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Abstract

Consider a partial differential equation (PDE) of evolution type, such as the wave
equation or the heat equation. Assume now that you can influence the behavior of
the solution by setting the boundary conditions as you please. This is boundary
control in a broad sense.

A substantial amount of literature exists in the area of theoretical results con-
cerning control of partial differential equations. The results have included existence
and uniqueness of controls, minimum time requirements, regularity of domains, and
many others.

Another huge research field is that of control theory for ordinary differential
equations. This field has mostly concerned engineers and others with practical
applications in mind.

This thesis makes an attempt to bridge the two research areas. More specifically,
we make finite dimensional approximations to certain evolution PDEs, and analyze
how properties of the discrete systems resemble the properties of the continuous
system.

A common framework in which the continuous systems are formulated will
be provided. The treatment includes many types of linear evolution PDEs and
boundary conditions. We also consider different types of controllability, such as
approximate, null- and exact controllability.

We will consider discrete systems with a viewpoint similar to that used for the
continuous systems. Most importantly, we study what is required of a discretization
scheme in order for computed control functions to converge to the true, continuous,
control function. Examples exist for convergent discretization schemes for which
divergence of the computed controls occur.

We dig deeper for three specific cases: The heat equation, the wave equation,
and a linear system of thermoelasticity. Different aspects of the theory are exem-
plified through these case studies.

We finally consider how to efficiently implement computer programs for com-
puting controls in practice.





Resumé

Betragt en tidsafhængig, partiel differentialligning (PDE), s̊asom bølgeligningen el-
ler varmeledningsligningen. Antag nu, at man kan p̊avirke løsningens opførsel ved
at justere p̊a randbetingelserne efter behov. Dette er randkontrol i bred forstand.

En anselig mængde litteratur omhandler teoretiske resultater for kontrol af
partielle differentialligninger. Disse resultater omfatter eksistens og entydighed af
kontrolfunktioner, tidskrav, domæners regularitet og mange andre.

Et andet stort forskningsomr̊ade er kontrol/regulering af ordinære differenti-
alligninger. Dette omr̊ade optager mest ingeniører og andre, der arbejder med
praktiske anvendelser.

Denne afhandling forsøger at bygge bro mellem de to forskningsomr̊ader. Vi vil,
mere konkret, foretage endelig-dimensionelle tilnærmelser til visse tidsafhængige
PDE’er, og analysere hvorledes egenskaber for de diskrete systemer tilnærmer det
kontinuerte systems egenskaber.

Vi præsenterer et fælles teoretisk grundlag for de kontinuerte systemer, som vi
vil betragte. Dette vil omfatte mange lineære, tidsafhængige PDE’er og forskellige
randbetingelser. Vi vil ogs̊a studere forskellige typer af kontrollérbarhed, s̊asom
nul- og eksakt kontrollérbarhed.

Vi betragter diskrete systemer fra den samme vinkel som for de kontinuerte sys-
temer. Vi studerer ogs̊a det vigtige spørgsmål om hvad der kræves af en diskretise-
ring, for at beregnede kontrolfunktioner konvergerer mod den korrekte, kontinuerte,
kontrolfunktion. Eksempler findes hvor de beregnede kontrolfunktioner, p̊a trods
af at en konvergent diskretisering benyttes, divergerer.

Vi graver dybere for tre bestemte ligninger: Varmeledningsligningen, bølgelig-
ningen og et lineært termoelasticitets-system. Forskellige aspekter af den etablerede
teori vil blive konkretiseret gennem disse eksempler.

Endelig vil vi betragte hvorledes man, p̊a en effektiv måde, kan implementere
computerprogrammer, der kan beregne kontrolfunktioner i praksis.
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C H A P T E R 1

Introduction

It’s a control freak thing.
I wouldn’t let you understand.

— S. H. Underwood

One type of control system is probably already working in your home right now: The
thermostat of your refrigerator. How does it work? If you put into your fridge some
hot dish, the temperature of the fridge rises. The thermostat senses this and starts
cooling. On the other hand, if the temperature gets too low, the cooling system
is shut down, and the surroundings of the fridge will make the temperature rise.
This kind of control is called bang-bang control , and is a simple type of adaptive
control, a self-adjusting system.

Many types of control exist. A system exposed

u(t)

k(t)

Figure 1.1: The tempera-
ture u(t) of a small object is
controlled by the surround-
ing temperature k(t).

to bang-bang control will typically keep on oscillat-
ing about a desired state in some way (the state be-
ing, for instance, the temperature of the fridge). One
could also consider stabilizing a system, where a con-
trol aims to make all oscillations of a solution disap-
pear as time goes by.

This thesis focuses on exact controllability for ordi-
nary differential equations, ODEs, and, in particular,
partial differential equations, PDEs. Given such a sys-
tem with some initial state, and where we are allowed
to control the system in some way, we want to steer
the solution exactly to some desired state at a specific
time. What happens thereafter, is not important.

As an example, let us consider a simple ordinary differential equation:

{
u′(t) = α(k(t) − u(t)) ,

u(0) = u0 .
(1.1)
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T0

u0

u1 k(t)

t

u(t)

T0

u0

u1

k(t)

t

u(t)

(a) (b)

Figure 1.2: Two different controls k(t) that do the same job: Lead the state u(t) from
u(0) = u0 to u(T ) = u1. Figure (b) on the right furthermore shows the unique control of
minimal L2(0, T )-norm.

The state u(t) denotes the temperature of some small object at time t. The whole
object is assumed to have the same temperature throughout. The surroundings has
everywhere the temperature k(t) at time t, and α is some positive heat transfer
constant. Initially, at time t = 0, the object has the temperature u0. See Figure 1.1.

Assume now that we can control the temperature k(t) of the surroundings and
that we would like the object at time t = T to have a certain temperature, say
u(T ) = u1. Since we can write the solution to (1.1) explicitly,

u(t) = e−αtu0 + αe−αt
∫ t

0

eαsk(s)ds ,

this is not difficult to achieve. Inserting the information we have, we just have to
find k(t) such that

α

∫ T

0

eαtk(t)dt = eαTu1 − u0 .

For instance, if we seek a constant valued control function, k(t) = k0, we easily
arrive at

k(t) = k0 =
eαTu1 − u0

eαT − 1
,

see Figure 1.2(a).

There are obviously an infinite number of controls k(t) that steer the temper-
ature from u0 to u1. One may be interested in finding a control that is optimal
in some sense. For instance, what if we want to find a control that has minimal
L2(0, T )-norm, that is, make the quantity

∫ T

0

|k(t)|2dt
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the smallest possible? Such a control does exist and is in fact unique. It is further-
more the perhaps easiest optimal control to find. It turns out that in this case, the
control function has the form

k(t) = v0eα(t−T ) where v0 = 2
u1 − e−αTu0

1− e−2αT
,

see Figure 1.2(b). We shall later see how to compute such an optimal control, as
part of a much more general theory for partial differential equations.

Note two things in this example: A control can be found no matter how small
the final time T > 0 is, and the initial and final states can be arbitrary real numbers.

We can clearly extend the previous concepts to higher order differential equa-
tions and multidimensional systems. In such cases we can arrive at a common
setting of the form {

u′(t) = Au(t) +Bk(t) ,

u(0) = u0 ,

where A is a square matrix and B has any number of columns. We now seek
a control that steers the system from state u0 to some state u1 at time t = T .
When A is diagonalizable, each eigenmode of A can either be controlled arbitrarily
fast or not at all. This depends on the choice of B, of course. The case of a
non-diagonalizable A is slightly more complicated, but it is still easily analyzed
whether one has controllability or not. The point is, everything is known about
controllability of ODEs of the above form.

We now increase the difficulty considerably. We go from an ODE to a PDE,
and consider a string on the interval (0, 1). When the transversal oscillations are
relatively small, the movements of such a string can be described by a simple linear
PDE, typically denoted the wave equation:





∂2u

∂t2
= c2

∂2u

∂x2
,

u(0, x) = u0(x),
∂u

∂t
(0, x) = u0(x) ,

u(t, 0) = 0, u(t, 1) = k(t) ,

for 0 ≤ t ≤ T and 0 ≤ x ≤ 1. The constant c is related to the material of the string
and represents the speed with which waves of a solution propagate. The initial
state, at time t = 0, is dictated by u0 and u0. The most interesting quantities
here are the boundary conditions. The left end-point is fixed at position 0, but
the position of the right end-point is determined by the function k(t). This is the
control and since it acts through a boundary condition, it is called a boundary
control. (One should of course be precise about the function spaces in which we
operate, but we will postpone such details until later.) See Figure 1.3 for an
illustration.
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0 1 x

u(t, x)

�
u(t, 1) = k(t)

Figure 1.3: The state of a string at some time t. The left end-point is fixed at 0, while
the position of the right end-point is determined by k(t).

Our control problem is similar to the previous one: We wish to determine k(t)
such that we reach a particular state at time t = T ,

u(T, x) = u1(x),
∂u

∂t
(T, x) = u1(x) .

Is this possible no matter the initial conditions, u0 and u0? The answer depends
on how much time we have: If T < 2/c, the answer is no; if T ≥ 2/c, we can steer
the solution to any final state (again, in appropriate function spaces). This makes
sense for the following two reasons: We can only control the solution through a
single point, the right end-point, and the fact that waves propagate with constant
speed c. How long does it take for a pulse to travel from the right end-point, to
be reflected at the left end-point and to travel back again? Exactly 2/c time units,
and this is the reason for the requirement on the control time.

Let us turn our attention to another, in its formulation, simple PDE. It is the
well-known heat equation:





∂u

∂t
= c

∂2u

∂x2
,

u(0, x) = u0(x) ,

u(t, 0) = 0, u(t, 1) = k(t) ,

for 0 ≤ t ≤ T and 0 ≤ x ≤ 1. The quantity u(t, x) denotes the temperature at
time t and at position x, in a rod of unit length. The c is a physical constant
related to the thermal properties of the material in question.

The heat equation is, however, very different from the wave equation, also when
it comes to controllability. Let us again consider the question: Is it possible for
any initial state u0 and final state u1 to find a control k(t) such that

u(T, x) = u1(x) ?

The answer is no. It is possible, though, always to find a control that steers
any initial state u0 to the zero state (this type of controllability is called null-
controllability). This can, as opposed to the wave equation, be done arbitrarily
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x

u(t, x)

x

u(t, x)

t = 0 t = 0.002

x

u(t, x)

x

u(t, x)

t = 0.1 t = 1

Figure 1.4: Illustration of the smoothing effect of the heat equation. The initial state
at t = 0 is non-continuous, but every state with t > 0 is infinitely smooth. On top of this,
the solution quickly approaches the zero state.

fast. Figure 1.4 provides a hint as to why this is so. Here is illustrated a solution to
the heat equation at different times, without any control. The initial state is a non-
continuous “hat” function, but the solution quickly gets very smooth. Actually, the
solution is infinitely smooth for any time t > 0. This makes it impossible to steer
the solution to any non-smooth state (non-smooth meaning that some derivative
is non-continuous).

The heat equation also has a strong damping effect that makes the solution
strive towards the zero state. This makes it possible, given a suitable control,
always to steer the solution to the zero state.

So when it comes to possible final states, the heat equation is more restrictive
than the wave equation. But when it comes to the control time T , the heat equa-
tion has no restrictions. Any state can be driven to zero arbitrarily fast. This is
possible because for the heat equation, the temperature at one point can affect the
temperature at another point arbitrarily fast.

Let us turn our attention to discretizations. In order to fix ideas we will consider
a simple finite difference discretization of the wave equation.

A robust and constructive method called HUM (Hilbert Uniqueness Method)
exists in the continuous case for finding a control that steers the solution to a
given final state. This method also applies for finite dimensional systems and, in
particular, for discretizations of the wave equation. One might, quite sensibly, make
the following hypothesis: Using a convergent approximation of the wave equation,
boundary derivatives and other “ingredients” of HUM, the discrete approximations
of the control must converge to the true, continuous one, as time and space steps
go to zero. This is not true in general! Understanding why this is so and how to
make sure the controls do converge is the main theme of this thesis.

Let us give some pointers as to why it can go wrong. Consider Figure 1.5. It
illustrates wave propagation according to a finite difference approximation of the
one dimensional wave equation. The true solution should be an exact translation
to the right of the initial state, the “peak” shown in gray. The numerical scheme
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Figure 1.5: Solving the wave equation by a simple finite difference scheme. The exact
solution should be a translation to the right of the initial wave, shown in gray. The
numerical scheme approximates this solution, but also introduces some spurious waves
travelling at wrong speeds and some even in the wrong direction.

approximates this solution, shown in black, but we note some spurious waves. Some
highly oscillatory waves travel too slowly, both to the left and right. Actually, if
the grid-point distance is h, high frequency waves will travel at a speed of order
h in this discrete medium. This is very bad for control! As we have argued for
the continuous wave equation, the speed with which waves propagate is essential
when it comes to how must time is needed for control. And here, in the discrete
setting just described, as h → 0 we are going to need more and more time. This
means that if we compute controls for a fixed control time, say T , the controls will
diverge.

1.1 Structure of the Thesis
Style and Structure are the essence of a book;

great ideas are hogwash.

— Vladimir Nabokov (1899-1977)

Chapter 2 kicks off by establishing the theoretical foundation for this thesis. The
type of PDE systems with which we will work, central function definitions and
theorems.

Chapter 3 concerns discretizations. First we look at discretizing in space. Es-
pecially the Laplace operator in one dimension will be considered. Even though
this is a relatively simple subject, we need to obtain various important facts, to
be used later on. We then move on to discretizing in time, with focus on two
(ODE) discretization schemes. We finally introduce the concept of group velocity
for discretizations of hyperbolic equations.

Chapter 4 is to some extent a repeat of Chapter 2, but for discrete systems.
Some things are different, though, such as function spaces, norms, how to impose
boundary conditions, etc. Important tools for proving that computed controls will
converge to the true ones will also be given.

Chapter 5 focuses on an essential part of the Hilbert Uniqueness Method, the
controllability operator. Methods for computing a matrix representation of this
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operator will be given. The controllability operator depends on the control time,
the amount of time available for control. For some PDEs, the operator turns out
to have some interesting properties as this control time approaches infinity.

Chapter 6 is the first of three chapters to consider specific PDE systems. This
chapter concerns the heat equation. Different aspects concerning control for both
the continuous systems and discretizations thereof are considered.

Chapter 7 turns to the wave equation. Again, we will apply the theory of Chap-
ter 2 to the continuous system. The treatment of controllability for discretizations
of the wave equation, and convergence thereof, is considered in this chapter and is
one of the central subjects of the thesis.

Chapter 8 considers a linear system of thermoelasticity, which can be considered
a coupling between a heat equation and a wave equation. We consider only the
continuous case in one dimension and show, using the knowledge gathered in the
previous chapters, how to prove a result concerning boundary controllability of this
system.

Chapter 9 goes through an actual implementation of how to compute boundary
controls for a two dimensional wave equation. Algorithm complexity, memory usage
and other practical aspects will be addressed.

Chapter 10 finalizes by providing an overview of the most important contribu-
tions of this thesis. Undoubtably, several areas touched upon are worth digging
further into. Several such areas, open questions and also new, but related, research
subjects will be mentioned.

Appendix A contain theorems, proofs and derivations that will be referred to
from the main text. They have been placed in the appendix in an attempt to
not drown the reader in too many detailed derivations that are not essential when
reading. They have been included for the interested reader because the results are
either not found elsewhere in the literature, or because they are so important that
they have been included for completeness.

Appendix B presents a quick reference guide to the notation used throughout
the thesis.





C H A P T E R 2

Boundary Control of
Linear Evolution PDEs

There is nothing more practical than a good theory.

— Leonid Ilich Brezhnev (1977)

We begin by laying the theoretical foundation for boundary control. This includes
introducing the types of evolution equations, whose solutions we wish to control,
but also defining the different types of controllability we shall consider.

Many results of this chapter are already known, but most of them have been
presented in connection with a particular equation, such as the wave equation or
the heat equation. We present here a unified approach, that in an abstract setting
formulates a number of results that can easily be applied to a specific PDE system.

Let us note here that Partial Differential Equations, especially in a control
context, are often referred to as Distributed Parameter Systems in the literature
(Zuazua, 2002b).

2.1 Setting the Stage

Let Ω be an open and bounded subset of the d-dimensional Euclidean space Rd.
We denote the boundary Γ = ∂Ω, and a subset of the boundary, Γ0 ⊂ Γ, will be
referred to as the control boundary . Given T > 0, we introduce the time–space
cylinders Q = (0, T )×Ω, Σ = (0, T )×Γ and Σ0 = (0, T )×Γ0, for shorter notation.

Consider the linear system of partial differential equations:





ut = Au in Q ,

Bu =

{
k
0

in Σ0 ,
in Σ \ Σ0 ,

u(0) = u0 in Ω ,

(2.1)
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where u0 ∈ H ′. Here, H ′ is a Hilbert space and ut denotes the time derivative of u,
the state vector. The operator A is a partial differential operator, generator of a
strongly continuous semigroup etA : H ′ 7→ H ′, t ≥ 0; the operator B : H ′ 7→ Γ0 is
a linear boundary operator and k ∈ L2(Σ0) is the control (function). We introduce
the notation

u(t) = L(u0, k)(t), t ≥ 0 ,

to emphasize the solution’s dependence on the initial data u0 and the control k.
We assume L(u0, k) ∈ C([0, T ];H ′) for all u0 ∈ H ′ and k ∈ L2(Σ0). We will return
to the question of how one can show that the system actually is well posed, as is
assumed here. The above system will be referred to as the control system.

In this chapter we will consider three different, although related, control prob-
lems, where a control k is sought such that the solution is steered to, or towards,
a given final state.

2.1.1 The Adjoint System

Before studying controllability we need to introduce the so-called adjoint system.
It turns out that controllability of the control system is equivalent to certain prop-
erties of the adjoint system. This section, and the following two, will present the
adjoint system and miscellaneous mappings and relations, which connect the con-
trol system and the adjoint system (and thereby providing a reason for the name
“adjoint”).

The formal adjoint operator of A is the uniquely defined operator A∗ for which

〈Au, v〉H′×H = 〈u,A∗v〉H′×H , ∀(u, v) ∈ H ′ ×H ,

where A is considered as an operator with homogeneous boundary conditions,
k = 0.

It is, however, often impractical to work with this operator in the sense that A∗
often represents a PDE system in a somewhat indirect way (an illustrative example
of this can be found in Chapter 8, where a linear system of thermoelasticity is
studied). We will therefore consider another operator Ã that represents a system
which is essentially equivalent to that of A∗. This is ensured by requiring the
relation

Ã =M−1A∗M ,

for an invertible matrixM containing only scalar entries. The eigenvalues of Ã are
easily shown to be equivalent to those of A∗, which means that Ã also generates a

strongly continuous semigroup et
eA : H̃ 7→ H̃ , where H̃ is a Hilbert space equipped

with the norm

‖v‖ eH = ‖Mv‖H . (2.2)

Defining the norm of the dual space H̃ ′ in the usual way, one gets ‖v‖ eH′ =
‖M−T v‖H′ . For convenience we present the following diagram that relates the
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function spaces H , H ′, H̃ and H̃ ′:

H
τ←−−−− H ′

M
x

yMT

H̃ ←−−−−
τ̃

H̃ ′

Here,MT is the usual matrix transpose ofM, and τ and τ̃ are the Riesz canonical
isometries defined such that

〈u, v〉H′×H = 〈τu, v〉H , (u, v) ∈ H ′ ×H
and 〈u, v〉 eH′× eH = 〈τ̃ u, v〉 eH , (u, v) ∈ H̃ ′ × H̃ .

We now introduce a duality pairing {·, ·} : H ′ × H̃ 7→ R in the following way,

{u, v} = 〈u,Mv〉H′×H = 〈MTu, v〉 eH′× eH for all (u, v) ∈ H ′ × H̃ . (2.3)

Note that this implies that {Au, v} = {u, Ãv} for all (u, v) ∈ H ′ × H̃ (here again,
A is considered with homogeneous boundary conditions).

We now introduce what we will refer to as the adjoint system:





vt = −Ãv in Q ,

Bv = 0 in Σ ,

v(T ) = v0 in Ω ,

(2.4)

where v0 ∈ H̃ . Similar to the control system, we will use the notation

v(t) = A(v0)(t), t ≤ T ,

to emphasize the solution’s dependence on the initial data v0 (note that the initial
conditions are given at t = T and the system is solved backwards in time). We will

assume A(v0) ∈ C([0, T ]; H̃) for all v0 ∈ H̃ ; this must be shown for every concrete
system. In fact, we will assume the following about the growth of the solution of
the adjoint system,

‖A(v0)(t)‖ eH ≤ Ceα(T−t)‖v0‖ eH , 0 ≤ t ≤ T, for all v0 ∈ H̃ , (2.5)

for some real constants C,α > 0. Such a bound is possible whenever Ã is the
generator of a strongly continuous semigroup (see Rudin, 1973, page 356).

The duality of the control system and the adjoint system, through the duality
pairing {·, ·} and thus the matrix M, is in fact what makes the abstract results of
this chapter possible. This is a new approach that emerged from the study of the
linear system of thermoelasticity, on which we shall focus in Chapter 8.
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2.1.2 The Complementary Boundary Operator

We will now introduce the complementary boundary operator. This is a common
approach in the field of boundary control, see, e.g., Pedersen (2000) for the case of
the wave equation. We give here a more general definition.

A linear complementary boundary operator C : H̃ 7→ L2(Γ0) must exist such
that the following Green-like formula holds:

{Au, v} − {u, Ãv} = 〈Bu, Cv〉L2(Γ0) ,

for all u, v ∈ C∞(Ω). Note that the range of C must be L2(Γ0); in fact, the following
is required: A function K : (0,∞) 7→ (0,∞) must exist such that

‖Cv(·)‖2L2(Σ0) =

∫ T

0

‖Cv(t)‖2L2(Γ0)dt ≤ K(T )‖v0‖2eH , (2.6)

for all T > 0 and all v0 ∈ H̃ with corresponding solution v of the adjoint system.
We also require that the control fulfills k ∈ L2(Σ0). The bound (2.6) is commonly
called the direct inequality.

We can now present an equality that relates solutions of the control system and
the adjoint system. It will turn out to be one of the most useful relations when it
comes to boundary controllability.

Theorem 2.1.1. Let T > 0 be fixed. A solution u ∈ C((0, T );H ′) of the control
system (2.1) with control k ∈ L2(Σ0) fulfills u(0) = u0 ∈ H ′ and u(T ) = u1 ∈ H ′
if and only if

〈k, Cv〉L2(Σ0) + {u0, v(0)} − {u1, v(T )} = 0 , (2.7)

holds for all solutions v ∈ C((0, T ); H̃) of the adjoint system (2.4) with initial data

v0 = v(T ) ∈ H̃.

Proof. Let T > 0, v0, v1 ∈ H ′ and k ∈ L2(Σ0) be given.
Assume that u ∈ C((0, T );H ′) is a solution of the control system with control k

and u(0) = u0, u(T ) = u1. Consider now a solution v ∈ C((0, T ); H̃) of the adjoint

system for a fixed, but arbitrary, v0 ∈ H̃ . Observe then that

[
{u, v}

]T
0

=

∫ T

0

(
{ut, v}+ {u, vt}

)
dt =

∫ T

0

(
{Au, v} − {u, Ãv}

)
dt

=

∫ T

0

〈k, Cv〉L2(Γ0)dt ,

(2.8)

which is exactly Equation (2.7), since v0 ∈ H̃ was chosen arbitrarily.

Assume now that (2.7) holds for all v0 ∈ H̃ . Using initial condition u0 and
control k for the control system, we now get, using (2.8), that

〈k, Cv〉L2(Σ0) + {u0, v(0)} − {u(T ), v(T )} = 0 ,
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for all solutions v of the adjoint system. Subtracting this equality from (2.7) yields

{u(T )− u1, v0} = 0, ∀v0 ∈ H̃ ⇔
〈u(T )− u1, w0〉H′×H = 0, ∀w0 ∈ H ,

so u(T ) = u1.

We will now return to the question of showing the well-posedness of the control
system (2.1). Consider the following expression,

‖u(T )‖H′ = sup
w0∈H\{0}

∣∣〈u(T ), w0〉H′×H
∣∣

‖w0‖H
= sup

w0∈H\{0}

∣∣{u(T ),M−1w0
}∣∣

‖M−1w0‖ eH

= sup
v0∈ eH\{0}

∣∣{u(T ), v0
}∣∣

‖v0‖ eH
≤ sup
v0∈ eH\{0}

1

‖v0‖ eH
(
|{u(0), v(0)}|+

∣∣〈k, Cv〉L2(Σ0)

∣∣)

≤ sup
v0∈ eH\{0}

1

‖v0‖ eH

(
‖u(0)‖H′‖Mv(0)‖H + ‖k‖L2(Σ0)‖Cv‖L2(Σ0)

)

≤ K1e
αT ‖u(0)‖H′ +K‖k‖L2(Σ0) .

This shows that the well-posedness of the control system (2.1) can be shown using
the solution bound for the adjoint system (2.5), the boundedness of the complemen-
tary boundary operator (2.6) and Theorem 2.1.1. This will often be the procedure
in practice, see Sections 6.1, 7.1 and 8.1 for examples of this when we study specific
control systems.

2.1.3 Important Mappings

For easier notation, we will introduce two bounded and linear maps, LT and L∗T
for all T ≥ 0. The map LT : H ′ 7→ H ′ for T > 0 is defined as the solution at t = T
for the control system without control,

LTu
0 = L(u0, 0)(T ) ,

and similarly, L∗T : H̃ 7→ H̃ for T > 0 is defined as the solution at t = 0 for the
adjoint system,

L∗T v
0 = A(v0)(0) .

Note how LT and L∗T are ”adjoint” operators in the sense that

{u0, L∗T v
0} = {LTu0, v0} ,

for all (v0, u0) ∈ H̃ × H ′ and all T > 0, seen easily from Equation (2.7) with
k(t) = 0.

We introduce two more closely related maps. The first, GT : H̃ 7→ L2((0, T )×
Γ0) for T > 0, applies the complementary boundary operator to a solution of the
adjoint system,

GT (v0) = C
(
A(v0)(·)

)
.
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The second map, G∗T : L2((0, T )× Γ0) 7→ H̃ ′ for T > 0, takes a control k, applies
it to the control system with zero initial conditions, and outputs the state at time
t = T ,

G∗T (k) =MTL(0, k)(T ) .

The premultiplication of MT makes sure, as already suggested by the notation,
that GT and G∗T are adjoint operators for each T > 0,

〈G∗T (k), v0〉 eH′× eH = 〈MTu(T ), v(T )〉 eH′× eH = {u(T ), v(T )}
= 〈k, Cv〉L2(Σ0)

= 〈k,GT (v0)〉L2(Σ0) ,

where relation (2.7) of Theorem 2.1.1 has been used with u0 = 0.
The authors in Asch and Lebeau (1998) (see Appendix A of this paper) intro-

duce maps similar to GT and G∗T , which are also observed to be adjoint operators.
They were, however, only considering the wave equation.

We finally define the important bilinear form γT : H̃ × H̃ 7→ R as

γT (v0, w0) = 〈GT v0, GTw
0〉L2(Σ0) =

∫ T

0

∫

Γ0

Cv Cw dΓdt . (2.9)

This form is easily seen to be indeed bilinear, symmetric, positive semi-definite and
bounded (this follows from the inequality (2.6)). An interpretation of this form is
that γT (v0, v0) reflects the quantity that is observed from the boundary, through
C, during t ∈ (0, T ) of the solution to the adjoint system with initial condition v0.

Consider the case where

γT (v0, v0) = 0 ⇒ v0 = 0 for all v0 ∈ H̃ . (2.10)

So if γT (v0, v0) = 0, then v0 = 0, which in turn means that the corresponding
solution is zero at any time t ∈ (0, T ). This property is often called unique con-
tinuation for the adjoint system. Note that (2.10) is equivalent to the operator
GT having a trivial kernel, kerGT = {0}. Note also that this property depends on
both the geometry, the control boundary and the control time T .

2.1.4 Degrees of Controllability

We are now ready to define the three different types of controllability which we will
consider. See Zuazua (2002b) or Micu and Zuazua (2004) for similar definitions.

The first type of controllability, approximate controllability, is the weakest kind
and ensures only than we can steer a solution arbitrarily close to some desired final
state.

Definition 2.1.1. The control system is approximately controllable at time T > 0
if for every u0, u1 ∈ H ′ and ε > 0 a control k ∈ L2((0, T )× Γ0) exists such that

‖L(u0, k)(T )− u1‖H′ < ε .
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Next is null-controllability, which means that the control system can always be
driven exactly to rest, to the zero state.

Definition 2.1.2. The control system is null-controllable at time T > 0 if for
every u0 ∈ H ′ a control k ∈ L2((0, T )× Γ0) exists such that

L(u0, k)(T ) = 0 .

Finally, the strongest type of controllability, exact controllability. Here, any initial
state can be steered to any final state.

Definition 2.1.3. The control system is exactly controllable at time T > 0 if for
every u0, u1 ∈ H ′ a control k ∈ L2((0, T )× Γ0) exists such that

L(u0, k)(T ) = u1 .

With the notation introduced by now, let us rewrite relation (2.7) of Theorem 2.1.1:

〈k,GT v0〉L2(Σ0) + {u0, L∗T v
0} − {u1, v0} = 0 ⇔

〈G∗T k, v0〉 eH′× eH + {LTu0, v0} − {u1, v0} = 0 ,

for all v0 ∈ H̃, which is seen to be just a variational formulation of

G∗T k +MTLTu
0 −MTu1 = 0 ⇔

G∗T k =MT (u1 − LTu0) .
(2.11)

The three types of controllability can now be interpreted as: The equality (2.11)
must be satisfied either approximately (approximate controllability), exactly but
with u1 = 0 (null-controllability), or for any u1 ∈ H ′ (exact controllability).

2.2 Approximate Controllability

Let us consider approximate controllability in greater detail. Although the topic
is not among the main themes of this thesis, it will provide us with some insight
that we need later on. Recall the relation (2.11) of the previous section,

G∗T k =MT (u1 − LTu0) ,

that holds if and only if the control k steers the control system from u0 to u1.
Assume now that the unique continuation property holds, that is, we have

kerGT = {0}. This property provides information about the image of the adjoint
operator, indeed,

G∗T (L2(Σ0)) = (kerGT )⊥ = H̃ ′ , (2.12)

where denotes set closure (see Pedersen, 2000, page 57). Let now u0, u1 ∈ H ′
and an ε > 0 be given. Because of the above relation, a k ∈ L2(Σ0) exists such
that

G∗T k =MT (u1 − LTu0) + r ,
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with ‖r‖ eH′ ≤ ε. The rewrite

G∗T k =MT ((u1 +M−T r)− LTu0) ,

now shows that k steers the solution exactly from u0 to u1 +M−T r, and thus
misses the target u1 by M−T r for which ‖M−T r‖H′ = ‖r‖ eH′ ≤ ε.

Since this argument is easily reversed, we have proved the following theorem.

Theorem 2.2.1. Unique continuation, γT (v0, v0) = 0 ⇒ v0 = 0, of the adjoint
system is equivalent to having approximate controllability for the control system.

We will now approach approximate controllability from another angle, namely
through the minimization of the functional

Jε(v
0) = 1

2γT (v0, v0) + ε‖v0‖ eH + {u0, L∗T v
0} − {u1, v0} . (2.13)

The reason for doing this is that some of the following results will be used in later
sections.

We first argue that a unique minimizer to Jε exists for every ε > 0. This follows
if the functional is strictly convex,

Jε(θv
1 + (1− θ)v2) < θJε(v

1) + (1− θ)Jε(v2) ,

for all v1, v2 ∈ H̃ with v1 6= v2 and all θ ∈ (0, 1), and if it is coercive,

Jε(vj)→∞ for every sequence 〈vj〉 for which ‖vj‖ eH →∞ ,

see Lions (1971), page 8.
The strict convexity of Jε, for any ε ≥ 0, is clearly shown if the functional

v 7→ γT (v, v) is strictly convex.

Theorem 2.2.2. If γT (v0, v0) = 0 implies v0 = 0 for all v0 ∈ H̃, then γT is
strictly convex.

Proof. We wish to show

γT
(
θv1 + (1− θ)v2, θv1 + (1− θ)v2

)
< θγT (v1, v1) + (1− θ)γT (v2, v2) ,

for every choice of θ ∈ (0, 1) and all v1, v2 ∈ H̃ for which v1 6= v2. Using the
bilinearity of γT , this expression is seen to be equivalent to

γT (v1 − v2, v1 − v2) > 0 ,

for all v1, v2 ∈ H̃ for which v1 6= v2. But this is exactly the unique continuation
property which is assumed.

We now turn to show the coercivity, which is a little harder. The proof proceeds
as in Zuazua (1997).
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Theorem 2.2.3. Let ε > 0 and assume γT (v0, v0) = 0 ⇒ v0 = 0 for all v0 ∈ H̃.
Then the functional Jε, given by (2.13), is coercive and in fact,

lim
‖v0‖fH→∞

Jε(v
0)

‖v0‖ eH
≥ ε .

Proof. Let v0
1 , v

0
2 , . . . ∈ H̃ be a sequence for which ‖v0

j ‖ eH → ∞ as j → ∞. Let

v0
1, v

0
2, . . . be the corresponding normalized sequence,

v0
j = v0

j /‖v0
j‖ eH .

We now have

Jε(v
0
j )

‖v0
j ‖ eH

= 1
2γT (v0

j , v
0
j )‖v0

j ‖ eH + ε+ {LTu0, v0
j} − {u1, v0

j} . (2.14)

We will now consider the following two cases separately.

Case 1:
lim inf
j→∞

γT (v0
j , v

0
j ) > 0 .

In this case we clearly have lim infj→∞ Jε(v
0
j )/‖v0

j ‖ eH =∞.

Case 2:
lim inf
j→∞

γT (v0
j , v

0
j ) = 0 .

Since the sequence 〈v0
j 〉 is bounded, we can extract a weakly convergent subsequence

(also indexed by j, for ease of notation),

v0
j ⇀ v0 weakly in H̃ for j →∞ ,

for which, by assumption,

γT (v0
j , v

0
j )→ 0 for j →∞ .

The solution corresponding to the limit data v0 thus fulfills γT (v0, v0) = 0, which,
using the assumption, implies that v0 = 0. So we have

v0
j ⇀ 0 weakly in H̃ for j →∞ .

This makes the two last terms of (2.14) go to zero, and the result follows.

We are now ready for the following important theorem. A similar result can be
found in Micu and Zuazua (2004), for the specific case of the wave equation.

Theorem 2.2.4. Let γT (v0, v0) = 0 ⇒ v0 = 0 for all v ∈ H̃. Then the func-
tional Jε has a unique minimizer v̂0 for every choice of u0, u1 ∈ H ′ and ε > 0.
Furthermore, when applying the controls k = GT v̂

0 to the control system, we have

‖u(T )− u1‖H′ ≤ ε . (2.15)
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Proof. Let ε > 0. The necessary and sufficient conditions for the existence and
uniqueness of a minimizer v̂0 have already been established. To show the second
part of the theorem, we split into two cases.

The case v̂0 = 0: Let an arbitrary v0 6= 0 be given. Then for all α > 0 we have

Jε(αv
0) = 1

2α
2γT (v0, v0) + εα‖v0‖ eH + α{u0, L∗T v

0} − α{u1, v0} > J(v̂0) = 0 ,

which, when dividing by α and using the positivity of γT (v0, v0), implies

ε‖v0‖ eH + {u0, L∗T v
0} − {u1, v0} ≥ 0 . (2.16)

Using the null-controls on the control system implies, in particular,

{u0, L∗T v
0} − {u(T ), v0} = 0 .

Subtracting this equality from the inequality (2.16) gives

{u1 − u(T ), v0} ≤ ε‖v0‖ eH .

We finally get

‖u(T )− u1‖H′ = sup
w0∈H\{0}

∣∣〈u(T )− u1, w0〉H′×H
∣∣

‖w0‖H

= sup
w0∈H\{0}

∣∣{u(T )− u1,M−1w0}
∣∣

‖M−1w0‖ eH

= sup
v0∈ eH\{0}

∣∣{u(T )− u1, v0}
∣∣

‖v0‖ eH
≤ sup
v0∈ eH\{0}

ε‖v0‖ eH
‖v0‖ eH

= ε .

The case v̂0 6= 0: Because of the optimality condition we get by formal differen-
tiation (see Detail 1, page 179),

〈∇Jε(v̂0), w0〉 = γT (v̂0, w0) +
ε

‖v̂0‖ eH
〈v̂0, w0〉+ {u0, L∗Tw

0} − {u1, w0} = 0 ,

for all w0 ∈ H̃. Using now

〈v̂0, w0〉 eH = 〈τ̃−1v̂0,M−1Mw0〉 eH′× eH = {M−T τ̃−1v̂0, w0} ,

(the operator τ̃−1 : H̃ 7→ H̃ ′ satisfies 〈τ̃−1v, w〉 eH′× eH = 〈v, w〉 eH for all w ∈ H̃) we

get that for all w0 ∈ H̃ ,

γT (v̂0, w0) + {u0, L∗Tw
0} −

{
u1 − ε

‖v̂0‖ eH
M−T τ̃−1v̂0, w0

}
= 0 .

Using the result of Theorem 2.1.1 we see that the control induced by v̂0 drives u0

to the state u1− εM−T τ̃−1v̂0/‖v̂0‖ eH . By computing ‖εM−T τ̃−1v̂0‖H′/‖v̂0‖ eH = ε
we see that (2.15) actually holds with equality.

Note how the second part of the theorem, the inequality (2.15), implies approx-
imate controllability. So we have now, as promised, shown Theorem 2.2.1 in an
alternative way.
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2.3 Null-controllability

We now turn to null-controllability, the task of steering a solution exactly to zero at
time t = T . The following theorem provides sufficient and necessary conditions for
null-controllability. A similar result can be found in Fernández-Cara and Zuazua
(2002) for the one dimensional heat equation with variable coefficients. The proof
that follows was communicated to the author by Professor Zuazua (Zuazua, 2002a).

Theorem 2.3.1. Let T > 0 be fixed. A linear and bounded operator Kn
T : H ′ 7→

L2(Σ0) exists for which

L(u0,Kn
T (u0))(T ) = 0, for all u0 ∈ H ′ ,

if and only if there is a constant Cn > 0 such that

‖L∗T v0‖2eH ≤ CnγT (v0, v0), for all v0 ∈ H̃ . (2.17)

Proof. Null-controllability ⇒ observability inequality. Observe from rela-
tion (2.7) that the following must hold,

−{u0, L∗T v
0} = 〈KTu

0, GT v
0〉L2(Σ0) ,

for all v0 ∈ H̃ and all u0 ∈ H ′. We now get

‖ML∗T v
0‖H = sup

u0∈H′\{0}

∣∣〈u0,ML∗T v
0〉H′×H

∣∣
‖u0‖H′

= sup
u0∈H′\{0}

∣∣〈KTu
0, GT v

0〉L2(Σ0)

∣∣
‖u0‖H′

≤ sup
u0∈H′\{0}

‖KTu
0‖L2(Σ0)‖GT v0‖L2(Σ0)

‖u0‖H′
= ‖KT‖ γT (v0, v0)1/2 ,

for all v0 ∈ H̃, so (2.17) holds with Cn = ‖KT‖2.

Observability inequality ⇒ null-controllability. We will first show the exis-
tence of a minimizer for the functional

J(v0) = 1
2γT (v0, v0) + {u0, L∗T v

0} . (2.18)

This will be done by considering a sequence of minimizers 〈v̂0
ε 〉 of the functional

Jε(v
0) = 1

2γT (v0, v0) + ε‖v0‖+ {u0, L∗T v
0} ,

for ε→ 0.
For fixed ε > 0, we know from the previous section that Jε possesses a unique

minimizer v̂0
ε for which the induced control drives the initial state u0 to a final

state where (recall that we aim to hit u1 = 0)

‖u(T )‖ ≤ ε . (2.19)
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Since Jε(0) = 0, we have

0 ≥ Jε(v̂0
ε ) = 1

2γT (v̂0
ε , v̂

0
ε ) + ε‖v̂0

ε‖+ {u0, L∗T v̂
0
ε }

≥ 1
2γT (v̂0

ε , v̂
0
ε )−

∣∣{u0, L∗T v̂
0
ε}
∣∣ ≥ 1

2γT (v̂0
ε , v̂

0
ε )− ‖u0‖H′‖ML∗T v̂

0
ε‖H ,

which implies, when using the assumption (2.17),

γT (v̂0
ε , v̂

0
ε )2 ≤ 4‖u0‖2H′‖ML∗T v̂

0
ε ‖2H ≤ 4C‖u0‖2H′γT (v̂0

ε , v̂
0
ε ) ⇔

γT (v̂0
ε , v̂

0
ε ) ≤ 4C‖u0‖2H′ .

From this final expression we see that the L2(Σ0)-norms of the controls are bounded
uniformly in ε (recall that γT (v, v)1/2 precisely is the L2(Σ0)-norm of the corre-
sponding control).

This implies that v̂0
ε → v̂0 as ε → 0, where v̂0 is a (local) minimizer of the

functional J , see (2.18). Because of the bound in (2.19) we see that v̂0 indeed
induces a control driving the initial state to zero. That v̂0 furthermore is the
unique (global) minimizer follows easily from the fact that J is strictly convex.

The unique minimizer v̂0 obtained by minimizing the functional J in (2.18)
induces a control k = GT v̂

0 that solves a given null-controllability problem. We
shall see shortly, in Section 2.5, that this control has minimal L2(Σ0)-norm among
all controls that solve the same controllability problem.

2.4 Exact controllability

Moving on to the strongest form of controllability, exact controllability, we again
consider the statement (2.7) of Theorem 2.1.1,

〈k,GT v0〉L2(Σ0) + {u0, L∗T v
0} − {u1, v0} = 0 ,

〈k,GT v0〉L2(Σ0) − {u1 − LTu0, v0} = 0 ,

that holds for all v0 ∈ H̃ , if and only if the control k steers a solution from
u(0) = u0 to u(T ) = u1. This relation implies that having exact controllability is
equivalent to being able to steer the zero state to any final state in H ′ (compare
to Definition 2.1.3). More specifically, a control steering from u0 to u1 will also
steer the system from 0 to u = u1 − LTu0, and vice versa. This is, of course, a
consequence of the linearity of the underlying systems.

We now have the following sufficient and necessary conditions for exact control-
lability. This theorem is well known for the wave equation and can be found in,
e.g., Lions (1988b).

Theorem 2.4.1. Let T > 0 be fixed. A linear and bounded operator Ke
T : H ′ 7→

L2(Σ0) exists for which

L(0,Ke
T (u))(T ) = u, for all u ∈ H ′ ,
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if and only if there is a constant Ce > 0 such that

‖v0‖2eH ≤ CeγT (v0, v0), for all v0 ∈ H̃ . (2.20)

Proof. Exact controllability ⇒ observability inequality Observe that the
following holds,

{u, v0} = 〈KTu,GT v
0〉L2(Σ0) ,

for all v0 ∈ H̃ and all u ∈ H ′. We now get

‖Mv0‖H = sup
u∈H′\{0}

∣∣〈u,Mv0〉H′×H
∣∣

‖u‖H′
= sup
u∈H′\{0}

∣∣〈KTu,GT v
0〉L2(Σ0)

∣∣
‖u‖H′

≤ sup
u∈H′\{0}

‖KTu‖L2(Σ0)‖GT v0‖L2(Σ0)

‖u‖H′
= ‖KT‖γT (v0, v0)1/2 ,

so (2.20) holds with Ce = ‖KT‖2.

Observability inequality ⇒ exact controllability. Since we know that γT is
bounded, we have

C−1
e ‖v0‖2eH ≤ γT (v0, v0) ≤ ‖γT ‖‖v0‖2eH for all v0 ∈ H̃ , (2.21)

so γT (v0, v0)1/2 is a norm equivalent to that of H̃. Let now u ∈ H ′ be fixed, but
arbitrary. From the Riesz Representation Theorem we deduce that there exists a
unique v̂0 ∈ H̃ that fulfills

γT (v̂0, v0) = {u, v0} , (2.22)

for all v0 ∈ H̃ (since v0 7→ {u, v0} is a linear and continuous functional). From

Theorem 2.1.1 we see that the control k̂ = GT v̂ steers the solution from zero to u.
Observe next that

γT (v̂0, v̂0) ≤ ‖u‖H′‖Mv̂0‖H ≤ C1/2
e ‖u‖H′γT (v̂0, v̂0)1/2 ⇒

‖k̂‖ = γT (v̂0, v̂0)1/2 ≤ C1/2
e ‖u‖H′ ,

which shows the boundedness of the operator KT .

The observability inequality (2.20) is commonly called the inverse inequality ,
as opposed to direct inequality (2.6).

Note that although the above result is well known, the implication exact con-
trollability ⇒ observability inequality is often not emphasized.

2.5 Hilbert Uniqueness Method

The norm equivalence (2.21) was originally the central ingredient of the Hilbert
Uniqueness Method (HUM), a method developed by Professor Jacques-Louis Lions.
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The method first saw the light in 1988, see Lions (1988a) or Lions (1988b). Refer to
Lagnese (1991) (which includes treatment of first order systems) and Bensoussan
(1993) for some abstract views on HUM.

We will approach HUM from a slightly different angle, and simply insist that
the control function must be of the form k = Cw = GTw

0, where w is the solution
to the adjoint system with w0 as initial data. Such a control will be called a HUM
control .

Equation (2.11) now gets the appearance

G∗TGTw
0 =MT (u1 − LTu0) ⇔

ΛTw
0 = f ,

(2.23)

where ΛT = G∗TGT : H̃ 7→ H̃ ′ and f = MT (u1 − LTu0) ∈ H̃ ′. Note that the
functional f is linear and continuous and depends on both u0, u1 and T .

In the variational formulation we get

〈GTw0, GT v
0〉L2(Σ0) = {u1, v0} − {u0, L∗T v

0} ⇔

γT (w0, v0) = f(v0) ,
(2.24)

for all v0 ∈ H̃ , where the bilinear form γT : H̃ × H̃ 7→ R was introduced in (2.9).
Note that we in (2.23) introduced the very important map ΛT which we shall

call the controllability operator . Note also

〈ΛTw0, v0〉 eH′× eH = 〈G∗TGTw0, v0〉 eH′× eH = 〈GTw0, GT v
0〉L2(Σ0) = γT (w0, v0) ,

for all w0, v0 ∈ H̃ , making ΛT and γT equivalent in a Riesz isomorphism sort of
way.

How restrictive is it that the control must be of the form k = GTw
0? Not

restrictive at all, as it turns out. When it comes to both null-controllability and
exact controllability, a HUM control can always be found. This follows from the
Theorems 2.3.1 and 2.4.1. In the proof of each theorem, when showing that the ob-
servability inequality implies controllability, a HUM control is actually constructed.

Any control obtained through the Hilbert Uniqueness Method has an important
optimality property. This is the subject of the following theorem.

Theorem 2.5.1. Let a HUM control k̂ ∈ L2(Σ0) exist that steers the initial state
u0 ∈ H ′ to the final state u1 ∈ H ′. Then among all controls that steer the control
system from u0 to u1, the HUM control k̂ has the minimal L2(Σ0)-norm.

Proof. Let the HUM control be given by k̂ = GT v̂
0 and let k ∈ L2(Σ0) be an

arbitrary control solving the same exact controllability problem. These must then
fulfill, in particular,

〈GT v̂0, GT v̂
0〉L2(Σ0) = {u1, v̂0} − {u0, L∗T v̂

0} and

〈k,GT v̂0〉L2(Σ0) = {u1, v̂0} − {u0, L∗T v̂
0} .

(2.25)
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Combining the two equations we see that

〈k,GT v̂0〉L2(Σ0) = 〈GT v̂0, GT v̂
0〉L2(Σ0) .

We now get

‖k̂‖2L2(Σ0) = 〈GT v̂0, GT v̂
0〉L2(Σ0) = |〈k,GT v̂0〉L2(Σ0)| ≤ ‖k‖L2(Σ0)‖k̂‖L2(Σ0) ,

which immediately leads to ‖k̂‖L2(Σ0) ≤ ‖k‖L2(Σ0).

2.5.1 Computing the Controls

Assume that we have exact controllability at time T > 0. Given states u0, u1 ∈ H̃ ′
we can perform the following steps.

1. Compute f =MT (u1 − LTu0).

2. Solve ΛTw
0 = f for w0 ∈ H̃ .

3. Set k = GTw
0.

The computed control k now steers the system from u0 to u1. The difficult step is
clearly inverting the controllability operator in step 2.

2.5.2 Exact Null-Controllability for Reversible Systems

Let us consider the particular case of the wave equation and assume that we wish
to drive the state (u0, u0) at time t = 0 to the zero state (0, 0) at time t = T .

For the wave equation, the controllability operator can be defined in the follow-
ing way. The adjoint system becomes





vtt = ∆v in Q ,

Bv = 0 in Σ ,

v(T ) = v0, vt(T ) = v0 in Ω ,

(2.26)

where ∆ is the Laplace operator, summing up second derivatives in each space
direction. We then have the control system,





utt = ∆u in Q ,

Bu =

{
Cv
0

in Σ0 ,
in Σ \ Σ0 ,

u(0) = 0, ut(0) = 0 in Ω ,

(2.27)

which defines the controllability operator ΛT : H1
0 (Ω)×L2(Ω) 7→ H−1(Ω)×L2(Ω)

as

ΛT

(
v0

v1

)
=

(
0 −1
1 0

)T (
u(T )
ut(T )

)
=

(
ut(T )
−u(T )

)
.

(A derivation of the M matrix can be found in the beginning of Chapter 7).
As just described in the previous section, the control can be found by doing the

following steps.
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1. Compute f = −
(

0 −1
1 0

)T
LT

(
u0

u0

)
.

2. Solve ΛT

(
w0

w0

)
= f for

(
w0

w0

)
.

3. Solve (2.26) with (v0, v0) = (w0, w0) and use k(t) = Cv(t), 0 ≤ t ≤ T .

We assume that the inversion in step 2 is possible.
The application of LT in step 1, which involves solving the control system

without applying control, can actually be avoided. Let us introduce a similar
operator Λ̃T which we shall call the reversed controllability operator . The adjoint
system is as before, but with the time direction reversed,





ṽtt = ∆ṽ in Q ,

Bṽ = 0 in Σ ,

ṽ(0) = ṽ0, ṽt(0) = ṽ0 in Ω ,

(2.28)

and reversing the time direction, and introducing a minus in the boundary condi-
tion, leads to the following control system,





ũtt = ∆ũ in Q ,

Bũ =

{
−Cṽ
0

in Σ0 ,
in Σ \ Σ0 ,

ũ(T ) = 0, ũt(T ) = 0 in Ω ,

(2.29)

thereby defining Λ̃T : H1
0 (Ω)× L2(Ω) 7→ H−1(Ω)× L2(Ω) as

Λ̃T

(
ṽ0

ṽ1

)
=

(
ũt(0)
−ũ(0)

)
.

The initially stated control problem of driving (u0, u0) to (0, 0) can now be solved
as

1. Solve Λ̃T

(
w0

w0

)
=

(
u0

−u0

)
for

(
w0

w0

)
.

2. Solve (2.28) with (ṽ0, ṽ0) = (w0, w0) and use k(t) = Cṽ(t), 0 ≤ t ≤ T .

Note that this control, by construction, has the wanted property of driving the
solution of the control system to zero at time t = T . Note furthermore, that if
one wishes to reach a non-zero state, then an application of L−1

T is needed. This
is possible, since we have a reversible system, but then one might as well use the
original method.

The two operators ΛT and Λ̃T are closely related. This can be seen by first
considering the adjoint systems (2.26) and (2.28). If (ṽ0, ṽ0) = (v0,−v0) we see
that ṽ(t) = v(T − t). This, in turn, implies that the solutions to the control
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systems (2.27) and (2.29) are related by ũ(t) = −u(T − t). This finally relates the
controllability operators in the way that

Λ̃T =

(
1 0
0 −1

)
ΛT

(
1 0
0 −1

)
.

This relation shows that Λ̃T is positive (semi-)definite if and only if ΛT is positive
(semi-)definite (obtaining this property is the reason for introducing the minus in
the boundary condition in (2.29)).

Computing null-controllability using the reversed controllability operator is the
method used by Jacques-Louis Lions in, e.g., Lions (1988b) and Glowinski, Li, and
Lions (1990), where the wave equation was studied. (Historical note: What was
originally called Hilbert Uniqueness Method by Lions actually relied on the re-
versed controllability operator Λ̃T . Later Lions described RHUM, Reverse Hilbert
Uniqueness Method, which made use of the “usual” controllability operator ΛT
(see, e.g., Lagnese (1991) or Bensoussan (1993) for a mention of RHUM). In to-
day’s literature, HUM is used for both types).

2.6 Controlling Projections

What if we only wish to control a part of the solution? Is this possible and what
do the observability inequalities then look like? That is the subject of this section.

Controllability of projections has previously been considered in the literature,
especially in the context of discrete systems, see Zuazua (2003) and many of the
references therein. But controllability of projections has also been applied to con-
tinuous system, see Lebeau and Zuazua (1998), where a linear system of ther-
moelasticity is considered. A similar system of thermoelasticity will be studied in
Chapter 8, where some results of this section will be applied.

Despite their use in the literature, only a few formal results have appeared.
When the projections are onto finite dimensional spaces, however, see Zuazua
(1997) or Micu and Zuazua (2004). We will present some fairly general results
in the following.

Consider a Hilbert space H ′0, which is a subspace of H ′, H ′0 ⊂ H ′. We also
introduce the orthogonal projection Π : H ′ 7→ H ′, a linear and bounded operator
for which

H ′0 = Π (H ′) = (ker Π )⊥ ,

and the associated “adjoint” operator Π̃ : H̃ 7→ H̃ , also linear and bounded, where

{ΠU, V } = {U, Π̃V } ,

for all U ∈ H ′ and V ∈ H̃ . We set H̃0 = Π̃ H̃ .
Assume first that the relation

〈k,GT v0〉L2(Σ0) + {u0, L∗T v
0} − {u1, v0} = 0 ,
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holds for all v0 ∈ H̃0 (compare to (2.7) of Theorem 2.1.1). Let u be the solution of
the control system with control k and u(0) = u0. We then know that

〈k,GT v0〉L2(Σ0) + {u0, L∗T v
0} − {u(T ), v0} = 0 ,

for all v0 ∈ H̃ . Subtracting the two expressions above we get that

{u(T )− u1, Π̃ v0} = {Π (u(T )− u1), v0} = 0 for all v0 ∈ H̃ ,

implying that Πu(T ) = Πu1. The preceeding statements can be seen as a “pro-
jection version” of Theorem 2.1.1.

Let us now consider approximate control of projections, that is, for every
u0, u1 ∈ H ′ and ε > 0 we seek a control k ∈ L2((0, T )× Γ0) such that

‖Π (L(u0, k)(T )− u1)‖H′ < ε . (2.30)

We will repeat the arguments leading up to Theorem 2.2.1 concerning approximate
controllability. Assume initially that

γT (v0, v0) = 〈GT v0, GT v
0〉L2(Σ0) = 0 ⇒ v0 = 0 ,

for all v0 ∈ H̃0. This is equivalent to

kerGT Π̃ = ker Π̃ .

Obtaining the adjoint of GT Π̃ is straightforward and we end up with

MTΠM−TG∗T (L2(Σ0)) = (kerGT Π̃ )⊥ = (ker Π̃ )⊥ = H̃ ′0 ⇔
ΠM−TG∗T (L2(Σ0)) = H ′0 ⇔
M−TG∗T (L2(Σ0)) ⊃ H ′0 ⇔
L(0, L2(Σ0))(T ) ⊃ H ′0 ,

which leads to (2.30). We have thus proved the following theorem.

Theorem 2.6.1. Let T > 0 be fixed. For every choice of u0, u1 ∈ H ′ and ε > 0
there exists a control k ∈ L2(Σ0) for which

∥∥Π
(
L(u0, k)(T )− u1

)∥∥
H′

< ε ,

if and only if

γT (v0, v0) = 0 ⇒ v0 = 0 ,

for all v0 ∈ H̃0.
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We now turn to null-controllability of projections. What we wish to do is drive
a solution’s projection onto H ′0 to zero. Observe first that Theorems 2.2.2 and 2.2.3

are easily adapted to the (smaller) Hilbert space H̃0. With minor modifications,
inequality (2.15) of Theorem 2.2.4 becomes

‖Π (u(T )− u1)‖H′ ≤ ε .

This makes it possible to repeat the arguments of Theorem 2.3.1, if every occurrence
of H̃ is replaced by H̃0. We thus arrive at the following theorem.

Theorem 2.6.2. Let T > 0 be fixed. A linear and bounded operator KΠ ,n
T : H ′ 7→

L2(Σ0) exists for which

ΠL(u0,KΠ ,n
T (u0))(T ) = 0, for all u0 ∈ H ′ ,

if and only if there is a constant CΠ ,n > 0 such that

‖L∗T v0‖2eH ≤ CΠ ,nγT (v0, v0), for all v0 ∈ H̃0 . (2.31)

Note that the control can be computed by minimizing the functional (2.18), just

over the smaller Hilbert space H̃0. A control found this way is unique, and has
again the optimality condition that its L2(Σ0)-norm is minimal among all controls
that solve the same null-controllability of a projection (Theorem 2.5.1 is easily
adapted to this case).

Finally, we consider exact controllability of projections. The use of the Riesz
Representation Theorem in Theorem 2.4.1 can still be used on the Hilbert subspace
H̃0, so we have that a v̂0 ∈ H̃0 exists for which

γT (v̂0, v0) = {u, v0}, for all v0 ∈ H̃0 , (2.32)

with u = u1 − LTu0. We now have the following equivalences:

γT (v̂0, v0) = {u, v0} ∀v0 ∈ H̃0 ⇔
{M−TG∗TGT v̂0, Π̃ v0} = {u, Π̃ v0} ∀v0 ∈ H̃ ⇔

ΠM−TG∗TGT v̂0 = Π (u1 − LTu0) ⇔
ΠL(u0, GT v̂

0)(T ) = Πu1 ,

where this last relation is exactly what we want. So now we have the following
result.

Theorem 2.6.3. Let T > 0 be fixed. A linear and bounded operator KΠ ,e
T : H ′ 7→

L2(Σ0) exists for which

ΠL(0,KΠ ,e
T (u))(T ) = Πu, for all u ∈ H ′ ,

if and only if there is a constant CΠ ,e > 0 such that

‖v0‖2eH ≤ CΠ ,eγT (v0, v0), for all v0 ∈ H̃0 . (2.33)
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As was the case for null-controllability, the control obtained by solving (2.32) is
unique and provides the control with smallest L2(Σ0)-norm.

Note how the observability inequalities of this section are identical to the cases
were control of the whole solution was considered. The space over which it must
hold is just correspondingly smaller.

2.7 Approximate Solutions

Since the main subject of this thesis is exact controllability, we will only address
approximate solutions briefly.

2.7.1 Iterative Solutions and Optimization

As seen in Equation (2.24), a HUM control for exact controllability can be found

by determining w0 ∈ H̃ such that

γT (w0, v0) = {u1 − LTu0, v0} ,

for all v0 ∈ H̃ . This is a variational formulation where γT is a symmetric, bilinear
form which is also positive definite (provided the conditions of Theorem 2.4.1 are
met). An iterative method called the Conjugate Gradient algorithm (CG) is well
fitted for such problems. It is an iterative algorithm which progressively finds a bet-
ter and better approximate solution. The CG algorithm approach to solving control
problems has been used extensively by Professor Glowinski and colleagues, see, e.g.,
Glowinski, Kinton, and Wheeler (1989), Glowinski and Li (1990), Glowinski, Li,
and Lions (1990), Glowinski (1992a), Glowinski (1992b) and Carthel, Glowinski,
and Lions (1994), but also Asch and Lebeau (1998) and Negreanu and Zuazua
(2003) have made use of it. Properties of the CG algorithm in a general Hilbert
space setting can be found in Daniel (1971). In a finite dimensional, numerical
analysis setting, a large amount of literature can be found, see, e.g., Golub and
Van Loan (1996) and the references therein. Since the CG algorithm only finds
approximate solutions, we will not consider it further. (In the finite dimensional
case, CG will solve the problem exactly when performing a number of iterations
corresponding to the space dimension. In such a case one is better off using a direct
method).

Another approach to solving an exact controllability problem is minimizing the
functional

J(v0) = 1
2γT (v0, v0)− {u1 − LTu0, v0} ,

over H̃ . In the case of null-controllability, where u1 = 0, Theorem 2.3.1 (and the
proof thereof) provides the necessary and sufficient conditions for the existence of
a unique minimizer. For exact controllability, the convexity and coercivity of J
(which ensures a unique minimizer) is clear as soon as γT is positive in the sense of
Theorem 2.4.1. We will not provide a survey of methods for finding the minimizer
accurately and efficiently, since it is too far from the subject of this thesis.
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An optimization approach was taken in Park and Lee (2002) for solving approx-
imate controllability problems for the two dimensional heat equation. They used
a CG-type algorithm to minimize J , where the gradient of J was computed using
a so-called adjoint variable method. Also in Eljendy (1992) was an optimization
technique used for solving exact controllability problems for the wave equation in
two dimensions.

Another situation in which approximate solutions occur is when regularization
is used. In practice it may be an unstable process, due to rounding errors, to solve
the usual

ΛTw
0 =MT (u1 − LTu0) ,

if, for instance, the inverse Λ−1
T is unbounded. Instead, one may prefer to solve

ΛαTw
0 =MT (u1 − LTu0) ,

where ΛαT → ΛT in some sense as α → 0, but where ΛαT is considerably more
robust to invert (in relation to, e.g., rounding errors). The quantity α is typically
called a regularization parameter. The downside to this regularization approach
is, of course, that only an approximate solution will be obtained. An example of
regularization in conjunction with the wave equation is using

ΛαT = ΛT + α

[
−∆ 0

0 I

]
,

which shifts the spectrum of ΛT . This type of regularization method was used in
Glowinski and Li (1990), Glowinski, Li, and Lions (1990) and Glowinski (1992b),
together with the CG algorithm for the two-dimensional wave equation. In Carthel,
Glowinski, and Lions (1994) the authors used so-called Tikhonov regularization to
solve approximate controllability problems for the two-dimensional heat equation.
See also Kindermann (1999) for a similar approach.

2.7.2 By How Much Did We Miss?

Assume now that we have obtained an approximate solution in the sense that

ΛTw
0 =MT (u1 − LTu0) + r ,

where r ∈ H̃ ′ represents a non-zero residual. Now what happens if we use the
control associated to w0, even though it is not the exact solution? As far as the
author knows, this question has not been treated in such a manner before. We
answer the question in two different ways.

Case 1: Change in final state: We immediately obtain

ΛTw
0 =MT ((u1 +M−T r) − LTu0) ,

from which we can conclude that we miss the target exactly by M−T r. From the
norm equality ‖M−T r‖H′ = ‖r‖ eH′ we see that the norm of the residual r shows
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exactly by how much we miss the target. This is a somewhat unusual situation,
seen in relation to inverse problems in general, where the residual and not the error
of the solution itself (here w0) determines the quality of the solution.

Case 2: Change in initial state: Similarly we get

ΛTw
0 =MT (u1 − LT (u0 − L−1

T M−T r)) .

So if we start out with the state u0 − L−1
T M−T r, we reach the target u1 exactly.

Note, however, that this second case only makes sense for reversible systems, since
L−1
T must exist. The case is thus relevant when computing exact controllability for

reversible systems, see Section 2.5.2.

2.8 Summary

We were what-what in a what-what?

— Homer Simpson (HOMR, season 12)

Let us collect the most important threads of this chapter. The goal was to steer
a solution of the control system (2.1) to a state at time t = T which could be any
state (exact controllability), the null state (null-controllability) or sufficiently close
to any state (approximate controllability).

The control was exerted on the control boundary Γ0 ⊂ ∂Ω through the boundary
operator B, leading to Dirichlet or Neumann control, or something else. From
this control system, an adjoint system was devised. The boundary conditions of
the adjoint system were homogeneous and an associated complementary boundary
operator C had to be determined. Through the operator C we could define the
bilinear form γT , where the quantity γT (v, v) determined, loosely speaking, what
could be observed from the boundary of a solution to the adjoint system with initial
condition v.

We can now summarize the different types of control as they relate to what is
observed through γT . The observability inequalities are as follows (each statement

must hold for all v ∈ H̃):

‖v‖2eH ≤ CeγT (v, v) ⇔ Exact controllability

⇓
‖L∗T v‖2eH ≤ CnγT (v, v) ⇔ Null controllability

⇓
v 6= 0 ⇒ γT (v, v) > 0 ⇔ Approximate controllability

The vertical implications follow easily, and show how the three types of control are
related.
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Discretizations

It is hard to be finite upon an infinite subject,
and all subjects are infinite.

— Herman Melville

To discretize is a way of approximating something infinite dimensional by something
finite dimensional. It is typically used when analytical methods become impossible,
too hard, or just too time-consuming. Furthermore, representing a solution by a
finite number of data makes it possible to visualize the solution on a computer.
This can often lead to increased understanding on many different levels, and may
even lead to improvements in the analytical methods.

Needless to say, discretizations should lead to good approximations. But most
importantly, it must be possible to choose the discretization parameters in such a
way that the approximate solution lies as close to the real solution as one would
like. In other words, it must be convergent.

This chapter mostly sets the stage for the following chapters. Apart from a few
novel approaches, the material will be well known.

3.1 Discretization in Space

Our focus will here be on the Poisson problem,

∆u = f, in Ω,
u = 0, on Γ .

(3.1)

We will consider discretizations that can be formulated as

Au = Cf , (3.2)

where u and f are vectors of equal length, representing the continuous functions u
and f in some way, typically as point-wise samplings or as coefficients with respect
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x0 = 0 x1 x2 xN xN+1 = 1

h

Figure 3.1: An equally spaced grid in the interval [0, 1].

to some basis. The reason for using two matricesA and C is that we wish to use C
to approximate the L2(Ω)-norm in the following sense: If u approximates u then

〈u,u〉C = uTCu '
∫

Ω

|u|2dx = 〈u, u〉L2(Ω) . (3.3)

The formulation (3.2) also makes sense from a Finite Element Method (FEM)
point of view. Let B1, B2, . . . , Bk be (global) basis functions that are zero on the
boundary, Bi|Γ= 0, used for a first order FEM discretization,

u(x) '
k∑

i=1

uiBi(x) , f(x) '
k∑

i=1

f iBi(x) .

Inserting these expressions into the Poisson problem (3.1) and using also 〈Bi〉ki=1

as test functions, we get

C(i, j) =

∫

Ω

Bi(x)Bj(x)dx, A(i, j) = −
∫

Ω

∇Bi(x)∇Bj(x)dx .

Note how relation (3.3) is fulfilled. Traditionally the matrices C and A are called
the mass- and stiffness matrix, respectively.

The discussion so far has not been restricted to any particular dimension or
type of domain. Let us now consider the simple one dimensional case of Ω = (0, 1).
We use a uniform grid with grid size h = 1/(N + 1) and node points xj = jh,
j = 0, 1, . . . , N + 1, see Figure 3.1.

We introduce the family of discretizations

uj+1 − 2uj + uj−1

h2
= αf j+1 + (1− 2α)f j + αf j−1 , (3.4)

for j = 1, 2, . . . , N and some real parameter α. For twice continuously differen-
tiable u and continuous f we see, using Taylor series, that this way of discretizing
is consistent with (3.1). We shall later see that this scheme also makes sense for
less smooth u and f . To bring the scheme into the formulation of (3.2) we set

A =
1

h




−2 1
1 −2 1

. . .
. . .

. . .

1 −2


 , Cα = h




1− 2α α
α 1− 2α α

. . .
. . .

. . .

α 1− 2α


 . (3.5)
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Note how a single power of h has been moved to the other side of the equation,
in order for Cα to have the property of (3.3). Note also how the homogeneous
Dirichlet boundary conditions have been incorporated implicitly.

Some important values of α should be emphasized. With α = 0 we have the
well-known finite difference scheme. The case α = 1/6 arises if one uses FEM with
a hat function basis (such a basis consists of functions B0, B1, . . . , BN+1 that are
continuous, linear on each interval (xi, xi+1) and for which Bi(xj) = δij , that is, 1
for i = j and 0 otherwise). For α = 1/4 we call the scheme the box method and
it turns out to have some very interesting properties, as we shall see later. (The
name box method was used in Vichnevetsky and Bowles (1982) for the trapezoid
rule, see Section 3.2.3 later in this chapter. But (3.4) with α = 1/4 is a special
case of the trapezoid rule for second order systems, and we will reserve the name
box method for this case).

We will call the discretization scheme introduced above for α-discretization.
As just mentioned, choosing different values of α covers several well-known ways
of discretizing the Poisson operator in one dimension. This possibility of treating
several cases at once was first introduced by the author in Rasmussen (2003).

So C−1
α A approximates the Laplacian ∆. Knowledge about its eigenvalues and

eigenvectors is essential when it comes to analyzing solutions of evolution equations
involving the Laplacian and, in turn, when analyzing control properties of such
systems. Luckily both Cα and A of (3.5) are tridiagonal, symmetric and Toeplitz
(the diagonal and each off-diagonal of a Toeplitz matrix contain constant entries).
This is fortunate since we know the eigenvalues and eigenvectors of such matrices
explicitly.

To see this, we start out with the following special case:

L =




2 −1
−1 2 −1

. . .
. . .

. . .

−1 2



∈ RN×N .

The eigensolutions of this matrix,

Lwk = ηkwk, k = 1, 2, . . . , N ,

are explicitly known,

wk(j) = sin(jkπh), ηk = 4 sin2( 1
2kπh) ,

which is easily verified by insertion (recall that h = 1/(N + 1)).
We can now consider general symmetric and tridiagonal Toeplitz matrices. Let

therefore

T α,β =




β α
α β α

. . .
. . .

. . .

α β



∈ RN×N , α, β ∈ R, (α, β) 6= (0, 0) ,
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π

1

x

Figure 3.2: A plot of the function sin(x)/x. Important properties of this function are
sin(x)/x → 1 as x → 0, | sin(x)/x| ≤ 1 for all x ∈ R, and that it is decreasing on the
interval 0 ≤ x ≤ π.

and observe that T α,β = (2α + β)I − αL. This shows that the eigenvectors of
L and T α,β are identical and that the eigenvalues of T α,β are (2α + β − αηk),
k = 1, 2, . . . , N .

We can now compute the eigenvalues λαk of C−1
α A,

C−1
α Awk = λαkwk ⇔ Awk = λαkCαwk .

Since the eigenvectors of T α,β are independent of α and β we easily get

λαk = − 4 sin2( 1
2kπh)

h2(1− 4α sin2( 1
2kπh))

= −k2π2

(
sin( 1

2kπh)
1
2kπh

)2
1

1− 4α sin2( 1
2kπh)

. (3.6)

The second expression for λαk clearly shows how close they are to the true eigen-
values of the Laplacian (which are −k2π2, k = 1, 2, . . .) whenever k � N . See
Figure 3.3 for an illustration of the eigenvalues when N = 30 and for different
choices of α.

The expressions above also show that not every α is feasible, since the denom-
inator can become zero if 4α sin2( 1

2kπh)) = 1. Clearly this can not happen if
α ≤ 1/4. The special border case α = 1/4 leads to an interesting expression for
the eigenvalues,

λ
1/4
k = − 4

h2
tan2( 1

2kπh) = −k2π2

(
tan( 1

2kπh)
1
2kπh

)2

.

Note also that with α > 1/4, some eigenvalues will inevitably become positive as
soon as N get large enough. This would destroy the elliptic nature of C−1

α A and
we will henceforth only consider the interval 0 ≤ α ≤ 1/4.

The matrices Cα andA that we have just considered were positive and negative
definite, respectively. Furthermore, the eigenvectors of Cα, A and C−1

α A were
identical. This is not true in general, but some useful, general properties are
the subject of the following theorem. We here use the discrete inner product
〈u,v〉 = uTv.
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Figure 3.3: Illustration of eigenvalues of C−1
α A for the specific case of N = 30. The

solid line indicates where the eigenvalues of the continuous operator, ∆, would be.

Theorem 3.1.1. Let C ∈ RN×N be symmetric and positive definite, let A ∈
RN×N be symmetric and negative definite, and consider the eigenvalue problem,

C−1Awk = λkwk .

The following then holds:

1. There exists a full set of eigenvectors wk, k = 1, 2, . . . , N that spans RN .

2. The matrix C−1A is negative definite, i.e., λk < 0 for k = 1, 2, . . . , N .

3. 〈wk,Cwl〉 = 0 for λk 6= λl.

4. 〈wk,Awl〉 = 0 for λk 6= λl.

Proof. Consider the following rewrite,

C−1Aw = λw ⇔ (C−
1
2AC−

1
2 )v = λv ,

where w = C−
1
2v. Since C−

1
2AC−

1
2 is symmetric there exists a set of eigenvectors

{vk}Nk=1 that span RN . Since w = C−
1
2vk and C−

1
2 is clearly regular, statement 1

follows.
The eigenvalues of C−1A are equivalent to those of C−

1
2AC−

1
2 , which is neg-

ative definite. This proves statement 2.
Assume now that vk, vl are eigenvectors of the symmetric matrix C−

1
2AC−

1
2 ,

corresponding to different eigenvalues. They are then orthogonal with respect to
the inner product 〈·, ·〉, i.e.,

0 = 〈vk,vl〉 = 〈C 1
2wk,C

1
2wl〉 = 〈wk,Cwl〉 =

1

λl
〈wk,Awl〉 ,

for all l, k = 1, 2, . . . , N for which λl 6= λk. This immediately leads to statements 3
and 4.
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Figure 3.4: Illustration of grid aliasing on an equally spaced grid. Here, the waves
sin(2xπ) and sin(12xπ) cannot be distinguished when sampled on the grid x = i/5,
i = 0, 1, . . . , 5.

3.1.1 Waves in hZ
Consider the illustration in Figure 3.4. Here are shown two clearly distinct sine
waves, sin(2xπ) and sin(12xπ). However, when sampling these continuous functions
onto the regular grid {0, 1

5 ,
2
5 ,

3
5 ,

4
5 , 1}, they are indistinguishable. This common

phenomenon is called grid aliasing, and the following theorem describes exactly
which waves are “the same” on a regular grid. See Trefethen (2000) for some
information on grid aliasing.

Theorem 3.1.2. For x, y ∈ R \ πZ we have

sin(xj) = sin(yj), for all j ∈ Z , (3.7)

if and only if 2π divides x− y,

2π | x− y . (3.8)

Proof. First we show that (3.7) implies (3.8). Assume therefore that sin(xj) =
sin(yj) for all j ∈ Z. In particular, this means that we must have sin(x) = sin(y),
implying that either 2π | x − y or 2π | x + y − π. In the first case, we are done.
Assume therefore the second case, that x + y = (2p + 1)π for some p ∈ Z. This
implies 2x = −2y + 2(2p+ 1)π so sin(2x) = − sin(2y), which is a contradiction.

Assume now that x = y + 2pπ for some p ∈ Z. Now for j ∈ Z we have
sin(xj) = sin(yj + 2jpπ) = cos(yj) sin(2jpπ) + sin(yj) cos(2jpπ) = sin(yj).

The following theorem investigates the discrete analog of
∫ 1

0

sin(kπx) sin(lπx)dx = 1
2δkl ,

for k, l ∈ N. Note how grid aliasing plays a role in the periodic nature of the result.
(The symbol - means “does not divide”.)
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Theorem 3.1.3. For every choice of N ∈ N and k, l ∈ Z, the following holds:

N∑

j=1

sin(kjπ/(N+1)) sin(ljπ/(N+1))

=





−N+1
2 , 2(N+1) | k + l, 2(N+1) - k − l ,

N+1
2 , 2(N+1) | k − l, 2(N+1) - k + l ,

0 , otherwise .

(3.9)

Proof. See Detail 3, page 182.

We follow up on this result by introducing the matrixW ∈ RN with the entries:

W (j, k) = sin(jkhπ), for j, k = 1, 2, . . . , N .

Note how W clearly is symmetric. An implication of Theorem 3.1.3 is now that

W TW = W 2 = 1
2 (N + 1)I , implying W−1 =

2

N + 1
W . (3.10)

We will make use of this result later on.

3.1.2 Semi-Discretizations

Consider a linear system of first order equations,

{
Cu̇(t) = Au(t) ,

u(0) = u0 ,
(3.11)

where u : R 7→ RN and C,A ∈ RN×N . We assume that C−1A exists and is
diagonalizable such that

C−1Azk = σkzk ⇔ Azk = σkCzk, k = 1, 2, . . . , N , (3.12)

where the eigenvectors z1, z2, . . . , zN are linearly independent. If we are now given
the initial data in this eigenvector basis,

u0 =

N∑

k=1

ckzk ,

the solution to (3.11) can be written as

u(t) =
N∑

k=1

cke
σktzk .

This is the well-known solution formula for first order ODEs.
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Consider now a linear ODE of second order,
{
Cü(t) = Au(t) ,

u(0) = u0, u̇(0) = u0 .
(3.13)

We assume that C and A are symmetric, and positive and negative definite, re-
spectively. From Theorem 3.1.1 it now follows that C−1A is negative definite and
with

C−1Awk = λkwk ⇔ Awk = λkCwk, k = 1, 2, . . . , N ,

we set µ2
k = −λk with µk > 0. By introducing u = u̇ we get a first order ODE,

[
C 0
0 C

] [
u̇
u̇

]
=

[
0 C
A 0

] [
u
u

]
. (3.14)

We are now interested in the eigensolutions of the matrix governing this system,
[

0 I
C−1A 0

][
wk

βkwk

]
= σk

[
wk

βkwk

]
.

From βkwk = σkwk we immediately see that βk = σk. The relation C−1Awk =
σkβkwk now yields σk = ±i√−λk = ±iµk. So the eigensolutions are

(σk , zk) =

(
iµk,

[
wk

iµkwk

])
, (σ−k, z−k) =

(
−iµk,

[
wk

−iµkwk

])
, (3.15)

for k = 1, 2, . . . , N . Let us write this more compactly for later convenience. We set

W =
[
w1 w2 · · · wN

]
, D = diag(µ1, µ2, . . . , µN ) , (3.16)

where diag(· · · ) is a diagonal matrix with the listed values along the diagonal, and

Z =
[
z1 · · · zN z−1 · · · z−N

]
=

[
W W

iWD −iWD

]
.

The inverse of Z is easily seen to be

Z−1 = 1
2

[
W−1 −iD−1W−1

W−1 iD−1W−1

]
.

We finally have the diagonalization

Z−1

[
0 I

C−1A 0

]
Z =

[
iD 0
0 −iD

]
.

Let us return to writing the solution of the system (3.13) in terms of eigenvectors
of C−1A. Let the initial conditions of (3.13) be given as

u0 =
N∑

k=1

akwk, u0 =
N∑

k=1

bkwk , (3.17)
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where the coefficients are real, ak, bk ∈ R (1 ≤ k ≤ N). We wish to express these
initial conditions in the eigenvector basis {zk}1≤|k|≤N , that is, find the coefficients
{ck}1≤|k|≤N such that

∑

1≤|k|≤N
ckzk =

(
u0

u0

)
.

It is easily verified that

ck = 1
2 (ak − ibk/µk), c−k = 1

2 (ak + ibk/µk) ,

k = 1, 2, . . . , N , is the unique solution to this problem. This means that the full
solution to (3.13) is [

u(t)
u(t)

]
=

∑

1≤|k|≤N
cke

σktzk ,

or, written out,

u(t) =

N∑

k=1

[
1
2 (ak − ibk/µk)eµkt + 1

2 (ak + ibk/µk)e−µkt
]
wk

=
N∑

k=1

[ak cos(µkt) + bk/µk sin(µkt)]wk ,

u̇(t) = u(t) =

N∑

k=1

[
1
2 (ak − ibk/µk)eµkt − 1

2 (ak + ibk/µk)e−µkt
]
iµkwk

=

N∑

k=1

[−akµk sin(µkt) + bk cos(µkt)]wk .

(3.18)

Let us finally consider the so-called energy of a second order system (3.13),

Eh(t) = 1
2

(
〈u̇(t),Cu̇(t)〉 − 〈u(t),Au(t)〉

)
. (3.19)

It is easily shown that E ′h(t) = 0, that is, the energy remains constant, Eh(t) =
Eh(0) for all t. Note that since C and A were assumed positive and negative
definite, respectively, Eh(0) defines a norm on the initial data, (u0,u0),

∥∥∥∥
[
u0

u0

]∥∥∥∥
2

eQ
=

[
u0

u0

]T
Q̃

[
u0

u0

]
, where Q̃ =

[
−A 0

0 C

]
.

The above expression for the energy is in fact the primary reason for introducing
the extra matrix C into second order systems. Indeed, consider the wave equation
utt = ∆u in Ω with homogeneous Dirichlet boundary conditions. If now

〈u̇,Cu̇〉 '
∫

Ω

|u̇|2dx, and 〈u,Au〉 ' −
∫

Ω

|∇u|2dx ,
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then

Eh(t) ' E(t) = 1
2

∫

Ω

(
|u̇|2 + |∇u|2

)
dx ,

where E(t) = E(0) is a natural energy for the continuous wave equation in the
sense that

E(t) <∞ ⇔ (u(t), u̇(t)) ∈ H1
0 (Ω)× L2(Ω) ,

and the wave equation is well-posed in H1
0 (Ω)×L2(Ω) (will be shown in Chapter 7).

In the next chapter we will consider controllability of discrete systems. It will
here be essential that we use discrete norms that correspond to the continuous
ones. To that end we use the convention that the discrete Q̃-norm approximates
the continuous H̃-norm of Chapter 2 (H̃ was the Hilbert space in which the adjoint
system was well posed).

3.2 Discretization in Time

We apply a method of lines approach to time–space discretization. This means we
first discretize in space only, thereby obtaining an ODE. Next we apply an ODE
solution method to discretize in time.

This section describes two such ODE solution schemes: The explicit midpoint
rule and the trapezoid rule. In both cases we will analyze their stability, obtain so-
lution formulas in terms of eigenvectors and eigenvalues, and introduce appropriate
discrete norms.

Consider initially an ODE with the general formulation,

u̇(t) = f(u(t), t) , (3.20)

where u : R 7→ V for some appropriate vector space V . For use in the discretization,
we introduce the time points tn = n∆t, where the time step ∆t 6= 0 is constant,
and un ' u(tn).

3.2.1 Stability of ODEs

The following treatment of stability for ODEs is fairly standard, see, for instance,
Trefethen (1996).

Consider the simple case of f(u, t) = λu with Re λ ≤ 0 (we use Re λ to refer
to the real part of λ ∈ C). The true solution, u(t) = u(0)eλt, fulfills |u(t)| ≤ |u(0)|
for t ≥ 0 and it is thus a reasonable requirement of an ODE scheme for this f ,
that |un| stays bounded as n → ∞. When this is the case for a particular choice
of λ and ∆t, we call the scheme eigenvalue stable.

Let now S ⊂ C be a subset of the complex plane for which λ∆t ∈ S if and only
if the scheme is eigenvalue stable for this choice of λ and ∆t. We then call S the
stability region of the particular ODE scheme.

Consider now the linear ODE,

u̇(t) =Au(t) , (3.21)
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where we assume that the matrixA ∈ RN×N is diagonalizable,A = V DV −1 with
D = diag(λ1, λ2, . . . , λN ). Setting y(t) = V −1u(t), the above system becomes
equivalent to

ẏ(t) = Dy(t) or ẏ(k)(t) = λky(k)(t) for k = 1, 2, . . . , N .

The reason for studying the case f(u, t) = λu is now clear. If it is possible to
choose ∆t such that λk∆t lies in the stability region for all k, then we are sure that
the approximate solution yn does not “blow up”. In turn, un = V yn will stay
bounded. Since the stability thus comes down to ∆t and the eigenvalues of A, we
see the reason for the term eigenvalue stability.

3.2.2 The Explicit Midpoint Rule

The explicit midpoint rule has the following appearance,

un+1 − un−1

2∆t
= f(un, tn) .

It is explicit since un+1 can be isolated, un+1 = 2∆tf(un, tn)+un−1, without having
further information about f(u, t). It is furthermore a two-step rule since un+1

depends on the values of both un and un−1.

3.2.2.1 First Order Equations

To investigate eigenvalue stability we set f(u, t) = λu and get
[
un

un+1

]
=

[
0 1
1 2∆tλ

][
un−1

un

]
,

when formulating it as a one-step scheme. An eigenvalue σ of the one-step-forward
matrix is seen to satisfy the equation

σ2 − 2∆λσ − 1 = 0 ⇔ σ − 1

σ
= 2∆λ .

This shows that if an eigenvalue has |σ| < 1 then one also exists with |σ| > 1. Thus
for eigenvalue stability we must have σ = eiθ for θ ∈ R. We now get

eiθ − e−iθ = 2i sin(θ) = 2∆tλ ⇔ sin(θ) = −i∆tλ ,
which shows that λ must be purely imaginary and |∆tλ| ≤ 1. This makes the
explicit midpoint rule especially suited for hyperbolic systems.

3.2.2.2 Second Order Equations

We turn to a second order systemCü = Au, whereC ∈ RN×N andA ∈ RN×N are
both symmetric, and positive and negative definite, respectively. We rewrite into
a first order system as in (3.14) and introduce it to the explicit midpoint scheme:

[
un+1/2

vn+1/2

]
−
[
un−1/2

vn−1/2

]
= ∆t

[
0 I

C−1A 0

] [
un

vn

]
.



42 3. Discretizations

The reason for using half time steps become clear since the relations

un+1/2 − un−1/2 = ∆t vn,

vn+1/2 − vn−1/2 = ∆t C−1Aun ,

can be appropriately combined into the well-known

C
un+1 − 2un + un−1

∆t2
= Aun . (3.22)

Let us find an expression for un in terms of C−1A’s eigenvectors,

C−1Awk = λkwk = −µ2
kwk ,

k = 1, 2, . . . , N . We reformulate (3.22) into

[
un

un+1

]
=

[
0 I
−I 2I + ∆t2C−1A

] [
un−1

un

]
,

and consider therefore the eigenvalue problem,

[
0 I
−I 2I + ∆t2C−1A

][
wk

σkwk

]
= σk

[
wk

σkwk

]
.

We get

(2−∆t2µ2
k)σk − 1 = σ2

k ⇔ σk +
1

σk
= 2−∆t2µ2

k ,

and again we must have σk = eiθk , θk ∈ R. This implies that

cos(θk) = 1− 1
2∆t2µ2

k, k = 1, 2, . . . , N . (3.23)

Thus the eigenvalue stability criterion is ∆t ≤ 2/µk for k = 1, 2, . . . , N and real
solutions must have the appearance

un =

N∑

k=1

[
ãk cos(nθk) + b̃k sin(nθk)

]
wk , (3.24)

where the coefficients 〈ãk〉Nk=1 and 〈b̃k〉Nk=1 are to be determined. We do that from
the following initial conditions and approximation to u̇(0) (compare to (3.13) and
(3.17)):

u0 =

N∑

k=1

akwk,
u1 − u−1

2∆t
=

N∑

k=1

bkwk . (3.25)

Inserting (3.24) into these conditions we get

ãk = ak and b̃k =
∆t

sin(θk)
bk =

1

µk
√

1 + 1
4∆t2µ2

k

bk ,
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where the relation (3.23) has been used. To summarize, the complete solution
to (3.22) with initial conditions (3.25) is given by

un =
N∑

k=1

[
ak cos(nθk) +

1

µk
√

1 + 1
4∆t2µ2

k

bk sin(nθk)

]
wk , (3.26)

where each θk must satisfy (3.23).

3.2.2.3 Energy Norm for Second Order Equations

To have an energy measure with properties similar to that of the semi-discrete
system (3.19) (and, in turn, to that of a continuous system), we define

En = 1
2

[〈
un+1 − un

∆t
,C
un − un−1

∆t

〉
− 〈un,Aun〉

]

=
1

2∆t2

[
〈un,Cun〉 − 〈un+1,Cun−1〉

]
.

(3.27)

Consider now

2∆t2(En+1 −En) =
(
〈un+1,Cun+1〉 − 〈un+2,Cun〉

)

−
(
〈un,Cun〉 − 〈un+1,Cun−1〉

)

=
(
〈un+1,Cun+1〉 − 2〈un+1,Cun〉+ 〈un+1,Cun−1〉

)

−
(
〈un,Cun+2〉 − 2〈un,Cun+1〉+ 〈un,Cun〉

)

=〈un+1,∆t2Aun〉 − 〈un,∆t2Aun+1〉 = 0 ,

which shows that En = E0 for all n = 0, 1, 2, . . . .
An energy expression similar to that in (3.27) has previously been formulated

in Negreanu and Zuazua (2003). In that paper, they consider only the second order
centered difference scheme for time and space discretization (corresponding to the
midpoint rule with C0 and A from (3.5)). Their approach, however, does not use
matrix notation and the above treatment is thus simpler and more general.

But can E0 act as a norm? Let us insert the expression for the solution (3.26)
into (3.27) for n = 0 and we get

E0 =
1

2

(
N∑

k=1

[
(1− 1

4∆t2µ2
k)µ2

ka
2
k + b2k

]
〈wk,Cwk〉

)
,

using Theorem 3.1.1 to eliminate all “mixed” inner products. The expression clearly
shows that E0 is a norm if and only if the condition ∆t < 2/µk is satisfied for all
k. Note that this is similar to the stability criterion. A norm corresponding to the
energy can be written
∥∥∥∥
[
u0

u0

]∥∥∥∥
2

eQ
=

[
u0

u0

]T
Q̃

[
u0

u0

]
, where Q̃ =

[
−A(I + 1

4∆t2C−1A) 0
0 C

]
.
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3.2.3 The Trapezoid Rule

We now consider the trapezoid rule, which has the general formulation,

un+1 − un
∆t

=
f(un+1, tn+1) + f(un, tn)

2
,

an implicit one-step scheme. This scheme has some nice properties when it comes
to stability and, as we shall see later, to controllability.

3.2.3.1 First Order Equations

Let us again start out with the simple case f(u, t) = λu. We get

un+1 − un = 1
2 ∆tλ(un+1 + un) ⇔ un+1 =

(
1 + 1

2∆tλ

1− 1
2∆tλ

)
un .

Setting α = ∆tλ we have

un =

(
2 + α

2− α

)n
u0 , (3.28)

so finding the stability region is easy,

∣∣∣∣
2 + α

2− α

∣∣∣∣
2

=
4 + 2α+ 2α+ |α|2
4− 2α− 2α+ |α|2 ≤ 1 ⇔ Re(α) ≤ 0 , (3.29)

where α denotes the complex conjugate of α.
Considering now the case f(u, t) = Au, we get

(I − 1
2∆tA)un+1 = (I + 1

2∆tA)un ,

from which the implicitness is obvious. Using the eigenvalue information (3.12),
the solution is easily written using (3.28),

un =

N∑

k=1

akρ
n
kwk ,

for n = 1, 2, . . ., where

u0 =

N∑

k=1

akwk, and ρk =
2 + ∆tλk
2−∆tλk

.

3.2.3.2 Second Order Equations

We turn again to a second order system Cü = Au. The trapezoid scheme applied
to this system becomes

[
un+1

un+1

]
−
[
un

un

]
= 1

2∆tS

([
un+1

un+1

]
+

[
un

un

])
, S =

[
0 I

C−1A 0

]
. (3.30)
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We let the initial conditions be as in (3.17), also written as

[
u0

u0

]
=

∑

1≤|k|≤N
ckzk, with ck = 1

2 (ak − ibk/µk), c−k = ck, 1 ≤ k ≤ N ,

using the eigenvectors of the matrix S, see (3.15). We get

ρk =
2 + ∆tσk
2−∆tσk

, 1 ≤ |k| ≤ N ,

which implies that

ρk =
2 + i∆tµk
2− i∆tµk

=
4−∆t2µ2

k

4 + ∆t2µ2
k

+ i
4∆tµk

4 + ∆t2µ2
k

, ρ−k = ρk ,

for k = 1, 2, . . . , N . We observe that |ρk| = 1 and let θk ∈ (−π, π) be chosen such
that eiθk = ρk. Note that θ−k = −θk. The full solution is now

[
un

un

]
=

∑

1≤|k|≤N
ckρ

n
kzk =

∑

1≤|k|≤N
cke

iθknzk ,

or written out as in (3.18),

un =
N∑

k=1

[
ak cos(θkn) + bk/µk sin(θkn)

]
wk,

un =

N∑

k=1

[
−akµk sin(θkn) + bk cos(θkn)

]
wk .

(3.31)

The trapezoid scheme for second order systems can be rewritten in an interesting
way. Consider the relation from (3.30), written for two neighboring values of n:

un+1 − un = 1
2∆t(un+1 + un), un − un−1 = 1

2∆t(un + un−1),

un+1 − un = 1
2∆tC−1A(un+1 + un), un − un−1 = 1

2∆tC−1A(un + un−1).

Combining these relations we get

un+1 − 2un + un−1 = 1
2∆t(un+1 − un−1) = 1

4∆t2C−1A(un+1 + 2un + un−1) ,

or equivalently,

C
un+1 − 2un + un−1

∆t2
= A

un+1 + 2un + un−1

4
. (3.32)

Note the similarity to the box method space discretization, see (3.4) with α = 1/4.
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3.2.3.3 Energy Norm for Second Order Equations

As far as the author knows, a suitable energy norm has not previously been studied
in the literature (at least not in the context of control theory).

We define the energy of the system (3.30) as

En = 1
2

(
〈un,Cun〉 − 〈un,Aun〉

)
.

Note how well this energy expression corresponds to that of the semi-discrete sys-
tem, see (3.19).

The energy is constant in time, which is seen from

2(En+1 −En) =〈un+1,Cun+1〉 − 〈un,Cun〉
− 〈un+1,Aun+1〉+ 〈un,Aun〉

=〈un+1 + un,C(un+1 − un)〉 − 〈un+1 − un,A(un+1 + un)〉
=〈un+1 + un, 1

2∆tA(un+1 + un)〉
− 〈 12∆t(un+1 + un),A(un+1 + un)〉 = 0 ,

so En = E0 for all n.
We finally compute the energy when the initial conditions are given in terms of

eigenvalues and eigenvectors,

E0 = 1
2

(
〈u0,Cu0〉 − 〈u0,Au0〉

)

= 1
2

(
N∑

k=1

b2k〈wk,Cwk〉 −
N∑

k=1

a2
k〈wk,Awk〉

)

= 1
2

N∑

k=1

(µ2
ka

2
k + b2k)〈wk,Cwk〉 .

(3.33)

This shows that the energy induces a norm,

∥∥∥∥
[
u0

v0

]∥∥∥∥
2

eQ
=

[
u0

v0

]T
Q̃

[
u0

v0

]
, where Q̃ =

[
−A 0

0 C

]
.

Using an analogous procedure, it is straightforward to show that another norm is
also constant in time for second order systems when using the trapezoid scheme,

∥∥∥∥
[
u0

v0

]∥∥∥∥
2

Q′
=

[
u0

v0

]T
Q′
[
u0

v0

]
, where Q′ =

[
C 0
0 −CA−1C

]
.

For the wave equation with homogeneous Dirichlet boundary conditions, where
C−1A approximates the Laplacian, ∆, the ‖ · ‖eQ-norm approximates the H1

0 (Ω)×
L2(Ω)-norm. Similarly, the ‖ · ‖Q′-norm approximates the L2(Ω)×H−1(Ω)-norm.
The continuous wave equation is well posed in both norms (the discrete Q′-norm
corresponds to the continuous H ′-norm of Chapter 2, in which the control system
is well posed).
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3.3 Convergence of PDEs

To solve PDEs approximately, one can apply the following method of lines ap-
proach: Discretize in space to obtain an Nth order ODE, then use an ODE solver
to integrate in time, choosing ∆t small enough for eigenvalue stability. Now si-
multaneously increasing N and appropriately decreasing ∆t, we obtain better and
better approximations to the continuous PDE solution—or do we? The procedure
can actually fail.

We need to make the concept of convergence more precise, and to that end we
need a stronger form of stability. Let the PDE we wish to approximate have the
generic appearance,





du(t)

dt
=Au(t) in (0, T )× Ω ,

u(0) = u0 in Ω ,
(3.34)

which is assumed well posed in the sense that the solution lies in the Hilbert
space H , u(t) ∈ H , for 0 ≤ t < T . Note that boundary conditions are assumed
built into the differential operator A and the Hilbert space H .

We will use the following abstract formulation for a PDE discretized in both
space and time,

un+1
N = S(N)unN ,

where the subscripts emphasize the dimension of the space discretization. We
assume that an appropriate time step ∆t is built into the operator S(N). We thus
have

unN = S(N)nu0
N . (3.35)

We need to be able to set the initial condition u0
N for the discrete system from the

continuous function u0. To that end we introduce an operator RN : H 7→ RN that
does the job,

u0
N = RNu

0 .

Conversely, to speak of convergence, we must be able to compare unN to u(n∆t).
We introduce EN : RN 7→ H that interpolates a vector in RN of the discrete system
to the Hilbert space H . We require that RNEN = I , where I is the identity in RN ,
and we set S(N) = ENS(N)RN . We can now formulate (3.35) as

unN = S(N)nu0 ,

where unN ∈ H for all n,N and we see that unN = RNu
n
N . We are now ready to

define convergence.

Definition 3.3.1. Let N1, N2, . . . be a sequence of natural numbers. Let corre-
sponding time steps ∆tj > 0 and nj ∈ N be chosen such that ∆tj → 0 and
∆tjnj → t where 0 ≤ t ≤ T . A PDE discretization is now said to be conver-
gent if

‖S(Nj)
nju(0)− u(t)‖H → 0, as j →∞ ,

for all solutions u(t) to (3.34).
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It turns out that convergence is intimately tied to two other concepts: stability
and consistency. The following type of stability makes sure that the numerical
solution can not “blow up”.

Definition 3.3.2. A PDE discretization is stable if a constant C > 0 exists such
that ∥∥S(N)nu0

∥∥
H
≤ C ,

for all n where 0 ≤ n∆t ≤ T and for all N (recall that ∆t depends on N).

Stability, however, is independent of the continuous system. We need to make
sure that the discrete scheme is actually a discretization of the right equation. This
is the subject of consistency.

Definition 3.3.3. A PDE discretization is consistent with the differential equa-
tion (3.34) if ∥∥∥∥

(
S(N)− I

∆t
−A

)
u(t)

∥∥∥∥
H

→ 0, as N →∞ ,

for every solution u(t) of the system (3.34) with u0 belonging to a dense subset
of H.

The condition of this definition can be rewritten into something that is easier
to handle in practice. Assume

‖S(N)u(t)− u(t+ ∆t)‖H = O(∆tp+1), as N →∞ ,

for any solution u(t) of the system (3.34) with u0 in a dense subset of H and where
0 ≤ t < T . The discretization is now consistent if p > 0. The number p is called
the order of accuracy.

We are now ready for the main theorem of this section, a classical theorem of
great importance.

Theorem 3.3.1 (Lax Equivalence Theorem). Let a consistent discretization
be given of a well-posed linear initial-value system of the type (3.34). The dis-
cretization scheme is now convergent if and only if it is stable.

The proof can be found in Lax and Richtmyer (1956) and Richtmyer and Morton
(1967), which both contain further details on convergence of discretizations. See
also Trefethen (1996).

Note how it, in the light of the present section, does not make sense just to
talk of whether a discretization scheme SN , in itself, is convergent or not. One
also has to specify how to set the initial conditions of the discrete system (here
done by RN ), how to put a discrete solution in the same space as the continuous
system (here done by EN ) and finally by specifying in which norm the solution
should converge (here ‖ · ‖H). An example of rigorously showing convergence from
consistency and stability for a particular discretization of the one dimensional wave
equation can be found in Section 7.4.2.



3.4. Group Velocity for Hyperbolic Systems 49

3.4 Group Velocity for Hyperbolic Systems

This section will provide a short introduction to the concept of group velocity,
mostly related to the discretizations that we will deal with in the present thesis.
The presentation is primarily based on the paper Trefethen (1982). We will, how-
ever, present some new insight by considering the general α-discretizations. We
will furthermore derive a space–time discretization of the two-dimensional wave
equation, which has never before been studied in the context of control.

Group velocity turns out to explain many things related to controllability. The
explanations, however, turn out to be more intuitive than actual proofs. Some
attempts have been made, though, to make rigorous proofs using the ideas of
group velocity, see Maciá (2003).

Let us start out in one space dimension. The central idea is to consider solutions
of the form

u(t, x) = ei(ωt−ξx) , (3.36)

where ω is denoted the frequency and ξ the wave number. Inserting such a solution
into the PDE in question leads to a dispersion relation,

ω = ω(ξ) ,

which shows the necessary relation between frequencies and wave numbers. For
instance, consider the wave equation

utt = uxx , (3.37)

which, when inserting (3.36), leads to ω2 = ξ2. The quantity

c(ξ) =
ω(ξ)

ξ
,

is called the phase speed, which is the speed with which the solution (3.36) travels
to the right. It is, however, the group velocity,

C(ξ) =
dω(ξ)

dξ
,

that dictates the speed with which wave packets of dominating wave number ξ
travels.

Let us now consider a family of semi-discretization of the wave equation (3.37),

αüj+1 + (1− 2α)üj + αüj−1 =
uj+1 − 2uj + uj−1

h2
, (3.38)

using the α-discretization of the Laplacian introduced in (3.4). We now insert (3.36)
with x = jh and get, after some manipulation,

ω2 =
4 sin2( 1

2ξh)

h2(1− 4α sin2( 1
2ξh))

= ξ2

(
sin( 1

2 ξh)
1
2 ξh

)2
1

1− 4α sin2( 1
2ξh)

(3.39)
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π

π

ξh

ωh

Figure 3.5: Illustration of the dispersion
relation (3.39) for the semi-discretization
shown in (3.38). The solid, black lines cor-
respond, respectively, to α = 1/4, α = 1/6
and α = 0 from the top (ignoring the mirror
image below the ξh-axis). The dotted lines
indicate the periodic nature of the dispersion
relation, ω(ξh) = ω(ξh+ 2π).

(note the similarity to the expression (3.6) for the eigenvalues of the approximate
Laplacian).

An illustration of the dispersion relation above can be seen in Figure 3.5.
Around ξh = 0 the group velocity (the slope of the curve) is close to one as
required by consistency. However, around ξh = ±π for α < 1/4, the group velocity
is close to zero. This means that such high frequency waves hardly move in the
discrete media. But what do the waves look like when ξh ' π ? For j ∈ Z and
ε ∈ R we get

cos((π − ε)j) = cos(πj) cos(εj) + sin(πj) sin(εj) = (−1)j cos(εj) ,

implying that cos((π − ε)j) ' (−1)j for εj � 1.

Let us move on to discretizing in time also. We start out with the midpoint
scheme for the time discretization. Again we use the α-discretization in space,
see (3.4) and (3.5),

Cα
un+1 − 2un + un−1

∆t2
= Aun . (3.40)

Inserting a solution of the type

unj = ei(ωn∆t−ξjh) , (3.41)

we arrive at the relation

sin2( 1
2ω∆t) =

η2 sin2( 1
2ξh)

1− 4α sin2( 1
2ξh)

, ωh = ±2

η
arcsin

(
η sin( 1

2ξh)√
1− 4α sin2( 1

2ξh)

)
.

(3.42)
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π

π

ξh

ωh

α = 0, η = 1.1, 0.9, 0.5, 0.1

π

π

ξh

ωh

α = 1/6, η = 0.9, 0.5, 0.1

π

π

ξh

ωh

α = 1/4, η = 0.9, 0.5

Figure 3.6: Dispersion relations of the 1D wave equation using the midpoint scheme for
time discretization and α-discretization for the space discretization. Under each plot is
shown the value of α together with the values of η = ∆t/h used, corresponding to the
solid, black lines, counting from above. No curve has been cut in the ωh-direction, and
missing parts indicate that the corresponding ωh has a non-zero imaginary part.
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π

π

ξh

ωh

α = 0, η = 0.1, 0.5, 0.9, 1.1, 1.5, 2.0

π

π

ξh

ωh

α = 1/6, η = 0.1, 0.5, 0.9, 1.1, 1.5, 2.0

π

π

ξh

ωh

α = 1/4, η = 0.5, 0.9, 1.1, 1.5, 2.0

Figure 3.7: Dispersion relations of the 1D wave equation using the trapezoid scheme for
time discretization and α-discretization for the space discretization. Under each plot is
shown the value of α together with the values of η = ∆t/h used, corresponding to the
solid, black lines, counting from above. No curve has been cut in the ωh-direction.

This relation is shown for the values α = 0, 1/6, 1/4 in Figure 3.6. Note that these
exhibit the same deficiencies for ξh ' π as for the semi-discrete case.

We now turn to the trapezoid method for time discretization, and we will use
the formulation from (3.32),

Cα
un+1 − 2un + un−1

∆t2
= A

un+1 + 2un + un−1

4
.

We insert the (local) solution (3.39) once again and obtain

tan2( 1
2ω∆t) =

η2 sin2( 1
2ξh)

1− 4α sin2( 1
2ξh)

, ωh = ±2

η
arctan

(
η sin( 1

2ξh)√
1− 4α sin2( 1

2ξh)

)
.

This relation is shown for the values α = 0, 1/6, 1/4 in Figure 3.7. Note in the
figure the dispersion relation for the very important case of α = 1/4,

tan2( 1
2ω∆t) = η2 tan2( 1

2ξh) . (3.43)
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This case has the very special feature that the group velocity is not' 0 for ξh ' ±π,
or anywhere else for that matter. This creates hope that the scheme will do well
when it comes to control. We shall study the scheme in Section 7.4.

Let us consider an example to illustrate just how exact the previous concepts
can predict wave propagation in a discrete media. Consider the function

f(x) =

{
sin(ξx) exp

(
4

(2x+1)(2x−1)

)
, − 1

2 < x < 1
2 ,

0, otherwise ,

which is a sine wave with wave number ξ, multiplied point-wise with a smooth
pulse function, supported in (− 1

2 ,
1
2 ). It is now clear that u(t, x) = f(x − t) is

a solution to the one-dimensional wave equation, utt = uxx, on the real line R.
For the discretization, we use the second order centered difference formula in both
space and time, that is, we use (3.40) with α = 0. In turn, the dispersion relation
is seen from (3.42), leading to the group velocity

ω′(ξ) = ± cos( 1
2ξh)√

1− η2 sin2( 1
2ξh)

(easiest obtained by applying implicit differentiation to the left-most expression
in (3.42)). In our example we have h = 1/300, η = 0.1 and ∆t = ηh. We set
ξ = 100 as the wave number for the function f , and by using initial conditions
u(0, x) = f(x), ut(0, x) = −f ′(x) we get the solution u(t, x) = f(x − t), that is,
the function f traveling right at speed one. Inserting these numbers, we get the
group velocity ω′(ξ) ' ±0.7860. This means that in time one, the true solution has
travelled one unit to the right whereas a discrete wave with wave number ξ = 100
should travel the distance 0.7860 either left or right. By looking at Figure 3.8, we
see that this is highly accurate.

3.4.1 Group Velocity in 2D

In two (or more) dimensions we simply insert waves of the type

u(t,x) = ei(ωt−ξ·x) ,

with ξ ∈ Rd and thereby obtaining a dispersion relation of the type

ω = ω(ξ) .

The group velocity now becomes a vector field,

C = ∇ω .

The length and direction of the vector C(ξ) reveals the speed and the direction of
the corresponding wave, respectively.
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t = 0

t = 1

0 10.7860−0.7860 x

Figure 3.8: Propagation of a wave in a discrete medium with grid size h = 1/300.
The top-most plot shows the initial condition, a dampened sin(100x) wave. The initial
velocity is chosen such that the true solution should travel to the right at speed 1. This is
illustrated in gray in the bottom plot. However, because of discretization effects, solving
the wave equation using a finite difference scheme, group velocity calculations predict
that this particular wave should propagate at speed ±0.7860. This is seen to be highly
accurate.
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Let us consider the wave equation in two dimensions,

utt = uxx + uyy , (3.44)

which has the simple dispersion relation ω2 = ξ2
1 + ξ2

2 , using ξ = (ξ1, ξ2).

Consider as an example the following finite difference discretization of the two-
dimensional wave equation,

un+1
j,k − 2unj,k + un−1

j,k

∆t2
=
unj+1,k − 2unj,k + unj−1,k

h2
+
unj,k+1 − 2unj,k + unj,k−1

h2
.

(3.45)
Inserting

unj,k = ei(ω∆tn−ξ1jh−ξ2kh) , (3.46)

we arrive at

sin2( 1
2ω∆t) = η2

[
sin2( 1

2ξ1h) + sin2( 1
2ξ2h)

]
. (3.47)

The dispersion relation for η = ∆t/h = 1/
√

2 can be seen in Figure 3.9. The
contour plot here is very informative. It shows level curves in the (ξ1, ξ2)-plane
for constant values of ωhη = π/20, 2π/20, . . . , 19π/20. The distance between two
adjacent curves indicates the speed of a wave with a corresponding (ξ1, ξ2) wave
number. For comparison, the distance between the curves around (ξ1, ξ2) = (0, 0)
corresponds to waves with the true unit wave speed of the underlying system.
The level curves provide further useful information: The direction of a wave is
perpendicular to a corresponding level curve. We know from the continuous system
that the dispersion relation is ω2 = ξ2

1 + ξ2
2 , meaning that the direction of a (ξ1, ξ2)

wave is the same as a (0, 0) → (ξ1, ξ2) vector. For our discrete system, as seen
in the figure, this fits well around (ξ1, ξ2) = (0, 0) and around the lines ξ1 = ±ξ2.
But other places, for instance around (ξ1, ξ2) = (π, π/5), the direction is almost
perpendicular to the true direction!

Does a discretization of the two-dimensional wave equation (3.44) exist that
has the same advantageous properties, when it comes to the dispersion relation,
as (3.43) for the one-dimensional case?

Let us start out with the dispersion relation that we would like. A relation like

tan2( 1
2ω∆t) = η2

[
tan2( 1

2ξ1h) + tan2( 1
2ξ2h)

]
, (3.48)

would be very nice, see Figure 3.10. All waves travel with speed one or a little
more (remember that when it comes to control, it is waves with speed less than
one that are problematic). The direction of the waves are reasonable, although
some inaccuracies occur (as usual) when ξ1 ' ±π and/or ξ2 ' ±π.

We now make the following rewrites of (3.48),

sin2( 1
2ω∆t) cos2( 1

2ξ1h) cos2( 1
2ξ2h) =η2 sin2( 1

2ξ1h) cos2( 1
2ξ2h) cos2( 1

2ω∆t)

+ η2 sin2( 1
2ξ2h) cos2( 1

2ξ1h) cos2( 1
2ω∆t) ⇔



56 3. Discretizations

π

π

ξ1h

ξ2h

Figure 3.9: Illustrations of the 2D dispersion relation (3.47) with η = 1/
√

2. In the
contour plot, the curves correspond to ωhη = π/20, 2π/20, . . . , 19π/20.



3.4.1. Group Velocity in 2D 57

π

π

ξ1h

ξ2h

Figure 3.10: Illustrations of the 2D dispersion relation (3.48) with η = 1/
√

2. In the
contour plot, the curves correspond to ωhη = π/20, 2π/20, . . . , 19π/20.
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(1− cos(ω∆t))(1 + cos(ξ1h))(1 + cos(ξ2h))

= η2(1− cos(ξ1h))(1 + cos(ξ2h))(1 + cos(ω∆t))

+ η2(1− cos(ξ2h))(1 + cos(ξ1h))(1 + cos(ω∆t)) ⇔

(eiω∆t − 2 + e−iω∆t)(eiξ1h + 2 + e−iξ1h)(eiξ2h + 2 + e−iξ2h)

= η2(eiξ1h − 2 + e−iξ1h)(eiξ2h + 2 + e−iξ2h)(ei + 2 + e−iω∆t)

+ η2(eiξ1h − 2 + e−iξ1h)(eiξ2h + 2 + e−iξ2h)(ei + 2 + e−iω∆t) .

Now multiplying out the parenthesis and multiplying both sides of the equation by
ei(ωn∆t−ξ1jh−ξ2kh), we can use (3.46) to identify each term (the author recommends
going meticulously through these calculations if the reader feels unusually bored—a
total of 81 terms should appear). We now arrive at the scheme:

1

16







1 1

1 1

2

2

2

2

4




n+1

− 2




1 1

1 1

2

2

2

2

4




n

+




1 1

1 1

2

2

2

2

4




n−1


=
∆t2

8h2







1 1

1 1

-4




n+1

+ 2




1 1

1 1

-4




n

+




1 1

1 1

-4




n−1
 .

(3.49)

The 9-point (and 5-point) computational molecules/stencils represent the spacial
discretizations (see Iserles, 1996, Section 7.2) while the superscripts represent the
time steps. To be more specific, the stencil



w7 w8 w9

w4 w6

w1 w2 w3

w5




n

,

is short for

w1u
n
j−1,k−1 + w2u

n
j−1,k + w3u

n
j−1,k+1 + w4u

n
j,k−1 + w5u

n
j,k

+ w6u
n
j,k+1 + w7u

n
j+1,k−1 + w8u

n
j+1,k + w9u

n
j+1,k+1 .

But is the scheme (3.49) a discretization of the two-dimensional wave equation at
all? Yes, luckily it is. Consider first the time discretization. We immediately recog-
nize it as the trapezoid method as it is shown in (3.32). For the space discretization
we observe that the stencil

1

16




1 1

1 1

2

2

2

2

4



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simply is a weighted average that, for sufficiently smooth functions, converge to-
wards the value of the center. Left is the stencil

1

2h2




1 1

1 1

-4


 ,

which, by using Taylor series on sufficiently smooth functions, is seen to approxi-
mate uxx + uyy to second order.

An implementation of the two-dimensional scheme (3.49) used for exact con-
trollability, together with numerical results, can be found in Chapter 9.





C H A P T E R 4

Boundary Control of
Discrete Systems

How to apply general Principles to particular Cases.

— Epictetus (50–138)

This chapter will transfer many of the relations and concepts from Chapter 2 into a
discrete setting. For instance, inner products, boundary conditions and boundary
integrals will be expressed using matrices and sums.

For PDE systems the time available for control can be essential. For discrete
systems, the minimal control time can always be arbitrarily short. However, as we
discretize more and more accurately, the time available for control can turn out
to be important again. The essential condition for correct behavior “in the limit”
turns out to be the existence of a uniform constant in the corresponding discrete
observability inequalities.

4.1 General Description

This section will go through most of the concepts of Chapter 2, but adapted to a
discrete setting. The literature’s treatment of discrete control system, especially
when considering convergence of controls, has been restricted to specific systems,
treating each system seperately. Just as the second chapter presented a new, unified
approach to controllability, so will this section.

We will first consider semi-discrete systems and show necessary and sufficient
conditions for when such a system is controllable. We then continue to consider
fully discrete systems, in particular using the midpoint and trapezoid schemes.

For both semi-discretizations and full discretizations, we will examine important
HUM relations and, in turn, how to compute HUM controls.
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4.1.1 Semi-discretization

When it comes to convergence of controls, semi-discrete control systems have, by
far, gotten the most attention in the literature. Primarily the wave equation has
been studied (see, e.g., Zuazua, 1999, Infante and Zuazua, 1999 or Micu, 2002),
although also the heat equation (Zuazua, 2003) and the beam equation (León and
Zuazua, 2002) have been considered.

We will consider a discrete control system with the following generic appearance,

{
Cu̇(t) = Au(t) +Bk(t), 0 ≤ t ≤ T ,
u(0) = u0 ,

(4.1)

where A,C ∈ RN×N , B ∈ RN×m, the solution u ∈ C([0, T ],RN) and the control
k ∈ C([0, T ],Rm). The matrix C must be symmetric and positive definite, and
although it could be left out, it will prove quite useful. The boundary conditions
must be implicitly built into A and B. Note how both the wave equation and the
heat equation easily fit into the above formulation.

Analogous with the PDE case, we introduce an adjoint system,

{
Cv̇(t) = −Ãv(t), 0 ≤ t ≤ T ,
v(T ) = v0 ,

(4.2)

where Ã ∈ RN×N and the solution v ∈ C([0, T ],RN). Note that the C-matrix is
the same as for the control system.

A duality pairing between solutions of the control and adjoint system is estab-
lished using the bilinear form {·, ·},

{u,v} = 〈u,Mv〉C , for all u,v ∈ RN ,

where M ∈ RN×N is a regular matrix. The form 〈·, ·〉C is a generalized inner
product on RN ,

〈u,v〉C = 〈u,Cv〉RN = uTCv, for all u,v ∈ RN ,

where C ∈ RN×N is a symmetric and positive definite matrix. Note that C must
be the same matrix that appears in the control and adjoint system above.

We will furthermore assume that C and M commute, CM = MC, which
implies

{u,v} = 〈MTu,v〉C = 〈u,Mv〉C ,
just as in the Hilbert space case (compare to the continuous duality pairing (2.3),
page 11).

The operators C−1A and C−1Ã must be adjoint with respect to the duality
pairing, {·, ·}, or more precisely,

{C−1Au,v} = {u,C−1Ãv}, for all u,v ∈ RN . (4.3)
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Using the definitions above we see that the relation between A and Ã must be

C−1ATM = MC−1Ã ⇔ ATM = MÃ (4.4)

(the equivalence holds because C and M commute).

The norms with which we measure the size of solutions is not so important
on a fixed discretization level, since all norms are equivalent in finite dimensional
spaces. However, since we are interested in letting the discretization level N →∞,
the norms are very important. They must correspond to the continuous norms in
an appropriate way.

We let solutions of the adjoint system be measured by the norm

‖v‖2eQ = 〈v,v〉eQ, 〈v,v〉eQ = vT Q̃v ,

where Q̃ is symmetric and positive definite. This norm corresponds to the norm of
the Hilbert space H̃ of Chapter 2. We deduce the norm of the corresponding dual
space by setting Q̃ = RTR and then we get

‖u‖2eQ′ = sup
v 6=0

∣∣〈u,v〉C
∣∣2

‖v‖2eQ
= sup
v 6=0

(
uTCv)2

vT Q̃v
= sup
w 6=0

(
uTCR−1w

)2

wTw

=

(
uTCR−1R−TCu)2
uTCR−1R−TCu = uTCQ̃−1Cu ,

showing that Q̃′ = CQ̃−1C. To obtain the “no-tilde norms” we use the relation (2.2)
from Chapter 2, and the comments that follow, such that

‖v‖eQ = ‖Mv‖Q and ‖v‖eQ′ = ‖M−Tv‖Q′ , (4.5)

implying that

Q = M−T Q̃M−1 and Q′ = MCQ̃−1CMT . (4.6)

One of the most essential relations of Chapter 2 was (2.8) on page 12. The
following relation is the semi-discrete equivalent of that,

[
{u,v}

]T
0

=

∫ T

0

(
{u̇,v}+ {u, v̇}

)
dt

=

∫ T

0

(
{C−1(Au+Bk),v} − {u,C−1Ãv})dt

=

∫ T

0

{C−1Bk,v}dt =

∫ T

0

〈Bk,Mv〉RN dt =

∫ T

0

〈k,BTMv〉Rmdt ,
(4.7)

valid for all solutions u(t) and v(t) of the systems (4.1) and (4.2) respectively.
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Analogous with Section 2.1.3 we will also introduce two mappings LhT and Lh,∗T .
If we apply no control to the control system (4.1) we set

LhTu
0 = u(T ) ,

where u(t) is a solution to (4.1) with initial condition u(0) = u0 and control
k(t) = 0. Likewise for the adjoint system,

Lh,∗T v0 = v(0) ,

where v(t) is a solution to (4.2) with initial condition v(T ) = v0. As in Chapter 2,
the two mappings are adjoint in the sense

{LhTu0,v0} = {u0,Lh,∗T v0} ,

for all u0,v0 ∈ RN , a consequence of relation (4.7).
We now wish to find the HUM controllability operator for the semi-discrete

case. Consider the systems (4.1) and (4.2) and by setting u(0) = u0 = 0 and
k(t) = BTMv(t), we can define Λh

Tv
0 = MTu(T ). This corresponds to the

definition ΛT = G∗TGT for the general systems of Chapter 2. If we now let w be a
solution to the adjoint system (4.2) with initial condition w0 we get from (4.7):

〈Λh
Tv

0,w0〉C = 〈u(T ),Mw0〉C =
[
{u,w}

]T
0

=

∫ T

0

〈BTMv,BTMw〉Rmdt . (4.8)

This clearly shows that Λh
T is symmetric with respect to the inner product 〈·, ·〉C

and is positive semi-definite.
As in the continuous case, we introduce

γT (u0,w0) = 〈Λh
Tu

0,w0〉C =

∫ T

0

〈BTMv,BTMw〉Rmdt .

Naturally, this bilinear form is symmetric and positive semi-definite. We now have
the first result concerning controllability of a semi-discrete system.

Theorem 4.1.1. The semi-discrete control system (4.1) is controllable at time T
if and only if γT is positive definite, that is, if and only if

0 < γT (v0,v0) =

∫ T

0

∥∥BTMv(t)
∥∥2

Rmdt, for all v0 ∈ RN \ {0} , (4.9)

where v(t) is the solution of the adjoint semi-discrete system (4.2) with initial
condition v0.

Proof. Assume that (4.9) holds for some T . Let u0,u1 ∈ RN be given. We will
now show how to find a control k that drives the control system from state u0 to
the state u1.
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We start by solving the linear equation

Λh
Tw

0 = MT (u1 −LhTu0) (4.10)

for w0. This is possible since the assumed positivity of γT implies that Λh
T is

positive definite and thus invertible. The above relation leads to

〈Λh
Tw

0,v0〉C = 〈MT (u1 −LhTu0),v0〉C ⇔
γT (w0,v0) = {u1 −LhTu0,v0} = {u1,v0} − {u0,Lh,∗T v0}

for all v0 ∈ RN . This last expression shows, cf. (4.7), that the control k(t) =
BTMw(t), where w(t) is a solution to the adjoint system with initial condition
w0, drives the control system from u0 to u1. Note that we have thus found a HUM
control.

Consider now the case where a linear operatorKT : RN 7→ L2((0, T );Rm) exists
that can drive the control system from 0 to any final state u (this is sufficient to
consider, see the comment in the beginning of Section 2.4). From relation (4.7) we
now have ∫ T

0

〈KTu,BTMv〉Rmdt = {u,v0}, for all v0 ∈ RN

We get for an arbitrary v0 ∈ RN ,

‖Mv0‖ = max
u∈RN\{0}

∣∣〈u,Mv0〉
∣∣

‖u‖ = max
u∈RN\{0}

∣∣〈KTu,BTMv〉L2((0,T ),Rm)

∣∣
‖u‖

≤ max
u∈RN\{0}

‖KTu‖L2((0,T ),Rm)

‖u‖ ‖BTMv‖L2((0,T ),Rm)

= ‖KT‖γT (v0,v0)1/2 ,

which implies statement (4.9).

Note how the condition 0 < γT (v0,v0) of the theorem corresponds to the unique
continuation property mentioned in Section 2.1.3. In the continuous setting this
property only implied approximate controllability, whereas it here implies exact
controllability. This is a consequence of the finite space dimension.

Let us now introduce the matrix

R =
[B AB . . . AN−1B] ∈ RN×Nm .

Some of the results that follow, concerning controllability in relation to properties
of R or eigenvalue properties of A and B, are classical results, see, for instance,
Kalman (1963), Russell (1978) or Sontag (1990). First we will show that the
traditional rank condition of R is equivalent to the condition of Theorem 4.1.1.
Note how this theorem ties together a classical result with our new approach.
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Theorem 4.1.2. The controllability condition of Theorem 4.1.1,

0 < γT (v0,v0), for all v0 ∈ RN \ {0} ,

for some T > 0, is equivalent to the condition

rankR = N .

Proof. We will show that the negation of the statements are equivalent. Assume
therefore that a v0 6= 0 exists such that

∫ T

0

∥∥BTMv(t)
∥∥2

Rmdt = 0 (4.11)

By inserting that v(t) = e
eA(T−t)v0 we get

∥∥BTMe
eA(T−t)v0

∥∥
Rm = 0, 0 ≤ t ≤ T .

Using the relation between A and Ã from (4.4) and the Taylor expansion of ex we
get ∥∥BT eAT tMv0

∥∥
Rm = 0, 0 ≤ t ≤ T .

Setting z = Mv0 we see that z 6= 0 and

zT eAtB = 0 , (4.12)

for 0 ≤ t ≤ T . The analyticity of the exponential implies now

zTAkB = 0, for integer k ≥ 0 , (4.13)

which clearly implies

rankR < N . (4.14)

Let us now see that these implications can be reversed. Assume therefore the rank
condition (4.14) above holds. This means that a z 6= 0 exists such that

zTAkB = 0, for k = 0, 1, . . . , N − 1 . (4.15)

Since A is a root in its own characteristic polynomial (the Cayley–Hamilton theo-
rem), it is seen that An can be written as a linear combination of I , A, . . . , AN−1.
Using this result, one can easily show, by induction on k, that (4.15) implies (4.13).
This implies, in turn, that (4.12) holds for all t ∈ R, and in particular for 0 ≤ t ≤ T .
By choosing v0 = M−1z we easily arrive at the wanted equality (4.11).

Testing the rank condition of R is fairly simple in the case where A is diago-
nalizable. This is the subject of the following, well-known, theorem.
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Theorem 4.1.3. Let a control system with A ∈ RN×N and B ∈ RN×m be given.
Let furthermore A be diagonalizable, A = V DV −1, such that

D =




λ1Ip1

λ2Ip2

. . .

λdIpd


 , V −1B =




B1

B2

...
Bd


 ,

where Ip is an identity matrix of size p×p, the quantity d is the number of distinct
eigenvalues, p1 +p2 + · · ·+pd = N , and the structure of V −1B corresponds to that
of D.

The semi-discrete control system (4.1) is now controllable if and only if the rows
of each Bk are linearly independent for k = 1, 2, . . . , d.

Proof. Observe from Theorem 4.1.2 that the control system is not controllable if
and only if a z 6= 0 exists such that

zTAkB = 0, for k = 0, 1, . . . , N − 1 .

Using the eigenvalue decomposition, we get the equivalent

(V Tz)TDk(V −1B) = 0, for k = 0, 1, . . . , N − 1 . (4.16)

We set (V Tz)T = [wT
1 w

T
2 · · · wT

d ], corresponding to the structure of D, and see
that (4.16) is equivalent to

λk1w
T
1 B1 + λk2w

T
2 B2 + · · ·+ λkdw

T
dBd = 0, for k = 0, 1, . . . , N − 1 ,

which, in turn, can be written




1 1 · · · 1
λ1 λ2 · · · λd
...

...
. . .

...

λN−1
1 λN−1

2 · · · λN−1
d







wT
1 B1

wT
2 B2

...
wT
dBd


 = 0 .

The left-hand Vandermonde matrix is regular since the numbers λ1, λ2, . . . , λd
are mutually distinct (see Golub and Van Loan, 1996, page 184) and the above
equation is thus satisfied if and only if

wT
1 B1 = wT

2 B2 = · · · = wT
dBd = 0 .

Since V Tz = [wT
1 w

T
2 · · · wT

d ]T where V is regular, the result follows.

The case where B has only one column deserves special attention. Theo-
rem 4.1.3 reduces in this case to the following.

Corollary 4.1.1. Let A be diagonalizable and B a column vector. The semi-
discrete control system (4.1) is controllable if and only if A has no multiple eigen-
values and the vector V −1B contains no zeroes.
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The controllability condition of Theorem 4.1.3 is quite interesting. It states
that if A has an eigenvalue with multiplicity larger than the number of columns in
B, then controllability is impossible, no matter how you choose the entries of the
control matrix B.

Another way controllability will fail is if V −1B contains a zero-valued row. Note
that this can always happen, as long as A is diagonalizable. The reason for the
failure becomes clear if we premultiply the control system with V −1 and obtain

V −1u̇(t) = V −1AV V −1u(t) + V −1Bk(t) .

Setting now τ (t) = V −1u(t), we see the control system in an eigenvector basis,

τ̇ (t) = Dτ (t) + (V −1B)k(t) .

All rows of this ODE have been decoupled and it is now clear that if the matrix
V −1B contains a zero-valued row, then it is impossible to control the corresponding
element of τ (t), and thereby, the corresponding eigenmode.

4.1.1.1 HUM for Hyperbolic Semi-Discrete Systems

We consider the case of a hyperbolic control system,

{
Cü(t) = Au(t) +Bk(t), 0 ≤ t ≤ T ,
u(0) = u0, u̇(0) = u0 ,

(4.17)

whereC andA are order N matrices that are symmetric, and positive and negative
definite, respectively. The adjoint system is of the form

{
Cv̈(t) = Av(t), 0 ≤ t ≤ T ,
v(T ) = v0, v(T ) = v0 .

(4.18)

We can easily apply the general results obtained in Section 4.1.1, when we observe
that the above systems are equivalent to the first order systems (4.1) and (4.2)
with

A =

[
0 C
A 0

]
, C =

[
C 0
0 C

]
, Ã =

[
0 −C
−A 0

]
, B =

[
0
B

]
. (4.19)

All we need to determine is the matrix M such that C−1ATM = MC−1Ã. This
is clearly fulfilled with

M =

[
0 −I
I 0

]
. (4.20)

We can now easily formulate relation (4.7) for this case,

[
{(u,u), (v,v)}

]T
0

=

∫ T

0

〈k,BTv〉Rmdt ,
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since

BTM
[
v
v

]
=
[
0 BT

] [0 −I
I 0

][
v
v

]
= BTv .

The controllability operator is easily defined using the same procedure as for the
general first order system. When we solve the adjoint system (4.18) followed by
solving the control system (4.17) with (u0,u0) = (0,0) and k = BTv, we can
define Λh

T as

Λh
T

(
v0

v0

)
= MT

(
u(T )
u(T )

)
=

(
u(T )
−u(T )

)
,

leading to the relation

〈
Λh
T (v0,v0), (w0,w0)

〉
C =

〈
MT (u(T ),u(T ))T , (w0,w0)T

〉
C

=
[
{(u,u), (w,w)}

]T
0

=

∫ T

0

〈BTv,BTw〉Rmdt .

Note how our general approach reveals, that what we in Chapter 2 called the
complementary boundary operator, must have the form BT . So given an actual
continuous control system with corresponding semi-discretization, one should make
sure that BT is a consistent discretization of the complementary boundary opera-
tor C.

4.1.2 Full Discretization

We now turn our attention to fully discrete control systems. It is interesting to
note that when it comes to choosing time discretization schemes for controllability
problems, the explicit midpoint rule has almost exclusively been used in the liter-
ature. The papers Glowinski, Li, and Lions (1990), Glowinski (1992b), Glowinski
and Lions (1995), Asch and Lebeau (1998) and Negreanu and Zuazua (2003) are
examples of this. See Eljendy (1992) for a so-called discrete-time Galerkin approx-
imation, which, as far as the author knows, is the only paper that does not use the
explicit midpoint rule for time discretization (it is not clear, though, exactly why
that scheme was chosen).

We will initially consider time discretization in great generality. When we study
some schemes in more detail, however, we will consider only the explicit midpoint
rule and the trapezoid rule.

Let us first consider a fully discrete control system of the following general form,

un+1 = Gun + Fkn , (4.21)

where u0 ∈ RN is given and G ∈ RN×N and F ∈ RN×m. The nth iterate can be
written as

un = Gnu0 +
n−1∑

k=0

GkFkn−1−k, n ≥ 0 , (4.22)
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which is easily seen by induction. Let us introduce the notation

Rk =
[
F GF · · · Gk−1F

]
∈ RN×km .

Observe that we will always have rank Rk = rank RN for k ≥ N since powers
Gk with k ≥ N can always be expressed as a linear combination of I , G, . . . ,
GN−1. This follows from the fact that any matrix is a root in its own characteristic
polynomial.

We now have the following result concerning controllability of a fully discrete
system.

Theorem 4.1.4. The (fully) discrete control system (4.21) is controllable at iter-
ation n if and only if rankRN = N and n ≥ n0, where n0 is the smallest integer
such that rankRn0 = N .

Proof. Consider the following rewrite of (4.22):

n−1∑

k=0

GkFkn−1−k = Rn



kn−1

...

k0


 = un −Gnu0 .

From this we see that the control system is controllable at iteration n if and only if
rankRn = N . It now follows from the definition of n0 and the fact that rankRn1 ≤
rankRn2 for n1 ≤ n2, that rankRn = N for n ≥ n0.

Assume that rank RN = N . Now in order for Rn0 to have rank N , it must
have at least N columns, so m · n0 ≥ N , where m is the number of columns of F .
This implies ⌈

N

m

⌉
≤ n0 ≤ N .

Note how RN is analogous to the matrix R of the previous section. This means
that Theorem 4.1.3 and Corollary 4.1.1 can be used for showing the rank condition
rankRN = N .

We now introduce the adjoint system,

vn−1 = G̃vn , (4.23)

where vM ∈ RN is given. The matrix G̃ is the dual of G with respect to the duality
pairing {·, ·}, that is, {Gu,v} = {u, G̃v} for all u,v ∈ RN . We can now derive a
relation similar to (2.7) for PDEs and similar to (4.7) for semi-discrete systems,

{uM ,vM} − {u0,v0} =

M−1∑

n=0

(
{un+1,vn+1} − {un,vn}

)

=

M−1∑

n=0

(
{Gun + Fkn,vn+1} − {un,G∗vn+1}

)

=

M−1∑

n=0

{Fkn,vn+1} =

M−1∑

n=0

〈kn,F TCMvn+1〉 ,
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which holds for all solution of (4.21) and (4.23). So a HUM control must be of the
form kn = F TCMvn+1 for n = 0, 1, . . . ,M − 1.

It would be possible, for a given time discretization, to compute G, F and
G̃, and then to use the relation above to derive the observability inequality. In
practice, however, it is much easier to consider each time discretization separately.
The next two sections will show how, for the midpoint and trapezoid rules.

4.1.2.1 The Midpoint Rule

Recall from Section 3.2.2 that the midpoint rule only makes sense for hyperbolic
systems (a necessary condition for the stability of this scheme was that the first
order system matrix must have purely imaginary eigenvalues). The control system
is thus of the form





C
un+1 − 2un + un−1

∆t2
= Aun +Bkn ,

u0 given,
u1 − u−1

2∆t
= u0 .

Similarly, the adjoint system becomes





C
vn+1 − 2vn + vn−1

∆t2
= Avn ,

vM given,
vM+1 − vM−1

2∆t
= vM .

Let now M be as for the previous hyperbolic systems, see (4.20), and we have,
{(
uM

uM

)
,

(
vM

vM

)}
−
{(
u0

u0

)
,

(
v0

v0

)}

=

〈
uM+1 − uM−1

2∆t
,CvM

〉
−
〈
uM ,C

vM+1 − vM−1

2∆t

〉

−
〈
u1 − u−1

2∆t
,Cv0

〉
+

〈
u0,C

v1 − v−1

2∆t

〉

= ∆t
M∑

n=0

′
(〈

un+1 − 2un + un−1

∆t2
,Cvn

〉
−
〈
vn+1 − 2vn + vn−1

∆t2
,Cun

〉)

= ∆t

M∑

n=0

′(〈Aun +Bkn,vn〉 − 〈Avn,un〉
)

= ∆t

M∑

n=0

′ 〈
kn,BTvn

〉
.

The second equality makes use of a discrete version of the identity

∫ T

0

(
f ′′g − fg′′

)
dt =

[
f ′g
]T
0
−
[
fg′
]T
0
,
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which can be found, including a derivation, in Detail 4, page 183. The primed
summation sign

∑′ means that the first and last term should be weighed with 1/2,
while the intervening terms should be weighed with 1 as usual.

With (u0,u0) = (0,0) and kn = BTvn we define

Λ∆t
M

(
vM

vM

)
= MT

(
uM(

uM+1 − uM−1
)
/(2∆t)

)
,

leading to the important equality

〈
Λ∆t
M

(
vM

vM

)
,

(
wM

wM

)〉

C
= ∆t

M∑

n=0

′ 〈
BTvn,BTwn

〉
. (4.24)

This relation corresponds to that obtained in Glowinski, Li, and Lions (1990). The
above relation is, however, more general (in the cited paper, the space discretization
is a simple 2D finite element discretization of the Laplacian where C, had they used
that notation, is a diagonal matrix).

4.1.2.2 The Trapezoid Rule

As mentioned in the beginning of this chapter, the trapezoid rule has never been
used in the context of discrete control systems. We will now derive the necessary
relations.

When applying the trapezoid rule to the semi-discrete control system (4.1) we
get

Cu
n+1 − un

∆t
=A un+1 + un

2
+B k

n+1 + kn

2
, (4.25)

where the initial condition is given as u0. Similarly, the semi-discrete adjoint
system (4.2) turns in to

Cv
n+1 − vn

∆t
= −Ã vn+1 + vn

2
, (4.26)

where the initial condition is represented by vM (the adjoint system is solved
backwards in time).

The relation (4.7) now gets the appearance

{uM ,vM} − {u0,v0} =
M−1∑

n=0

(
{un+1,vn+1} − {un,vn}

)

= ∆t

M−1∑

n=0

({
un+1 − un

∆t
,
vn+1 + vn

2

}
+

{
un+1 + un

2
,
vn+1 − vn

∆t

})

= ∆t

M−1∑

n=0

({
C−1A un+1 + un

2
+ C−1B k

n+1 + kn

2
,
vn+1 + vn

2

}

−
{
un+1 + un

2
,C−1Ã vn+1 + vn

2

})
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= ∆t

M−1∑

n=0

〈
kn+1 + kn

2
,BTMvn+1 + vn

2

〉
.

When it comes to HUM, we can proceed similar to earlier and solve (4.25) and (4.26)
with u0 = 0 and kn = BTMvn, thereby defining

Λ∆t
M v

M = MTuM .

Inserting this into the relation above we get

〈
Λ∆t
M v

M ,wM
〉
C =

〈
MTuM ,wM

〉
C = {uM ,wM} − {u0,w0}

= ∆t
M−1∑

n=0

〈
BTMvn+1 + vn

2
,BTMwn+1 +wn

2

〉
.

(4.27)

When we consider hyperbolic systems as in (4.17) and (4.18) we can set A, B,

C, Ã, M , as in (4.19) and (4.20), and replace un and vn by (un,un) and (vn,vn),
respectively. With (u0,u0) = (0,0) and kn = BTvn we set

Λ∆t
M

(
vM

vM

)
= MT

(
uM

uM

)
,

leading to

〈
Λ∆t
M

(
vM

vM

)
,

(
wM

wM

)〉

C
= ∆t

M−1∑

n=0

〈
BT v

n+1 + vn

2
,BT w

n+1 +wn

2

〉
. (4.28)

4.2 Uniform Observability

It’s all very well in practice,
but it will never work in theory.

— French management saying

A necessary condition for having controllability is that the controllability operator
is positive and thereby invertible. This is true whether we speak of continuous,
semi-discrete or fully discrete systems. But for the two latter cases, what happens
when the discretization level, as measured by the space dimension N , goes to
infinity? Do the computed controls converge?

Consider the case of exact controllability for a fully discrete system. Assume
now that constants C1, C2 > 0 exist such that

C1‖v‖2eQ ≤ 〈Λ
∆t
M v,v〉C ≤ C2‖v‖2eQ , (4.29)

holds for all v ∈ RN on all discretization levels, N ∈ N (all quantities except C1

and C2 in this relation should be indexed with N , but we will omit such indices
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for simpler notation). When the constants C1 and C2 in this way do not depend
on N , we call it uniform observability.

The above inequality can equivalently be written as

C1v
T Q̃v ≤ vTCΛ∆t

M v ≤ C2v
T Q̃v ,

for all v ∈ RN and all N ∈ N. Since Q̃ is required to be symmetric and positive
definite, it has a Cholesky factorization Q̃ = RTR, where R is an upper triangular
matrix (see Golub and Van Loan, 1996, Theorem 4.2.5). Setting w = Rv, we get

C1w
Tw ≤ wTR−TCΛ∆t

MR
−1w ≤ C2w

Tw .

This shows that the eigenvalues of the symmetric matrix R−TCΛ∆t
MR

−1 all lie
between C1 and C2 for all N . From the relation we can also derive the following
inequality for the inverse,

1

C2
wTw ≤ wTR

(
Λ∆t
M

)−1C−1RTw ≤ 1

C1
wTw .

Making the replacement w = R−TCu this inequality is seen to be equivalent to

1

C2
‖u‖2eQ′ ≤

〈(
Λ∆t
M

)−1
u,u

〉
C
≤ 1

C1
‖u‖2eQ′ ,

for all u ∈ RN and all N ∈ N (see the definition of the discrete Q̃′-norm in (4.5)).
Since the condition number of a symmetric and positive definite matrix is the

ratio of the largest eigenvalue to the smallest, we also see that the condition number
of the matrix R−TCΛ∆t

MR
−1 is bounded by C2/C1, uniformly in N .

Assume now that we wish to compute controls for an exact controllability prob-
lems, given some initial and final conditions, see Equation (4.10). Let a sequence
of vectors yN ∈ RN be given such that yN converges to a limit vector y ∈ H ′.
Exactly how the convergence occurs is not important for now, but we assume that
‖yN‖Q′ < Cy for all N and some Cy > 0 that does not depend on N . We now
solve, for increasing values of N ,

Λ∆t
M vN = MTyN , (4.30)

an equation which can be written equivalently as
(
R−TCΛ∆t

MR
−1
)
(RvN ) = R−TCMTyN .

We now have the important bound,

‖vN‖eQ = ‖RvN‖ ≤
∥∥R
(
Λ∆t
M

)−1C−1RT
∥∥∥∥R−TCMTyN

∥∥

≤ 1

C1
‖yN‖Q′ ≤

Cy
C1

,

cf. the norms introduced earlier, see (4.6). So the solutions to Equation (4.30) will
be uniformly bounded in the ‖ · ‖eQ-norm as N → ∞. Recall, though, that the
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actual control, for a given N , is computed via the adjoint system with vN as initial
condition. But the norm of the control is given by the inner product 〈Λ∆t

M v,v〉C
(see (4.8) and (4.24) for a semi-discrete and fully discrete example, respectively).
We thus have

〈Λ∆t
M vN ,vN 〉C ≤ C2‖vN‖2eQ ≤ C

2
y

C2

C2
1

, (4.31)

showing that the corresponding controls stay uniformly bounded.

To finish the proof that uniform observability leads to convergent controls, we
need to show that applying the obtained controls to the discrete control system is
consistent with the continuous control system. This should follow if the discretiza-
tion of the adjoint system and the control system have been proved convergent. In
a rigorous proof, though, it would be required.

Assume, on the other hand, that uniform observability does not hold. This
means that C1 → 0 and/or C2 → ∞ as N → ∞ in the double inequality (4.29).
The boundedness of controls can thus not be guaranteed, easily seen from (4.31).
Furthermore, the condition number C2/C1 of the matrix R−TCΛ∆t

MR
−1 will tend

to infinity. This means that in a practical implementation, computing a control
will become increasingly liable to rounding errors (see also Section 9.5).

The fact that uniform observability is necessary in order to have convergent
controls was first observed in Infante and Zuazua (1998) (see Infante and Zuazua
(1999) for an improved version of this paper). It has since then been commented
upon in, e.g., Micu (2002), Zuazua (2003), Negreanu and Zuazua (2004a), and other
publications by these authors. Only in León and Zuazua (2002) has a rigorous proof
been given for the convergence of controls (for the case of the one-dimensional beam
equation, utt = uxxxx).

The derivations of this section show, in great generality, the implications of hav-
ing uniform observability, and how to show convergence of controls for a concrete
control system.

4.2.1 Hyperbolic Systems

This and the following two sections will present theorems that have been used in
the literature to show observability inequalities for continuous systems and to show
uniform observability inequalities for (semi-)discrete systems. How to apply these
results in practice will be postponed until later chapters.

The first theorem is a classical result in the area of non-harmonic Fourier series.
It was first published in Ingham (1936), see also Young (2001). (We here use `2 to
denote the set of infinite sequences 〈ak〉 of real or complex numbers that are square
summable,

∑ |ak|2 <∞.)

Theorem 4.2.1 (Ingham). Let 〈µk〉k∈Z be a sequence of real numbers for which

µk+1 − µk ≥ γ, ∀k ∈ Z ,
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for some γ > 0. Then for any T > 2π/γ there exist constants C1, C2 > 0, both
depending only on T and γ, such that

C1

∑

k∈Z
|ck|2 ≤

∫ T

0

∣∣∣∣∣
∑

k∈Z
cke

iµkt

∣∣∣∣∣

2

dt ≤ C2

∑

k∈Z
|ck|2 ,

for all sequences of complex numbers 〈ck〉k∈Z ∈ `2.

The next theorem is very similar. However, whereas Ingham’s Theorem de-
manded real numbers 〈µk〉k∈Z with a uniform gap, the following theorem allows
each µk to be complex valued, as long as they lie appropriately close to uniformly
distributed points on the imaginary axis. It is Kadec’ classical 1/4-theorem, see
Kadec (1964).

Theorem 4.2.2 (Kadec). Let 〈µk〉k∈Z be a sequence of complex numbers for
which

sup
k∈Z

∣∣∣µk
γ
− k
∣∣∣ < 1

4
,

for some γ > 0. Then for any T ≥ 2π/γ there exist constants C1, C2 > 0, both
depending only on T and γ, such that

C1

∑

k∈Z
|ck|2 ≤

∫ T

0

∣∣∣∣∣
∑

k∈Z
cke

iµkt

∣∣∣∣∣

2

dt ≤ C2

∑

k∈Z
|ck|2 ,

for all sequences of complex numbers 〈ck〉k∈Z ∈ `2.

Note how the previous two theorems actually indicate when the functions
{eiµkt | k ∈ Z} constitute a Riesz basis on the interval (0, T ).

For the most general results, complex exponentials were used in the above
theorems. Let us see how real coefficients with sine and cosine functions can be
written in such a form. Let two sequences 〈ak〉k∈N ∈ `2 and 〈bk〉k∈N ∈ `2 be given
and let 〈ηk〉k∈N be a sequence of real numbers. Then by setting

ck = 1
2 (ak − ibk) , µk = ηk ,

c0 = 0 ,

c−k = 1
2 (ak + ibk) , µ−k = −ηk ,

for k ∈ N, we have

∑

k∈N
(ak cos(tηk) + bk sin(tηk)) =

∑

k∈Z
cke

iµkt, ∀t ∈ R .

We furthermore have the following relation between the `2-norms,

∑

k∈Z
(|ak|2 + |bk|2) = 2

∑

k∈Z
|ck|2 .
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4.2.2 Parabolic Systems

Just as the two previous theorems are relevant in the context of hyperbolic systems,
the following theorem is relevant for parabolic systems. It was first published in
Fattorini and Russell (1974), see also López and Zuazua (2002).

We start with some notation. Given ξ > 0 and a decreasing function M :
(0,∞) 7→ N such that M(δ) → ∞ as δ → 0, we introduce the class P(ξ,M) of
increasing sequences of positive real numbers 〈µj〉j∈N such that

µj+1 − µj ≥ ξ > 0, ∀j ∈ N , (4.32)
∑

k≥M(δ)

µ−1
k ≤ δ, ∀δ > 0 . (4.33)

The following now holds.

Theorem 4.2.3. Given a class P(ξ,M) of sequences and T > 0 there exists a
constant C > 0 (which depends on ξ, M and T ) such that

∫ T

0

∣∣∣∣∣
∞∑

k=1

ake
−µkt

∣∣∣∣∣

2

dt ≥ C∑∞
k=1 µ

−1
k

∞∑

k=1

e−2µkT

µk
|ak|2

for all 〈µj〉j∈N ∈ P(ξ,N) and all bounded sequences of real numbers 〈ak〉k∈N.

4.2.3 Time Discrete Version of Ingham’s Theorem

The three theorems we have seen by now can only be applied to PDEs or semi-

discrete systems because of the
∫ T

0 time integrals. We will in this section prove a
time-discrete version of Ingham’s Theorem. The proof builds upon a similar result
in Negreanu and Zuazua (2004b), which, in turn, builds upon the original proof in
Ingham (1936), see also Young (2001). The assumptions of the present theorem
have been improved, however, and no unknown constants appear.

Let g(x) = sin( 1
2x)χ[0,2π](x) with corresponding Fourier transform ĝ(ξ),

ĝ(ξ) =

∫

R
g(x)e−iξxdx =

∫ 2π

0

sin( 1
2x)e−iξxdx =

2 + 2e−2iπξ

1− 4ξ2
. (4.34)

When sampling the function g(x) onto the grid hZ, we obtain the discrete Fourier
transform ĝh as

ĝh(ξ) = h
∑

n∈Z
g(nh)e−iξnh = h

b2π/hc∑

n=0

sin( 1
2nh)e−iξnh . (4.35)

We are now interested in how well ĝh(ξ) approximates ĝ(ξ) as h→ 0. To this end
the Poisson summation formula proves very useful,

ĝh(ξ) =
∑

j∈Z
ĝ(ξ + 2πj/h) , (4.36)
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see Henrici (1977), Theorem 10.6e, or Trefethen (1996), Theorem 2.7. Using now
that |ĝ(ξ)| ≤ 2/ξ2 for all ξ ∈ R (see Detail 5, page 184) we get

∣∣ĝh(ξ) − ĝ(ξ)
∣∣ =

∣∣∣∣∣∣

∞∑

j=1

(
ĝ(ξ + 2jπ/h) + ĝ(ξ − 2jπ/h)

)
∣∣∣∣∣∣

≤
∑

j=1,3,5,...

∣∣ĝ(−jπ/h) + ĝ(jπ/h)
∣∣ ≤ 4h2

π2

∑

j=1,3,5,...

j−2 = 1
2h

2 ,

(4.37)

for −πh ≤ ξ ≤ π
h . Note that no unknown constants appear in this bound. We now

have the following lemma that concerns an inverse inequality for a time interval of
length 2π.

Lemma 4.2.1. Let h > 0, γ > 1, N ∈ N and λ−N , λ−N+1, . . . , λN ∈ R be such
that

λk+1 − λk ≥ γ, for k = −N, . . . , N − 1,

λN − λ−N ≤ 2π/h− γ . (4.38)

Then for all complex sequences 〈ck〉Nk=−N we have

C1(γ, h,N)

N∑

k=−N
|ck|2 ≤ h

b2π/hc∑

n=0

∣∣∣∣∣
N∑

k=−N
cke

iλknh

∣∣∣∣∣

2

, (4.39)

where C1(γ, h,N) = 4

(
1− 1

γ2

)
− 1

2 (1 + 2N)h2.

Proof. Observe that

h

b2π/hc∑

n=0

∣∣∣∣∣
N∑

k=−N
cke

iλknh

∣∣∣∣∣

2

≥ h
b2π/hc∑

n=0

sin( 1
2nh)

∣∣∣∣∣
N∑

k=−N
cke

iλknh

∣∣∣∣∣

2

=

N∑

k=−N

N∑

l=−N
ckcl ĝh(λl − λk)

≥ ĝh(0)

N∑

k=−N
|ck|2 −

N∑

k=−N

N∑

l=−N
l6=k

|ckcl| |ĝh(λl − λk)|

≥ ĝh(0)

N∑

k=−N
|ck|2 −

N∑

k=−N
|ck|2

N∑

l=−N
l6=k

|ĝh(λl − λk)| ,

(4.40)

where we use that 2|ckcl| ≤ |ck|2 + |cl|2 and that ĝh is an even function. We now
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have

N∑

l=−N
l6=k

|ĝh(λl − λk)| =
N∑

l=−N,l6=k
|λl−λk|≤πh

|ĝh(|λl − λk|)|+
N∑

l=−N,l6=k
|λl−λk|>π

h

|ĝh( 2π
h − |λl − λk |)|

≤
N∑

l=−N,l6=k
|λl−λk |≤πh

|ĝ(|λl − λk |)|+
N∑

l=−N,l6=k
|λl−λk|>π

h

|ĝ( 2π
h − |λl − λk|)|+Nh2 ,

where we have used the bound (4.37). We now deduce from (4.38) that

|λl − λk | ≥ γ|l − k|,
2π
h − |λl − λk | ≥ γ(2N + 1− |l − k|) ,

for all k, l ∈ {−N,−N + 1, . . . , N}. This yields

N∑

l=−N,l6=k
|λl−λk|≤πh

|ĝ(|λl − λk |)|+
N∑

l=−N,l6=k
|λl−λk|>π

h

|ĝ( 2π
h − |λl − λk|)|

≤
N∑

l=−N,l6=k
|λl−λk|≤πh

4

4|λl − λk|2 − 1
+

N∑

l=−N,l6=k
|λl−λk |>π

h

4

4( 2π
h − |λl − λk|)2 − 1

≤
N∑

l=−N,l6=k
|λl−λk|≤πh

4

4γ2|l − k|2 − 1
+

N∑

l=−N,l6=k
|λl−λk|>π

h

4

4γ2
(
2N + 1− |l − k|

)2 − 1

≤
N∑

l=−N,l6=k

4

4γ2|l − k|2 − 1
+

N∑

l=−N,l6=k

4

4γ2
(
2N + 1− |l − k|

)2 − 1

=

2N∑

r=1

8

4γ2r2 − 1
<

8

γ2

∞∑

r=1

1

4r2 − 1
=

4

γ2

∞∑

r=1

(
1

2r − 1
− 1

2r + 1

)
=

4

γ2
.

Inserting the bounds into (4.40) we get

h

b2π/hc∑

n=0

∣∣∣∣∣
N∑

k=−N
cke

iλknh

∣∣∣∣∣

2

≥ (ĝ(0)− 1
2h

2)

N∑

k=−N
|ck|2 − (4/γ2 +Nh2)

N∑

k=−N
|ck|2

=

[
4

(
1− 1

γ2

)
− 1

2 (2N + 1)h2

] N∑

k=−N
|ck|2 .
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We then consider the direct inequality, still for a time interval of length 2π.

Lemma 4.2.2. Under the conditions of Lemma 4.2.1 we have for all complex
sequences 〈ck〉Nk=−N ,

h

b2π/hc∑

n=0

∣∣∣∣∣
N∑

k=−N
cke

iλknh

∣∣∣∣∣

2

≤ C2(γ, h,N)

N∑

k=−N
|ck|2 , (4.41)

where C2(γ, h,N) = 16

(
1− 1

9γ2

)
− 1

18 (1 + 2N)h2.

Proof. Assume h ≤ 1 and we get

h

b2π/hc∑

n=0

∣∣∣∣∣
N∑

k=−N
cke

iλknh

∣∣∣∣∣

2

≤ 4
3h

b6π/hc∑

n=0

sin( 1
6nh)

∣∣∣∣∣
N∑

k=−N
cke

iλk(n−M)h

∣∣∣∣∣

2

= I ,

since 1 ≤ 4
3 sin( 1

6nh) for b2π/hc ≤ n ≤ 2b2π/hc. We set h′ = h/3 and c′k =
cke
−iλkMh and get

I = 4h′
b2π/h′c∑

n=0

sin( 1
2nh

′)

∣∣∣∣∣
N∑

k=−N
c′ke

i3λknh
′

∣∣∣∣∣

2

= 4

N∑

k,l=−N
ckcl ĝh′(3(λl − λk)) .

Using now the same techniques as in Lemma 4.2.1, but using h′ for h and 3γ for
γ, we get the desired expression for C2. Finally we observe that |c′k| = |ck|.

We finally collect the results of the two lemmas and generalize to time intervals
of any length.

Theorem 4.2.4. Let time T > 0, time step ∆t > 0 and M ∈ N be given such that
T = M∆t. If the real numbers λ−N , λ−N+1, . . . , λN ∈ R satisfy

λk+1 − λk ≥ γ, for k = −N, . . . , N − 1, (4.42)

λN − λ−N ≤
2π

∆t
− γ , (4.43)

where γ >
2π

T
, then for all complex sequences 〈ck〉Nk=−N we have

C1(T, γ,N,M)

N∑

k=−N
|ck|2 ≤ ∆t

M∑

n=0

∣∣∣∣∣
N∑

k=−N
cke

iλkn∆t

∣∣∣∣∣

2

≤ C2(T, γ,N,M)

N∑

k=−N
|ck|2 ,

(4.44)
where

C1(T, γ,M,N) =
2T

π

(
1− 4π2

T 2γ2

)
− 4π2(1 + 2N)

2M2
,

C2(T, γ,M,N) =
8T

π

(
1 +

4π2

9T 2γ2

)
+

4π2(1 + 2N)

18M2
.

(4.45)
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Proof. Let ∆t′ = 2π
T ∆t such that M∆t′ = 2π. We get

∆t
M∑

n=0

∣∣∣∣∣
N∑

k=−N
cke

iλkn∆t

∣∣∣∣∣

2

= T
2π∆t′

2π/∆t′∑

n=0

∣∣∣∣∣
N∑

k=−N
cke

i T2πλkn∆t′

∣∣∣∣∣

2

.

We observe that

λk+1 − λk ≥ γ >
2π

T
⇔ T

2π
(λk+1 − λk) ≥ T

2π
γ = γ′ > 1,

λN − λ−N ≤
2π

∆t
− γ ⇔ T

2π
(λN − λ−N ) ≤ 2π

2π
T ∆t

− T

2π
γ =

2π

∆t′
− γ′ ,

so Lemmas 4.2.1 and 4.2.2 can be applied. The result is obtained by insertion into
the bounds of the lemmas.

The condition (4.43) was in Negreanu and Zuazua (2004b) replaced by

|λk − λl| ≤
2π − (∆t)p

∆t
,

for all k, l ∈ Z and some 0 ≤ p ≤ 1/2, with which the authors could complete a
similar theorem. Using the condition (4.43), however, is quite natural and follows
from periodic nature of the function ĝh(ξ).





C H A P T E R 5

Properties of the
Controllability Operator

This chapter collects together
some basic mathematical properties

— Jeffrey H. Kingston (1990)

The controllability operator ΛT is an essential operator when it comes to control-
lability and HUM. Recall that ΛT is always linear, symmetric and positive semi-
definite. Its invertibility is reflected by the observability inequalities of Chapter 2.

This chapter treats two topics. One is how two compute a (possibly infinite) ma-
trix representation of ΛT with respect to some appropriate bases. This is possible
to do analytically for some special cases such as the one dimensional wave equation
and the one dimensional heat equation. When ΛT is finite dimensional, its matrix
representation can be quite useful for computing HUM controls in practice.

The second topic is asymptotic properties of the controllability operator, or
more specifically, whether ΛT converges to some limit operator as T → ∞. This
will be studied for the heat equation and wave equation, and it turns out that the
controllability operator for the wave equation has a very simple limit operator for
some interesting domains.

5.1 Computing the Controllability Operator

Recall from Section 2.5 that the controllability operator is an operator between a
Hilbert space H̃ and its adjoint, ΛT : H̃ 7→ H̃ ′.

Assume we are given a basis 〈ej〉 for H̃ and another 〈e′i〉 for H̃ ′. We would like
to compute a (possibly infinite) matrix ΛT such that

y = ΛTv ⇔ y = ΛT v
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for every instance of

y =
∑

i

yie
′
i and v =

∑

j

vjej .

We will assume that the bases 〈ej〉 and 〈e′i〉 have the following orthogonality prop-
erty,

〈e′i, ej〉 eH′× eH = δij .

We now get

ΛT v = y ⇔
∑

j

(ΛT ej)vj =
∑

i

e′iyi ⇔
∑

j

〈ΛT ej , ei〉vj = yi .

This clearly shows that the (i, j)th entry of the matrix ΛT is the number 〈ΛT ej , ei〉.
Two methods now suggest themselves.

The direct method. This method relies on computing directly y = ΛT ej and
then 〈y, ei〉, thus determining one column of ΛT for each application of ΛT . Let

us recall how an arbitrary vector v0 ∈ H̃ is mapped by ΛT . We initially solve the
adjoint system, 




vt = −Ãv in Q ,

Bv = 0 in Σ ,

v(T ) = v0 in Ω ,

(5.1)

followed by 



ut = Au in Q ,

Bu =

{
Cv
0

in Σ0 ,
in Σ \ Σ0 ,

u(0) = 0 in Ω ,

(5.2)

and then finally setting

ΛT (v0) =MTu(T ) .

The inner product method. The following expression from Chapter 2 provides
exactly what we need,

〈
ΛT v

0, w0
〉

= γT (v0, w0) =

∫ T

0

∫

Γ0

Cv Cw dΓdt , (5.3)

where v(t) and w(t) are solutions of adjoint system (5.1) with initial conditions v0

and w0, respectively. If we now set v0 = ej and w0 = ei and alternate the indices,
we compute the ΛT matrix indices.

The inner product method has some obvious advantages:

• It is not necessary to compute any solutions to the control system (5.2).
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• We can obtain ΛT2 from ΛT1 by using

〈
ΛT2v

0, w0
〉

=
〈
ΛT1v

0, w0
〉

+

∫ T2

T1

∫

Γ0

Cv Cw dΓdt .

• Since 〈ΛT ej , ei〉 = 〈ΛT ei, ej〉, we only need to compute half the entries.

The direct method has been used in different contexts in the literature. In
Glowinski, Li, and Lions (1990), the authors used the direct method to compute
the controllability operator analytically for the wave equation on the 2D domain
Ω = (0, 1)× (0, 1) (they based their calculations on {sin(iπx)} × {sin(jπy)} bases,
and restricted the control time T to the cases T = (n+ 3/4)/

√
2, n = 0, 1, . . ., for

easier computations). In Glowinski, Li, and Lions (1990), Asch and Lebeau (1998)
and Negreanu and Zuazua (2003), the authors use the direct method in a discrete
setting. In each of these publications they solve controllability problems using the
Conjugate Gradients algorithm (see Section 2.7.1), and the direct method is used
for computing the map v 7→ ΛT v.

The idea behind the inner product method is quite simple, but the method
has not been described before in the literature (in Eljendy (1992), though, similar
ideas are used for solving exact controllability problems through optimization).
The inner product method has some very appealing properties, some of which we
will return to in Chapter 9 concerning implementations.

Chapters 6 and 7 will provide examples of both methods for the heat equation
and wave equation, respectively, where analytical representations of the controlla-
bility operators will be calculated.

5.1.1 Special Considerations for Discretizations

Both methods apply easily to both semi-discretizations and full discretizations.

To use the direct method, one does not even have to think about bases. By
successively mapping the columns of an appropriately dimensioned identity matrix,
the corresponding columns of ΛT will be computed.

When using the inner product method, the relation (5.3) can obviously not
be used. The discrete equivalences in Chapter 4 must be used instead, see the
relations (4.8), (4.24), (4.27) and (4.28). Note, however, that we in these cases
compute

〈
Λh
Tv,w

〉
C or

〈
Λ∆t
M v,w

〉
C ,

so, noting the inner product used, we actually compute the entries of CΛh
T or CΛ∆t

M .
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5.2 Asymptotic Properties of the Controllability
Operator

We must act as if we had eternity before us.

— Umberto Eco (The Name of the Rose, 1980)

This section will investigate whether the controllability operator ΛT has a limit
operator as T → ∞. Such results for the wave equation have previously appeared
in Glowinski, Li, and Lions (1990), Glowinski and Lions (1995), Bensoussan (1990)
and Bensoussan (1992). Actually, the two latter references studied general skew-
symmetric operators and only the same two references contained proofs.

We will similarly consider the wave equation, including detailed proofs. We fur-
thermore prove that also for the heat equation does a limit controllability operator
exist. A general result for the abstract formulation of Chapter 2 is not known.

Our approach in both cases is intimately tied to the eigenvectors of the (neg-
ative) Laplacian, and we will assume that we have an orthonormal basis of eigen-
vectors in L2(Ω),





−∆wk = λkwk, in Ω ,
Bwk = 0, on Γ ,

〈wk , wl〉L2(Ω) = δkl ,
(5.4)

for all k, l ∈ N, and where all eigenvalues are distinct, 0 < λ1 < λ2 < · · · , and
λk →∞ for k →∞. For shorter notation we will use µ2

k = λk .

We introduce a Hilbert space H̃1 by defining its inner product in terms of the
eigenvectors,

〈wk, wl〉 eH1
= δklλk for all k, l ∈ N . (5.5)

This space is equivalent to H1
0 (Ω) when we deal with Dirichlet boundary conditions,

B = I .

Another important assumption deals with the complementary boundary oper-
ator C applied to the eigenvectors, namely the bound

∫

Γ0

|Cwk|2dΓ ≤ Kλk for all k ∈ N , (5.6)

for some constant K > 0. This relation is not trivial. For the case B = I , where
the domain Ω has certain properties, it can be derived. Furthermore, in the case of
the wave equation it is a consequence of the well-posedness of the control system.
How to derive (5.6) in both cases will be shown later.
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5.2.1 The Heat Equation

The adjoint system for the heat equation is




vt = −∆v in Q ,

Bv = 0 in Σ ,

v(T ) = v0 in Ω ,

with v0 ∈ H̃ = H̃1 and thus v(t) ∈ H̃ . Given initial conditions

v0 =

∞∑

k=1

akwk ,

with 〈µkak〉∞k=1 ∈ `2, the heat equation has the solution,

v(t) =

∞∑

k=1

ake
−λk(T−t)wk .

Let us similarly consider a solution ṽ(t), corresponding to the coefficients 〈ãk〉∞k=1

for which 〈µkãk〉∞k=1 ∈ `2.

Using the equality (5.3), we now have

〈ΛT v0, ṽ0〉 =

∫ T

0

∫

Γ0

Cv Cṽ dΓdt

=

∫ T

0

∫

Γ0

( ∞∑

j=1

aje
−λj(T−t)Cwj

)( ∞∑

k=1

ãke
−λk(T−t)Cwk

)
dΓdt

=

∫ T

0

∫

Γ0

∞∑

j=1

∞∑

k=1

aj ãke
−(λj+λk)t Cwj Cwk dΓdt

=

∞∑

j=1

∞∑

k=1

aj ãk
1

λj + λk

(
1− e−(λj+λk)T

)∫

Γ0

Cwj Cwk dΓ .

Let us define what turns out to be the limit operator,

〈Π∞v0, ṽ0〉 =

∞∑

j=1

∞∑

k=1

aj ãk
1

λj + λk

∫

Γ0

Cwj Cwk dΓ .

This operator is bounded since

|〈Π∞v0, ṽ0〉| ≤ 1

2λ1

∞∑

j=1

∞∑

k=1

|aj ||ãk|
∣∣∣∣
∫

Γ0

Cwj Cwk dΓ
∣∣∣∣

≤ K

2λ1

( ∞∑

j=1

λj |aj |2
)1/2( ∞∑

k=1

λk|ãk|2
)1/2

=
K

2λ1
‖v0‖2eH‖ṽ

0‖2eH ,
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using the assumption (5.6), and thus well defined. We can now prove the following
theorem.

Theorem 5.2.1. Under the assumptions (5.4), (5.5) and (5.6) we have

ΛT → Π∞ in the operator norm as T →∞ . (5.7)

Proof. We have that

‖ΛT −Π∞‖ = sup
v0,ṽ0∈ eH\{0}

∣∣∣
〈
(ΛT −Π∞)v0, ṽ0

〉
eH′× eH

∣∣∣
‖v0‖ eH‖ṽ0‖ eH

,

where

∣∣〈Π∞v0, ṽ0〉 − 〈ΛT v0, ṽ0〉
∣∣ =

∣∣∣∣∣∣

∞∑

j=1

∞∑

k=1

aj ãk
e−(λj+λk)T

λj + λk

∫

Γ0

Cwj Cwk dΓ

∣∣∣∣∣∣

≤ Ke−2Tλ1

2λ1
‖v0‖2eH‖ṽ

0‖2eH .

Note how the fact that all eigenvalues λk were real and strictly greater than zero,
was exactly what made the preceeding result possible. Note also that the conver-
gence in (5.7) was in the operator norm, which is quite strong.

Assume that we are given a specific null-controllability problem for the heat
equation. If now the limit operator Π∞ is invertible for these particular data, we
can then compute a control function, to which controls, corresponding to increasing
values of T , will converge. It would similarly imply that the norm of the computed
controls will converge to a certain level as T →∞.

5.2.2 The Wave Equation

We now focus on the controllability operator for the wave equation. Recall that in
this case the adjoint system has the form





vtt = ∆v in Q ,

Bv = 0 in Σ ,

v(T ) = y0, vt(T ) = y0 in Ω ,

(5.8)

for some fixed control time T > 0. Note that the boundary operator B, as intro-
duced in Chapter 2, was defined on the “first order state”, which here is (v(t), vt(t)).
For easier notation, B is in this case defined on v(t) only. This reduces the gen-
erality slightly, but the above formulation still includes the most important cases.
Likewise, the complementary boundary operator C is defined only on v(t).
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We now set H̃ = H̃1 × H̃2 with H̃2 = L2(Ω), where H̃ is a space in which the
wave equation (5.8) is well posed (recall that 〈wk, wl〉 eH2

= δkl). We have

‖v0‖2eH = ‖(y0, y0)‖2eH = ‖y0‖2eH1
+ ‖y0‖2eH2

for all v0 = (y0, y0) ∈ H̃ .

Given initial conditions of the system (5.8),

y0 =

∞∑

k=1

akwk, y0 =

∞∑

k=1

bkwk ,

where 〈µkak〉, 〈bk〉 ∈ `2, one can easily verify that

∥∥(u(y), ut(t))
∥∥2
eH =

∞∑

k=1

(µ2
ka

2
k + b2k) ,

for all t ∈ R. Although we operate in real Hilbert spaces, it will prove convenient
to write the solution of the system (5.8) using complex exponentials. Let the initial
conditions v0 = (y0, y0) be represented by the complex sequence 〈ck〉∞k=1 where we
set ck = 1

2 (ak − ibk/µk), k ∈ N. From the assumptions above we see that this
implies 〈µkck〉 ∈ `2. The solution corresponding to v0 can now be written

v(t, x) =

∞∑

k=1

(
cke

iµkt + cke
−iµkt)wk(x) = 2

∞∑

k=1

Re
(
cke

iµkt
)
wk(x) . (5.9)

In a similar way we will let the initial conditions ṽ0 be represented by the complex
sequence 〈c̃k〉∞k=1.

Let us finally introduce the projection operator PN : H̃ 7→ H̃ by

PN

( ∞∑

k=1

akwk ,

∞∑

k=1

bkwk

)
=

(
N∑

k=1

akwk ,

N∑

k=1

bkwk

)
,

for all N ∈ N and sequences 〈ak〉∞k=1, 〈bk〉∞k=1 for which 〈µkak〉, 〈bk〉 ∈ `2. So PN
does a simple spectral truncation of the initial conditions, leading to a solution as
in (5.9) but with the upper limit of the sums replaced by N .

Recall that we in the general setting of Chapter 2 assume the bound,
∫ T

0

∫

Γ0

|Cv|2dΓdt ≤ K(T )‖v0‖2eH , (5.10)

where v(t) is a solution of the adjoint system with initial data v0 (see Equation (2.6),
page 12). Consider now the initial conditions (y0, y0) = (wk, 0), which leads to the
solution v(t) = cos(µkt)wk . Inserted into the bound (5.10) we get

∫ T

0

∫

Γ0

|Cv|2dΓdt =

∫ T

0

∫

Γ0

∣∣cos(µkt)Cwk
∣∣2dΓdt =

∫ T

0

cos2(µkt)dt

∫

Γ0

|Cwk|2dΓ

=
(

1
2T + 1

4µk
sin(2µkT )

) ∫

Γ0

|Cwk|2dΓ ≤ K(T )‖wk‖2eH1
.
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If we now choose T sufficiently large, we see that

∫

Γ0

|Cwk|2dΓ ≤ K‖wk‖2eH1
= Kλk , (5.11)

for all k ∈ N. So for the wave equation, the relation (5.10) of a well-posed adjoint
system implies (5.11).

Let us turn to the operators that we are interested in. First the controllability
operator, which can be defined as

〈ΛT v0, ṽ0〉 =

∫ T

0

∫

Γ0

Cv Cṽ dΓdt ,

for all v0, ṽ0 ∈ H̃. Using (5.10) we see that this operator is bounded,

∣∣〈ΛT v0, ṽ0〉
∣∣ =

∣∣〈Cv, Cṽ〉L2(Σ0)

∣∣ ≤ ‖Cv‖L2(Σ0)‖Cṽ‖L2(Σ0)

≤ K(T )‖v0‖ eH‖ṽ0‖ eH ,

for v0, ṽ0 ∈ H̃ . As we shall see, ΛT /T is the interesting operator concerning
convergence for T →∞. For convenience, we approach it through a bilinear form,

πT (v0, ṽ0) =
1

T
〈ΛT v0, ṽ0〉 eH′× eH .

In the limit (in a sense that will be made precise), the form πT turns out to approach
the form π,

π(v0, ṽ0) = 2

∞∑

j=1

Re(cj c̃j)

∫

Γ0

|Cwj |2 dΓ .

That π is bounded follows from (5.11) and the fact that 〈µkck〉, 〈µk c̃k〉 ∈ `2. Let

the operator Π : H̃ 7→ H̃ ′ be defined by the relation

π(v0, ṽ0) = 〈Πv0, ṽ0〉 eH′× eH for all v0, ṽ0 ∈ H̃ .

This will be the limit operator for ΛT/T as T →∞.
We are now ready to prove the convergence. We break up the proof in smaller

parts and start out with three lemmas.

Lemma 5.2.1. Assume that K(T )/T ≤ K for T large enough. Then

∣∣πT (v0, ṽ0)− πT (PNv
0, PN ṽ

0)
∣∣

≤ K
(
‖v0 − PNv0‖ eH‖ṽ0‖ eH + ‖ṽ0 − PN ṽ0‖ eH‖v0‖ eH

)
,

for all v0, ṽ0 ∈ H̃.
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Proof. Note that

πT (v0, ṽ0)− πT (PNv
0, PN ṽ

0) = πT (v0 − PNv0, ṽ0) + πT (PNv
0, ṽ0 − PN ṽ0) ,

for v0, ṽ0 ∈ H̃. We get

∣∣πT (v0 − PNv0, ṽ0)
∣∣ =

1

T

∣∣∣∣∣

∫ T

0

∫

Γ0

C(v − PNv) Cṽ dΓdt
∣∣∣∣∣

≤ K‖v0 − PNv0‖ eH‖ṽ0‖ eH ,

for T large enough, and where v(t) is a solution corresponding to the initial condi-
tions v0 − PNv0. Similarly,

∣∣πT (PNv
0, ṽ0 − PN ṽ0)

∣∣ ≤ K‖v0‖ eH‖ṽ0 − PN ṽ0‖ eH .

The requirement “K(T )/T ≤ K for T large enough” is resonable. Every bound
of the type (5.10) for the wave equation known to the author, is of the form K(T ) =
c1T + c2 for some c1, c2 > 0. Such bounds are typically proved using multipliers ,
see Section 7.1 for a derivation for the one-dimensional wave equation, and see
Section 7.6 for further information on multipliers.

Lemma 5.2.2. The following bound holds,

∣∣πT (PNv
0, PN ṽ

0)− π(PNv
0, PN ṽ

0)
∣∣ ≤ δN

T
‖v0‖ eH‖ṽ0‖ eH ,

for all v0, ṽ0 ∈ H̃, and where δN is a non-decreasing function of N .

Proof. Let v0, ṽ0 ∈ H̃ and we have

πT (PNv
0, PN ṽ

0)− π(PNv
0, PN ṽ

0)

=
1

T

∫ T

0

∫

Γ0

(
N∑

j=1

(
cje

iµj t + cje
−iµj t)Cwj

)(
N∑

k=1

(
c̃ke

iµkt + c̃ke
−iµkt)Cwk

)
dΓdt

− 2

∞∑

j=1

Re(cj c̃j)

∫

Γ0

|Cwj |2 dΓ

=
1

T

∫ T

0

∫

Γ0




N∑

j,k=1
j 6=k

cj c̃ke
i(µj−µk)tCwjCwk +

N∑

j,k=1
j 6=k

cj c̃ke
i(µk−µj )tCwjCwk

+

N∑

j,k=1

cj c̃ke
i(µj+µk)tCwjCwk +

N∑

j,k=1

cj c̃ke
−i(µj+µk)tCwjCwk


 dΓdt .
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Focusing on the first sum of the last expression, we get

∫ T

0

∫

Γ0

N∑

j,k=1
j 6=k

cj c̃ke
i(µj−µk)tCwjCwkdΓdt

=

N∑

j,k=1
j 6=k

cj c̃k

∫ T

0

ei(µj−µk)tdt

∫

Γ0

CwjCwkdΓ = I1 .

We obtain
∣∣∣∣∣

∫ T

0

ei(µj−µk)tdt

∣∣∣∣∣ =
1

µj − µk

∣∣∣ei(µj−µk)T − 1
∣∣∣ ≤ 2

µj − µk
.

Setting δ1
N = max{2/(µj − µk) | j, k = 1, 2, . . . , N , j 6= k} and using (5.11) we get

|I1| ≤ δ1
NK‖PNv0‖ eH‖PN ṽ0‖ eH ≤ δ1

NK‖v0‖ eH‖ṽ0‖ eH .

Analogous bounds can be obtained for the other three sums, leading to the desired
result.

Lemma 5.2.3. We have

∣∣π(PNv
0, PN ṽ

0)− π(v0, ṽ0)
∣∣ ≤ ‖v0 − PNv0‖ eH‖ṽ0 − PN ṽ0‖ eH ,

for all v0, ṽ0 ∈ H̃.

Proof. Since π is bounded and

π(v0, ṽ0)− π(PNv
0, PN ṽ

0) = 2

∞∑

j=N+1

Re(cj c̃j)

∫

Γ0

|Cwj |2 dΓ ,

the result follows.

We are now ready for the main theorem.

Theorem 5.2.2. Assume that K(T )/T is bounded for T large enough. Then

πT (v0, ṽ0)→ π(v0, ṽ0) as T →∞ ,

for all v0, ṽ0 ∈ H̃, or equivalently

1
T ΛT v

0 ⇀ Πv0 weakly in H̃ ′ as T →∞ , (5.12)

for all v0 ∈ H̃.
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Proof. Let v0, ṽ0 ∈ H̃. From Lemmas 5.2.1, 5.2.2 and 5.2.3 we get
∣∣πT (v0, ṽ0)− π(v0, ṽ0)

∣∣ ≤
∣∣πT (v0, ṽ0)− πT (PNv

0, PN ṽ
0)
∣∣

+
∣∣πT (PNv

0, PN ṽ
0)− π(PNv

0, PN ṽ
0)
∣∣

+
∣∣π(PNv

0, PN ṽ
0)− π(v0, ṽ0)

∣∣

≤ K
(
‖v0 − PNv0‖ eH‖ṽ0‖ eH + ‖v0‖ eH‖ṽ0 − PN ṽ0‖ eH

)

+
δN
T
‖v0‖ eH‖ṽ0‖ eH + ‖v0 − PNv0‖ eH‖ṽ0 − PN ṽ0‖ eH

≤ I1
N + I2

N/T + I3
N .

Let ε > 0 be an arbitrary (small) number. Choose now N so large that I1
N ≤ ε/3

and I3
N ≤ ε/3. Fixing this N , we choose T such that I2

N/T ≤ ε/3. This means that
∣∣πT (v0, ṽ0)− π(v0, ṽ0)

∣∣ ≤ ε .

Note that the limit of the above theorem suggests that the norm of controls,
for increasing values of T , will be approximately proportional to 1/T .

But what kind of operator is Π? Does it have a simple, closed form? When
the eigenvectors of the Laplace operator satisfy a special relation, it actually has a
very simple form.

Theorem 5.2.3. Given the relation
∫

Γ0

|Cwk|2dΓ = Kλk , (5.13)

for all k ∈ N, we have

Π = K
2

[
−∆ 0

0 I

]
.

Proof. Let v0 = (y0, y0) = (
∑∞

k=1 akwk,
∑∞

k=1 bkwk) and ck = 1
2 (ak − ibk/µk). Let

analogous relations hold for ṽ0, ãk, b̃k and c̃k. Then

〈Πv0, ṽ0〉 = 2

∞∑

k=1

Re(ck c̃k)

∫

Γ0

|Cwk|2 dΓ = 2K

∞∑

k=1

Re(ck c̃k)µ2
k

= K
2

∞∑

k=1

(
akãk + bkb̃k/µ

2
k

)
µ2
k

= K
2

〈( ∞∑

k=1

µ2
kakwk,

∞∑

k=1

bkwk

)
,

( ∞∑

k=1

ãkwk,
∞∑

k=1

b̃kwk

)〉

eH′× eH

= K
2

〈[
−∆ 0

0 I

]
v0, ṽ0

〉

eH′× eH
.
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But when does the relation (5.13) hold? The following section shows that it
holds, at least, for Dirichlet control on the whole boundary of some very interesting
domains.

5.2.2.1 A Special Case

Let us consider Dirichlet control on the whole boundary,

Γ0 = Γ, B = I and C = − ∂

∂n
on Γ .

In this setting, the eigensolutions from (5.4) become





−∆wk = λkwk ,

wk |Γ = 0 ,

〈wk, wl〉L2(Ω) = δkl ,

for k, l ∈ N. Note then the important relation, using Green’s Theorem,

∫

Ω

∇wj · ∇wkdx =

∫

Γ

∂wj
∂n

wkdΓ −
∫

Ω

∆wjwkdx = λj

∫

Ω

wjwkdx

= δjkλj .

(5.14)

We now have the following interesting theorem (the same result and a sketchy proof
can be found in Bensoussan, 1990, page 214).

Theorem 5.2.4. Let Ω ⊂ Rd, Γ = ∂Ω and m(x) = x− x0, where x0 ∈ Rd. Then

∫

Γ

∣∣∣∣
∂wk
∂n

∣∣∣∣
2

m · n dΓ = 2λk .

Proof. Note first that since wk = 0 on the boundary, the gradient ∇wk(x) and the
outward normal n(x) point in the same direction for any x ∈ Γ. This leads to

2

∫

Γ

∣∣∣∣
∂wk
∂n

∣∣∣∣
2

m · n dΓ = 2

∫

Γ

∂wk
∂n
∇wk ·mdΓ

= 2

∫

Ω

∆wk ∇wk ·mdx+ 2

∫

Ω

∇wk · ∇(∇wk ·m)dx = I1 + I2 .

(5.15)

We now get

I1 = −λk
∫

Ω

m · ∇(w2
k)dx = −λk

∫

Γ

m · nw2
kdΓ + λk

∫

Ω

∇ ·mw2
kdx = dλk .
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We rewrite I2 as follows,

I2 = 2
d∑

α,β=1

∫

Ω

∂wk
∂xα

∂

∂xα

(
∂wk
∂xβ

mβ

)
dx

= 2

d∑

α,β=1

∫

Ω

(
∂wk
∂xα

∂2wk
∂xαxβ

mβ +
∂wk
∂xα

∂wk
∂xβ

∂mβ

∂xα

)
dx

=

∫

Ω

m · ∇(∇wk · ∇wk)dx+ 2

∫

Ω

∇wk · ∇wkdx = I3 + 2λk ,

using (5.14) and the fact that ∂mα/∂xβ = δαβ. Proceeding, we get

I3 =

∫

Γ

m · n∇wk · ∇wkdΓ −
∫

Ω

∇ ·m∇wk · ∇wkdx

=

∫

Γ

∣∣∣∣
∂wk
∂n

∣∣∣∣
2

m · n dΓ − dλk .

Inserting the obtained expressions into (5.15), we get

2

∫

Γ

∣∣∣∣
∂wk
∂n

∣∣∣∣
2

m · n dΓ = dλk +

∫

Γ

∣∣∣∣
∂wk
∂n

∣∣∣∣
2

m · n dΓ − dλk + 2λk ,

leading to the desired result.

Combining Theorems 5.2.3 and 5.2.4, we easily deduce the following theorem.

Theorem 5.2.5. Let Ω ⊂ Rd, Γ = ∂Ω and m(x) = x− x0, where x0 ∈ Rd. If

m(x) · n(x) = Cn, for almost all x ∈ Γ , (5.16)

for a constant Cn > 0, then

Π =
1

Cn

[
−∆ 0

0 I

]
.

The “almost all” in (5.16) means that the property is allowed to fail in a set
of measure zero (for instance, it is ok if the property fails in a finite number of
points).

This result has previously been mentioned in Glowinski, Li, and Lions (1990),
page 6, and in Glowinski and Lions (1995), page 257, but without proof.

5.2.2.2 Domains of Constant Normal Width

How do the domains look for which m · n = Cn on the whole boundary?
In one dimension, the characterization is trivial. If Ω = (a, b) choose x0 =

(a+ b)/2 and we have Cn = (b− a)/2.
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Figure 5.1: A selection of various domains having constant normal width, that is, a
point x0 ∈ R2 exists such that (x− x0) · n(x) = Cn holds for almost all boundary points.
For each of the shown domains, x0 is the center of the circle and Cn is equal to the radius
of that circle. (The black lines bound the actual domains, the gray lines and gray circle
indicate how to easily construct such domains.)



5.2.2. The Wave Equation 97

In two dimensions, the domains having this property are much more interesting.
Figure 5.1 shows a selection of such domains, including visual indications of how
to construct them.

In three dimensions or more, these domains become even more versatile. We
will, however, not try to give an exhaustive characterization.





C H A P T E R 6

The Heat Equation

If you can’t stand the heat, get out of the kitchen.

— Harry Vaughan, 1952

We will in this chapter, and the following two, focus on specific control systems.
Different parts of the theory of the previous chapters will be applied in these case
studies.

The heat equation is a parabolic PDE that describes the distribution of tem-
perature in some object, as it depends on time. As time goes by, the temperature
profile in the object becomes very smooth (this was illustrated in the Introduction,
see Figure 1.3) and only null-controllability will be possible.

We consider as control system the heat equation in the domain Ω with Dirichlet
control on a part of the boundary, Γ0,





ut = ∆u in Q ,

u =

{
k
0

in Σ0 ,
in Σ \ Σ0 ,

u(0) = u0 in Ω ,

(6.1)

with k ∈ L2(Σ0) and u0 ∈ H ′ = H−1(Ω) (recall that Σ0 = (0, T )× Γ0). We shall
see shortly how to show that this formulation leads to a well-posed system with
solution u(t) ∈ H ′.

6.1 Well-posedness

Let us set up the different maps and quantities of Chapter 2 as it applied to this
case. At the same time, we must argue that the assumptions of that chapter are
fulfilled.
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We first introduce the adjoint system,





vt = −∆v in Q ,

v = 0 in Σ ,

v(T ) = v0 in Ω ,

with v(t) ∈ H̃ = H1
0 (Ω). In the notation of Chapter 2 we have

A = ∆, B = I, Ã = ∆ .

By observing

〈Au, v〉 = 〈∆u, v〉H′×H =

∫

Ω

∆u v dx =

∫

Ω

u∆v dx = 〈u, Ãv〉 ,

when A is considered with homogeneous boundary conditions, we see that Ã = A∗
and thus M = 1. What we need as the last thing is the complementary boundary
operator C. With u, v ∈ C∞(Ω) we include boundary conditions and get

{Au, v} − {u, Ãv} =

∫

Ω

(
∆uv − u∆v

)
dx =

∫

Γ

(
∂u

∂n
v − u∂v

∂n

)
dΓ

=

∫

Γ

u

(
−∂v
∂n

)
dΓ .

(6.2)

This shows that C = −∂/∂n, the negated normal derivative.

We show well-posedness of the adjoint system first. We introduce the energy of
the adjoint system at time t as

E(t) = 1
2

∫

Ω

|∇v|2dx .

By differentiating the energy,

E′(t) =

∫

Ω

∇v · ∇v̇dx = −
∫

Ω

∇v · ∇(∆v)dx =

∫

Ω

|∆v|2dx−
∫

Γ

∂v

∂n
∆v dΓ

=

∫

Ω

|∆v|2dx ,

we see that E′(t) ≥ 0 and so the energy can only decrease as we solve the adjoint
system backwards in time,

0 ≤ E(t) ≤ E(T ), for 0 ≤ t ≤ T .

We finally observe that E(t) < ∞ if and only if the corresponding solution v(t) ∈
H1

0 (Ω), and the well-posedness of the adjoint system is shown.
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To show well-posedness of the control system we first need to establish that
applying the complementary boundary operator C to a solution v(t) of the adjoint
system lies in L2(Σ0),

‖Cv(·)‖2L2(Σ0) =

∫ T

0

∫

Γ0

∣∣∣∣
∂v

∂n

∣∣∣∣
2

dΓdt ≤ K(T )‖v0‖2H1
0 (Ω) , (6.3)

for all v0 ∈ H1
0 (0, 1) with corresponding solution v of the adjoint system. This

inequality is typically shown using multipliers, and we will prove it for the simple
one dimensional case of Ω = (0, 1) and Γ0 = {1}. To show it for more general
domains, some regularity assumptions must be made about Ω, see Lions (1985)
and Komornik (1994) for further details about the multiplier method (these refer-
ences discuss the wave equation, but the principles are also applicable to the heat
equation).

To show (6.3) in the 1D case, we proceed by applying the multiplier vxx to the
(negative) right hand side of the heat equation, v̇ = −vxx,

∫ 1

0

vxxvxxdx =
[
v2
xx
]1
0
−
∫ 1

0

vx(vxxx+vx)dx = v2
x(t, 1)−

∫ 1

0

vxvxxxdx−
∫ 1

0

v2
xdx ,

leading to the bound

∫ T

0

v2
x(t, 1)dt ≤ 2

∣∣∣∣∣

∫ T

0

∫ 1

0

vxxvxxdxdt

∣∣∣∣∣+

∫ T

0

∫ 1

0

v2
xdxdt

≤ 2

(∫ T

0

∫ 1

0

v2
xxdxdt

)1/2(∫ T

0

∫ 1

0

v2
xdxdt

)1/2

+

∫ T

0

∫ 1

0

v2
xdxdt .

Now using

∫ T

0

∫ 1

0

v2
xxdxdt =

∫ T

0

E′(t)dt = E(T )−E(0) ≤ E(T ),

∫ T

0

∫ 1

0

v2
xdxdt = 2

∫ T

0

E(t)dt ≤ 2TE(T ) ,

we obtain the desired inequality,

∫ T

0

v2
x(t, 1)dt ≤ 2(

√
2T + T )E(T ) . (6.4)

Let us now repeat some arguments of Section 2.1.2 to show that the control
system (6.1) is well posed. Assume that solutions actually exists to the control
system for sufficiently smooth initial data u0 and control k, dense in H−1(Ω) and
L2((0, T )×Γ0) respectively. Given any solution v to the adjoint system with initial
data v0 we get

〈u(T ), v0〉 − 〈u0, v(0)〉 =

∫ T

0

∫

Γ0

k
∂v

∂n
dΓdt = 〈k, Cv〉L2(Σ0) ,
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and, in turn,

‖u(T )‖ = sup
v0∈ eH\{0}

|〈u(T ), v0〉|
‖v0‖ ≤ sup

v0∈ eH\{0}

|〈u0, v(0)〉|+ |〈k, Cv〉|
‖v0‖

≤ sup
v0∈ eH\{0}

‖u0‖‖v0‖+K(T )‖k‖‖v0‖
‖v0‖ = ‖u0‖+K(T )‖k‖ .

This shows that if u0 ∈ H−1(Ω) and k ∈ L2((0, T ) × Γ0), we will have u(T ) ∈
H−1(Ω). Note that all of the above could be carried out for any T > 0.

The details of well-posedness are not normally shown in such detail in the
literature. We do it here to illustrate how it can be done and because it is quite
important. Indeed, both the control system and adjoint system are well posed in
L2(Ω), but the bound in (6.3), with the H1

0 (Ω)-norm replaced by the L2(Ω)-norm,
does not hold in this case.

6.1.1 Other Types of Control Operators

Let us at this point briefly consider another type of boundary control. We set
Bu = ∂u/∂n − αu for some α ∈ R. This formulation includes both Neumann
control and Robin control. The control system becomes





ut = ∆u in Q ,

∂u
∂n − αu =

{
k
0

in Σ0 ,
in Σ \ Σ0 ,

u(0) = u0 in Ω ,

and the adjoint system,




vt = −∆v in Q ,
∂v
∂n − αv = 0 in Σ ,

v(T ) = v0 in Ω ,

where the boundary conditions have been replaced accordingly. To derive the
complementary boundary operator, we start out as in (6.2) and get

{Au, v} − {u, Ãv} =

∫

Ω

(
∆uv − u∆v

)
dx =

∫

Γ

(
∂u

∂n
v − u∂v

∂n

)
dΓ

=

∫

Γ

(
∂u

∂n
v − αuv

)
dΓ =

∫

Γ0

(
∂u

∂n
− αu

)
v dΓ ,

using that ∂v/∂n = αv. It shows that we must simply use C = I for the comple-
mentary boundary operator.

This was a simple illustration of how to use another form of boundary control.
Of course, well-posedness would have to be shown in this particular case, before
the control “machinery” of Chapter 2 could be applied. In the following we return
to Dirichlet control.
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6.2 Analytical Solution in 1D Using Fourier Series

Let us focus on the case Ω = (0, 1) and Γ0 = {1}. We wish here to represent the
controllability operator ΛT as an infinite matrix ΛT using the basis ej = sin(jπ·),
j ∈ N, in H1

0 (0, 1) and the same basis e′i = ei in H−1(0, 1). As seen in Section 5.1,
this can be done in two ways. We will go through both methods.

For the direct method we must, given T > 0, compute

ΛT (v0) = u(T, ·) ,

where v0 ∈ H1
0 (0, 1) and u is found by first solving





vt(t, x) = −vxx(t, x), in (0, T )× (0, 1) ,

v(t, 0) = v(t, 1) = 0, in (0, T ) ,

v(T, x) = v0(x), in (0, 1) ,

(6.5)

followed by




ut(t, x) = uxx(t, x), in (0, T )× (0, 1),

u(t, 0) = 0, u(t, 1) = −vx(t, 1), in (0, T ),

u(0, x) = 0, in (0, 1) .

(6.6)

We will now apply the ΛT -map to an arbitrary basis vector,

v0(x) = ej(x) = sin(jπx), j ∈ N .

The solution to (6.5) is clearly

v(t, x) = e−j
2π2(T−t) sin(jπx) ,

and thus
vx(t, 1) = (−1)jjπe−j

2π2(T−t) . (6.7)

We now wish to solve (6.6) given these boundary conditions. These are satisfied if
we set

u(t, x) = (−1)j+1jπe−j
2π2(T−t)x+

∞∑

i=1

ai(t) sin(iπx) , (6.8)

where the real functions a1(t), a2(t), . . . , are to be determined. However, using
ut = uxx and the initial condition u(0, x) = 0 we get





a′i(t) + i2π2ai(t) = (−1)i+j+1 2i3π2

j
e−j

2π2(T−t),

ai(0) = (−1)i+j+1 2j

i
e−j

2π2T ,

for each i ∈ N. For fixed i, this is an ordinary differential equation with the solution

ai(t) = (−1)i+j+1 2k

i(i2 + j2)
e−j

2π2T
(
i2e−i

2π2t + j2ej
2π2t

)
for all i ∈ N .
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Inserting this into (6.8) while writing x in the 〈e′i〉 basis, we finally get

u(T, x) =
∞∑

i=1

(−1)i+j
2ij

i2 + j2

(
1− e−(i2+j2)π2T

)
sin(iπx) .

So the (i, j)th entry of ΛT is simply

ΛT (i, j) = (−1)i+j
2ij

i2 + j2

(
1− e−(i2+j2)π2T

)
.

For the inner product method, we let v and ṽ be two solutions of the adjoint
system with initial conditions ej and ei, respectively. Note that we have 〈e′j , ei〉 =
1/2 δij , but we will deal with the non-uniform scaling afterwards (although the
basis 〈e′j〉 does not appear in our calculations for the inner product method at all,
it is still the basis for the range of the map). We now have, cf. (6.7),

〈ΛT ej , ei〉 =

∫ T

0

vx(t, 1)ṽx(t, 1)dt =

∫ T

0

(−1)i+jijπ2e−(i2+j2)π2tdt

= (−1)i+j
ij

i2 + j2

(
1− e−(i2+j2)π2T

)
.

To finish, we just have to take care of the scaling and we end up with,

ΛT (i, j) =
〈ΛT ej , ei〉
〈e′i, ei〉L2(0,1)

= (−1)i+j
2ij

i2 + j2

(
1− e−(i2+j2)π2T

)
, (6.9)

naturally the same as for the direct method. Note how the term e[··· ] will vanish
as T → ∞, fitting well with the result of Theorem 5.2.1, concerning the limit
controllability operator for the heat equation.

An analytical representation of the controllability operator for the heat equation
in one dimension, has not previously been seen in the literature. As just seen above,
the representation (6.9) provides insight into the properties of the controllability
operator, and it would also be useful for computing approximate controls of any
accuracy (by truncating the infinite matrix into a sufficiently large, but finite,
matrix).

6.3 Null-controllability in 1D

We wish to show null-controllability for the heat equation in one dimension. If
one could argue that the infinite matrix of the previous section was invertible, we
would be done. That seems like a difficult task, though.

We can also use Theorem 2.3.1, page 19. This involves showing an observability
inequality for the adjoint system. Let initial conditions for the adjoint system be
given as

v(T, x) = v0(x) =

∞∑

j=1

aj sin(jπx), 0 ≤ x ≤ 1 ,
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where 〈jaj〉∞j=1 ∈ `2 such that v0 ∈ H1
0 (0, 1). The solution now becomes

v(t, x) =

∞∑

j=1

aje
−j2π2(T−t) sin(jπx), 0 ≤ t ≤ T, 0 ≤ x ≤ 1 .

We have

∫ T

0

v2
x(t, 1)dt ≥

∫ T

T/2

v2
x(t, 1)dt =

∫ T/2

0

( ∞∑

j=1

(−1)jjπaje
−j2π2t

)
dt .

This brings us into a position where we can use Theorem 4.2.3 (page 77), the
parabolic version of Ingham’s Theorem. We get that a constant Cp > 0, indepen-
dent of the coefficients 〈aj〉∞j=1, exists such that

∫ T

0

v2
x(t, 1)dt ≥

∫ T/2

0

( ∞∑

j=1

(−1)jjπaje
−j2π2t

)
dt

≥ Cp∑∞
j=1(jπ)−2

∞∑

j=1

e−j
2π2T

j2π2
j2π2|aj |2

= 6Cp

∞∑

j=1

e−2j2π2T j2π2 e
j2π2T

j2π2
|aj |2

≥ 6Cp
eπ

2T

π2

∞∑

j=1

e−2j2π2T j2π2|aj |2 ≥
6

π2
Cp‖v(0, ·)‖2H1

0 (0,1) ,

for all T > 0.
This proves the null-controllability of the heat equation in one dimension.

See López and Zuazua (1998) and López and Zuazua (2002) for similar null-
controllability results related to the heat equation in one dimension.

6.4 Uniform Observability of a Semi-discretization

Let us consider the following (family of) semi-discretizations of the heat equation
in one dimension, {

Cαu̇(t) =Au(t) +Bk(t) ,

u(0) =u0 ,

where we use

Cα = h




1− 2α α
α 1− 2α α

. . .
. . .

. . .

α 1− 2α



,
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for 0 ≤ α ≤ 1/4 and

A =
1

h




−2 1
1 −2 1

. . .
. . .

. . .

1 −2



, B =

1

h




0
0
...

1



.

The matrixB takes care of the Dirichlet boundary conditions at the right end-point
by being the natural “next column” of A.

The eigenvalues λαk and corresponding eigenvectors wk of C−1
α A are

λαk = − 4 sin2( 1
2kπh)

h2(1− 4α sin2( 1
2kπh))

,

wk(j) = sin(jkhπ), j = 1, 2, . . . , N ,

for k = 1, 2, . . . , N , as described in Section 3.1.

The adjoint system has the appearance,

{
Cαv̇(t) = −Av(t) ,

v(T ) = v0 ,

for which we will use the norm ‖v‖2eQ = −〈v,Av〉 = −vTAv.

We aim to prove an observability inequality, similar to the continuous system in
the previous section, which is uniform in N (the number N denotes the discretiza-
tion level and is the vector length of u(t) and v(t)). So we need to study solutions
of the adjoint system. The initial conditions will be set as

v0 =
N∑

k=1

akwk ,

where 〈kak〉 ∈ `2, leading to solutions of the form

v(t) =

N∑

k=1

ake
λαk (T−t)wk .

One of the elements of the observability inequality is the norm of the solution at
time t = 0,

‖v(0)‖2eQ = −
N∑

k=1

|ak|2eλ
α
kT 〈wk,Awk〉 =

N∑

k=1

2 sin2( 1
2khπ)

h2
e2λαkT |ak|2 . (6.10)
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We furthermore have
∫ T

0

∣∣BTv(t)
∣∣2dt =

∫ T

0

∣∣∣∣
v(t)(N)

h

∣∣∣∣
2

dt

=

∫ T

0

∣∣∣∣∣
N∑

k=1

(−1)k sin(khπ)

h
eλ

α
k (T−t)ak

∣∣∣∣∣

2

dt

≥
∫ T/2

0

∣∣∣∣∣
N∑

k=1

(−1)k sin(khπ)

h
eλ

α
k tak

∣∣∣∣∣

2

dt .

(6.11)

In order to apply Theorem 4.2.3, the parabolic version of Ingham’s Theorem, we
need to show that there is a uniform gap (uniform in both the index k and dis-
cretization level N) among the eigenvalues λαk . First we realize that the smallest
gaps occur when α = 0,

−(λαk+1 − λαk ) =
4 sin2( 1

2 (k + 1)hπ)

h2(1− 4α sin2( 1
2 (k + 1)hπ))

− 4 sin2( 1
2khπ)

h2(1− 4α sin2( 1
2khπ))

≥ −1

1− 4α sin2( 1
2kπh)

(
λ0
k+1 − λ0

k

)
≥ −

(
λ0
k+1 − λ0

k

)
.

We now get

−
(
λ0
k+1 − λ0

k

)
=

4

h2

(
sin2( 1

2 (k + 1)hπ)− sin2( 1
2khπ)

)
=

4

h2
( 1

2πh) sin(2ξ)

≥ 2π2 sin(πh)

πh
≥ 2π2 sin(π/6)

π/6
= 6π ,

with 1
2kπh ≤ ξ ≤ 1

2 (k + 1)πh by the Mean Value Theorem, and for all N ≥ 5. A
uniform gap has thus been established. Since we also have

−λαk ≥
4

h2
sin2( 1

2khπ) = k2π2

(
sin( 1

2khπ)
1
2khπ

)2

≥ k2π2

(
sin( 1

2π)
1
2π

)2

= 4k2 ,

we clearly satisfy the conditions in (4.32).
We now apply Theorem 4.2.3 to the last expression of (6.11) and get

∫ T

0

∣∣BTv(t)
∣∣2dt ≥ C1∑N

k=1(−λαk )−1

N∑

k=1

e−λ
α
kT sin2(khπ)

−λαkh2
e2λαkT |ak|2 , (6.12)

for some positive constant C1 which is independent of the discretization level N ,
the parameter α, and the coefficients 〈ak〉∞k=1.

We now wish to show that the factor in front of e2λαkT |ak|2 in (6.12), majorizes
the corresponding coefficient in (6.10). The ratio between such two factors is

sin2(khπ)

2 sin2( 1
2khπ)

e−λ
α
kT

−λαk
=

sin2(xπ)

2 sin2( 1
2xπ)

eTfα(x)/h2

fα(x)/h2
= r(x, h, α) , (6.13)
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where x = kh and

fα(x) =
4 sin2( 1

2xπ)

1− 4α sin2( 1
2xπ)

.

For 0 < a ≤ x ≤ b < 1, with a and b fixed, r(x, h, α) is clearly bounded from below
as h→ 0. With x = h→ 0 we get

r(h, h, α)→ h2π2

1
2h

2π2

eTπ
2

π2
=

2eTπ
2

π2
,

so a uniform bound exists here also. For x = Nh = N/(N + 1) as h → 0 we split
into two cases. For 0 ≤ α < 1/4 we have

r(Nh, h, α)→ h2π2

2

e4T/((1−4α)h2)

4/ ((1− 4α)h2)
→∞ ,

and for α = 1/4 we have fα(Nh) = 4/ cos2( 1
2Nhπ) = 4/ sin2( 1

2hπ) → 16/(h2π2)
and thus

r(Nh, h, 1/4)→ h2π2

2

e16T/(h4π2)

16/(h4π2)
→∞ .

All in all, the ratio r(x, h, α) in (6.13) is uniformly bounded away from zero for
h ≤ x ≤ Nh and 0 ≤ α ≤ 1/4 as h → 0. So we finally conclude that the
observability inequality

Cs‖v(0)‖2eQ ≤
∫ T

0

∣∣BTv(t)
∣∣2dt ,

holds for a constant Cs > 0 which is independent of N and the initial condition v0.

The so-called direct inequality, which is the semi-discrete analog of (6.4), is
easier to show. We first bound the norm of the initial condition v0,

‖v0‖2eQ = −
N∑

k=1

|ak|2〈wk,Awk〉 = 2

N∑

k=1

sin2( 1
2khπ)

h2
|ak|2

= 1
2

N∑

k=1

k2π2

(
sin( 1

2khπ)
1
2khπ

)2

|ak|2 ≥ 2
N∑

k=1

|kak|2 .
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Next we have, see (6.11),

∫ T

0

∣∣BTv(t)
∣∣2dt =

∫ T

0

∣∣∣∣∣
N∑

k=1

(−1)k sin(khπ)

h
eλ

α
k tak

∣∣∣∣∣

2

dt

=

∫ T

0

∣∣∣∣∣
N∑

k=1

N∑

l=1

(−1)k+l sin(khπ) sin(khπ)

h2
e(λαk+λαl )takal

∣∣∣∣∣ dt

≤
N∑

k=1

N∑

l=1

∣∣∣∣
sin(khπ)

khπ

∣∣∣∣
∣∣∣∣
sin(lhπ)

khπ

∣∣∣∣

∣∣∣∣∣

∫ T

0

e(λαk+λαl )tdt

∣∣∣∣∣ |kπak||lπal|

≤ −1

2λα1

(
N∑

k=1

|kπak|2
)1/2( N∑

l=1

|lπal|2
)1/2

=
−π2

2λα1

N∑

k=1

|kak|2

≤ −π
2

4λα1
‖v0‖2eQ ,

which proves the direct inequality.

We have now established a uniform observability inequality for the semi-discrete
heat equation in one dimension, implying that computed controls will converge. A
similar result has been shown in López and Zuazua (1998), see also Zuazua (2003).

Uniform observability for a full discretization of the heat equation has yet to be
proved. Even if such a result is obtained, some practical difficulties will most likely
occur when computing controls, one difficulty being the high condition number of
the controllability operator. We will return to this subject in Section 9.5.2.

The literature has presented some numerical results regarding controllability of
the heat equation, but exact (null-)controllability is hard to do. In Carthel, Glowin-
ski, and Lions (1994), the authors argue that for exact control, only very smooth
functions can be reached. They then move on to approximate controllability, where
they use a Tikhonov regularization method together with the conjugate gradient
algorithm for computing the controls (they use a simple finite element discretiza-
tion in space and a backward Euler time discretization). The paper Kindermann
(1999) uses a similar approach, but focuses on the speed of convergence. In Park
and Lee (2002), the authors also consider approximate controllability. They do this
by minimizing an appropriate functional using a conjugate gradient-like algorithm.





C H A P T E R 7

The Wave Equation

If everything seems under control,
you’re just not going fast enough.

— Mario Andretti

We now turn to the wave equation in Ω ⊂ Rd, to which we apply Dirichlet control
on a subset of the boundary, Γ0 ⊂ Γ = ∂Ω,





utt = ∆u in Q ,

u =

{
k
0

in Σ0 ,
in Σ \ Σ0 ,

u(0) = u0, ut(0) = u0 in Ω ,

where k ∈ L2(Σ0) and (u0, u0) ∈ H ′ = L2(Ω)×H−1(Ω). In order for this control
system to fit into the framework of Chapter 2, we must write it as a first order (in
time) system. This is easily done as





yt = Ay in Q ,

By =

{
k
0

in Σ0 ,
in Σ \ Σ0 ,

y(0) = y0 in Ω ,

(7.1)

where

y(t) =

[
u(t)
ut(t)

]
, y0 =

[
u0

u0

]
, A =

[
0 I
∆ 0

]
, B =

[
u
u

]
7→ u .

We clearly have (obtained by ignoring boundary conditions)

A∗ =

[
0 ∆
I 0

]
,



112 7. The Wave Equation

but using the operator −A∗ for the adjoint system leads to
[
vt
v

]

t

=

[
0 ∆
I 0

] [
vt
v

]
,

which we prefer to write as
[
v
vt

]

t

= −
[

0 −I
−∆ 0

][
v
vt

]
,

since the initial conditions are in a more natural order (a minus-sign is placed in
front of the operator since it is required from the general formulation (2.4) of the
adjoint system). This means that we set

Ã =

[
0 −I
−∆ 0

]
,

for the adjoint system,




zt = −Ãz in Q ,

Bz = 0 in Σ ,

z(T ) = z0 in Ω ,

(7.2)

for some fixed control time T > 0.
Since Ã 6= A∗ we need a non-trivial “conversion matrix”M. By the requirement

MÃ = A∗M we derive

M =

[
0 −1
1 0

]
.

(Note that any scaling of this matrix will do.) Given this matrix, we can deduce
the relevant Hilbert spaces,

H = L2(Ω)×H1
0 (Ω) , H̃ = H1

0 (Ω)× L2(Ω) ,

H ′ = L2(Ω)×H−1(Ω) , H̃ ′ = H−1(Ω)× L2(Ω) ,

and the duality pairing {·, ·},
{[
u
u

]
,

[
v
v

]}
=

〈[
u
u

]
,M

[
v
v

]〉
=

〈[
u
u

]
,

[
−v
v

]〉
= 〈u, v〉 − 〈u, v〉 ,

for all instances of (u, u) ∈ H ′ and (v, v) ∈ H̃ . Recall that H ′ is the space in

which the control system (7.1) is posed and H̃ is the space in which the adjoint
system (7.2) is posed. We shall show shortly that this leads to well-posed systems.

Left to find is the complementary boundary operator C. We set u, u, v, v ∈
C∞(Ω) and get

{
A
[
u
u

]
,

[
v
v

]}
−
{[
u
u

]
, Ã
[
v
v

]}
=

{[
u

∆u

]
,

[
v
v

]}
−
{[
u
u

]
,

[
−v
−∆v

]}

= 〈∆u, v〉 − 〈u, v〉+ 〈u, v〉 − 〈u,∆v〉 =

∫

Γ

(
∂u

∂n
v − u∂v

∂n

)
dΓ

=

∫

Γ0

u

(
−∂v
∂n

)
dΓ ,
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when using the boundary conditions of the control and adjoint systems, showing
that the complementary boundary operator is C(v, v) = −∂v/∂n. Different types
of boundary control easily could be used, analogous to Section 6.1.1 for the heat
equation.

7.1 Well-posedness

The adjoint system (7.2) can be written more readable as





vtt = ∆v in Q ,

v = 0 in Σ ,

v(T ) = v0, vt(T ) = v0 in Ω ,

by setting (v, vt) = z. We will now show the well-posedness of this system. Let us
introduce the energy of the system at time t,

E(t) = 1
2

∫

Ω

(
|∇v(t, x)|2 + |vt(t, x)|2

)
dx .

The important observation is here that (v(t), vt(t)) ∈ H̃ if and only if E(t) < ∞.
By differentiating the energy,

E′(t) =

∫

Ω

(
∇v · ∇vt + vtvtt

)
dx =

∫

Ω

(
∇v · ∇vt + vt∆v

)
dx =

∫

Γ

∂v

∂n
vt dΓ = 0 ,

we see that the energy remains constant through time, E(t) = E(T ) for all t. This

means that (v0, v0) ∈ H̃ implies (v(t), vt(t)) ∈ H̃ for all t.
We now wish to show that the complementary boundary operator is bounded,

in the sense that a point-wise positive function K(T ) exists such that

∫

Σ0

∣∣C(v, v)
∣∣2dΓdt =

∫ T

0

∫

Γ0

∣∣∣∣
∂v

∂n

∣∣∣∣
2

dΓdt ≤ K(T )
∥∥(v0, v0)

∥∥2
eH , (7.3)

for every solution (v(t), vt(t)) of the adjoint system with initial conditions (v0, v0) ∈
H̃ .

We show the above inequality for the simple case of Ω = (0, 1) and Γ0 = {1}.
We apply the multiplier vxx to the right-hand side of vtt = vxx and integrate over
(0, T )× (0, 1),

∫ T

0

∫ 1

0

vxxvxxdxdt =

∫ T

0

[
v2
xx
]1
x=0

dt−
∫ T

0

∫ 1

0

vxvxxxdxdt−
∫ T

0

∫ 1

0

v2
xdx ,

which leads to

∫ T

0

|vx(t, 1)|2dt = 2

∫ T

0

∫ 1

0

vxxvxxdxdt+

∫ T

0

∫ 1

0

v2
xdxdt . (7.4)
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Our goal is to bound the absolute value of the right-hand side. Using vtt = vxx on
the first term of the right-hand side we get

2

∫ T

0

∫ 1

0

vxxvxxdxdt = 2

∫ 1

0

∫ T

0

vttvxxdtdx

= 2

∫ 1

0

[
vtvxx

]T
t=0

dx− 2

∫ 1

0

∫ T

0

vtvxtxdtdx

(7.5)

In order to rewrite the last term, we consider

∫ 1

0

vxtvtxdx =
[
v2
t x]1x=0 −

∫ 1

0

vtvtxxdx −
∫ 1

0

v2
t dx ,

obtaining (since vt(t, 1) = 0),

2

∫ 1

0

vxtvtxdx = −
∫ 1

0

v2
t dx .

Substituting this expression into (7.5), which in turn gets inserted into (7.4), we
get

∫ T

0

|vx(t, 1)|2dt = 2

∫ 1

0

[
vtvxx

]T
t=0

dx+

∫ T

0

∫ 1

0

v2
t dxdt+

∫ T

0

∫ 1

0

v2
xdxdt .

We now bound the absolute value of each term of the right-hand side,

∣∣∣∣
∫ 1

0

vtvxxdx

∣∣∣∣
2

≤
∫ 1

0

v2
t dx

∫ 1

0

v2
xxdx ≤ 4E(t)2 = 4E(0)2 ,

∫ T

0

∫ 1

0

(
v2
t + v2

x

)
dxdt = 2

∫ T

0

E(t)dt = 2TE(0) ,

which finally yields

∫ T

0

|vx(t, 1)|2dt ≤ 8E(0) + 2TE(0) = 2E(0)(T + 4) . (7.6)

Since E(0) and the ‖ · ‖ eH-norm are of the same order (easily seen in one dimension
by writing these quantities in terms of sin(kπ·)-basis coefficients), this inequality
implies (7.3).

7.2 Analytical Solution in 1D Using Fourier Series

For the case Ω = (0, 1), the controllability operator has the “type” ΛT : H1
0 (0, 1)×

L2(0, 1) 7→ H−1(0, 1)× L2(0, 1). We will now find a matrix representation ΛT for
the controllability operator, using a sin(jπ·) basis for each of these spaces.
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Let us start out with the simple case where T ∈ 2N, and use the inner product
method. With initial conditions (v(T ), vt(T ) = (ej , 0) for the adjoint system we
have the solution

v(t, x) = cos(jπ(T − t))ej(x) ,

and thus
C(v(t), vt(t)) = −vx(t, 1) = (−1)j+1jπ cos(jπ(T − t)) .

Let similarly ṽ be a solution to the adjoint system with initial conditions (ei, 0).
This leads to
〈

ΛT

(
ej
0

)
,

(
ei
0

)〉
=

∫ T

0

vx(t, 1)ṽx(t, 1)dt

= (−1)i+jijπ2

∫ T

0

cos(iπt) cos(jπt)dt = (−1)i+jijπ2δijT/2 .

With initial conditions (v(T ), vt(T )) = (0, ej) we get

−vx(t, 1) = (−1)j sin(jπ(T − t)) ,

leading to

〈
ΛT

(
0
ej

)
,

(
0
ei

)〉
=

∫ T

0

vx(t, 1)ṽx(t, 1)dt

= (−1)i+j
∫ T

0

sin(iπt) sin(jπt)dt = (−1)i+jδijT/2 .

By similar calculations we finally get

〈
ΛT

(
ej
0

)
,

(
0
ei

)〉
=

〈
ΛT

(
0
ej

)
,

(
ei
0

)〉
= 0 .

As was the case for the heat equation in Section 6.2, we also use the sin(jπ·) basis
for the range of the controllability operator, which means that we must scale each
inner product by a factor of two. All in all, a very simple matrix occurs for the
case T ∈ 2N,

ΛT = T




12π2

22π2

. . .

1
1

. . .




, (7.7)

where all the blank entries denote zeroes. The matrix entries for all T > 0 are
computed in Detail 6, page 185, using the direct method.

This analytical expression for the controllability operator has not been pub-
lished before. But as mentioned in Section 5.1, an analytical representation for
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the controllability operator for the wave equation on Ω = (0, 1)2 was calculated in
Glowinski, Li, and Lions (1990).

Let us compute the control function k ∈ L2(0, T ) in the case T ∈ 2N. We wish
to drive the zero state at t = 0 to the state (y0, y0) at time t = T . Let

y0 =
∞∑

k=1

ak sin(kπ·), y0 =
∞∑

k=1

bk sin(kπ·) ,

where 〈ak〉 ∈ `2 and 〈bk/k〉 ∈ `2, ensuring that (y0, y0) ∈ L2(0, 1)×H−1(0, 1). We
must now solve

ΛT

(
v0

v0

)
=MT

(
y0

y0

)
=

(
y0

−y0

)
,

which is easily done using the matrix representation in (7.7),

v0 =
1

T

∞∑

k=1

bk
k2π2

sin(kπ·), v0 = − 1

T

∞∑

k=1

ak sin(kπ·) ,

These initial conditions lead to a solution of the form

v(t, x) =
1

T

∞∑

k=1

(
bk
k2π2

cos(kπt)− ak
kπ

sin(kπt)

)
sin(kπx) ,

and thus the control

k(t) = −vx(t, 1) =
1

T

∞∑

k=1

(−1)k
(
ak sin(kπt)− bk

kπ
cos(kπt)

)
. (7.8)

Note that since 〈ak〉, 〈bk/k〉 ∈ `2 we have k ∈ L2(0, T ) (this is of course no sur-
prise, since it had to be this way—it was proved in (7.6)). Note also the control’s
dependence on time, its L2(0, T )-norm is inversely proportional to T , as predicted
after Theorem 5.2.2.

The matrix representation (7.7) also proves that ΛT is invertible for T = 2, and
thus for all T ≥ 2. Using, for instance, Ingham’s Theorem (Theorem 4.2.1) for
proving exact controllability in this 1D case, we would obtain the slightly weaker
condition T > 2.

We can easily argue that there can be no exact controllability when T < 2.
Recall that exact controllability is equivalent to the following condition: A constant
Ke > 0 must exist such that the observability inequality

∥∥(v0, v0)
∥∥2
eH ≤ Ke

∫ T

0

v2
x(t, 1)dt ,

holds for all solutions v of the adjoint system with initial conditions (v0, v0). As-
sume that T = 2− ε for a small ε > 0. Consider now initial conditions (v0, v0) that
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are constructed such that the support of both v0 and v0 is contained in the open
interval (1− ε, 1) and such that the solution exclusively travels to the left (as time
goes from T and back to 0). Because of the constant speed of propagation equal
to one we must have vx(t, 1) = 0 for 0 < t < T = 2 − ε. The above observabil-
ity inequality can thus not hold in this case (a similar argument can be found in
Zuazua, 2003, page 14).

7.3 Characterization of Controls for the Wave Equa-
tion in 1D

We consider again the following one dimensional control problem,





utt = uxx, in (0, T )× (0, 1) ,

u(t, 0) = 0, u(t, 1) = k(t), in (0, T ) ,

u(0, x) = u0(x), ut(0, x) = u0(x), in (0, 1) ,

(7.9)

with (u0, u0) ∈ L2(0, 1)×H−1(0, 1) and k ∈ L2(0, T ). The goal of this section is to
characterize all possible controls for this control system for any T > 0. Recall that
a HUM control exists for T ≥ 2 and is unique in the sense that it has the smallest
L2(0, T )-norm (in general, a HUM control has the smallest L2((0, T )× Γ0)-norm).
We will here present a fairly constructive way of finding a control that is optimal
in any sense.

As far as the author knows, the approach taken in this section has not been
considered before. Although the method is not readily possible to generalize to
more dimension, it provides some useful insight.

The D’Alembert solution formula for the wave equation will be important to
us. On the real line any solution to the wave equation has the appearance

u(t, x) = f(x+ t) + g(x− t), t ≥ 0, x ∈ R ,

where f and g are twice continuously differentiable functions, f, g ∈ C2(R). So a
solution is simply the superposition of two waves, one traveling to the left and one
traveling to the right. To take into consideration reflection at t = 0 we use odd
extensions and get that

u(t, x) = f(x+ t)− f(−x+ t) + g(x− t)− g(−x− t), t ≥ 0, x ≥ 0 , (7.10)

satisfies both
utt(t, x) = uxx(t, x) and u(t, 0) = 0 .

For more on the D’Alembert solution formula and the method of reflection, see
Strauss (1992).

Combining the solution formula (7.10) with the initial conditions,

u(0, x) = u0(x), ut(0, x) = u0(x), x ≥ 0 ,
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we arrive at the following expressions

u(t, x) =
1

2

[
u0(x+ t) + u0(x− t) +

∫ x+t

x−t
u0(s)ds

]
, for |t| < x ,

u(t, x) =
1

2

[
u0(t+ x) + u0(t− x) +

∫ t+x

t−x
u0(s)ds

]
, for 0 < x < |t| .

(7.11)

But our control system is posed on the interval (0, 1), and not on the half-
line (0,∞). Nevertheless, the D’Alembert solution formula can be used to find a
control that drives the control system to rest in time two (or less). Indeed, let
initial conditions (u0, u0) ∈ L2(0, 1) × H−1(0, 1) for the control system (7.9) be
given. Expand now the initial conditions with zeroes to the half-line (0,∞), and
solve the wave equation on the interval (0,∞) with reflection at x = 0. Because
of the unit speed of propagation it is clear that u(t, x) = 0 for 0 < x < 1 for all
t > 2. The control is now found simply by reading off the positions at x = 1 in the
interval 0 ≤ t ≤ 2. Using the solution formula (7.11) we get

k(t) = u(t, 1) =





1
2u

0(1− t) + 1
2

∫ 1

1−t
u0(s)ds, 0 ≤ t ≤ 1 ,

1
2u

0(t− 1) + 1
2

∫ 1

t−1

u0(s)ds, 1 < t ≤ 2 .

(7.12)

This method, which we will call the SUR method, was mentioned by Professor
David L. Russell in Russell (1973), and later developed by Professor Walter Littman
and others in, for instance, Littman (1992). See Figure 7.1 for an example.

7.3.1 0 < T < 2

If the control time available is less than two then exact controllability is impossible,
as argumented at the end of Section 7.2. But for some initial conditions, control is
in fact possible.

Consider first the case 0 < T ≤ 1. It is clear that for any part of the solution
that travels to the left, it will take more than time T before it has reflected at
x = 0 and travelled to x = 1 to be “handled” be the control. Thus the solution
must travel to the right, u(t, x) = f(x− t), implying the relation

u0(x) = − d

dt
u0(x), 0 < x < 1 ,

for the initial conditions. Furthermore, we must require

u0(x) = 0 for 0 < x < 1− T ,

since this part of the solution will not have time to reach the control boundary.
If these two conditions are met, the control given by (7.12) will drive the control
system to rest in time T .
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1 2 3

t = 2.0

Figure 7.1: Illustration of the SUR method. The domain is expanded from (0, 1) to
(0,∞) and the wave equation is solved on this domain. The control is now simply read
off at x = 1.
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Consider now 1 < T < 2. The part of the solution that at time t = 0 is in
the interval 0 < x < T − 1 will reach the control boundary in the time available.
However, any part of the initial conditions in the interval x ∈ (T − 1, 1) has to
make the solution travel to the right. We must thus require

u0(x) = − d

dt
u0(x), T − 1 < x < 1 ,

of the initial conditions. Again, the control can then be computed by (7.12).
What about uniqueness for controls obtained as described? They are in fact

unique, and for the simple reason that if the control did anything other than absorb
the oncoming waves, it would take time two before that “signal” could disappear.

7.3.2 T = 2

By now we know of two ways of computing a control for the case T = 2: The
HUM method, see (7.8), or the SUR method just described, see (7.12). Are they
identical? No, not in general, as some examples could quickly reveal. Because of
the linearity of the control system, subtracting two different controls that do “the
same job” will be a null-space control, that is, a control that steers the control
system from the zero state to the zero state. This leads to the question: What
can for the case T = 2 be added to a control function that does not change the
initial/final states? The following theorem answers this question.

Theorem 7.3.1. A control k ∈ L2(0, 2) has the effect

u(0, ·) = 0, ut(0, ·) = 0 ,

u(2, ·) = 0, ut(2, ·) = 0 ,
(7.13)

if and only if the control function is a constant, k(t) = k0 ∈ R.

Proof. Assume that (7.13) holds. We use the D’Alembert formula to derive infor-
mation about the control. Using (7.10) we get

u(0, x) = f(x)− f(−x) + g(x)− g(−x) = 0 ,

ut(0, x) = f ′(x) − f ′(−x)− g′(x) + g′(−x) = 0 ,

u(2, x) = f(x+ 2)− f(−x+ 2) + g(x− 2)− g(−x− 2) = 0 ,

ut(2, x) = f ′(x + 2)− f ′(−x+ 2)− g′(x− 2) + g′(−x− 2) = 0 ,

for 0 ≤ x ≤ 1. Integrating the equations involving derivatives, we can combine the
equations into

f(−x)− g(x) = K1 , f(x+ 2)− g(−x− 2) = K2 ,

f(x)− g(−x) = K1 , f(−x+ 2)− g(x− 2) = K2 ,

for 0 ≤ x ≤ 1, and where K1,K2 ∈ R are constants. We now see what happens at
the boundary at x = 1,

u(t, 1) = f(1 + t)− f(−1 + t) + g(1− t)− g(−1− t) = K2 −K1 ,
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for 0 ≤ t ≤ 2. Indeed, a constant-valued control.
Assume now that k(t) = k0, a constant. We now get

∫ 2

0

k(t)vx(t, 1)dt = k0

∫ 2

0

vx(t, 1)dt = 0 ,

since ∫ 2

0

cos(jπ(2− t))dt =

∫ 2

0

sin(jπ(2− t))dt = 0 .

Using the ever useful Theorem 2.1.1, this is seen to imply (7.13).

This means that for the case T = 2, a HUM control and a SUR control will be
identical except for an additive constant. One can also put it this way: A HUM
control is obtained from the SUR control by adjusting it by a constant in such a
way that the L2(0, 2)-norm is the smallest possible.

7.3.3 T > 2

What about null-space controls for the case T > 2? A trivial null-space control is
clearly k(t) = 0 for 0 < t < T . But by Theorem 7.3.1 we can add a constant on
any interval of length two, say (t, t+ 2) for some t ∈ (0, T − 2), and we still have a
null-space control. We can now do this repeatedly on different intervals of length
two. For instance, for the case T = 5 the control

k(t) =





2, 0 ≤ t ≤ 1 ,

3, 1 < t ≤ 2 ,

1, 2 < t ≤ 3 ,

−1, 3 < t ≤ 5 ,

is a null-space control. A general result on null-space controls for the case T > 2
is given by the following theorem.

Theorem 7.3.2. Let T > 2. The control k ∈ L2(0, T ) has the effect

u(0, ·) = 0, ut(0, ·) = 0 ,

u(T, ·) = 0, ut(T, ·) = 0 ,
(7.14)

if and only if

k0 =
∑

t+2p≤T
p=0,1,...

k(t+ 2p), 0 ≤ t < 2 , (7.15)

for some constant k0 ∈ R.

Proof. In order to satisfy (7.14) we see from the relation (2.7), page 12, that we
must have ∫ T

0

k(t)vx(t, 1)dt = 0 , (7.16)
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for all solutions v(t, x) to the adjoint system. Since vx(t, 1) has the form

vx(t, 1) =
∞∑

j=1

(−1)jjπ
(
aj cos(jπ(T − t)) + bj sin(jπ(T − t))

)
, 〈jaj〉, 〈jbj〉 ∈ `2 ,

(7.17)
we see that vx(·, 1) is 2π-periodic. This means that (7.16) is equivalent to

∫ 2

0

k?(t)vx(t, 1)dt = 0 , (7.18)

for all vx of the form (7.17) where

k?(t) =
∑

t+2p≤T
p=0,1,...

k(t+ 2p), 0 ≤ t ≤ 2 .

Introducing a simple phase shift we get that (7.18) is equivalent to

∫ 2

0

k?(t)v?x(t, 1)dt = 0 ,

for all v?x of the form

v?x(t, 1) =

∞∑

j=1

(−1)jjπ
(
a′j cos(jπ(2− t)) + b′j sin(jπ(2− t))

)
, 〈ja′j〉, 〈jb′j〉 ∈ `2 .

So k(t) is a null-control when the control time is T , if and only if k?(t) is a null-
control when the control time is 2. Using now the result of Theorem 7.3.1, the
proof is complete.

This result can be used in the following ways. A control that drives the control
system to rest in time T = 2 can also be used for the case T > 2, simply by
expanding it with zeroes on t ∈ (2, T ). We can now modify such a control by
adding to it null-controls for the case T , as just described.

We can also use the result in the opposite direction. Given a control k ∈
L2(0, T ) for some T > 2, we construct a null-space control k̃ ∈ L2(0, T ) for which
k(t) = k̃(t) on t ∈ (2, T ). Such a null-control is always possible to find, as can be
seen from (7.15). Since now k(t)− k̃(t) = 0 for 2 < t < T , we see that k(t)− k̃(t)
will be a valid control for the reduced control time 2.

7.3.4 Example of Optimal Controls in Different Norms

Figure 7.2 shows an example of four different controls that all, using the same
initial conditions, drive the solution of the control system to rest. We will now
describe how the four controls were computed.

The SUR control was computed simply by using formula (7.12) on a discrete
time-grid. This led to a control on the interval (0, 2) which was then expanded
with zeroes to the whole (0, 3.6) interval.
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1.6 2 3.6

t

SUR
L2(0, 3.6)/HUM
L∞(0, 3.6)

L1(0, 3.6)

Figure 7.2: Example for the case T = 3.6. Using the same initial conditions, all the
controls shown steer the control system to rest in time T . Apart from the control obtained
by the SUR method, three controls are shown that are optimal in the sense that the
L2(0, 3.6)-, L∞(0, 3.6)- and L1(0, 3.6)-norm of the controls are minimal (all controls are
computed using numerical approximations).

Let the discrete SUR control be represented by the vector kSUR. We now
wish to modify this control by adding a null-space control such that the (discrete)
Lp(0, 3.6)-norm is minimal for p = 1, 2,∞. Recalling that adding a constant on a
length-two interval does not change the effect of the control, leads to the following
simple formula,

kp = kSUR +Nx?, x? = argmin
x

∥∥kSUR +Nx
∥∥
p
, (7.19)

where kp is the sought control and where the matrix

N =




1
... 1

1
...

1
. . . 1

...
1




,

has a number of ones in each column corresponding to a time interval of length
two. The norms ‖ · ‖p are the usual discrete p-norms.

The minimization in (7.19) is a standard least squares problem in the case p = 2,
which can be done quite fast. The cases p = 1,∞ lead to linear programming
problems which are very time consuming.
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7.4 A Well-behaved 1D Scheme

This section will present a full discretization of the wave equation in one dimension.
It has not been studied before, and it will turn out to have some properties which
are more appropriate for control than the discretization schemes previously seen in
the literature.

Let us recall the continuous control system,





utt = uxx, in (0, T )× (0, 1) ,

u(t, 0) = 0, u(t, 1) = k(t), in (0, T ) ,

u(0, x) = u0(x), ut(0, x) = u0(x), in (0, 1) ,

(7.20)

with (u0, u0) ∈ L2(0, 1)×H−1(0, 1) and k ∈ L2(0, T ). For easier notation, we will
reverse the time direction when defining the adjoint system, see Section 2.5.2. This
approach suffers no loss of generality since the wave equation is reversible. We have
the adjoint system,





vtt = vxx, in (0, T )× (0, 1) ,

v(t, 0) = v(t, 1) = 0, in (0, T ) ,

v(0, x) = v0(x), vt(0, x) = v0(x), in (0, 1) ,

(7.21)

with (v0, v0) ∈ H1
0 (0, 1)× L2(0, 1).

7.4.1 Discretization

We discretize the Laplacian using the box scheme (see (3.5), page 32),

C =
h

4




2 1
1 2 1

. . .
. . .

. . .

1 2


 , A =

1

h




−2 1
1 −2 1

. . .
. . .

. . .

1 −2


 , B =

1

h




0
0
...

1


 ,

where h = 1/(N + 1) as usual. As for the heat equation, the matrix B takes care
of the Dirichlet boundary conditions at the right end-point.

In time we use the trapezoid discretization scheme, here for the adjoint sys-
tem (7.21),

[
vn+1

vn+1

]
−
[
vn

vn

]
= 1

2∆t

[
0 I

C−1A 0

]([
vn+1

vn+1

]
+

[
vn

vn

])
, (7.22)

with v0 and v0 given. Note how we have used the box scheme for both time and
space discretization (see Equation (3.32), page 45, and the comments that surround
it).
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We will make extensive use of eigenvalues and eigenvectors. To that end, we
recall that the eigensolutions of C−1A are

C−1Awk = −µ2
kwk ,

with µk = 2
h tan( 1

2khπ) ,

wk(j) = sin(kjhπ) ,

for j, k = 1, 2, . . . , N . With initial conditions

v0 =
N∑

k=1

akwk and v0 =
N∑

k=1

bkwk , (7.23)

where 〈kak〉, 〈bk〉 ∈ `2, the solution of (7.22) is given as

vn =
N∑

k=1

(
ak cos(nθk) + bk/µk sin(nθk)

)
wk ,

where

eiθk =
2 + i∆tµk
2− i∆tµk

=
1 + iη tan( 1

2khπ)

1− iη tan( 1
2khπ)

, cos(θk) =
1− η2 tan2( 1

2khπ)

1 + η2 tan2( 1
2khπ)

, (7.24)

such that 0 ≤ θk < π for k = 1, 2, . . . , N . We assume that η = ∆t/h is a positive
constant.

From (3.33) we have the energy norm,

E0 = 1
2

N∑

k=1

(µ2
ka

2
k + b2k)〈wk,Cwk〉 ,

but since Cwk = h cos2( 1
2khπ)wk we get

〈wk,Cwk〉 = h cos2( 1
2khπ)〈wk,wk〉 = 1

2 cos2( 1
2khπ) ,

where 〈wk,wk〉 = 1/(2h), see Theorem 3.1.3, has been used. So we have

E0 = 1
4

N∑

k=1

(
4 tan2( 1

2khπ)

h2
a2
k + b2k

)
cos2( 1

2khπ)

= 1
4

N∑

k=1

(
k2π2

(
sin( 1

2khπ)
1
2khπ

)2

a2
k + cos2( 1

2khπ)b2k

)
.

(7.25)

7.4.2 Convergence of the Scheme

In this section we will show convergence of the discretization (7.22) used for the
adjoint system. In order to do so, we will use the Lax Equivalence Theorem (see
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page 48), which says that consistency and stability are necessary and sufficient
conditions for convergence.

First we must establish how to set the initial conditions of the discrete system,
given the following initial conditions for the continuous system,

v0 =

∞∑

k=1

akwk , v0 =

∞∑

k=1

bkwk ,

where wk(x) = sin(kπx), k ∈ N, and 〈kak〉, 〈bk〉 ∈ `2. But here we simply use
“spectral truncation” as used in (7.23). This is the RN -map of Section 3.3.

We also need to be able to compare vectors from the discrete system, posed
in RN × RN , with vectors from the continuous system, posed in H̃ = H1

0 (0, 1) ×
L2(0, 1). But to this end, we simply do the opposite as we did for the initial
conditions: Given a spectral representation, we just replace the wk basis vectors
with the wk basis vectors. This is the EN -map of Section 3.3. From this point on,
we will use the notation vnN as the vector of H̃ that in this way corresponds to vn

of RN × RN .
Finally, since everything is going to be represented in spectral terms, we will

use the following expression for the norm in H̃ ,
∥∥∥∥∥

( ∞∑

k=1

akwk,

∞∑

k=1

bkwk

)∥∥∥∥∥

2

eH

= 1
2

∞∑

k=1

(k2π2a2
k + b2k) .

We can now move on to show stability for the discretization of the adjoint
system. In order to do so, we consider the discrete (energy) norm (7.25), which we
know is constant in time for each N . If we can now show that the discrete norm
converges to the continuous norm as N →∞, we are done. Let ε > 0 be given and
consider

|E −E0| ≤ 1
4

∣∣∣∣∣
N0∑

k=1

[
k2π2

(
1−

(
sin( 1

2khπ)
1
2khπ

)2
)
a2
k + (1− cos2( 1

2khπ))b2k

]∣∣∣∣∣

+ 1
4

∣∣∣∣∣
N∑

k=N0+1

[
k2π2

(
sin( 1

2khπ)
1
2khπ

)2

a2
k + cos2( 1

2khπ)b2k

]∣∣∣∣∣

+ 1
4

∣∣∣∣∣
∞∑

k=N0+1

[
k2π2a2

k + b2k
]
∣∣∣∣∣ = I1 + I2 + I3 .

Choose now N0 such that I3 ≤ ε/3 and observe that I2 ≤ I3, independently of N .
Fixing N0, we can now choose N large enough so I1 ≤ ε/3. This shows that
E0
N → E as N →∞, for every choice of initial data.

Consistency only has to be shown for a dense subset of H̃ and we will assume
that both v0 and v0 are infinitely smooth. This means that the coefficients 〈ak〉
and 〈bk〉 decay exponentially,

k2π2a2
k + b2k ≤ Crk for all k ∈ N ,



7.4.2. Convergence of the Scheme 127

for some constants C > 0 and 0 < r < 1.
Loosely speaking, consistency means that going ∆t forwards in time for the

continuous system,

v(∆t) =
∞∑

k=1

[
ak cos(kπ∆t) + bk sin(kπ∆t)/(kπ)

]
wk ,

vt(∆t) =

∞∑

k=1

[
−akkπ sin(kπ∆t) + bk cos(kπ∆t)

]
wk ,

should be close to taking one step forward for the discrete system,

v1
N =

N∑

k=1

[
ak cos(θk) + bk sin(θk)/µk

]
wk ,

v1
N =

N∑

k=1

[
−akµk sin(θk) + bk cos(θk)

]
wk .

We now aim to show
∥∥∥(v(∆t), vt(∆t))− (v1

N , v
1
N )
∥∥∥ eH

∆t
→ 0 ,

as N → 0. We get
∥∥∥(v(∆t), vt(∆t))− (v1

N , v
1
N )
∥∥∥ eH

≤
∥∥∥∥∥

(
α(N)∑

k=1

[
ak(cos(kπ∆t)− cos(θk)) + bk

(
sin(kπ∆t)

kπ
− sin(θk)

µk

)]
wk,

α(N)∑

k=1

[
−ak(kπ sin(kπ∆t) − µk sin(θk)) + bk(cos(kπ∆t)− cos(θk))

)∥∥∥∥∥ eH

+

∥∥∥∥∥

(
N∑

k=α(N)+1

[
ak cos(θk)) + bk

sin(θk)

µk

]
wk,

N∑

k=α(N)+1

[
−akµk sin(θk) + bk cos(θk)

]
wk

)∥∥∥∥∥ eH

+

∥∥∥∥∥

( ∞∑

k=α(N)+1

[
ak cos(kπ∆t) + bk

sin(kπ∆t)

kπ

]
wk,

∞∑

k=α(N)+1

[
−akkπ sin(kπ∆t) + bk cos(kπ∆t)

]
wk

)∥∥∥∥∥ eH
= I1 + I2 + I3 ,
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where α(N) = b(N − 1)1/3c (other cut-off choices will also work).
We first show that I2/∆t → 0 and I2/∆t → 0 as N → ∞. We do this by

exploiting the fact that the “tail” of the series
∑∞
k=α(N)+1(k2π2a2

k + b2k) decays
exponentially as N → ∞, because of the smoothness of the initial data. The
calculations can be found in Detail 7, page 189.

We now turn to I1 where the actual consistency is used. We initially rewrite
the expression for I1,

I2
1 = 1

2

α(N)∑

k=1

[
k2π2a2

k

(
1 + cos2(θk) +

µ2
k sin2(θk)

k2π2
− 2 cos(kπ∆t) cos(θk)

− 2
µk sin(kπ∆t) sin(θk)

kπ

)

+ b2k

(
1 + cos2(θk) +

k2π2 sin2(θk)

µ2
k

− 2 cos(kπ∆t) cos(θk)

− 2
kπ sin(kπ∆t) sin(θk)

µk

)

+ 2kπakbk
(
cos(kπ∆t)− cos(θk)

)
sin(θk)

(
µk
kπ
− kπ

µk

)]

= 1
2

α(N)∑

k=1

(
k2π2a2

kA(kh) + b2kB(kh) + 2kπakbkF (kh)
)
,

where A, B, F are functions of kh, since the expressions for cos(θk), sin(θk) and
kπ/µk can all be written in terms of kh only. Focusing on A(y), we see that it is
analytic for y > 0 and we write its Taylor expansion (easiest computed with the
aid of a program for symbolic mathematics),

A(kh) =

∞∑

p=6

cp(kh)p ,

where the real numbers cp depend on η only. We observe that 0 < k ≤ (N − 1)1/3 ⇔
0 < kh ≤ (N − 1)−2/3 and so we set kh = β(N − 1)−2/3 where 0 < β ≤ 1. We now
get

A(kh)

∆t2
=

(N − 1)2

η2
A
(
β(N − 1)−2/3

)
=

1

η2

∞∑

p=6

cpβ
p(N − 1)2−2p/3 ,

clearly showing that A(kh)/∆t2 → 0 as N →∞ for all 0 < β ≤ 1. This yields

1

∆t2

α(N)∑

k=1

k2π2a2
k|A(kh)| ≤ max

0≤β≤1

∣∣A
(
β(N − 1)−2/3

)∣∣
∆t2

∞∑

k=1

k2π2a2
k → 0 ,
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as N → ∞. The same procedure can be used for the terms involving B(kh) and
F (kh), using in the latter case |2kπakbk| ≤ k2π2a2

k + b2k.
Gathering the results for I1, I2 and I3 we finally get

∥∥∥∥
(v(∆t), vt(∆t)) − (v1

N , v
1
N )

∆t

∥∥∥∥ eH
≤ I1 + I2 + I3

∆t
→ 0 ,

as N →∞, thus proving consistency.

We have now shown stability and consistency of the discretization scheme (7.22),
and it then follows from the Lax Equivalence Theorem, Theorem 3.3.1, that the
scheme is convergent.

7.4.3 Exact Controllability on a Fixed Level

The discrete control system can be written as

{
ũn+1 = Gũn + F k̃n ,

ũ0 given ,
(7.26)

where

G =
(
I − ∆t

2 S
)−1 (

I + ∆t
2 S
)
,

F = ∆t
2

(
I − ∆t

2 S
)−1

[
0
B

]
, S =

[
0 I

C−1A 0

]
,

and

ũn =

[
un

un

]
, k̃n = kn+1 + kn .

We wish to show that we have exact controllability for this system, provided
that M , the number of time steps, is large enough. This can be done by showing
that the matrix

RN =
[
F GF · · · GN−1F

]
∈ R2N×2N

has full rank, see Theorem 4.1.4, page 70. This, in turn, can be done using Corol-
lary 4.1.1. Let us recall some useful information from Section 3.1.2. We set

W =
[
w1 w2 · · · wN

]
, D = diag(µ1, µ2, . . . , µN ),

Z =

[
W W

iWD −iWD

]
,

and get from Equation (3.10),

W−1 = 2hW , Z−1 = h

[
W −iD−1W
W iD−1W

]
.
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The matrix Z diagonalizes, by construction, S, and it is seen to also diagonalizeG.
We know from Section 3.2.3 that the eigenvalues of G are the 2N complex numbers
given by

2 + i∆tµk
2− i∆tµk

and
2− i∆tµk
2 + i∆tµk

, for k = 1, 2, . . . , N .

These are distributed on the unit circle in the complex plane, and are all distinct,
since the numbers µ1, µ2, . . . , µN are. This was the first condition of Corol-
lary 4.1.1.

The next is checking whether the vector

f = Z−1F

contains any zeroes. We rewrite as follows,

(
I − ∆t

2 S
)
Zf = ∆t

2

[
0
B

]
,

Z

([
I 0
0 I

]
− ∆t

2

[
iD 0
0 −iD

])
f = ∆t

2

[
0
B

]
,

2
∆t

([
I 0
0 I

]
− ∆t

2

[
iD 0
0 −iD

])
f = Z−1

[
0
B

]
.

The matrix on the left-hand side that pre-multiplies f , is seen to be a diagonal
matrix with non-zero entries on the diagonal. On the right-hand side is a vector
with non-zero entries, since it is simply a scaled version of the last column of Z−1.
We can now use these results to combine Corollary 4.1.1 and Theorem 4.1.4 into
the following theorem.

Theorem 7.4.1. The control system (7.26) is controllable, is the sense that any
initial state (u0,u0) can be driven to any final state (uM ,uM ), if and only if
M ≥ 2N .

Since we use a time step of ∆t, we see that the time available for control must
be

T ≥ 2N∆t = 2η
N

N + 1
,

where η = ∆t/h. Recall that T ≥ 2 is the requirement for the continuous system.

Note that this theorem addresses a single discretization level. But what happens
when ∆t, h→ 0? Does the controls obtained converge to the continuous one? This
is the subject of the following section.

7.4.4 Striving Towards Uniform Observability

The subject of this section is the proof of the following theorem. The assumptions
of the theorem will be assumed true for the remainder of the section.
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Theorem 7.4.2. Let T > 2, and let 〈ak〉∞k=1 and 〈bk〉∞k=1 be real sequences such
that 〈kak〉, 〈bk〉 ∈ `2. For each value of N ∈ N we set

h = 1/(N + 1), M = dT/(ηh)e, ∆t = T/M ,

where η < 1 is a constant (∆t ' ηh), and we have

v0 =

N∑

k=1

akwk, v0 =

N∑

k=1

bkwk

(note that all quantities depend on N , except for 〈ak〉∞k=1 and 〈bk〉∞k=1, but we will
omit the extra subscripts for simpler notation). We now have for every value of N ,

C1

∥∥∥∥
[
v0

v0

]∥∥∥∥
2

eQ
≤ ∆t

M−1∑

n=0

∣∣∣∣BT v
n+1 + vn

2

∣∣∣∣
2

≤ C2

∥∥∥∥
[
v0

v0

]∥∥∥∥
2

eQ
, (7.27)

where (vn,vn) is a solution of the adjoint system (7.22).

We recall the expression from (3.31), page 45, for a solution of the adjoint
system in terms of eigenvalues and eigenvectors, and get

(vn+1 + vn)/2 = 1
2

N∑

k=1

[
ak(cos(nθk) + cos((n+ 1)θk))

+ bk/µk(sin(nθk) + sin((n+ 1)θk))
]
wk

=

N∑

k=1

[
ãk cos(nθk) + b̃k sin(nθk)

]
wk ,

where

ãk = 1
2

(
ak(cos(θk) + 1) + bk/µk sin(θk)

)
,

b̃k = 1
2

(
bk/µk(cos(θk) + 1)− ak sin(θk)

)
,

using the addition formulas for sine and cosine. Note that

ã2
k + b̃2k = cos2( 1

2θk)(a2
k + b2k/µ

2
k) . (7.28)

Combining now thatBTvn = vn(N)/h andwk(N) = sin(Nkhπ) = (−1)k sin(khπ)
we get

BT v
n+1 + vn

2
=

N∑

k=1

(−1)k sin(khπ)

h

[
ãk cos(nθk) + b̃k sin(nθk)

]

=
∑

1≤|k|≤N
cke

iτkn∆t ,
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with

ck =
(−1)k sin(khπ)

2h
(ãk − ib̃k), c−k = ck,

τk = θk/∆t, τ−k = −τk ,
for k = 1, 2, . . . , N . Before being able to apply Theorem 4.2.4, we have to show
some properties of τ1, τ2, . . . , τN , for each N . Note that this is the most essential
part of the proof, since this is where all other discretization schemes fail. (As far as
the author knows, that is. Exceptions are some schemes with h = ∆t, see Negreanu
and Zuazua (2003)).

Lemma 7.4.1. We have for all N ,

τ1 ≥ π ,
τk+1 − τk ≥ π , for all k = 1, 2, . . . , N − 1 ,

τN ≤ π/∆t− π .

Proof. We set

t(y) = arccos

(
cos2( 1

2yπ)− η2 sin2( 1
2yπ)

cos2( 1
2yπ) + η2 sin2( 1

2yπ)

)
,

and note that t(0) = 0, t(kh) = θk for k = 1, 2, . . . , N and t(1) = π. By using a
Taylor expansion it can be shown that

t(y) = ηyπ +O(y3) ⇒ t(kh)/∆t = kπ +O(k3h2) ,

which shows that the slope of t(kh)/∆t at k = 0 is equal to π for all h. Furthermore
we have

t′′(y) =
2(1− η2)π2η tan( 1

2yπ)(
1 + η2 + (1− η2) cos(πy)

)(
1 + η2 tan2( 1

2yπ)
) ,

showing that t′′(y) ≥ 0 for y ≥ 0 since we assume that η < 1. Using these facts
and that τk = t(kh)/∆t, the results follow.

An illustration of τ1, . . . , τN for the case N = 40 can be seen in Figure 7.3, for
different values of η = ∆t/h.

We can now apply Theorem 4.2.4 and get

C ′1
∑

1≤|k|≤N
|ck|2 ≤ ∆t

M−1∑

n=0

∣∣∣∣BT v
n+1 + vn

2

∣∣∣∣
2

≤ C ′2
∑

1≤|k|≤N
|ck|2 , (7.29)

for some positive constants C ′1 and C ′2 and for all N ≥ N0 (the value of N0 is
chosen to make sure that C1(T, γ,M,N) of Equation (4.45) is positive).

We now turn to look at

∑

1≤|k|≤N
|ck|2 and

∥∥∥∥
[
v0

v0

]∥∥∥∥
2

eQ
.
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Figure 7.3: A plot of τk = θk/∆t for the case N = 40. The slope of each curve is π in
k = 0. Furthermore, the curves are convex for η ≤ 1.

We will show that these quantities are of the same order, that is, provide upper
and lower bounds that are independent of N .

First we get

∑

1≤|k|≤N
|ck|2 = 2

N∑

k=1

|ck|2 = 1
2

N∑

k=1

sin2(khπ)

h2
(ã2
k + b̃2k)

= 1
2

N∑

k=1

sin2(khπ) cos2( 1
2θk)

h2
(a2
k + b2k/µ

2
k),

= 1
2

N∑

k=1

(
k2π2Aη1(kh)a2

k +Bη1 (kh)b2k
)

using (7.28) and where

Aη1(x) =
1

1 + η2 tan2( 1
2xπ)

(
sin(xπ)

xπ

)2

,

Bη1 (x) =
1

1 + η2 tan2( 1
2xπ)

(
sin(xπ)

2 tan( 1
2xπ)

)2

,

(7.30)

since (7.24) leads to

2 cos2( 1
2θk) = 1 + cos(θk) =

2

1 + η2 tan2( 1
2khπ)

.

Note that we are only interested in the interval 0 < x < 1, since 0 < kh < 1 for
all N .
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1

1 x

A2(x)

A0
1(x)

1

1 x

B2(x)

B0
1(x)

Figure 7.4: Plot of the functions A0
1, A2, B0

1 and B2 as defined in (7.30) and (7.31). They
are all decreasing functions and A2 and B2 majorize A0

1 and B0
1 , respectively. We here

only consider the limiting case η = 0, but other values of η do not change the properties
just mentioned.

For the Q̃-norm we get from (7.25),

∥∥∥∥
[
v0

v0

]∥∥∥∥
2

eQ
= 1

4

N∑

k=1

(
k2π2

(
sin( 1

2khπ)
1
2khπ

)2

a2
k + cos2( 1

2khπ)b2k

)

= 1
4

N∑

k=1

(
k2π2A2(kh)a2

k +B2(kh)b2k
)
,

where

A2(x) =

(
sin( 1

2xπ)
1
2xπ

)2

, B2(x) = cos2( 1
2xπ) . (7.31)

See Figure 7.4 for an illustration of the functions A0
1, B0

1 , A2 and B2. By the
rewrite

Bη1 (x) = cos2( 1
2xπ)

1

1 + η2 tan2( 1
2xπ)

(
sin(xπ)

2 sin( 1
2xπ)

)2

,

we clearly have Aη1(x) ≤ A2(x) and Bη1 (x) ≤ B2(x) for 0 < x < 1, leading to

∑

1≤|k|≤N
|ck|2 ≤ 2

∥∥∥∥
[
v0

v0

]∥∥∥∥
2

eQ
, (7.32)

for all N . We must now establish the inverse inequality. Without loss of generality
we can assume that c1 6= 0 (if c1 = · · · = cj = 0 then (7.27) is trivially fulfilled for
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N ≤ j). Naturally the quotient

∥∥∥∥
[
v0

v0

]∥∥∥∥
2

eQ

/ ∑

1≤|k|≤N
|ck|2 ,

is bounded for all N < N1, where N1 is some fixed natural number. The question
is then, what happen with this quotient as N → ∞? We first observe that Aη1(x)
and Bη1 (x) are decreasing functions in the interval (0, 1). We then have

Bη1 (x) ≥ Bη1 ( 1
2 ) =

1

4(1 + η2)
,

Aη1(x) ≥ Aη1( 1
2 ) =

4

π2(1 + η2)
≥ 1

4(1 + η2)
,

for all 0 ≤ x ≤ 1
2 , leading to

2

∥∥∥∥
[
v0

v0

]∥∥∥∥
2

eQ∑

1≤|k|≤N
|ck|2

=

N∑

k=1

(
k2π2A2(kh)a2

k +B2(kh)b2k
)

N∑

k=1

(
k2π2Aη1(kh)a2

k +Bη1 (kh)b2k
)

≤

N∑

k=1

(
k2π2a2

k + b2k
)

1

4(1 + η2)

dN/2e∑

k=1

(
k2π2a2

k + b2k
)

≤ 4(1 + η2)

∞∑

k=1

(
k2π2a2

k + b2k
)

∞∑

k=1

(
k2π2a2

k + b2k
)
−

∞∑

k=dN/2e+1

(
k2π2a2

k + b2k
)

→ 4(1 + η2) for N →∞ .

This shows that a constant C ′′1 , independent of N , exists such that

C ′′1

∥∥∥∥
[
v0

v0

]∥∥∥∥
2

eQ
≤

∑

1≤|k|≤N
|ck|2 , (7.33)

for all N . By combining (7.29), (7.32) and (7.33) we have now established the
desired uniform inequality (7.27), but only for N ≥ N0. Taking now into consid-
eration Theorem 7.4.1 of the previous section, we see that it holds for all N (by
possibly adjusting the constants C1, C2 of the theorem).
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Let us review what we have just shown. Let continuous data (v0, v0) ∈ H̃ be
given,

v0 =

∞∑

k=1

akwk, v0 =

∞∑

k=1

bkwk ,

where 〈kak〉, 〈bk〉 ∈ `2. And let discrete data,

v0
N =

∞∑

k=1

aNk wk, v0
N =

∞∑

k=1

bNk wk ,

be given for every discretization level N . Theorem 7.4.2 now states that if we
choose

aNk = ak, bNk = bk, for k = 1, 2, . . . , N ,

for every N , the observability inequality (7.27) will hold with uniform constants
for all N .

Does this result ensure convergence of controls as described in Section 4.2?
Unfortunately not, since we do not have “true” uniform observability. The bounds
in the observability inequality depend on the sequences 〈ak〉 and 〈bk〉.

The detailed treatment of the discretization scheme (7.22) of this section has
been included for the following reasons. First, analysis of group velocity for this
scheme looks very promising for controllability (see the dispersion relation (3.43)
of Section 3.4). Second, this scheme is the only known fully discrete scheme with
a uniform gap in the τk quantities (which makes it possible to apply the discrete
version of Ingham’s Theorem, see Lemma 7.4.1). Third, uniform observability may
indeed hold, since a negative result has not yet been proved.

7.5 Other Schemes and Regularization Methods

Is there any hope for convergence of controls when using discretizations for which
it is not possible to show uniform observability? Yes, if one if willing to lower the
controllability requirements. Let us mention different ways of doing that.

Consider a finite difference semi-discretization of the wave equation in one di-
mension. This corresponds to the system C0v̈ = Av, where C0 and A are defined
in Section 3.1, page 31. As is hinted in Figure 3.3 of the same section, the dis-
tance/gap between the two largest square-rooted eigenvalues

√
−λ0

k goes to zero
as N → ∞. This lack of a uniform eigenvalue gap makes uniform observability
impossible (see Infante and Zuazua, 1999, or Zuazua, 2003). What can be done
is to only control a projection, as described in Section 2.6. By considering, at
each discretization level, only the low frequency part of the spectrum, we obtain
a uniform gap in the (square-rooted) eigenvalues and an observability inequality
can be proved using Ingham’s Theorem (see Theorem 4.2.1). One downside to
this approach, of course, is that only a spectral projection is controlled. Another
downside is that the minimal control time, which is two is the continuous case,
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depends on the projection chosen and will be too large (see Infante and Zuazua,
1999, or Zuazua, 2003, for the exact minimal time requirements). Note that all of
the above could be said for every semi-discretization Cαv̈ = Av with α < 1/4.

The projection method just described can be considered a regularization method.
In the field of discrete ill-posed problems this method is similar to what is called
the TSDV, the Truncated Singular Value Decomposition (the TSVD method is
typically used for other reasons, though). As previously noted in Section 2.7, an-
other regularization method has been considered in the literature, namely that of
using the following regularized controllability operator,

ΛαT = ΛT + α

[
−∆ 0

0 I

]
,

see Glowinski and Li (1990), Glowinski, Li, and Lions (1990) and Glowinski (1992b).
It has not, however, been proved that the corresponding controls converge as the
discretization grid gets finer and finer, N →∞ (and it probably does not hold).

Another method, which can also be called a regularization method, is the so-
called two-grid/multigrid method. As the name suggests, the method uses two
(space) grids, a coarse and a fine grid. The basic idea is a small change in the
definition of the controllability operator: The input to ΛT is posed on the coarse
grid, then interpolated onto the fine grid, the usual ΛT -mapping is done on the
fine grid, and the end-result is finally restricted onto the coarse grid again. This
method was first suggested in Glowinski (1992b). The justification for the method
is, roughly, that the high-frequency components on the fine grid are minimal since
the state on the fine grid comes from a state on the coarse grid. The method has
later been used in Asch and Lebeau (1998), where different numerical experiments
where conducted for the wave equation in two dimensions, using a finite difference
discretization in both time and space, the CG algorithm and the two-grid method.
It has lately been proved, in the semi-discrete case, that the two-grid method
actually leads to uniform observability, but with a minimal control time which is
twice the correct time (see Negreanu and Zuazua, 2004a).

A completely different approach can be chosen when uniform observability does
not hold. Simply keep the discretization method, but apply restrictions to the
initial conditions which can be controlled. This approach was taken in Micu (2002)
for the finite difference semi-discretization C0v̈ = Av of the wave equation in one
dimension. One of the conclusions were that if the initial conditions are analytic,
then computed controls will converge to the true control as N →∞.

Let us finally mention that the authors in Glowinski, Kinton, and Wheeler
(1989) used a so-called mixed finite element discretization method to solve exact
controllability problems for the two-dimensional wave equation. The paper was of
experimental nature and convergence of controls was not proved.

For a survey of many of the methods for obtaining convergent controls can be
found in Zuazua (2003). This note, currently unpublished, also contains results on
the heat equation and many interesting open problems. See also Zuazua (2004) for
similar results. The paper Rasmussen (2003) contains a practical comparison of
the convergence of controls for many of the methods mentioned above.
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7.6 Other Theoretical Results

We previously used a multiplier technique to show the direct inequality for the
wave equation in one dimension (see inequality (7.3)). This technique can also be
used to show the direct inequality in more dimensions, but also to show the inverse
inequality, that is, the observability inequality for exact controllability. Some re-
quirements of the domain Ω ⊂ Rd and control boundary Γ0 ⊂ ∂Ω must be met,
though. For instance, that a point x0 ∈ Rd exists such that n(x) · (x− x0) ≥ 0 for
all points on the control boundary, x ∈ Γ0. The multiplier technique can also lead
to upper bounds on the minimal control time. See, e.g., Lions (1988b), Komornik
(1994) or Pedersen (2000) for more information on the multiplier method.

Let us finish this chapter by mentioning a deep result concerning the continuous
wave equation in any dimension. The proof relies on microlocal analysis and is far
from the established theory of this thesis. We include the theorem here, however,
because of its simple formulation and great importance.

The result was first formulated and proved in Bardos, Lebeau, and Rauch
(1992), and has since been referred to in many publications, for instance, Asch
and Lebeau (1998) and Zuazua (2003).

Theorem 7.6.1 (Geometric Control Condition). Let Ω ⊂ Rd be a class C∞

domain with control boundary Γ0 ⊂ ∂Ω. Exact boundary controllability of the wave
equation holds at time T if and only if every ray of geometric optics, propagating
in Ω and reflecting on its boundary ∂Ω, intersects with the control boundary Γ0 in
time less than T .

This theorem provides a quite intuitive characterization of the domains for
which exact controllability is possible. Furthermore, for most domains it is easy to
see what the minimal control time is.

Note that if the whole of the boundary of a domain Ω is used as control bound-
ary, Γ0 = Γ = ∂Ω, we always have controllability for large enough T . This follows
from the above theorem and the fact that the domain Ω is assumed to be bounded
(this statement does not generally hold if we consider the wave equation with vari-
able coefficients, since the geometric rays may not be straight lines anymore).

Figure 7.5 shows some simple two-dimensional domains for which exact control-
lability is impossible, due to trapped rays that never reach the control boundary.
Similarly, Figure 7.6 shows some two-dimensional domains that all fulfill the Geo-
metric Control Condition.
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Figure 7.5: Illustration of 2D domains that do not fulfill the Geometric Control Condi-
tion. The thickly drawn part of the boundary denotes the control boundary and dashed
lines show why controllability fails: they are geometric rays that never reach the control
boundary.

Figure 7.6: Illustration of 2D domains that do fulfill the Geometric Control Condition.
The thickly drawn part of the boundary denotes the control boundary.
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A Linear System of
Thermoelasticity

Theory can leave questions unanswered,
but practice has to come up with something

— Mason Cooley

This chapter is dedicated to studying a linear system of thermoelasticity in one
dimension. The system is a coupling of a wave equation and a heat equation,
and it can be thought of as an oscillating string, to which temperature is assigned
in each point. The coupling terms determine how (local) oscillations affect the
temperature, and vice versa. We will, however, not get into the physical derivation,
or meaning, of this system, but strictly study it with respect to controllability.

Let the control time be T > 0, the spacial domain Ω = (0, 1), and the linear
system of thermoelasticity has the following appearance,





utt = c2uxx − αθxx in (0, T )× (0, 1) ,

θt = νθxx − βut in (0, T )× (0, 1) ,

u(·, 0) = 0, u(·, 1) = k, θ(·, 0) = θ(·, 1) = 0 in (0, T ) ,

u(0, ·) = u0, ut(0, ·) = u1, θ(0, ·) = θ0 in (0, 1) .

(8.1)

The constants c, ν, α, β are all assumed positive and to ensure well-posedness, we
require

(u0, u1, θ0) ∈ L2(0, 1)×H−1(0, 1)× L2(0, 1) = H ′ and k ∈ L2(0, T ) ,

which implies a solution t 7→ (u(t), ut(t), θ(t)) ∈ C([0, T ], H ′). The above sys-
tem is the control system, with the control k acting on only one of the variables,
B (u0, u1, θ0) 7→ u0, on the control boundary Γ0 = {1}.
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The objective is the following: Given T > 0 and initial data (u0, u1, θ0) ∈ H ′,
find k ∈ L2(0, T ) such that

u(T, ·) = 0, ut(T, ·) = 0, θ(T, ·) = 0 .

If, for fixed T , this is possible for all initial data inH ′, the system is null-controllable
at time T .

This chapter is dedicated to proving that the above control system is in fact
null-controllable. The proof is based on that in Lebeau and Zuazua (1998), where
the same system (in any dimension) was considered, but where the control was
internal . This means that the boundary conditions were all homogeneous, but a
source term was added to the first equation such as

utt − c2uxx + αθxx = χΩ0f ,

where χΩ0 has value 1 in the control region Ω0 ⊂ Ω, and 0 elsewhere.

Results similar to those we present here have also been obtained in the paper
Hansen (1994). In that paper, boundary null-controllability was proved for a related
thermoelastic system in one dimension. See also Zuazua (1995).

8.1 Well-posedness

Before deriving the adjoint system, let us first rewrite the control system (8.1) into
a first order system,

Ut(t) = AU(t) ,

where

U(t) =



u(t)
ut(t)
θ(t)


 and A =




0 I 0
c2∂xx 0 −α∂xx

0 −βI ν∂xx


 , (8.2)

and the boundary and initial conditions are unchanged. We can easily figure out the
adjoint operator (since 〈uxx, v〉 = 〈u, vxx〉 when we consider homogeneous boundary
conditions),

A∗ =




0 c2∂xx 0
I 0 −βI
0 −α∂xx ν∂xx


 ,

But what system does this operator represent? Using the auxiliary variables
(y, v, ψ), and introducing a minus in each equation because we want to solve the
system backwards in time, we get





yt = −c2vxx ,
vt = −y + βψ ,

ψt = αvxx − νψxx .
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What do the variables y, v, ψ represent, and in what space is this system well posed?
Rewriting as follows,

vtt = −yt + βψt = (c2 + αβ)vxx − νβψxx ,

we get a more convenient system,





vtt = (c2 + αβ)vxx − νβψxx in (0, T )× (0, 1) ,

ψt = −νψxx + αvxx in (0, T )× (0, 1) ,

v(·, 0) = v(·, 1) = ψ(·, 0) = ψ(·, 1) = 0 in (0, T ) ,

v(T, ·) = v0, vt(T, ·) = v1, ψ(T, ·) = ψ0 in (0, 1) ,

(8.3)

which will be our adjoint system. Note how it, like the control system, is a coupling
of a wave equation and a heat equation.

It will also be convenient to have the adjoint system in first order form,

Vt(t) = −ÃV (t) ,

where

V (t) =



v(t)
vt(t)
ψ(t)


 and Ã =




0 −I 0
−(c2 + αβ)∂xx 0 νβ∂xx
−α∂xx 0 ν∂xx


 .

Note that

Ã =M−1A∗M , with M =




0 −1 β
1 0 0
0 0 1


 ,

where M can be used to “change back” to the variables (y, v, ψ), which were
originally used for setting up the adjoint system.

We can now introduce the Hilbert space H̃ with the norm

‖V ‖2eH = ‖MV ‖2H = ‖βψ0 − v1‖2L2(0,1) + ‖v0‖2H1
0 (0,1) + ‖ψ0‖2L2(0,1) ,

for V = (v0, v1, ψ0) and the duality pairing

{U, V } = 〈U,MV 〉H′×H
= 〈u0, βψ0 − v1〉L2(0,1) + 〈u1, v0〉H−1(0,1)×H1

0 (0,1) + 〈θ0, ψ0〉L2(0,1) ,

for every U = (u0, u1, θ0) ∈ H ′ and V = (v0, v1, ψ0) ∈ H̃ .
The “adjointness” is now clear from the following relation,

{AU, V } = 〈AU,MV 〉 = 〈U,A∗MV 〉 = 〈U,MÃV 〉 = {U, ÃV } , (8.4)

for all U = (u0, u1, θ0) ∈ H ′ and V = (v0, v1, ψ0) ∈ H̃ .
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Let us consider the well-posedness of the adjoint system. We define the energy
of the adjoint system as

E(t) =
1

2

∫ 1

0

(
|βψ(t, x) − vt(t, x)|2 + c2|vx(t, x)|2 +

c2β

α
|ψ(t, x)|2

)
dx ,

for 0 ≤ t ≤ T . By differentiating this expression,

E′(t) =
c2βν

α

∫ 1

0

|ψx(t, x)|2dx ≥ 0 ,

one sees that 0 ≤ E(t) ≤ E(T ) for 0 ≤ t ≤ T .

Note how (v0, v1, ψ0) ∈ H̃ is equivalent to E(T ) < ∞ (with E depending
appropriately on the initial data (v0, v1, ψ0)). This implies that the adjoint system

is well posed with initial data in H̃ , yielding a solution t 7→ (v(t), vt(t), ψ(t)) ∈
C([0, T ]; H̃).

The adjoint system furthermore has the important property

∫ T

0

|vx(t, 1)|2dt ≤ K(T )‖(v0, v1, ψ0)‖2eH ,

for any solution (v(t), vt(t), ψ(t)) of the adjoint system with initial conditions

(v0, v1, ψ0) ∈ H̃ . This can be shown by the use of multipliers (combine the equa-
tions of the adjoint system into vtt − βψt = c2vxx, apply the multiplier vxx and
integrate over (0, T )× (0, 1); see Detail 8, page 190, for the derivation).

We now want to derive the complementary boundary operator C. We consider
A with boundary conditions as for the control system (8.1), and we get for U =

(u0, u1, θ0)T ∈ H and V = (v0, v1, ψ0)T ∈ H̃ ,

{AU, V } − {U, ÃV }

=








u1

c2u0
xx − αθ0

xx

νθ0
xx − βu1


 ,



v0

v1

ψ0





−







u0

u1

θ0


 ,




−v1

−(c2 + αβ)v0
xx + νβψ0

xx

νψ0
xx − αv0

xx







= c2
[
〈u0
xx, v

0〉 − 〈u0, v0
xx〉
]
− α

[
〈θ0
xx, v

0〉 − 〈θ0, v0
xx〉
]

+ ν
[
〈θ0
xx, ψ

0〉 − 〈θ0, ψ0
xx〉
]

= −c2u0(1)v0
x(1) ,

(8.5)

which shows that C (v0, v1, ψ0) = −c2v0
x(1).

We can now show the well-posedness of the control system (8.1) in the following
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way,

‖U(T )‖H′ = sup
W 0∈H

∣∣〈U(T ),W 0〉H′×H
∣∣

‖W 0‖H

= sup
W 0∈H

∣∣{U(T ),M−1W 0}
∣∣

‖M−1W 0‖ eH
= sup

V 0∈ eH

∣∣{U(T ), V 0}
∣∣

‖V 0‖ eH

≤ sup
V 0∈ eH

1

‖V 0‖ eH

(
∣∣{U(0), V (0)}

∣∣+ c2
∣∣∣∣
∫ T

0

k(t)vx(t, 1)dt

∣∣∣∣

)

≤ sup
V 0∈ eH

1

‖V 0‖ eH

(
‖U(0)‖H′‖V (0)‖ eH + c2‖k‖L2(0,T )‖vx(·, 1)‖L2(0,T )

)

≤ C‖U(0)‖H′ + c2K(T )‖k‖L2(0,T ) .

These computations are of course valid for every T > 0.

8.2 Spectral Properties

In this section we will study the spectral properties of the operator A, defined
in (8.2).

Since every entry of A is a scaling of either the Laplace operator or the identity,
we can base our study on the one-dimensional Laplace eigenproblem,

−∂xxej = ω2
j ej ,

on (0, 1) with homogeneous boundary conditions. We have the obvious solutions,

ej(x) = sin(jπx), ωj = πj, for j = 1, 2, . . . .

The eigenproblem
AUj = λjUj ,

with Uj = zjej , zj ∈ R3, is seen to be equivalent to the eigenproblem

Ajzj = λjzj ,

where

Aj =




0 1 0
−c2w2

j 0 αw2
j

0 −β −νw2
j


 . (8.6)

We now seek the roots of the characteristic polynomial of Aj ,

det(λjI −Aj) = (λ2
j + c2ω2

j )(λj + νω2
j ) + αβλjω

2
j = 0 . (8.7)

The solutions, the eigenvalues, will be split into two parts, a parabolic part and a
hyperbolic part, to be treated separately.
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Parabolic eigenvalues λpj . Expecting eigenvalues close to those of the heat

equation part of (8.1), we let λpj = −νω2
j + εj and insert into (8.7),

(
(εj − νω2

j )2 + c2ω2
j

)
εj + αβω2

j (εj − νω2
j ) = 0 , (8.8)

leading to

εj =
αβ(ν − εj/ω2

j )

(ν − εj/ω2
j )

2 + c2/ω2
j

⇔ X(εj , yj) = εj −
αβ(ν − εjyj)

(ν − εjyj)2 + c2yj
= 0 ,

where yj = 1/ω2
j . We see that this equation is fulfilled for (εj , yj) = (αβ/ν, 0) in

which ∂X(αβ/ν, 0)/∂εj = 1 6= 0. Therefore, by the Implicit Function Theorem,
in a neighborhood around this point we have εj = Z(yj). The function X is also
seen to be analytic around this point, so we have εj = αβ/ν+O(yj). Observe now
that the coefficients in (8.8) are real. This means that if εj = Z(yj) is a non-real
root of (8.8) (with ω2

j = 1/yj) then we must also have εj = Z(yj), which is a
contradiction. Hence, for sufficiently small yj , the value of Z(yj) is real, and we
have

λpj = −νω2
j +

αβ

ν
+O

(
1

ω2
j

)
∈ R .

Hyperbolic eigenvalues λh,±j . The remaining two roots must be complex con-
jugates of each other, since the coefficients of the characteristic polynomial are

real. Thus λh,+j = λh,−j and we use the convention Im λh,+j > 0 (we use Im to
refer to the imaginary part). Here we expect eigenvalues close to those of the wave

equation-part of (8.1) and we set λh,+j = icωj + ηj . Equation (8.7) turns into

(η2
j + 2iηjcωj)(icωj + νω2

j + ηj) + iαβcω3
j + ηjαβω

2
j = 0 ,

leading to

ηj =
−αβ(ηj/ωj + ic)

(ηj/ωj + 2ic)(ic/ωj + ν + ηj/ω2
j )
.

Applying the Implicit Function Theorem as for the parabolic case, we get the
asymptotic estimate

λh,+j = icωj −
αβ

2ν
+O

(
1

ωj

)
.

Let now an R > 0 be given. We will denote the subset of {λpj | j ∈ N}, whose
elements are larger than R in magnitude, the parabolic eigenvalues, and similarly
the hyperbolic eigenvalues will be the subset of {λh,±j | j ∈ N} whose elements are
larger then R in magnitude. See Figure 8.1.

We will assume that R is chosen so large that no multiple eigenvalues occur
among neither the parabolic nor the hyperbolic eigenvalues. This is possible, as
can be seen from the asymptotic expressions for the parabolic/hyperbolic eigen-
values above. Multiple eigenvalues can occur, though, among the eigenvalues with
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Figure 8.1: Eigenvalues of the operator A for the case α = β = c = 1, ν = 0.35 are
shown with circles. The crosses show the points −νω2

j and ±icωj , j = 1, 2, . . ., to which

the parabolic eigenvalues λpj and the hyperbolic eigenvalues λh,±j , respectively, approaches
asymptotically.
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√

105/(320
√
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α = 2, β = 1, c = 1/2, ν = 3
√
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α = 741/100, β = 1, c = 1, ν = 29
√

29/(600π) α = 2, β = 1, c = 1, ν = 1/50

Figure 8.2: Eigenvalues of the operator A for different choices of α, β, c and ν, shown in
the complex plane (the real line is centered vertically and the imaginary line is at the right-
hand side for all four plots). Dots surrounded by circles indicate multiple eigenvalues; the
two plots on the left contain eigenvalues with multiplicity two, and the top-right plot
contains an eigenvalue with multiplicity three.
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magnitude less than R, by appropriately choosing the parameters c, ν, α, β > 0 and
ωj = πj. See Figure 8.2 for some examples of eigenvalues with multiplicities two
and three.

We will now introduce some subspaces of H . The space Hp ⊂ H will de-
note the Hilbert space spanned by the eigenvectors corresponding to the parabolic
eigenvalues. Similarly, the space Hh ⊂ H denotes the Hilbert space spanned by
the eigenvectors corresponding the the hyperbolic eigenvalues. Finally, H0 ⊂ H
denotes the “rest”, that is, we have H = Hp ⊕ Hh ⊕H0. Note that H0 is finite
dimensional, since only a finite number of eigenvalues can have magnitude less than
or equal to R.

Finally, we need some projection operators, namely the orthogonal projections
Π p : H 7→ Hp, Π h : H 7→ Hh, Π 0 : H 7→ H0, defined in the obvious “spectral”
way.

The eigenvalues of A and Ã are identical (since Ãj , created analogous to (8.6),

and Aj have identical eigenvalues). We will define the space H̃p ⊂ H̃ as the span of
the eigenvectors of the adjoint system, corresponding to the parabolic eigenvalues.
Let the parabolic eigenvectors be represented by V p

j ej , V
p
j ∈ C3. Now, using the

fact that ÃV pj ej = λpjV
p
j ej and the asymptotic expression for λpj , we get

V pj =




1/ω2
j

ν +O
( 1

ω2
j

)

ν

β
+O

( 1

ω2
j

)



. (8.9)

The span of the eigenvectors of the adjoint system, corresponding to the hyperbolic
eigenvalues, will similarly be denoted H̃h ⊂ H̃ . These eigenvectors V h,±j ej have
the asymptotic representation,

V h,±j =




1/ωj

∓ic+O
( 1

ωj

)

O
( 1

ωj

)



. (8.10)

We will now argue that the set of eigenvectors,

{V pj ej}|λpj |>R ∪ {V h,±j ej}|λh,±j |>R ,

supplemented with appropriate generalized eigenvectors of Ã, constitute a Riesz
basis for H̃ .

A non-zero vector f ∈ H̃ is called a generalized eigenvector of Ã, corresponding
to some eigenvalue λ, if (λI − Ã)mf = 0 for some positive integer m. We now
have the following theorem from Zhang and Zuazua (2003b), see also Guo and Yu
(2001).
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0 k0 T1 kh T2 T3 kp T

Figure 8.3: Subdivision of the time line from time 0 to T . The control is always zero in
the interval (T2, T3), indicated with a dashed line.

Theorem 8.2.1. Let G be a densely defined linear operator with compact resol-
vent in H. Let 〈fn〉∞n=1 be a Riesz basis of H. Suppose a sequence of generalized
eigenvectors 〈gn〉∞n=M+1 of G satisfies

∞∑

n=M+1

‖gn − fn‖2 <∞ , (8.11)

for some M ∈ N. Then one can find an integer M ′ ≥ M and some generalized
eigenvectors 〈gn0〉M

′
n=1 of G such that

{gn0}M
′

n=1 ∪ {gn}∞n=M ′+1

forms a Riesz basis of H.

It is easily verified that the vectors



0

ν

ν/β


 ej ,




1/ω2
j

−ic
0


 ej ,




1/ω2
j

ic

0


 ej ,

for j = 1, 2, . . . constitute a Riesz basis for H̃ , and that an appropriate subset is
quadratically close to {V pj ej}|λpj |>R ∪{V

h,±
j ej}|λh,±j |>R in the sense of (8.11). This

means that the above theorem can be used, so that the parabolic eigenvectors (8.9)

and the hyperbolic eigenvectors (8.10) of the adjoint operator Ã, supplemented

with generalized eigenvectors of Ã, constitute a Riesz basis for H̃ .

8.3 Proving Null-controllability

As mentioned in the beginning of this chapter, our goal is to find a control k ∈
L2(0, T ) such that the solution, corresponding to any initial state at time t = 0, is
driven to zero at time t = T . To prove that this is in fact possible we will split the
time line, as shown in Figure 8.3, into several parts where 0 < T1 < T2 < T3 < T .
This will allow us to split the problem into smaller, easier, parts, that solve the
main problem when put together.

Let us introduce notation for solutions of the control system (8.1). For example,
writing

S(Ta, Ua | k)(Tb) ,
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means the following: The initial condition is given at time Ta as Ua and the control
used is k. The value of Tb dictates the time at which we wish to know the value of
the solution. The control is assumed always to have support in (0, T ). To that end
we introduce as simple “underline” notation, that extends a function with zeroes
to the entire (0, T ) interval. For instance, if kh ∈ L2(T1, T2) then kh(t) is equal to
kh(t) for T1 < t < T2 and zero otherwise.

We begin by proving that we can always determine a control kh ∈ L2(T1, T2)
that makes sure that the solution’s projection onto the hyperbolic eigenvectors, at
time t = T , is zero.

Theorem 8.3.1. If T2 − T1 ≥ 2/c and R big enough, then a bounded, linear
operator Kh : H × L2(T3, T ) 7→ L2(T1, T2) exists such that

Π hS
(
T1, U1 | Kh(U1, k

p) + kp
)
(T ) = 0 ,

for all U1 ∈ H and kp ∈ L2(T3, T ).

Proof. Let us first introduce the semigroup eA
ht : Hh 7→ Hh as the restriction

of eAt to Hh. Note that since the magnitudes of the real part of the hyperbolic

eigenvalues are bounded, eA
ht is well-defined for all t ∈ R.

Let now kh ∈ L2(T1, T2), kp ∈ L2(T3, T ), U1 ∈ H and consider the rewrite

0 = Π hS
(
T1, U1 | kh + kp

)
(T )

= Π hS
(
T1, 0 | kh

)
(T ) + Π hS

(
T1, U1 | kp

)
(T )

= eA
h(T−T2)Π hS

(
T1, 0 | kh

)
(T2) + Π hS

(
T1, U1 | kp

)
(T ) ⇔

Π hS
(
T1, 0 | kh

)
(T2) = −e−Ah(T−T2)Π hS

(
T1, U1 | kp

)
(T ) = Uh .

Since Uh ∈ Hh for every choice of kp ∈ L2(T3, T ) and U1 ∈ H , we see that the claim
of the theorem is proved if we can show the following: A control kh ∈ L2(T1, T2)
exists that drives the zero state at t = T1 to a state U at t = T2 for which Π hU = Uh

for any Uh ∈ Hh.
This exact controllability problem is known (see Theorem 2.6.3, page 27) to be

equivalent to the following observability inequality: A constant Ch > 0 must exist
such that

∥∥V 0
∥∥2
eH ≤ Ch

∫ T2

T1

|vx(t, 1)|2dt , (8.12)

for all solutions (v, ψ) of the adjoint system with initial condition V 0 ∈ H̃h (at
time t = T2).

We first consider the left-hand side of the observability inequality (8.12). Since

V 0 ∈ H̃h we can write it as

V 0 =
∑

|λh,±j |>R

(
a+
j V

h,+
j + a−j V

h,−
j

)
ej .
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Because of the Riesz basis property of the vectors V h,±
j ej , we immediately have

∥∥V 0
∥∥2
eH ≤ C

∑

|λh,±j |>R

(
|a+
j |2 + |a−j |2

)
.

We now turn to the right hand-side of (8.12). The first component of the full
solution, v, has the appearance

v(t, x) =
∑

|λh,±j |>R

(
a+
j /ωje

λh,+j (T2−t) + a−j /ωje
λh,−j (T2−t)

)
sin(jπx) ,

and thus
∫ T2

T1

|vx(t, 1)|2dt

=

∫ T2−T1

0

∣∣∣∣∣∣∣

∑

|λh,±j |>R

(−1)je−
αβ
2ν tjπ

(
a+
j

ωj
e(icπj+εj)t +

a−j
ωj
e(−icπj+εj)t

)∣∣∣∣∣∣∣

2

dt

≥ e−αβν (T2−T1)
∑

|λh,±j |>R

(∣∣∣∣(−1)j
jπ

ωj
a+
j

∣∣∣∣
2

+

∣∣∣∣(−1)j
jπ

ωj
a−j

∣∣∣∣
2
)

= C ′
∑

|λh,±j |>R

(
|a+
j |2 + |a−j |2

)

for an appropriate constant C ′. Here, Kadec’ Theorem (Theorem 4.2.2, page 76)
has been used under the assumption that T2 − T1 ≥ 2/c and that R is big enough
such that each εj = O(1/j) is appropriate small.

The observability inequality (8.12), and thereby the exact controllability prob-
lem, has now been proved.

Notice how the exact controllability condition T2 − T1 ≥ 2/c is the same as it
would be for the “decoupled” wave equation utt = c2uxx of the control system (8.1).

We now move on to proving a theorem similar to the previous one. We show
that a control kp ∈ L2(T3, T ) exists that makes sure that the solution’s projection
onto the parabolic eigenvectors, at time t = T , is zero.

Theorem 8.3.2. A bounded, linear operator Kp : H × L2(T1, T2) 7→ L2(T3, T )
exists such that

Π pS
(
T1, U1 | kh +Kp(U1, k

h)
)
(T ) = 0 ,

for all U1 ∈ H and kh ∈ L2(T1, T2).

Proof. Let kh ∈ L2(T1, T2), kp ∈ L2(T3, T ) and U1 ∈ H . Observe that

Π pS
(
T1, U1 | kh + kp

)
(T ) = Π pS

(
T3, U3 | kp

)
(T ) = 0 ,
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where
U3 = S

(
T1, U1 | kh

)
(T3) .

This means that we must find a control kp ∈ L2(T3, T ) that steers the state U3 at
time T3 to zero at time T . This is a null controllability problem and the existence
of such a control can be proved by showing the following observability inequality:
A constant Cp > 0 must exist such that

∥∥e eA(T−T3)V 0
∥∥2
eH ≤ Cp

∫ T

T3

|vx(t, 1)|2dt , (8.13)

for all solutions (v, ψ) of the adjoint system with initial condition V 0 ∈ H̃p (at
time t = T ), see Theorem 2.6.2, page 27.

Let now
V 0 =

∑

|λpj |>R
bjV

p
j ej

where 〈bj〉 ∈ `2, for which the full solution becomes

V (t) =
∑

|λpj |>R
eλ

p
j (T−t)bjV

p
j ej .

For the left-hand side of (8.13), we immediately get from the Riesz basis property,

C ′
∑

|λpj |>R
e2λpj (T−T3)|bj |2 ≥

∥∥e eA(T−T3)V 0
∥∥2
eH , (8.14)

for an appropriate constant C ′. The right hand-side of (8.13) can be bounded from
below by applying Theorem 4.2.3, the parabolic version of Ingham’s Theorem:

∫ T

T3

∣∣vx(t, 1)
∣∣2dt =

∫ T

T3

∣∣∣∣∣
∑

|λpj |>R

(−1)jπj

ω2
j

eλ
p
j (T−t)bj

∣∣∣∣∣

2

dt

≥
∫ (T−T3)/2

0

∣∣∣∣∣
∑

|λpj |>R
eλ

p
j s

(−1)j

πj
bj

∣∣∣∣∣

2

ds

≥ C ′′
∑

|λpj |>R

eλ
p
j (T−T3)

−λpj

∣∣∣∣
(−1)j

πj
bj

∣∣∣∣
2

= C ′′
∑

|λpj |>R

e−λ
p
j (T−T3)

−π2j2λpj
e2λpj (T−T3)|bj |2 .

(8.15)

Since obviously e−λ
p
j (T−T3)/(−j2λpj ) → ∞ as j → ∞, the inequalities (8.14)

and (8.15) can be combined into the observability inequality (8.13) for an ap-
propriate constant Cp > 0.
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Let us review the steps needed for actually computing the control kp of the
above theorem. Let a state U1 ∈ H ′ at time t = T1 be given. Perform now the
following steps.

1. Set U2 = S
(
T1, U1 | kh

)
(T2).

2. Set U3 = eA(T3−T2)U2.

3. Minimize the functional

J0(V 0) = 1
2c

4

∫ T

T3

|vx(t, 1)|2dt+ {U3, e
eA(T−T3)V 0} , (8.16)

over H̃p and let the minimizer be denoted V ∗ (compare to the functional (2.18)
on page 19).

4. The wanted control is kp(t) = −c2vx(t, 1), where v(t, x) is the first component
of the solution to the adjoint system with initial condition V ∗.

Important to note is that in step 3 only the Hp-part of U3 matters since V 0 ∈ H̃p.
This means that we can replace step 2 by

2’. Set U3 = eA
p(T3−T2)Π pU2 ,

where eA
pt : Hp 7→ Hp is the restriction of eAt to Hp, and the computed con-

trol will be exactly the same. The mapping in step 2’ is compact because of the
strong damping of the operator eA

p(T3−T2). A more rigorous argument for this
compactness can be made by first determining 〈bj〉 ∈ `2 such that

∑

|λpj |>R
bjU

p
j ej = Π pU2 ,

where Upj ej is the parabolic eigenvector associated with λpj . We now imbed 〈bj〉 ∈
`2 into `2,p for some p > 0, where ‖〈bj〉‖`2,p = ‖〈bj/jp〉‖`2 . This is a compact
embedding, see Detail 9 on page 193. Setting then

U3 =
∑

|λpj |>R
eλ

p
j (T3−T2)bjU

p
j ej ,

for 〈bj〉 ∈ `2,p will still make U3 ∈ Hp, because of the exponential damping of the
eigenvalue coefficients.

Since the composition of the steps above, where one is compact, is the map
Kp(0, ·), we see that it is itself compact. This property is important in the proof
of the following theorem. The result concludes, with some restrictions, that both
the parabolic and hyperbolic part of a solution can driven to zero at t = T .



8.3. Proving Null-controllability 155

Theorem 8.3.3. Under the assumptions of Theorems 8.3.1 and 8.3.2, a subspace
V ⊂ H ′ of finite codimension and a bounded, linear operator

KV : V 7→ L2(T1, T2)× L2(T3, T ) ,

exists such that

(Π p + Π h)S(T1, U1 | kh + kp)(T ) = 0 with (kh, kp) = KV(U1) ,

for all U1 ∈ V.

Proof. Observe that the statement

(Π p + Π h)S(T1, U1 | kh + kp)(T ) = 0 ,

is equivalent to (using the maps of the previous two theorems)

kh = Kh(U1, k
p) = A1(U1) +A2(kp) and

kp = Kp(U1, k
h) = B1(U1) +B2(kh) ,

(8.17)

where A1, A2, B1 and B2 are trivially defined because of the linearity of Kh and
Kp. Combining the above equations yields

kp = B1U1 +B2(A1U1 +A2k
p) ⇔

CU1 = (I −B2A2)kp, (8.18)

with C = B1 +B2A1. Solving this equation is thus equivalent to solving (8.17).
Since B2 = Kp(0, ·) is compact, we have by Fredholm’s alternative: There are

a finite number of continuous maps l1, l2, . . . , lL ∈ (L2(T3, T ))′ such that Equa-
tion (8.18) has a solution kp ∈ L2(T3, T ) if and only if U1 ∈ V where

V = {v ∈ H ′ | lj(C(v)) = 0 for j = 1, . . . , L} .

We must now show that a control k0 ∈ L2(0, T1) can be found, such that any
state U0 ∈ H ′ at time t = 0 can be driven to a state at time t = T1 that lies in the
subspace V .

Before doing that, however, we must argue that a basis for V⊥ can be chosen
among finitely many eigenvectors of Ã. Let us first introduce the notation VT to
emphasize this set’s dependence on the control time T , and we have

V⊥T =
{
V ∈ H̃ | {U, V } = 0 for all U ∈ VT

}
.

Observe now that the (finite) dimension of V⊥T is non-increasing. This is because
if a control exists for a given time T , in the sense of Theorem 8.3.3, then a control
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also exists for T + ε, ε > 0, since the same control can be used in the interval (0, T )
and then simply use zero control in (T, T + ε). We can then assume that

V⊥T ′ = V⊥T , T ′ ∈ (T, T + ε) (8.19)

for some ε > 0 (it may be necessary to adjust T slightly downwards, but this is
always possible).

We shall now show that V⊥T = e
eAtV⊥T for all t > 0. This follows if we can show

V⊥T = e
eAδV⊥T for some 0 < δ < ε. Assume therefore U ∈ (e

eAδV⊥T )⊥. We get

{U, e eAδV } = {eAδU, V } = 0 for all V ∈ V⊥T ⇒
eAδU ∈ VT ⇒ U ∈ VT+δ ⇒ U ∈ VT ,

using (8.19). This implies

(e
eAδV⊥T )⊥ ⊂ VT ⇒ V⊥T ⊂ e

eAδV⊥T .

But since e
eAδ is a linear operator we also know that dim(e

eAδV⊥T ) ≤ dim(V⊥T ). We

thus have V⊥T = e
eAδV⊥T .

Let now Z(t) be the restriction of the semigroup e
eAt to V⊥. We set Z(t) = eBt,

where B : V⊥ 7→ V⊥ is the finite dimensional linear operator such that ÃV = BV
for all V ∈ V⊥. Assume now that V ∈ V⊥ is a generalized eigenvector of B, that
is, we have (B − λI)mV = 0 for some integer m. We then get

0 = (B − λI)m =

m∑

i=0

(−λ)iBm−iV =

m∑

i=0

(−λ)iÃm−iV = (Ã − λI)m ,

showing that V is also a generalized eigenvector of Ã. This finally means that a
finite number of generalized eigenvectors of Ã span V⊥,

V⊥ = H̃0
M =

{
M∑

j=1

(
a+
j V

h,+
j + a−j V

h,−
j + bjV

p
j

)
ej

∣∣∣∣ a+
j , a

−
j , bj ∈ R, j = 1, . . . ,M

}
,

for some M ∈ N.
We can now return to the problem of whether a control k0 ∈ L2(0, T1) can be

found, such that any state U0 ∈ H ′ at time t = 0 can be driven to a state at time
t = T1 that lies in the subspace V . This is an exact control problem for a projection,
seen from Theorem 2.6.3 to be equivalent to the observability inequality,

∥∥V 0
∥∥2
eH ≤ C0

∫ T1

0

|vx(t, 1)|2dt ,

for some constant C0 > 0 and for all V 0 ∈ H̃0
M . But since the vector space H̃0

M

is of finite dimension, this inequality is proved for any T1 > 0 by the following
theorem. (The theorem is basically the same as Corollary 4.1.1, page 67, but the
following version is written using the notation of the present chapter).
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Theorem 8.3.4. Let M ∈ N be given. If among λh,+1 , λh,−1 , λp1, λh,+2 , ..., λpM
there are no multiple eigenvalues, then

∫ T

0

|vx(t, 1)|2dt = 0 ⇒ V 0 = 0 ,

for all V 0 ∈ H̃0
M , where v(t, x) is the first component of the solution to the adjoint

system with initial condition V 0.

Proof. Let

V 0 =

M∑

j=1

(
a+
j V

h,+
j + a−j V

h,−
j + bjV

p
j

)
ej ,

so the full solution becomes

V (t) =

M∑

j=1

(
a+
j e

λh,+j (T−t)V h,+j + a−j e
λh,−j (T−t)V h,−j + bje

λpj (T−t)V pj
)
ej .

Assume now that the eigenvectors are normalized such that (scaling does not matter
because of the finite dimension)

vx(t, 1) =

M∑

j=1

(
a+
j e

λh,+j (T−t) + a−j e
λh,−j (T−t) + bje

λpj (T−t))

= bT eL(T−t)z ,

where bT = [1, 1, . . . , 1] ∈ R3M and

L = diag(l1, l2, l3, l4, ..., l3M ) = diag(λh,+1 , λh,−1 , λp1, λ
h,+
2 , ..., λpM ) ,

zT = [z1, z2, z3, z4, . . . , z3M ] = [a+
1 , a

−
1 , b1, a

+
2 , . . . , bM ] .

Now observe that
∫ T

0

|vx(t, 1)|2dt = 0 ⇔ zT eLtb = 0 for 0 ≤ t ≤ T .

This last expression implies, as seen by repeated differentiation, that

zTLkb = 0, for k = 0, 1, . . . , 3M − 1 ,

equivalent to

zT




1 l1 · · · l3M−1
1

1 l2 · · · l3M−1
2

...
...

. . .
...

1 l3M · · · l3M−1
3M


 = 0T .

Since the eigenvalues are all distinct, this Vandermonde matrix is regular and the
equation is thus only satisfied for z = 0, implying V 0 = 0.
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Recall that multiple eigenvalues can occur, see Figure 8.2, so null-controllability
will fail in these cases.

Combining the existence of a control k0 ∈ L2(0, T1) (that steers any state
U0 ∈ H ′ at t = 0 to a state at time t = T1 in the subspace V) and Theorem 8.3.3,
we have now shown that we can drive any state U0 ∈ H ′ at t = 0 to a state U ∈ H ′
at t = T for which (Π p + Π h)U = 0.

Since the interval (0, T1) can be arbitrarily short, it is possible to “squeeze in”
another control, prior to k0. This control, given k0, kh and kp can be computed
such that Π 0U(T ) = 0, where U is the solution to the control system. Since
this is a finite dimensional control problem we have (a) it can be done under the
conditions of Theorem 8.3.4, (b) it can be done arbitrarily fast and (c) the map
computing the control is of finite dimension and thus compact. This means that the
arguments of Theorem 8.3.3 can be used again to conclude: A subspace V ′ ⊂ H ′

can be found such that any state U0 ∈ V ′ at t = 0 can be driven to zero at t = T .
As previously done for V , we can steer any U0 ∈ H ′ into the space V ′. We can thus
finally formulate the main theorem of this chapter.

Theorem 8.3.5. Assume that the operator A has no multiple eigenvalues and that
T > 2/c. Then a bounded, linear operator

K : H ′ 7→ L2(0, T )

exists such that
S
(
0, U0 | K(U0)

)
(T ) = 0 ,

for all U0 ∈ H ′.

Recall that the control system (8.1), which we have considered in this chapter,
could be considered a coupling of a wave equation and a heat equation. The
heat equation-part made only null-controllability possible, the wave equation-part
introduced a limit to how fast the control could be done, and the single-pointed
boundary control required no multiple eigenvalues. The coupling demanded all
three.

Our result is similar to that obtained in Lebeau and Zuazua (1998) regarding
the same system, but with internal control. There is one interesting difference
though, in that multiple eigenvalues did not prohibit controllability in their case.
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Implementing HUM

Now comes the nitty-gritty.

— Donald E. Knuth

The Hilbert Uniqueness Method provides more than results concerning existence
and uniqueness of controls—it also tells us how to construct the controls.

This chapter deals with an implementation of HUM for the wave equation in
two dimensions. When it comes to such implementions of HUM in practice with
focus on, for instance, efficiency, accuracy and memory usage, only a few aspects
have been addressed in the literature. For example, Glowinski, Li, and Lions (1990)
and Asch and Lebeau (1998) contain some comments.

It should be noted that although we consider a specific discretization of a specific
equation, it would not be difficult to use the same procedure in other cases as well.

9.1 The Discretization

This section will describe the discretization of the 2D wave equation as mentioned
in Section 3.4.1. Recall that it (locally) discretizes according to the scheme,
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1

2

3

...

...
N1

N1+1

N1+2

...

N1


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N2︷ ︸︸ ︷

Figure 9.1: Setting up the geometry inside an N1 × N2 rectangular matrix. Each
element/point is assigned a sequential number in the range 1, 2, . . . , N1 ·N2, as indicated
in the left part of the grid. The inner points are shown in light gray and the dark gray
points represent the control part of the boundary. The rest of the points represent the
non-controlled part of the boundary, kept at zero.

As also mentioned in Section 3.4.1, the time discretization corresponds to the
trapezoid rule and the adjoint system can thus be written,

[
C 0
0 C

]([
vn+1

vn+1

]
−
[
vn

vn

])
=

∆t

2

[
0 I
A 0

]([
vn+1

vn+1

]
+

[
vn

vn

])
, (9.1)

where vn approximates the time derivative.

We now have to set up the matrices A and C according to the geometry. The
geometry will be described using the following quantities:

N1 ×N2: Dimension of the two-dimensional array, in which the geometry is set.

N0: Number of inner points.

Nb: Number of boundary control points.

I0 ∈ NN0 : Vector of indices of inner points.

Ib ∈ NNb : Vector of indices of boundary control points.

These quantities are illustrated in Figure 9.1. Of course, the grid size h, time step
∆t and number of time steps M need also be set. Note that the geometry need
not be a rectangular shape.

Let us now introduce the matrix AG ∈ RN1·N2×N1·N2 as a representative for
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the computational stencil,

1

2h2




1 1

1 1

-4


 .

More formally, this means that

y = AGx ⇔ Y i,j =
X i−1,j−1 +Xi−1,j+1 +Xi+1,j−1 +Xi+1,j+1 − 4Xi,j

2h2
,

(references outside theX-matrix should be set to zero) must hold for every instance
of x,y ∈ RN1·N2 and X,Y ∈ RN1×N2 for which

Xi,j = xN1(j−1)+i and Y i,j = yN1(j−1)+i, i = 1, . . . , N1, j = 1, . . . , N2 ,

so x and y are column-stacked versions of X and Y , respectively.
We can now extract the relevant entries into the actual system matrix,

A(i, j) = AG(I0(i), I0(j)), for all i, j = 1, 2, . . . , N0,

or A=AG(I0,I0) in Matlab notation.
Similarly, let CG represent the stencil

1

2h2




1 1

1 1

-4


 ,

and we extract the relevant entries to create C ∈ RN0×N0 .
The way that these matrices have been created means that the entries of vec-

tors vn and vn in the scheme (9.1) represent the inner points only. The value
of vn(i), respectively vn(i), corresponds to the position, respectively velocity, of
the grid point with index I0(i).

Before setting up the control system, we need to incorporate the boundary
conditions. But this is easily done using the already created matrix AG. We let
the matrix B ∈ RN0×Nb have the entries,

B(i, j) = AG(I0(i), Ib(j)), for i = 1, 2, . . . , N0 and j = 1, 2, . . . , Nb .

We can now formulate the discrete control system,

[
C 0
0 C

]([
un+1

un+1

]
−
[
un

un

])

=
∆t

2

[
0 I
A 0

]([
un+1

un+1

]
+

[
un

un

])
+

∆t

2

[
0
B

] (
kn+1 + kn

)
,

(9.2)

where kn ∈ RNb supplies the boundary conditions at time n∆t.
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9.2 Computing the Controllability Operator

As explained in Section 5.1, there are two obvious ways to compute the control-
lability operator, the direct method and the inner product method. Both methods
will be considered in the following two sections. Note that we implement the time
reversed version of HUM, as described in Section 2.5.2, which is possible since we
deal with the reversible wave equation. This means that we wish to drive a certain
state (y0,y0) to the null state (0,0).

9.2.1 The Direct Method

Let the discrete (reversed) controllability operator be denoted Λ̃M , the subscript M
representing the number of time steps used. Mapping a given vector (v0,v0) is done
by computing

[
vn+1

vn+1

]
= G1

[
vn

vn

]
,

[
v0

v0

]
given,

G1 =

([
C 0
0 C

]
− ∆t

2

[
0 I
A 0

])−1([
C 0
0 C

]
+

∆t

2

[
0 I
A 0

])
,

(9.3)

for n = 0, 1, . . . ,M − 1. We now set

kn = −BTvn, (9.4)

for n = 0, 1, . . . ,M (the minus sign appears because we deal with the reversed
controllability operator). We then solve the control system,

[
un

un

]
= G2

[
un+1

un+1

]
+ F (kn+1 + kn),

[
uM

uM

]
=

[
0
0

]
,

G2 =

([
C 0
0 C

]
+

∆t

2

[
0 I
A 0

])−1([
C 0
0 C

]
− ∆t

2

[
0 I
A 0

])
,

F = −∆t

2

([
C 0
0 C

]
+

∆t

2

[
0 I
A 0

])−1 [
0
B

]
,

for n = M − 1,M − 2, . . . , 0. Finally we have

Λ̃M

[
v0

v0

]
=

[
u0

−u0

]
.

Now, by repeatedly applying this map to the columns of a 2N0 × 2N0 identity
matrix, we obtain the columns of the matrix Λ̃M .

Note that instead of mapping just one column at a time, one could easily map
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a whole matrix. This way, we could compute the following,

[
V 0

V 0

]
=

[
I 0
0 I

]
,

[
V n+1

V n+1

]
= G1

[
V n

V n

]
, n = 0, 1, . . . ,M − 1 ,

(9.5)

followed by

Kn = −BTV n, n = 0, 1, . . . ,M , (9.6)

and

[
UM

UM

]
=

[
0
0

]
,

[
Un

Un

]
= G2

[
Un+1

Un+1

]
+ F (Kn+1 +Kn), n = M − 1,M − 2, . . . , 0 ,

(9.7)

and we would then have directly,

Λ̃M =

[
U 0

−U0

]
.

To actually compute the control for driving (y0,y0) to the null state, we must
solve (if possible)

Λ̃M

[
z0

z0

]
=

[
y0

−y0

]
.

We then solve the adjoint system (9.3) with (v0,v0) = (z0, z0) and the control is
finally given by (9.4).

9.2.2 The Inner Product Method

Recall from Equation 4.28, page 73, the important relation,

〈
Λ̃M

(
v0

v0

)
,

(
w0

w0

)〉

C
=

∆t

4

M−1∑

n=0

〈
BT (vn+1 + vn),BT (wn+1 +wn)

〉
,

where

C =

[
C 0
0 C

]
,

and where (vn,vn) and (wn,wn) each are solutions of the adjoint system (9.3).

Let us immediately adopt the multi-column/matrix approach of the previous
section. Let (V n,V n), n = 0, 1, . . . ,M , consist of 2N0 simultaneous solutions of
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the adjoint system, as described by (9.5). We now have

CΛ̃M =

〈
Λ̃M

[
I 0
0 I

]
,

[
I 0
0 I

]〉

C
=

〈
Λ̃M

[
V 0

V 0

]
,

[
V 0

V 0

]〉

C

=
∆t

4

M−1∑

n=0

〈
BT (V n+1 + V n),BT (V n+1 + V n)

〉

=
∆t

4

M−1∑

n=0

(
Kn+1 +Kn

)T (
Kn+1 +Kn

)
,

where Kn, n = 0, 1, . . . ,M , is computed as in (9.6).

As mentioned in Section 5.1, the inner product method has some appealing
properties. Let us recall them in this particular setting.

• We never have to solve the control system (9.7), that is, we never have to deal
with solving the wave equation with inhomogeneous boundary conditions.

• It is easy to update CΛ̃M from one time step to the next:

CΛ̃M = CΛ̃M−1 +
∆t

4

(
KM +KM−1

)T (
KM +KM−1

)
. (9.8)

This also means that the controllability operator can be updated along with
solving the adjoint system.

• The matrix CΛ̃M is symmetric by construction, easily seen from the update
formula (9.8). This means that it is only necessary to update half the entries

of CΛ̃M , e.g., the upper or lower triangle.

9.3 Flop Count and Memory Usage

Flop is short for floating point operation, and refers to when a computer performs
one of the four basic operations, +, −, × or /, using floating point arithmetic. To
get an idea of the time usage of computing the discrete controllability operator,
we will count flops and ignore everything else. Since flops are the dominating
ingredient of the algorithms described, this will give a reasonable idea of how the
time increases as a function of the key quantities. We will furthermore only count
the flops of the main loop of the algorithms, and ignore, for instance, initialization.

When it comes to memory usage, we will only consider the (large) matrices
that are used. The data type for floating points will be what the programming
language C, and its descendants, call double. We assume each double takes up 8
bytes.

A size summary of the key matrices that occur in the two methods, can be seen
in Table 9.1.
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C 2N0×2N0 G1, G2 2N0×2N0

Λ̃M 2N0×2N0 F 2N0×Nb
V n, V n N0×2N0 B N0×Nb
Un, Un N0×2N0 Kn Nb×2N0

Table 9.1: An overview of key matrices and their sizes.

9.3.1 The Direct Method

We assume that the matrix-matrix multiply operations C ← AB and C ← C+AB,
where A ∈ Rm×k, B ∈ Rk×n, each take a total of 2mkn flops (this is commonly
called a level 3 BLAS operation, performed by the BLAS routine DGEMM).

Let us consider the steps needed to compute the controllability operator ac-
cording to (9.5), (9.6) and (9.7):

• Compute V n and V n for n = 1, 2, . . . ,M , by premultiplyingM times withG1.
This demands M · 2 · 2N0 · 2N0 · 2N0 = 16MN3

0 flops.

• Compute Kn = −BTV n, n = 0, 1, . . . ,M . This leads to (M + 1) · 2 · Nb ·
N0 · 2N0 = 4(M + 1)NbN

2
0 flops.

• Computing Un and Un for n = M − 1, . . . , 1, 0 can be done by doing

T 1 ←Kn+1 +Kn, T 2 ← FT 1, T 2 ← T 2 +G2

[
Un+1

Un+1

]
,

[
Un

Un

]
← T 2 ,

a total ofM times (T 1 and T 2 are temporaries). This is done usingM(2NbN0+
2 · 2N0 ·Nb · 2N0 + 2 · 2N0 · 2N0 · 2N0) = 2MN0(Nb + 4N0Nb + 8N2

0 ) flops.

We get a grand total of

MN2
0 (32N0 + 12Nb) flops,

when discarding lower order terms.

When it comes to memory usage, we need the following.

• The matrices G1, G2, B and F take up 8N2
0 + 3N0Nb doubles.

• The boundary data all needs to be stored, K0, K1, . . . , KM take up
(M + 1)2N0Nb doubles.

• Two instances of (V n,V n) need to be present in memory at one time. The
same storage place can be used for two simultaneous instances of (Un,Un).
This takes up 8N2

0 flops.

Adding up, we need about

N0(16N0 + 2MNb) doubles,
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for the matrix version of the direct method.
The need for storing all boundary data in Kn, n = 0, 1, . . . ,M , is a major

drawback of the direct method when it comes to memory usage. An alternative is
to compute only a few columns of Λ̃M at a time. This leads to the same number
of flops, but will clearly lead to more overhead (function calls, initializing, and so
on) and probably also more cache misses (not exploiting the fast on-chip memory
in an optimal way). However, the memory usage will be reduced considerably to

N0(8N0 + 3N0) + c(4N0 +MNb) doubles,

where c is the number of columns computed simultaneously, 1 ≤ c ≤ 2N0.
Another way of reducing the memory requirements was proposed in Glowinski,

Li, and Lions (1990), Remark 4.1. The idea is the following. Solve the adjoint
system with the sole purpose of computing (V M ,V M ). The adjoint system can
now be solved backwards from n = M to n = 0, while simultaneously computing
the relevant values of Kn and (Un,Un). This eliminates the need of storing all
M + 1 values of Kn, and reduces the memory requirement to

N0(8N0 + 3Nb) + c(6N0 + 2Nb) doubles,

where c again is the number of columns computed simultaneously. There is a
drawback, however, in that we compute the solution to the adjoint system twice.
The flop count will increase to

MN2
0 (48N0 + 12Nb) flops.

9.3.2 The Inner Product Method

The operation C ← C + αATA with A ∈ Rk×n and α ∈ R is called a rank-k
update of a symmetric matrix in the language of the level 3 BLAS (performed by
the function DSYRK). We will assume that such a computation takes kn2 flops.

The main loops of this method require the following steps.

• Compute V n and V n for n = 1, 2, . . . ,M , by premultiplyingM times withG1.
This demands 16MN3

0 flops.

• Compute Kn = −BTV n, n = 0, 1, . . . ,M . This leads to 4(M + 1)NbN
2
0

flops.

• Doing

T 1 ←Kn+1 +Kn,

followed by the update

L← L+ ∆t
4 T

T
1 T 1, (9.9)

a total of M times amounts to M(2N0Nb + 4N2
0Nb) flops (the matrix L

represents CΛ̃M ).
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Flop count Memory usage in doubles

Direct MN2
0 (32N0 + 12Nb) N0(8N0 + 3Nb) + c(4N0 +MNb)

Glowinski MN2
0 (48N0 + 12Nb) N0(8N0 + 3Nb) + c(6N0 + 2Nb)

Inner product MN2
0 (16N0 + 4Nb) N0(16N0 + 5Nb)

Table 9.2: Comparing flop count and memory usage for three different ways of computing
the discrete controllability operator. The label Glowinski refers to the Glowinski, Li, Lions
version of the direct method. The constant c represents the number of columns that are
computed simultaneously, 1 ≤ c ≤ 2N0.

Adding up and discarding lower order terms we get

MN2
0 (16N0 + 4Nb) flops,

for the inner product method.
For memory usage, we observe that we successively compute CΛ̃M from the

previous time step CΛ̃M−1. This means that we do not need to save any information
across all time steps. We sum up as follows.

• The matrices G1, B and L take up 8N2
0 +N0Nb doubles.

• Two instances of (V n,V n) need to be present in memory at one time. This
takes up 8N2

0 flops.

• Two instances of Kn need to be present in memory at one time. This takes
up 4N0Nb flops.

This amounts to a total of

N0(16N0 + 5Nb) doubles.

9.3.3 Choosing the Best

Table 9.2 presents a summary of the flop count and memory usage for each method,
including the Glowinski, Li and Lions version of the direct method. When it comes
to speed, according to the flop counts, the inner product method is a clear winner.
It is 2–3 times faster than any of the direct methods.

When it comes to memory usage, something can actually be gained by using
a direct method. But no more than a factor 1/2 for small c. As c approaches its
maximum value of 2N0, however, the direct methods require more memory than
the inner product method.

Let us consider a concrete case, namely that of the future Section 9.4. The
geometry is a square grid with grid length N , with control on two of the sides. We
set h = 1/(N + 1), ∆t = h/2 and T = 4. To use nice integral values we set

N0 = N2, Nb = 2N, M = 8N . (9.10)



168 9. Implementing HUM

N 10 20 40 60 80 100

Flops 1.3 · 109 1.7 · 1011 2.1 · 1013 3.6 · 1014 2.7 · 1015 1.3 · 1016

Time 0.67 sec. 1.4 min. 2.9 hours 2.1 days 16 days 2.5 months
Memory 1.3Mb 20Mb 317Mb 1.6Gb 4.9Gb 12Gb

Table 9.3: Example of how much time it takes to compute the controllability operator,
and how much memory it requires. The number of inner points N0, number of boundary
points Nb, and number of time steps M depends on the parameter N as shown in (9.10).
To compute the time row, we assume that the processor in question can perform 2 Gflops
per second.

This leads to

128N7 + 64N6 flops and 2N3(8N + 5) doubles,

for the inner product method. See Table 9.3 for an example of how much time it
takes to compute the controllability operator in this case, and how much memory
it requires.

To get an asymptotic idea of the running time and memory requirements, let
us set

N0 = Nd, Nb = Nd−1, M = N,

for some dimension parameter d and a grid-size parameterN . The reasoning behind
these numbers are as follows. Let d be the space dimension we consider. The order
of inner grid points will then be Nd, like a d-dimensional cube with side length N .
One of the sides of such a cube will then contain Nd−1 points. Let the grid point
distance be h = 1/N and ∆t = h. The order of M ' T/∆t will now be N .

Inserting in the flop count formula for the inner product method, we get or-
der N3d+1 for the flop count and order N2d for the memory usage.

ZZZZZZZZZZZZ...

— Anonymous

9.3.4 Multiple Processors

Let us briefly consider how to do an implementation that computes the controlla-
bility operator in parallel.

The direct method can lead to perfect speed-up in a distributed memory com-
puting environment. Such an implementation is also called embarrassingly paral-
lel . Perfect speed-up means that the execution time is inversely proportional to
the number of processors. This is typically only possible if no communication is
needed during execution, or at least in the main loop. This is exactly the situation
for the direct method. Each processor can be informed about which columns of
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ΛT to compute, and each processor can now do this, independently of the others.
Note that this could also easily be done on a shared memory architecture.

Perfect speed-up is not possible for the inner product method with distributed
memory. The matrices V n, V n and Kn can be distributed and computed inde-
pendently on each processor, but the update (9.9) requires a considerable amount
of communication. Assume now that the following is possible on a supercomputer
with shared memory: Each processor has read/write access to disjoint columns of
V n, V n, Kn, L = CΛT and, furthermore, every processor has read access to the
whole Kn matrix. Apart from synchronization before each processor’s computa-
tion of Kn and before each update of L, all computations can be done completely
independently. This will lead to almost perfect speed-up.

9.4 Illustrations in 2D

An implementation of the inner product method was carried out in the program-
ming language C, using the high performance libraries BLAS (Basic Linear Algebra
Subprograms, see www.netlib.org/blas) and LAPACK (Linear Algebra PACKage,
see www.netlib.org/lapack).

The program was run on two different computers: A PC with an Athlon 2000+
XP processor and a SunFire 15k shared memory computer with UltraSparc-IIICu
900 MHz processors (no parallelization was done). The latter is a part of the Sun
High Performance Computing Systems at DTU, see www.hpc.dtu.dk.

Figure 9.2 visualizes a solution where a control has been applied, such that
the system is driven to rest. The controllability operator was computed using the
inner product method, control time T = 3, and the control was then computed as
described at the end of Section 9.2.1. The initial conditions, to be controlled, were
as indicated at t = 0.0 in the figure (initial velocities were identically zero).

9.5 Preconditioning

Let us consider computing controls in general. An essential ingredient is inverting
the controllability operator, that is, solving a linear system of equations of the type
Lx = y. In practice, rounding errors will influence the precision of the solution.
How much will depend on the condition number of the system matrix,

κ(L) = ‖L‖‖L−1‖ ,

where we here use the discrete 2-norm for the definition. For a symmetric matrix L,
this corresponds to the ratio between the largest and the smallest (in magnitude)
eigenvalues. The higher the condition number, the worse the accuracy of the solu-
tion due to rounding errors. The point of preconditioning is to solve an equivalent
problem, (

P 1LP 2

)
(P−1

2 x) = P 1y ,
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t = 0.0 t = 0.6

t = 1.2 t = 1.8

t = 2.4 t = 3.0

Figure 9.2: Visualization of a solution to an exact control problem of the wave equation
in 2D. (The non-zero boundary at t = 3.0 is not an error, it would disappear in the limit,
in an L2((0, 1)2) sort of way.)
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where the matrix P 1LP 2 has a smaller condition number that L itself. The big
challenge, in general, is of course to find appropriate preconditioners P 1 and P 2.
If we have a discretization scheme with uniform observability, however, Section 4.2
provides the answer. Instead of solving

Λ∆t
M v = MTy , (9.11)

we should use the preconditioned system,

(
R−TCΛ∆t

MR
−1
)
(Rv) = R−TCMTy , (9.12)

where RTR = Q̃ with R upper triangular. As shown in Section 4.2, uniform
observability implies that the condition number of R−TCΛ∆t

MR
−1 is bounded by a

constant, independently of N . A further advantage of the above rewrite is that the
matrix R−TCΛ∆t

MR
−1 is seen to be symmetric and positive definite, an advantage

when solving linear systems of equation.

9.5.1 A Preconditioner of Glowinski, Li and Lions

In the paper Glowinski, Li, and Lions (1990) the authors consider exact boundary
controllability of the wave equation, and they solve Equation (9.11) using a conju-
gate gradient (CG) algorithm. This is an iterative Krylov subspace method, which
works for symmetric and positive definite matrices.

It can be discussed whether or not an iterative algorithm is fitted for exact
controllability problems. If CG performs a number of iterations that corresponds
to the order the system, it is solved exactly, but stopping criteria are typically
used for stopping prematurely. Indeed, in the paper mentioned, they stop the CG
algorithm when an appropriate norm of the residual,

(
MTy −Λ∆t

M v
)
, gets below

a certain threshold.
On top of this, they actually use a preconditioned conjugate gradient algorithm.

Let us give an idea of their preconditioner by considering exact controllability for
the continuous wave equation. The controllability operator maps between the
following spaces,

ΛT :

(
H1

0 (Ω)
L2(Ω)

)
7→
(
H−1(Ω)
L2(Ω)

)
.

This already indicates a problem in that the spaces are different. The precondi-
tioner they use consists of solving an equation of the type

[
−∆ 0

0 I

]
z = r,

internally in the CG algorithm. Solving the system ΛTx = y this way corresponds
to solving

([
−∆ 0

0 I

]−1/2

ΛT

[
−∆ 0

0 I

]−1/2
)([

−∆ 0
0 I

]1/2

x

)
=

[
−∆ 0

0 I

]−1/2

y ,
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see Section 10.3 of Golub and Van Loan (1996). The approach makes sense for the
following heuristic reason. Since −∆ : H1

0 (Ω) 7→ H−1(Ω), its square root will act
as

(−∆)1/2 : H1
0 (Ω) 7→ L2(Ω) or (−∆)1/2 : L2(Ω) 7→ H−1(Ω) .

This implies that the domain and range are

[
−∆ 0

0 I

]−1/2

ΛT

[
−∆ 0

0 I

]−1/2

:

(
L2(Ω)
L2(Ω)

)
7→
(
L2(Ω)
L2(Ω)

)
,

so the preconditioned map is now between equivalent spaces. Using the same idea
in the discrete case can now be used to reduce the condition number of the system
to solve.

It should be noted that uniform observability does not hold for their discretiza-
tion scheme. Indeed, they observe that high frequency waves lead to unwanted
oscillations in the computed controls.

Although the above reasoning is quite reasonable (the authors themselves never
argue why they use that particular preconditioner), it must still be considered the
best solution to choose discrete norms that correspond to the continuous ones and
then to use the preconditioned system given by (9.12).

9.5.2 Null-controllability and Discrete Ill-posed Problems

It’s impossible to compute things which don’t exist.
It’s difficult to compute things which almost don’t exist.

— Cleve Moler, 1997

Some null-controllability problems can present difficulties when solving them in
practice. Assume for some control system that the associated observability inequal-
ity is fulfilled (see Theorem 2.3.1, page 19). Recall then that the null-controllability
problem can be solved by finding w0 such that

ΛTw
0 = −MTLTu

0 . (9.13)

Let us consider the heat equation as an example. In this case, the controllability
operator ΛT : H1

0 (Ω) 7→ H−1(Ω) is not invertible. This is because the output
of the controllability operator is the result of solving the heat equation, a highly
smoothing and dampening process. The observability inequality, however, makes
sure that when LT is applied to the right-hand side, (9.13) is solvable.

When solving a discrete analog of (9.13) in the case of the heat equation, we
encounter a discrete ill-posed problem, since it is a discretization of an ill-posed
problem (it is ill-posed because of the unboundedness/discontinuity of the inverse
Λ−1
T , and because right-hand sides y to the equation ΛTx = y exist for which no

solution exists). The term, discrete ill-posed problem, is most commonly used for
discretizations of Fredholm integral equations of the first kind, but we will use the
term here more broadly because of a similar smoothing property of ΛT .
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A discretization of ΛT naturally inherits its smoothing property. The prob-
lem is now that when computing with finite precision, rounding errors will often
blow up when applying the discrete analog of Λ−1

T . It depends, though, on the
method used for solving the discrete system. A good choice is probably one based
on an eigenvalue decomposition, where the components of the right-hand side that
correspond to the smallest eigenvalues, are ignored or dampened. This is a regular-
ization method where one must be aware, of course, that only regularized solutions
are obtained. It must then be showed, if possible, that the full solution is obtained
in the limit.

In Carthel, Glowinski, and Lions (1994), the authors consider exact controlla-
bility for the heat equation and observe that the final state has to be very smooth.
They then apply regularization to compute solutions to approximate controllability
problems.

See Hansen (1998) for an extensive treatment of discrete ill-posed problems and
regularization methods.





C H A P T E R 10

Discussion

We should know clearly before we discuss this matter;
to guess is one thing, to know clearly another.

— Aeschylus (525–456 B.C.)

Let us run through the main topics of this thesis along with open questions and
suggestions for further work.

We initially established a theoretical foundation for boundary controllability
of linear evolution PDEs. We showed that different types of controllability for
a control system were equivalent to different types of observability inequalities
for a corresponding adjoint system. The Hilbert Uniqueness Method, HUM, was
presented, which is a powerful and constructive method for computing controls.

A natural abstraction of this theory would be possible, if we wrote the control
system in the lines of u̇(t) = Au(t)+Bk(t), where k is the control. In such a formu-
lation, the operator B could represent both boundary control and internal control
(see, for example, Bensoussan, 1990). Although constructs such as boundary in-
tegrals become less obvious/more abstract, the continuous system would actually
resemble a typical semi-discretization, u̇(t) =Au(t) +Bk(t), much more.

Further generalization could also be considered by making the operatorA space-
dependent. This complicates matters considerably, however. Consider the wave
equation as an example. With constant coefficients we know that waves propagate
along straight lines. With variable coefficients some waves can actually propagate
inside the domain and never reach the boundary (see Zuazua (2003) and references
therein). This means that exact controllability can be impossible even though the
domain is bounded.

Controllability problems are easily formulated for non-linear PDEs. The whole
“machinery” presented in this thesis, however, relies heavily on the linearity. See
the survey article Zhang and Zuazua (2003a), and the references therein, on how
to handle non-linear controllability problems, including a HUM-like approach.

When it came to discretizing in space, we derived fairly general statements for
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semi-discrete systems of the type u̇(t) = Au(t)+Bk(t). Among the most important
results was that if an observability inequality holds on each discretization level with
uniform constants, then the corresponding controls were guaranteed to converge to
the true control. When it came to proving controllability properties of the discrete
systems, however, we relied heavily on knowing the eigensolutions of A. This was
possible because we considered finite difference discretizations on regular grids in
one dimension. When moving to more dimensions with irregular domains and/or
grids, it becomes harder, if not impossible, to have explicit eigenvalue information.
Some hope may lie in the area of group velocity, since this is a local (in space)
property. Whether it is possible to formulate sufficient and necessary conditions for
uniform observability using analysis of group velocity is not clear. Some attempts,
though still for finite difference approximations on regular grids, have been made
in Maciá (2003). It seems to the author, though, that uniform observability can
only hold for a few, fabricated schemes and domains. In more general cases, one
has to resort to filtering or other types of regularizing. Here still lies a lot of work,
both in proving convergence of controls for regularized schemes and in efficient
implementations.

Moving from semi-discrete systems to fully discrete systems complicates matters
a little, but not much. On the other hand, it seems that a special relation must
exist between the space and time discretization if any form of uniform observability
is to hold. We considered the explicit midpoint rule and the trapezoid rule for time
discretization. It should be possible to carry through a more general treatment of
time discretizations, such as linear multi-step schemes.

The controllability operator would be worth a study in itself. But of course,
its properties are intimately tied to PDEs and controllability. We focused on two
aspects, namely how to compute a matrix representation for this operator and prov-
ing the existence of a limit operator as the control time went to infinity, T →∞.
One way to compute a matrix representation, the direct method, was simply based
on its definition. Another method, the inner product method, relied on one of its
fundamental properties. Although never studied before, this latter method seemed
the simplest in pen-and-paper calculations and it also proved the most efficient
method to use for computer implementations.

The study of a possible limit operator for the controllability operator as T →∞
was limited to two particular equations, the wave equation and the heat equation.
The existence of a limit operator for the wave equation relied on the fact that we
were dealing with a skew-symmetric operator, implying special eigenvalue prop-
erties. The results would easily be extendible to general skew-symmetric system
operators, see Bensoussan (1990) and Bensoussan (1992). The limit operator for
the heat equation also relied on some special eigenvalue properties. The control-
lability operator for the heat equation furthermore suggests that a limit operator
may exist as T → 0. This should be studied.

An obvious question is: Does a well-defined limit operator always exist for any
well-defined controllability operator? This is not clear and is worth some study.
Why is the existence of a limit operator even so interesting? For one, because
it tells something about the control function’s dependence of the control time T .
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For instance, for the wave equation we could deduce that the norm of the control
function was proportional to 1/T as T →∞. For the heat equation, that the norm
of the control function approached a constant level as T → ∞. Another possible
usage of knowledge about a limit operator is that it may turn out to be a good
preconditioner for computer implementations. This is currently unexplored.

Null-controllability using Dirichlet control was easy to show for the heat equa-
tion in one dimension. Likewise, uniform observability was straightforward to show
for a semi-discretization. The nature of the heat equation suggests that similar re-
sults hold for more dimensions, and similarly for a full discretization. However,
no tools or theorems, such as a time-discrete analog to the parabolic version of
Ingham’s Theorem, seem to be available in order to show uniform observability for
a full discretization. It is suspected, though, that it holds without any surprises.

In contrast to the fact that uniform observability holds in the discrete case, is
that the controls are highly unstable to compute in practice. This is due to the fact
that the controllability operator has a very dampening effect, similar to discrete ill-
posed problems. This means that even though the “right-hand side” is sufficiently
smooth, rounding errors can have disastrous effects on the solution. This depends,
of course, on the algorithm used to obtain the solution. Further study is needed in
this area.

Controllability of the wave equation has, by far, gotten most attention in the
literature, both in the continuous and the discrete cases. However, many things
are worth more study.

The characterization of all possible controls for the one-dimensional wave equa-
tion, through the analysis of null-space controls, was quite interesting. But the
analysis made use of an explicit solution formula (the D’Alembert solution for-
mula) for the wave equation in one dimension, and such simple formulas are not
available in several dimensions. However, the concept of null-space controls de-
serves some more study, and may lead to greater insight into controllability of the
wave equation in several dimensions.

More study of discretization schemes is also needed, both time and space dis-
cretization. A previously unexplored time–space scheme was presented in Chap-
ter 7. Uniform observability did not hold, but it had some characteristics which
makes it promising in the area of control. Further analysis of this scheme is needed.

An interesting, and currently unanswered, question is: Is there any hope of
having uniform observability on irregular grids, even in one dimension? From the
study of group velocity properties, there is hope for uniform observability on a
regular two-dimensional grid, cf. the scheme described in Sections 3.4.1 and 9.1.

The linear system of thermoelasticity was interesting because it provided an ex-
ample of what could be done if the control system operator was fairly complicated,
and only asymptotic knowledge of the eigenvalues was known. The system could
be viewed as a coupling of a wave equation, for which controllability puts a condi-
tion on the control time, and a heat equation, for which only null-controllability is
possible. The coupled system required both: Only null-controllability was possible
and a minimum control time was required. Furthermore, no multiple eigenvalues
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were allowed, and this could happen.
During the controllability proof of the system of thermoelasticity, we showed

that null-controllability was possible for (disjoint) projections. This was fairly
straightforward and the difficulty of the proof lay in showing that both could be
fulfilled simultaneously. It seems that it should be possible to derive general results
for when such controllability results of projections can be combined. That would
be a powerful result.

The Hilbert Uniqueness Method for computing controls for a discretization of
the two-dimensional wave equation was implemented efficiently using high perfor-
mance libraries such as BLAS and LAPACK. As the dimension increased, however,
the running time increased frighteningly fast. A better running time complexity
may be obtained, if a discretization scheme is used where matrix sparsity can be
exploited effectively.

As mentioned earlier, when moving to several dimensions and/or irregular grids,
the only hope of convergence of controls may be using an appropriate form of
regularization. How should such a regularized method be implemented efficiently?
This would be highly relevant as soon as the proper theoretical foundation has been
established.

Let us finish with two quotes that seem appropriate at this point.

All of the sudden, Larry the Cow was in control.
And he liked it.

— The gentoo.org website

To finish a work? To finish a picture? What nonsense!
To finish it means to be through with it, to kill it,

to rid it of its soul, to give it its final blow...

— Pablo Picasso (1881–1973)
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Details

Beware of the man who won’t be bothered with details.

— William Feather (1908–1976)

Detail 1

Theorem. Let H be a Hilbert space and consider the functional J : H 7→ R defined
as J(v) = ‖v‖. Then for an arbitrary v 6= 0 we have,

〈∇J(v), w〉 =
〈v, w〉
‖v‖ for all w ∈ H .

Proof. Fix arbitrary vectors v, w ∈ H where v 6= 0. Define now

g(h) = ‖v + hw‖ .

Observe (g2(h))′ = 2g(h)g′(h) which implies

g′(0) =
(g2(0))′

2g(0)
.

We now get

(g2(0))′ = lim
h→0

‖v + hw‖2 − ‖v‖2
h

= lim
h→0

2h〈v, w〉+ h2〈w,w〉
h

= 2〈v, w〉 ,

so finally we have

〈∇J(v), w〉 = g′(0) =
2〈v, w〉
2‖v‖ =

〈v, w〉
‖v‖ .
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Detail 2

Theorem. Let k ∈ Z. Then we have

N∑

j=1

cos(kjπ/(N + 1)) =





N, for 2(N + 1) | k ,
−1, for 2(N + 1) - k, 2 | k ,

0, for 2 - k .

Proof. We split into four cases.

• 2(N + 1) | k. Straightforward, since cos(kjπ/(N + 1)) = 1 for all j.

• k odd, N even.

N∑

j=1

cos(kjπ/(N + 1))

=

N/2∑

j=1

(
cos(kjπ/(N + 1)) + cos(k(N + 1− j)π/(N + 1))

)

= (1 + cos(kπ))

N/2∑

j=1

cos(kjπ/(N + 1)) = 0 .

• k odd, N odd.

N∑

j=1

cos(kjπ/(N + 1))

= cos( 1
2kπ) +

(N−1)/2∑

j=1

(
cos(kjπ/(N + 1)) + cos(k(N + 1− j)π/(N + 1))

)

= (1 + cos(kπ))

(N−1)/2∑

j=1

cos(kjπ/(N + 1)) = 0 .

• k even, 2(N + 1) - k. The easiest way to proceed is to consider complex
exponentials,

(
1 + ei

1
2kπ/(N+1)

) N∑

j=0

eikjπ/(N+1) =

N∑

j=0

(
eikjπ/(N+1) + eik(j+ 1

2 )π/(N+1)
)

=
2N+1∑

j=0

ei
1
2kjπ/(N+1) =

N∑

j=0

(
ei

1
2kjπ/(N+1) + ei

1
2k(j+N+1)π/(N+1)

)

=
(

1 + ei
1
2kπ
) N∑

j=0

ei
1
2kjπ/(N+1) .

(A.1)
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Let now k = p · 2q, where p is an odd integer and q is a positive integer.

If q = 1, we have (1 + ei
1
2kπ) = (1 + eipπ) = 0 and we get from (A.1) (the

parenthesis on the left-hand side can not be zero because of the assumption
2(N + 1) - k),

N∑

j=0

eikjπ/(N+1) =

N∑

j=0

cos(kjπ/(N + 1)) + i

N∑

j=0

sin(kjπ/(N + 1)) = 0 ⇒

N∑

j=1

cos(kjπ/(N + 1)) = −1 .

For q > 1 we rewrite (A.1) into

N∑

j=0

eikjπ/(N+1) =
1 + ei

1
2 kπ

1 + ei
1
2kπ/(N+1)

N∑

j=0

ei
1
2 kjπ/(N+1) .

Since neither the numerator or the denominator of the fraction can be zero,
we can repeatedly halve k, until the above case q = 1 can be applied (hence,
we use induction).



182 A. Details

Detail 3

Proof of Theorem 3.1.3 (page 37). We rewrite as follows,

N∑

j=1

sin(kjπ/(N + 1)) sin(ljπ/(N + 1))

= 1
2

N∑

j=1

cos((k − l)jπ/(N + 1))− 1
2

N∑

j=1

cos((k + l)jπ/(N + 1)).

Using the theorem of Detail 2, the result follows.
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Detail 4

Let (α0, α1, . . . , αm) = ( 1
2 , 1, 1, . . . , 1,

1
2 ), h 6= 0 and two real sequences 〈uk〉m+1

k=−1,

〈vk〉m+1
k=−1 be given. We get

h

m∑

k=0

αk

(
vk+1 − 2vk + vk−1

h2
uk −

uk+1 − 2uk − uk−1

h2
vk

)

=
1

h

m∑

k=0

αk (vk+1uk − 2vkuk + vk−1uk − uk+1vk + 2ukvk − uk−1vk)

=
1

h

(
m∑

k=0

αkvk+1uk +

m∑

k=0

αkvk−1uk −
m∑

k=0

αkuk+1vk −
m∑

k=0

αkuk−1vk

)
.

(A.2)

We rewrite each sum in turn

m∑

k=0

αkvk+1uk = α0v1u0 + αm−1vmum−1 + αmvm+1um +
m−2∑

k=1

αkvk+1uk ,

m∑

k=0

αkvk−1uk = α0v−1u0 + α1v0u1 + αmvm−1um +
m−2∑

k=1

αk+1vkuk+1 ,

m∑

k=0

αkuk+1vk = α0u1v0 + αm−1umvm−1 + αmum+1vm +

m−2∑

k=1

αkuk+1vk ,

m∑

k=0

αkuk−1vk = α0u−1v0 + α1u0v1 + αmum−1vm +

m−2∑

k=1

αk+1ukvk+1 .

Using these, the final expression in Equation (A.2) can be simplified:

1

h

(
α0v1u0 + αm−1vmum−1 + αmvj+1um + α0vi−1u0 + α1v0u1 + αmvm−1um

− α0u1v0 − αm−1umvm−1 − αmuj+1vm − α0ui−1v0 − α1u0v1 − αmum−1vm
)

=
1

h

(
(α0 − α1)v1u0 + (αm−1 − αm)vmum−1 + αmvj+1um + α0vi−1u0

+ (α1 − α0)v0u1 + (αm − αm−1)vm−1um − αmuj+1vm − α0ui−1v0

)

=
1

h

(
− 1

2v1u0 + 1
2vmum−1 + 1

2vj+1um + 1
2vi−1u0

+ 1
2v0u1 − 1

2vm−1um − 1
2uj+1vm − 1

2ui−1v0

)

=
vj+1 − vm−1

2h
um −

v1 − vi−1

2h
u0 −

uj+1 − um−1

2h
vm +

u1 − ui−1

2h
v0 .

The result can easily be generalized by using inner products instead of multiplica-
tion, and vectors instead of real numbers.
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Detail 5

Let |ĝ(ξ)| =
∣∣∣∣
4 cos(πξ)

1− 4ξ2

∣∣∣∣. For ξ > 1/2 we get

|ĝ(ξ)| ≤ 4

4ξ2 − 1
≤ 2

ξ2
⇔ |ξ| ≥ 1√

2
' 0.7 .

For −1 < z < 1 we have with ξ = 1
2 + z,

|ĝ( 1
2 + z)| =

∣∣∣∣
sin(πz)

z(1 + z)

∣∣∣∣ =
π

1 + z

sin(πz)

πz
≤ 4

1 + z
≤ 2

( 1
2 + z)2

⇔ −3−
√

5

4
≤ 1

2 + z ≤ 1 +
√

5

4
' 0.8 .

Hence, |ĝ(ξ)| < 2/ξ2 for all ξ ∈ R.
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Detail 6

We wish, given T > 0, to calculate

ΛT

(
v0

v0

)
=

(
ut(0, ·)
−u(0, ·)

)
,

where (v0, v0) ∈ H1
0 (0, 1)× L2(0, 1) and





vtt(t, x) = vxx(t, x), in (0, T )× (0, 1) ,

v(t, 0) = v(t, 1) = 0, in (0, T ) ,

v(0, x) = v0(x), vt(0, x) = v0(x), in (0, 1) ,

(A.3)

and 



utt(t, x) = uxx(t, x), in (0, T )× (0, 1) ,

u(t, 0) = 0, u(t, 1) = vx(t, 1), in (0, T ) ,

u(T, x) = ut(T, x) = 0, in (0, 1) .

(A.4)

Since 〈sin(kπ·)〉∞k=1 constitutes an orthogonal basis for L2(0, 1), we cover all (v0, v0) ∈
H1

0 (0, 1)× L2(0, 1) by looking at

v0(x) =

∞∑

k=1

v0
k sin(kπx) , v0(x) =

∞∑

k=1

v0
k sin(kπx) ,

with 〈kv0
k〉∞k=1, 〈v0

k〉∞k=1 ∈ `2.

Because of the linearity of ΛT , we can start by looking at what this map does
to

v0(x) = sin(kπx), v0(x) = 0, k ∈ N . (A.5)

The solution to (A.3) is easily seen to be

v(t, x) = cos(kπt) sin(kπx) ,

and for uneven k we have vx(t, 1) = −kπ cos(kπt). The solution to (A.4) can now
be written in the form

u(t, x) = −kπ cos(kπt)x +

∞∑

n=1

an(t) sin(nπx) , (A.6)

so the boundary condition is guaranteed to hold. Because of utt = uxx we get

∞∑

n=1

(
a′′n(t) + n2π2an(t)

)
sin(nπx) = −k3π3 cos(kπt)x , (A.7)
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which must hold for t ∈ (0, T ) and where the initial conditions can be derived from
the fact that u(T, x) = ut(T, x) = 0,

∞∑

n=1

an(T ) sin(nπx) = kπ cos(kπT )x ,

∞∑

n=1

a′n(T ) sin(nπx) = −k2π2 sin(kπT )x ,

(A.8)

for x ∈ (0, 1). By multiplying each side of the equations with sin(mπx) and inte-
grating over x = 0 . . . 1, we transform (A.7) and (A.8) into

a′′n(t) + n2π2an(t) =





2k3π2

n
cos(kπt), n ≥ 1 even ,

−2k3π2

n
cos(kπt), n ≥ 1 uneven ,

an(T ) =





−2k

n
cos(kπT ), n ≥ 1 even ,

2k

n
cos(kπT ), n ≥ 1 uneven ,

a′n(T ) =





2k2π

n
sin(kπT ), n ≥ 1 even ,

−2k2π

n
sin(kπT ), n ≥ 1 uneven .

This ordinary differential equation is solved straightforwardly and we get

ak(t) = 3
2 cos(kπt) + kπ(T − t) sin(kπt) + 1

2 cos(kπ(2T − t)) ,

for the special case n = k and

an(t) = (−1)n+1 2k

n2 − k2

(
n cos(kπT ) cos(nπ(T − t))

+ k sin(kπT ) sin(nπ(T − t))− k2

n
cos(kπt)

)
,

for n 6= k.

The calculations for even k are identical, except for a change of sign. So for
initial data given by (A.5) we insert into (A.6), use that

x =

∞∑

n=1

(−1)n+1 2

πn
sin(nπx) in L2(0, 1) ,
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and set t = 0,

u(0, x) =1
2

(
cos(2kπT )− 1

)
sin(kπx)

+
∞∑

n=1
n6=k

(−1)n+k 2k

n2 − k2

(
n cos(kπT ) cos(nπT )

+ k sin(kπT ) sin(nπT )− n
)

sin(nπx) ,

ut(0, x) =kπ
(
kπT + 1

2 sin(2kπT )
)

sin(kπx)

+
∞∑

n=1
n6=k

(−1)n+k 2knπ

n2 − k2

(
n cos(kπT ) sin(nπT )

− k sin(kπT ) cos(nπT )
)

sin(nπx) .

We now proceed to consider ΛT

(
v0

v0

)
where

v0(x) = 0, v0(x) = sin(kπx), k ∈ N . (A.9)

With calculations analogous to the ones above we arrive at

u(0, x) =

(
1

2kπ
sin(2kπT )− T

)
sin(kπx)

+

∞∑

n=1
n6=k

(−1)n+k 2

π(n2 − k2)

(
n sin(kπT ) cos(nπT )

− k cos(kπT ) sin(nπT )
)

sin(nπx) ,

ut(0, x) =1
2

(
1− cos(2kπT )

)
sin(kπx)

+

∞∑

n=1
n6=k

(−1)n+k 2n

n2 − k2

(
n sin(kπT ) sin(nπT )

+ k cos(kπT ) cos(nπT )− k
)

sin(nπx) .

The controllability operator ΛT thus has the appearance

ΛF
T =




λ1
11 λ1

12 · · · λ3
11 λ3

12 · · ·
λ1

21 λ1
22 · · · λ3

21 λ3
22 · · ·

...
...

. . .
...

...
. . .

λ2
11 λ2

12 · · · λ4
11 λ4

12 · · ·
λ2

21 λ2
22 · · · λ4

21 λ4
22 · · ·

...
...

. . .
...

...
. . .




,
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in matrix notation, using the basis (sin(1πx), sin(2πx), · · · | sin(1πx), sin(2πx), · · · ),
where

λ1
kk = kπ

(
kπT + 1

2 sin(2kπT )
)
,

λ1
nk = (−1)n+k 2knπ

n2 − k2

(
n cos(kπT ) sin(nπT )− k sin(kπT ) cos(nπT )

)
,

λ2
kk = 1

2

(
1− cos(2kπT )

)
,

λ2
nk = (−1)n+k+1 2k

n2 − k2

(
n cos(kπT ) cos(nπT ) + k sin(kπT ) sin(nπT )− n

)
,

λ3
kk = 1

2

(
1− cos(2kπT )

)
,

λ3
nk = (−1)n+k 2n

n2 − k2

(
n sin(kπT ) sin(nπT ) + k cos(kπT ) cos(nπT )− k

)
,

λ4
kk = T − 1

2kπ
sin(2kπT ) ,

λ4
nk = (−1)n+k+1 2

π(n2 − k2)

(
n sin(kπT ) cos(nπT )− k cos(kπT ) sin(nπT )

)
,

for all n, k ∈ N for which n 6= k. Notice the symmetry of this matrix, namely that

λ1
nk = λ1

kn , λ2
nk = λ3

kn , λ4
nk = λ4

kn ,

for all n, k ∈ N.
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Detail 7

Consider first I3. Using the expression for the H̃-norm, we get

I2
3 =1

2

∞∑

k=α(N)+1

[
k2π2

(
ak cos(kπ∆t) + bk

sin(kπ∆t)

kπ

)2

+ (−akkπ sin(kπ∆t) + bk cos(kπ∆t))
2

]
= 1

2

∞∑

k=α(N)+1

(k2π2a2
k + b2k) .

We now have

I2
3

∆t2
=

(N + 1)2

2η2

∞∑

k=α(N)+1

(k2π2a2
k + b2k) ≤ 2CN2

η2

∞∑

k=α(N)+1

rk

=
2CN2

η2

rα(N)+1

1− r ≤ 2C

η2(1− r)N
2r2N1/3 → 0 ,

(A.10)

as N →∞.

Consider now I2. We get

I2
2 = 1

2

N∑

k=α(N)+1

[
k2π2

(
ak cos(kπ∆t) + bk

sin(kπ∆t)

µk

)2

+ (−akµk sin(kπ∆t) + bk cos(kπ∆t))
2

]

= 1
2

N∑

k=α(N)+1

[
(
k2π2 cos2(θk) + µ2

k sin2(θk)
)
a2
k

+

(
k2π2

µ2
k

sin2(θk) + cos2(θk)

)
b2k

+ 2kπakbk cos(θk) sin(θk)

(
kπ

µk
− µk
kπ

)]

≤ C ′(N + 1)2
N∑

k=α(N)+1

(k2π2a2
k + b2k) ,

for some constant C ′ > 0, that only depends on η, using the bounds,

kπ sin(θk)

µk
=

kπηh

1 + η2 tan2( 1
2kπh)

≤ hkπη ≤ πη,

µk sin(θk) =
4η tan2( 1

2kπh))

h(1 + η2 tan2( 1
2kπh))

≤ 4

ηh
=

4

η
(N + 1) .

Proceeding as in (A.10), we get that I2
2/∆t

2 → 0 as N →∞.
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Detail 8

We have the norm

‖V ‖2eH = ‖βψ0 − v1‖2L2(0,1) + ‖v0‖2H1
0 (0,1) + ‖ψ0‖2L2(0,1)

for V = (v0, v1, ψ0)T and energy

E(t) =
1

2

∫ 1

0

(
|βψ(t, x) − vt(t, x)|2 + c2|vx(t, x)|2 +

c2β

α
|ψ(t, x)|2

)
dx ,

for 0 ≤ t ≤ T . By differentiating the energy

E′(t) =
c2βν

α

∫ 1

0

|ψx(t, x)|2dx ≥ 0 ,

we see that 0 ≤ E(t) ≤ E(T ) for 0 ≤ t ≤ T . We wish to show that the inequality

∫ T

0

|vx(t, 1)|2dt ≤ K‖(v0, v1, ψ0)‖2eH ,

holds for any solution (v(t), vt(t), ψ(t)) of the adjoint system (8.3) with initial

conditions (v0, v1, ψ0) ∈ H̃
First we note that the norm ‖ · ‖ eH and the energy E(t) are equivalent in the

sense that

1
2 min

{
1, c2, c

2β
α

}∥∥(v0, v1, ψ0)
∥∥2
eH ≤ E(t) ≤ 1

2 max
{

1, c2, c
2β
α

}∥∥(v0, v1, ψ0)
∥∥2
eH .

Assume that we are given initial data (v0, v1, ψ0) ∈ H̃ . We first need a number
of useful bounds. In the following, when we write f for some function f , it is short
for f(t, x).

∫ 1

0

v2
xdx ≤

2

c2
E(t) ≤ 2

c2
E(T ) ,

∫ T

0

∫ 1

0

v2
xdxdt ≤

2

c2
TE(T ) ,

∫ 1

0

∣∣vt − βψ
∣∣2dx ≤ 2E(t) ≤ 2E(T ) ,

∫ T

0

∫ 1

0

ψ2
xdxdt =

α

c2βν

∫ T

0

E′(t)dt =
α

c2βν

(
E(T )−E(0)

)
≤ α

c2βν
E(T ) ,

∫ T

0

∫ 1

0

ψ2dxdt =
2α

c2β

∫ T

0

E(t)dt ≤ 2α

c2β
TE(T ) ,
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(∫ 1

0

v2
t dx

)1/2

=
∥∥vt(t, ·)

∥∥
L2(0,1)

≤
∥∥vt(t, ·)− βψ(t, ·)

∥∥
L2(0,1)

+ β
∥∥ψ(t, ·)

∥∥
L2(0,1)

=

(∫ 1

0

∣∣vt − βψ
∣∣2dx

)1/2

+ β

(∫ 1

0

ψ2dx

)1/2

≤
(
2E(t)

)1/2
+ β

(
2α

c2β
E(t)

)1/2

≤
√

2

(
1 +

√
αβ

c

)√
E(T ) ,

∫ T

0

∫ 1

0

v2
t dxdt ≤ 2

(
1 +

√
αβ

c

)2

TE(T ) .

The two equations of the adjoint system can be combined into

vtt − βψt = c2vxx .

We first apply the multiplier vxx to the right-hand side,
∫ 1

0

vxxvxxdx =
[
v2
xx
]1
x=0
−
∫ 1

0

vx
(
vxxx+ vx

)
dx

= v2
x(t, 1)−

∫ 1

0

vxxvxxdx −
∫ 1

0

v2
xdx ,

leading to

∫ T

0

v2
x(t, 1)dt = 2

∫ T

0

∫ 1

0

vxxvxxdxdt −
∫ T

0

∫ 1

0

v2
xdxdt ,

and then
∫ T

0

v2
x(t, 1)dt ≤ 2

c2

∣∣∣∣∣

∫ T

0

∫ 1

0

(
vtt − βψt

)
vxxdxdt

∣∣∣∣∣+
2

c2
TE(T ) . (A.11)

We turn to bounding the double integral. First we see that

∫ T

0

(
vtt − βψt

)
vxxdt =

[(
vt − βψ

)
vxx
]T
t=0
−
∫ T

0

(
vt − βψ

)
vxtxdt . (A.12)

Since, by the Cauchy-Schwartz inequality,

∣∣∣∣
∫ 1

0

(
vt − βψ

)
vxxdx

∣∣∣∣ ≤
(∫ 1

0

∣∣vt − βψ
∣∣2dx

)1/2(∫ 1

0

v2
xdx

)1/2

≤
√

2E(T )

√
2

c2
E(T ) =

2

c
E(T ) ,

for every t ∈ [0, T ], we have
∣∣∣∣
∫ 1

0

[(
vt − βψ

)
vxx
]T
t=0

dx

∣∣∣∣ ≤
4

c2
E(T ) .
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For the last integral of (A.12) we get
∣∣∣∣∣

∫ 1

0

∫ T

0

(
vt − βψ

)
vxtxdtdx

∣∣∣∣∣ ≤
∣∣∣∣∣

∫ 1

0

∫ T

0

vtvxtxdtdx

∣∣∣∣∣+ β

∣∣∣∣∣

∫ 1

0

∫ T

0

ψvxtxdtdx

∣∣∣∣∣ .

We bound each integral of the right-hand side in turn. Since (v2
t x)x = 2vtvtxx+ v2

t

we have

2

∫ 1

0

vtvxtxdx =

∫ 1

0

(v2
t x)xdx−

∫ 1

0

v2
t dx = v2

t (t, 1)−
∫ 1

0

v2
t dx ,

leading to
∣∣∣∣∣

∫ T

0

∫ 1

0

vtvxtxdxdt

∣∣∣∣∣ = 1
2

∣∣∣∣∣

∫ T

0

∫ 1

0

v2
t dxdt

∣∣∣∣∣ ≤
(

1 +

√
αβ

c

)2

TE(T ) .

Next we get
∣∣∣∣∣

∫ T

0

∫ 1

0

vxtψxdxdt

∣∣∣∣∣ =

∣∣∣∣∣

∫ T

0

([
vtψx

]1
x=0
−
∫ 1

0

vt(ψxx+ ψ)dx

)
dt

∣∣∣∣∣

≤
∣∣∣∣∣

∫ T

0

∫ 1

0

vtψxxdxdt

∣∣∣∣∣+

∣∣∣∣∣

∫ T

0

∫ 1

0

vtψdx

∣∣∣∣∣

≤
(∫ T

0

∫ 1

0

v2
t dxdt

)1/2(∫ T

0

∫ 1

0

ψ2
xdxdt

)1/2

+

(∫ T

0

∫ 1

0

v2
t dxdt

)1/2(∫ T

0

∫ 1

0

ψ2dxdt

)1/2

≤
√

2T

(
1 +

√
αβ

c

)( √
α

c
√
βν

+

√
2αT

c
√
β

)
E(T ) .

We can finally collect all the bounds and turn (A.11) into

∫ T

0

v2
x(t, 1)dt ≤ 2

c2

[
T +

4

c2
+ T

(
1 +

√
αβ

c

)2

+

√
2αβT

c

(
1 +

√
αβ

c

)(
1√
ν

+
√

2T

)]
E(T )

≤ max

{
1

c2
, 1,

β

α

}[√
2αβT

c

(
1 +

√
αβ

c

)(
1√
ν

+
√

2T

)

+
4

c2
+ T + T

(
1 +

√
αβ

c

)2
]
∥∥(v0, v1, ψ0)

∥∥2
eH ,

which is the type of bound we wanted to show.
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Detail 9

Compact Sequence Embedding

Let `2 be the set of sequences 〈ak〉∞k=1 for which ‖〈ak〉‖2 <∞, where

‖〈ak〉‖22 = 〈〈ak〉, 〈ak〉〉, 〈〈ak〉, 〈bk〉〉 =
∞∑

k=1

akbk .

Let similarly `2,p, for p ∈ R, be the set of sequences 〈ak〉∞k=1 for which ‖〈ak〉‖2,p <∞,
where

‖〈ak〉‖22,p = ‖〈ak/kp〉‖22 =

∞∑

k=1

∣∣∣ak
kp

∣∣∣
2

.

Theorem. The map T : `2 7→ `2,p with p > 0, defined as T
(
〈ak〉

)
= 〈ak〉, is

compact.

Proof. Consider a sequence of `2 sequences 〈ank 〉∞k=1 that converges weakly to the
sequence 〈ak〉∞k=1 in `2. This means that

〈〈ank 〉, 〈bk〉〉 → 〈〈ak〉, 〈bk〉〉 for n→∞ ,

for all sequences 〈bk〉∞k=1 ∈ `2. We will now show that this sequence converges
strongly in `2,p. Consider

∥∥〈ank 〉 − 〈ak〉
∥∥2

2,p
=
∞∑

k=1

|ank − ak|2
k2p

=

N0∑

k=1

|ank − ak|2
k2p

+
∞∑

k=N0+1

|ank − ak|2
k2p

≤ max
1≤k≤N0

|ank − ak|2
N0∑

k=1

1

k2p
+

2

(N0 + 1)2p

( ∞∑

k=1

|ank |2 +

∞∑

k=1

|ak|2
)

= I ′N0
+ I ′′N0

,

where N0 ∈ N is some constant. Consider now I ′′N0
. The terms in the parentheses

are bounded since the `2-norm of 〈ak〉 is bounded by assumption, and 〈ank 〉 is
uniformly bounded in `2 since

‖〈ank 〉‖2 = sup
〈bk〉∈`2

|〈〈ank 〉, 〈bk〉〉|
‖〈bk〉‖2

→ sup
〈bk〉∈`2

|〈〈ak〉, 〈bk〉〉|
‖〈bk〉‖2

= ‖〈ak〉‖2 .

We now choose N0 such that I ′′N0
≤ ε/2. Note that this choice can be made

independently of n. Since I ′N0
consists of finitely many terms, its size can be made

I ′N0
≤ ε/2 by choosing n large enough.
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Notation

Although we agree with the importance of the distinction,
we shall not adopt these terms.

— Renardy and Rogers (1993)

We write matrices using boldface upper case letters, e.g., A. Vectors are written
with boldface lower case letters. A vector v ∈ Rn should be regarded as a single-
column matrix, such that Av and vTA make sense when A is an appropriately
sized matrix.

References to vector elements are done using parentheses, e.g., for a vector v
we write v(i) to refer to the i’th element of v. Similar for matrices, e.g., A(i, j).

Differentiation of a function f of one variable is written f ′. Partial derivatives
are written using subscripts, e.g., uxx = ∂2u/∂x2 and utx = ∂2u/∂t∂x. We use
dots as short-hand for differentiation with respect to time, e.g., u̇ = ut and v̈ = vtt.
Normal derivatives are written as ∂/∂n. If, e.g., f ∈ H1

0 (Ω) and x ∈ ∂Ω, then
∂f(x)/∂n = ∇f(x) · n, where n is a unit vector, perpendicular to ∂Ω and pointing
outwards.

All Hilbert spaces are assumed to be real and separable, unless explicitly noted
otherwise.

Sequences will be written using angle-brackets. For instance, we will write
〈ak〉∞k=1 as short-hand for the sequence a1, a2, . . . (this convention was adopted
from The Art of Computer Programming by Donald E. Knuth).

The following two pages contain an overview of the most common notation used
in this thesis.



196 B. Notation

Symbolism Meaning Defined

∑′
Summation where the first and last terms are weighed
with 1/2, the rest are weighed with 1 as normal.

Page 72

′ For a Hilbert space H , H ′ is the dual space, the
Hilbert space of functionals H 7→ C.

Page 10

∗ Adjoint operator. For a linear and bounded operator
F : S1 7→ S2, where S1 and S2 are Hilbert spaces, we
have F ∗ : S′2 7→ S′1 is the linear and bounded operator
for which 〈x, F ∗y〉S1×S′1 = 〈Fx, y〉S2×S′2 for all
(x, y) ∈ S1 × S′2.

Page 10

T For a real matrix X we have XT (i, j) = X(j, i). Page 11

For a set S, S is the closure of S in an appropriate
topology.

Page 15

For a complex number z, z is the complex conjugate. Page 44

〈 , 〉 For vectors u and v we have 〈u,v〉 = uTv. Page 34

〈 , 〉C For vectors u and v we have 〈u,v〉C = uTCv. Eq. (3.3)

〈 , 〉 For f, g ∈ L2(Ω) we have 〈f, g〉 =
∫

Ω f(x)g(x)dx.

〈 , 〉H′×H For (f, g) ∈ H ′ ×H we have 〈f, g〉H′×H = f(g).

| a | b ⇔ a divides b. Eq. (3.8)

- a - b ⇔ a does not divide b. Page 37

∂ ∂Ω denotes the boundary of Ω. Sec. 2.1

δij Kronecker delta, δij is equal to 1 if i = j and 0
otherwise.

Page 33

∆ The Laplace operator, the sum of second derivatives
in each space direction.

Eq. (2.26)

∆t Step size in the time direction. Page 40

Γ Boundary of Ω, Γ = ∂Ω. Sec. 2.1

Γ0 Control boundary, Γ0 ⊂ Γ. Sec. 2.1

ΛT Controllability operator. Eq. (2.23)

Ω Open and bounded subset of Rd, d ∈ N. Sec. 2.1

Σ Time–boundary cylinder, Σ = (0, T )× Γ. Sec. 2.1

Σ0 Time–control boundary cylinder, Σ0 = (0, T )× Γ0. Sec. 2.1

A, C C−1A approximates the Laplacian, ∆. Sec. 3.1

A, C Used for first order ODEs, e.g., Cv̇(t) = Av(t). Eq. (3.11)

B Discrete control operator, e.g., Cv̇(t) = Av(t) +Bk(t). Eq. (4.1)
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Symbolism Meaning Defined

C( ; ) C(S1;S2) is the space of continuous functions from S1

to S2.

C The complex numbers.

diag( ) diag(x1, . . . , xn) is an n× n diagonal matrix with
entries x1, x2, . . . , xn along the diagonal.

Eq. (3.16)

h Grid size for uniformly spaced grids; in 1D we usually
have h = 1/(N + 1).

Page 32

H Dual space of H ′. Sec. 2.1.1

H ′ Hilbert space in which solutions of a control system is
well posed.

Sec. 2.1

H̃ Hilbert space in which solutions of an adjoint system
is well posed.

Sec. 2.1.1

H̃ ′ The dual space of H̃ . Sec. 2.1.1

H1
0 ( ) f ∈ H1

0 (Ω) if and only if f, fx1 , . . . , fxd ∈ L2(Ω) and
f(∂Ω) = 0.

H−1( ) H−1(Ω) is the dual space of H1
0 (Ω).

Im z Imaginary part of the complex number z. Page 146

ker For a linear operator F : S1 → S2 we have
kerF = {x ∈ S1 | F (x) = 0}.

`2 Space of square summable sequences; 〈ak〉∞k=1 ∈ `2 if
and only if

∑∞
k=1 |ak|2 <∞.

Page 75

L2( ) For a set S we have f ∈ L2(S) if and only if∫
S
|f(x)|2dx <∞.

N Dimension of space used for space discretization. Page 32

N The natural numbers, 1, 2, . . . .

O( ) Big-oh; f(h) = O(g(h)) means that |f(h)| ≤ C|g(h)|
for some C > 0 and |h| sufficiently small.

Q Time-space cylinder, Q = (0, T )× Ω. Sec. 2.1

R The real numbers.

rank Matrix rank; rankA is the maximal number of linear
independent rows or columns of the matrix A.

Re z Real part of the complex number z. Page 40

T Time available for control. Sec. 2.1

Z The integers, . . . ,−2,−1, 0, 1, 2, . . . .
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Antonio López and Enrique Zuazua. Uniform null-controllability for the one-
dimensional heat equation with rapidly oscillating periodic density. Ann. Inst.
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adaptive control, 1
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operator, 10, 13, 14, 143
system, 10, 11, 14, 87, 88, 100,
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191, 197

growth of, 11
α-discretization, 33

bang-bang control, 1
beam equation, 62, 75
bilinear form, 14, 22

positive semi-definite, 14
symmetric, 14

BLAS, 165, 166, 169
boundary

conditions, 3, 47
homogeneous Dirichlet, 33, 39,

46
inhomogeneous, 164

control, 3
Dirichlet, 94, 99, 111

operator, 10, 88
complementary, 12, 86, 88, 100,

112
box method, 33, 45, 124

C, 164, 169
Cauchy-Schwartz inequality, 191
CG algorithm, 28, 109, 137, 171
Cholesky factorization, 74
coercive functional, 16, 17
column-stacked, 161
compact embedding, 154
computational molecule, 58

computational stencil, 58, 161

condition number, 169
consistency of discretization, 48, 126

contour plot, 55
control

boundary, 9, 14, 138
Dirichlet, 30

function, 10

HUM, 22, 28
internal, 142

Neumann, 30, 102
null-space, 120–123

region, 142
Robin, 102

system, 10, 99, 111, 117, 124, 129,
141, 161, 197

time, 61, 112, 138

controllability
approximate, 14, 16, 30

of projection, 26
exact, 1, 15, 20, 28, 30, 129, 171

of projection, 27

of reversible system, 30
null-, 4, 15, 19, 25, 28, 30, 99,

104, 142, 153, 172
of projection, 27

operator, 22, 64, 83, 90, 103, 114,
162, 168, 169, 187

matrix representation, 83

reversed, 24, 25, 162
convergence, 31

of controls, 75, 136
of discretization, 47, 125

convex functional, 16
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D’Alembert’s formula, 117
DGEMM, 165
diagonalization, 37, 38, 41, 130
direct inequality, 12, 80, 138
direct method, 84, 85, 103, 162
discretization, 5, 31

semi-, 49, 105
dispersion relation, 49, 50, 52, 53, 55
distributed memory, 168
distributed parameter system, 9
double, 164
DSYRK, 166
dual space, 10, 197
duality pairing, 11, 143

eigenvalue stability, 40, 42, 47
eigenvector

generalized, 149, 150, 156
embarrassingly parallel, 168
energy of system, 39, 100, 144

FEM, 32
mixed, 137

finite difference scheme, 33, 55
flop, 164, 165, 167
Fourier transform, 77
Fredholm’s alternative, 155
frequency, 49

GCC, 138
Green’s formula, 12
Green’s theorem, 94
grid, 167

aliasing, 36
group velocity, 49, 53

hat function basis, 33
heat equation, 4, 87, 99
Hilbert space, 10
HUM, 5, 21, 22, 159, 175
hyperbolic systems, 41

ill-posed problem
discrete, 137, 172

implicit differentiation, 53
implicit function theorem, 146

implicit one-step scheme, 44
Ingham’s theorem, 75, 116

parabolic version of, 77, 105, 107,
153, 177

time discrete, 80
inner product method, 84, 85, 104,

115, 163
inverse inequality, 21, 78, 134, 138
inverse problem, 30

Kadec, 76
Kronecker delta, 196
Krylov subspace method, 171

LAPACK, 169
Laplacian, the, 33, 34, 46, 49, 86, 124,

145, 196
Lax equivalence theorem, 48, 125
least squares problem, 123
limit operator, 86

mass matrix, 32
Matlab, 161
mean value theorem, 107
memory usage, 164, 165, 167

asymptotic, 168
method of lines, 40, 47
midpoint rule, 40, 41, 50
minimal L2-norm control, 3, 20, 22,

27, 28
minimization of functional, 16
multigrid method, 137
multiplier, 91, 101, 138, 144, 191

observability
inequality, 19, 21, 28, 75, 83, 104,

116, 138, 151, 153, 156, 172,
175

uniform, 61, 74, 75, 108, 109, 136,
171, 176, 177

observability inequality, 30
observability1inequality, 106
odd extension, 117
ODE, 1, 38, 186

solution method, 40, 47
one-step scheme, 41
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operator
boundedness, 87, 90
norm, 88
projection, 89

order of accuracy, 48
orthogonal projection, 149

parallel implementation, 168
PDE, 1, 9
phase speed, 49
Poisson problem, 31
Poisson summation formula, 77
preconditioning, 169
projection operator, 149

reflection, method of, 117
regularization, 29

method, 109, 137, 173
residual, 29
RHUM, 25
Riesz basis, 76, 149, 150
Riesz canonical isometries, 11
Riesz representation theorem, 27
rounding errors, 169

second order centered difference, 43,
53

second order system, 33, 39, 41, 43–
46

semigroup, strongly continuous, 10,
11

shared memory, 169
spectral projection, 136
speed-up, 168
stability

of discretization, 126
region, 40, 44

stability of discretizatin, 48
stiffness matrix, 32
SUR method, 118

Taylor expansion, 32, 59, 128
time step, 196
time usage, 164

asymptotic, 168
Toeplitz matrix, 33

trapezoid rule, 33, 40, 44, 45, 52, 58,
124, 160

triangular matrix, 164, 171
tridiagonal matrix, 33
truncated singular value decomposi-

tion, 137
two-grid method, 137

unique continuation, 14, 16
unique minimizer, 17

wave equation, 3, 5, 39, 46, 49, 53,
88, 159, 171

in 2D, 55
wave number, 49
wave propagation, 3, 5, 53
well-posedness, 47

of adjoint system, 100, 144, 197
of control system, 13, 101, 144,

197
of heat equation, 99
of linear system of thermoelastic-

ity, 142
of wave equation, 46


