-3 only. The
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kl. Sine no demand exists with value larger than the apaity, at least two demands use this edge,one is the kl demand, and assume the other demand is mn. Then edge mn is not in the solution,otherwise demand mn would use edge mn, and hene adding edge mn would relieve edge kl.Hene what we will do if no edge an be found, whih relieves the edge with exeeded apaity isto �rst assign the path onsisting of edge ij to demand ij for whih edge ij exists. Then the abovepath assignment sheme is used, and an edge is found. In fat doing this may result in a feasiblesolution without adding any edges, simply by onsidering the paths in another way.Using this algorithm would for the example result in the paths depited in �gure 6.3.
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6.5 Loal Searh 22lower valued path assignments. This is supported by experiments in setion 12.4.26.5 Loal SearhWhen a good initial solution is found, we run a loal searh algorithm modifying the solution ifan improvement is immediately possible. The algorithm has been run with two neighbourhoods, asimple and an extended neighbourhood.The simple neighbourhood onsist of solutions whih an be reahed by either adding or removingan edge. The extended neighbourhood allows in addition a swap of edges, i.e. one edge is addedand another one is removed.For the simple neighbourhood, the loal searh runs as follows: For all possible edges try to addthe edge, if the edge is not part of the solution, and remove the edge if it is part of the solution.Test if the solution is feasible and better than the urrent solution. If so the neighbour-solutionbeomes the urrent solution, and all neighbour-solutions are heked for this new urrent solution.This ontinues until no feasible and better solutions exist.The e�et using this neighbourhood is mainly to remove unneessary edges added in earlier stepsof the algorithm.The extended algorithm is used the same way, only now swaps of edges are onsidered as well.Using the simple and espeially the extended neighbourhood inrease the runtime severely (seesetion 12.4.1). To avoid getting into problems with runtime, the extended neighbourhood is usedonly for networks with up to 10 nodes, and the simple neighbourhood is used for networks withup to 15 nodes.This is a way of ontrolling the time used but a very in�exible one, in the sense that it is notpossible to ontrol exatly how muh time is spent on eah group. As an example, solving anetwork ontaining 10 nodes takes approximately 1 seond using the extended neighbourhoodwhereas solving a network ontaining 11 nodes takes approximately 0.1 seonds using the simpleneighbourhood (see setion 12.4.1). Also the solution quality drops aordingly. Hene it maybe bene�ial to have groups with nodes 10 ompared with having groups with 11 nodes, simplybeause an algorithm �nding better solutions is used for solving groups with 10 nodes.Another possibility ould be to use a simulated annealing approah using the simple neighbourhood,but allowing for aepting marginally worse solutions. This way the runtime ould be ontrolledbetter, and more solutions may be reahable.
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Chapter 7The Hierarhial Network Problem
7.1 Mathematial ModelIn the following the mathematial model de�ning the hierarhial network problem is desribed.The model involves only two levels referred to as the primary (highest level - level 1) and seondarylevel.The solution network will onsist of one primary group and a number of seondary groups. Allgroups mentioned in this hapter are seondary groups, and thus this is not always expliitly stated.Also onentrator nodes in the resulting network are exatly the primary nodes, and thus theseterms an be used interhangeably.Solving the HNP in polynomial time would make the NHNP solvable in polynomial time as well,sine the NHNP is a speial ase of the HNP (�divide� a network into 1 group). Sine the NHNPis NP-hard (see hapter 4) so is the HNP.7.1.1 De�nitions
V Set of all nodes.
E Set of all edges.
i, j, k, l ∈ V - Nodes.
ij, i ∈ V, j ∈ V, i < j ∈ E - Undireted edges.
h, 1 ≤ h ≤ G Groups.7.1.2 Data
G Number of groups in the network.
cs1ij , i < j Cost of setting up a primary edge between i and j.
cs2ij , i < j Cost of setting up a seondary edge between i and j.
cf1ij , i < j Cost per unit �ow of a primary edge between i and j.
cf2ij , i < j Cost per unit of of a seondary edge between i and j.
dij , i < j Undireted demand between i and j.
cap1 Capaity of primary edges.
cap2 Capaity of seondary edges.As for the NHNP, we assume that the data are demand-onneted (no ut exists with demandequal to zero), and thus to ful�ll demands, the solution must be onneted as well.



7.1 Mathematial Model 24Usually (e.g. for teleommuniation networks), the setup-ost for primary edges are higher thanfor seondary edges, i.e. cs1ij > cs2ij and the �ow-ost for seondary edges are higher than forprimary edge, i.e. cf1ij < cf2ij . The model does not require it to be this way, but all testednetworks have these harateristis.7.1.3 Deision Variables
x1ij ∈ {0, 1} 1 if there is a primary edge between i and j,

(i < j) 0 otherwise.
x2ij ∈ {0, 1} 1 if there is a seondary edge between i and j,

(i < j) 0 otherwise.
tik ∈ {0, 1} 1 if node i is onentrator node in group k,0 otherwise.
gik ∈ {0, 1} 1 if node i is in group k,0 otherwise.
f1ijkl ≥ 0 Amount of �ow on edge i to j resulting from demand

(i < j, k < l) between nodes k and l on a primary edge.
f2ijkl ≥ 0 Amount of �ow on edge i to j resulting from demand

(i < j, k < l) between nodes k and l on a seondary edge.The group (g) and onentrator (t) variables are in a sense bookkeeping variables, though a se-letion of edges (x) and �ow assignment (f) does not give a unique assignment to the group andonentrator variables. But if edges are seleted and �ow assigned, it as matter of seleting whihgroups are assigned whih numbers, and this is unimportant. In fat the objetive value is de-termined from the �ow and setup variables only, hene the assignment to group and onentratorvariables does not matter as long as a feasible assignment exists.7.1.4 Objetive FuntionThe ost for a given network is the total ost of setting up edges, and the sum of all �ow throughedges:
min

∑

i,j,i<j

cs1ij · x1ij + cs2ij · x2ij +

∑

i,j,i<j,k,l,k<l

cf1ij · f1ijkl + cf2ij · f2ijkl (7.1)As for the NHNP, the �rst part of the objetive funtion is denoted the total setup-ost and theseond part is denoted the total �ow-ost.7.1.5 Group & Conentrator ConstraintsBetween two nodes there an be one edge only, either a primary or a seondary edge but not both:
∀i, j, i < j : x1ij + x2ij ≤ 1 (7.2)A node is in exatly one group:

∀i :
∑

1≤h≤G

gih = 1 (7.3)



7.1 Mathematial Model 25Eah group has exatly one onentrator node:
∀h(1 ≤ h ≤ G) :

∑

i

tih = 1 (7.4)A node an only be onentrator in one group:
∀i :

∑

h

tih ≤ 1 (7.5)If there is a primary edge between i and j (x1ij = 1), then node i and j are both primary nodes(∑h tih = 1,
∑

h tjh = 1).
∀i, j, i < j : x1ij ≤

∑

h

tih (7.6)
∀i, j, i < j : x1ij ≤

∑

h

tjh (7.7)If i is a onentrator/primary node (∑h tih = 1), then there is a primary edge inident to i(∑j,i<j x1ij +
∑

j,i>j x1ji).
∀i :

∑

h

tih ≤
∑

j,i<j

x1ij +
∑

j,i>j

x1ji (7.8)If a node is onentrator/primary in a group, then it is in the group as well.
∀i, h : tih ≤ gih (7.9)If a node i an be reahed from j via a seondary link then i and j are in the same group.

∀i, j, h, i < j : x2ij + gih ≤ gjh + 1 (7.10)
∀i, j, h, i < j : x2ij + gjh ≤ gih + 1 (7.11)As mentioned earlier, some solutions are equal, i.e. have the same edges and �ows seleted andhene the same objetive funtion value. The onentrator seletion and group division is alsogiven, the only di�erene is the group numbers, whih are di�erent. We do not are what groupnumbers are and do not distinguish between those solutions.7.1.6 Tree ConstraintSo far the model allows solutions, whih are not trees (they have to be onneted though). When�nding �ow variables it is, however, a major advantage to onsider trees only, sine given a solution,the �ow an be determined uniquely. When solving optimally, we will only do it for tree solutions,or equivalently (sine onnetivity is required), the number of edges should be |V | − 1:

∑

i,j,i<j

x1ij + x2ij = |V | − 1 (7.12)When heuristially this onstraint is relaxed, and hene when solving heuristially, it is not enoughto �nd the edge-variables (x1 and x2), �ow-variables (f1ijkl and f2ijkl) will also have to bedetermined.



7.1 Mathematial Model 267.1.7 Flow ConstraintsWe onsider at set of onstraints, whih determines the amount of �ow on edges.A �ow is an assignment of values to the variables f1ijkl and f2ijkl, whih does not violate anyonstraints mentioned in this subsetion (7.1.7). Reall that f1ijkl is the �ow on a primary edgebetween i and j resulting from demand between k and l, likewise for f2ijkl.First of all, if an edge is used (i.e. f1ijkl > 0 or f2ijkl > 0), then there should be a primary edge(if f1ijkl > 0) or a seondary edge (if f2ijkl > 0) between i and j (i.e. x1ij = 1 or x2ij = 1respetively).
f1ijkl and f2ijkl should be positive or zero, and assuming M is larger than or equal to any possibleassignment to f1 and f2, the following onstraints an be used:

∀i, j, i < j :

∀k, l, k < l : M · x1ij ≥ f1ijkl (7.13)
∀k, l, k < l : M · x2ij ≥ f2ijkl (7.14)The amount of �ow inident to node i and node j resulting from demand between i and j mustequal the demand between i and j:

∀i, j, i < j :
∑

k,i<k

(f1ikij + f2ikij) +
∑

k,i>k

(f1kiij + f2kiij) = dij (7.15)
∑

k,k<j

(f1kjij + f2kjij) +
∑

k,k>j

(f1jkij + f2jkij) = dij (7.16)For all demands between node k and node l, the total �ow inident to other nodes i, i 6= k, i 6= lresulting from demand ij should equal zero (if i is not on the path between k and l) or two times therequired demand (if i is on the path between k and l). That is either of the following 2 onstraintsmust hold:
∀k, l, k < l, i ∈ V \{k, l} :

∑

j∈V,i<j

(f1ijkl + f2ijkl) +
∑

j∈V,j<i

(f1jikl + f2jikl) = 0 (7.17)
∑

j∈V,i<j

(f1ijkl + f2ijkl) +
∑

j∈V,j<i

(f1jikl + f2jikl) = 2dkl (7.18)As for the NHNP formulation, this means that �ow resulting from a demand of apaity betweena �xed pair of nodes, is on one path, i.e. the �ow is not split. For trees this is trivially so, sinefor a pair of nodes there is exatly one path. In fat f1ij and f2ij are bookkeeping variables asopposed to deision variables, when the tree onstraint is used. If non-trees are allowed, f1ij and
f2ij are in fat deision variables, but with this formulation, the �ow still annot split.If solved diretly by e.g. CPLEX, the either-or formulation an be handled as follows: Introduea binary variable for eah new pair of onstraints temp#. Then the following onstraints areequivalent with equation 7.17 and equation 7.18:



7.2 Number of Edges 27
∀k, l, k < l, i ∈ V \{k, l} :

∑

j∈V,i<j

(f1ijkl + f2ijkl) +
∑

j∈V,j<i

(f1jikl + f2jikl) = 2dkl · temp# (7.19)Introduing binary variables are always omputationally expensive, thus this formulation annotbe expeted to be useful for solving large instanes of the HNP.7.1.8 Capaity ConstraintsCapaity onstraints ensure, that no edge has more �ow than its apaity allows. This an beexpressed as:
∀i, j, i < j : cap1 · x1ij ≥

∑

k,l,k<l

f1ijkl (7.20)
∀i, j, i < j : cap2 · x2ij ≥

∑

k,l,k<l

f2ijkl (7.21)This makes the onstraints 7.13 and 7.14 redundant, sine if 7.20 and 7.21 are ful�lled then so are7.13 and 7.14.The apaity onstraints also ensure onnetivity, sine we assume there exists no ut where theamount of demand rossing the ut is equal to zero.An alternative formulation, that does not use the alulated �ow is:
∀s, ∅ ⊂ s ⊂ V :

∑

ij∈δ(s)

dij ≤
∑

ij∈δ(s)

x1ijcap1 + x2ijcap2 (7.22)This formulation require the onstraints 7.13 and 7.14.As for the NHNP, this formulation requires that �ow an split, and is not suitable for implemen-tation, sine the number of onstraints grows exponentially with the number of nodes.In the following implementations the �rst formulation is used (i.e. equation 7.20 and 7.21), i.e. �owis alulated to ensure that apaities are not exeeded.7.2 Number of EdgesThe number of primary and seondary edges are given by:
∑

i,j,i<j

x1ij = G − 1 (7.23)
∑

i,j,i<j

x2ij = |V | − G (7.24)Assuming the tree onstraint holds.



7.3 Solving Diretly 28This an be seen from the following:Equation 7.4 say that eah group has exatly one onentrator node, and sine there are G groups,there are G onentrator or primary nodes.Sine the graph as a whole is a tree (V − 1 edges are seleted (equation 7.12) and the graph isonneted (equation 7.20, 7.21 and network is demand-onneted)), the subgraph onsisting ofprimary nodes and edges onneting the nodes is a forest (inluding the tree ase). Thus there anbe no more than G − 1 edges.On the other hand assume there were less than G − 1 edges. If so, all primary nodes annot bediretly onneted, thus the subgraph ontains at least two trees (i.e. the subgraph is a forest butnot a tree). In the original graph the two trees must have been onneted via a seondary edges,sine the graph as a whole is a tree. But equation 7.10 and 7.11 state that if a seondary nodeonnets two nodes, then they are in the same group. Thus we have two primary nodes in the samegroup, whih annot be the ase beause of equation 7.4. Thus there are exatly G − 1 primaryedges, and the remaining |V | − G edges are of ourse seondary.An important fat, whih follow from the proof is that the subgraph onsisting of primary nodesis a tree.7.3 Solving DiretlyObviously the problem annot be solved diretly for more than a few nodes, sine the number ofonstraints grows exponentially in the number of nodes. In order to make sure that the mathe-matial model stems with what is our understanding of hierarhial networks, (i.e. as desribed inhapter 3), it is however solved for problems with few nodes. This is done by generating an input�le to CPLEX, whih ontains all onstraints.A program generating input �les to CPLEX from a de�nition �le has been implemented. Solvingfor small networks (up to about 8 nodes and 3 groups) gives reasonable results, i.e. �tting ourunderstanding of hierarhial networks, hene groups are divided, edges are seleted within groupsand not between groups and so on. Also sine omparing results (i.e. the optimal solution found)with solutions found by other solution algorithms desribed in the following gives su�ing results,the mathematial model seems to desribe the desired hierarhial network problem.Both versions of the apaity onstraints are used, and test samples with 7 and 8 nodes seems toindiate that they perform similarly, though more onstraints are generated in the ut formulation(i.e. equation 7.22). Sine the number of uts grows exponentially with the number of nodes,whereas the number of onstraints using the �ow version (i.e. equation 7.20 and 7.21) grows onlylinearly with the number of edges, the �ow version is expeted to perform best.7.4 ExtensionsThe mathematial model as desribed in this hapter allows two levels only. Hene an extensionwould be to allow an arbitrary number of levels. This ould be done by introduing a level indexto the data variables, setup-ost(c), �ow-ost(cf), apaity(cap) and number of groups (G). Thatis the number of groups at eah level would have to be spei�ed. At the moment we only requirethe number of seondary groups to be speify, sine the number of primary groups is trivially one.The number of level l + 1 nodes must be ≥ the number of level l nodes.The deision variables for edges (x), �ow (f), onentrators (t) and groups (g) should be indexedby a level as well. There should be a number of group variables for eah level orresponding to



7.4 Extensions 29how many groups are required, de�ned by G.The objetive funtion should sum over the level variable instead of having two separate termsfor the primary and seondary edges. Tree-, �ow- and apaity-onstraints an be extended bysumming over the level variable in the same way.In general the group- & onentrator-onstraints an be extended by modifying onstraints suhthat they should hold for groups of level l or onentrators of level l, whih should e done for alllevels. Hene this will result in roughly the number of levels times as many onstraints.Another extension would be to allow G to be unknown, that is the mathematial model should beformulated suh that any number of groups is allowed. This ould be done by having a numberof group variables equal to the number of nodes (instead of exatly G group variables) and thenallow groups to be empty.The extensions are not inluded, �rst of all beause the mathematial model desribed above ishard enough to solve as it is. If the mathematial model mentioned above an be solved, then theextensions ould be added.
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Chapter 8Solution Strategies for theHierarhial Network Problem
In this hapter two solution strategies are presented. The �rst one, �the branh and bound strategy�,is built diretly on the branh and bound solution algorithm to NHNP desribed in hapter 5. Itworks with edges, and operates only impliitly with groups, onentrator nodes and hierarhies.The seond solution strategy, �the phase divided strategy� divides the proess into phases. Thisallows for oneptual abstration of the problem and division of the solution development, sothat phases ould potentially be improved one at a time. The phases are of ourse interrelated,so hanging one phase a�et others. This strategy shows to be partiularly suited for heuristisolution algorithms.Thus the �rst strategy is potentially the most e�ient, sine it looks at the problem from an overallperspetive, but it is very hard to work with. On the other hand the seond strategy is easier towork with, but may be less e�ient beause of abstration. In following hapters we will workwith the seond strategy, that is the phase divided strategy.8.1 Branh and Bound StrategyThis strategy generalize the branh and bound solution algorithm for the NHNP desribed inhapter 5. It selets edges, so a solution is an assignment to the binary x1ij and x2ij variables. Asfor the NHNP solution algorithm paths and �ow is alulated inrementally, and disjoint-sets aremaintained representing omponents.The strategy generate solutions as done for the NHNP, only now there is two passes of the edges,where the �rst pass selets the primary edges, and the seond pass selets the seondary edges.The generated solutions all omply with all onstraints de�ning the HNP, exept for the apaitywhih is heked separately.The strategy �rst selets G − 1 primary edges, inluding update of the disjoint-sets representingomponents and �nd paths and �ow. Eah seletion of an edge is a branh, hene to sub-ases arereated as for the NHNP algorithm.As stated in setion 7.2, the primary edges must form a onneted subgraph. This an be ensuredas follows.Reord whih nodes have a primary edge inident to them and thus are primary, and reord the



8.2 Phase Divided Strategy 31number of primary omponents (i.e. omponents ontaining a primary node). Also reord thenumber of seleted edges. Eah time an edge is added and omponents are merged, the reordedinfo is updated.The number of primary omponents is updated as follows. If two primary omponents are merged,the number of primary omponents is dereased. If two non-primary omponents are merged, thenumber of primary omponents is inreased, and �nally if a primary and a non-primary omponentis merged, the number of primary omponents is maintained.When G− 1 primary edges have been added, the number of primary omponents shall be 1, sinethen all primary edges are in the same omponent and thus they form a subtree.Sine the number of primary sets an only derease with one for eah new edge, a generated solutionmust omply with:
G − 1 − numberOfPrimaryComponents≥ numberOfSeletedEdgesHene it makes sure, that if at some point an edge is added edges an be seleted suh that the�nal primary edge seletion is a onneted subgraph. If adding an edge results in a solution whihdoes not omply with this inequality, the solution it is not generated.When the primary edges has been generated, the proess ontinues from beginning again, onlynow we selet seondary edges, and edges whih are seleted as primary are not onsidered.The setup-ost and �ow-ost is alulated inrementally as for the NHNP, exept that the valueand apaity of an edge depend on whether it is a primary or seondary edge.Choosing to selet primary edges before seondary edges, has lower runtime than the opposite.This may be beause of the primary edges having a higher setup-ost, and thus plaing primaryedges gives a better (higher value) bound.Finally we note that the group numbers are not uniquely determined, but as said earlier, we donot are what number eah group has.The strategy has been implemented in Java with suess. It is, however, not suitable for a heuristiimplementation, and sine this is what we aim for, it is not used any further. Solutions found hasbeen ompared with solutions found by the optimal algorithm based on the following solutionstrategy, i.e. it is made sure that the same optimal solutions are found.8.2 Phase Divided StrategyThe phase divided strategy divides the solution proess into 4 phases:1. Divide into groups2. Choose onentrator nodes3. Selet edges in eah group (inluding primary group)4. Assign paths to demandsOne way to divide into groups and hoose onentrator nodes is simply to try all possibilities.When solving optimally this is what we will do. This works for smaller networks, but for largernetworks the amount of possibilities gets so large, that it is not possible to do this.It is also possible to �nd a division of nodes into groups and seletion of onentrator nodesheuristially. Measuring the quality of a group division and onentrator seletion is hard though,



8.2 Phase Divided Strategy 32sine the objetive funtion value does not depend diretly on how groups are divided but on whihedges are seleted, and how muh �ow is on eah edge. Thus it would be nie to have an evaluationfuntion, whih gives an estimate on the quality of the group division and onentrator seletion.Ultimately the evaluation funtion should equal the objetive funtion, but alulating the exatvalue is slow for large networks.The third phase is to selet the edges, suh that the objetive value is minimized. Eah group anbe optimized in turn (inluding the primary group), i.e. we have to solve G+1 NHNP's with dataderived from the HNP. The data an be derived as initially desribed in setion 3.4 and furtherspei�ed in setion 9.2.1 .The fourth phase involves assigning a path to eah demand. This is not relevant in the optimalase, sine we onsider trees only. When solving heuristially, the assignment has already beendesribed in hapter 6 for the NHNP. Assigning paths to demands one group at a time atuallysolves the problem, sine paths are unique with respet to groups, and hene the paths in thenetwork is made uniquely from the paths in the groups (see setion 3.3 and 9.2.2).The optimal solution algorithm desribed in hapter 5 to solve the NHNP problems an only beused for networks of sizes up to about 7-8 nodes in a reasonable time. Thus if solving networks oflarger sizes, i.e. groups exist with more than 7-8 nodes, heuristis will have to be applied as well.The heuristi used �nds an MST, and if this MST is not feasible, the MST is modi�ed (i.e. edgesare added) until the MST is feasible.The phase divided strategy will be used to solve the HNP both optimally (for small networks) andheuristially in the two following hapters.Solving the HNP this way, allows for replaing the NHNP solution algorithm easily, sine there isa lear distintion between phases. Hene if an alternative solution algorithm where developed oradopted this ould be immediately done using this strategy.
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Chapter 9Optimal Solution of the HNPThis hapter desribes an algorithm, whih solves the HNP to optimality. It is based on the phasedivision strategy, and thus have four phases. The �rst and seond phase are simple, namely try allpossibilities of group division and onentrator seletion.The third and fourth phase use the solution algorithm for the NHNP (desribed in hapter 5) tosolve eah group to optimality. This an be done sine the optimal solution of the HNP is theunion of the optimal solutions of the groups.9.1 RepresentationA solution is represented as two arrays of length |V|, a group array and a onentrator array. Thegroup array is an integer array giving group numbers for eah node and the onentrator arrayis a binary array where entries are true if the node is onentrator otherwise false. The groupnumbers are 0 to G − 1, and at least one node has to be in eah group. Also eah group hasexatly one onentrator; thus G entries in the onentrator array are true, and the nodes whihare onentrator nodes have di�erent group numbers.The group-numbers do not matter so given this representation some solutions are symmetrial- two solutions are symmetrial, if the groups are divided the same way, and the same nodesare onentrator nodes, but group-numbers di�er. To avoid generating symmetrial solutions werequire, that if node number i has group-number h, then for all groups with numbers 0 ≤ g < h,at least one node j exist with group-number g, suh that j < i. In this ase the group numberassignment is valid.This ensures that no symmetrial solutions exists, sine the group number an be uniquely deter-mined. This an be done by assigning group numbers to nodes in order of node number. The nodenumber 0 is given group number 0. Reursively node number i is given number g if a node j withnumber j < i is in the same group as node i and j has group number g.If no node with number < i exists whih is in the same group as i, then i is assigned group number
h where h is the least group number larger than all group numbers assigned to nodes with number
< i. i annot be assigned a group number whih is smaller than h, sine it is not in the same groupas any of the nodes with number < i, and if assigned an unassigned group number less than h, thegroup assignment would not be valid.On the other hand i annot be assigned a larger number, sine if so either there is not enoughgroup numbers or a group number assigned later is smaller than this, and hene is not a validgroup number assignment. Thus the group numbers are unique.



9.2 Solution Algorithm 34The searh spae is all possible valid assignments to the group- and onentrator-arrays.This representation does not allow for some of the nodes to be either not assigned to a group orundeided whether they are onentrators. The representation an easily be extended though, bysimply allowing a speial marker to be assigned as either group number or onentrator whihindiated that it is yet undeided.9.2 Solution AlgorithmAll possible group divisions and onentrator seletions are generated. For eah group division andonentrator seletion, the determination of the solution value is done by determining the solutionvalue for eah group in turn. Solving the groups is done as desribed in hapter 5, hene the onlything left is to determine how data are omputed for the groups, and how the solutions to thegroups are aggregated again to attain the solution for the entire network.9.2.1 Calulating NHNP data from HNP dataGiven a group-division and a onentrator-seletion, most of the data an be immediately extratedfrom the HNP problem - the number of nodes is the number of nodes in the group, edge apaity,setup-osts and �ow-osts depend only on the group being primary or seondary.The demand-matrix annot be determined immediately, sine for the primary group, the demandis a sum of demands between nodes, and likewise for seondary groups, a demand between a nodein the group and a node outside the group is replaed with demand between the onentrator andthe node. This is desribed in detail in the following.The demand matrix is generated by onsidering all pairs of nodes in the HNP. An example of anetwork where group division and onentrator seletion is known, is shown in �gure 9.1. The�gure is used to exemplify the following disussion.
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Figure 9.1: Example of a network where groups are known and onentrators are seletedThe primary group onsists of all onentrators, hene an entry in the demand matrix exists foreah pair of onentrator nodes. The values of the demand matrix is determined by onsidering allpairs of nodes. If two nodes are in di�erent seondary groups, the onentrators of the two groupsare identi�ed. The demand between the two nodes is then added to the entry in the demand matrixorresponding to the two onentrator nodes.E.g. the demand between node 2 and 3 in �gure 9.1, is added to the demand between onentrator



9.2 Solution Algorithm 35nodes 1 and 5, sine the path from 2 to 3 onsists of the subpaths from 2 to 1, from 1 to 5 in theprimary group, and �nally from 5 to 3.If nodes are in the same group, their ommuniation does not go through the primary group, andthus is not added to the demand matrix. The resulting demand matrix for the primary group isshown in �gure 9.2. Demands for a node pair i, j, i < j is denoted by dij , and sine demand isundireted less than half of the demand matries are used.1 5 715 d13 + d14 + d15

+d23 + d24 + d257 d16 + d17 d36 + d37 + d46

+d26 + d27 +d47 + d56 + d57Figure 9.2: Demand-matrix for the primary groupThe demand matrix for seondary groups has an entry orresponding to eah pair of nodes in thegroup. Eah pair of nodes is onsidered, and demand is added, if one or both nodes are in thegroup, otherwise it is not. If both nodes are in the group, the demand is added between the twonodes. If one node is in the group only, the demand is added from this node to the onentratornode, sine this is part of the entire path.The resulting demand matries for the seondary groups are shown in �gure 9.3(a), 9.3(b) and 9.4.1 212 d12 + d23 + d24

+d25 + d26 + d27(a) Top left group 6 767 d16 + d26 + d36

+d46 + d56 + d67(b) Top right groupFigure 9.3: Demand-matrix for the two top groups3 4 534 d345 d13 + d23 + d35 d14 + d24 + d45

+d36 + d37 +d46 + d47Figure 9.4: Demand-matrix for the bottom middle groupIf we onsider the demand between node 2 and 3 again, this demand is added in both the top leftgroup between node 1 and 2, and in the bottom middle group between node 3 and 5. For e.g.demand 34, the demand is added to edge 34 only, and sine neither node 3 nor 4 is onentratorthis is the only demand on this edge.The nodes are renumbered in the groups, suh that iterating through the nodes of a group issimple. In pratie two arrays are built and kept, one whih maps the node number in a group toa node number in the full network and one whih maps the other way. Hene a demand matrix isbuilt, whih ontains exatly the neessary nodes, i.e. the nodes in the group.Sine the �ow- and setup-osts are used often, it may make sense to opy them, suh that nomapping between group numbers are neessary. On the other hand the mapping is so simple thatit ought not be neessary to opy them. Experiments show that there is a marginal di�erene only,but pre-opying the data tend to be fastest, hene this is done.



9.3 Reduing Searh Spae 369.2.2 Aggregating NHNP Solutions to attain Solution for HNPWhen the solutions to the NHNP's are found, the solution to the HNP is feasible if all NHNP'sare feasible, and the solution value is simply attained by adding the solution value for eah of thegroups. The seletion of edges is immediately attainable from the edges whih are seleted in thegroups.Finding the �ow is done by �nding the paths to eah demand (this is equivalent - see setion 6.3).The path for a demand ij onsist of up to three parts. Assume I is onentrator of the group iis in and J is onentrator for j and I 6= J , then the path onsist of the path from i to I, thepath from I to J and �nally the path from J to j. This information is simply extrated from thesolution to the NHNP's if the paths has to be found. If I = J , i.e. nodes are in the same seondarygroup, then the path is simply taken from the solution to the partiular NHNP.9.3 Reduing Searh SpaeThe algorithm basially has the following problems:
• The number of di�erent groups inreases exponentially with the number of nodes.
• The solution time for a group (a NHNP) inrease exponentially with the number of nodes,beause the number of onstraints inrease exponentially with the number of nodes.Thus when adding a node to a problem, the number of di�erent groups at least doubles, and thenew groups are larger and thus more di�ult to solve.Measurements show that though there are many more small groups, the large groups take mosttime to solve. Thus, the size of networks, whih an be handled, an be inreased by limiting thesize of groups allowed. This is done by heking that eah group has sizes less than a predeterminedvalue.Doing this does not help muh in it self, sine now the �rst issue omes into play - now it is thenumber of di�erent groups that is the problem. This is onsidered in the following setion.9.4 Reusing Seondary Group Solution ValuesSine all group divisions and onentrator seletions are tried, a lot of seondary groups are alu-lated more than one. In �gure 9.1 if we hange the onentrator node in the group onsisting ofnodes 1 and 2 from 1 to 2, the solutions of the two other seondary groups are not hanged. Thusthe solution value for a group and seleted onentrator an be saved when it has been alulated,so that it an be reused later.This is done by maintaining an array of �oats, where eah possible seondary group has an entry.There are 2|V | possible subsets of a size |V | network, but the solution to a seondary group alsodepends on the seletion of onentrator. Thus there are less than |V | × 2|V | possible solutions.It is important that the solution value an be found fast if it has been alulated, thus there haveto be a simple mapping from a seondary group desription to an entry in the array. The mappingused is to take a binary array of length |V |, where element i is 1 if node i is in the set, otherwisezero. This binary array is then read as a binary number, and multiplied with |V | and the nodenumber of the onentrator node is added to obtain the index in the array.Thus eah time a seondary group is to be alulated, we hek the array to see if the value haspreviously been alulated, and if so, we simply use the value, otherwise we alulate it and reord



9.5 Using the solution value for the HNP as bound in the NHNP 37the solution value. If the group is infeasible, this is reorded as well.A lot of the entries in the array are not used, sine some indexes represents groups whih are notgenerated (e.g. the group onsisting of all nodes) or a group with invalid onentrator seletion (i.e.the onentrator is not in the group). For small networks (e.g. about 10 nodes) it is not a problem,sine the total alloation for 10 nodes is 210 · 10, i.e. 10Kbytes times the size of a �oat. The sizegrows exponentially though, and for 20 nodes the alloation required is 20Mbytes times the sizeof a �oat. We annot solve suh large networks to optimality anyway, so it is not a problem untilheuristis are applied, where hashing will be used to redue the amount of memory required.It should be remarked that keeping results for primary groups makes no sense, sine they annotbe reused (at least not entirely), whih an be seen from the following. If the seondary groups arenot exatly the same between instanes, the minimum ost is not the same for sure. If the onlydi�erene between two solutions is the seletion of onentrators, then the amount of �ow betweengroups is the same, but the ost between onentrators is hanged, hene the total ost hanges.Combined with limiting the allowed size of groups, this does in fat give a very high improvementin performane - see setion 12.3.3.9.5 Using the solution value for the HNP as bound in theNHNPSine solving in the third and fourth phase onsist of optimizing independent groups, it may bethe ase that the sum of solution values of some of the groups have suh a high solution value,that the omplete solution will not be optimal. In this ase there is no need to solve the remaininggroups.This an be generalized, suh that when one or more groups are solved we sum the solution-valuesand ompare with the best known solution value for the HNP. This di�erene is used as initialbound for a remaining group, sine if no better solution value an be attained for this group, theurrent group-division and onentrator-seletion is not optimal.This strategy may interfere with the above �reuse of alulated group-data�-sheme, but only if asolution is not found. In this ase, we annot be sure whether a solution exist, sine we did notallow for investigating all possibilities, but if a solution is found it is optimal and an be reused asusual.In the urrent set up, where all possibilities are tried in a random order (i.e. nothing is done tobuilt promising groups), a substantial speedup annot be expeted, sine good solutions are usuallynot found at �rst. Hene bounding should be used on partially divided groups and/or onentratorseletions, sine this an guide us towards a good solution initially.The solution time for NHNP's inrease exponentially with the number of nodes in the network (seesetion 9.3), hene it may be bene�ial to onsider groups with few nodes �rst, sine they an beomputed fast.Another strategy is to alulate the solution values for the seondary groups, and then use thebounding on the primary group only, sine this solution value is never reused anyway. If this isdone, a small performane improvement is ahieved. This an probably be improved even more,if the groups with few nodes were alulated �rst, and the bounding on partial group-divisionsand/or onentrator-seletion were used. Possibly it is not neessary to bound, but only make surethat group divisions whih look promising are generated �rst.



9.6 Non-Trees 389.6 Non-TreesAllowing for non-trees to be solutions inreases the number of feasible solutions, and all previouslyfeasible solutions are still feasible. Hene HNP's whih had no feasible solution previously, maynow have a feasible solution.Allowing for non-trees to be solutions would not alter anything for the HNP part of the solutionalgorithm. Hene if a new solution algorithm for NHNP's, whih allow for non-trees were developed,HNP's ould be solved immediately as well.
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Chapter 10Heuristi Solution of the HNP
In this hapter a heuristi solution algorithm for the HNP is presented. The algorithm is based onsimulated annealing (SA) and the solution of NHNP's. For an introdution to SA see e.g. [17℄.10.1 The AlgorithmThe basi idea of the algorithm is to generate an initial solution, and then modify the initial solutionto obtain better solutions using SA. The SA algorithm is haraterized by aepting solutions whihhave higher values than the urrently best known solution (denoted worse solutions). As a generallyaepted rule of thumb, between 30% and 70% of the worse solutions should be aepted when thealgorithm is started (and temperature is high), and no worse solutions should be aepted whenthe algorithm �nishes (and the temperature is low).The SA algorithm is skethed in �gure 10.1.

current = Initial feasible solution
best = current
t = Initial Temperaturedo

t = update(t)do
nbh = neighbour(current)until feasible(nbh)if eval(nbh) < best(current)
best = nbhif eval(nbh) < eval(current)
current = nbhelseif aept(t, eval(nbh), eval(best))
current = nbhuntil stop-riteriaFigure 10.1: SA algorithm for solving HNPThe algorithm ontains an inner loop whih �nds a feasible neighbour-solution and an outer loopwhih loops until the stop-riteria is true. The algorithm keeps two solutions, namely the best andthe urrent solutions. The best solution should not be neessary, sine the urrent solution should



10.2 Representation 40preferably end with the best solution anyway. This is however not always the ase, usually beausethe seleted parameters are not advantageous, sometimes also beause of oinidenes. Hene thebest solution is used as a guideline for �nding good parameters. The solution value of a solutionis determined using the eval funtion.The initializations onsist of determining an initial solution and the initial temperature. The tem-perature is updated for eah iteration using the update funtion. The temperature a�ets thehane of aepting a worse solution. This is determined by the aept funtion, whih based onthe solution values and the temperature determine if a neighbour-solution is aepted.The algorithm is desribed in detail in the following setions.10.2 RepresentationA solution is represented as for the optimal ase, i.e. two arrays, one giving group numbers andone speifying whih nodes are onentrators. The only di�erene is that there are no limits on therepresentation involving the group numbers. Sine we will not go through all possible solutions,there is no reason to do that.Given an solution in this representation, G + 1 NHNP's an be generated as desribed in se-tion 9.2.1. The representation ontains nothing about �ow. Instead information about �ow is keptin eah of the NHNP's. By saving eah NHNP problem, �ow information an be reused.10.3 NeighbourhoodTwo types of neighbour-solutions are used:Conentrator-Neighbour Selet another onentrator in a groupGroup-Neighbour Move non-onentrator node to another groupThe number of neighbour-solutions is large - there are |V | − G onentrator-neighbour-solutions,sine this is the number of non-onentrator nodes. The number of group-neighbour-solutions is
(|V | − G) · (G − 1), sine eah non-onentrator node an be moved to any of the other groups.Too many neighbour-solutions exist hene the neighbourhood is limited.10.3.1 Limiting NeighbourhoodTo redue the number of possible neighbour-solutions to the ones that seems most likely to bebetter, we limit the number of group-neighbour-solutions. The solution possibilities we would liketo get rid of are those that have groups, whih are sattered in spae, sine those kind of groupsusually have high setup-osts.For a given group the nodes to move to the group is limited to be only the ⌈|V |/G⌉ nodes, whihare losest to the onentrator node of the group, i.e. has the lowest setup-ost to the onentrator.Also the nodes onsidered are in another group and are not onentrator nodes. This limit theneighbourhood to ontain solutions only, whih seem to be lose and thus redue setup-ost. Sinethere are G groups this amount result in up to |V |/G ·G = |V | group-neighbours, whih is roughlyas many as there are onentrator-neigbours. Thus the two types of neighbour-solutions haveroughly the same "priority".



10.3 Neighbourhood 41This also limits the number of solutions onsidered, sine solutions with seondary edges betweenwidely separated nodes (i.e. high-ost edges in between) will never be generated exept if generatedas initial solution.10.3.2 Cyling NeighbourhoodThe neighbour funtion returns a neighbour-solution, to the urrent solution. The returned neighbour-solution depends on the previous invoations of the neighbour funtion. The neighbour solutionsare yled, i.e. �rst the onentrator-neighbours are onsidered and then the group-neighbours areonsidered, but aross invoations of the neighbour funtion.In eah of the two groups of neighbour-solutions, yling is also done. The onentrator-neighboursare simply onsidered in turn starting at the lowest numbered node. If this node is not onentratorit is made onentrator, otherwise the next node is onsidered until a non-onentrator node isfound whih is made onentrator. The state is saved suh that when the funtion is invoked thenext time, the node onsidered is the node following the node whih was made onentrator. Ineah yle a total of |V | − G onentrator-neighbours are onsidered.The group-neighbours are yled in groups, suh that one group is onsidered during one invoationof the neighbour funtion. Next time the next group is onsidered an so forth. This is done |V |/Gtimes for eah group, suh that a total of V group-neighbours are onsidered in eah yle.During one invoation, the ⌈|V |/G⌉ nodes losest to the onentrator node of the group and notalready in the group are found, and one is piked at random. Piking one at random seems towork better than �nding the best valued or losest, whih will limit the neighbourhood searhedeven more.An alternative to yling the neighbourhood as desribed above, is to pik the neighbour solutionat random from all the possible neighbour-solutions. Doing this is simpler, the runtime is similarand a small improvement in the solution quality has been measured. Hene this should probablybe done instead. The quality of the solutions are measured in setion 12.5.5.10.3.3 An Alternative NeighbourhoodAnother type of neighbour-solution is to swap nodes between groups, hene maintaining the size ofgroups. Every non-onentrator node an be swapped with any other non-onentrator node wherethe two nodes are not in the same group, hene there are (

|V |−G
2

) neighbour-solutions exept forthe pairs of nodes whih are in the same group. If groups are of equal size there are G×
(

|V |/G−1
2

)of them, whih for |V | = 100 and G = 10 result in 3645 neighbours. This is too many solutions toonsider, hene the neighbourhood must be redued.This redution an be ahieved by limiting the swaps onsidered to only one swap for eah pairof groups, seleting the nodes whih are losest to the other group. This way the number ofneighbour-solutions is redued to (

G
2

) and may be lower if one or more groups have size 1, in whihase they do not have any non-onentrator nodes.A modi�ation of the mathematial model allowing for dividing the network into any number ofgroups, would require us to hange the neighbourhood, suh that the number of groups ouldhange. This an be ahieved by having neighbour-solutions, of groups whih were merged or split.



10.4 Evaluation Funtion 4210.4 Evaluation FuntionThe evaluation funtion used is the objetive funtion value, alulated group-wise, that is theobjetive value is the sum of values of groups (see setion 9.2.2). The feasibility hek is alsoarried out the same way - eah group is heked for feasibility, and if all groups are feasible, thenso is the entire solution.The hosen evaluation funtion does not allow for infeasible solutions. Hene the initial solutionshould be feasible. It may be a good idea to allow for evaluation of infeasible solutions, alulatingthe value e.g. as desribed in the following.The infeasibility of a solution is due to one or more group solutions being infeasible. Hene feasiblegroups an ontribute to the objetive value as usual.An infeasible group has at least one demand with value larger than the apaity of edges (seesetion 6.1). For eah of those demands ij, we require demand ij to use edge ij as the only �owedge and ignore the apaity limit for that edge. Otherwise the group is solved as usual. Theexeeded apaity result in a penalty, whih relate to how muh the apaity is exeeded and tothe size of the group.The ost should be so high that it does not pay o� to end up with an infeasible solution but onthe other hand so low, that it an be aepted during the SA algorithm, suh that other parts ofthe solution spae an potentially be reahed.Doing this would mean that it was not neessary to �nd an initial solution, sine this ould be doneby the SA algorithm. There may be other bene�ts that annot be immediately foreseen, but themodi�ation has not been made. Instead the initial solution is found using algorithms desribedin the following setion.10.5 Initial SolutionIn most ases an initial solution an be easily found using one of the methods desribed in thefollowing. Hene the problem is merely that of �nding an initial solution, whih imply that theSA algorithm �nds a good solution. In general this annot be done and in partiular it does notneessarily imply, that the initial solution should be of low value, but it may be bene�ial. Henethis is what we will aim for when building the algorithms.Finding the initial solution is done in two phases. The �rst phase �nds a low ost initial solution,whih ignore apaities, hene it may be infeasible. The seond phase makes the solution feasibleif neessary. The �ow-ost is ignored, so in fat the solution is low ost with respet to setup-ost.If the �ow-ost dominates the ost of the network, the desribed algorithms will probably notperform well.The �rst phase is tried in three di�erent variants, desribed in the following subsetions followedby a subsetion ontaining a desription on how feasibility is obtained, i.e. the seond phase.The three variants all divide the network into equally sized groups (i.e. groups of size |V |/G), sinethis division tends to have least ost and also has a good hane of being feasible. If not, only fewof the groups tend to be infeasible.10.5.1 Random Initial SolutionA random initial solution is built using the algorithm in �gure 10.2. The algorithm is mainly usedfor omparison with the other algorithms to see if there is any bene�t from using these.



10.5 Initial Solution 43for grp = 0 to |V | − 1Choose one node n at random, whih is in no groupAlloate n to group number (grp (mod G))Figure 10.2: Finding initial solution - Random10.5.2 Simple Low Valued Initial SolutionThis algorithm builds groups in a greedy way to minimize setup-ost for the group onsidered atthe moment. The algorithm is shown in �gure 10.3.for grp = 0 to G − 1Choose one node c at random, whih is in no groupAlloate c to group grp and selet c as onentratordoFind node j losest to c whih is in no groupAlloate j to group grpuntil |V |/G nodes are in group grpFigure 10.3: Finding initial solution - SimpleFirst a previously unseleted node is piked at random and made onentrator. Then the nodeswhih are losest to the onentrator, are put in the same group as the onentrator. This is notthe same as the group having the minimum setup-ost, whih would rather be found by buildinga minimum spanning tree algorithm, but it is a good estimate.The groups whih are built �rst has the best hane of having a low setup-ost, sine they anhose from more nodes to be inluded in the group. On the other hand, the groups built last maynot be able to �nd lose nodes (i.e. nodes with low setup ost to the onentrator), sine these mayalready be alloated to other groups. This is what the next variant of the algorithm addresses.10.5.3 Find Low Valued Initial Solution using AssignmentThis version of �nding a low valued initial solution, onsist of three phases:
• Selet (initially) onentrator-nodes as widely separated nodes
• Assign remaining nodes to the onentrators
• Reselet onentrator nodes as lose nodesAs opposed to the previous version, we try to minimize the setup-ost of the groups in general, notjust for the group we are working with at the moment. The hope is of ourse that this will give abetter initial value,10.5.4 Seleting Initial ConentratorsThe nodes seleted as onentrators are nodes, whih are widely separated. In general it does notmake sense to hoose onentrators as separated nodes, but initially they are only used to identifya starting point for building the groups. The two onentrators hosen �rst are the two nodeswhih are separated the most, i.e. the two nodes that de�ne the diameter of the network. Thenext node seleted as onentrator is the node that has the longest distane to the already seletedonentrators on average. This is ontinued until G nodes have been seleted as onentrators



10.5 Initial Solution 4410.5.5 Assignment of Nodes to GroupsThe seleted onentrators represent a group eah. Remaining nodes is distributed evenly betweenthe groups, i.e. the groups should ontain |V |/G nodes eah if |V | ≡ 0 (mod g), or at most ⌈|V |/G⌉nodes if |V | 6≡ 0 (mod g). This is denoted the group-size.The problem is solved as an assignment problem, assigning eah non-onentrator node to a on-entrator (and hene indiretly a group). A standard assignment problem assigns exatly onefaility to exatly one loation. In order to have equal many failities and loations we opy theonentrators, suh that there is group-size− 1 number of opies of eah onentrator.There should be equally many non-onentrator nodes and sine we have G groups, there shouldbe G times the group-size − 1 non-onentrator nodes. There may be fewer if |V | 6≡ 0 (mod g),in whih ase we add dummy nodes. The dummy nodes an be assigned to any onentrator forfree. Sine more dummy variables an be assigned the same onentrators, the size of some groupsmay be muh less than the upper bound on the size of groups. This is not a problem though, sinefeasibility depends mostly on that no large groups are generated, and if groups are made small itis beause it pays of.The pries we use in the assignment problem are the setup-osts between onentrators and nodes.This way the total distane between onentrators and nodes are minimized, and not, as would bepreferred, the total ost, i.e. the sum of osts of the MST's of eah group.10.5.6 Reseleting ConentratorsGiven the group division, we reonsider the hoie of onentrators. The initial hoie of onen-trator was made suh that the onentrators were separated. This will have a high setup-ost forthe primary group, hene a new seletion is made.The onentrators seleted should be lose in order to minimize setup-ost, hene we start outby hoosing the two nodes, whih are losest, but are in di�erent groups as onentrator nodes.Continuing from this seletion, we selet the node whih are not in any of the groups of the alreadyseleted onentrators, with the least setup-ost distane to the onentrators on average. This isontinued until G onentrators are seleted.10.5.7 Modifying Solutions to obtain FeasibilityIf a solution is infeasible, at least one group is infeasible. If the primary group is infeasible, nodeswith high demand between them are moved suh that they are in the same group. This will reduethe demand �owing in the primary group. If a seondary group is infeasible, it may be the asethat seleting another onentrator will solve the problem. This is so if a single node has a highdemand out of the group, hene making the node the onentrator will relieve the highest loadededge. If this is not enough to ensure feasiblity of the group, one or more nodes are moved toanother group to derease demand in the group.The algorithm for making the primary group feasible is shown in �gure 10.4.Given the group division and onentrator seletion, the required demand for the primary groupis alulated as desribed in setion 9.2.1. Then a node pair in the primary group is identi�ed,whih has higher demand than the apaity of primary edges (if suh one exists). As mentionedin setion 6.1, if the primary group is infeasible suh a demand exists and vie versa. Heneheking whether the primary group is feasible and if not, �nding a node pair with too highdemand is ombined and done by heking that all demands in the primary group does not exeedthe apaity.



10.5 Initial Solution 45while primary group is infeasibleFind node pair i and j whih has a demand that is too high
i and j represents two seondary groups, A and BFind the node k in either A or B (assume it is in group A),whih has the highest total demandto nodes in the other group (i.e. B)move k to group B.Figure 10.4: Making primary group feasibleIf a node pair i and j is found in the primary group with demand larger than the apaity, thetwo seondary groups they represent are identi�ed, denoted A and B. The nodes in A and Bare onsidered. For the nodes in group A the required demand to nodes in group B is measured.This is done symmetrially for the nodes in group B, and the node with the highest demand isidenti�ed. This node is moved to the other group (e.g. if the node is in group A then it is movedto group B and vie versa).In most ases, this relieve the amount of demand on edges, but the algorithm may loop forevermoving the same node bak and forth between the same two groups. This has not been a problem,but if it shows to be a problem, this an be easily solved by introduing some kind of randomnessin the algorithm, suh that it is not neessarily the node with the highest demand whih is moved,but one of the nodes with a high demand.When the primary group is feasible, we try to make the seondary groups feasible if neessary.This algorithm is shown in �gure 10.5.while any group infeasibleMake primary group feasibleFor eah node �nd demand out of seondary groupFind seondary group whih is infeasibleFind the node with the highest demand out of group - node iif i is not onentratorMake i onentratorelseFind the non-onentrator node with the highest demandout of group - node jMove j to other group seleted at randomFigure 10.5: Making seondary group feasibleSeleting whih group to move a node to is hosen at random, but involves the size of the group.The hane of hoosing a given group is inverse proportional to its size suh that the hane ofreating large groups is small.Eah iteration starts out by ensuring that the primary group is feasible. Then demand out ofgroups is alulated, and a group is identi�ed whih is infeasible. In this group the node withhighest demand out of the group is onsidered. If this node is not the onentrator, it is madeonentrator. Measuring the demand out of the group is roughly the same as �nding the highestdemand in the group assuming demand out of the group is in general more signi�ant than internalin group. Hene seleting the onentrator to this node will relieve the group of one of the highestdemands.If the highest demand node is already onentrator, the node with the highest demand, whih isnot the onentrator is moved to another group hosen at random as desribed above. This remove



10.6 Aept Funtion 46the highest demand node pair from the group.Termination is ensured by limiting the number of hanges whih are allowed to 500. Running 500iterations takes fairly short time, and it seems to be enough to �nd a feasible solution if one exists.If none an be found this is simply reported.10.5.8 Conluding Remarks on the Initial SolutionIn fat it does not matter muh whih sheme is hosen, the prie di�erene is not high on the�nal solution found using the SA algorithm, though the initial solution values may di�er muh (seesetion 12.5.2). The initial solution values are ompared with the �nal solutions in setion 12.5.1.Yet another alternative has in fat also been tried. This algorithm starts out by minimizing theprimary setup-ost, and builds groups using minimum spanning trees. The groups built haveunequal size, and hene the hane of �nding an initially infeasible solution is large. In fatthe found solution may be useless sine the seond phase basially breaks down the good valuedsolution to obtain feasibility. Hene unless the demand is so low that �nding an initial solution isnot di�ult, this alternative version does not �nd good initial solutions.10.6 Aept FuntionThe aept funtion determines whether a worse solution should be aepted or not. The haneof whether a neighbour-solution is aepted depend on the temperature. The SA algorithm startsout at a high temperature and lowers the temperature as it runs, hene lowering the temperatureshould lower the hane of aepting a worse solution.The di�erene in solution value between the urrent solution and the neighbour-solution value alsoin�uene the hane of aepting a worse solution. If the di�erene is low, there should be a higherhane of aepting a worse solution than if the di�erene is high.In [17℄ it is suggested that the funtion in equation 10.1 is used ompared with a uniformly dis-tributed number between 0 and 1. If the alulated value is larger than the randomly foundnumber, the neighbour-solution is aepted.
p =

1

1 + exp( val
temperaure )

(10.1)We require val and temperature to be positive, sine this gives funtion values between 0 and 1.
val is the alulated di�erene between the solution values in perent as given in equation 10.2.

val =
eval(nbh) − best(current)best(current)

(10.2)The di�erene is alulated in perent of the solution value to avoid dependene on the osts inan instane of the HNP. The alulated perentage does depend on the number of nodes, sineneighbour-solutions onsisting of moving one node or seleting a new onentrator in one groupin�uenes the objetive value relatively more in a network with few nodes than in a network withmany nodes.



10.7 Stopping Criteria 47Equation 10.1 has the desired harateristis - if val is inreased, the funtion value derease, andit has a lower hane of being greater than the randomly alulated number and thus aepting aworse solution. Also as temperature is lowered, the funtion value derease, and hene there is alower hane of aepting a worse solution at lower temperatures.10.6.1 Random GenerationThe random generation used is the standard Random.h library, whih if fed with the same seedprodues the same sequene of random numbers between runs. The seed used is onstant in orderto be able to reprodue results whih failitates easy debugging.10.7 Stopping CriteriaThe stopping riteria used is a sliding window stopping riteria, i.e. when no new solution has beenaepted in 200 iterations, the algorithm is terminated.In some situations it has been the ase that the inner loop in the algorithm (see �gure 10.1), whih�nds a feasible solution annot �nd any feasible solution. This situation arises only if the totaldemand in the network is high, and also seems to require that the group-neighbours are limitedas desribed in setion 10.3.1. Given this, the algorithm will never get out of the inner loop, andhene will not terminate.To make sure the algorithm terminates we ount the number of infeasible solutions found, andif this exeeds 500, we simply stop the algorithm. An alternative would be to not limit thegroup-neighbours, in whih ase more solutions an be reahed and hene there is a better haneof �nding feasible solutions. This ould be done dynamially, if more than e.g. 100 neighboursolutions had been tried and none were feasible. The problem does not arise often though, so thishas not been tried in pratie. However it would be a good idea to implement and easy it seems.The total number of iterations (in the outer loop) is ounted, and usually it is in the order of 3000.10.8 Initial TemperatureChoosing initial temperature and ooling rate in general whih gives good results is not easy.Usually a partiular problem instane is investigated and the parameters are adjusted aordingly.Sine we test for many instanes this is not a possible way to do it, thus we �nd the parametersfor problem instanes in general.Care have been taken to make sure that the hoie of temperature does not depend on the edgeosts, i.e. if the same fator is multiplied on eah edge ost, using the same temperatures shouldgive the same results. This is ahieved by alulating the ost di�erene between the urrent- andthe neighbour-solution in perent rather than real osts in the aept funtion (see equation 10.2).The number of nodes in the network, though, in�uene the temperature, sine the number ofnodes in�uene the alulated deviation. For e.g. small networks moving a node from one group toanother may a�et the objetive funtion value relatively more than moving a node between twogroups in a large network, sine less of the network is potentially a�eted.Thus for large networks, the initial temperature should be lower than for small networks, sine thealulated val is probably lower for larger networks (see equation 10.1).



10.9 Cooling Rate 48As mentioned a general rule of thumb is that at the initial temperature, between 30% and 70% ofworse solutions should be aepted, hene this is aimed for. Given the aept funtion, experimentsshow that this is the ase at approximately the temperature 0, 75× |V |−0.25, so this value is used.The initial temperature is depited in �gure 10.6 as funtion of the number of nodes in the network.
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Number of nodes in networkFigure 10.6: Initial temperature as funtion of the number of nodes in the networkThe �gure shows, that using this funtion to determine the initial temperature, the initial temper-ature is lower for large networks as wanted.Experiments have been arried out modifying the initial temperature, but there does not seemto be any general improvement by lowering or raising the oe�ient or the fator in general. Ifmodi�ed dramatially, suh that e.g. the temperature is lose to zero or very large (in reality loalsearh and random searh respetively) the performane drops.In fat the temperature also depends on the number of groups, but no meaningful dependene havebeen identi�ed.10.9 Cooling RateThe ooling rate or update funtion is hosen to be a fator, by whih the temperature from thelast iteration is multiplied. The fator should be low suh that random walk in the searh spaeis allowed, but also there is no reason for wasting time heking solutions totally at random. Thefator is onstruted as a funtion of the number of nodes, sine as desribed above the temperaturedepends on the number of nodes.The fator is hosen suh that it allows for approximately 1000 iterations to be run when onsidering10 node networks, and 3000 iteration to be run when onsidering 100 node networks. Experimentsshow that this is approximately at the point where inreasing the number of iterations does notgive any improvement in solution quality, and if the number of iterations is dereased (at least forthe large networks) the solution quality derease as well.The fator used is 0.9978−0.0015×|V |−0.5. The update fator is depited in �gure 10.7 as funtion



10.10 Saving Solutions for Seondary Groups 49of the number of nodes in the network.
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Number of nodes in networkFigure 10.7: Update fator as funtion of the number of nodes in the networkThe �gure shows, that using this funtion to determine the update fator, the update fator islarger for networks with many nodes than for networks with few nodes. Hene the temperaturederease slower for networks with many nodes than for networks with few nodes. In fat testsindiate that the temperature derease for networks with many nodes should be even slower, henethe update fator should be inreased for networks with many nodes (see setion 12.5.6).10.10 Saving Solutions for Seondary GroupsThe solution value of a seondary group depends only on what nodes are in the group and whihnode is the onentrator, it does not matter how the rest of the nodes are divided, and whih nodesare onentrators in other groups. For HNP's whih are to be divided into at least 3 groups, theneighbour-solutions of a solution has at least one group in ommon with the solution. Thereforethere is no need to realulate the solution value of at least this group - the solution value an bereused.The Simulated Annealing algorithm may also return to previously onsidered solutions due to thebuilt in possibility of aepting worse solutions. In this ase it is also possible to reuse values foralulated groups.The number of groups generated is fairly small - heking one neighbour-solution will generateeither one (in ase of onentrator hange) or two (in ase of node move) new groups, and in someases the groups are known already. If around 3000 HNP solutions are onsidered (whih is realistiin the urrent implementation), the maximum number of groups is 6000.As mentioned in setion 9.4 we annot simply index all possible groups into an array, sine thesize is too large. Instead hashing is used to save all alulated solution values. Open hashing isused, i.e. a linked list of elements is assoiated with eah index in the hash-table, and sine thehash-table it self does not take up muh spae (eah element is a 32 bit pointer), we alloate morethan enough spae (i.e. 20000 elements) to redue the hane of hitting the same index.



10.10 Saving Solutions for Seondary Groups 50Spae is not everything, it is also important, that the hash-funtion hosen does not give the samehash-values for the groups onsidered. Instanes are represented as binary arrays of length |V|,whih ontain 1 if a node is in the group and 0 otherwise. The onentrator, c of the group is alsoused, i.e. a number between 0 and G − 1. The hash funtion used is shown in equation 10.3.
n · G + c (mod hashtablesize) (10.3)n is the binary array read as a number and  is the onentrator number.The e�ieny of the hash-funtion has not been measured systematially, but for a few examplesthe number of on�its has been measured, and in the examples it works well, even though morethan hashtablesize/2 elements are put in the hash-table. Few equal hash-values are omputed andthe hash-values omputed more than one, are not generated more than a few times.



51
Chapter 11Tools and Data-�les
Generation of random HNP's, solution of the HNP's by CPLEX or the developed HNP solvers andthen �nally visualizing the found solutions graphially have required development of tools. Thetools work on �les ontaining data for HNP's. The tools and data-�les are desribed in this hapter.In addition to this, tools (sripts and make �les) have been used, e.g. for ease of development andperformane tests. These tools will not be desribed any further.11.1 OverviewThe �les all desribe one instane of the HNP, and are identi�ed by their extensions. The �les are:.ran Foundation for generation of HNP, i.e. number of nodes and groups and amount of totaldemand..xy HNP desribed by points in a x-y grid and demand between eah pair of nodes..net HNP desribed by setup-ost, �ow-ost and demand between any pair of nodes..lp Input �le for CPLEX, whih ontains onstraints..mst Solution �le output from CPLEX, giving values of eah deision variable..sol Solution �le giving objetive value, primary and seondary edges and for eah edge the �owon the edge.The developed tools are the following:RanToXy Generate random HNP problem in .xy format following spei�ation in a .ran �le.XyToNet Convert HNP problem desribed by a .xy �le to a .net �le.NetToCplex Convert HNP problem desribed by a .net �le to a .lp CPLEX input �le.MstToSol Convert a solution-�le generated from CPLEX to a .sol solution �le.ShowGraph Given a .xy �le and a .sol �le, draw graph in a x-y grid.The tools are implemented using Java. The data-�les-�ow and the tools are depited in �gure 11.1.Data-�les are in retangles and tools are in retangles with rounded edges. The tools SolveExatand SimAnn are the developed solution programs, whih solve the HNP optimally and heuristiallyusing simulated annealing respetively. CPLEX version 7.0 is used.
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.ran

RanToXy

.xy

XyToNet

.net

NetToCplex

.lp

CPLEX

.mst

MstToSol

.sol

ShowGraph

SolveExactSimAnn

Figure 11.1: Tools and data-�les11.2 Graph GeneratorThe RanToXy tool generates a HNP instane by setting up a x-y grid, and plaing nodes randomlyin the grid. Nodes annot be in the exat same position in the grid, hene if a node is alreadywhere a new node is to be plaed, a new position is generated.The total demand in the network is ontrolled by a parameter(denoted the wished total demand)supplied in the .ran �le. Initially the demand is generated by �rst generating a number givingthe amount of demand eah node generates. Then demands are assigned values equal to the sumof the two endpoint nodes of the demand. The total sum of demand in the network is alulatedas well. This alulated total demand is not equal to the wished total demand, hene we multiplyeah demand by the same fator, suh that the total demand is as wished. The fator is the wishedtotal demand divided by the alulated total demand.Other shemes are possible, e.g. ompletely random, i.e. eah parameter (e.g. seondary �ow-ost between two nodes) with no relationship to e.g. seondary �ow-ost. Also demands an begenerated only for some of the node pairs, but for teleommuniation networks it seems fair thatall nodes ommuniate with eah other.The grid based graph generator has mainly been hosen for its simpliity and its ease of visualiza-tion. The question is whether the networks generated are representative for the networks whih areto be solved for real world appliations. Teleommuniation networks are swithes and ables in aplane, but the setup-ost does not depend only on the distane, i.e. ost of digging down a able,but also on buying ommuniation equipment, whih an handle ommuniation on ables. Theprie of ommuniation equipment is ertainly not linear in distane but would rather be modelled



11.3 HNP Files 53as a �xed ost independent of distane.For the arried out tests the grid based graph generator fully su�es, regardless it does not modelteleommuniation networks exatly.11.3 HNP FilesThe .ran, .xy and .net �les desribe a HNP. They are text �les, where eah line ontain a stringexplaining what data is next and the data. The order of the lines is important, the �rst string ofeah line is ignored by the tools reading and writing the �les, it is only there to allow humans toread and modify the �les.The three �les all ontain the number of nodes, number of groups, apaity of primary and se-ondary edges and the maximum number of nodes in eah group. The .ran �les additionallyontains the size of the grid to plae the nodes in, minimum and maximum demand and ost fora unit-distane of primary and seondary �ow- and setup-ost.The .xy �les ontain the generated demand and the position of nodes, instead of a minimumdemand and a maximum demand.The .net �les ontain a desription of networks, whih do not require a grid, instead the setup-ostand �ow-ost for primary and seondary edges are spei�ed for eah pair of nodes.The grid desription is suitable for visualizing networks, sine distanes are proportional to thesetup-ost and the �ow-ost (and primary and seondary osts are also proportional), but theyalso prevent the desription of networks where this proportionality does not exist. In general thisis not preferable, hene the solution algorithms do not use the grid desription, but the generaldesription.11.4 CPLEX SolutionIf CPLEX is used to solve HNP's, .lp �les, listing objetive funtion and onstraints are required..lp �les and hene the onstraints are generated by NetToCplex.CPLEX allows for outputting a .mst �le, whih gives the value of eah deision variable. This �lean be onverted to a .sol �le, whih ontain an extrat of the .mst �le giving objetive valueand primary and seondary edges. This is done by MstToSol.11.5 Solution FilesSolution �les .sol ontain objetive value, primary and seondary edges the amount of �ow oneah edge. Sine the path for eah demand is not stored in the �le, the values of the �ow-variablesannot in general be determined. If the solution is a tree, the paths an be easily found, sine pathsare unique in trees. If the solution is not a tree, additional information is needed to onstrut thepaths. At runtime paths are onstruted for eah group, hene this information an be reorded,in fat at the moment it is possible to get this information for the �nal found solution written tothe sreen. From this the full paths an be onstruted as desribed in setion 3.3.



11.6 Visualizing Solutions 5411.6 Visualizing SolutionsShowGraph is used to visualize solutions. ShowGraph requires a .xy �le giving the oordinates ofeah node in the grid and a .sol �le. Hene the solution is drawn by setting up a grid, plaingnodes, and drawing primary edges in red, and seondary edges in blak. The primary nodes(onentrator nodes) are all nodes with an inident primary edge, and sine eah group ontainsexatly one onentrator node, a group an be identi�ed by �nding all nodes, whih an be reahedby following seondary edges starting out at a onentrator node.
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Chapter 12Performane Tests
12.1 Problem Instanes UsedAn HNP instane as de�ned by a .ran �le determines number of nodes, number of groups, apaityof primary and seondary edges, primary and seondary �ow-ost and setup-ost for edges relativeto the edge length and a value determining the total amount of �ow in the network.The generated problem instanes are mostly based on how teleommuniation networks works(desribed in setion 2). But sine �ow-osts are zero in teleommuniation networks, and �ow-ost is inluded in the de�nition of HNP, �ow-ost will be inluded in the problem instanes used.For equipment ost and �digging down a able� ost in teleommuniation networks, it seemsthat only �digging down a able� depends on the distane. In the generated problem instanes,setup-osts are proportional to the distane.All the generated problem instanes use the values in table 12.1 unless otherwise stated.Parameter ValuePrimary edge apaity 400Seondary edge apaity 100Primary setup-ost for unit distane 400Seondary setup-ost for unit distane 200Primary �ow-ost for unit distane 1Seondary �ow-ost for unit distane 2Grid size - X 100Grid size - Y 100Table 12.1: Parameters for the data setFirst we remark that the two grid parameters only in�uene the objetive value of the networkproblem not the problem it self. The grid is used for alulating distanes, and sine all ostsare relative to the distane, modifying the grid will for a given solution hange the value of theobjetive funtion but not the solution. The parameters are set to 100.The apaity values relate to the demand and the �ow-ost. If the apaity is inreased by a fator,the demand is inreased by the same fator and the �ow-osts are dereased by the same fator;the problem only di�ers by the same fator in the objetive value. The ratio between the edgeapaities, however is �xed to 4, sine this is the ase for teleommuniation networks. Capaityis set to 400 for the primary edges and 100 for seondary edges.



12.1 Problem Instanes Used 56The setup-osts and �ow-osts are hosen, suh that they have equal impat on the objetivefuntion value. Also, sine the ratio between equipment osts on di�erent levels is 2 in teleom-muniation networks we will use this for the setup-ost as well (primary is highest), and the ratiobetween the �ow-osts is also set to 2, but here the seondary is highest. We set the primary�ow-ost to be 1 and the seondary �ow-ost to be 2.Given these values, the setup-ost ontributes to the objetive value with at least the same amountas the �ow-ost. This is so sine to use an edge the setup-ost of the edge has to be paid, andthe maximum amount of �ow-ost to pay is the apaity times the �ow-ost, whih is exatly thevalue of the setup-ost in both the primary and the seondary ase.We therefore have three parameters to ontrol, namely the number of nodes, the number of groupsand the maximum demand. The number of groups is set to approximately √

|V |, usually a bitbelow.The total amount of demand a network an arry depends heavily on the number of nodes, soit does not make sense to test networks with di�erent number of nodes with the same demand.Instead we reate three groups, where the total demand is light, medium and heavy respetively.The groups are found by experimentally generating networks with di�erent number of nodes, anddi�erent amount of demand.The medium group should have a demand amount, suh that tree solutions exist, but are not foundby the heuristi. For networks whih an be solved optimally, the optimal tree solution is foundto ensure that one exists. For networks with more nodes, the heuristi solutions are investigated,and the total demand is seleted suh that heuristi solutions are not trees but relatively few extraedges are in the solution.The found solutions are plotted and smoothed, whih gives the demand for the medium group.The demand of the light group is 50% of the medium group, and the heavy group has a totaldemand value of 30% more than the medium group for networks with 4-14 nodes, 40% higher fornetworks with 15-40 nodes and 50% more for networks with 45-100 nodes. The demand is reduedbelow 50% for networks with few nodes, sine otherwise the heuristi annot �nd feasible solutionsat all.The test instanes generated have between 5 and 100 nodes, and instanes are for few nodesgenerated with gaps between number of nodes of only 1, ending with gaps of 10 at the 100 nodeinstane. More networks with few nodes are generated sine they are the ones whih an be solvedoptimally, and for the heuristi they do not take muh time to solve.The total demand for the groups are depited in �gure 12.1.We test the NHNP algorithm by it self, hene we need to generate NHNP instanes. This orre-sponds to HNP problems where the number of groups is 1. Hene we reuse the above generateddata-sets, but require the number of groups to be 1. The generated instanes have between 4 and20 nodes, in gaps of 1. The demand is depited in �gure 12.2.Using the same demand amounts as for the HNP's may be a problem, sine the demand amountwere hosen suh that network with hierarhies ontained trees. Sine we do not have any highapaity edges in the tested NHNP problem, the demand may be too high. On the other handwe have more possibilities of edges so a feasible solution probably exists when allowing non-treesbut tree solutions are unlikely to exist. The tests we arry out are tests of the heuristi solutionalgorithm where non-trees are allowed, hene this should not be a problem.Generating the networks is done by RanToXy desribed in setion 11.2.Usually we generate 5 instanes with the same number of nodes, groups and demand, i.e. the same.ran �le is used. The results reported are averages on the 5 instanes.
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Figure 12.1: Amount of demand in networks for test of HNP
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Figure 12.2: Amount of demand in networks for test of NHNP12.2 TestingThe tests are divided into four setions, test of the optimal solution algorithm, test of the heuristiNHNP solution algorithm, test of the heuristi HNP solution algorithm and �nally omparison ofheuristi solution values with the optimal solutions.The di�erent versions of the algorithms are in most ases implemented by using #define's. If e.g.a partiular bound is used in plae of another, this an be ontrolled by de�ning a single parameter



12.3 Performane Tests of the Optimal Solution Algorithm 58and reompiling.Times has been measured by alls to getrusage, whih gives the system time and user time spentby the program as opposed to real time. The user time is reported, whih is by far the mostsigni�ant. The reported time inlude everything the program does, inluding output of resultsand log-generation. Log generation is, however set to a minimum.Tests are run on a SUN Blade 1000 with 2 750 MHz proessors and 2Gb ram or on anotherSUN mahine with 12 proessors and 12Gb, whih seems to solve problems approximately 5 timesslower than the SUN Blade (Exat information is unfortunately not available). For a given test-runthe di�erent instanes are of ourse run on the same mahine, but results annot neessarily beompared aross test-runs. In most ases the heuristi algorithm has been run on the SUN Bladeand the optimal algorithm has been run on the slow mahine.The programs do not use muh ram - in most ases below 5Mb. The mahines were used by otherpeople while testing, but sine the time measured is the CPU time used, this has little (if any)in�uene.The tests are run from what is onsidered normal, i.e. as desribed in the previous hapters. Ifdeviating from this, it will be stated expliitly.In most ases we will run di�erent versions of the algorithm, whih may and may not �nd di�erentsolutions. The solution with the best value is used as referene point, and omparison is then donewith respet to this best found solution. Hene at least one of the versions of the algorithm willhave a deviation equal to 0, though better solutions probably exist.12.3 Performane Tests of the Optimal Solution AlgorithmThis setion ontains tests of the optimal solution algorithm. In most ases, the maximum numberof nodes in networks are 9 or 10. In pratie it is possible to �nd solutions for networks with morethan 10 nodes, but sine we run tests on many instanes the time required to solve the problemsis substantial and does not ontribute noteworthy to the disussion, hene it has not been done.12.3.1 BoundsTo measure the e�et of using bounds, di�erent versions of the optimal solution algorithm havebeen run on the standard test-sets. The test instanes have been run in the standard setup up,where all bounds are used, and in a version where the setup bound is not used and a version wherethe �ow bound is not used (see setion 5.5).When the tests are run, the number of Net objets generated is ounted and the runtime ismeasured. A branh reates up to two Net objets, and eah is bounded, hene this is the numberof times the bound value is alulated. This ount indiates how good a bound is, but if the boundtakes too muh time to ompute, the total runtime may inrease though the number of Net objetsderease.In �gure 12.3 the runtime of the normal algorithm is ompared with the runtime of the algorithmwithout use of the setup-bound.Surprisingly there is only little improvement. The number of Net objets is only redued with1%, hene no major improvement is ahieved, but the bound is fast to ompute so the runtime isroughly the same regardless of if the bound is used.In �gure 12.4 the runtime of the normal algorithm is ompared with the runtime of the algorithmwithout use of the �ow-bound.
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Figure 12.3: Runtime with and without using setup bound
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Figure 12.4: Runtime with and without using �ow boundUsing the �ow bound inrease the runtime severely. The number of generated Net objets isredued by only 3%, hene the gain from the redued number of objets is so low, that it does noteven ome lose to make up for the time spent on alulating the bound. This omes as a surprise- in fat early performane tests showed, that the �ow-bound ontributed to an improve in theruntime.



12.3 Performane Tests of the Optimal Solution Algorithm 6012.3.2 Reuse of Group SolutionsReuse of group data are very important for inreasing the performane of the algorithm. It reduesthe amount of time spent on solving single NHNP's, sine already alulated values are reused. Theruntimes have been measured for the standard test-set, where demand is medium, for networks ofsize up to 9. Finding the solution for the 10 node networks took more than 4 hours when reuseof group solutions was used. The solutions are not found without reuse of group solutions, sinethe expeted runtime is 7 hours, alulated from the di�erene in runtimes for the networks with9 nodes. Results are shown in �gure 12.5.
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Figure 12.5: Runtime with and without reuse of group dataThe graph shows that as expeted, the algorithm performs substantially faster. The runtime isredued with approximately 40%.12.3.3 Limit on Group SizeWhen solving a HNP to optimality, the time spent on solving groups with many nodes is muhhigher than the time spent on solving groups with few nodes (see setion 9.3). This is so though fewgroup-divisions exist where one group is large and also few possible large groups exist omparedwith the number of medium sized groups. Nevertheless muh time is spent on the large groups,and also this statement is true regardless of whether reuse of group data are used or not.In order to be able to �nd solution values for larger networks and in order to speed up proessing,limiting the maximum size of groups is onsidered. In some ases it may even be a natural partof the spei�ation of a problem instane, sine it may be the ase that too large groups are notinteresting. Also it is often not the ase that the optimal solution is among the solutions were largegroups exist, but it annot be known for ertain.We run tests using the medium demand test set and �nd solutions using max group size on 5,6 and 7 nodes. 5 instanes of eah network is solved. The result is shown in �gure 12.6 whereruntime is depited as a funtion of the number of nodes in the network, for eah of the three limitgroups and the normal way, i.e. no limit is used.
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Figure 12.6: Runtime as funtion of number of nodes in networkAll networks are divided into 3 groups exept for the 15 node networks whih are divided into 4groups. Hene limiting the group size to 5 nodes does not make a di�erene for networks with 7nodes or less, sine no valid group division an be made ontaining groups of size larger than 5.The same foes for the other limit groups, thus tests are run only for networks of size larger thanor equal to the seleted limit plus 3.The solution value is investigated to hek that the optimal solution is found. For networks of sizeup to 10 nodes, the optimal solution is found in all ases. For 11 nodes an upwards, the optimalsolution is unknown, hene instead we ompare the solutions found using di�erent limits on thegroup size.For all the networks with 11 nodes, the solutions are in all ases the same regardless of the limitused. For two networks with 12 nodes, using limit 7 instead of 6 improve the solution found by lessthan 1%. The same solutions for the 3 remaining 12 node networks are found using either limit6 or 7. The di�erene between using limit 5 and 6 is a bit higher - one solution for the 12 nodenetworks is the same using either limit 5 or 6, and for the remaining four 12 node networks, thesolution value found using limit 5 is less than 5% higher than the solution found using limit 6.No solutions are found for the generated networks of size 13. The runtime drops (at least for limit5) inreasing network size from 12 to 13 nodes. The explanation seems to be that using suh a lowlimit, also limit the minimum size of groups indiretly. For a network with 13 nodes, no groups ofsize less than 3 an be used, sine all nodes are to be put in a group, hene having a group of sizee.g. 2 will result in that one of the remaining groups have more than 5 nodes. Hene fewer groupdivisions are possible and the runtime drops.For the size 14 networks, 2 feasible (out of 5) solutions are found using limit 5 and 6. The solutionsfound using limit 5 is approximately 10% worse than the solutions found using limit 6. The reasonis that for network with 14 nodes divided into 3 groups with a maximum group size of 5, the onlypossible group sizes are 4 and 5. Hene a lot of solution possibilities are ut away.The 15 node network is divided into 4 groups, hene the found solution may be better than for the14 node network, sine there are still room for small groups. The solution annot be found usinghigher limits, though, so there is no solutions to ompare with.



12.3 Performane Tests of the Optimal Solution Algorithm 6212.3.4 Bound Using Best HNPThe best known solution to the HNP problem an with solution values for some of the alulatedgroups be used as at least an initial bound (see setion 9.5). The bound is only used whenalulating the solution value for the primary group, and as disussed, additional use of this boundould be added when alulating the solution value for the seondary groups as well.To see if it is worth trying this, we will test what e�et using the bound has on the runtime at theurrent form. Figure 12.7 shows the runtime with and without using this way of bounding.
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Figure 12.7: Runtime with and without using best HNP as boundThe �gure shows, that only marginal improvements are ahieved, but additional improvement anbe expeted if used on the seondary groups.12.3.5 Dependeny on the Total Amount of DemandIn this setion, the runtime is onsidered in relation to how muh the total demand is in networks.The hypothesis is, that with high demand, the bounds do not funtion well, sine it is hard toeven �nd a solution, and even harder to �nd a good one, thus it does not matter muh that agood bound value an be alulated. In partiular if a solution does not even exist the boundsalulated are useless.In the branh and bound proess, the amount of demand on eah edge is alulated iteratively andit is heked that this amount does not exeed the apaity (see setion 5.4). In networks withheavy demand, this enables us to fathom more solutions than in networks with light demand, henethe networks with heavy demand bene�ts more from this than the networks with light demand.The runtimes for the di�erent demand groups are shown in �gure 12.8.This shows that for light demand, the solution is found faster than for medium and heavy demand.For the heavy demand group, no solution at all is found, sine no tree-solution exist. Here a smallimprovement is attained ompared with the medium demand group. As desribed above, this is
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Figure 12.8: Runtime for instanes with di�erent total demand amountprobably beause of the iteratively alulated demand of edges and omparison of apaities whihdetets fairly quikly that an edge exeeds apaity if demand is heavy in the network.12.3.6 Setup-Cost/Flow-Cost ratio e�et on the Flow BoundThe �ow-ost bound did not work well, in fat the runtime inreased using it (see setion 12.3.1).The generated test instanes have �ow-ost lower than or equal to the setup-ost (see setion 12.1).The ontribution of ost in the solution value from setting up edges is usually muh higher thanthe ontribution from �ow though.In this setion we will measure the e�et of the �ow bound for di�erent setup-ost/�ow-ost ratios.The setup-ost/�ow-ost ratio is de�ned as the setup-ost for an edge divided by the �ow-ost foran edge times the apaity. Hene this is two di�erent measures but they are of ourse related.In the test data used so far this ratio is the same for both the primary and the seondary edges(namely 1). The same ratio for the primary and seondary edges is used in this test as well.The ratio is ontrolled by modifying the setup-ost, and thus if primary setup-ost is hanged by afator, the seondary setup-ost is hanged with the same fator, suh that the setup-ost/�ow-ostratio is the same for both primary and seondary edges.The runtime is measured for 5 instanes of a HNP with 9 nodes, demand is medium and theruntimes reported are averages. The result is shown in �gure 12.9.The �gure shows the runtime as a funtion of the �ow-ost/setup-ost ratio, and two versions ofthe algorithm are used, one whih use the �ow bound and another one, whih does not. It doesnot seem that the ratio has any in�uene on whether the �ow bound should be used.
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Figure 12.9: Flow bound dependeny on the setup-ost/�ow-ost ratio12.3.7 Capaity In�uene on Flow BoundThe �ow bound performs di�erently depending on the apaity. The apaity has been varied fora network with 8 nodes, the result is shown in �gure 12.10.
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Figure 12.10: Flow bound dependeny on the apaityThe apaity of the seondary edges is one fourth of the primary apaity. The �gure shows, thatif the apaity is above 600 and �xing the demand and osts at their urrent values, the �ow boundshould be used, whereas if it lower than 600, the �ow bound should not be used to obtain the best



12.4 Performane Tests of the Heuristi Algorithm for NHNP 65performane. Sine the standard test sets use a apaity of 400, the �ow bound should not havebeen used, sine a better performane would have been obtained without it.12.4 Performane Tests of the Heuristi Algorithm for NHNPIn this setion the NHNP algorithm is tested separated from the HNP algorithm.12.4.1 Loal SearhThe e�et of running loal searh with the two neighbourhoods are measured and ompared withnot running loal searh at all. The simple version of loal searh has the neighbourhood onsistingof solutions where an edge is either added or removed, and the neighbourhood of the extendedversion allows in addition for swapping edges, i.e. an edge is added and one is removed (seesetion 6.5).The tests are run on the medium demand group, and results are depited in �gure 12.11 showingdeviation from the best solution, and �gure 12.12 shows the runtime.
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Figure 12.11: Deviation from the best solution with and without loal searh with varying neigh-bourhoods.As expeted the extended algorithm obtains the best solutions, whereas its runtime inreasessubstantially with the number of nodes. When used as a subroutine in solving HNP's, the runtimefor both the fast and the extended version exeed what we onsider reasonable for networks withmore than 15 nodes. Also solving networks with more than 10 nodes takes too muh time usingthe extended version.Thus when used as a subroutine, the neighbourhood used depend on the number of nodes in thenetwork. Up to 10 nodes, the extended neighbourhood is used, between 11 and 15 nodes, thesimple neighbourhood is used, and if networks with more than 15 nodes are to be solved, no loalsearh is used at all.
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Figure 12.12: Runtime with and without loal searh with varying neighbourhoodsIf the extended neighbourhood is used regardless of group sizes, the HNP algorithm will in someases not �nish in reasonable time, sine muh time is spent solving a single group. Runs have beenseen where less than 500 iterations of the simulated annealing were run, but the runtime exeeded10 hours.The exat hoie of where to use whih neighbourhood an be used to ontrol the amount of timespent on a NHNP, and then indiretly the total runtime of the HNP algorithm. But as mentionedin setion 6.5, the idea of swithing neighbourhood at a �xed number of nodes is rather in�exible.An alternative algorithm whih allow more ontrol is a simulated annealing algorithm. It would beeven better to use an algorithm, whih ould �nd a lower bound on a NHNP fast. This algorithmould be used by the HNP algorithm as desribed in the following.Assume the HNP algorithm at some point has a urrent best solution and has seleted a neighboursolution. The neighbour solution modi�es either one or two seondary groups and the primarygroup ompared with the urrent best solution. In order to �nd out whether the neighbour solutionis better than the urrent best solution, it may not be neessary to alulate the value of theneighbour solution, a lower bound may su�e, if it is higher than the value of the urrent bestsolution. In this ase it is not better than the urrent solution, and it may be disarded (possiblyaepted anyway beause of inherent randomness in the HNP algorithm).The bound value of the neighbour solution an be alulated by summing the value of the groupswhih are unmodi�ed from the urrent best solution, and alulating lower bounds on the remaininggroups.12.4.2 Path Assignment to DemandIn setion 6.4 we argued that the paths should be assigned to demands in order of demand, whih isdenoted the normal algorithm. Possibly paths should be assigned to demands ij where edge ij wasinluded in the solution before assigning paths to remaining demands in order of demand, whih isdenoted the simple algorithm. This was done to make sure a relieve edge exists (see setion 6.4).



12.4 Performane Tests of the Heuristi Algorithm for NHNP 67In most ases suh an edge exists anyway but this is not good enough, we require that if a solutionexists, then a solution has to be found and hene a relieve edge should exist. Thus two optionsexists. Use the simple algorithm or try assigning paths to demands in order of demand (i.e. thenormal algorithm) and if at some point no relieve edge exists, restart using the simple algorithm(see setion 6.4).Both algorithms have been run on the standard test set of NHNP's. The solution values andthe runtimes are ompared, sine both may be in�uened. The test is run with medium demandand 5 instanes are generated for eah network size. The results are shown in �gure 12.13 and�gure 12.14.
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Figure 12.13: Runtime for the two versions of the path assignmentWe have tested using the two di�erent neighbourhoods in the loal searh depending on the numberof nodes in the network as desribed in setion 12.4.1. This is the reason the runtime inrease withthe number of nodes until from 10 to 11 nodes where the runtime drops, inrease until 15 nodesand drops again and �nally inrease from 16 nodes and upwards.In general it does not seem to be the ase that one of the algorithms are faster than the other,though for networks with less than 11 nodes, the normal version of the algorithm seems to befastest, and for networks with more than 15 nodes the simple version is fastest. A onservativeonlusion is that the runtime of the algorithm depends entirely on the neighbourhood hosen.The deviation is shown for single instanes, and for eah number of nodes 5 points exist for eahalgorithm (i.e. normal and simple). Many of the points has 0 deviation and hene falls at the samepoint. In most ases the normal version of the path assignment algorithm performs better thanthe simple version, exept for the single network with 17 nodes, where the deviation is 19% fromthe solution found with the simple version of the algorithm.It also seems, that when using some sort of loal searh (for up to 15 nodes), the normal versionis the best, hene a onlusion is that whih algorithm to use (the normal or the simple one)depends on whether loal searh is used. The hoie may also depend diretly on the size of thenetworks onsidered, but sine the hoie of algorithm does not seem to matter muh, this idea isnot pursued.
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Figure 12.14: Deviation for the two versions of the path assignment algorithm12.5 Performane Tests of the Heuristi Algorithm for HNPIn this setion we test the simulated annealing algorithm whih solves the HNP. The performane ofthe simulated annealing depends ritially on the hoie of parameters for the simulated annealing.Usually they are modi�ed for one partiular problem instane, but this is not possible in pratiefor all the generated test instanes, sine there are too many. Instead we will use the parametersspei�ed in setion 10.8 and 10.9 for all tests.12.5.1 The Value of the Initial Solution Compared with the Final Solu-tionOne possibility to solve a HNP is to run a greedy heuristi as the ones whih are used to �ndthe initial solution. The heuristis used for �nding the initial solution are not optimized to �ndthe best valued solution, but rather to �nd a feasible solution whih is a good foundation for thesimulated annealing algorithm. Nevertheless omparing the initial solution with the �nal solutionan give an idea on how well the simulated annealing algorithm performs.The initial solution is found in three di�erent ways using the three algorithms random, simple andassignment (see setion 10.5). The tests are run on the medium demand test set, 1 instane eah.Using the three algorithms we �nd an initial solution and reord the value of the initial solution.For all three runs we also reord the �nal solution, and selet the best of the tree. For theses fourgroups, the solution values are depited in �gure 12.15.As expeted the solution values are best for the assignment algorithm and worst for the randomalgorithm. For networks with more than 15 nodes, the minimum improvement from using theassignment algorithm to the �nal solution is 7%, and the best improvement is for the 100 nodenetwork whih is 18%.
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Figure 12.15: Solution value as funtion of number of nodes for the three initial solution algorithmsompared with the best solution12.5.2 Finding Initial Solution for Heuristi Solution of NHNPFinding an initial solution has an e�et on how good a solution we end up with. But it is notneessarily the ase that the least ost solution is the best to start out with. In this setion wetest what e�et the three algorithms for �nding the initial solution has on the �nal solution. Thethree shemes are a random initial solution a simple low valued solution and a low valued solutionfound using the assignment algorithm (setion 10.5).The three algorithms are run on the standard test-set, one instane and medium demand. Theruntime of the three algorithms is in the order of seonds, hene sine the runtime of the simulatedannealing algorithm is muh higher, the runtime of the algorithms for �nding the initial solutiondoes not matter muh.The solution value is depited in �gure 12.16 showing the deviation from the best solution as usual.There is no general onlusion from this - the random way of �nding the initial solution may bebetter than the found low valued solution. The simple way of �nding the initial solution seemmarginally better than the others, but the di�erene is small, and sine only one instane is runfor eah depited point it may not be the ase in general.12.5.3 E�et of Reusing Calulated Group SolutionsReusing alulated solution values for groups by saving them in a hash table gives an enormousspeed up as we shall see shortly. Also the speedup is higher for networks with many groups andhene many nodes, at least for the test-set. The saved alulated solution values for groups areusually reused in neighbour-solutions, and in fat modifying a solution hange either one or twoseondary groups plus the primary group. Hene for the largest networks whih are divided into 9groups, a redution of the runtime an be expeted to be on at least 70% for the largest networks.The runtime with and without reuse of group values are measured by running tests on the standard
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Figure 12.16: Solution value deviation for the three versions of the initial solution �nder algorithmtest-set, one instane for eah and medium demand. The solution value is the same, sine no othermodi�ations are done to the algorithm. The runtime is shown in �gure 12.17.
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Figure 12.17: Runtime with and without reuse of solution values for seondary groupsAs expeted the runtime derease is high, more than a 70% runtime improvement is ahieved in thelarge networks. As mentioned the improvement is better the more groups the network is dividedinto, whih is a good thing, sine these are the networks whih take substantial time to solve.



12.5 Performane Tests of the Heuristi Algorithm for HNP 7112.5.4 Limit NeighbourhoodIn setion 10.3 we desribed the neighbourhood. The neighbourhood was limited by, for a givengroup, onsidering only the |V |/G losest nodes whih are not in the group. In this setion weinvestigate how removing this limitation a�ets runtime and solution quality.The performane tests have been run on the data-set with medium demand and one instane onlyfor eah. Two versions have been run, one where the neighbourhood is limited and one where it isnot. The runtimes are shown in �gure 12.18 and the deviations are shown in �gure 12.19.
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Figure 12.18: Runtime for �nding HNP with and without limitation on neighbourhoodThe runtime is higher when there is no limit on the neighbourhood - up to 50% higher for thelarge networks. Some of the inreased runtime stems from an inreased number of iterations, butthis annot explain all of the inrease in runtime. When no limit on the neighbourhood is used,the number of group-neighbours onsidered is higher than the number of onentrator neighbours(see setion 10.3). For the onentrator-neighbours, more groups an be reused than for the group-neighbours, hene sine we onsider more group-neighbours the runtime is higher.In general the limited neighbourhood �nds better solutions than the ase where the neighbourhoodis not limited. The zig-zag struture of the graph stems from the number of groups whih arein the network. In the data-set the number of groups is 4 for 20 and 25 nodes and 5 for 30and 35 nodes and so forth up to 9 groups in the network with 100 nodes. Variations on this isinvestigated in setion 12.5.7. From the urrent data an immediate onlusion is, that the limitedneighbourhood �nds better solutions than the unlimited neighbourhood for higher values of therelationship between the number of nodes in the network and the number of groups.Though using the unlimited neighbourhood performs better than the limited one in some ases,depending on the number of groups, it seems safe to onlude that the limited one should be used,sine it is faster and the quality of the solutions on average are muh better than the orrespondingsolutions found with the unlimited neighbourhood.
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Figure 12.19: Deviation in solution value for �nding HNP with and without limitation on neigh-bourhood12.5.5 Cyled and Random NeighbourhoodIn this setion we ompare yling the neighbourhood with seleting neighbour-solutions at random(see setion 10.3.2). The solution value has been measured, and the deviation is alulated as usual.The test has been run using the medium demand test set, and three instanes for eah. The resultis shown in �gure 12.20.
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Figure 12.20: Deviation between yling neighbourhood and seleting neighbour-solutions at random



12.5 Performane Tests of the Heuristi Algorithm for HNP 73In all ases exept for the networks with 7 nodes, the average deviation is less than 5%. For thelarge networks with between 50 an 90 nodes seleting neighbour-solutions at random performs thebest. But it an also be seen (sine none has deviation zero) that at least in one of the three testedinstanes, yling the neighbourhood found the best solution. I.e. for e.g. the 3 instanes with50 nodes, neither yling the neighbourhood nor seleting neighbour-solutions at random has anaverage deviation equal to zero. Hene eah of the two must have found the best solution at leastone eah.Hene it is hard to say whih is best, but in these partiular test instanes the random neighbour-hood performed marginally better.12.5.6 Measure Funtion Value at eah IterationThe simulated annealing algorithm should initially start out by searhing the searh spae atrandom - it should aept solutions with higher objetive funtion values than the urrent. In theend of the run, no solutions with higher solution values should be aepted.To hek that this orresponds to the way the algorithm works, the solution value at eah iterationis reorded, and the best solution is reorded. The objetive funtion value is plotted for eahiteration for a network with 10 nodes and a network with 100 nodes. The demand is medium. Thetests were run when �nding the simulated annealing parameters, and in partiular the �gures 12.21and 12.22 shows some old results, found with other simulated annealing parameters.
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Figure 12.21: Objetive funtion value for network with 10 nodes - old versionIn both ases, as expeted the objetive funtion value varies most in the beginning and vary lessas the temperature derease. Hene in this sense it seems that the algorithm performs as desired.But for the network with 10 nodes, it seems that the temperature is too high initially, sine anumber of worse solutions are aepted initially, suh that the algorithm esaped the seeminglygood loal minimum. This was generally the ase for small networks, hene the initial temperaturewas lowered for small networks.For the network with 100 nodes, it seems that a low temperature was reahed too early, sine after2500 iterations (out of 4000), the algorithm did not aept many higher ost solutions. Sine this
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Figure 12.22: Objetive funtion value for network with 100 nodes - old versionwas the ase for most large networks, the update fator was inreased, suh that the temperaturedid not derease as fast as before. This was done for large networks only.The networks solved with the modi�ed algorithm are shown in �gure 12.23 and 12.24.
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Figure 12.23: Objetive funtion value for network with 10 nodes - old versionWhen solving the network with 10 nodes, the method now returns to the best solution and improvethis. When solving the 100 nodes network, the same problem to some extent exists though nowfewer iterations is used to attain roughly the same result. Hene the update fator ould in thisase probably be inreased even more, at least it ould be tried.
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Figure 12.24: Objetive funtion value for network with 100 nodes - old versionThe parameters for the simulated annealing algorithm were tested by modifying single parametersand reording the �nal solution value, but no pattern was seen in the results, hene in generalit is hard to �nd the best parameters. Thus if a single problem instane is solved, and �ndinga good solution is important, the solution quality an probably be improved by trying di�erentparameters.12.5.7 Number of GroupsIn the entire de�nition of hierarhial networks and the implementation of the algorithms, we haveassumed that the number of groups was seleted and spei�ed by the user. Another possibility isthat the number of groups is found by the algorithm. It is unknown whether the limitation onthe number of groups to onsider is a severe limitation, i.e. how muh the solution value di�ers forsolutions with di�erent number of groups.Given a problem instane, the solution value an be found for a division into a di�erent numberof groups by simply running the algorithm several times, speifying di�erent number of groups.This is done for 3 problem instanes generated from the medium demand set with 10, 50 and 100nodes. The runtime for the di�erent instanes is shown as a funtion of the number of groups in�gure 12.25. The objetive funtion value is shown as a funtion of the number of groups in thenetworks in �gure 12.26.The runtimes for the networks with 10 nodes does not immediately seem to follow a pattern. Oneexplanation ould be that large groups are the most time onsuming to solve. For the networkdivided into 2 groups all divisions have a seondary group of size 5 or more, whereas when dividedinto 4 groups, no size 5 groups arise. When dividing into 5 groups, the primary group is a 5 nodegroup, hene the time grows as well. Some of the results ould also be due to pure oinidene -only one instane is solve for eah point.For the networks with 50 nodes, the runtime is lowest for the network divided into 7 groups(ignoring the division into 11 & 12 groups), whih again stems from that if the network is divide
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Figure 12.25: Runtime as a funtion of number of groups in network
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Figure 12.26: Objetive funtion value as a funtion of number of groups in networkinto fewer groups, seondary groups are in general large, and on the other hand if the network isdivided into more groups, then the primary group is large, and the runtime inrease.The division of the solution into 11 & 12 groups have a lower runtime, sine the neighbourhoodused in the loal searh is redued for groups of size larger than 10 nodes (see setion 12.4.1) andthe primary group is alulated for eah iteration and thus have major in�uene on the runtime.For the network with 100 nodes, the same explanations are valid as for the network with 50 nodes.



12.5 Performane Tests of the Heuristi Algorithm for HNP 77The objetive value seems to drop as the number of groups inrease. For the problem instaneswith 50 and 100 nodes, investigation of the solutions shows, that if the network is divided into fewgroups, the demand annot be satis�ed unless many edges are added, i.e. many more than simplyonneting the nodes is required.Sine the setup-ost for primary edges is only double of the setup-ost of seondary edges and theapaity of primary edges is 4 times the apaity of seondary edges, we get �more apaity for thesame money� if using the primary edges. This beomes apparent for the solutions to the problemsdivided into many groups. In this ase more primary edges are seleted, but the total number ofedges is muh lower than when the same network is divided into few groups.For the networks with 100 nodes, when going from 10 to 11 groups, the objetive funtion value doesnot drop orrespondingly. The same explanation as for the runtime is valid - the neighbourhoodis redued for the loal searh of the primary group, hene the solution does not have suh a goodvalue as it probably ould have had if the extended neighbourhood was used.12.5.8 Dependeny on DemandIf the demand is low in the network, then so is the �ow-ost and the hane of exeeding apaitieson edges. Finding the initial solution to a NHNP is done by �nding a MST minimizing the setup-ost, hene the initial solution is suspeted to be better and found faster for networks with lightdemand than for networks with heavy demand. This is what is veri�ed in this setion.The tests are arried out using the standard test-set for the three demand groups light, mediumand heavy. The runtimes are depited in �gure 12.27.
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Figure 12.27: Runtimes for �nding solution to HNP for networks with light, medium and heavydemandThe �gures show, that the runtime is lower for the lightly loaded networks ompared to the mediumand high loaded networks. This is expeted, sine assigning paths to demands depend heavily onthe amount of demand whih are to be assigned paths. If many edges are to be added, this annotbe easily handled by the �rst phase of the path assigner, hene the seond part will have to look



12.6 Quality of Heuristi Solutions 78at many neighbour solutions, regardless of whether the simple or the extended neighbourhood isused.12.6 Quality of Heuristi SolutionsFor HNP networks with up to 10 nodes, we an �nd the optimal tree-solution. For networks withup to 15 nodes we an �nd some solutions by limiting the maximum size of groups. Hene thesesolutions are used as referene for omparison with the heuristi solutions. The heuristi solutionsare found using the standard set up of the heuristi algorithm.The measured quality of the solutions are shown in �gure 12.28 for light demand test set and�gure 12.29 for medium demand test set.
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Figure 12.28: Deviation from the optimal tree solution - light demandNote that the heuristi solution an be better than the �optimal� solution, sine the optimal solutionis restrited to tree solutions. This is indiated as negative deviation.Five instanes for eah network size is generated. For the light demand networks tree solutions anbe found for all networks, whih is not the ase for medium demand networks. For some networkstree solutions annot be found either beause they do not exist, or beause group sizes are limited.These networks are not inluded in the �gure. For the medium demand networks, a tree solutionould not be found in 7 out of the 40 networks with 12 nodes or less, and only 4 solutions are foundfor the networks with 13 to 15 nodes.As a passing remark this does not orrespond with how we de�ned the demand sets sine themedium demand networks were de�ned as networks with a demand suh that a tree solutionexisted. The reason that this happens is partly a oinidene - the exat demand between nodepairs are generated but also the total demand is probably estimated too high. The demand wasestimated by onsidering example networks solved heuristially. If the heuristi solution had onlyfew more extra edges than the number of nodes, it was assumed that a tree solution existed.Obviously this is not true in all ases.
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Figure 12.29: Deviation from the optimal tree solution - medium demandSome heuristi solutions have the same solution value as the optimal tree solution, hene it is notpossible to distinguish between points representing one and points representing more instanes.Another way to get an idea of how well the heuristi solution algorithm performs is to state thenumber of times the heuristi solution algorithm �nd the same solution as the optimal solutionalgorithm. For the light demand networks, this is the ase for 19 out of 50 networks, most of themfor the networks with few nodes. For the medium demand networks, the same solution is found in10 out of 37 networks.For the light demand networks, the heuristi solutions are in most ases worse than the optimalsolutions. This agrees with that the demand is light, hene the setup-ost dominates the solutionvalue, and sine the minimum setup-ost attainable is a tree, a tree solution has a low total ostvalue. All heuristi solutions have osts within 8% of the optimal tree solution.For the medium demand networks many heuristi networks have a lower value than the optimal treesolution. This is of ourse so sine the demand is higher than for the low ost, hene situations arisein whih it is heaper to have a non-tree than a tree solution. Hene the deviation is not neessarilya good estimate on the quality of the solution given the demand. The maximum deviation is 8%,but usually muh better.
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Chapter 13Conlusion
Motivated by hierarhies in teleommuniation networks, hierarhial networks have been de�nedand desribed. The underlying networks hosen are apaitated networks with �ow- and setup-osts, whih are in general hard to optimize. Other underlying networks ould have been hosen,e.g. unapaitated networks or networks with only setup-osts, and hierarhies ould be de�nedusing these networks as well.Solution algorithms are developed solving the hierarhial network problem to optimality for fewnodes, and heuristially for up to 100 nodes well within time limits, i.e. faster than a ouple ofhours. The solution algorithms are based on a generally appliable division into mainly two phases,one whih deal with the hierarhies, and one whih deals with the network. Given this division, itshould be possible to reuse the �rst part dealing with hierarhies for other types of networks.The optimal solution algorithm an solve hierarhial networks with nodes of up to 10 nodes andif group sizes are limited up to 15 nodes. The algorithm is based on a branh-and-bound sheme.Depending on the network data, using the bounds has a positive in�uene on the runtime, thoughthe optimal solution algorithm shows to have two problems: The number of di�erent groups growsexponentially with the number of nodes, and the runtime for solving eah group grows exponentiallywith the number of nodes in the group.Some group alulations an be reused, sine hanges in one group does not neessarily in�ueneother parts of the hierarhial network. This redue the e�et of the �rst point above, but theprimary group nevertheless has to be realulated, hene the number of di�erent group divisionsa�ets the algorithm severely. Usually, a division of the network into groups where one or fewgroups ontain many more nodes than other groups is not desirable. Thus, the seond point isdealt with by aepting only groups of a maximum size. This way we avoid the optimization ofthe time onsuming large groups.The Heuristi applied is based on simulated annealing of phase 1, and a greedy algorithm inphase 2 eventually followed by a loal searh sheme. The simulated annealing approah requiresidenti�ation of temperatures, update sheme and aept riteria. These depend highly on thenumber of nodes in the network solved, hene parameters are found as funtions of the number ofnodes. Reuse of group-data are also used, and in partiular for large networks, the gain is high.We test the improvements of the optimal algorithm and the heuristi algorithm, both for run-time and for the quality of the solutions found, where relevant. This shows that the algorithmionstruts have e�et both with respet to runtime and in the heuristi ase on the quality ofsolutions.The performane of the algorithms are also measured when the input data are varied. For the



13.1 Outlook 81optimal solution algorithm, the performane depend on the amount of demand and the apaityof the edges. In general the hoie of whih version of the algorithms to use depend on the data.In both the optimal and the heuristi ase it is very important that solved groups are saved andreused, sine this gives a high speed up.Measuring quality of heuristi solutions is in general hard. We ompare heuristi solutions to theoptimal solutions when these an be found, and ompare solutions �internally� between di�erentruns of the heuristi. Also we ompare with solutions whih are found using greedy algorithms -the solutions are used initially in the simulated annealing algorithm.The struture of the solutions is in some ases investigated, and the solutions seem reasonable. I.e.if total demand is low, solutions are usually trees, and groups onsist of nodes, whih are lose,whereas if the total demand is inreased, the groups are usually separated, i.e. the demand ontrolthe group division and many edges may be seleted in groups.13.1 OutlookMany questions are left for further investigation, some important ones are onsidered here. Theheuristi algorithm should be applied to some real world data in order to ompare solutions foundwith existing solutions. This would give a better indiation on whether the found solutions arebene�ial. Applying the algorithms to real world data would probably require extension of theheuristi solution algorithm to handle more than two levels, and also it would be bene�ial toextend the algorithm suh that it ould �nd the best number of groups to divide the network into.Given the results in this thesis there does not seem to be any doubt, that these extension ouldbe arried out, though some important questions are left unanswered. The most important isprobably how data an be reused between neighbour-solutions. In the implemented algorithm thekey to the performane was the reuse of group data, but primary group data were never reused.If more hierarhies were present, reuse should be possible in more levels, and the performane ofsuh a sheme is unknown.Other open questions are whether better solution algorithms an be applied to the NHNP's inorder to improve solution quality and lower runtime. Sine apaitated networks are well studied,it is likely that suh algorithms exist and an be adapted in the solution proess. The solutionalgorithms should probably be modi�ed to �t our needs, whih is that of solving many moderatelysized networks fast as opposed to solving a large network.Another possibility is to look into what other underlying models ould be used with hierarhies. Asmentioned the �ow-ost is not used in teleommuniation networks - osts an instead be modeledusing the setup-ost. Hene what happens if the underlying model used is a model without �ow-ost? Is this easier to solve or is the runtime the same?An unpleasant limitation is that we do not allow �ows to split. In teleommuniation networks�ows an split, at least in some �xed sizes, but how an this be handled?It does not seem likely that an optimal solution strategy an be built for solving the hierarhialnetworks. This is no doubt so, sine the problem of solving the underlying networks is NP-hard,but even if the underlying model were replaed by e.g. an unapaitated network type, it seemsunlikely that suh algorithms an be found. But of ourse these an be interesting, if used asmodels for building better heuristis.
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