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This report presents the results of the application of a non-differentiable op-
timization methods in connection with the Vehicle Routing Problem with Time
Windows (VRPTW). The VRPTW is an extension of the Vehicle Routing Prob-
lem. In the VRPTW the service at each customer must start within an associated
time window.

The Shortest Path decomposition of the VRPTW by Lagrangian relaxation re-
quire the finding of the optimal Lagrangian multipliers. This problem is a convex
non-differentiable optimization problem. The optimal multipliers are found using
the non-differentiable method denoted the proximal bundle method.

The bundle-method has been coupled with a Dantzig-Wolfe algorithm in a
branch-and-bound scheme. The root node of the branch-and-bound tree is solved
by the bundle-method and, if an integer solution is not obtained, shifting to a
Dantzig-Wolfe algorithm in the tree nodes. The combined bundle- and Dantzig-
Wolfe algorithm has been tested on the well-known Solomon VRPTW benchmark
problems and a range of extended Solomon problems.

Since we have succeded in solving 14 previously unsolved problems and an ex-
tended Solomon problem with 1000 customers, which is the largest problem ever
solved to optimality, and since the computational times were reduced significantly
by the bundle method in the root node compared to the Dantzig-Wolfe method it
seems very efficient to combine the use of a bundle-method with a Dantzig-Wolfe
algorithm, thereby combining the strengths of an Lagrangian relaxation approach
with the strengths of an Dantzig-Wolfe decomposition approach for the VRPTW.

KEYWORDS: Lagrangian relaxation, duality, non-differentiable optimization,
cutting plane methods, trust region methods, proximal bundle methods, Vehicle
Routing Problem with Time Windows.

1 Introduction

In the real world many companies are faced with problems regarding the transportation of
people, goods or information — commonly denoted routing problems. This is not restricted
to the transport sector itself but also other companies e.g. factories may have transport of
parts to and from different sites of the factory, and big companies may have internal mail
deliveries. These companies have to optimize transportation. As the world economy turns
more and more global, transportation will become even more important in the future.

Back in 1983 Bodin et al. in [BGABS83] reported that in 1980 approximately $400 billion
were used in distribution cost in the United States and in the United Kingdom the corre-
sponding figure was £15 billion. Halse reports in [Hal92] from an article from the Danish
newspaper Berlingske Tidende that in 1989 76.5% of all the transportation of goods was
done by vehicles, which underlines the importance of routing and scheduling problems.

Fisher writes in [Fis97] that a study from the National Council of Physical Distribution
estimates that transportation accounts for 15% of the U.S. gross national product (1978).
In Denmark the figures are 13% for 1981 and 15% for 1994 according to [The98].

In a pure routing problem there is only a geographic component, more realistic routing
problems also include a scheduling part, that is, a time component.

The simplest routing problem is the Traveling Salesman Problem (or TSP). A number of
cities have to be visited by a salesman who has to return to the city where he started.



The route has to be constructed in order to minimize the distance to be traveled. In the
m-TSP problem, m salesmen have to cover the cities given. Each city must be visited by
exactly one salesman. Every salesman starts off from the same city (called the depot) and
must at the end of his journey return to this city again. We now want to minimize the
sum of the distances of the routes. Both the TSP and m-TSP problems are pure routing
problems in the sense defined above.

The Vehicle Routing Problem (or VRP) is the m-TSP where a demand is associated
with each city, and each vehicle have a certain capacity (not necessarily identical). Be
aware that during the later years a number of authors have “renamed” this problem the
Capacitated Vehicle Routing Problem (or CVRP). The sum of demands on a route can
not exceed the capacity of the vehicle assigned to this route. As in the m-TSP we want to
minimize the sum of distances of the routes. Note that the VRP is not purely geographic
since the demand may be constraining. The VRP is the basic model for a large number
of vehicle routing problems.

If we add a time window to each customer we get the Vehicle Routing Problem with Time
Windows (VRPTW). In addition to the capacity constraint, a vehicle now has to visit a
customer within a certain time frame. The vehicle may arrive before the time window
“opens” but the customer can not be serviced until the time windows “opens”. It is not
allowed to arrive after the time window has “closed”.

These problems are all “hard” to solve (ie. the problems are N'P-hard). For the VRPTW
exact solutions can be found within reasonable time for some instances up to about 100
customers. A review of exact methods for the VRPTW is given in section [Lar99].

If the term “vehicle” is considered more loosely, numerous scheduling problems can also
be regarded as VRPTW. An example is that for a single machine, we want to schedule
a number of jobs where we know the flow time and the time to go from running one job
to the next one. This scheduling problem can be regarded as a VRPTW with a single
depot, single vehicle and the customers represents the jobs. The cost of changing from
one job to another is equal to the distance between the two customers. The time is takes
to perform the action is the service time of the job.

For a general and in-depth description of the field of routing and scheduling see [DDSS93,
Bre95, CL98|.

2 The Vehicle Routing Problem with Time Windows

The VRPTW is given by a fleet of homogeneous vehicles (denoted V), a set of customers
C and a directed graph G. The graph consists of |C|+ 2 vertices, where the customers are
denoted 1,2, ...,n and the depot is represented by the vertex 0 (“the driving-out depot”)
and n+1 (“the returning depot”). The set of vertices, that is, 0,1,...,n+1 is denoted V.
The set of arcs (denoted A) represents connections between the depot and the customers
and among the customers. No arc terminates in vertex 0, and no arc originates from
vertex n + 1. With each arc (4, j), where ¢ # j, we associate a cost ¢;; and a time t;,
which may include service time at customer ;.

Each vehicle has a capacity ¢ and each customer ¢ a demand d;. Each customer ¢ has a



time window [a;, b;]. A vehicle must arrive at the customer before b;. It can arrive before
a; but the customer will not be serviced before. The depot also has a time window [ay, by]
(the time windows for both depots are assumed to be identical). [ag, bo] is called the
scheduling horizon. Vehicles may not leave the depot before ay and must be back before
or at time b, 1.

It is assumed that g, a;, b;, d;, ¢;; are non-negative integers, while the ¢;;’s are assumed to
be positive integers. It is also assumed that the triangular inequality is satisfied for both
the ¢;;’s and the ¢;;’s. It is possible to add a scalar to all transportationscosts ¢;; without
changing the optimal solution to VRPTW.

The model contains two sets of decision variables z and s. For each arc (i,7), where
i1 # j,4 #n+1,7 #0, and each vehicle k we define z;;; as

1, if vehicle k drives from vertex i to vertex j

. { 0, if vehicle k£ does not drive from vertex ¢ to vertex j
ijk =
)

The decision variable s;; is defined for each vertex ¢ and each vehicle £ and denotes the
time vehicle k£ starts to service customer 7. In case the given vehicle £ does not service
customer % s;; does not mean anything. We assume ay = 0 and therefore so, = 0, for all
k.

We want to design a set of minimal cost routes, one for each vehicle, such that

e cach customer is serviced exactly once,
e every route originates at vertex 0 and ends at vertex n + 1, and

e the time windows and capacity constraints are observed.

We can state the VRPTW mathematically as:

IIIIHZZZCUZEUk S.1. (1)

keV ieN jeN
keY jEN
ieC  jeN
JEN
inhk — thjk =0 Vh € C,Vk ey (5)
iEN JEN
in’n"'l’k =1 Vk eV (6)
1N
Sik +tij — K(1 —zi5) < Sjr
Vi,j e N,Vk eV (7)
Tijk S {0,1} V’L,j EN,V]C eV (9)



The constraints (2) states that each customer is visited exactly once, and (3) means that no
vehicle is loaded with more than it’s capacity allows it to. The next three equations (4), (5)
and (6) ensures that each vehicle leaves the depot 0, after arriving at a customer the
vehicle leaves again, and finally arrives at the depot n 4+ 1. The inequalities (7) states
that a vehicle k can not arrive at j before s;, + ;; if it is traveling from ¢ to j. Here K
is a large scalar. Finally constraints (8) ensures that time windows are observed, and (9)
are the integrality constraints. Note that an unused vehicle is modelled by driving the
“empty” route (0,n + 1).

If we remove the assignment constraints (2) the problem becomes a Elementary Shortest
Path Problem with Time Windows and Capacity Constraints (ESPPTWCC) for every
vehicle, that is, find the shortest path from the depot and back to the depot that does not
violate the time and capacity constraints and visits the customers on the route at most
one time. As all vehicles are identical all ESPPTWCC’s also become identical.

Using the column generation approach as introduced with the set partitioning problem
as the master problem, the subproblem becomes the following mathematical model:

i€EN JEN

Zdi Zl“ij < q (11)
ieC  jeN

Zfoj =1 (12)
JEN

inh — ZSE}U‘ =0 Vh e C (13)
ieEN JEN

> Tinp =1 (14)
1eN

S; + tij — K(l - .TZ])S SjV’l:,j € N (15)
ZTij € {0, 1} Vi, j € N (17)

Constraints (11) are the capacity constraint, constrains (15) and (16) are time constraints,
while constraints (17) ensures integrality. The constraints (12), (13) and (14) are flow
constraints resulting in a path from the depot 0 and back to the depot n + 1. The ¢;
is the modified cost of using arc (i,j), where é; = ¢;; — m;. Note that while ¢;; is a
non-negative integer, ¢;; can be any real number. As we are now working with one route
the index k for the vehicle has been removed.

As can be seen from the mathematical model above the subproblem is a shortest path
problem with time windows and capacity constraints, where each vertex can participate
at most once in the route. For this problem (sometimes denoted the Elementary Short-
est Path Problem with Time Windows and Capacity Constraints (ESPPTWCC)) there
is no known efficient algorithm, making the problem unsolvable for practical purposes.
Therefore some of these constraints are relaxed. Cycles are allowed thereby changing the
problem to the Shortest Path Problem with Time Windows and Capacity Constraints
(SPPTWCC). Even though there is a possibility for negative cycles in the graph the time



windows and the capacity constraints prohibits infinite cycling. Note that capacity is
accumulated every time the customer is serviced.

In order to build the SPPTWCC algorithm we have to make two assumptions:

1. Time is always increasing along the arcs, i.e. t;; > 0.

2. Time and capacity are discretized.

The algorithm maintains a set of “shortest subpaths” defined by a list of labels. A label
is a state that contains a customer number, the current time ¢ of arrival (at the given
customer) and the accumulated demand d:

(3,2, d).

The cost of the label is then defined as ¢(i,t,d). The algorithm is based on the following
simple extension of the dynamic programming behind the Dijkstra algorithm:

c(0,0,0) = 0
c(j,t,d) = min{¢; +c(i,t',d) |t +t; =t Nd +d; =d}

States are treated in order of increasing time (¢). Note that for each label i there may
now exist more than one state. An upper bound on the number of states is given by

=) (bi—a)lg—1)

ieN

As this is the upper limit, many of these states might not be possible, and others will not
be considered as they are dominated by other states (see later).

In a straightforward implementation we maintain a set NPS of not processed states. Ini-
tially this set only has one member: the label (0,0,0). As long as there exist unprocessed
labels in the set the one with the lowest time is chosen and the algorithm tries to extend
this to the successors of the vertex. States at vertex n + 1 are not processed and are
therefore kept in a special set of “solutions”, from which the best one is returned as the
algorithm terminates. When a label has been processed it is removed from the set of
unprocessed labels. The algorithm is described in pseudo-code in figure 1.

In order to make the algorithm considerably more efficient we will (like in Dijkstra’s
algorithm) introduce a dominance criterion.

Assume that for a given vertex i we have two states (i,t;,d;) and (i,%2,ds) where
c(iyt1,dy) < c(iyte,dy), t1 < to and d; < dy. Clearly as long as the extensions based
on (i,ty,ds) are valid the extensions based on (i,t1,d;) are also valid, and these will
always be lower in cost (or at least not higher). Therefore the label (i,%3,ds) can be
discarded. Formally we say that (i,t;,d;) dominates (i,ts,ds) (or (i,t1,d1) < (4,t2,ds))
if and only if all of the following three conditions hold:

1. C(i,tl,dl) S C(i,tg,dg).



( Initialization )
NP5={(0,0,0)}
¢(0,0,0) = 0

repeat
(i,t,d) = BestLabel(NPS)

for j:=1ton-+1do
if (Z#]/\t-{-tw Sbj/\d-i—dj Sq) then
( Label feasible )
if c(j, max{t + t;;,a;},d + d;) > c(i,t,d) + ¢;; then
( New label better )
InsertLabel(NPS, (j, max{t + t;;,a,},d+ d;))
c(j, max{t + t;j,a;},d + d;) = c(i, t,d) + ¢&;

until (i =n+1)
return

Figure 1: The algorithm for finding the shortest path with time windows and capacity
constraints. BestLabel returns a label with vertex different from n + 1 and minimal
accumulated time if one exists. Otherwise a label with vertex n—+1 is returned. InsertLabel
inserts the newly generated label in NPS possibly overwriting an old label if it already
exists.

Each time a new label is generated we have to check with the other labels at the same
vertex to see if the new label is dominated by some label or the new label dominates
another label.

3 A Hybrid Solution Method

OLI SKRIVER HER.

4 Solutions

Of the 80 Solomon type 1 problems solved to optimality 34 of the problems were solved
in the root node. The average relative dual gap (IP"’?P;;?"’”) for remaining 46 solved
problems is 2.8%, which shows the quality of the lower bound given by our shortest
path decomposition. The relative dual gap for the groups R1, C1 and RC1 are 1.2%,
0.2% respectively 5.3%, which is an indication of why there are relatively more unsolved
problems in the RC1-set than in R1, and why the Cl-set was the first set of instances

that was solved to optimality.



Of the 46 Solomon type 2 problems solved to optimality integer solutions are found in the
root node in 9 cases (among them all the C2-problems solved). The average relative gap
of the remaining solved instancesis 5.8% which is more than a factor 2 higher than the
relative dual gap for the type 1 instances. The relative gap for the sets R2, C2 and RC2
are 2.6%, 2.9% respectively 14%. The reason why the average gap of the C2 instances is
higher than for the R2 instances is that we were able to solve more “difficult” instances
from the C2 set (all problems except C204.100 are solved to optimality). than in the R2
set (where we only have solved one instance with 100 customers (R201.100)). Among the
type 2 instances the RC set is again the most difficult e.g. the problem RC203.25 has a
dual gap of 40%.

In the next section we give a overview of the solutions to the solved Solomon instances. Fro
every problem there is given a lower bound for the VRPTW found by the proximal bundle-
method, the optimal primal IP value as found by the Dantzig-Wolfe algorithm, number
of vehicles, number of branch-and-bound nodes and the number of valid inequalities used
in the Dantzig-Wolfe algorithm. Then we give the total number of call to the SPPTWCC
routine made by the proximal bundle-method and the Dantzig-Wolfe algorithm and finaly
the total running time.



4.1 The R1 instances

Problem LBopt IPopt veh no VI iter | Beregningstid
R101.25 617,100 617,100 8 1 0 33 1,0
R101.50 1043,367  1044,000 12 1 2 7 1,1
R101.100A 1631,150  1637,700 20 15 9 235 17,1
R102.25 546,333 547,100 7 1 3 57 1,0
R102.50 909,000 909,000 11 1 0 89 1,1
R102.100 1466,600  1466,600 18 1 0 208 18,1
R103.25 454,600 454,600 5 1 0 55 1,0
R103.50 765,950 772,900 9 39 4 249 13,2
R103.100 1206,313  1208,700 14 49 2 504 161,4
R104.25 416,900 416,900 4 1 0 76 1,0
R104.50 616,500 625,400 6 173 4 701 288,5
R104.100

R105.25 530,500 530,500 6 1 0 40 1,0
R105.50 892,120 899,300 9 15 13 155 2,3
R105.100 1346,142  1355,300 15 87 24 458 62,7
R106.25 457,300 465,400 5 1 12 55 1,2
R106.50 791,367 793,000 8 1 7 128 2,4
R106.100 1226,440  1234,600 13 1399 10 2991 3288,0
R107.25 422,925 424,300 4 3 3 87 1,2
R107.50 704,438 711,100 7 55 1 310 21,6
R107.100 1051,842  1064,600 11 3317 9 7278 38384,8
R108.25 396,139 397,300 4 3 2 111 2,9
R108.50C 588,926 617,700 6 7213 17 16840 67344,2
R108.100

R109.25 441,300 441,300 5 1 0 34 0,0
R109.50 775,096 786,800 8 157 7 471 20,8
R109.100A 1130,587  1146,900 13 4005 29 8504 53009,9
R110.25 437,300 444,100 5 27 0 140 1,4
R110.50 692,577 697,000 7 5 3 140 4,3
R110.100CD | 1048,482 1068,000 12 108024 8 1210219 664037,5
R111.25 423,788 428,800 4 5 3 72 1,4
R111.50 691,812 707,200 7 405 10 1002 184,6
R111.100CD | 1032,028 1048,700 12 5945 5 66740 27097,7
R112.25 384,200 393,000 4 9 18 102 4,6
R112.50 607,219 630,200 6 9383 5 16102 39561,8
R112.100

Table 1: Solution overview for the R1 instances.

Figure 2 shows the solution to R110.100. Arcs to and from the depot are not drawn.
The box in the center represents the depot. Figure 3 is also the solution of R110.100 but
depicted with respect to time. As can be seen R110.100 has relatively wide time windoes
and partly a common strip through the time windows, which is an important part of the
explanation for the very long running time. One of the three remaining unsolved problems
in the R1 set (R112.100) has to an even higher degree this band-structure in the time
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windows. The two other unsolved instances R104.100 and R108.100 also have very wide
time windows (only 25% of the customers have restictive time windows).

Figure 2: Geographic view of the solution to R110 with 100 customers.
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Figure 3: Tidsmaessig view of the solution to R110 with 100 customers.
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4.2 C1 instances

These problems are known to be the easiest to solve, but we have been able to reduce
the running times for instances with wide time windows (C103 and C104). Due to the
clustering of customers and the construction of the time windows most of the solutions
are obvious and could quickly be constructed by hand; one only has to use one vehicle for
each cluster.

The solution you would find manually would be identical or very close to the optimal
solution for C101.100, C102.100, C105.100, C106.100, C107.100 and C108.100, see [Kal]
pp-185ff. for a graphical view of the solutions.

Problem LBopt IPopt | veh no VI iter | Beregningstid
C101.25 191,300 191,300 3 1 0 22 1,0
C101.50 362,400 362,400 5 1 0 40 0,3
C101.100 | 827,300 827,300 10 1 0 7 4,4
C102.25 190,300 190,300 3 1 0 50 0,2
C102.50 361,400 361,400 5 1 0 47 0,5
C102.100 | 827,300 827,300 10 1 0 106 19,4
C103.25 190,300 190,300 3 1 0 58 2,1
C103.50 361,400 361,400 5 1 0 81 8,6
C103.100 | 826,300 826,300 10 1 0 145 110,7
C104.25 186,900 186,900 3 1 0 62 2,2
C104.50 357,250 358,000 5 1 2 174 42,9
C104.100 | 822,900 822,900 10 1 0 204 220,4
C105.25 191,300 191,300 3 1 0 28 0,1
C105.50 362,400 362,400 5 1 0 49 0,7
C105.100 | 827,300 827,300 10 1 0 81 9,9
C106.25 191,300 191,300 3 1 0 23 1,0
C106.50 362,400 362,400 5 1 0 40 0,3
C106.100 | 827,300 827,300 10 1 0 89 11,9
C107.25 191,300 191,300 3 1 0 27 0,1
C107.50 362,400 362,400 5 1 0 39 0,4
C107.100 | 827,300 827,300 10 1 0 89 16,0
C108.25 191,300 191,300 3 1 0 32 0,1
C108.50 362,400 362,400 5 1 0 43 1,6
C108.100 | 827,300 827,300 10 1 0 92 15,2
C109.25 191,300 191,300 3 1 0 61 0,1
C109.50 362,400 362,400 5 1 0 71 2,3
C109.100 | 825,640 827,300 10 1 3 152 18,5

Table 2: Solution overview for the C1 instances.
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4.3 The RC1 instances

Problem LBopt IPopt | veh no VI iter | Beregningstid
RC101.25 406,625 461,100 4 11 3 73 1,2
RC101.50 850,021 944,000 8 3 34 118 1,8
RC101.100 1584,094  1619,800 15 1 64 238 18,8
RC102.25 351,800 351,800 3 1 0 34 1,1
RC102.50 719,902 822,500 7 1685 6 3270 1027,7
RC102.100CD | 1403,646  1457,500 14 15356 38 209820 27750,3
RC103.25 332,050 332,800 3 3 0 90 1,2
RC103.50 643,133 710,900 6 5 3 134 8,2
RC103.100CD | 1218,495  1258,200 11 16455 39 251053 80419,2
RC104.25 305,825 306,600 3 7 0 117 1,9
RC104.50 543,750 545,800 5 27 0 245 87,4
RC104.100

RC105.25 410,950 411,300 4 3 0 74 1,1
RC105.50 754,443 855,300 8 157 5 587 33,3
RC105.100 1471,160  1513,700 15 43 33 392 64,7
RC106.25 342,829 345,500 3 15 1 115 61,0
RC106.50 664,433 723,200 6 21 10 205 8,6
RC106.100

RC107.25 298,300 298,300 3 1 0 49 1,1
RC107.50 591,476 642,700 6 79 2 430 64,1
RC107.100

RC108.25 293,791 294,500 3 1 4 65 34,0
RC108.50 538,957 598,100 6 9 2 148 61,1
RC108.100

Table 3: Solution overview for the RC1 instances.

4.4 The R2 instances

We have solved all 25 customer instances to optimality except R204.25. Furthermore we
have solve 3 50 customer instances and 1 instace with 100 customers, namely R201.100,
which is shown geographically in figure 4 and time-wise in figure 5. It should be noted
that the routes in figure 5 tend to break up in several parts, e.g. the route where customer
27 is the first to be serviced. The total service time for R201.100 is 1000, driving time
(accumulated sum of ¢;;’s) is 1143.2 and the waiting time is 4153.4. It could therefore be
argued how realistic this solution is. This is a very good illustration of one of the problem
using a purely geographic objective function for a “mixed” problem.
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Problem

LBopt

IPopt

veh

no

VI

iter

Beregningstid

R201.25A
R201.50
R201.100A
R202.25
R202.50A
R202.100
R203.25A
R203.50
R203.100
R204.25
R204.50
R204.100
R205.25A
R205.50
R205.100
R206.25A
R206.50
R206.100
R207.25
R207.50
R207.100
R208.25D
R208.50
R208.100
R209.25A
R209.50
R209.100
R210.25A
R210.50
R210.100
R211.25D
R211.50
R211.100

460,100
788,425
1136,222
406,350
692,737

379,882

381,283

666,604

363,132

347,592

318,105

353,875

395,844

330,140

463,300
791,900
1143,200
410,500
698,500

391,400

393,000

690,900

374,400

361,600

330,900

370,700

404,600

350,900

[ e N

265
23

29

11

5282

7

273

20

61

59

424

= o = O o

453
605
2124
894
881

1892

911

87849

1577

2687

1853

1821

545

4558

1,9
12,3
7570,1
18,8
1696,1

355,4

21,4

55507,0

988,7

9296,8

23370,7

1991,4

2417,7

27998,8

Table 4: Solution overview for the R2 instances.
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Figure 4: Geographic view of the solution to R201 with 100 customers.
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Figure 5: Tidsmaessig view of the solution to R201 with 100 customers.
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4.5 The C2 instances

Among the C2 instances we solved all but one instance. C204.100 is the most difficult
problem (due to its large time windows) and was not solved. We try several times to solve
C204.100, but either stopped due to an upper bound of 100000 columns generated or in
the a later attemp ran out of memory. The problems are structually the same as the C1
instances, men longer routes are allowed, which can be seen in the solution of C208.100
in figure 6. On figure 7 we can see that the time windows are almost constructed to fit

the geographical postition of the customers.

Problem LBopt IPopt | veh no VI iter | Beregningstid
C201.25AB 214,700 214,700 2 1 0 173 1,0
C201.50AB 360,200 360,200 3 1 0 177 1,1
C201.100AB | 589,100 589,100 3 1 0 105 58,2
C202.25AB 214,700 214,700 2 1 0 916 7,1
C202.50AB 360,200 360,200 3 1 0 923 17,2
C202.100AB | 589,100 589,100 3 1 0 134 21,0
C203.25AB 214,700 214,700 2 1 0 968 26,1
C203.50B 359,800 359,800 3 1 0 930 80,2
C203.100B 588,700 588,700 3 1 0 287 609,6
C204.25B 211,004 214,500 2 6 0 778 386,4
C204.50B 350,100 350,100 2 1 0 172 64,3
C204.100

C205.25AB 212,050 214,700 2 2 0 825 4,4
C205.50B 357,350 363,500 3 2 0 646 387,5
C205.100B 586,400 586,400 3 9 0 151 12,0
C206.25A 197,700 214,700 2 1 5 573 12,1
C206.50A 344,200 359,800 3 3 4 733 1353,5
C206.100A 585,400 586,000 3 1 2 565 1938,0
C207.25B 207,981 214,500 2 73 0 1194 819,7
C207.50A 356,269 359,600 3 1 10 1208 910,8
C207.100A 581,969 585,800 3 1 6 851 5475,8
C208.25A 193,280 214,500 2 9 6 2415 96,5
C208.50A 340,425 350,500 2 1 3 1220 394,9
C208.100A 581,767 585,800 3 1 4 1173 8326,6

Table 5: Solution overview for the C2 instances.
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Figure 6: Geographic view of the solution to C208 with 100 customers.
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Figure 7: The solution to C208 with 100 customers from a time perspective.
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4.6 The RC2 instances

The RC2 instance were the computationally most difficult problems to solve. Two 25
customer problems are not solved yet (RC204.25 and RC208.25) and for the remaining
(solved) 25 customer instances the running time is very large compared to R2 and C2.
We have succeeded in solving one 100 customer problem, namely RC201.100, which is
show in figure 8 and 9. For RC201.100 the total service time is 1000, the driving time
1261 and the waiting time 4243, that is, the same proportion as we saw in R201.100.

Problem LBopt IPopt | veh no VI iter | Beregningstid
RC201.25 356,650 360,200 3 0 419 2,3
RC201.50 670,150 684,800 31 0 1361 94,2
RC201.100CD | 1240,398 1261,800 524 10 33642 34869,0
RC202.25A 290,408 338,000 117 6 1791 6386,7
RC202.50
RC202.100
RC203.25CD 214,475 356,400 2 12399 5 385100 213415,1
RC203.50
RC203.100
RC204.25
RC204.50
RC204.100
RC205.25 307,600 338,000 3 47 0 1551 57,9
RC205.50 541,842 631,000 5 8938 0 266170 55104,3
RC205.100
RC206.25 250,390 324,000 3 2465 8 27327 82387,5
RC206.50
RC206.100
RC207.25CD 217,964 298,300 3 13395 3 215645 220991,2
RC207.50
RC207.100
RC208.25
RC208.50
RC208.100

w © ot w

Table 6: Solution overview for the RC2 instances.
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Figure 8: Geographic view of the solution to RC201 with 100 customers.

22



ISR
838&

Gnowowdwer s

)
&

260
) —
157 277

599
694 814
365 485
352 472
286
375 495
}—% 380
292
784 904
764 884
782 902
645 765
653 773
703 823
639
667

.‘Jlos—t 155

225

254
215
201
232
162
131
300
152 }% 272
& 157
/37 73 193
258

39
566 686
557 677
537 657
375 495
440 560
374
335 455
335
321
352
S —
810 930
o ﬂ
673 793
e ﬁs‘”
489 609
367 487
420
388 508
612 »—% 732
355 475

601 ’ﬁ_/ 721
A
657 77

574 694
329 %—Q 449
278 398
376 49
217 »—% 337
8 153
3364 184
163
& 180
0 100 200 300 400 500 600 700 800 900 960

Figure 9: The solution to RC201 with 100 customers from a time perspective.
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4.7 The Homberger instances

We have solved 9 problems from the Homberger testsets, among them problems with
400 and 1000 customers. In 8 of the problems the customers are grouped (C-instances),
while we succeeded in solving a 200 customer problem where the customers are randomly
placed.

Problem LBopt IPopt | veh no VI iter | Beregningstid
R1.2.1.200 4654,900 4667,200 23 469 21 1314 4562,1
C12.1.201 2698,600 2698,600 20 1 0 149 121,3
C1.2.2.202 2682,187 2694,300 20 95 6 1113 4569,4
C1-2.5.203 2694,900 2694,900 20 1 0 152 116,5
C1.2.6.204 2694,900 2694,900 20 1 0 155 94,8
C1.2.7.205 2694,900 2694,900 20 1 0 181 134,6
C1.2.8.206 2667,870 2684,000 20 129 13 967 1970,6
C1.4.1.400 7138,767 7138,800 40 1 1 17472 9242,0
C110.1.1000 | 42444,400  42444,800 | 100 3 2 996 28952,2

Table 7: Overview of the solved Homberger instances.

4.8 An instance with 1000 customers

The solution to an instance with 1000 customers is shown in figurel0. The objective
value is 42444.8 and the solutions needed 100 vehicles. The Bundle-method solved the
root node in 704 iterations in 4116 seconds. The Dantzig-Wolfe algorithm used 292 master
iterations, returning at most 200 column for every call of the SPPTWCC subproblem and
used a total of 24836 sekunder to find the optimal solution. 2 valied inequalities were
introduced and we needed one branching operation (branching on arcs), so a total of 3
branch-and-bound-nodes were necessary.

—————————— Statistics

This program ran on serv3 ().

Total execution time 24836.17 seconds
(Solving root 23245.11 seconds)

Time used in separation 34.25 seconds
Cuts generated 2

Accumulated time used in calls of SPPTWCC 870.12 seconds

Time used in largest single SPPTWCC call 9.41 seconds

Branching nodes examined 3 (Veh 0, Arc 1, TW 0)
(hereof 0 where not feasible)

No of calls to SPPTW 292, Routes generated 53294

Max no of columns selected per SPPTW 200

No of multiple customers deleted explicitly 0O

IP value 424448

RP value 424446.833

LP value 424444.000

Total CPLEX optimize time 23872.30 Biggest 1000.05

Total branching time 23.49 Biggest 23.49

Table 8: Programoutput for solving C110-1.1000.

In table 8 one can see that the main part of the running time is used in the LP-solver

24



(23872 sekundes out of a total of 24836 seconds). This is characteristic for problems with
more than 100 customers that the relative amount of time used in the LP-solver in many
cases is larger than the time used in the shortest path routine (see [Kal] p.82).
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Figure 10: The solution to C110-1.1000.
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