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Abstract

This collection of Matlab software supplements and complements the package UTV Tools
from 1999, and includes implementations of special-purpose rank-revealing algorithms devel-
oped since the publication of the original package. We provide algorithms for computing
and modifying symmetric rank-revealing VSV decompositions, we expand the algorithms for
the ULLV decomposition of a matrix pair to handle interference-type problems with a rank-
deficient covariance matrix, and we provide a robust and reliable Lanczos algorithm which
– despite its simplicity – is able to capture all the dominant singular values of a sparse or
structured matrix. These new algorithms have applications in signal processing, optimization
and LSI information retrieval. The corresponding manuscript is:

• R. D. Fierro and P. C. Hansen, UTV Expansion Pack: Special-Purpose Rank-Revealing
Algorithms, submitted to Numerical Algorithms.
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1. Introduction

The Matlab package UTV Tools [5] from 1999 provides a collection of algorithms for com-
puting and modifying (i.e., up- and downdating) rank-revealing decompositions of general
matrices. These decompositions have many applications in signal processing, where they are
used as fast and reliable alternatives [9], [20] to the versatile but computationally expensive
and hard-to-update singular value decomposition (SVD).

Since the publication of UTV Tools more work has been done in the area of rank-revealing
decompositions and algorithms. This work is motivated by the interest in using specialized
rank-revealing algorithms, designed to take advantage of the underlying structure of the prob-
lem in consideration. The present package provides Matlab implementations of some of these
newly developed algorithms, with emphasis on algorithms that expand the application areas
of the original package (hence the name of the new package). Similar to the first package, the
routines in this package can be considered as templates for more specialized implementations,
perhaps in other computer languages, that can exploit the computer hardware.

Symmetric rank-revealing VSV decompositions for semidefinite and indefinite matrices
were developed in [13] and [16] to provide algorithms and decompositions that take into ac-
count the symmetry of the matrix. Compared to the general UTV decompositions, the VSV
decompositions lead to savings in computer time as well as advantages in the approximation
properties of reduced-rank matrix approximations derived from the symmetric decomposi-
tions. The rank and subspace information provided by the VSV decompositions have appli-
cations, e.g., in deflation methods for solving block-structured symmetric indefinite systems
[7] arising in optimization algorithms and PDE solvers.

The rank-revealing ULLV decomposition was originally developed for revealing the rank
of a matrix quotient, defined as the product of one matrix and the pseudoinverse of another
matrix, and with applications in noise reduction problems with broadband noise where the
noise covariance matrix has full rank. When the noise covariance matrix is rank deficient
(which is the case for interference or narrow-band noise) then the correct matrix quotient
involves a weighted pseudoinverse [10], and the corresponding ULLV decomposition must
reflect this. The most convenient way to deal with the full-rank and the rank deficient cases
is to provide two different ULLV algorithms for the two variations of the decomposition.

While rank-revealing decompositions are convenient tools for dense matrices, they may
be less suited for large sparse or structured matrices. For this reason we also provide a
Lanczos algorithm for computing the dominant singular triplets of a matrix. Our algorithm
demonstrates that if such an algorithm is based on complete reorthogonalization and ex-
plicit restarts, then the code need not be very complicated. The core of our implementation
requires less than 100 lines of Matlab code, has a simple structure, and is thus suited for
implementation on dedicated hardware platforms (in contrast to many other sophisticated –
and much more general – implementations in mathematical software libraries).

In addition to the above algorithms, and for completeness, we provide implementations
of a few simple and “heuristic” algorithms which will often reveal the numerical rank, but
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without the safety (and slight overhead) of a genuine rank-revealing algorithm.
Finally we provide a few scripts that demonstrate the use of our functions in connection

with rank-deficient KKT systems in optimization, noise and interference reduction in signal
processing, and signal extraction in NMR signals.

In the following sections we summarize the algorithms, giving new theory where it is
needed. We conclude with a few numerical examples and an overview of the new package.
Throughout the paper, the norm ‖ · ‖ denotes the 2-norm, while I and E denote the identity
matrix and the exchange matrix (consisting of the columns of the identity matrix in reverse
order). Moreover, L and R always denote lower and upper triangular matrices, V is always
an orthogonal matrix, and Ω is always a signature matrix. We also make use of Matlab’s
colon notation to indicate submatrices.
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2. The Symmetric VSV Decomposition

The rank-revealing VSV decomposition of a symmetric matrix was first discussed by Luk
and Qiao [16] (for Toeplitz matrices). A careful study of various algorithms based on initial
triangular factorization can be found in [13], while a study of the accuracy of approximations
based on the VSV decomposition is given in [4]

2.1. Definitions

Assume that the symmetric matrix A ∈ Rn×n has numerical rank k, i.e., there is a well-
defined gap between the kth singular value σk and the next. Then the rank-revealing VSV
decomposition of A takes the form

A = V S V T , S =
(
S11 S12

ST12 S22

)
, V = (V1 , V2 ), (2.1)

where the symmetric matrix S is partitioned such that it reveals the numerical rank of A,
i.e., the singular values of the k × k leading submatrix S11 approximate the first k singular
values of A, while the norms ‖S12‖ and ‖S22‖ of the off-diagonal and trailing blocks are both
of the order σk+1, cf. [13], [16].

The matrix V is orthogonal, and it is partitioned such that the column spaces of the two
blocks V1 and V2 are approximations to the subspaces spanned by the first k and the last
n − k right singular vectors of A, respectively. In the signal processing literature, these two
subspaces are referred to as the signal and noise subspaces. See [4] concerning the accuracy
of these approximations.

For practical purposes, we choose to compute and represent the matrix S in the factored
form

S = T TΩT, (2.2)

in which T is an upper or lower triangular matrix, and Ω is a signature matrix, i.e., a diagonal
matrix with ±1 on the diagonal, such that the inertia of A is preserved in the inertia of Ω.
If A is positive definite then Ω is the identity matrix.

For semidefinite matrices, it was found in [13] that the optimal form of T is lower tri-
angular, because this choice leads to more accurate approximations of the signal and noise
subspaces. Our package therefore includes software for computing the VSV decomposition
A = V LTLV T of a symmetric semidefinite matrix. We provide two functions hvsvsd and
lvsvsd, optimized for the high-rank case (k ≈ n) and low-rank case (k � n), respectively.

For indefinite matrices, the singular vector estimation (which is part of the VSV algo-
rithm) is simpler when T is upper triangular, while a lower triangular T provides a de-
composition that is consistent with the semidefinite case. We provide high-rank VSV al-
gorithms for both forms: the functions hvsvid L and hvsvid R compute the lower triangular
form A = V LTΩLV T and the upper triangular form A = V RTΩLRT , respectively. In the
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Low-Rank VSV Algorithm lvsvid:
1. Compute A = V LTΩLV T and let k ← 1.
2. Condition estimation: let σ̃k estimate ‖L(k:n, k:n)TΩ(k:n, k:n)L(k:n, k:n)‖

and let wk estimate the corresponding right singular vector.
3. If σ̃k < τ then k ← k − 1, exit.
4. Revealment: determine orthogonal Pk such that PTk wk = (1, 0, . . . , 0)T ;
5. update L(k:n, k:n)← L(k:n, k:n)Pk and V (:, k:n)← V (:, k:n)Pk;
6. update L(k:n, k:n)← QTk L(k:n, k:n), Ω(k:n, k:n)← QTk Ω(k:n, k:n)Qk,

where the hypernormal Qk ensures that the updated L is triangular.
7. Deflation: let k ← k + 1.
8. Go to step 2.

High-Rank VSV Algorithms hvsvid T with T = L or R:
1. Compute A = V TTΩT V T and let k ← 1.
2. Condition estimation: let σ̃k estimate σmin

(
T (1:k, 1:k)TΩ(1:k, 1:k)T (1:k, 1:k)

)
and let wk estimate the corresponding right singular vector.

3. If σ̃k > τ then exit.
4. Revealment: determine orthogonal Pk such that PTk wk = (0, . . . , 0, 1)T ;
5. update T (1:k, 1:k)← T (1:k, 1:k)Pk and V (:, 1:k)← V (:, 1:k)Pk;
6. update T (1:k, 1:k)← QTk T (1:k, 1:k) and Ω(1:k, 1:k)← QTk Ω(1:k, 1:k)Qk,

where the hypernormal Qk ensures that the updated T is triangular.
7. Deflation: let k ← k − 1.
8. Go to step 2.

Figure 2.1: The VSV algorithms for symmetric indefinite matrices.

low-rank case the dilemma vanishes, and the function lvsvid computes the lower triangular
form.

An alternative, but more expensive, approach to computing a high-rank indefinite VSV
decomposition with a lower triangular T is to first compute the upper triangular form A =
V RTΩRV T and then compute the QR factorization RT = QLT which yields the lower
triangular form A = (V Q)LTΩL (V Q)T . This approach is easy to implement using Matlab’s
qr function, but it is more expensive and therefore we do not provide an implementation.

2.2. Algorithms

The generic algorithm for computing the VSV decomposition of a symmetric semidefinite
matrix is quite simple, because the singular values of T are the square roots of the singu-
lar values of A when Ω = I. First we compute the symmetrically pivoted Cholesky fac-
torization ΠAΠT = C

T
C (we use rook pivoting as implemented in [14]), followed by the

computation of the rank-revealing ULV decomposition E C E = Û L V̂ T (using high-rank
and low-rank functions from UTV Tools). As a result, we obtain the desired decomposition
A = (ΠV̂ )L TL (ΠV̂ )T .

The generic algorithm for indefinite matrices starts with a symmetrically pivoted LDLT

factorization ΠAΠT = LDL
T , using the rook pivoting implemented in [14]. Next, the middle

block diagonal matrix D is replaced by the signature matrix, LDL
T = Ŵ L̂ Ω̂ L̂T Ŵ T , where

Ŵ is an orthogonal block diagonal matrix with 1 × 1 and 2 × 2 blocks on the diagonal; see
§4.2 in [13].
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Finally we reveal the rank of the product L̂ Ω̂ L̂T , by “peeling off” the small or large
singular values one at a time. Our algorithms take basis in the following two reformulations
and partitionings with R = L̂T, L = E L̂TE and Ω = E Ω̂E:

RT Ω̂R =
(
RT11 0
RT12 RT22

)(
Ω̂1 0
0 Ω̂2

)(
R11 R12

0 R22

)

=
(
RT11Ω̂1R11 RT11Ω̂1R12

RT12Ω̂1R11 RT12Ω̂1R12 +RT22Ω̂2R22

)
(2.3)

LTΩL =
(
LT11 LT21

0 LT22

)(
Ω1 0
0 Ω2

)(
L11 0
L21 L22

)

=
(
LT11Ω1L11 + LT21Ω2L21 LT21Ω2L22

LT22Ω2L21 LT22Ω2L22

)
. (2.4)

The indefinite VSV algorithms are summarized in Fig. 2.1. Following the ideas from [3]
in the low-rank case, we can now determined orthogonal transformations such that they,
when applied symmetrically to LTΩL, ensure that the singular values of the (1,1)-block in
(2.4) approximate the largest singular values of A. The construction of these transformations
involves the computation of the largest singular value and corresponding right singular vector
of the submatrix LT22Ω2L22, and the user can choose between power iterations and the Lanczos
method. At the same time, hypernormal rotations are used to maintain the triangular form
of L.

In the high-rank case we follow the ideas from [16] and construct orthogonal transforma-
tions which ensure that the smallest singular values of A are revealed in the (2,2)-block in
(2.3) and (2.4). This involves the computation of the smallest singular value and correspond-
ing right singular vector of the (1,1)-block. In the upper triangular case (2.3) this is done by
means of inverse iterations applied to the submatrix RT11Ω̂1R12.

In the lower triangular case (2.4), however, it is impractical to apply inverse iterations
to the submatrix LT11Ω1L11 +LT21Ω2L21 because we do not have a useful factorization of this
matrix. The inverse iterations are much easier to use when we can ignore the second term,
but unfortunately this is not always the case: according to Thm. 4.3 in [13] ‖LT21Ω2L22‖ and
‖LT22Ω2L22‖ are guaranteed to be small, but this does not imply that ‖LT21Ω2L21‖ is small.
Our solution is to apply a single step of block QR refinement to L, as described below; this
ensures that the norm ‖L21‖ of the off-diagonal block in L is always small.

2.3. Hypernormal Rotations and Their Break-Down

Hypernormal transformations are introduced in [2], and their use in our VSV algorithms
is discussed in [13]. The “building blocks” of hypernormal transformations are Givens and
hyperbolic rotations, the latter performing the transformation (for |α| > |β|):

(
c −s
−s c

)(
α
β

)
=
(

(α2 − β2)1/2

0

)

where c2− s2 = 1. The hyperbolic transformation is not defined when |α| = |β|, and it is has
large elements |α| and |β| when |α| is close to |β|.

In our algorithms, the hyperbolic transformations are used to annihilate fill in the tri-
angular matrix during the revealment steps (see Fig. 2.1). Consider the following situation,
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where a right Givens rotation has introduced a nonzero element “∗” in position (i+ 1, i):

× × × × × ×
× × × × ×

i → × × × ×
i+ 1 → ∗ × × ×

× ×
×

If the fill satisfies |ri+1,i| ≈ |rii| then we introduce large elements in the updated R which
cancel in the product RTΩR; an undesirable situation in numerical computations. Our
remedy is to detect this situation and resort to a “fix.” When ||ri+1,i| − |rii|| < 10−5‖R(i: i+
1, i: i+1)‖, we perform a cyclic permutation of columns i through i+ 2, leading to the form

× × × × × ×
× × × × ×

i → × × × ×
i+ 1 → × × ∗ ×

× ×
×

after which we use hypernormal transformations to annihilate the two elements below the
diagonal in columns i and i+ 1. We then return to the condition estimation step and restart
the revealment process. If we only permuted columns i and i + 1 then the difficulty would
arise again in the restarted revealment step.

2.4. Block QR Refinement

In analogy with block QR refinement of UTV decompositions, we can apply a similar al-
gorithm to the VSV decompositions in order to reduce the norm of the off-diagonal blocks.
We discuss the algorithm for the upper triangular version only; the algorithm for the lower
triangular version is practically the same.

Given R partitioned as in (2.3) we first apply a sequence of right orthogonal transforma-
tions to annihilate the submatrix R12, thus filling out the elements in the (2,1)-block. These
elements, in turn, are annihilated by means of left hypernormal transformations which create
new elements in the (1,2)-block.

We now justify this approach when applied to S = RTΩR. Let R = LBQB where LB
is lower block triangular and QB is orthogonal; then S = (RTΩLB)QB and a block QR
step consists of formally forming the product SB ≡ QB(RTΩLB) = LTBΩLB. Next, let
LB = HBRB where RB is upper triangular and HB is hypernormal with HT

BΩHB = ΩB (in
which ΩB is a new signature matrix). Inserting this we obtain SB = RTBΩBRB, showing that
the new factors RB and ΩB indeed correspond to performing a block QR step on S.

The block QR refinement is implemented in the function vsv qrit which determines whether
it is applied to a semidefinite or an indefinite matrix and, in the latter case, whether it is
applied to the L or R version.

2.5. Rank-One Modifications

We also provide algorithms for rank-one modifications of the form

A′ = A+ ω v vT , (2.5)
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where ω = ±1 and v a vector. Equation (2.5) can be recast as

A′ = V

(
T
vTV

)T (Ω 0
0 ω

)(
T
vTV

)
V T .

When A is semidefinite and ω = 1, the updating is equivalent to a rank-one update of the
ULV decomposition where the numerical rank cannot decrease. The updating is implemented
in function vsvsd up and uses functions from UTV Tools.

When ω = −1 or when A is indefinite then the numerical rank of A′ can stay the same,
or it can increase or decrease by one. Then the updated factors are computed by apply-
ing left hypernormal rotations to annihilate the row vTV . This modification algorithm is
implemented in the two functions vsvid L mod and vsvid R mod.

For efficiency reasons one should avoid to apply the rank-revealing post processing to the
full S matrix. We partition vTV = dT = (dT1 , d

T
2 ) according to (2.3) and apply right Givens

rotations G such that
dT2 G

T = eT2 = (‖d2‖, 0, . . . , 0)T .

At the same time we apply left hypernormal rotations H to maintain the triangular form of
the (2,2)-block. Introducing R′12 = R12G, R′22 = HTR22G and Ω′2 = HTΩ2H, we now have

V TA′ V =
(
I 0
0 G

)

R11 R′12

0 R′22

dT1 eT2



T


Ω1 0 0
0 Ω′2 0
0 0 ω





R11 R′12

0 R′22

dT1 eT2



(
I 0
0 G

)T

=
(

RT11Ω1R11 RT11Ω1R12G+ ωd1e
T
2

GTRT12Ω1R11 + ωe2d
T
1 GT (RT12Ω1R12 +RT22Ω2R22)G+ ωe2e

T
2

)
.

Since S = RTΩR reveals the rank ofA, we know that both norms ‖RT11Ω1R12G‖= ‖RT11Ω1R12‖
and ‖GT (RT12Ω1R12 +RT22Ω2R22)G‖ = ‖RT12Ω1R12 +RT22Ω2R22‖ are small. Hence, due to the
structure of d1e

T
2 and e2e

T
2 , it is not possible to have any elements of large magnitude in the

last n− k− 1 rows or columns of the above matrix. Therefore, once dT has been annihilated,
it suffices to reveal the rank of the leading (k+1)×(k+1) submatrix of the updated S factor.
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3. The Gap-Revealing QLP Factorization

Stewart [21] introduced the so-called QLP factorization

A = QLP T (3.1)

in which Q and P are orthogonal, and L is lower triangular. The factorization is gap revealing
in the sense that the absolute values of the diagonal elements of L often track the singular
values of A; but there is no guarantee that this is always the case. Hence, the factorization
is not rank-revealing in the strict sense used in this package.

To compute the QLP decomposition, we compute a pivoted QR factorization AΠP = QR
followed by a second pivoted QR factorizationRTΠQ = P LT , and thusA = (QΠQ)L (ΠP P )T .
For high-rank matrices, this is easy to implement with Matlab’s QR factorization, and it is
implemented in function hqlp.

For low-rank matrices, Huckaby and Chan [15] implemented an algorithm using inter-
leaved left and right Householder transformations. The algorithm essentially produces one
row of L at a time, starting from the top, and stops as soon as a gap is revealed. A this
stage, the heuristic is that if we compute the full QLP factorization then the norms of the
(2,1)- and (2,2)-blocks of L will be small. Hence we can neglect these blocks and return the
low-rank approximation

Ak = Q(: , 1:k)L(1:k, 1:k)P (: , 1:k)T , (3.2)

where the gap appears between singular values σk and σk+1. This algorithm is implemented
in function lqlp, and we emphasize that is computes the rank-k matrix approximation in (3.2),
not a full factorization.
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4. The ULLIV Decomposition

The ULLV decomposition of a matrix pair (A,B) with A ∈ Rm×n, B ∈ Rp×n was originally
defined for the case m ≥ n ≥ rank(A) and p ≥ n = rank(B) in [17]. Algorithms for computing
and modifying this decomposition are included in UTV Tools.

In certain applications, such as interference reduction [10], [12], the matrix B does not
have full column rank. This led Luk and Qiao [18] to define an alternative decomposition,
which we shall refer to as the ULLIV decomposition. Assume again that m ≥ n ≥ rank(A)
while B has full row rank, i.e., rank(B) = p < n. Then the ULLIV decomposition takes the
form

A = UA LA

(
L 0
0 I

)
V T , B = UB (L , 0 )V T (4.1)

in which I is an identity matrix of order n − p, UA ∈ Rm×n has orthonormal columns, and
UB ∈ Rp×p and V ∈ Rn×n are orthogonal. Moreover, LA ∈ Rn×n and L ∈ Rp×p are both
lower triangular.

As shown in [10], when rank(B) < n it is the matrix quotient AB†A that is required, and
whose numerical rank should be revealed. Here B†A is the A-weighted pseudoinverse of B.
Given the ULLIV decomposition (4.1) it is proved in [10] that

AB†A = UA LA(1: p, 1: p)UTB ,

showing that the leading p×p block of LA must be rank revealing. To compute such a ULLIV
decomposition, we start with the QR factorization B = (L , 0 )V T followed by the QR fac-

torization AV

(
L−1 0

0 I

)
= UA LA. Setting UB = I we thus have an initial decomposition,

which is then made rank-revealing by applying the similar steps from the ULLV algorithm to
L and UB as well as to the first p columns of LA, UA and V . This algorithm is implemented
in function ulliv.

An efficient algorithm for updating the ULLIV decomposition when a row aT is appended
to A is described in [18]. The algorithm takes its basis in the formulation

(
A
aT

)
= ŨA

(
LA
dT

)(
L 0
0 I

)
V T , B = UB (L , 0 )V T

with

ŨA =
(
UA 0
0 1

)
, dT = aTV

(
L−1 0

0 I

)
.

In the first stage, the partial row d(p+ 1:n)T is annihilated by means of left Givens rotations
which are absorbed in ŨA; these rotations maintain the small and rank-revealing elements
in LA(1:p, 1:p). In the second stage, the remaining elements of the row dT are annihilated
by interleaved right and left Givens rotations – this stage is identical to the ULLV updating
algorithm from UTV tools, and modifies UB and L as well as the first p columns of ŨA, LA
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and V . Small elements are maintained in rows k + 2 to p of LA, where k is the numerical
rank. In the third stage, which is also identical to that of ULLV updating, the numerical rank
of the updated LA(1: p, 1: p) is revealed. The complete algorithm is implemented in function
ulliv up A.

When a row bT is appended to B then we must distinguish whether the rank increases or
stays the same, because of our assumption that B has full row rank. An updating algorithm
for the former case is described in [18]; we found it convenient to augment the algorithm with
an additional stage, which simplifies the rank-revealing step. This algorithm takes its basis
in the formulation

A = UA (LA , 0 )



L 0
0 I
fT1 fT2


V T ,

(
B
bT

)
= ŨB Ĩ



L 0
0 I
fT1 fT2


V T

with

( fT1 , fT2 ) = bTV, ŨB =
(
UB 0
0 1

)
, Ĩ =

(
Ip 0 0
0 0 1

)
.

In the first stage, we use right Givens rotations to reduce the partial row fT2 to the form
(φ, 0, . . . , 0) with φ = ‖f2‖. These rotations are also applied to the columns of V , and due
to the presence of the matrix I the same rotations are propagated from the right to the last
n− p columns of LA. The resulting fill is annihilated again by means of left Givens rotations
which are absorbed in UA.

We now interchange rows p+ 1 and n+ 1 of the third factor, as well as the same columns
of the second factors. This results in factors with the structure

A = UA




×
× ×
× × ×
ε ε ε ε
ε ε ε ε ε
ε ε ε ε ε ε
× × × × × × ×
× × × × × × × ×
× × × × × × × × ×
× × × × × × × × × ×







×
× ×
× × ×
× × × ×
× × × × ×
× × × × × ×
× × × × × × ×

1
1

1
1




V T

(
B
bT

)
= ŨB

(
Ip+1 0

0 0

)




×
× ×
× × ×
× × × ×
× × × × ×
× × × × × ×
× × × × × × ×

1
1

1
1




V T .

Note the zero column and the spike in the second factor of A. The ε symbols represent rows
k+1, . . . , p with small elements that reveal the numerical rank k. In order to maintain as many
small elements as possible in LA we augment the Luk-Qiao algorithm by first performing a
cyclic downshift of rows k+ 1 through p+ 1, and then we annihilate the resulting horizontal
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spike in row k + 1 by means of right Givens rotations:



×
× ×
× × ×
ε ε ε ε
ε ε ε ε ε
ε ε ε ε ε ε
× × × × × × ×
× × × × × × × ×
× × × × × × × × ×
× × × × × × × × × ×



→




×
× ×
× × ×
× × × × × × ×
ε ε ε ε
ε ε ε ε ε
ε ε ε ε ε ε
× × × × × × × ×
× × × × × × × × ×
× × × × × × × × × ×




→




×
× ×
× × ×
× × × × ×
ε ε ε ε ε
ε ε ε ε ε ε
ε ε ε ε ε ε
× × × × × × × ×
× × × × × × × × ×
× × × × × × × × × ×




When these rotations are propagated into L from the left, they create fill which is annihilated
again by means of right Givens rotations. The triangular structure of LA and L is thus
maintained, and LA has small elements in rows k + 2 through p+ 1.

The remaining steps are identical to the algorithm from [18]. The single “1” in the
bottom row of the third factor is chased to the left by interleaved swaps of neighbor columns
and Givens rotations applied to the rows to annihilate the fill. These transformations are
propagated to the left and right, and they create fill in the second factor of A which, in turn,
is annihilated with left Givens rotations. A final Givens rotation applied to rows 1 and n+ 1
annihilates the “1” in position (n + 1, 1), and a simple scaling restores the identity matrix
Ip+1.

Having thus obtained a zero bottom row in the third factor we neglect the rightmost
column of the first two factors. The result is a new factorization in which L and I have
dimensions (p+ 1)× (p+ 1) and (n− p− 1)× (n− p− 1), respectively. Finally we reveal the
rank of the updated LA(1: p+ 1, 1: p+ 1) by at most two rank-revealing steps. The complete
algorithm is implemented in function ulliv up B.

If the rank of B is known to stay the same after the updating, then the algorithm should
accommodate this fact. Ideally, the element φ in the reduced fT2 should be zero, or very small.
When this is the case, it is simple to annihilate fT1 by means of strategic Givens rotations.
Otherwise it is required to apply a ULV rank-revealing step to the (p+ 1)× (p+ 1) matrix

(
L 0
fT1 φ

)
.

This step is guaranteed to produce small elements in the bottom row which can therefore
safely be neglected. When applied to the full third factor, a single fill is created in position
(p+ 1, p), and we can use strategic Givens rotations to chase this element to the left. In both
cases the resulting UB has dimensions (p + 1) × p, and thus neither the updated B nor the
updated UB conform to our requirements of the ULLIV decomposition. We do not provide
implementations.
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5. A Lanczos Algorithm with

Reorthogonalization and Restarts

We now describe our Lanczos-based routine lsvdrr for computing the largest p singular values
σi and associated right singular vectors vi of a matrix A. Our algorithm uses full reorthog-
onalization and explicit restarts, and it is based on the work in [6] with modifications that
make it more reliable and possibly faster.

If we apply k steps of the Lanczos algorithm [8, §§9.1–2] to the matrix ATA (by first
multiplying with A and then by AT ), cf. Fig. 5.1, then in exact arithmetic we produce an
n× k matrix Vk with orthonormal columns, and a k × k symmetric semidefinite tridiagonal
matrix Tk, such that AVk = Vk Tk. Then it is well known that some of the large eigenvalues
of Tk will approximate some of the large eigenvalues of ATA. Since these eigenvalues are the
squares of the singular values of A, we thus have a basic procedure for iteratively computing
approximations to the large singular values of a matrix.

More precisely, let Tk = Sk Θk S
T
k denote the eigenvalue decomposition of Tk, and let θ(k)

i

denote these eigenvalues. Moreover, let y(k)
i denote the columns of the matrix Yk = Vk Sk.

Then (θ(k)
i , y

(k)
i ) are called the Ritz pairs associated with the kth step of the Lanczos process,

and some of the Ritz pairs will approximate some of the eigenpairs of ATA.
Since this Lanczos algorithm is based on the implicit formation of the matrix ATA, there

is no guarantee that it can provide accurate estimates of the small singular values of A in
finite-precision computations. This does not cause a problem here, however, because our
algorithm is intended solely for the computation of the largest singular values.

A more severe difficulty with finite-precision computations in the Lanczos algorithm is that
the Lanczos vectors (the columns of Vk) lose orthogonality as the Ritz values converge. This,
in turn, leads to various difficulties with repeated and spurious eigenvalues of Tk that do not
represent approximations to eigenvalues of ATA. A number of sophisticated remedies have
been proposed for overcoming these difficulties, many of them involving partial or selective
reorthogonalizations, combined with methods for monitoring the accuracy of the Ritz values,
cf. [8, §9.2]. With the inclusion of these techniques, the Lanczos algorithm can be used as a
general-purpose method for computing, in principle, any portion of the eigenvalue spectrum
of A.

Our goal here, on the other hand, is to provide a simple Lanczos algorithm solely for
computing the largest p singular values of a matrix, suited as a basis for dedicated hardware
implementations. For this reason, we use complete reorthogonalization among the Lanczos
vectors (which takes place after step 5 in the getrtzp algorithm in Fig. 5.1). As long as p is not
large, the additional computational work involved in this approach is acceptable, the actual
code is very simple, and the storage requirements for the Lanczos vectors and the converged
Ritz vectors are known a priori.

Our stopping criterion for the Lanczos process is based on an estimate of the error
in (θ(k)

i )1/2, when considered an approximation to σj ; different indices i and j are needed
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Basic Lanczos Algorithm getrtzp:
1. Initialization: β0 ← 0; v0 ← 0; v1 ← initial vector.
2. For k = 1, . . . , `
3. w ← AT (Avk)− βk−1 vk−1;
4. Tk,k ← αk ← vTk w;
5. w ← αk vk;
6. Tk,k+1 = Tk+1,k ← βk ← ‖w‖;
7. vk+1 ← w/βk;
8. Tk = Sk Θk S

T
k (eigenvalue decomposition).

9. Use error estimates e(k)
i (5.1) to identify nc converged Ritz pairs.

Lanczos SVD Alg. w/ Reorthogonalization and Restarts lsvdrr:
1. Initialization: vinit ← AT e; ncrp ← 0; RP ← ∅ (no Ritz pairs).
2. While ncrp < k

3. use getrtzp to compute nc Ritz pairs;
4. RP ← RP ∪ {set of new Ritz pairs};
5. ncrp ← ncrp + nc;
6. vinit ← vk+1 from getrtzp.
7. For i = 1, . . . , ρ0

8. use getrtzp to compute nc Ritz pairs;
9. if necessary, swap new Ritz pair(s) with pair(s) in RP.

Figure 5.1: Top: the basic algorithm getrtzp for computing Ritz pairs of ATA. Bottom: the
complete Lanczos algorithm lsvdrr, in which e = (1, . . . , 1)T , RP is the set of converged Ritz
pairs, and ncrp is the total number of converged Ritz pairs.
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because there is no guarantee that the Ritz values converge in the “natural order.” From
Theorem 9.1.2 in [8], we know that the error σ2

j − θ(k)
i in the ith Ritz value is bounded above

as
|σ2
j − θ(k)

i | ≤ |βk ski| , i = 1, . . . , k,

where βk is the bottom off-diagonal element of Tk, and ski is the ith element of the bottom
row of Sk. If we write (θ(k)

i )1/2 = σ̃
(k)
j = σj + δ

(k)
j , then

|σ2
j − θ(k)

i | = |σj + σ̃
(k)
j | |σj − σ̃(k)

j | = |2 σ̃(k)
j − δ(k)

j | |δ(k)
j | ≈ 2 σ̃(k)

j |δ(k)
j |,

showing that the quantity

e
(k)
i = |βk ski| (θ(k)

i )−1/2 , i = 1, . . . , k (5.1)

provides an estimate of the error in σ̃
(k)
i = (θ(k)

i )1/2 considered as an approximation to a
singular value σj of A. Our criterion for accepting a Ritz value as converged is therefore

e
(k)
i < τ σmax, (5.2)

where τ is a user-specified tolerance, and σmax is an estimate of the largest singular value σ1.
From Thm. 8.1.2 in [8] we also know that if ṽ(k)

i is the approximate eigenvector associated
with θ

(k)
i then

‖ATA ṽ(k)
i − θ(k)

i ṽ
(k)
i ‖ = |βk xki| = e

(k)
i σ̃

(k)
i ,

showing that small error estimates e(k)
i guarantee small residuals. Furthermore, according

to Thm. 11.7.2 in [19], small residuals imply a small subspace angle between the subspaces
spanned by the exact and approximate eigenvectors.

Unfortunately, the number of Lanczos iterations needed to capture p singular values,
within the accuracy estimates provided by (5.1), may exceed p by a large factor. The cure
to this difficulty is to restart the Lanczos process with an initial vector that is orthogonal to
the set of converged Ritz vectors. This is easily archived in our algorithm, where the Ritz
vectors are explicitly saved.

Let ncrp denote the total number of converged Ritz pairs, and let `0 be a fixed number
greater than p, chosen by the user. Each time the Lanczos process is (re)started, we perform
` iterations. In our algorithm, one can either choose ` = `0 or ` = `0−ncrp. The latter choice,
which is default, ensures that a total of `0 Lanczos vectors are used.

When we have reached a stage where ncrp = p Ritz values θ(k)
i have converged according to

(5.2), there is no guarantee that we have computed approximations to the desired p largest
singular values. Our heuristic remedy for this difficulty is to restart the Lanczos process
additional ρ0 times, where ρ0 is a small number (the default is ρ0 = 2). Experiments in [6]
show that these additional restarts indeed improve the reliability of the algorithm, at little
extra cost.

Upon completion our algorithm lsvdrr returns approximations σ̃i and ṽi to the largest p
singular values and corresponding right singular vectors. Approximations to the left singular
vectors can then be computed as ũi = Aṽi/σ̃i, and we emphasize that these vectors are not
orthonormal. If an SVD routine is available, one can instead compute a diagonal matrix Σ̂
and two matrices Û and V̂ with orthonormal columns satisfying A V̂ = Û Σ̂, by means of the
following procedure:
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1. A (ṽ1, . . . , ṽp) = Û Σ̂ V̂ T (SVD computation),
2. V̂ ← (ṽ1, . . . , ṽp) V̂ .

More details about this approach can be found in [6], which also includes numerical results
concerning the accuracy and efficiency of the lsvdrr algorithm.
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6. Numerical Examples

We conclude with three demonstrations of the use of our package. The first example is
available in the script vsviddemo, and shows how the three routines hvsvid L, hvsvid R and
lvsvid can be used to compute symmetric indefinite VSV decompositions (2.1) of rank deficient
KKT matrices of the form

A =
(
M NT

N 0

)
.

In our test problems, M is an m×m symmetric semidefinite and rank-deficient matrix, and
N = ΘM with Θ a q×m random matrix. The resulting matrix A has dimension n = m+ q,
and it is rank deficient and symmetric indefinite.

We generate 500 test matrices, and for each matrix and each VSV decomposition we
compute the numerical rank r, the backward error ‖A − V T T ΩT V T ‖, and the subspace
angle between the numerical null space (spanned by the last n− r singular vectors of A) and
the approximate null space spanned by the last n− r columns of V . A typical example of the
results from such a test is shown in Fig. 6.1 for m = 12 and q = 2. Occasionally, the errors
are in the range 10−13–10−9, while most of the errors are less than 10−13.

The second test problem is available in the function ullivdemo and illustrates the use of
the ULLIV decomposition is noise and interference reduction. We generate a clean signal
s ∈ RN of length N = 350 consisting of a sum of 9 sinusoids with unit amplitude; see the
DFT spectrum in the top of Fig. 6.2. The noisy signal is generated by adding white noise and
an interfering signal to the clean signal; the white noise is generated by the Matlab command
0.5*randn(N,1), and the interfering signal is a sum of 16 sinusoids with amplitude 0.2. The
DFT spectrum of the noisy signal is shown in the middle of Fig.6.2.

The filtered signal is then computed by means of the subspace method described in [12].
This involves the computation of the ULLIV decomposition (4.1) of two Hankel matrices
A and B, the first being 311 × 40 and consisting of the noisy signal, and the second being
32 × 40 and representing the signal subspace of the interfering signal. From the ULLIV
decomposition and the numerical rank p we then construct the matrix

X = UA ΨLA

(
L 0
0 I

)
V T , Ψ = diag(Ip, 0).

Finally we construct the filtered signal by averaging along the antidiagonals of X. The DFT
spectrum of the filtered signal is shown in the bottom of Fig.6.2, and we see that we have
indeed reduced the interference while maintaining most of the clean signal.

In the third test problem, which is available in the script lsvdrrdemo, we compute the k
largest singular values and right singular vectors of a complex Toeplitz matrix of size 513×512
constructed from an NMR signal available as Data Set 002 at the BioSource database [1] of
MRS signals. See, e.g., [22] for an application of such computations. The computations are
performed for k = 5, 10, 15 and 20, and for each k we compare the errors in the singular
values and vectors, as well as the computing times, with those of the Matlab function svds.
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Figure 6.1: Backward errors and subspace angles for 500 KKT test problems of dimension
14× 14.
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Figure 6.2: DFT spectra of the clean, noisy and filtered signals in ullivdemo test problem.

26



0

5

10

15

20

svds run time (sec)

0

0.5

1

lsvdrr run time (sec)

  5 10 15 20   

10
−13

10
−12

Max error in singular values

p
  5 10 15 20   

10
−14

10
−12

10
−10

10
−8

Subspace angle

p

svds
lsvdrr

Figure 6.3: Computing times and errors for the largest k singular values and right singular
vectors, computed by means of our Lanczos algorithm lsvdrr as well as Matlab’s Lanczos
algorithm implemented in the svds function. The bottom left figure reports max |σi − σ̃i|,
i = 1, . . . , p, while the bottom right figure reports the subspace angle between the subspaces
spanned by the dominant p right singular vectors and the approximations ṽi, . . . , ṽp.

We used the tolerance τ = 10−10 in the convergence criterion (5.2), and the matrix-vector
multiplications with the Toeplitz matrix are done via Matlab’s fft function. Figure 6.3 shows
that for this test problem (using a 1.4 GHz Pentium), lsvdrr computes accurate singular
values and right singular vectors faster than the general-purpose Lanczos routine svds. For
comparison, Matlab’s dense SVD routine computed all the singular values and right singular
vectors in 8.5 seconds.
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7. Overview of Routines

Demo Functions and Solvers
lsvdrrdemo Demonstrates the use of the restarted Lanczos algorithm

implemented in lsvdrr and applied to NMR data from [1]
tvsv Solves a symmetric num. rank-deficient system of equations
ullivdemo Demonstrates the use of the high-rank ULLIV algorithm ulliv,

applied to noise and interference reduction
vsviddemo Demonstrates the use of the indefinite VSV algorithms hvsvid L,

hvsvid R and lvsvid applied to symmetric indefinite KKT systems

Rank-Revealing Symmetric VSV Algorithms
hvsvid L High-rank algorithm for indefinite matrix, L version
hvsvid R High-rank algorithm for indefinite matrix, R version
hvsvsd High-rank algorithm for semidefinite matrix
lvsvid Low-rank algorithm for indefinite matrix
lvsvsd Low-rank algorithm for semidefinite matrix
vsv qrit Block QR refinement of VSV decomposition

VSV Up- and Downdating
vsvid L mod Rank-one modification of indefinite matrix, L version
vsvid R mod Rank-one modification of indefinite matrix, R version
vsvsd up Rank-one update of semidefinite matrix

QLP Algorithms
hqlp High-rank gap-revealing QLP factorization
lqlp QLP matrix approximation of a low-rank matrix

ULLIV Algorithms for a Matrix Pair (A,B)
ulliv Rank-revealing ULLIV decomposition, B has full row rank
ulliv up A Rank-one update of the A matrix
ulliv up B Rank-one update of the B matrix (rank increases)

Lanczos Algorithm with Reorthogonalization and Restarts
getrtzp Computation of Ritz pairs
lsvdrr Driver routine for Lanczos algorithm
tprod Toeplitz matrix-vector multiplication using FFT
tprodinit Initialization routine for tprod
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Misc. Tools
agl5 Ashcraft-Grimes-Lewis 5× 5 test matrix for LDLT factorization
app hyp Apply a stabilized hyperbolic rotation
app qrot Apply a quadratic rotation
csi-10-10 Mat-file with NMR data for lsvdrrdemo
gen hyp Generate a stabilized hyperbolic rotation
gen qrot Generate a quadratic rotation
hvsvid cdef Column deflation of upper triang. matrix in indef. VSV decomp.
hvsvid rdef Row deflation of lower triang. matrix in indef. VSV decomp.
lvsvid cdef Column deflation of lower triang. matrix in indef. VSV decomp.
TOTinviter Inverse iterations applied to T TΩT
TOTlanczos Lanczos method applied to T TΩT
TOTpowiter Power iterations applied to T TΩT
vsvid ip Interim processor for indefinite VSV decomposition

Two routines from the Matrix Computation Toolbox [14]
cholp Pivoted Cholesky factorization
ldlt symm LDLT factorization with symmetric or rook pivoting
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agl5

Purpose
Ashcraft-Grimes-Lewis 5-times-5 test problem for LDLT factorization

Synopsis
[A,L,D] = agl5

Description
Generates a 5-times-5 test problem for the LDLT factorization, such that L has a large
entry when partial pivoting (Bunch-Kaufman) is used.

References

[1] C. Ashcraft, R.G. Grimes and J.G. Lewis, “Accurate symmetric indefinite linear
equation solvers,” SIAM J. Matrix Anal. Appl., 20 (1999), pp. 513-561.
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app hyp

Purpose
Apply a stabilized hyperbolic rotation (left/right).

Synopsis
[u1,u2] = app hyp(v1,v2,c,s,sgn)

Description
Apply a stabilized hyperbolic rotation, defined by the parameters c and s, from the left
to the row vectors v1 and v2 such that

[u1] = [ ch -sh ] [v1]
[u2] [-sh ch ] [v2]

or from the right to the column vectors v1 and v2 such that

[u1 u2] = [v1 v2] [ ch -sh ]
[-sh ch ]

where ch = 1/s and sh = c/s.

See Also
gen hyp – Determine a 2-by-2 stabilized hyperbolic rotation.

References

[1] S.T. Alexander, C.-T. Pan & R.J. Plemmons, “Analysis of recursive least squares
hyperbolic rotation algorithms for signal processing,” Lin. Alg. Appl. 98 (1998),
3-40.
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app qrot

Purpose
Apply a quadratic rotation (left/right).

Synopsis
[u1,u2,dd1,dd2] = app qrot(v1,v2,c,s,d1,d2,sgn)

Description
Apply a quadratic rotation H, defined by the parameters c and s, from the left to the
row vectors v1 and v2 such that

[u1] = H [v1]
[u2] [v2]

or from the right to the column vectors v1 and v2 such that

[u1 u2] = [u1 u2] H’

Also update the signature matrix:

[dd1 0 ] = sgn*[d1 0 ]
[ 0 dd2] [ 0 d2]

where sgn is determined by the rotation.

See Also
gen qrot – Determine a 2-by-2 quadratic rotation.
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gen hyp

Purpose
Determine a 2-by-2 stabilized hyperbolic rotation matrix.

Synopsis
[c,s,r,sgn] = gen hyp(a,b)

Description
Compute a stabilized hyperbolic rotation to annihilate b using a, i.e., compute param-
eters c, s, and r such that

[ ch -sh ] [a] = [r] with [ ch -sh ] S [ ch -sh ] = sgn*S
[-sh ch ] [b] [0] [-sh ch ] [-sh ch ]

where ch = 1/s and sh = c/s, and where the signature matrix S is either

S = [-1 0 ] or S = [ 1 0 ] .
[ 0 1 ] [ 0 -1 ]

See Also
app hyp – Apply a stabilized hyperbolic rotation.

References

[1] S.T. Alexander, C.-T. Pan & R.J. Plemmons, “Analysis of recursive least squares
hyperbolic rotation algorithms for signal processing,” Lin. Alg. Appl. 98 (1998),
3-40.
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gen qrot

Purpose
Determine a 2-by-2 quadratic rotation matrix.

Synopsis
[c,s,r,sgn] = gen qrot(a,b,d1,d2)

Description
Compute a real quadratic (Givens or hyperbolic) rotation H to annihilate b using a,
i.e., compute c, s, and r such that

H [a] = [r] with H’ S H = sgn*S
[b] [0]

where the signature matrix S is

S = [ d1 0 ] , d1,d2 = +1,-1 .
[ 0 d2 ]

See Also
app qrot – Apply a quadratic rotation.
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getrtzp

Purpose
Compute (additional) Ritz pairs for a cross-product matrix

Synopsis
[rtzvals,rtzvecs,errests,nconv,num iter,vnext,smax] = ...
getrtzp(A,k,ncrp,Vk,max iter,vinit,tol,smax)

Description
Applies Lanczos iterations to the matrix A’∗A; the Lanczos vectors are explicitly re-
orthogonalized internally, as well as with respect to an existing set of converged vectors.
A singular value estimate is considered as converged when an error estimate is below
smax∗tol.

Input Parameters
A matrix;
k number of desired singular values;
ncrp number of converged Ritz pairs so far;
Vk previously converged Ritz vectors;
max iter max. no. of Lanczos iterations in this call to getrtzp;
vinit start vector;
tol relative residual tolerance;
smax current estimate of largest singular value;

Output Parameters
rtzvals converged Ritz values og A’∗A;
rtzvecs corresponding converged Ritz vectors;
errests corresponding error estimates of singular values;
nconv number of converged Ritz pairs;
num iter number of iterations used in the call to getrtzp;
vnext vector for next call to getrtzp;
smax updated value of smax;

References

[1] R.D. Fierro and E.P. Jiang, “Lanczos and the Riemannian SVD in information
retrieval applications,” Numer. Lin. Alg. Appl., to appear.
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hqlp

Purpose
High-rank gap-revealing QLP factorization.

Synopsis
[p,L,P,Q] = hqlp(A)
[p,L,P,Q] = hqlp(A,gap tol)

Description
Computes a gap-revealing factorization A = Q∗L∗P’, in which Q and P are orthog-
onal matrices, and L is a lower triangular matrix whose diagonal elements some-
times approximate the singular values of A. Also returns the largest p such that
abs(L(p,p)/L(p+1,p+1)) > gap tol. Designed for high-rank matrices; use lqlp for low-
rank matrices.

Input Parameters
A general matrix;
gap tol tolerance for gap detection;

Defaults gap tol = min(size(A))/eps;

Output Parameters
p estimate of numerical rank of A;
L lower triangular matrix in A = Q∗L∗P’;
P right orthogonal matrix;
Q left orthogonal matrix;

Algorithm
A pivoted QR factorization A∗Pi p = Q∗R is followed by a pivoted QR factorization
R’∗Pi q = P∗L’; thus A = (Q∗Pi q)∗L∗(Pi p∗P)’. The diagonal elements of L sometimes
track the singular values of A, but this is not guaranteed; hence the factorization cannot
be guaranteed to reveal rank.

See Also
lqlp – pivoted QLP matrix approximation with interleaved factorizations.

References

[1] G.W. Stewart, “The QLP approximation to the singular value decomposition,”
SIAM J. Sci. Comp., 20 (1999), pp. 1336-1348.
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hvsvid L

Purpose
High-rank revealing decomp. of a sym. indef. matrix, L version.

Synopsis
[p,L,Omega,V] = hvsvid L(A)
[p,L,Omega,V] = hvsvid L(A,tol rank)
[p,L,Omega,V] = hvsvid L(A,tol rank,max iter)
[p,L,Omega,V] = hvsvid L(A,tol rank,max iter,fixed rank)

Description
Computes a rank-revealing VSV decompostion A = V∗(L’∗Omega∗L)∗V’ of a sym-
metric indefinite n-by-n matrix. Only the upper triangular part needs to be specified.
Optimized for matrices whose rank p close to n. Function hvsvid R computes the R
version.

Input Parameters
A symmetric indefinite matrix;
tol rank rank decision tolerance;
max iter max. number of inverse iterations per deflation step,

used in the singular vector estimator;
fixed rank deflate to the fixed rank given by fixed rank instead of

using the rank decision tolerance;

Defaults tol rank = n∗norm(A,1)∗eps;
max iter = 5;

Output Parameters
p numerical rank of A;
L lower triangular matrix in A = V∗(L’∗Omega∗L)∗V’;
Omega signature matrix in A = V∗(L’∗Omega∗L)∗V’;
V orthogonal matrix in A = V∗(L’∗Omega∗L)∗V’;

Algorithm
The symmetric indefinite matrix A is preprocessed by a pivoted LDL’ factorization.
An interim stage (where D is made diagonal) is followed by a rank-revealing ULV-like
decomposition, using inverse iterations for singular vector estimation.

See Also
hvsvid R – High-rank revealing VSV alg. for sym. indef. matrices, R version
hvsvsd – High-rank revealing VSV alg. for symmetric semidefinite matrices
lvsvid – Low-rank revealing VSV alg. for symmetric indefinite matrices
lvsvsd – Low-rank revealing VSV alg. for symmetric semidefinite matrices

References

[1] P.C. Hansen & P.Y. Yalamov, “Computing Symmetric Rank-Revealing Decompo-
sitions via Triangular Factorization”, SIAM J. Matrix Anal. Appl., 23 (2001), pp.
443-458.
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hvsvid R

Purpose
High-rank revealing decomp. of a sym. indef. matrix, R version.

Synopsis
[p,R,Omega,V] = hvsvid R(A)
[p,R,Omega,V] = hvsvid R(A,tol rank)
[p,R,Omega,V] = hvsvid R(A,tol rank,max iter)
[p,R,Omega,V] = hvsvid R(A,tol rank,max iter,fixed rank)

Description
Computes a rank-revealing VSV decompostion A = V∗(R’∗Omega∗R)∗V’ of a sym-
metric indefinite n-by-n matrix. Only the upper triangular part needs to be specified.
Optimized for matrices whose rank p is close to n. Functions hvsvid and lvsvid compute
the L-version of the decomposition.

Input Parameters
A symmetric indefinite matrix;
tol rank rank decision tolerance;
max iter max. number of inverse iterations per deflation step,

used in the singular vector estimator;
fixed rank deflate to the fixed rank given by fixed rank instead of

using the rank decision tolerance;

Defaults tol rank = n∗norm(A,1)∗eps;
max iter = 5;

Output Parameters
p numerical rank of A;
R upper triangular matrix in A = V∗(R’∗Omega∗R)∗V’;
Omega signature matrix in A = V∗(R’∗Omega∗R)∗V’;
V orthogonal matrix in A = V∗(R’∗Omega∗R)∗V’;

Algorithm
The symmetric indefinite matrix A is preprocessed by a pivoted LDL’ factorization.
An interim stage (where D is made diagonal) is followed by a rank-revealing URV-like
decomposition, using inverse iterations for singular vector estimation.

See Also
hvsvid L – High-rank revealing VSV alg. for sym. indef. matrices, L version
hvsvsd – High-rank revealing VSV alg. for symmetric semidefinite matrices
lvsvid – Low-rank revealing VSV alg. for symmetric indefinite matrices
lvsvsd – Low-rank revealing VSV alg. for symmetric semidefinite matrices

References

[1] P.C. Hansen & P.Y. Yalamov, “Computing Symmetric Rank-Revealing Decompo-
sitions via Triangular Factorization”, SIAM J. Matrix Anal. Appl., 23 (2001), pp.
443-458.
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hvsvid cdef

Purpose
Deflate one column of R in the high-rank URV-like VSV algorithm.

Synopsis
[R,Omega,V,fail] = hvsvid cdef(R,Omega,V,r,vmin)

Description
Given the decomposition V∗R’∗Omega∗R∗V’, the function deflates the last column of
R(1:r,1:r). vmin is an estimate of the right singular vector of
R(1:r,1:r)’∗Omega(1:r,1:r)∗R(1:r,1:r) associated with the smallest singular value sigma r.
On return, the norm of the last column of R(1:r,1:r)’∗Omega(1:r,1:r)∗R(1:r,1:r) is of
the order sigma r. The matrix V can be left out by inserting an empty matrix [].

Input Parameters
R upper triangular matrix in A = V∗(R’∗Omega∗R)∗V’;
Omega signature matrix in A = V∗(R’∗Omega∗R)∗V’;
V orthogonal matrix in A = V∗(R’∗Omega∗R)∗V’;
r size of submatrix to be deflated;
vmin estimate of the smallest right singular vector of

the product R(1:r,1:r)’∗Omega(1:r,1:r)∗R(1:r,1:r);

Output Parameters
R upper triangular matrix in resulting A = V∗(R’∗Omega∗R)∗V’;
Omega signature matrix in resulting A = V∗(R’∗Omega∗R)∗V’;
V orthogonal matrix in resulting A = V∗(R’∗Omega∗R)∗V’;
fail true if a hypernormal rotation is ill defined;

References

[1] P.C. Hansen & P.Y. Yalamov, “Computing Symmetric Rank-Revealing Decompo-
sitions via Triangular Factorization”, SIAM J. Matrix Anal. Appl., 23 (2001), pp.
443-458.
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hvsvid rdef

Purpose
Deflate one row of L in the high-rank ULV-like VSV algorithm.

Synopsis
[L,V,Omega] = hvsvid rdef(L,V,Omega,r,vmin)

Description
Given the decomposition V∗L’∗Omega∗L∗V’, the function deflates the last row of
L(1:r,1:r). vmin is an estimate of the right singular vector of
L(1:r,1:r)’∗Omega(1:r,1:r)∗L(1:r,1:r) associated with the smallest singular value sigma r.
On return, the norm of the last column of L(1:r,1:r)’∗Omega(1:r,1:r)∗L(1:r,1:r) is of the
order sigma r. The matrix V can be left out by inserting an empty matrix [].

Input Parameters
L lower triangular matrix in A = V∗(L’∗Omega∗L)∗V’;
Omega signature matrix in A = V∗(L’∗Omega∗L)∗V’;
V orthogonal matrix in A = V∗(L’∗Omega∗L)∗V’;
r size of submatrix to be deflated;
vmin estimate of the smallest right singular vector of

the product L(1:r,1:r)’∗Omega(1:r,1:r)∗L(1:r,1:r);

Output Parameters
L upper triangular matrix in resulting V∗(L’∗Omega∗L)∗V’;
V orthogonal matrix in resulting V∗(L’∗Omega∗L)∗V’;
Omega signature matrix in resulting V∗(L’∗Omega∗L)∗V’;

References

[1] P.C. Hansen & P.Y. Yalamov, “Computing Symmetric Rank-Revealing Decompo-
sitions via Triangular Factorization”, SIAM J. Matrix Anal. Appl., 23 (2001), pp.
443-458.
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hvsvsd

Purpose
High-rank revealing decompostion of a symmetric semidefinite matrix.

Synopsis
[p,L,V] = hvsvsd(A)
[p,L,V] = hvsvsd(A,tol rank)
[p,L,V] = hvsvsd(A,tol rank,fixed rank)

Description
Computes a rank-revealing VSV decomposition A = V∗(L’∗L)∗V’ of a symmetric
semidefinite n-by-n matrix. Only the upper triangular part needs to be specified. Op-
timized for matrices whose rank p is close to n.

Input Parameters
A symmetric semidefinite matrix;
tol rank rank decision tolerance;
fixed rank deflate to the fixed rank given by fixed rank instead

of using the rank decision tolerance;

Defaults tol rank = n∗norm(A,1)∗eps;

Output Parameters
p numerical rank of A;
L lower triangular matrix in A = V∗(L’∗L)∗V’;
V orthogonal matrix in A = V∗(L’∗L)∗V’;

Algorithm
The symmetric semidefinite matrix A is preprocessed by a pivoted Cholesky factoriza-
tion and then postprocessed by a high-rank-revealing ULV decomposition. An indefinite
matrix results in an error message during the Cholesky factorization.

See Also
hvsvid L – High-rank revealing VSV alg. for sym. indef. matrices, L version
hvsvid R – High-rank revealing VSV alg. for sym. indef. matrices, R version
lvsvid – Low-rank revealing VSV alg. for symmetric indefinite matrices
lvsvsd – Low-rank revealing VSV alg. for symmetric semidefinite matrices

References

[1] P.C. Hansen & P.Y. Yalamov, “Computing Symmetric Rank-Revealing Decompo-
sitions via Triangular Factorization”, SIAM J. Matrix Anal. Appl., 23 (2001), pp.
443–458.
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lqlp

Purpose
Pivoted QLP matrix approximation with interleaved factorizations.

Synopsis
[p,L,P,Q,gap ratio] = lqlp(A)
[p,L,P,Q,gap ratio] = lqlp(A,tol gap)
[p,L,P,Q,gap ratio] = lqlp(A,tol gap,fixed rank)

Description
Computes a rank-p pivoted QLP matrix approximation of an m-by-n matrix A (m ≥ n)
satisfying A∗P = Q∗L with a lower triangular p-by-p matrix L. The rank (or stopping
point) p is either fixed rank or is dynamically determined by tol gap. The absolute
value of the diagonal elements of L are approximations to the first p singular values of
A, while the columns of Q and P approximate the first p left and right singular vectors
of A.

Input Parameters
A m-by-n matrix (m ≥ n);
tol gap truncate the decomposition after compuing a rank-p

approximation to A, where p is the smallest
integer such that abs(L(p,p)/L(p+1,p+1)) ≥ tol gap;

fixed rank ignore tol gap and truncate the decomposition after
computing an approximation to A of rank fixed rank.

Defaults tol gap = n/eps;
fixed rank = n.

Output Parameters
p smallest integer such that abs(L(p,p)/L(p+1,p+1)) ¿ tol gap

(or fixed rank);
L p-by-p lower triangular matrix whose diagonal elements,

in absolute value, track the largest p singular values of A;
P, Q matrices with p orthonormal columns;
gap ratio abs(L(p+1,p+1)/L(p,p)), that is, the ratio of the first

approximate singular value excluded to the last one included,
empty if p = n or fixed rank = n.

Algorithm
The first p rows and columns of the pivoted QR factorization of A are computed,
A∗Pi 1 = Q∗R. Then the pivoted QR factorization of R’ is computed, R’∗Pi 2 = P∗L’,
where L’ is p-by-p. The rank p is either fixed rank or is determined dynamically by
the following. The computation of R is stopped after k1 rows and columns, where
abs(R(k1,k1)/R(k1-1,k1-1)) ≤ tol gap. Then rows and columns of L’ are computed to
see whether abs(L(j,j)/L(j-1,j-1)) ≤ tol gap for any j ≤ k1. If so, the algorithm halts
after computing these j rows and columns of L, and the final approximation to the SVD
of A is rank j. If not, the next k2 rows and columns of R are computed until tol gap is
achieved, then corresponding rows and columns of L (k1 + j, 1 ≤ j ≤ k2) are computed
to see whether tol gap holds at any j and the computation can be halted. If not, more
rows and columns of R are computed, etc. This process is called interleaving.
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See Also
hqlp – high-rank gap-revealing QLP factorization.

References

[1] G.W. Stewart, “The QLP approximation to the singular value decomposition,”
SIAM J. Sci. Comp., 20 (1999), pp. 1336-1348.

[2] D.A. Huckaby and T.F. Chan, “Stewart’s pivoted QLP decomposition for low-rank
matrices,” Tech. Report CAM-02-54, Dept. Mathematics, UCLA, 2002.
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lsvdrr

Purpose
Lanczos SVD with reorthogonalization and explicit restarts

Synopsis
[sk,Vk,nits,nrst,errests] = lsvdrr(A,k,max iter,max restarts,conserve,safety)

Description
Computes approximations to the k dominant singular triplets, using the Lanczos method
with reorthogonalization and explicit restarts. The stopping criterion is that the error
in each computed singular value must be smaller than tol times the largest singular
value.

Input Parameters
A dense/sparse matrix or structure with Toeplitz matrix;
k number of desired singular triplets;
tol tolerance for relative residual of triplets;
max iter maximum number of Lanczos iterations per restart;
max restarts maximum number of Lanczos restarts;
conserve if 1 then max iter Lanczos vectors are used in total,

otherwise max iter vectors are used in each restart;
safety perform additional safety restarts, after k Ritz

values have converged;

Defaults tol = 1e-4;
max iter = min(2∗k,n)
max restarts = 100;
conserve = 1;
safety = 2;

Output Parameters
sk vector of singular value estimates;
Vk matrix of right singular vector approximations;
nits number of times A and A’ combined have been referenced;
nrst number of restarts;
errests vector of error estimates for singular values;

Matrix Representation
The input parameter A can be either a matrix (dense or sparse) or a structure that
holds information about a Toeplitz matrix: A.col = first column of A, A.row = first
row of A.

References

[1] R.D. Fierro and E.P. Jiang, “Lanczos and the Riemannian SVD in information
retrieval applications,” Numer. Lin. Alg. Appl., to appear.
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lvsvid

Purpose
Low-rank revealing decompostion of a symmectric indefinite matrix.

Synopsis
[p,L,Omega,V] = lvsvid(A)
[p,L,Omega,V] = lvsvid(A,tol rank)
[p,L,Omega,V] = lvsvid(A,tol rank,max iter)
[p,L,Omega,V] = lvsvid(A,tol rank,max iter,est type)
[p,L,Omega,V] = lvsvid(A,tol rank,max iter,est type,fixed rank)

Description
Computes a rank-revealing VSV decompostion A = V∗(R’∗Omega∗R)∗V’ of a sym-
metric indefinite n-by-n matrix. Only the upper triangular part needs to be specified.
Optimized for matrices whose rank p is small compared to n.

Input Parameters
A symmetric indefinite matrix;
tol rank rank decision tolerance;
max iter max. number of power/Lanczos iterations per deflation step,

used in the singular vector estimator;
est type if true, then estimate singular vectors by means of

the Lanczos procedure, else use the power method;
fixed rank deflate to the fixed rank given by fixed rank instead of

using the rank decision tolerance;

Defaults tol rank = n∗norm(A,1)∗eps;
max iter = 5;
est type = 0 (power method);

Output Parameters
p numerical rank of A;
L lower triangular matrix in A = V∗(L’∗Omega∗L)∗V’;
Omega signature matrix in A = V∗(L’∗Omega∗L)∗V’;
V orthogonal matrix in A = V∗(L’∗Omega∗L)∗V’;

See Also
hvsvid – High-rank revealing VSV alg. for symmetric indefinite matrices
hvsvid R – High-rank revealing VSV alg., sym. indef. matrices, R version
hvsvsd – High-rank revealing VSV alg. for symmetric semidefinite matrices
lvsvsd – Low-rank revealing VSV alg. for symmetric semidefinite matrices

References

[1] P.C. Hansen & P.Y. Yalamov, “Computing Symmetric Rank-Revealing Decompo-
sitions via Triangular Factorization”, SIAM J. Matrix Anal. Appl., 23 (2001), pp.
443–458.
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lvsvid cdef

Purpose
Deflate one column of L in the low-rank ULV-like VSV algorithm.

Synopsis
[L,Omega,V] = lvsvid cdef(L,Omega,V,r,vmax)

Description
Given the VSV decomposition V∗L’∗Omega∗L∗V’, the function deflates the first column
of L(r:n,r:n). vmax is an estimate of the right singular vector of
L(r:n,r:n)’∗Omega(r:n,r:n)∗L(r:n,r:n) associated with the largest singular value sigma 1.
On return, the norm of the first column of L(r:n,r:n)’∗Omega(r:n,r:n)∗L(r:n,r:n) is of
the order sigma 1. The matrix V can be left out by inserting an empty matrix [].

Input Parameters
L lower triangular matrix in A = V∗(L’∗Omega∗L)∗V’;
Omega signature matrix in A = V∗(L’∗Omega∗L)∗V’;
V orthogonal matrix in A = V∗(L’∗Omega∗L)∗V’;
r size of submatrix to be deflated;
vmin estimate of the smallest right singular vector of

the product L(1:r,1:r)’∗Omega(1:r,1:r)∗L(1:r,1:r);

Output Parameters
L lower triangular matrix in resulting A = V∗(L’∗Omega∗L)∗V’;
Omega signature matrix in resulting A = V∗(L’∗Omega∗L)∗V’;
V orthogonal matrix in resulting A = V∗(L’∗Omega∗L)∗V’;
V rthogonal matrix in resulting A = V∗(L’∗Omega∗L)∗V’;

References

[1] R.D. Fierro and P.C. Hansen, “Low-Rank Revealing UTV Decompositions”, Nu-
merical Algorithms, 15 (1997), pp. 37–55.
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lvsvsd

Purpose
Low-rank revealing decompostion of a symmetric semidefinite matrix.

Synopsis
[p,L,V] = lvsvsd(A)
[p,L,V] = lvsvsd(A,tol rank)
[p,L,V] = lvsvsd(A,tol rank,max iter)
[p,L,V] = lvsvsd(A,tol rank,max iter,est type)
[p,L,V] = lvsvsd(A,tol rank,max iter,est type,fixed rank)

Description
Computes a rank-revealing VSV decompostion A = V∗(L’∗L)∗V’ of a symmetric semidef-
inite n-by-n matrix. Only the upper triangular part of needs to be specified. Optimized
for matrices whose rank p is small compared to n.

Input Parameters
A symmetric semidefinite matrix;
tol rank rank decision tolerance;
max iter max. number of inverse iterations per deflation step,

used in the singular vector estimator;
est type if true, then estimate singular vectors by means of

the Lanczos procedure, else use the power method;
fixed rank deflate to the fixed rank given by fixed rank instead

of using the rank decision tolerance;

Defaults tol rank = n∗norm(A,1)∗eps;
max iter = 5;
est type = 0 (power method);

Output Parameters
p numerical rank of A;
L lower triangular matrix in A = V∗(L’∗L)∗V’;
V orthogonal matrix in A = V∗(L’∗L)∗V’;

Algorithm
The symmetric semidefinite matrix A is preprocessed by a pivoted Cholesky factoriza-
tion and then postprocessed by a low-rank revealing ULV decomposition, using either
power or Lanczos iterations to estimate the dominant singular vectors. An indefinite
matrix results in an error message during the Cholesky factorization.

See Also
hvsvid – High-rank revealing VSV alg. for symmetric indefinite matrices
hvsvid R – High-rank revealing VSV alg., sym. indef. matrices, R version
hvsvsd – High-rank revealing VSV alg. for symmetric semidefinite matrices
lvsvid – Low-rank revealing VSV alg. for symmetric indefinite matrices
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[1] P.C. Hansen & P.Y. Yalamov, “Computing Symmetric Rank-Revealing Decompo-
sitions via Triangular Factorization”, SIAM J. Matrix Anal. Appl., 23 (2001), pp.
443–458.
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TOTinviter

Purpose
Inverse iterations for T’∗Omega∗T.

Synopsis
[smin,vmin] = TOTinviter(T,Omega,itmax)

Description
Inverse iterations on the product T’∗Omega∗T to compute the smallest singular value
and the corresponding singular vector.

Input Parameters
T triangular matrix;
Omega diagonal matrix;
itmax maximum number of iterations;

Output Parameters
smin estimate of smallest singular value;
vmin estimate of corresponding singular vector;
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TOTlanczos

Purpose
Symmetric Lanczos procedure for T’∗Omega∗T.

Synopsis
[smax,vmax] = TOTlanczos(T,Omega,itmax)
[smax,vmax] = TOTlanczos(T,Omega,itmax,reorth)

Description
Computes an estimate of the largest singular value and the associated singular vector
of the matrix T’∗Omega∗T using a maximum of itmax Lanczos iterations. If reorth =
1, then MGS reorthogonalization is used.

Input Parameters
T matrix;
Omega diagonal matrix;
itmax maximum number of iterations;
reorth MGS reorthogonalization if true;

Defaults reorth = 1 (reorthogonalization).

Output Parameters
smin estimate of smallest singular value;
vmin estimate of corresponding singular vector;

See Also
TOTpowiter – Power iterations for T’∗Omega∗T

References

[1] G.H. Golub and C.F. Van Loan, “Matrix Computations”, Johns Hopkins Univer-
sity Press, 3. Ed., 1996; p. 480.
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TOTpowiter

Purpose
Power iterations for T’∗Omega∗T.

Synopsis
[smin,vmin] = TOTpowiter(T,Omega,itmax)

Description
Power iterations on the product T’∗Omega∗T to compute the largest singular value
and the corresponding singular vector.

Input Parameters
T triangular matrix;
Omega diagonal matrix;
itmax maximum number of iterations;

Output Parameters
smin estimate of largest singular value;
vmin estimate of corresponding singular vector;

See Also
TOTlanczos – Lanczos procedure for T’∗Omega∗T
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tprod

Purpose
Toeplitz matrix-vector multiplication via FFT.

Synopsis
y = tprod(lambda,m,n,x,transp)

Description
This routine computes T∗x for tranps = 0 or T’∗x for value = 1, where T is an m-by-n
Toeplitz matrix, using the eigenvalues lambda of a related circulant matrix computed
ny means of tprodinit.

Input Parameters
lambda eigenvalue vector need for the FFT;
m, n dimensions of Toeplitz matrix;
x vector to be multiplied by T;
transp if 0 or nonexisting, multiply with T, ortherwise multiply with

T’;

Output Parameters
y matrix-vector product

Algorithm
Let lambda be the eigenvalues of a circulant matrix derived from T (see tprodinit); then
the product T*x consists of the first m elements of the vector ifft(lambda.*fft([x,z])),
where z is a vector of zeros, while the product T’*x consists of the first n elements of
the vector ifft(conj(lambda).*fft([x,z])).

See Also
tprodinit – Initialization routine for tprod

References

[1] P.C. Hansen, “Decconvolution and regularization with Toeplitz matrices,” Numer.
Algo. 29 (2002), pp. 323-378.
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tprodinit

Purpose
Initialization routine for tprod (Toeplitz matrix-vector product)

Synopsis
lambda = tprodinit(colT,rowT)

Description
lambda contains the eigenvalues of a related circulant matrix, needed for matrix-vector
multiplication with the Toeplitz matrix specified by colT and rowT. The length of
lmbda is a powere of 2.

Input Parameters
colT contains the first column of the Toeplitz matrix;
rowT contains the first row of the Toeplitz matrix;

Output Parameters
lambda contains the eigenvalues of an extended circulant matrix;

Algorithm
lambda contains the eigenvalues of the circulant matrix C whose first column is c =
[colT;z;rowT(end:-1:2)], where z is a zero columns with dimensions such that length(c)
is a power of 2 (for efficiency).

See Also
tprod – Toeplitz matrix-vector product, using tprodinit

References

[1] P.C. Hansen, “Decconvolution and regularization with Toeplitz matrices,” Numer.
Algo. 29 (2002), pp. 323-378.
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tvsv

Purpose
Solves a rank-deficient system using the VSV decomposition.

Synopsis
x tvsv = tvsv(L,V,p,b)
x tvsv = tvsv(R,Omega,V,p,b)
x tvsv = tvsv(L,Omega,V,p,b)

Description
Solves the symmetric and near-rank deficient system of equations A x = b, using the
rank-revealing VSV decomposition of A. Three decompositions of A can be used:

A = V*L’*L*V’ (semidefinite A, lower triangular L)
A = V*R’*Omega*R*V’ (indefinite A, upper triangular R)
A = V*L’*Omega*L*V’ (indefinite A, lower triangular L)

Input Parameters
Semindefinite case:
L lower triangular matrix;
V orthognal matrix;
p numerical rank;
b right-hand side;
Indefinite case:
L or R lower or upper triangular matrix;
Omega signature matrix
V orthognal matrix;
p numerical rank;
b right-hand side;

Output Parameters
x tvsv truncated VSV solution;

References

[1] P. C. Hansen and P. Y. Yalamov, “Computing Symmetric Rank-Revealing Decom-
positions via Triangular Factorization,” SIAM J. Matrix Anal. Appl., 23 (2001),
pp. 443–458.
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ulliv

Purpose
High-rank-revealing ULLV algorithm, B full row rank.

Synopsis
[p,LA,L,V,UA,UB,vec] = ulliv(A,B)
[p,LA,L,V,UA,UB,vec] = ulliv(A,B,tol rank)
[p,LA,L,V,UA,UB,vec] = ulliv(A,B,tol rank,tol ref,max ref)
[p,LA,L,V,UA,UB,vec] = ulliv(A,B,tol rank,tol ref,max ref,fixed rank)

Description
Computes a rank-revealing ULLIV decomposition of an mA-by-n matrix A with mA ≥
n, and an mB-by-n matrix B with full row rank mB ≤ n:

A = UA*LA*[ L 0 ]*V’ and B = UB*[ L 0 ]*V’
[ 0 I ]

Here, LA is n-by-n and L is mB-by-mB and both are lower triangular; UA, UB and V
are unitary matrices, where only the first nA column of UA are computed.

The ULLV decomposition is a quotient ULV decomposition of the quotient A∗pinv(B) A,
where pinv(B) A is the A-weighted pseudoinverse of B:

A*pinv(B)_A = UA(:,1:mB)*LA(1:mB,1:mB)*UB’ .

Hence the lower triangular matrix LA(1:mB,1:mB) reveals the numerical rank p of the
matrix quotient.

Note that the algorithm is optimized for numerical rank p close to nB, and that this
algorithm should not be used if B is ill conditioned or rank deficient. Use the function
ullv if B has full column rank.

Input Parameters
A mA-by-n matrix (mA ≥ n);
B mB-by-n matrix (mB ≤ n);
tol rank rank decision tolerance;
tol ref upper bound on the 2-norm of the off-diagonal block

LA(p+1:n,1:p) relative to the Frobenius-norm of LA;
max ref max. number of refinement steps per singular value

to achieve the upper bound tol ref;
fixed rank deflate to the fixed rank given by fixed rank instead

of using the rank decision tolerance;

Defaults tol rank = sqrt(n)∗norm(A,1)∗eps;
tol ref = 1e-04;
max ref = 0;
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Output Parameters
p numerical rank of A∗pinv(B) A;
LA,L,V,UA,UB the ULLV factors;

vec a 5-by-1 vector with:
vec(1) = upper bound of norm(LA(p+1:n,1:p)),
vec(2) = estimate of pth singular value,
vec(3) = estimate of (p+1)th singular value,
vec(4) = a posteriori upper bound of num. nullspace angle,
vec(5) = a posteriori upper bound of num. range angle.

Algorithm
First compute the LQ factorization B = [L,0]∗V’ and then form the matrix X =
A∗V∗inv(diag(L,I)), followed by the QR factorization X = UA∗LA. Thus, A =
UA∗LA∗diag(L,I)∗V’ and B = L∗V’. Then deflation and refinement (optional) are em-
ployed to produce a rank-revealing decomposition. The deflation procedure is based
on the generalized LINPACK condition estimator, and the refinement steps on QR-
iterations.

See Also
ullv – Rank-revealing ULLV algorithm, B full column rank.

References

[1] F.T. Luk and S. Qiao, “A New Matrix Decomposition for Signal Processing”,
Automatica, 30 (1994), pp. 39–43.

[2] F.T. Luk and S. Qiao, “An adaptive algoithm for interference cancelling in array
processing; in F.T. Luk (Ed.), “Advanced Signal Processing Algorithms, Architec-
tures, and Implementations VI,” SPIE Proceedings, Vol. 2846 (1996), pp. 151-161.
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ulliv up a

Purpose
Update the A-part of the rank-revealing ULLIV decomposition.

Synopsis
[p,LA,L,V,UA,UB,vec] = ulliv up A(p,LA,L,V,UA,UB,a)
[p,LA,L,V,UA,UB,vec] = ulliv up A(p,LA,L,V,UA,UB,a,tol rank)
[p,LA,L,V,UA,UB,vec] = ulliv up A(p,LA,L,V,UA,UB,a,tol rank,tol ref,max ref)
[p,LA,L,V,UA,UB,vec] = ulliv up A(p,LA,L,V,UA,UB,a,tol rank,tol ref,max ref,fixed rank)

Description
Given a rank-revealing ULLIV decomposition of the mA-by-n matrix with mA ≥ n,
and the full-rank mB-by-n matrix B = UB∗L∗V’ with mB < n, the function computes
the updated decomposition

[ A ] = UA*LA*[ L 0 ]*V’ and B = UB*[ L 0 ]*V’
[ a ] [ 0 I ]

where a is the new row added to A. Note that B must have full row rank, that the row
dimension of UA will increase by one, and that the matrices UA and UB can be left
out by inserting an empty matrix [] while V is required.

Input Parameters
p numerical rank of A∗pinv(B) A revealed in LA;
LA,L,V,UA,UB the ULLIV factors of A and B;

a the new row added to A;
tol rank rank decision tolerance;
tol ref upper bound on the 2-norm of the off-diagonal block

LA(p+1:mB,1:p) relative to the Frobenius-norm of LA;
max ref max. number of refinement steps per singular value

to achieve the upper bound tol ref;
fixed rank if true, deflate to the fixed rank given by p

instead of using the rank decision tolerance;

Defaults tol rank = sqrt(n)∗norm(LA,1)∗eps;
tol ref = 1e-04;
max ref = 0;
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Output Parameters
p numerical rank of updated quotient;
LA,L,V,UA,UB the updated ULLV factors;

vec a 5-by-1 vector with:
vec(1) = upper bound of norm(LA(p+1:mB,1:p)),
vec(2) = estimate of pth singular value,
vec(3) = estimate of (p+1)th singular value,
vec(4) = a posteriori upper bound of num. nullspace angle,
vec(5) = a posteriori upper bound of num. range angle.

See Also
ulliv up B – Update the B-part of the rank-revealing ULLIV decomp.

References

[1] F.T.Luk and S. Qiao, “A New Matrix Decomposition for Signal Processing”, Au-
tomatica, 30 (1994), pp. 39–43.

[2] F.T.Luk and S. Qiao, “An adaptive algoithm for interference cancelling in array
processing; in F.T. Luk (Ed.), “Advanced Signal Processing Algorithms, Architec-
tures, and Implementations VI,” SPIE Proceedings, Vol. 2846 (1996), pp. 151-161.
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ulliv up B

Purpose
Update the B-part of the rank-revealing ULLIV decomposition.

Synopsis
[p,LA,L,V,UA,UB,vec] = ulliv up B(p,LA,L,V,UA,UB,b)
[p,LA,L,V,UA,UB,vec] = ulliv up B(p,LA,L,V,UA,UB,b,tol rank)
[p,LA,L,V,UA,UB,vec] = ulliv up B(p,LA,L,V,UA,UB,b,tol rank,tol ref,max ref)
[p,LA,L,V,UA,UB,vec] = ulliv up B(p,LA,L,V,UA,UB,b,tol rank,tol ref,max ref,fixed rank)

Description
Given a rank-revealing ULLIV decomposition of the mA-by-n matrix with mA ≥ n,
and the full-rank mB-by-n matrix B = UB∗L∗V’ with mB < n, the function computes
the updated decomposition

A = UA*LA*[ L 0 ]*V’ and [ B ] = UB*[ L 0 ]*V’
[ 0 I ] [ b ]

where b is the new row added to B. Note that the updated matrix [B;b] must have
full row rank, that the row dimension of UB will increase by one, and that the matrices
UA and UB can be left out by inserting an empty matrix [] while V is required.

Input Parameters
p numerical rank of A∗pinv(B) A revealed in LA;
LA,L,V,UA,UB the ULLIV factors of A and B;

b the new row added to B;
tol rank rank decision tolerance;
tol ref upper bound on the 2-norm of the off-diagonal block

LA(p+1:mB,1:p) relative to the Frobenius-norm of LA;
max ref max. number of refinement steps per singular value

to achieve the upper bound tol ref;
fixed rank if true, deflate to the fixed rank given by p

instead of using the rank decision tolerance;

Defaults tol rank = sqrt(n)∗norm(LA,1)∗eps;
tol ref = 1e-04;
max ref = 0;
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Output Parameters
p numerical rank of updated quotient;
LA,L,V,UA,UB the updated ULLV factors;

vec a 5-by-1 vector with:
vec(1) = upper bound of norm(LA(p+1:mB,1:p)),
vec(2) = estimate of pth singular value,
vec(3) = estimate of (p+1)th singular value,
vec(4) = a posteriori upper bound of num. nullspace angle,
vec(5) = a posteriori upper bound of num. range angle.

See Also
ulliv up A – Update the A-part of the rank-revealing ULLIV decomp.

References

[1] F.T.Luk and S. Qiao, “A New Matrix Decomposition for Signal Processing”, Au-
tomatica, 30 (1994), pp. 39–43.

[2] F.T.Luk and S. Qiao, “An adaptive algoithm for interference cancelling in array
processing; in F.T. Luk (Ed.), “Advanced Signal Processing Algorithms, Architec-
tures, and Implementations VI,” SPIE Proceedings, Vol. 2846 (1996), pp. 151-161.
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vsv qrit

Purpose
Refinement of VSV decomposition via block QR-iterations.

Synopsis
[L] = vsv qrit(p,num ref,L)
[L,V] = vsv qrit(p,num ref,L,[],V)
[L,Omega] = vsv qrit(p,num ref,L,Omega)
[L,Omega,V] = vsv qrit(p,num ref,L,Omega,V)
[R,Omega] = vsv qrit(p,num ref,R,Omega)
[R,Omega,V] = vsv qrit(p,num ref,R,Omega,V)

Description
Given a VSV decomposition with numerical rank p, of one of the forms

A = V*L’*L*V’ (semidefinite A, lower triangular L)
A = V*L’*Omega*L*V’ (indefinite A, lower triangular L)
A = V*R’*Omega*R*V’ (indefinite A, upper triangular R)

the function refines the rank-revealing decomposition via num ref steps of block QR
iterations applied to the triangular matrix.

Input Parameters
p numerical rank of A;
num ref number of refinement iterations;
T triangur matrix (L or R, depending on VSV decomposition);
Omega signature matrix (indef. case) or empty (semidef. case);
V orthogonal matrix;

Output Parameters
T refined triangular matrix
Omega or V refined Omega (indef. case) or refined V (semidef. case)
V refined V (indef. case)

Algorithm
Refinement is identical to block QR iteration, in which the off-diagonal block of the
triangular matrix is “flipped” to the diagonally opposite position and then back again.

See Also
ulv ref – Refine one column of L in the ULV decomposition.
urv ref – Refine one column of R in the URV decomposition.

References

[1] R. Mathias and G.W. Stewart, “A Block QR Algorithm and the Singular Value
Decomposition”, Lin. Alg. Appl., 182 (1993), pp. 91–100.
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vsvid L mod

Purpose
Rank-one modification of VSV decomp. of sym. indef. matrix, L version.

Synopsis
[p,L,Omega,V] = vsvid L mod(p,L,Omega,V,omega,v)
[p,L,Omega,V] = vsvid L mod(p,L,Omega,V,omega,v,tol rank)
[p,L,Omega,V] = vsvid L mod(p,L,Omega,V,omega,v,tol rank,inv iter)
[p,L,Omega,V] = vsvid L mod(p,L,Omega,V,omega,v,tol rank,inv iter,fixed rank)

Description
Given a rank-revealing VSV decomposition of a symmetric indefinite matrix A =
V∗(L’∗Omega∗L)∗V’, the function computes the updated rank-revealing decomposi-
tion of the matrix A + omega∗v∗v’, where omega = +1 or -1.

Input Parameters
p numerical rank of A;
L lower triangular matrix in A = V∗(L’∗Omega∗L)∗V’;
Omega signature matrix in A = V∗(L’∗Omega∗L)∗V’;
V orthogonal matrix in A = V∗(L’∗Omega∗L)∗V’;
omega update (+1) or downdate (-1);
v rank-one update column vector;
tol rank rank decision tolerance;
inv iter number of inverse iterations per deflation step;
fixed rank deflate to the fixed rank given by fixed rank instead

of using the rank decision tolerance;

Defaults tol rank = n∗norm(L,1)∗eps;
inv iter = 5;

Output Parameters
p numerical rank of modified matrix;
L updated lower triangular matrix;
Omega updated signature matrix;
V updated orthogonal matrix;

See Also
vsvid R mod – Rank-one mod. of VSV decomp. of sym. indef. matrix, R version.
vsvsd up – Rank-one update of VSV decomposition of semidefinite matrix.

References

[1] P.C. Hansen & P.Y. Yalamov, “Computing Symmetric Rank-Revealing Decompo-
sitions via Triangular Factorization”, SIAM J. Matrix Anal. Appl., 23 (2001), pp.
443–458.
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vsvid R mod

Purpose
Rank-one modification of VSV decomp. of indef. matrix, R version.

Synopsis
[p,R,Omega,V] = vsvid R mod(p,R,Omega,V,omega,v)
[p,R,Omega,V] = vsvid R mod(p,R,Omega,V,omega,v,tol rank)
[p,R,Omega,V] = vsvid R mod(p,R,Omega,V,omega,v,tol rank,inv iter)
[p,R,Omega,V] = vsvid R mod(p,R,Omega,V,omega,v,tol rank,inv iter,fixed rank)

Description
Given a rank-revealing VSV decomposition of a symmetric indefinite matrix A =
V∗(R’∗Omega∗R)∗V’, the function computes the updated rank-revealing decomposi-
tion of the matrix A + omega∗v∗v’, where omega = +1 or -1.

Input Parameters
p numerical rank of A;
R upper triangular matrix in A = V∗(R’∗Omega∗R)∗V’;
Omega signature matrix in A = V∗(R’∗Omega∗R)∗V’;
V orthogonal matrix in A = V∗(R’∗Omega∗R)∗V’;
omega update (+1) or downdate (-1);
v rank-one update column vector;
tol rank rank decision tolerance;
inv iter number of inverse iterations per deflation step;
fixed rank deflate to the fixed rank given by fixed rank instead

of using the rank decision tolerance;

Defaults tol rank = n∗norm(R,1)∗eps;
inv iter = 5;

Output Parameters
p numerical rank of updated A;
R updated upper triangular;
Omega updated signature matrix;
V updated orthogonal matrix;

See Also
vsvid mod – Rank-one modification of VSV decomposition of indefinite matrix.
vsvsd up – Rank-one update of VSV decomposition of semidefinite matrix.

References

[1] P.C. Hansen & P.Y. Yalamov, “Computing Symmetric Rank-Revealing Decompo-
sitions via Triangular Factorization”, SIAM J. Matrix Anal. Appl., 23 (2001), pp.
443–458.
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vsvid ip

Purpose
Interim process for indefinite VSV algorithm.

Synopsis
[W,C,Omega] = vsvid ip(L,D)

Input Parameters
L,D Factors in LDLT factorization;

Output Parameters
W,C,Omega Matrices in L∗D∗L’ = W∗C’∗Omega∗C∗W’.

Algorithm
The factorization L∗D∗L’ is replaced with W∗C’∗Omega∗C∗W’, where W is orthogonal,
C is upper triangular, and Omega is a signature matrix. This is accomplished via small
eigenvalue decompositions of the 1-by-1 and 2-by-2 blocks of D.

References

[1] P.C. Hansen, & P.Y. Yalamov, “Computing Symmetric Rank-Revealing Decom-
positions via Triangular Factorization”, SIAM J. Matrix Anal. Appl., 23 (2001),
pp. 443–458.
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vsvsd up

Purpose
Rank-one update of VSV decomposition of semidefinite matrix.

Synopsis
[p,L,V] = vsvsd up(p,L,V,v)
[p,L,V] = vsvsd up(p,L,V,v,tol rank)
[p,L,V] = vsvsd up(p,R,V,v,tol rank,fixed rank)

Description
Given a rank-revealing VSV decomposition of a symmetric semidefinite matrix A =
V∗(L’∗L)∗V’, the function computes the updated rank-revealing decomposition of A +
v∗v’. Use function vsvid mod with omega = -1 to downdate the VSV decomposition of
a symmetric semidefinite matrix.

Input Parameters
p numerical rank of A;
L lower triangular matrix in A = V∗(L’∗L)∗V’;
V orthogonal matrix in A = V∗(L’∗L)∗V’;
v rank-one update column vector;
tol rank rank decision tolerance;
fixed rank deflate to the fixed rank given by fixed rank instead

of using the rank decision tolerance;

Defaults tol rank = n∗norm(L,1)∗eps;

Output Parameters
p numerical rank of updated A;
L updated lower triangular matrix;
V updated orthogonal matrix;

See Also
vsvid L mod – Rank-one mod. of VSV decomp. of sy,. indef. matrix, L version.
vsvid R mod – Rank-one mod. of VSV decomp. of sy,. indef. matrix, R version.

References

[1] P.C. Hansen & P.Y. Yalamov, “Computing Symmetric Rank-Revealing Decompo-
sitions via Triangular Factorization”, SIAM J. Matrix Anal. Appl., 23 (2001), pp.
443–458.
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