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ABSTRACT

Modeling of multimedia and multimodal data becomes increas-
ingly important with the digitalization of the world. The objective
of this paper is to demonstrate the potential of independent compo-
nent analysis and blind sources separation methods for modeling
and understanding of multimedia data, which largely refers to text,
images/video, audio and combinations of such data. We review a
number of applications within single and combined media with the
hope that this might provide inspiration for further research in this
area. Finally, we provide a detailed presentation of our own re-
cent work on modeling combined text/image data for the purpose
of cross-media retrieval.

1. INTRODUCTION

Processing of multimedia data has received increased attention
during the last decade. While many research contributions in mul-
timedia processing deal with issues related to a single medium, the
even more challenging research topic is the fusion of more media
that may be viewed as the fusion of highly heterogeneous multi-
modal data. The objectives of multimedia research are multiple,
which can be exemplified by the areas covered in IEEE Trans-
actions on Multimedia. The topics covered span content extrac-
tion and retrieval, human-machine interfaces, human perception,
database technologies, data encryption and security, system in-
tegration and standards. The fact that independent component
analysis (ICA) and blind source separation (BSS) methods can be
viewed as statistical models, which are fitted to data using ma-
chine learning and adaptive signal processing tools, make them
particularly useful for “intelligent multimedia processing” [1, 2]
such as extraction of semantic representations, content based ex-
traction, recognition and filtering applications. Moreover, recent
research have shown that the independence assumption, separated
sources and mixing matrices are amenable for interpretation and
well-aligned with human perception in different media [3, 4, 5, 6,
7, 8, 9, 10].

Since ICA also can be viewed as performing projection of data
onto latent subspaces, there is a potential in other multimedia areas
e.g., in data security and in multimedia standards with the advent
of the advanced MPEG standards [11], which enables content and
context sensitive tools.

In section 2 the ICA/BSS model is presented in a multime-
dia perspective. Section 3 reviews the application of ICA/BBS
for single and combined media within image/video, audio and text
processing. An extended review of using ICA for content extrac-
tion from combined text and image data is presented in section 4.
Finally, section 5 states conclusions and probe future challenges.

2. ICA/BSS MUTIMEDIA ANALYSIS

Blind source separation can be achieved with a number of assump-
tions on the mixed signals. Spatial separation, for example, is
based on differences in direction of arrival, spectral separation, as
in the Wiener filter, assumes that the sources have little spectral
overlap, and finally independency based separation as in ICA.

Most currently used ICA algorithms assume linear mixing,
i.e., the measurement is a linear combination of the source signals,
as shown by the generative linear ICA model:

� = ��+ �, (1)

where � is a P -dimensional column feature vector,
� = [�1, · · · ,�K ] is the P×K mixing matrix, � = [s1, · · · , sK ]�,
are independent sources, and � is additive noise. The assumptions
of the linear ICA model are further discussed in Section 4.1.

If the feature vector consists of data from a single medium the
ICA model could be seen as an unsupervised model, which gen-
eralizes the classical principal component analysis model (PCA)
[12] by assuming independent and non-Gaussian source distribu-
tions. The unsupervised ICA model is used for detection, extrac-
tion and explanation of a number of independent hidden causes.
The result of the multimedia analysis is typically to provide an in-
terpretation of the mixing matrix and the sources. If for instance �
represents a grey-valued image reshaped into a vector, the columns
of the mixing matrix, �k, will represent “eigenimages” associated
with a particular source, and sk will determine the strength [13].
If the number of components K < P then each image � will be
sparsely represented by a few “eigenimages”. In other image ap-
plications � will represent features extracted from image or image
sequences.

The literature provides a number of models related to ICA
which has potential for multimedia. This includes: non-negative
matrix factorization [14], which assume positive mixing matrix
and sources; independent and hierarchical factor analysis [15, 16]
are frameworks which generalize classical factor analysis, PCA
and ICA; the ICA mixture model [17], which uses a probabilistic
mixture of ICA models; topographic ordering of partly dependent
sources [18]; projection pursuit [19]; and hierarchical generative
topographic mapping [20].

When � contains data from more than one medium, the ICA
establish a common latent source space for the media [10, 21] and
can be viewed as a method for supervised learning of relations
between the involved media. This is a generalization of classical
methods such as partial least squares, canonical correlation and
canonical variate analysis [12, 22]. Recent extensions of the sim-
ple ICA model, which operates from multimodal data includes the
kernel canonical analysis [23] and the work by Lukic [24] that



identifies common latent spaces, as well as latent spaces individ-
ual to the modality.

In a multimedia context different assumptions of the ICA
model Eq. (1) are to be considered. This includes the noiseless
case, the overdetermined case (P > K) in e.g., image and text
analysis, the underdetermined case (P < K) and convolutive mix-
ing, e.g., in processing of audio signal [25].

This paper will not provide a detailed discussion of the rich
literature on ICA learning algorithms, which includes: maximum
likelihood optimization [26, 27, 28, 29, 30]; optimization of con-
trast functions from higher-order cumulants [31]; kernel methods
[32]; and Bayesian learning [33, 34]. For a general discussion of
different ICA models and estimation methods the following prin-
cipal references [25, 35, 36, 37] are recommended.

3. MULTIMEDIA APPLICATIONS OF ICA/BSS

Most applications mentioned in this section can be treated by al-
ternative methods, only ICA/BSS methods will be discussed. The
main attraction of ICA is that it provides unsupervised grouping
of data that has shown to be well-aligned with manual grouping
[3, 4, 5, 6, 7, 8, 9, 10] in different media.

Medium Topic Reference
Image/
Video

natural scenes, feature ex-
traction, noise reduction

[3, 6, 38, 39, 40, 41, 42, 43]

watermark detection [44, 45]
content based retrieval [10, 46, 47, 48, 49]

Multimodal
brain data

EEG, MEG, fMRI [5, 50]

Audio general [51, 52, 53]
auditory perception [4, 7]
source separation, scene
analysis

[54, 55, 56, 57, 58]

Text document filtering, re-
trieval

[8, 9, 13, 59, 60]

Combined
media

document content and
inter-connectivity

[61, 62, 63]

cross-language document
retrieval

[23]

combined text/image con-
tent extraction

[10, 49]

audio-visual segmentation [21, 64, 65, 66, 67]

Table 1. Overview of ICA multimedia applications.

3.1. Images/Video

The literature is rich on contributions which use ICA for analysis
of image and video, however, we will merely present a potpourri
of a number of applications.

3.1.1. Natural Scenes, Feature Extraction and Noise Reduction

[3, 6, 39] consider fundamental properties of natural scenes and
demonstrates that the application of ICA provide Gabor-like [68]
localized and oriented spatial filters, which resembles receptive
fields in visual cortex. Thus edges are the independent compo-
nents of natural scenes.

[38] extends this ideas for extracting features from stereo and
color images and again Gabor-like spatial filters are found.

[40] uses maximum autocorrelation factors, which is identical
to the Molgedey-Schuster ICA algorithm [69], for decomposition
of remote sensing images and biological shape analysis.

[41] uses ICA to factorize histograms of joint feature vectors
for the purpose of object detection and localization in cluttered
scenes of non-rigid objects. It is demonstrated that application of
ICA provides improved detection performance.

[43] presents two ICA approaches for detecting facial compo-
nents in the images contained in a video sequence. The aim is to
map the detected facial components, such as eyes and mouth, to a
3D-wireframe model to be used for facial animation.

The sparse code shrinkage algorithm [42] combines ideas of
ICA with wavelet shrinkage to obtain a completely data driven
technique for noise reduction in images, which have shown to out-
perform standard approaches such as Wiener filters.

3.1.2. Watermark Detection

Watermark detection and extraction is important for authentication
of multimedia material especially when distributed over the Inter-
net. [44, 45] deploys ICA for watermark detection and extraction
which have shown robust to several important image processing
attacks.

3.1.3. Content Based Image Retrieval

Content based image retrieval is a highly challenging aspect of
multimedia analysis [70]. The task is hard because of the limited
understanding of the relations between basic image features and
abstract content descriptions. It is simply complicated to describe
content in terms of intensity, edges, and texture. Therefore most
current image retrieval systems, say on search engines like Google
and FAST Multimedia Search, are based on analysis of an image
and adjacent text on web page of the image.

Among the first commercial content based image retrieval sys-
tems worth mentioning are IBM’s QBIC system [71], the VIR
Image Engine from Virage, Inc. [72], and Visual RetrievalWare
product by Excalibur Technologies [73]. These systems as well
as the research prototypes mentioned in the reviews [74, 70] aim
at using primitive image features for retrieval. However, the most
widely used image searches are primarily based on image asso-
ciated keywords and adjacent text. If we want to perform more
advanced searches it is necessary to invoke context sensitive text
based approaches, i.e., invoke statistical tools like the vector space
approach known as latent semantic indexing (LSI) [75, 46, 47, 48]
and ICA extensions [10, 49].

3.2. Multimodal Brain Data

ICA is an effective technique for removing artifacts and separat-
ing sources of multimodal brain signals such as electroencephalo-
graphic (EEG) and magnetoencephalographic (MEG) with appli-
cation to brain research and for medical diagnosis and treatment
[5]. A similar approach is proving useful for analyzing functional
magnetic resonance brain imaging (fMRI) data [50].

3.3. Audio

The instantaneous mixing model is often insufficient for audio
processing since audio/sound signals are convolved with response
of the acoustic environment in which they propagate. The rele-
vant model is thus often a convolutive mixture model, �(n) =



∑
i
�(i)�(n − i), where �(i) are matrix filter coefficients and

n is the time index. [51] provides an overview of research topics
in blind separation of convolutive mixed signals, concentrating on
audio signals and related methods. In general, it is advantageous to
use additional information e.g., specific speech signal priors [76],
or by combining statistical independence with geometric source
location (beam forming) [52]. Another challenge arise from the
fact that the number of microphones is less than the number of au-
dio sources calls for algorithms to cope with the underdetermined
case, see e.g., [29, 30]. It is also important to consider a framework
evaluation of such algorithms, which is considered in [53] for blind
audio source separation tasks: extraction of sound sources for lis-
tening purposes; and identification of mixing matrix and sound
sources for the purpose of classification and description.

3.3.1. Auditory Perception

[4, 7] analyze natural sound signals, e.g., highly non-Gaussian sig-
nals from radio stations broadcasting speech and classical music.
The resulting mixing vectors are quite wavelet-like with a located
regular time-frequency structure similar to that of the human audi-
tory system.

3.3.2. Source Separation and Scene Analysis

[54] uses multiple-cause neural networks, which are related to
ICA, for musical instrument separation. The signals are consid-
ered as a composition of hidden causes using Saund’s multiple
cause model [77].

[55] pursues automatic music transcription with the purpose
of identifying instruments and notes and written transcription of
these. The mixing matrix contains the spectral shape of each note
and sources are different notes. The notion of sparse coding (most
sources will be zero) and the relation to Saund’s multiple cause
model [77] is discussed.

[56] compares Computational Auditory Scene Analysis
(CASA) and BSS models for speech separation. Whereas CASA
is based on simple human auditory features, the BSS is data driven
and based on statistical independence only. Subband processing is
carried out for both CASA and BSS and it is suggested to combine
these approaches.

[57] considers similarity in sound effects which is required
for musical authoring and search by content in MPEG-7 applica-
tions [11]. Several approaches including, higher order spectra and
ICA-based features with temporal hidden Markov modeling are re-
viewed and evaluated in the context of multimedia sound retrieval.

[58] proposes to use independent subspace analysis (ISA) for
separating individual audio sources from a single-channel mixture.
ISA is an extension of classical ICA, which can handle single-
channel case by projecting onto a high-dimensional manifold. Non-
stationary source signals are handled by using dynamic compo-
nents. Further, the paper introduces the ixegram, which measures
mutual similarity of components in an audio segment. Clustering
the ixegram provides the source subspaces and time trajectories,
which is exemplified by separating speech and music sources.

3.4. Text

Texts are usually handled in the so-called “vector space model”
(VSM) and Latent Semantic Analysis (LSA), see Section 4.3.1.
ICA applications include [8, 13, 59, 60] and aim at discovering
independent topics in document collections. Source separation on

dynamically evolving textual data appears in [9] with a Molgedey-
Schuster analysis [69] performed on the CNN.com Internet chat-
room text. Similar data is considered in [78] using a hidden Markov
model, and complexity pursuit is considered in [79, 80].

3.5. Combined media

3.5.1. Content and inter-connectivity of documents

Jointly modeling the content and inter-connectivity between doc-
ument enables e.g., meta-analysis of large document collection or
better search tools. In [81] documents are clustered based on co-
authorship. [82] performs co-citation analysis and clusters cited
authors, which subsequently are mapped onto on a low-dimensional
space, e.g., by multi-dimensional scaling [22]. [61, 62] combine
co-citation analysis with words from the title of the documents.

[63] models collection of webpages from the term-document
matrix (see Section 4.3.1) and their inter-connectivity assembled
in an inlink-document matrix. Joint Probabilistic Latent Seman-
tic Analysis (PLSA) is used to identify a common latent space
for predicting terms and links. PLSA is related to performing
ICA or PCA (LSI) on the combined set of term-document and
inlink-document matrices. A possible application is intelligent
web crawling, which starts from words, predicts the latent vari-
able, then predicts link, and so on.

3.5.2. Cross-Language Document Retrieval

[23] uses kernel canonical correlation analysis, which is related
to kernel ICA [32], to find a common latent/semantic space from
multi-language documents (French/English). Comparison with LSI
shows improved retrieval performance.

3.5.3. Audio-Visual Segmentation

The problem of audio-visual segmentation is addressed in [64]. Ef-
fective audio and visual features for characterizing scene content is
presented and related to the MPEG-7 standard [11]. Further algo-
rithms for segmentation/classification, and some testbed systems
for video archiving and retrieval, are reviewed.

[65, 66] use an ICA related mutual information analysis of
joint audio-visual features to identify a common subspace.

[67] extracts an speech signal from other acoustical signals by
exploiting its coherence with the speaker’s lip movements. The
audio-visual coherence is learned by using a joint statistical model
of visual and spectral audio input and separation can be achieved
by maximum likelihood.

[21] operates from a fused data set of audio/visual data from
video streams and discover combined subspace components amen-
able for interpretation.

3.5.4. Combined Text/Image Content Extraction

The extraction of meaningful content from images and associated
text have been addressed in [46, 47, 48] using the Vector Space
Model, and [83] describes a more general probabilistic approach.
[10, 49] uses ICA and kernel canonical correlation analysis, re-
spectively. This is further exemplified in the next section.



4. EXAMPLE: CONTENT EXTRACTION FROM
COMBINED TEXT AND IMAGES

It was previously argued that independent component analysis
(ICA) is a valuable tool for unsupervised structuring of multime-
dia signals [13]. In particular, we have shown that the independent
components of text databases have intuitive meanings beyond that
found by LSI [8, 9, 13], and similarly that independent compo-
nents of image sets correspond to intuitively meaningful groupings
[8, 10, 13].

This section provides an extended review of [10], which ex-
plores independent component analysis of combined text and im-
age data.

4.1. The ICA assumption

The combined image and text data we will analyzed using a lin-
ear ICA approach based on sources with sparse priors. Here will
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Fig. 1. The ICA assumption. The upper panel shows a scatterplot
along two principal components of the text data discussed below.
The second panel shows the results of a five component ICA es-
timated by Infomax [26, 27, 28]. The third panel shows samples
from the normal distribution with the same mean and covariance
matrix as in the first panel. Finally, the bottom panel shows a care-
fully optimized 15 component Gaussian mixture model. The cen-
ters are shown as open black circles overlayed on a sample from
the mixture distribution.

briefly discuss the relevance of the ICA assumption. The upper
panel of Fig. 1 shows scatter plots along two principal compo-
nents of the real world text data discussed below. The “ray” like
structure suggests that the data is a linear mixture of a few sparse
independent sources. The second panel shows the results of a five
component ICA on text data of the upper panel. The analysis is
carried out with the Infomax algorithm [26, 27, 28], and produces
five vectors (columns of the mixing matrix) indicated by arrows.
The point cloud is a sample of the same size as in the upper panel,
but drawn from the source density implicit in the Infomax algo-
rithm, viz. P (sk) ∝ 1/ cosh(sk). Note that this density appar-
ently is less sparse than the “posterior” density of the text data.

In fact, if the estimated posterior source signals were projected on
the mixing coefficient vectors, the original sample, shown in the
first panel, would be recovered. In spite of the obviously inaccu-
rate density estimate the mixing coefficients seem to be accurately
determined. The third panel from above illustrate a sample from
a Gaussian distribution with the same mean and covariance matrix
as in the text data in the upper panel. Clearly the mean and covari-
ance are not good statistics for this problem. The eigenvectors of
the covariance matrix are axis parallel in the principal component
plots and do not reveal any of the relevant structures in the upper
panel. Finally, for comparison, the bottom panel shows a carefully
optimized 15 component Gaussian mixture model. The BIC cri-
terion was used to estimate the optimal number of components.
The centers are shown as open black circles overlayed on a sample
from mixture distribution. Clearly, the Gaussian mixture provides
an accurate density model, however, it is also evident that it has
no clue about the independent components that are clearly visible
in the text sample. So from a exploratory point of view it is less
interesting than the independent component model.

4.2. Modeling Framework

In order to perform content based retrieval of combined text and
image data it is important to ensure that the media mutually sup-
port each other, i.e., that the independent components of the com-
bined data do not dissociate. In this work adjacency is used to
associate text and images, which is also the approach taken by the
search engines. It is demonstrated that there is a synergistic ef-
fect, and that retrieval classification rates increase from combined
media.

Consider a collection of web pages consisting of images and
adjacent text from which we want to perform unsupervised mod-
eling, i.e., clustering into meaningful groups and possibly also su-
pervised classification into labeled classes. Let � = [�I ;�T ] be
the column vector of image (I) and text (T ) features. Unsuper-
vised ICA provides a probability density p(�) model from which
we want to identify meaningful clusters. The objective of super-
vised modeling is the conditional class-feature probability, p(y|�),
where y = {1, 2, · · · , C} is the class label. We will show that a
simple classifier can be obtained from the unsupervised ICA.

4.3. Feature Extraction

4.3.1. Text Features

The so-called bag-of-words approach is used to represent the text.
This approach is mainly motivated by simplicity and proven util-
ity, see e.g., [8, 9, 13, 75, 80, 84, 85], although more advanced sta-
tistical natural language processing techniques can be employed
[86]. The text is represented as terms, which is one word or a
small set of words that present a context. Each document, i.e., col-
lection of terms adjacent to an image, is represented by a vector:
the histogram of term occurrence, as proposed in the vector space
model (VSM) [85]. The term vector is usually filtered by removing
low and high frequency terms. Low frequency terms do not carry
meaningful discriminative information. Similarly high frequency
terms (also denoted stop-words) such as the and of are common to
all documents. In this paper, the stop-words were manually con-
structed to form a list of 585 words. Moreover, stemming is per-
formed by merging words with different endings, e.g., ing or s. The
collection of all document histograms provides the term-document



matrix �T = [�T (1), · · · ,�T (N)], where N is the number of
documents.

4.3.2. Image Features

The intention is to employ VSM on image features, and previous
work [46, 47, 48] indicate that the VSM in combination with la-
tent semantic indexing (LSI) is useful. Thus we seek to construct
a feature-image matrix �I = [�I(1), · · · ,�I(N)]. We suggest to
use lowest level image features of the ISO/IEC MPEG-7 standard
[11], which aims at setting the standards for multimedia content
representation, understanding and encoding. The low level im-
age features are color and texture which are implemented using
hue, saturation and value (HSV) encoding [48], and Gabor filters
[38, 68, 87], respectively. Experiments indicate that increased sen-
sitivity to the overall shape, e.g., background is obtained by divid-
ing each image into 4×4 array patches. Color and texture features
are subsequently computed for each patch.

By definition a texture is a spatially extended pattern build by
repeating similar units called texels. In the deployed Gabor filter
bank [48], each filter output captures a specific texture frequency
and direction. Fig. 2 shows the Gabor filter impulse responses.
Each image patch is convoled with the Gabor filters and the total
energies of the filtered outputs [88] are then considered as the tex-
ture feature. Since each image consist of 16 patches and the filter
bank has 12 filters, there are a total of 16 · 12 = 192 texture fea-
tures. The HSV color space [48] is believed to better link to human
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Fig. 2. Gabor filter bank used for texture feature extraction. Com-
bining four directions θ = [0, π/4, π/2, 3π/4] and three texture
frequencies f = [0.50, 0.20, 0.13] gives a total of 12 filters in the
bank.

color perception than standard RGB. The hue (H) can be inter-
preted as the dominant wavelength, the saturation (S) specifies the
color saturation level (zero corresponds to gray tone image), and
the value (V) specifies the lightness-darkness. Each color compo-
nent is quantized into 16 levels, and each image patch is repre-
sented by the 3 HSV color histograms. This gives 48 = 16 · 3
features for each of the 16 patches, i.e., in total 48 · 16 = 768
dimensions color features.

4.3.3. Data Normalization

Various normalization schemes have been investigated, and com-
pared on the basis of classification error. We found that projecting

each sample feature onto a unit sphere performed best, thus also re-
moving difference in image sizes and document lengths. This ap-
proach also outperformed normalizing to sum one (i.e., letting fea-
tures representing term probabilities), which may seem more natu-
ral. For the P -dimensional raw feature vector � = [�T ;�IT ;�IC ]
we have,

�̃ =

[
�T

‖�T ‖
;
�IT

‖�IT ‖
;
�IC

‖�IC‖

]

. (2)

where T , IT and IC refer to text, texture and color, respectively.
A further normalization was done by the overall variance of each
feature modality to determine the input � of our model.

� =

[
�̃T

σT
;
�̃IT

σIT
;
�̃IC

σIC

]

, (3)

where σ2
T = 1

PT

∑
i

1
N−1

∑
k
(z̃iT (k) − µiT ))2, where PT is

number of text features, and similarly for σ2
IT and σ2

IC .

4.4. Unsupervised ICA Modeling

We consider the simple linear noiseless ICA model � = �� and
assume π−1/ cosh(sk) distributed super-Gaussian priors. Due to
its robustness and simplicity we will use the Infomax algorithm
[26, 27, 28] although, as mentioned in Section 2, the literature
provides numerous ICA learning algorithm derived from other as-
sumptions. As suggested in [8, 9, 10] latent semantic indexing
(LSI) through PCA has demonstrated to be suitable for projecting
onto a subspace. That is, the model is

� = �� = �Φ�, (4)

where � is the P ×K matrix of K largest eigenvectors of the co-
variance of �, and Φ is the K ×K mixing matrix. Quadratic ICA
is thus performed in the subspace �̃ = �

�
�. The ICA model is

estimated from a training set � = �(1), · · · ,�(N) of N related
images/text data samples to yield estimates �̂ , Φ̂.

The major advantage of combining ICA with LSI is that the
sources are better aligned with meaningful content, which has been
demonstrated for text documents in [8]. The different source com-
ponents provide a meaningful segmentation of the feature space
and mainly one source is active for a specific feature vector as
demonstrated in Fig. 3. This enables an interpretation of the esti-
mates sources as conditional component probabilities using a soft-
max normalization:

p̂(k|�) =
exp(ŝk)

∑K

k=1
exp(ŝk)

, �̂ = [ŝ1, · · · ŝK ]� = Φ̂
−1
�̂

�
�.

(5)
where p̂(k|�) is the probability of component k given a particular
observation � and the training set.

4.4.1. Component Interpretation

In order to interpret the individual components, the K’th column
of �̂Φ̂ will constitute text and image features associated with the
K’th component/content segment. Since the textual features are
term-histograms we can further display high occurrence terms –
keywords – which in the experimental section are demonstrated to
yield meaningful interpretation of the components. In particular,
we rank the terms according to probability and terms which are
above a certain threshold are reported as keywords. Similarly, high
values of image features associated with a component provide a
compact texture and color interpretation.
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Fig. 3. Scatterplots of the text and image multimedia data, pro-
jected to a two-dimensional subspace found by PCA. Grey value of
points corresponds to the three classes considered, see Fig. 4. The
ray like structure strongly suggest an ICA interpretation, however,
the relevance of this representation can only be determined by a
subsequent inspection of the recovered source signals. As we will
see in section 4.6, it turns out that there is an interesting alignment
of the source signals and a manual labeling of the multimedia doc-
uments.

4.5. Probabilistic ICA Classification

Suppose that labels have been annotated to the data samples, i.e.,
we have a data set {�(n), y(n)}N

n=1 where y(n) ∈ [1; C] are class
labels. A simple probabilistic ICA classifier is then obtained as:

p(y|�) =

K∑

k=1

p(y|k)p(k|�), (6)

where p(k|�) is the conditional component probability estimated
using ICA as in Eq. (5). Provided that the independent compo-
nents have been estimated, the conditional class-component prob-
abilities, p(y|k) are easily estimated from data as the frequency of
occurrence for specific component-class combination k ∈ [1; K],
y ∈ [1; C], as shown by

p̂(y, k) =
1

N

N∑

n=1

δ( y − y(n) ) · δ( k − arg max
�

p̂(�|�(n)) ),

p̂(y|k) =
p̂(y, k)

∑
y

p̂(y, k)
, (7)

where δ(a) = 1 if a = 0, and 0 otherwise. The stagewise training
of the probabilistic classifier is suboptimal, and all parameters in

Eq. (6) could be estimated simultaneous, e.g., using the likelihood
principle. However, the simple scheme provides a computational
efficient extension of ICA to provide simple supervised classifi-
cation. A more elaborate ICA mixture classifier, trained using a
likelihood framework, and appropriate for multimodal data is pre-
sented in [89].
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Fig. 4. Images examples from the categories Sports, Aviation and
Paintball.

4.6. Experiments

The combined image and text database is obtained from the Inter-
net by searching for images and downloading adjacent text. The
adjacent text is defined as up to 150 words in one HTML para-
graph tag <P> above or below the image, or within the row of a
<TABLE> tag. For consistency, only jpeg images were retrieved,
and we discarded images less than 72 × 72 pixels or pages with-
out text. Three categories/classes of text/images were considered:
Sport and Aviation and Paintball. The Sport and Aviation categories
were retrieved from www.yahoo.com (17/04/2001) and the Paint-
ball category from www.warpig.com (21/02/2002) starting from the
directories and following links until depth 5.

Category Directory
Sports recreation&sports → sports → pictures
Aviation business&economy → transportation → aviation → pictures
Paintball paintball → gallery → tournament

400 data from each category were downloaded resulting in a total
of 1200 data sample, which were divided intro training and test
sets of 3 · 200 samples each. Features were extracted as described
above and resulted in 192 image texture features, 768 image color
features, and 3591 text features (terms). In Fig. 4 examples of
images from the categories are displayed.

4.6.1. ICA Classification

The test set classification confusion matrices obtained by using
the probabilistic ICA classification scheme1 described above are

1The source code of the deployed ML-ICA algorithm is available via
the DTU:Toolbox [90].
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Combined (texture/color/text) 2.8%

Fig. 5. Optimal test classification confusion matrices (top) ob-
tained by selecting the number of components, K, to minimize
BIC criterion [9]. Rows and columns are estimated and correct
classes, respectively, and the confusion reported in per cent sum
to 100% column-wise. Rows/columns 1 through 3 correspond to
Sports, Aviation and Paintball classes.

depicted in Fig. 5. ICA classification is done for single feature
groups: texture, color, text, as well combinations texture-color
and all features (texture/color/text). The number of components
is selected using the BIC criterion [9] as shown in Fig. 6. Fig. 5
(bottom) further shows the order of importance of the different fea-
ture groups as expressed by the overall test classification error, and
indicates the importance of extracting meaningful information. In
this data set text features convey much more content information as
compared to image features - both individually and in combination
(texture-color). However, by combining all features the classifica-
tion error is reduced approx. by a factor of 2 relative to using only
text features. This indicates that the ICA classifier is able to ex-
ploit synergy among text and image features. For comparison we
used the same classification framework with PCA, which resulted
in classification errors of 40% − 60%.

4.7. Image annotation application

An application of the suggested method is automatic annotation of
text or keywords to new (test) images. In case we do not have avail-
able class labels we aim at assigning the image to a component by
maxk p(k|�I). That is, we first need to estimate sources without
knowledge of�T . It can be shown that the optimal source estimate
max� p(�|�I) is obtained for �I = (�̂Φ̂�̂)I = �̂ IΦ̂�̂ with def-
initions as in Eq. (4), and with I begin the columns corresponding

to image features. That is, �̂ = Φ̂
−1
�̂

�
I �I . If class labels are
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Fig. 6. Selection of components using BIC in the case of combined
data (texture/color/text). In BIC, an asymptotic (large data set)
estimate of p(K|�) is computed, viz. the probability of the model
having K components given the training data. The most probable
model is obtained for K = 26 and the associated classification
errors are reported in Fig. 5.

I1 I2 I3

Image Label Keywords
I1 Sports position college weight born lbs height guard
I2 Aviation na air convair wing
I3 Paintball check darkside force gog strike odt

Fig. 7. Annotation of 3 images not used for training the model.
Keywords for I3 are team names.

available, we can further assign class label by maxy p(y|�I). In
both cases associated descriptive keyword can be generated as de-
scribed in Section 4.4.1. An example of automatic image annota-
tion is presented in Fig. 7.

5. CONCLUSIONS AND PERSPECTIVES

This paper demonstrated the potential of independent component
analysis and blind sources separation methods for modeling, un-
derstanding and intelligent processing of multimedia data. The
unique feature of ICA is that it provides unsupervised grouping of
data which are amenable for interpretation and well-aligned with
human perception.

A number of multimedia applications involving ICA/BBS and
related method have been reviewed and are summarized in Table 1.
The applications cover image/video, multimodal brain, audio, text,
and combined media data. The potential of ICA/BSS is clear, how-
ever, there still exist a number of interesting open research issues,
which are further discussed below.

We provided an extended review of our recent work on mod-



eling combined text/image data for the purpose of cross-media re-
trieval and web search. A more elaborate analysis of the assump-
tions of ICA emphasized the advantages of ICA for analysis of
text and image data. Further, it was demonstrated that the synergy
among text and image features leads to better classification per-
formance, thus the common independent component space convey
useful information related to the content of an image and adjacent
text information. Finally, we provided an application example of
automatic annotation of text to images using the suggested ICA
framework.

ICA/BSS is an interesting object for future research. Better
understanding of the concept of independent components of mul-
timedia data, which seems to be well aligned with human percep-
tion, might provide increased utility. An incomplete list of future
challenges includes:

• The construction of relevant and specific multimedia fea-
tures for which linear ICA is the appropriate model.

• Representation issues in image/video, e.g., facial anima-
tion, motion parameters and active appearance models.

• Incorporation of natural language and semantic features in
text processing.

• Processing from mono binaural audio signals, and in gen-
eral handling of underdetermined convolutive mixture mod-
els, e.g., by invoking more specific audio priors.

• Training and recall in large multimedia databases is a sig-
nificant computational issue.

• Estimation and optimization beyond natural gradient based
schemes has largely been ignored, hence, we anticipate a
need for advanced active data subset selection methods, on-
line learning algorithms, and adaptation to changing envi-
ronment.

• Intelligent fusion of media types and the ability to use both
labeled/unlabeled data.
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