
Voice over IP Measurements

Radu Dudici Ruscior

LYNGBY 2002

IMM-THESIS-2002-75

IMM

Printed by IMM, DTU

i

Preface

This M.Sc. thesis is submitted in partial ful�llment of the requirements for the
degree of Master of Science in Computer Systems Engineering. The work has been
carried out in the period from 1st of March 2002 to 29th of November 2002 at
the department of Informatics and Mathematical Modeling, Technical University of
Denmark. The work has been supervised by Professor Steen Pedersen and Profes-
sor Robin Sharp. The thesis has been carried out in collaboration with Gavnholt
Communications under supervision of U�e Gavnholt.

Also a tool, called VIPSim has been obtained as a result of this project. Although
this tool has been used to obtain the results commented in this thesis its source code
is not listed here for commercial reasons.

I would like to thank my supervisors Steen Pedersen, Robin Sharp and U�e Gavn-
holt for their assistance and guidance.

I would also like to thank my future wife, Andreea, for her big support.

Lyngby - November , 2002

Radu Dudici Ruscior

ii

Abstract

The Quality of Service is very important for any user, related to Voice over IP or
any other multimedia application. This thesis presents a solution to develop a tool
able to measure this parameter in order to detect upcoming bottleneck problems for
a future installation of a VoIP system and to troubleshoot existing VoIP systems.
The tool's name is VIPSim.

VIPSim is meant to be used to provide extensive information about performance,
capacity and problems in an H.323 network. It is also used for alarms, planning and
documentation.

The thesis is structured in 7 sections.

Section 1 presents the general problem of QoS in a VoIP system and shows a
possible solution, which is VIPSim.

Section 2 presents the architecture of VIPSim. It describes the two components of
VIPSim, which are the Sender and the Re�ector. It also shows what VIPSim does
and how it does (referring to measurements). It addresses to users of VIPSim in
systems troubleshootings.

Section 3 goes deeper into VIPSim's implementation, describing its internal de-
sign as well as the description of the implementation of some important operations.
It addresses to programmers and developers.

Section 4 describes some aspects regarding optimizations that were used in VIP-
Sim's implementation. This section also gives the reader ideas about some algo-
rithms used in VIPSim's implementation.

Section 5 shows tests and results obtained from measurements done with VIP-
Sim. Some of them are meant to determine VIPSim's limitations and requirements.

Section 6 contains general conclusions.

Section 7 contains a glossary with terms used in this thesis, and some VoIP termi-
nology.

Keywords VoIP, Packets, Round Trip Delay, H.323, Jitter, Network, Measure-
ments, Calls

iii

Contents

1 Introduction 1

1.1 Voice over IP and Quality of Service 1

1.2 VoIP system - H.323 recommendation 3

1.2.1 H.323 - Packet-based multimedia communication systems . . . 3

1.3 Purpose of the application - VIPSim 5

1.3.1 General description . 5

1.3.2 Why use H.323? . 7

2 VIPSim Description 9

2.1 VIPSim Architecture . 9

2.2 Statistics and Thresholds . 13

2.2.1 Measurements . 13

2.2.2 Thresholds . 16

2.2.3 Presenting the Results . 17

2.3 Measurements mechanism . 20

2.3.1 Packet description . 20

2.3.2 The Algorithm Used to Compute the Results 22

3 VIPSim Design 27

3.1 Classes and Objects . 27

3.2 Threads description . 31

3.3 Packets Transmission Mechanism . 35

3.4 Multiple Calls . 37

iv CONTENTS

4 E�ciency Aspects 39

4.1 Timing in windows . 39

4.2 Distributed vs. Burst Transmission 42

4.3 Parallel Operations . 44

5 Tests and Results 47

5.1 Testing plan . 47

5.2 Tests on an "almost ideal" network 50

5.2.1 Burst vs. Distributed Transmission test 50

5.2.2 Number of calls and transmission rate limits 50

5.2.3 Packet Size in�uence . 55

5.2.4 Transmission Precision . 56

5.2.5 OS stress test . 57

5.3 Tests on "real" network . 59

6 Conclusions 61

7 Glossary 63

A Graphs, Diagrams and Procedures 65

A.1 Call Establishment Procedures using H.225.0 and H.245 Messages . . 65

A.2 Master Slave Determination Procedure using H.245 Messages 67

A.3 Measuring Algorithm Flowchart . 69

A.4 Class Diagram . 70

A.5 Jitter Calculation . 72

A.6 Call Procedure threads . 73

A.7 RTP Packets and Statistic Computation threads 79

A.8 Data Flow in Packets Transmission Stage 81

A.9 Timers Testing Procedure . 83

B Graphs 85

B.1 Transmission Timing Deviation Charts 85

B.2 Real Environment Measurements Results 88

v

List of Tables

2.1 General information about a call (Input data, not measured). 17

2.2 Call related measured data for a single call. 17

2.3 Call related measured data for all calls. 18

2.4 Packets related measured data. 19

3.1 H.323 Endpoint module classes description. 28

3.2 Gatekeeper communication module classes description. 29

3.3 H.225.0 support module classes description. 29

3.4 H.245 support module classes description. 29

3.5 RTP transmissions and Statistic computation module classes descrip-
tion. 30

3.6 Packets Sending module classes description. 30

3.7 Data-base Saving module classes description. 30

4.1 Time functions characteristics (resolution, accuracy, execution time). 41

5.1 Two Statistics of 10 calls showing the delays obtained using burst
transmission algorithm. 51

5.2 Two Statistics of 10 calls showing the delay obtained using distributed
transmission algorithm. 52

5.3 Mean packet delays obtained on an Athlon 1GHz with Win 2K. . . . 52

5.4 Overall transmission rate computed by distributing the transmissions
of all calls over the transmission interval of one call. 53

5.5 Mean packet delays obtained on an Athlon 500MHz with Win 98. . . 53

5.6 Packet size in�uence over the mean delay. 55

5.7 Transmission timing deviation and transmission duration on an Athlon
1GHz with Win 2K. 57

vi LIST OF TABLES

5.8 Transmission timing deviation and transmission duration on an Athlon
500MHz with Win 98. 57

5.9 VIPSim operation on a non stressed OS. The table contains measured
parameters related to the network packets. 58

5.10 VIPSim operation on a stressed OS. The table contains measured
parameters related to the network packets. 58

vii

List of Figures

1.1 A general H.323 terminal. 4

2.1 Sender - Re�ector architecture. 10

2.2 Exchange of H.225.0 and H.245 messages for a call establishment. . . 11

2.3 A general H.323 network. 12

2.4 Packets delay histogram. 20

2.5 RTP packet format. 21

2.6 RTP packet header format. 22

2.7 VIPSim packet format. 22

3.1 The main loop of the packets transmission mechanism. 36

4.1 Transmission of packets in one call 43

4.2 Transmission of packets for multiple calls - burst sending 43

4.3 Transmission of packets for multiple calls - distributed sending 44

5.1 Mean Delay vs. Packet Size on Windows 2000. The packet size in
the graph does not contain the UDP/IP headers. 56

1

Chapter 1

Introduction

This section gives a description of Quality of Service in Voice over IP, and proposes
a solution for measuring and monitoring this parameter, which is VIPSim.

1.1 Voice over IP and Quality of Service

As the network technologies advance, new other technologies are developed. This is
also the case of voice over internet protocol or simply VoIP. It started as a way of
cheap long distance calls, becoming in short time a multimedia technology that is
constantly developing.

VoIP is the technology in which the analogue signal from a standard telephone
is converted into bits, grouped in packets of data, and transmitted over digital lines.
In other words, using VoIP, instead of talking on the telephone, you use the com-
puter and through the Internet you talk with the other party.

This has some advantages, like low cost of long distance calls, due to low cost
of internet. Another advantage is that wherever there is an Internet connection
there is a possibility to transmit voice over the Internet, meaning that there is the
possibility to talk with someone. Talking with someone like talking on the phone
is not the only feature of this technology. Transmitting voice over digital lines may
also be used for listening to music and live radio broadcasts, and even more, this is
an important step in going further to transmitting video over the Internet.

As this technology develops a new problem arises, the quality of the service pro-
vided by VoIP or simply QoS. Of course in the beginning when this technology just
arrived, the quality was pour but now when we have broadband networks with high
speed data transfer these services get better and better.

2 Chapter 1. Introduction

Quality of service (QoS) can be de�ned as the ability of a system, including soft-
ware, devices and the network, to provide guaranteed and better service regarding
transmission of data. For VoIP this is based on the human perception of voice that
is sensitive to delays. From a user's point of view quality means clear, continuous
and real-time sound. From an application's point of view this is translated into no
delays, no packets lost on the network and enough bandwidth.

For a VoIP system the parameters that de�ne the QoS [7] are:

Bandwidth - is the speed of transmitting data measured in bits per second. A low
bandwidth as well as a network connection that has the data tra�c close to
its limit of bandwidth, will a�ect the quality of voice. A standard voice call
needs a bandwidth of 64kbit/s. Using di�erent coders the requirements for
bandwidth may vary.

Delay - is the di�erence between the receiving time and the sending time of the
voice data. There are many sources of delay [6].

• Coders delay - time needed by the DSP module to compress a voice signal.
• Packetization delay - time needed to �ll in the packet payload with the
compressed data and to attach the headers.

• Queuing/Bu�ering delay - time needed to queue the packets to be trans-
mitted on the network.

• De-jittering delay - the time used for the receiver to accumulate packets
into bu�ers in order to reduce the jitter delay.

• Network delays - delays that appear due to transmission on the physical
link as well as the interferences of network devices like routers, switches,
�rewalls, e.t.c.

Jitter - is the variation in the delay of received packets [6] or an estimation of
statistical variance of the packets interarrival time [2]. Packets are sent at a
constant rate and they are expected to arrive at the same rate, but due to
network congestions for example this rate may vary.

Link quality - the network needs to provide besides a fast connection also an error-
free connection. This is measured in bit-error-rate. Some bit errors can be
corrected at the receiver by using special mechanisms.

Packets out of order - they are the voice packets that do not arrive in the order
they were sent. These packets are discarded and the voice information is
missing.

Lost packets - they are packets that are lost on the network and do not arrive at
the destination.

Due to ITU-T recommendation G.114 the accepted delay is between 0 - 150 ms
for all users. Between 150 - 400 ms is acceptable provided that administrators are
aware of the transmission time and its impact on the transmission quality of user
applications. Above 400 ms the delay is not acceptable.

1.2 VoIP system - H.323 recommendation 3

The delay may cause two problems: echo and talkers overlap. Echo appears when
the sent voice signal is re�ected back by the equipment on the other far end and
played back to the sender. This becomes a serious problem when the round trip
delay is greater than 50 ms. Talker overlap becomes signi�cant problem when the
one-way delay is greater than 250 ms [10].

If the jitter is excessive it may introduce interruptions in the played sound. This ef-
fect may be minimized using some bu�ers at the receiver. These bu�ers accumulate
a certain amount of packets before releasing them to be played, and the process is
called de-jittering. The process of de-jitter also adds some delay.

The discarded packets together with the lost packets introduce noise or make the
words to sound like being chopped. This can be corrected at the receiver by using a
mechanism that tries to approximate the missing data, but if the number of missing
packets is too big, the sound will be a�ected. An accepted value for lost packets is
around 5-10 % from the total number of packets.

1.2 VoIP system - H.323 recommendation

1.2.1 H.323 - Packet-based multimedia communication sys-

tems

H.323 is a recommendation from International Telecommunication Union (ITU-T)
that contains protocols and procedures used by terminals and other entities that
provide multimedia communications services over Packet Based Network (PBN).
H.323 entities may provide video, audio and/or data communications [1]. As an
example a VoIP application may be implemented based on this recommendation,
but is not necessary to provide the video functionality. The audio capability is
mandatory for all H.323 entities.

An H.323 system consists of several components listed below. H.323 recommenda-
tion describes these components and de�nes how they communicate. These compo-
nents are:

• H.323 terminals - establish calls between two or more parties.
• Gatekeepers - provide admission control and address translation services.
• Gateways - translation between di�erent formats and communication proce-
dure

• Multipoint control unit (MCU) - provide support for multipoint conferences.
• Multipoint controller (MC) - also provide support for multipoint conferences.
• Multipoint processor (MP) - also provide support for multipoint conferences.

4 Chapter 1. Introduction

There are H.323 entities that have the functionality of more than just one compo-
nent listed above. For example a simple terminal may become a MCU, MC or MP
controlling in this way a conference between several parties.

H.323 recommendation is a collection of several other recommendations. As may be
seen in the �gure 1.1 these recommendations are:

H.225.0 - Call signalling protocols and media stream packetization for packet based
multimedia communication systems.
H.245 - Control protocol for multimedia communication.
H.261, H.263 - recommendations regarding video coders.
G.711, G.722, G.723, G.728, G.729 - recommendation regarding audio coders.

The diagram in the �gure 1.1 represents a general description of an H.323 terminal.

Figure 1.1: A general H.323 terminal.

The components of this terminal are:

1.3 Purpose of the application - VIPSim 5

Receive Path Delay - includes delay added to the media stream for synchroniza-
tion.

System Control - provides signalling for call control, capability exchange, com-
mands, indications, open channels.

H.225.0 Layer - formats the transmitted signals (video, audio, data and control)
into messages for output to network interface.

Video and Audio codec - encodes/decodes video/audio signal from equipment.

The procedures of the System Control component are de�ned in the recommenda-
tions H.225.0 and H.245, and they provide signalling for a proper operation of H.323
entities. They contain messages for registration and admission to a gatekeeper, mes-
sages for call control (call establishment and call ending), messages for capability
exchange, opening channels and other commands and indications [1].

Call control messages de�ned in recommendation H.225.0 are implemented based
on the recommendation Q931 [4]. This recommendation de�nes the format of the
call control messages. These messages are used for establishing or ending calls and
some of them are listed in appendix A.1. For a complete list please see the recom-
mendation H.225.0 [2].

The recommendation H.225.0 de�nes also RAS (Registration, Admission and Sta-
tus) messages that are used in communication with the gatekeepers. These messages
do not use the format de�ned in Q.931. Some of them are also listed in appendix
A.1. For a complete list of RAS messages please see the recommendation H.225.0 [2]:

The recommendation H.245 de�nes messages and procedures for negotiations that
take place after the call was establish. These messages are used for receiving and
transmitting of capabilities, preferred modes as well as logical channel signalling
and other control and indications messages. Some of these messages are listed in
appendix A.1. For a complete list, please see the recommendation H.245 [3]. Also,
acknowledge messages are de�ned in order to ensure reliable communication.

All the messages de�ned in recommendations H.225.0 and H.245 are encoded using
the ASN1 syntax.

1.3 Purpose of the application - VIPSim

1.3.1 General description

The purpose of this project is to develop an algorithm and to build an application,
based on this algorithm that is able to measure the QoS that can be o�ered by
a system. The name of this application is VIPSim and it stands for Voice over

6 Chapter 1. Introduction

IP Simulations. The measured QoS shows the upcoming performances of a VoIP
application that is going to be installed on this system. VIPSim may be used by
consultants in order to inform di�erent customers about the capabilities of their sys-
tems from a VoIP point of view. It may also be used by engineers to troubleshoot
existing VoIP systems.

In order to measure the QoS the application needs to measure the values of the
parameters that de�ne QoS. They are described in the section 1.1 on page 2. Based
on the results given by VIPSim, and compared with some standard accepted values,
it is determined whether the system is able to run a VoIP application or not.

VIPSim performs the measurements of the QoS from the end-user (of the system)
point of view and not strictly related to the network as someone may assume when
talking about data transmission over the network. Because of this, all the factors
that in�uence the QoS need to be considered into these measurements. Based on
these factors the components that a�ect QoS may be identi�ed. Thinking about the
sources of delays described in the section 1.1 on page 2, the following components
may be identi�ed:

• The VoIP application - a�ects QoS through the delays it introduces due to its
coders operations.

• Operating System (OS) - a�ects QoS through the delays it introduces due to
its procedures of packetization and bu�ering.

• The Network - may a�ect the QoS in several ways.

� through the time it takes for the signal to travel the physical link from
one side to the other (traveling delay).

� through the delays introduced by the analyze of the packets' content
performed by the network devices like routers, gatekeepers or �rewalls
for routing or security reasons.

� through the bandwidth that is available for communication.

The system that is measured is composed from all the components described above:
from the VoIP application and operating system (OS) down to the physical link of
the network together with all the network devices involved. In this way there may
be seen that all the ISO/OSI layers have an impact on the transmitted data. The
OS manages most of these layers, so a great impact on the values of the parameters
that a�ect QoS and especially on the delay, is due to OS' operations. The most
important operation of the OS in the performances of the VoIP application, is the
OS' scheduler in a multitasking system. The results of the measurements will also
re�ect this factor.

Almost all the parameters that de�ne QoS in a voice over IP system are related
to network packets and not directly to the played sound. These parameters show
packets' delay, jitter, lost, out of order, but they do not show anything, explicitly

1.3 Purpose of the application - VIPSim 7

about the sound quality. Although, the sound quality is re�ected by these parame-
ters due to the fact that the packets contain the compressed digitized sound data.
Therefore, measuring the parameters related to network packets gives a measure of
quality of the voice.

In a voice over IP system the packets contain the compressed voice data. The com-
pression and decompression of the sound signal are performed by the coders. The
input to a coder is the audio signal sampled, and the output are blocks containing
compressed digitized sound given by the coder at a certain rate and with a certain
size. These blocks are the payload of the packets that are sent on the network.
Measurements of the parameters related to these packets are not in�uenced by the
content of the packets. Therefore, for measurements, these packets do not really
need to contain a voice data. It is enough in this case to simulate it, meaning that
it is enough to have the same size and creation rate as those provided by coders. So,
VIPsim does not contain the implementation of any kind of coders. It will simulate
the coders behaviour, by creating network packets with a speci�ed size and at a cer-
tain rate. In this way, the coder delay is not considered in these measurements, and
the payload of the network packets is not a compressed sound but some dummy data.

VIPSim does not only measure the parameters related to the network packets, but
also some parameters that characterize an H.323 terminal. Therefore, the applica-
tion is implemented based on H.323 recommendation. Although it does not contain
a full implementation of an H.323 terminal. The section 1.3.2 will give more expla-
nations on this fact.

1.3.2 Why use H.323?

This section explains why VIPSim needs to be implemented based on recommenda-
tion H.323 and why it needs to comply with parts from this recommendation.

Besides the parameters that are related to the network packets, VIPSim is able
to give some reports about the H.323 calls. These reports contain information like
number of calls established correctly, number of calls that failed to establish and
time needed to establish a call. In order to be able to do this, VIPSim needs to be
able to use the H.225.0 and H.245 procedures involved in establishing a call between
two H.323 terminals.

One of the Gatekeeper's functionality is to provide address/alias translation (al-
most like a DNS). In order to use this functionality VIPSim needs to be able to
communicate with the gatekeeper, to discover and register at it. Therefore it needs
to implement the H.225.0 messages that are used for discovery and registration at
the gatekeeper, admission to the packet-based network, location translation, and

8 Chapter 1. Introduction

many others described in appendix A.1.

Another feature of a Gatekeeper is the possibility of routing calls through itself,
meaning that all the messages and voice data between two terminals are not passed
directly from one to another but through the gatekeeper. This may be the case
when the H.323 terminals cannot see each other directly on the network. In this
way VIPSim also measures the impact of the gatekeeper on the voice quality, which
is the delay that this routing may add.

As may be seen from the previous description VIPSim does not need to have im-
plemented all the procedures described in H.323 recommendation. For example, as
described in section 1.3.1 it does not need to have the implementation of audio or
video coders, because it does not need real voice data in order to perform the mea-
surements. On the other hand VIPSim does not need to be involved in a multipoint
conference, so all the functionality of an MCU, MC or MP is not implemented. Yet
it will be able to perform multiple simultaneous calls to di�erent destinations.

The components that are implemented in VIPSim are drawn with bold boxes in
the �gure 1.1. They are the Control System and H.225.0 layer.

9

Chapter 2

VIPSim Description

This section describes VIPSim's architecture, and shows how and what VIPSim is
measuring. This is intended for someone who is going to use VIPSim.

2.1 VIPSim Architecture

As described in section 1.3.1 the application is meant to measure the network pack-
ets activity by measuring parameters such as delays, jitter, e.t.c. In order to do
this, there is needed one part that produces and sends packets on the network, and
one part that receives the packets and computes the measured parameters. In other
words there is needed a sender and a receiver for these packets.

One very important measured parameter is the packets' delay, the di�erence be-
tween receiving and sending timestamp of a packet. In order to compute this, the
receiver needs the information regarding the time when the packet was sent and
when the packet was received. The received timestamp is easy to be retrieved from
the system at the receiver, but the sending time needs to be transported along with
the packet. Therefore, making the packet to carry along the sending timestamp
within its data, makes it possible for the receiver to compute the time needed for
the packet to travel, which is the delay between sending and receiving.

The sending and receiving timestamp are given by reading the internal clock value of
the system on which the sender and respectively the receiver run. They both run on
di�erent machines (systems) that have their own internal clocks that most likely are
not synchronized between them. In this way the computation of the delay, which is
the di�erence between receiving timestamp and sending timestamp does not give an
accurate result, i.e. does not represent the real value. The solution for this problem
is to implement the sender to be the receiver at the same time and in this way they
both have the same internal clock to read the time from. Because the packets still

10 Chapter 2. VIPSim Description

need to travel between two points situated somewhere on the network and because
there is a sender-receiver application at one side, there must be introduced a re�ec-
tor that runs on the other side of the link. The re�ector's functionality is to send
back to the sender the packets it receives. For simplicity the sender-receiver will be
called the "Sender" and the re�ector will be called the "Re�ector", they both being
parts of VIPSim. See the diagram 2.1 that illustrates this.

Figure 2.1: Sender - Re�ector architecture.

As already presented in the section 1.3.2, VIPSim is implemented based on H.323 rec-
ommendation. This means that both the Sender and the Re�ector are implemented
based on this recommendation. Call establishments between them are performed
accordingly to H.323 procedures.

The call establishment procedures are actually an exchange of messages between
the two parts. Accordingly to H.323 these messages contain certain information,
coded using ASN.1 syntax. H.323 messages are divided into two parts detailed in
two other recommendations, H.225.0 and H.245. The description of H.225.0 and
H.245 messages is presented in appendix A.1. The �gure 2.2 shows the exchange of
the H.225.0 and H.245 messages between two endpoints EP1 and EP2 in order to
establish a call. It is considered that EP1 performs a call to EP2.

The messages that are exchanged are divided into two stages. First there is the
H.225.0 messages stage followed by the H.245 messages stage. When needed, the two
endpoints exchange messages (H.225.0/RAS messages) with the gatekeeper (GK)
too, for registration and network access.

In order to end a call, terminals have to perform the following procedure.

- EP1 sends "Close Logical Channels" message to EP2 to stop multimedia commu-
nication.

- EP1 sends "End Session" message to EP2 to stop the H.245 session.
- EP1 sends "Release Complete" message to EP2 to stop the H.225.0 session.
- EP1 sends DRQ to GK to stop the admission to the network.

2.1 VIPSim Architecture 11

Figure 2.2: Exchange of H.225.0 and H.245 messages for a call establishment.

- GK replies with DCF to EP1.
- EP2 sends "Close Logical Channels" message to EP1 to stop multimedia commu-

nication.
- EP2 sends "End Session" message to EP1 to stop the H.245 session.
- EP2 sends "Release Complete" message to EP1 to stop the H.225.0 session.
- EP2 sends DRQ to GK to stop the admission to the network.

12 Chapter 2. VIPSim Description

- GK replies with DCF to EP2.

If a call is ended either by closing sockets or by disconnections without any receive
of the "Release Complete" message in advance, the call is considered as being ab-
normally terminated (disconnected, aborted, e.t.c.).

Beside the possibility of communication with each other, both the Sender and the
Re�ector are able to communicate with other H.323 compatible devices due to the
fact that they have implemented the H.225.0 and H.245 procedures. These devices
are not necessaryly other PCs running H.323 applications or IP phones. They can
also be analogue telephones if certain format translation devices such as Gateways
are used. A general voice network may look like in the �gure 2.3.

Figure 2.3: A general H.323 network.

If a Sender establishes a voice connection with a di�erent H.323 terminal than the
Re�ector, the only information that can be measured is the number of calls that
were established correctly or failed, the number of normal or abnormal call endings
and the time needed to establish the call. The information about packets' delay is
not available because any other H.323 terminal di�erent from the Re�ector is not
able to send back to the Sender, the information contained in the received packet,
which is the information that is used by the sender to compute the delay.

2.2 Statistics and Thresholds 13

On the other hand any H.323 terminal, not only the Sender is able to establish
a call to the Re�ector. In this case no measurements are performed, but the caller
is able to receive back what it sends, so he will hear back his own voice.

One very important feature of VIPSim is that the Sender is able to communicate
with several Re�ectors, meaning it can establish calls with several Re�ectors at the
same time. It sends packets to each Re�ector and receives them back from each
one of them. Each call is a separate call so this con�guration may not be compared
with a conference (multipoint call). On the other hand a Sender is able to establish
multiple calls at the same time with only one Re�ector. If there are many Re�ectors,
the Sender is able to establish multiple calls with each one of them. In the case of
multiple calls either between one Sender and one Re�ector as well as between one
Sender and di�erent Re�ectors there are performed call establishment procedures
for each call separately and there are opened two logical data channels per call (for
both ways of communication). Each call uses its own bandwidth.

2.2 Statistics and Thresholds

2.2.1 Measurements

The measurements performed by VIPSim may be divided into two categories, one
category that is related to call procedures and a second category that is related to
voice quality. They shall be called "call procedure" measurements and respectively
"voice quality" measurements.

"Call procedure" measurements

When a company is implementing a VoIP system, they are transporting a vital ser-
vice for their business across the network, maybe even the Internet. This means
that when the service fails, their users, customers, and the management will imme-
diately notice the event. Because of this, the company needs a tool that can predict
bottleneck problems, so they can upgrade their VoIP installation, before the users
are a�ected by potential bottlenecks. Bottlenecks problems are congestions in the
�ow of information. The gatekeeper is such a potential bottleneck due to the fact
that it is involved in each call providing services to H.323 endpoints.

Measuring call setup time, calls established and calls failed as well as the response
time of the gatekeeper to the endpoints requests, gives an indication of what the user
experiences when dialling a number trying to establish a call. Simulating multiple
calls can be used to stress test the gatekeeper, giving important information about
the overall capacity of the VoIP network from a gatekeeper's perspective. Also when

14 Chapter 2. VIPSim Description

designing, and installing a VoIP solution from a consultant's perspective, the "Call
Procedure" measurements performed by VIPSim are used to assure that the gate-
keeper is working as expected. Measuring the gatekeeper service response time, for
all requests, may be used to identify upcoming performance issues.

"Call procedure" measurements provide information about the following parame-
ters:

Call Initiation Counters. The call establishment procedure starts with the "Setup"
message and ends when logical channels for data transmission have been suc-
cessfully opened (see section 2.1). In this moment the call is considered estab-
lished successfully. If one of the H.225.0 or H.245 message exchange fails the
call establishment fails. The Sender keeps a counter that counts the number
of calls established successfully and a counter that counts the number of calls
that failed.

Call Termination counters. The termination procedure of a call is initiated by
sending or receiving a "Release Complete" message. The termination of a
call without the receiving of such a message in advanced is considered as
an abnormally call termination. The Sender has a counter that counts the
number of calls terminated correctly and a counter that counts the number of
calls terminated abnormally.

Response Time of Gatekeeper. The gatekeeper replies with an answer to each
request received from an endpoint. The Sender keeps the record of the time it
took to receive the reply. This time is the response time of the gatekeeper.

Call Establishment Time. The Sender also measures the time needed to estab-
lish a call, since the "Setup" message was sent, until the last channel was
opened successfully, i.e. the last H.245 message (Open Channel Acknowledge)
was received.

"Voice Quality" measurements

As mentioned in the section 1.3.1 in order to measure the sound quality, VIPSim
measures the parameters that de�nes QoS, and these parameters give an indirect
information about the sound quality.

The measured parameters related to sound quality are listed below. They are de�ned
in section 1.1 on page 2.

Delay (Latency) - the time di�erence between the receiving and sending of a packet.
Its a round trip delay (from the Sender to Re�ector and back).

Jitter - the variance of the interarrival time.
Interarrival time - the delay between received packets.
Packets Lost - packets sent that do not arrive back.

2.2 Statistics and Thresholds 15

Packets Out of Order - packets that are not received in the order they were sent.
The information contained within their payload is discarded.

An excessive delay will cause two problems: echo and talker overlap if they exceed
certain values (see section 1.1). Measuring the delay during a certain period of time
may give information of when these problems may appear, how often and how se-
vere, and in this way the user is able to upgrade its VoIP system in order to prevent
this and to provide better quality to his customers.

The client playing the voice sample needs to be able to play it at a �xed rate.
An excessive jitter may cause interruptions of the played sound because it is not
able to play it at that certain �xed rate. In order to compensate for jitter, the client
has to implement a receiving bu�er that accumulates several voice data packets be-
fore releasing them to the player. Measuring jitter, gives an important information
about how big receiving bu�ers the client should have.

The interarrival time is not one of the parameters listed in section 1.1 where the QoS
is de�ned but it is strongly related to the jitter (see the de�nition in the mentioned
section). While the jitter is a number showing the spread of the delay of packets,
the interarrival time shows the rate the packets arrive with. It is helpful in order to
decide about the sending rate and packets size, or, in other words, about the coder
to use at the source. On the other hand it may help to detect bottleneck problems
and to localize them in time in order to correlate them with some other events.
Finally this might help to localize the source of the problem.

Measuring lost packets and packets out of order, is important. Each packet holds
voice data for a period of time depending on the coder. Losing or discarding a voice
data packet, means the client has to guess how the signal would look like. In the
human ear words would be chopped, and if packet loss exceeds 5-10% it is di�cult
for the human brain to recognize the words of the conversation.

The gatekeeper has a big in�uence over these results when the tra�c is routed
through it, meaning that the gatekeeper routes the audio/video data exchanged be-
tween two endpoints through itself. Transferring tra�c through the gatekeeper is
probably the most important test, also when comparing the result with a direct call.
The delay introduced by the gatekeeper can be measured in this way and together
with the results obtained from the "Call Procedure" measurements may establish
the gatekeeper's performances.

Both "Call Procedures" and "Voice Quality" measurements are performed for cer-
tain time intervals de�ned by the user. These time intervals are called sessions of
measurements, and the gathered data within one session is saved into a data-base.
A session of measurements may range from a few minutes to a few days.

16 Chapter 2. VIPSim Description

2.2.2 Thresholds

One very interesting feature of VIPSim is that it may be converted from a measuring
tool that only records measured values into a monitoring tool that gives warnings
and performs actions when certain events occur. These events take place when the
measured values touch certain �xed values de�ned by the user. On one hand this is
useful when the user needs to be informed about the current state of the performance
of the system in order to be able to intervene manually to increase the performances
if necessary. On the other hand this is useful when the user desires to make the
application to perform certain actions upon the occurrence of these events, again in
order to increase the performances of the system.

These �xed values that the measured values are compared against are called thresh-
old values. The user de�nes them for each measured parameter separately. The user
also de�nes the type of action he wants VIPSim to perform. As described above
these actions are divided into two categories:

• Warnings received by the user in form of visual/audio alarms or written notices
like emails, SMS or log �les.

• Operations performed automatically by VIPSim.

These two types of action are implemented in VIPSim simply by providing an appli-
cation name that is executed by VIPSim when the events occur and the necessary
arguments needed to be passed to it. This application will execute further the de-
sired operation (warning or action).

There may be two threshold values: higher threshold and lower threshold. The
lower threshold value is lower than the higher threshold value. The range of value
between these two threshold values is called the normal value range that the param-
eter may take. It is not necessary to have both threshold values de�ned, as it is not
necessary to de�ne them for all the measured parameters. If one value is not de�ned
than the other de�ned threshold value is the border between the normal value range
and the abnormal value range. The current measured value is compared against
the higher and/or lower threshold value to check if it is inside or outside its normal
range. If it is outside this range a "threshold reached" or "threshold exceeded" event
occurs that triggers the de�ned action to be performed.

If a threshold value is reached or exceeded an action is performed as described
above. When the measured value goes back to normal, meaning that is goes below
the higher threshold and above the lower threshold, the mechanism is armed and
is ready to trigger again the action. More complex rearming conditions may be de-
�ned. For example a mechanism may rearm only if the current measured value goes
back to normal range after it was above the higher threshold (or below the lower
threshold) several times in a row.

2.2 Statistics and Thresholds 17

2.2.3 Presenting the Results

All the results obtained from the measurements performed by VIPSim may be pre-
sented in tables. Below there are described tables resulted from both "Call Proce-
dures" and "Voice Quality" measurements. These tables are created per session of
measurements.

The �rst table contains general information about each call that exists in a session
of measurements. There will be such a table for each call. This general information
is taken from the user input or determined by the application but it is not the result
of the measurements. The information may be seen in the table 2.1.

Name MU Type Description Example
CRV - integer Call Reference Value. Identi�es the call. 32001
Source IP IP IP Source of call - IP address 192.168.1.1
Destination IP IP IP Destination of call - IP address 192.168.1.2
Bandwidth Kbit / s integer Bandwidth used by this call 64
Packet size Bytes integer The size of the packets payload 160
Packet rate ms (fps) integer Packet sending rate 40 (25)

Table 2.1: General information about a call (Input data, not measured).

The Call Reference Value is an integer value between 1 and 65535. The packet size
is the size of the packets payload, without the header (see section 2.3.1 for details
about packets header). The packet rate is the rate of creation of packets with data
that are sent on the network. The rate may be expressed either by giving the time
interval between packets in milliseconds (ms) or by giving the number of frames
(packets) that are created per second (fps).

ms = 1
fps

The next two tables contain information related to "Call Procedure" measurements.
The table 2.2 contains information about a single call. In one session of measure-
ments there will be such a table for each existing call. The table 2.3 contains overall
information about all the calls that exist in a session of measurements.

Name MU Type Description Example
Call established true/false Boolean Call was established correctly or it failed. true
Call ended OK true/false Boolean Calls ended correctly or abnormally. true
Call establish time ms integer Time needed to establish the call. 125

Table 2.2: Call related measured data for a single call.

18 Chapter 2. VIPSim Description

Name UM Type Description Example
Total calls - integer Total number of calls. 10
Calls established - integer Calls established correctly. 10
Calls failed - integer Calls not established due to a failure. 0
Calls ended OK - integer Calls ended correctly. 10
Calls disconnected - integer Calls ended abnormally (disconnected). 0

Table 2.3: Call related measured data for all calls.

As mentioned in section 2.2.1 on page 14 during the "Voice Quality" measurements,
parameters that are related to the packets of data that travel between two terminals
are measured. These parameters are the packets delay, jitter, interarrival time,
packets lost and out of order. During a session of measurements there are many
packets that travel between the source and the destination, so the amount of data
obtained by recording the speci�ed information about each packet, creates huge data
that needs to be stored. In order to save space this huge amount of data is reduced
by using mathematical formulas to a smaller data structure called Statistic. The
mathematical formulas used, reduce the amount of data and they preserve their
meaning. The following kinds of computations are made:

• The delay of all packets are used to compute minimum value of the delay,
mean (average) value of the delay and the maximum value of the delay.

• The interarrival time of all packets are used to compute minimum value of
the interarrival time, mean (average) value of the interarrival time and the
maximum value of the interarrival time.

• From the sending rate and the interarrival time one value is computed (see
section 2.3.2) that is the jitter.

• The number of packets received are counted
• The number of lost packets are counted
• The number of packets that arrive out of order are counted

These computes values are the values form a Statistic. Not the whole data gathered
in one session of measurements is reduced to one Statistic. The session of measure-
ments is divided in time intervals and Statistics are computed for each such a time
interval. The results may then be presented in a table where each column represents
a parameter from the data structure and each row represents a certain Statistic cre-
ated for a certain time interval. For example consider a session of measurement of
24 h with one call and that the time interval is one hour. So the table will have 24
rows and the time column will show a saving time every hour. This time interval
is de�ned by the user before the start of measuring session. The structure of such
a table may be seen in table 2.4 where the second row contains the description of
each column instead of measured data.

Based on the data from the table 2.4 graphical representations may be created show-
ing how values of the delay, the interarrival time, packets lost or out of order changes

2.2 Statistics and Thresholds 19

Time CRV call refer-
ence value

Received pack-
ets

Lost packets Packets out of
order

date and time
when the Statistic
was saved

CRV to identify
the call the pack-
ets belong to

total number of
packets sent

packets that were
not received back

packets not re-
ceived in the same
order they were
sent

Jitter minimum delay mean delay maximum de-
lay

The Jitter com-
puted value

.

minimum inter-
arrival time

mean interar-
rival time

maximum in-
terarrival time

.

Table 2.4: Packets related measured data.

over the time. Then these graphics may be compared to observe di�erences between
sessions with one call and sessions with multiple calls to �nd the limitation of the
system, or to �nd out the moments when bottleneck problems occur to make it
easier to detect their sources.

If some measured parameters take values that are not in a normal or acceptable
range, it is interesting to know how many packets generated these abnormal values,
in order to see if it was an isolated problem or a continuous one. For example, if
the maximum delay shows a value greater than the acceptable value of 150 ms it is
interesting to know if there are many packets with this delay or just one that deter-
mined such a maximum value. The answer to this question may be given by creating
histograms. Histograms are graphical representation of data that is classi�ed into
groups characterized by a range of values. VIPSim has implemented an algorithm
that creates a data structure that may be used to draw histograms of delay and
interarrival time.

In order to create this, all the received packets are distributed into groups that
represent a certain time interval based on their delay or interarrival time. For ex-
ample group 1 may represent all time intervals with values between 0 - 49 ms, group
2 may be between 50 - 99 ms, and so on. There should be a �nite number of groups,
so the last group is considered to represent all the time intervals greater than a cer-
tain value. There will be one histogram for delays and a di�erent one for interarrival
time. For each received packet of data the delay is computed and the packet is then
placed into the group the delay belongs to. As example, if the delay is 2.4 ms the
packet belongs to group 1 (0 - 49 ms). During a session of measurements with each
packet received back, the number of packets in di�erent groups increases, some of
them more than others.

20 Chapter 2. VIPSim Description

Histograms are graphical representation of the data created as described above.
On the horizontal axes the groups representing the time intervals are shown, and on
the vertical axes either the number of packets (in groups) or the percentage (number
of packets in a group relative to the total number of packets). Such a histogram
may look like in the �gure 2.4.

Figure 2.4: Packets delay histogram.

These histograms are computed for the whole session of measurements and not only
for one time interval like Statistics. The precision of the histograms, which is the
range of values of each group, is de�ned by the user before the start of the session
of measurements. The same goes for the limit of the histogram, which is the value
that de�nes the last group. All the packets that have the delay greater than this
value go into this last group. In the �gure 2.4 this value is 100 ms.

2.3 Measurements mechanism

2.3.1 Packet description

A VoIP application uses network packets containing voice data in order to transmit
audio signal between two terminals. In the same way VIPSim uses these packets
in order to measure the quality of the voice. As mentioned in section 1.3.1 these
packets do not contain the real voice data like a normal VoIP application but some
dummy data. The general format of the packets is the same like in an ordinary VoIP
application, in order to enable VIPSim to communicate with other H.323 terminals
as mentioned in section 2.1.

Like in all multimedia transmissions that take place on Internet these packets have
to comply with certain protocols and formats. Each packet format imposed by pro-
tocols adds a header of information to the packet's data like a layer. Due to the

2.3 Measurements mechanism 21

IP header - 20 bytes
UDP header - 8 bytes
RTP header - 12 bytes
RTP payload data

Figure 2.5: RTP packet format.

fact that these packets belong to a multimedia transmission, they have the format
imposed by the Real-Time Protocol (RTP). These packets are sent on non-reliable
connections over the Internet, so the packets have further UDP and than IP layers.
Therefore besides from the payload (the actually voice data) each network packet
has some extra information regarding each of these layers (RTP, UDP, IP), attached
to it as three headers.

The exact format of the header of UDP and IP is not interesting for the purpose
of the description made in this chapter, but the header format of RTP protocol is
important and it will be described later. An important thing to know is that the
total size of these three headers together is 40 bytes, so actually the total size of a
packet sent on the network is the size of the payload data plus these 40 bytes. The
packet format looks like in the �gure 2.5.

In order to compute the time needed for a packet to travel from source to the des-
tination (packet delay), as well as the jitter and interarrival time, the destination
needs the timestamp when the packet was sent and when the packet is received.
The timestamp of sending time needs to travel along with the packet, so it should
be present in the packet content. Otherwise it is impossible to know the packet's
sending time upon receiving it. On the other hand in order to �nd out if a packet
does not arrive (it is lost) or if a packet arrives in the wrong order they need to have
a sequence number. Therefore this information needs to travel with the packet too.
So the packets must contain within their data a sequence number and the sending
timestamp.

There may be seen that the sending timestamp and the sequence number are present
in the RTP header. The RTP header looks like in the �gure 2.6.

The sequence number of a packet is a 16 bits value (0 - 65535) and the timestamp
is a 32 bits value.

Because in these measurements a very good precision is required, the system's func-
tions that retrieve the time with the highest resolution is used as described in section
4.1. The "Performance counter" gives the time value with the highest resolution.
This counter's value increases several millions of time per second, meaning that it
has a resolution less than 1 microsecond. The value of this counter is a 64 bits value,
and thus it does not �t into the RTP header. In order to solve this a new header

22 Chapter 2. VIPSim Description

Figure 2.6: RTP packet header format.

is created that contains the 64 bits timestamp value. Unlike the other headers this
new header is not attached to the payload data not to change its size, but is created
from the �rst bytes of the payload data. The rest of the payload contains unde�ned
data, in order to �ll in up to the necessary size of the packet. The format of the
new packet, re�ered as VIPSim packet looks like in the �gure 2.7.

IP header
UDP header
RTP header
new header

unde�ned data

Figure 2.7: VIPSim packet format.

Before the packet content is delivered to the OS in order to be sent on the network,
both the RTP header and the new header are �lled with necessary information
(sequence number, timestamps, e.t.c.). The timestamp is obtained by querying the
performance counter value just before putting it into the packet content. Upon
receiving the packet the performance counter value is queried again to obtain the
received timestamp, and next the computation algorithm is performed on this data
to obtain the results.

2.3.2 The Algorithm Used to Compute the Results

The results recorded by VIPSim are not always directly obtained from the mea-
surements. Some computations are required on the measured values to obtain the
desired parameters.

For the "Call Procedure" measurements there is no need for a special algorithm
to compute the parameters. Number of calls with certain characteristics are just
counted. The time interval in which a call is established is again easy to compute
by making the di�erence between absolute time at the end of call establishment

2.3 Measurements mechanism 23

procedure and the absolute time at the start of the procedure. The time is then
expressed in milliseconds. The same goes for the response time of the gatekeeper.

For the "Voice Quality" measurements, due to the fact that the huge amount of
data obtained is reduced to a few values, as mentioned in section 2.2.3, a special
algorithm has to be developed. This algorithm also contains the creation of the data
structure (updating the groups) used for the histograms.

The data gathered during a session of measurements is divided into groups, each
group covering a certain time interval, and such a group of data is reduced to a
single data structure that is a Statistic. So, a session of measurements contains
as many Statistics as time intervals the user divided it into. A Statistic contains
the measured data as mentioned in section 2.2.3 plus the time when the Statistic is
saved and the CRV (call reference value) identifying the call as may be seen in the
next list:

• saving time
• CRV
• packets delay (Latency)
• packets interarrival time
• jitter
• number of packets received
• number of packets lost
• number of packets out of order

In order to compute this, a Statistic needs to keep some other auxiliary variables,
like total delays or total interarrival time, �rst and last received packet number, that
will be described later. Therefore the Statistic data structure is de�ned as below:

typedef struct {
int number_packets;
double total_delay, total_jitter;
double maximum_delay, minimum_delay, mean_delay;
double maximum_interarrival, minimum_interarrival, mean_interarrival;
double jitter;
int out_order_packets;
int lost_packets;
int last_received_packet_sequence_nr;
int �rst_received_packet_sequence_nr;
hyper previous_Packet_Receive_Time; //hyper = 64 bits
hyper previous_Packet_Sending_Time;
int CRV;

} statistic_t, *pstatistic_t;

24 Chapter 2. VIPSim Description

The total delay and total interarrival time keep the sum of the delay and respectively
interarrival time of all received packets, and it is used to compute the mean values.
The �rst and last received packet sequence number keep the sequence number of
the �rst and the last packet that was involved in computation of the respective
Statistic. They are used in obtaining the lost and out of order packets. The pre-
vious_Packet_Receive_Time and previous_Packet_Sending_Time variables keep
the sending and receiving time of the previous packet, used in computation of current
interarrival time and current intersending time that are used further in computation
of the jitter.

With each packet that is received the Statistics parameters are updated as follows:

• Upon receiving a packet the di�erence between the received timestamp and
the sent timestamp is computed and the result is kept in a variable called
current_delay.

• The di�erence between the received timestamp of the latest packet and the
received timestamp of the previous packet is also computed and kept in a
variable called current_interarrival.

• The di�erence between the sent timestamp of the latest packet and the sent
timestamp of the previous packet is also computed and kept in a variable called
current_intersending.

• The total_delay and total_interarrival variables keep, as de�ned, the total
delay and respectively the total interarrival time until the current moment.

• The variable number_packets keeps the total number of packets received until
the current moment.

Then for each received packet the Statistics parameters are updated using the fol-
lowing algorithm:

number_packets = number_packets + 1

total_delay = total_delay + current_delay

total_interarrival = total_interarrival + current_interarrival

mean_delay = total_delay
number_packets

mean_interarrival = total_interarrival
number_packets

minimum_delay = Minimum(minimum_delay, current_delay)

maximum_delay = Maximum(maximum_delay, current_delay)

2.3 Measurements mechanism 25

minimum_interarrival = Minimum(minimum_interarrival, current_interarrival)

maximum_interarrival = Maximum(maximum_interarrival, current_interarrival)

D = current_interarrival - current_intersending

jitter = jitter + |D |−jitter
16

The jitter is calculated accordingly to the formula de�ned in recommendation H.225.0
[2], see appendix A.5. This formula is an estimation of the statistical variance of the
packets interarrival time. The Minimum and Maximum are standard mathematical
functions that compute the minimum and maximum value between two input values.

As mentioned in the beginning of this section the session of measurements is divided
into time intervals for which a Statistic is computed. This means that a Statistic is
updated with a certain number of packets that are received within that time interval.
So, there may be considered that a Statistic contains information about packets that
have the sequence number within a certain range. This information is saved in the
Statistic data structure in two variables called �rst_received_packet_sequence_nr
and respectively last_received_packet_sequence_nr. When one time interval elapses
the Statistic should be closed and saved and a new one should be started. This may
introduce some errors in the results because of the following scenario:

After a Statistic is closed a very late packet may arrive that normally would be-
long to the closed Statistic instead to the newly created one due to the fact that its
sequence number is less then the last_received_packet_sequence_nr of the closed
Statistic and so, it should contribute to the number of packets out of order from the
closed Statistic not from the newly created one.

In order to solve this the following solution is used:

When a time interval elapses the current Statistic is not closed but just put into a
waiting state, in which it waits for late packets. The newly created Statistic will
then be updated only with received packets that have the sequence number greater
than last_received_packet_sequence_nr of the previous Statistic that is waiting.
Only when the newly Statistic is about to end due to the elapsing of the last time
interval, the one that was waiting is closed and is put into a third state, that is
"ready to save". A statistic in the third state waits to be saved by the application
into the database. In this moment the current Statistic goes into the waiting state
and a new one is created. So there are de�ned three states of Statistics:

- active Statistic (or current Statistic)
- waiting Statistic (or previous Statistic)
- ready to save Statistic

26 Chapter 2. VIPSim Description

The algorithm that is used to perform the correct update of the Statistic using
the formulas described in this section is described below. The action �ow of this
algorithm may be seen in the appendix A.3.

• When a packet arrives the current_delay is computed as the di�erence be-
tween received and sent timestamp as well as the current_interarrival as the
di�erence between this packet received time and the previous packet received
time. Also the current_intersending parameter is computed as the di�er-
ence between sending time of the last packet and the sending time of the
previous packet. The total number of received packets is increased by 1 (num-
ber_packets = number_packets + 1).

• There is checked if the packet belongs to the current Statistic or to the previous
one, by comparing its sequence number with the sequence number of the last
packet from the previous Statistic.

• If it belongs to the previous Statistic there is checked if it is not too old, by
comparing its sequence number with the sequence number of the �rst packet
from the previous Statistic. If it is, then the packet is discard, being consid-
ered lost (lost_packets increases by 1), otherwise it is considered out of order
(out_order_packets increases by 1).

• If it belongs to the current Statistic there is checked if it is in the right order
using its sequence number. If it is not in the right order, it is considered out
of order in the current Statistic (out_order_packets increases by 1).

• If it is in the right order the following steps are performed:
- Check for lost packets. If the newly received packet does not have the
sequence number equal to the previous received packet sequence number
plus 1 then all packets having the sequence numbers between these two
values are considered lost until they arrive (becoming out of order).

- The minimum, mean and maximum delay are computed using the formu-
las described above. The delay histogram is updated by increasing the
number of packets in the right group based on the packet delay.

- The minimum, mean and maximum interarrival time are computed using
the formulas described above. The interarrival time histogram is updated
by increasing the number of packets in the right group based on the packet
interarrival time.

- The jitter is computed using the formula described above.

27

Chapter 3

VIPSim Design

This section shows the internal design of VIPSim describing the classes, the threads
and their functions. In this section the reader may also �nd how the voice packets
transmission mechanism works. This section is intended for someone who whant to
understand VIPSim's implementation better and maybe to continue its developing.

3.1 Classes and Objects

As it is presented in section 2.1 VIPSim consists of two components, a Sender and a
Re�ector. Both the Sender and the Re�ector are the same application, which is VIP-
Sim. VIPSim may run in one of these two modes, either as a Sender or as a Re�ector.

The implementation of VIPSim is based on an Object-Oriented design. Its whole
functionality may be seen as a sum of smaller tasks. The application is in this way
divided into modules that perform each of these tasks. A module is one or a group of
several objects, each one described by a class. These classes de�ne the functionality
of the modules and its characteristics. The main modules that the application may
be divided into may be seen in the next list:

- endpoint behaviour and characteristics. See table 3.1.
- communication with the gatekeeper (including support for RAS messages).
See table 3.2.

- support for H.225.0 - call control messages. See table 3.3.
- support for H.245 - control messages. See table 3.4.
- RTP transmission and statistic computation. See table 3.5.
- packets sending module. See table 3.6.
- statistic saving module (to database). See table 3.7.

The class diagram may be seen in the appendix A.4. This diagram is not a complete
class diagram. It does not show all the methods and member variables of the classes.

28 Chapter 3. VIPSim Design

The classes that describe threads objects are shown by displaying their function
rather than the class name with its methods and variables. For a detailed description
of all the threads see section 3.2.

Class name Description Uses thread
H323BaseEndpoint Base class that de�nes the common methods and

characteristics of a general endpoint like end-
point type, endpoint capabilities, endpoint alias
addresses (phone number, user name, email).

-

H323LocalEndpoint Class derived from H323BaseEndpoint de�ning
characteristics and methods for a local endpoint.

-

H323RemoteEndpoint Class derived from H323BaseEndpoint de�ning
characteristics and methods to handle a remote
endpoint.

End Call
Incoming Call

EndpointType De�nes the endpoint type (country code, manu-
facturer code).

-

MyCapabilitySet De�nes the audio/video or data transmission ca-
pabilities of the endpoint.

-

Q932Display De�nes the display name, information that goes
into Q931 packets.

-

Q931BearerCap De�ning the request for a bearer that needs to
be provided by the network [2].

-

LogicalChannel De�nes the communications channels for both
directions. It keeps information about the type
of data that is going to be transmitted on these
channels as well as the channels addresses (IP
and port numbers).

-

End Call thread Thread used in performing the call termination
procedure.

-

Incoming Call thread Thread used in performing the call establish-
ment procedure for a called endpoint.

-

Table 3.1: H.323 Endpoint module classes description.

In a call there is always a source and a destination. Both of them are represented
by an instance of VIPSim running on two di�erent machines involved in the call.
On the machine that is the source of the call, VIPSim runs in the Sender mode,
and on the machine that is the destination of the call, VIPSim runs in the Re�ector
mode. Both instances of VIPSim keep information about the source endpoint and
about the destination endpoint. This information is kept in H323LocalEndpoint and
H323RemoteEndpoint objects. Depending on the mode VIPSim runs in, these ob-
jects represent the source or the destination of the call. For example if the instance
runs as a Sender then, the local endpoint is the source of the call and the remote
endpoint is the destination of the call, and vice-versa.

3.1 Classes and Objects 29

One instance of VIPSim always contains one instance of the objectH323LocalEndpoint
representing the local endpoint but it may contain more than one objectH323RemoteEndpoint
depending on how many remote endpoints it is in a call with.

The H323LocalEndpoint also de�nes the interface with the user, providing him with
functions for accessing the gatekeeper and managing the calls.

Class name Description Uses thread
Gatekeeper Provides functions for performing requests to the

gatekeeper like: discovery, registration, admis-
sion on the network, location translation, band-
width change, unregistration and disengage.

-

RASControl Provides encoding and decoding as well as man-
aging of content of RAS messages.

Receive RAS

Receive RAS thread This thread receives RAS messages from the
gatekeeper.

-

Table 3.2: Gatekeeper communication module classes description.

Class name Description Uses thread
H225CallControl Provides encoding and decoding as well as man-

aging of content of Q931/H.225.0 messages.
Receive H2250

H225Listener Listens on a server socket for H.225.0 connec-
tions from clients that are calling endpoints.

Listener H2250

Receive H2250 thread Receives the Q.931/H.225.0 messages. -
Listener H2250 thread Listens and accepts client connections. -

Table 3.3: H.225.0 support module classes description.

Class name Description Uses thread
H245Control Provides encoding and decoding as well as man-

aging of content of H.245 messages. It also pro-
vides listener functionality on a server socket for
H.245 connections.

Receive H245
Listener H245

MSDSE De�nes handling methods for Master Slave De-
termination procedure (See appendix A.2).

-

Receive H245 thread Receives the H.245 messages. -
Listener H245 thread Listens and accepts client connections. -

Table 3.4: H.245 support module classes description.

The InfoPacket object was introduced in order to pass information regarding the
packets (sequence number, sending, receiving time) between receiving and comput-
ing functions.

30 Chapter 3. VIPSim Design

Class name Description Uses thread
RTPUDPSession De�nes a RTP session, which is a single call with

2 channels. Handles opening of RTP channels
and manages the content,transmission and re-
ception of data packets (RTP payload).

Receive RTP
Receive RTCP

InfoPacket De�nes the content of data packets (timestamps,
sequence number).

-

Statistics De�nes Statistic and histograms data structures
and handles the computation of measured pa-
rameters and of the Statistic.

Compute Statistic
Place Data

StatisticPointer De�nes a pointer to a Statistics object.
Receive RTP thread Receives RTP packets and place their informa-

tion in a queue for computations.
-

Receive RTCP thread Receives RTCP packets. -
Place Data thread This thread place the "ready to save" Statistic

in the saving queue.
-

Table 3.5: RTP transmissions and Statistic computation module classes description.

Class name Description Uses thread
SendManager Manges the sending of RTP packets at a certain

�xed rate.
Sending

Sending thread Sends the packets on the network. -

Table 3.6: Packets Sending module classes description.

The "Sending" thread contains a loop that continuously reads the time in order to
determine the moment it has to send the packets on the network (see section 3.3 for
details). It sends packets from each RTP session, which means for each established
call, at a certain �xed rate de�ned by the user.

Class name Description Uses thread
DBHandler Manages the database connection and saving of

the "ready to save" Statistics placed in the sav-
ing queue.

Saving

Saving thread Saves actually the data into data-base. -
PCBu�er De�nes a Producer/Consumer bu�er (queue) for

the "ready to save" Statistics.
-

Table 3.7: Data-base Saving module classes description.

When a Statistics object has a Statistic that is "ready to save" it puts itself in a
queue through the "Place Data" thread. The DBHandler object reads the Statistics
objects from this queue and saves the Statistic data structures contained within
them into the data-base through the "Saving" thread. This queue is de�ned by the
PCBu�er object. Statistics written italic refers to the object and Statistic refers to

3.2 Threads description 31

the data structure that keeps measured (computed) parameters de�ned in section
2.2.3.

The way all these objects and threads work together to establish a call and to
start a measurement session is described below. Between parentheses there are also
mentioned the modules that handle the described operations.

• The endpoint that waits for H.323 calls, which is the destination of the call or
the Re�ector, register at the gatekeeper if necessary (gatekeeper module) and
then opens an H.225.0 server waiting for connections (H.225.0 module).

• The caller endpoint, which is the source of the call or the Sender, creates
a remote endpoint object (endpoint module) then register at the gatekeeper
and requests admission for a call (gatekeeper module) if necessary and then
establishes a TCP connection to the destination, which is the created endpoint.

• Upon connection of the client, the receiver also creates a remote endpoint (end-
point module), and the H.225.0 and H.245 messages exchange starts (H.225.0
and H.245 modules together with endpoints modules from both sides).

• When the call is established, the packets transmission and reception is started
and the measurements are performed (RTP transmission and Statistic com-
putation module).

• The Sending module is used here to send the data packets at a certain rate, and
the Saving module is used to save the computed Statistics into the data-base.

3.2 Threads description

VIPSim is a multi-threaded application. Each operation that needs to be performed
in parallel with others is implemented in a separate thread. There are general
threads, common for the whole application, and there are threads created for each
separate call.

Common threads and their functionality is described below:

Receive RAS thread - This thread contains a reading operation from a socket.
The socket is created for an unreliable data transmission between the endpoint
and the gatekeeper. The reading operation is blocking, meaning it waits for
the data to be available in the receiving bu�er, blocking the thread execution
until a RAS message is received. The reading operation is implemented in a
thread in order to let the rest of the application execute while the thread is
blocked waiting to receive data.

H.225.0 Listener thread - This thread contains a listen operation on a socket.
This socket is a server socket that receives H.225 client connections, meaning

32 Chapter 3. VIPSim Design

it receives H.323 calls. The listen operation is blocking meaning it waits for
the client to connect. This is the reason it is implemented in a thread, in order
to let the rest of the application run while it waits for connections.

Sending thread - This thread implements the mechanism that sends data packets
with a certain rate (see section 3.3).

Saving thread - This thread implements the saving procedure of Statistic data
into the data-base. It was introduced in order to have a single object that
handles the database operations, not several threads (due to multiple calls)
that tries to access the database at the same time.

Next the threads that are created at the same time with the creation of a remote
endpoint are described. The operations implemented in these threads are used for
controlling the call and for performing the measurements between the local endpoint
and the remote endpoint. For each single call these threads are created.

Receive H.225.0 messages thread - This thread contains a reading operation
from a socket like the "Receive RAS" thread described above. The di�erence
is that this socket is created for H.225.0 communication that is made on a
reliable connection.

H245 Listener thread - This thread contains a listen operation on a server socket
like the "H.225.0 Listener" thread, but the connection is established for H.245
communications between the two endpoints.

Receive H.245 messages thread - This thread contains a reading operation like
"Receive H.225.0 messages" thread but for H.245 messages.

Incoming Call thread - This thread is created when an incoming call is signalled,
and it implements the call establishment procedure from the called endpoint's
point of view. The caller does not implement the call establishment procedure
in a thread, because it does not perform several call establishment procedures
in parallel.

Make Call function - main thread - This operation starts and performs the call
establishment procedure from the caller's point of view. This operation is not
shown as a separate thread in the class diagram because it is a function that
runs in the main thread of the application.

End Call thread - This thread handles the call termination procedures.
Receive RTP thread - This thread contains a blocking receive operation like the

ones described above but for RTP packets.
Receive RTCP thread - The same like "Receive RTP packets" thread but for

RTCP packets.
Place Data thread - This thread place the computed Statistic data that is ready

to be saved into the saving bu�er from where the saving module will read it
and save it into the data-base.

These threads may be divided into two groups. One that handles the call proce-
dures (establishment and termination of a call) and a second group that handles

3.2 Threads description 33

the content and transmission/reception of RTP packets and the computation of the
Statistics from the measured parameters.

Call Procedures threads

The Call Procedure threads and where they are created is described below:

• Receive of RAS messages thread - one instance running on the Sender and one
instance running on the Re�ector.

• H.225.0 Listen thread - only one instance running on the Re�ector.
• H.225.0 Receive thread - one instance running on the Sender and one instance
running on the Re�ector.

• H.245 Listener thread - only one instance running on the Re�ector.
• H.245 Receive thread - one instance running on the Sender and one instance
running on the Re�ector.

• Incoming Call thread - only one instance running on the Re�ector.
• Make Call function (main thread) - this function is called only on the Sender.
• End Call thread - one instance running on the Sender and one instance running
on the Re�ector.

The appendix A.6 shows using Petri-Nets the action �ow of these threads as well
as the communication between them. The action �ow shown in the diagram is de-
scribed below:

The call establishment starts with the Make Call function that is called on the
caller (the Sender). This will determine on the Re�ector, due to a sent message
(Setup message), the start of the Incoming Call thread. As it may be seen from the
diagram, the Make Call function communicates with the Incoming Call thread by
means of messages that are sent and then received through the H.225.0 and H.245
threads. For all the messages that require reply timers are implemented in Make
Call function and Incoming Call thread. If these timers time out the call establish-
ment procedure ends.

The H.225.0 and H.245 threads receive messages sent by the other side and generate
events related to these messages. These events determine the Make Call function
and Incoming Call thread to continue that means to send the next H.225.0 or H.245
message. The H.225.0 thread from the Re�ector is the one that starts the Incoming
Call thread upon receiving of Setup message. It may also start/resume the End Call
thread upon receiving of a Release Complete message. The H.245 thread also send
a replies to messages like Terminal Capability Set or Master Slave Determination.

The call termination procedure is performed by the End Call thread that is started
by the call of HangUp function from the Sender, and by the Re�ector due to re-
ception of the Release Complete message. This thread sends a Release Complete

34 Chapter 3. VIPSim Design

message as reply if necessary and then closes the RTP, H.225.0 and H.245 connec-
tions for both sides.

RTP packets and Statistic computation threads

The RTP packets transmission and Statistic computation threads are:

• Sending thread - only one instance running on the Sender
• Receive RTP thread - one instance running on the Sender and one instance
running on the Re�ector

• Place Data Receive thread - only one instance running on the Sender
• Saving thread - only one instance running on the Sender

The diagram from appendix A.8 shows how information travels from one thread to
another. The Send thread sends the data through the network packets to the Re�ec-
tor that receives it and sends it back to the Sender. Here the Receiving thread reads
the data from the network packet and it passes it to the Computation function.
This function, using the received packet data updates the Statistic structure. When
the Sending thread �nishes the sending of a certain number of packets, it resumes
the thread that places the computed Statistic data into the saving bu�er. This is
the Place Data thread. In order to preserve the Statistic structure consistency, this
region of memory should not be accessed at the same time by two concurrent oper-
ations. It is a "critical region". Therefore, the two operations, the computation of
Statistic and placing of Statistic data into the saving bu�er are synchronized over
this region by means of a mutex mechanism made from semaphores.

From the saving bu�er the Statistic data is taken by the Database handling thread
and is saved into the database. The saving bu�er is a critical region using the im-
plementation of the well-known Producer Consumer algorithm. Therefore Placing
Data thread and Database Handling thread will never have access to the saving
bu�er at the same time. There is one Placing Data thread for each call but only
one Database Handling thread, so the saving bu�er has multiple producers and one
consumer.

The diagram from appendix A.7 shows the action �ow of these threads as well
as the communication and synchronization between them using Petri-Nets.

The sending thread belonging to the Sender, contains a continuous loop in which
the sending function is called at a �xed rate to send RTP packages to the Re�ector.
This one receives them, computes the parameters and updates the Statistic when
it gets access to the critical region that is the Statistic data. When the Sender has
�nished sending a certain number of packets it resumes the Place Data thread. This
thread places the Statistic data into the saving bu�er when it gets access to the

3.3 Packets Transmission Mechanism 35

critical region. From the saving bu�er the Database Handling thread saves it into
the data-base.

3.3 Packets Transmission Mechanism

This section describes the mechanism implemented in the Sending thread. In VIP-
Sim, like in all the other voice over IP applications the data packets need to be sent
with a certain �xed rate. The mechanism implemented in the Sending thread is
responsible to assure the constant sending rate of the data packets during the ses-
sion of measurements. This mechanism keeps only the �xed rate, because the actual
sending is performed by the RTPUDPSession object (see class diagram description
3.1) that also is responsible with the content of the packets and with its processing.

Therefore the mechanism consists of a loop that runs continuously during the session
of measurements. Inside this loop the "Send" function from the RTPUDPSession
object is called to send the packets. In order to keep a certain �xed interval between
transmissions, a timing mechanism needs to be used.

There are several methods to implement the timing mechanism that o�ers the �xed
time interval between transmissions:

• Making the thread to sleep for the desired time interval between transmissions.
• Using the operating system's timer (SetTimer). When this one times out it
sends a message to the application or runs a callback function, that determines
the sending of a packet.

• Reading the time continuously in the loop and decide locally whether it is time
to send the packet or not [9].

As shown in the section 4.1, the sleep, SetTimer and timeSetEvent methods pro-
vided by the operating system can not provide the desired timer functionality due
to two reasons. On one hand their resolution is not small enough and thus they
cannot de�ne all the time intervals desired. As an example think that with a 1
ms resolution there is no way to have a 32.5 ms time interval. On the other hand
they are not accurate enough so they cannot provide the �xed rate with the desired
accuracy. Therefore the third method is used to obtain the �xed sending rate. For
the time reading, the most accurate and with the highest resolution time function
is used, that is the Performance Counter. It has a resolution of less than 1 micro
seconds and an accuracy around 1 microsecond.

The RTPUDPSession object contains a variable that keeps the value of the de-
sired time interval between the transmissions of the packets or transmission rate
(time_interval). A new variable is de�ned that keeps the time value of the next
moment when a packet needs to be sent (next_time). After each sending this value

36 Chapter 3. VIPSim Design

is updated to point the next sending moment:

next_time = next_time + time_interval

When the current time is read from the system (current_time, the value of the
performance counter) it is compared with the next sending time (next_time). If it
is equal (or greater) then the time interval has elapsed and a new packet is sent.
After this the time of sending (next_time) is updated and the loop continues. In
the �gure 3.1 the loop diagram describes this algorithm.

Figure 3.1: The main loop of the packets transmission mechanism.

When the comparison between the current_time and the next_time is performed
the values may be equal meaning that the current_time is exactly the time to send

3.4 Multiple Calls 37

the packet, or the current_time may be greater, meaning that the time to sent has
been overpassed and the packet sending is late. The di�erence between current_time
and the next_time gives in this case the transmission timing deviation, or the
precision of the sending rate. This value is desired to be as small as possible, nor-
mally equal to 0. In VIPSim this di�erence is measured and is reported as the
mean transmission timing deviation and maximum transmission timing deviation
(see section 5.2.4 for results).

If the transmission timing deviation is greater than the time_interval it means
that the sending of one packet has been missed. In other words, a frame has been
skipped. This behaviour is not desired but it may happen due to too much stress
on the operating system, the one who schedules the execution of all threads. When
this occurs the adjustment of the next sending time is required accordingly to the
following formula in order to have the next sending time in the future (greater than
current_time) and not in the past (less than current_time):

next_time = current_time + time_interval

The number of skipped frames is also counted and reported by VIPSim (see sec-
tion 5.2.4 for results).

The measured values of transmission timing deviation and skipped frames shows
when sending problems occurs.

3.4 Multiple Calls

As mentioned in section 2.1 VIPSim is able to establish multiple calls. VIPSim
may communicate with many Re�ectors at the same time, and more than that, it
can establish more than one call with each one of them. Even when the calls are
established between one Sender and one Re�ector they are treated as separate calls,
having separate communication channels and separate bandwidth.

Handling multiple calls at the same time means that only the RTP packets belong-
ing to all calls are sent and received concurrently. The call establishment procedures
are performed sequential, separately for each call. This is done in order to be able
to measure the establishment time for each one of them separately without one to
interfere with another. Only after all calls have been established, the RTP packets
start to be sent between Sender and Re�ector and the measurements start to be
performed.

Because of the fact that only RTP data transmission is performed in parallel, only
the results regarding the network packets are in�uenced by the number of calls, and

38 Chapter 3. VIPSim Design

not the call establishment time.

39

Chapter 4

E�ciency Aspects

This section describes some aspects related to optimization of some operations per-
formed in VIPSim, like timing, packets transmission mechanism, and parallel oper-
ations.

4.1 Timing in windows

As in any application that requires high precision and high resolution timing, in
VIPsim there are two aspects related to timing that demand more consideration.
One aspect regards the reading of the current time value, and the second is related
to a timer mechanism. A timer is a mechanism that generates a signal (event or
message) or calls a callback function when a certain time interval has elapsed.

In order to measure processes that may take very little time (< 1 ms) a very accurate
time function that retrieves the time value with a very high resolution is needed.
The operating system on which VIPSim runs o�ers several time functions [11]:

time() It is a standard OS routine that retrieves the time measured as the num-
ber of seconds elapsed since midnight (00:00:00), January 1, 1970. Include :
WINBASE.H, Library : KERNEL32.LIB.

ftime() Gets the current time. It �lls a structure that contains the time in seconds
since midnight (00:00:00), January 1, 1970, coordinated universal time (UTC),
and fraction of a second in milliseconds.

clock() Calculates the processor time used by the calling process. It returns the
number of processor timer ticks that have elapsed. A timer tick is approxi-
mately equal to 1 ms.

GetTickCount()/GetCurrentTime() They are similar and each returns the num-
ber of milliseconds (+/- 55 milliseconds) since the user started Windows. In-
clude : WINBASE.H, Library : KERNEL32.LIB.

40 Chapter 4. E�ciency Aspects

timeGetTime() The timeGetTime() function retrieves the system time, in mil-
liseconds. The system time is the time elapsed since Windows started. It
belongs to Multimedia Timer Functions library. Include: MMSYSTEM.H,
Library : WINMM.LIB.

QueryPerformanceCounter() The QueryPerformanceCounter function retrieves
the current value of the high-resolution performance counter, if one exists.
Most modern processors have such a Performance Counter that can provide
a resolution less than 1 microsecond. This value counts the passed time since
the system startup. Include: WINBASE.H, Library : KERNEL32.LIB.

The performance counter value increases with one unit several times per second. The
function, QueryPerformanceFrequency returns a number showing how many times
the performance counter increases per second. If the performance counter value is
divided with the frequency value, the number of seconds since the system started is
obtained. This is a real number having the precision of less then 1 microsecond. The
integer part of it shows the number of seconds and the fraction part shows time less
than 1 sec. The Performance counter value may not be used to retrieve the absolute
current time, but is very good for measuring time intervals (even very short ones).

The functions presented above o�er just the time reading services. The operating
system also o�ers mechanisms for timer services.

sleep() The operating system o�ers a sleep function that suspends the execution
of the current thread for a speci�ed interval. If used in a loop it may create
a periodical behaviour, or, in other words an operation that is performed
periodically with a certain rate. The time interval is speci�ed in milliseconds,
so, its resolution may not be less than 1 millisecond.

SetTimer() The SetTimer function creates a timer with the speci�ed time-out
value. Again the time-out value is speci�ed in milliseconds so the resolution
is not less than 1 ms. When the timeout value elapses, it calls a callback
function, or posts a message in the application message queue.

timeSetEvent() Belongs to the same library like timeGetTime(), which is the Mul-
timedia Timer Functions library. The timeSetEvent function starts a speci�ed
timer event. When the timeout value elapses, it calls a speci�ed callback
function or sets or pulses a speci�ed event object.

There are three values that characterize a time function.

- the resolution - the minimum time interval that the function may be requested
to measure.

- the accuracy - shows how precise the measurement is, the maximum error
between real (expected) and the measured value.

- response time - how much time the execution of the function takes.

Based on these values one may decide which time function is the best to be used
in certain applications. If very short time intervals are measured, like in VIPSim's

4.1 Timing in windows 41

case, a time function with a very high resolution is needed. If the time function is
required in a very tide loop then one with a short response time is needed. In all
cases the accuracy is important. The more precise the better the function is.

The table 4.1 shows the characteristics of the time functions mentioned before,
both time reading and timer services functions ([8] or see the testing algorithm in
appendix A.9).

Function Resolution Accuracy Execution time
Sleep 1 ms 10 ms -
SetTimer 1 ms 10 ms -
clock 1 ms 10 ms -
ftime 1 ms 10 ms -
getTickCount 1 ms 5-55 ms 0.1 us
timeGetTime / timeSetEvent 1 ms 1 ms 8.0 um
PerformanceCounter < 1 us 1 us 4.2 us

Table 4.1: Time functions characteristics (resolution, accuracy, execution time).

As may be seen from the table 4.1 all the standard OS functions have a resolution of
1 ms but they give the results with an error around 10-55 ms. The best resolution
and the best accuracy may be obtained with the Performance Counter. Because
in VIPSim time intervals that are measured may be very small (packets delays,
interarrival time) the use of this function is the best solution. Using Performance
Counter, the sending rate (time interval between two consecutive packets) may be
de�ned with a resolution of microseconds, having 31.25 ms for example instead of
30,31 or 32 ms that may be obtained with other functions. On the other hand the
precision is very high compared with the error of 10-55 ms that is given by the other
functions. All these values may vary depending on the load of the operating system,
which means how many processes it has to schedule.

The Performance Counter does not provide a timer mechanism but only a read-
ing function. Therefore a timer needs to be implemented based on this function.

A timer is a service that gives notice to the application of the elapse of a time
interval. If this service is not available it may be created using a simple time read-
ing function in a continuous loop [9]. Inside this loop with a simple comparison
that involves the current read time value and the value of the desired time interval,
it can be determined if the time interval has elapsed. The desired action may be
then performed. The algorithm is very simple and is presented in the following lines:

QueryPerformanceCounter(start_interval); //read the current time as the start of time interval
do //start loop
{

42 Chapter 4. E�ciency Aspects

QueryPerformanceCounter(current_time); //read the current time value
elapsed_time = current_time - start_interval;
if (elapsed_time >= time_interval)
{

QueryPerformanceCounter(start_interval); //start a new interval
perform_the_required_action();

}
} while (1);

This algorithm is used to determine the execution of the required action at a certain
time interval that may be de�ned with a resolution of less than 1 microsecond and
accuracy around the same value (1 us). As mentioned above the execution rate of
the speci�ed action may be delayed by the operating system when there are many
processes that need to be scheduled for execution. That is why this algorithm gives
best results on a system that is not very loaded. It helps if the thread running this
loop has a real-time priority, but only in case there are not so many applications
running in parallel with the application that implements this algorithm. VIPSim
uses this algorithm for sending data packets (see section 3.3).

4.2 Distributed vs. Burst Transmission

In order to send the data packets on the network with a certain �xed rate the al-
gorithm described in section 3.3 is used (see �gure 3.1 on page 36). This section,
describes how the time-intervals are measured and how after the elapse of each
one of them the sending function is called to send the data packets. A graphical
representation of the behaviour of this algorithm may be seen in �gure 4.1. As
seen, the time intervals of length "t" are shown starting from time 0 (0, t, 2t,...)
as well as the moments when the packets are sent (black dot), which is the elapse
of each time interval. This �gure represents the sending sequence of packets for a
one call measuring session. Only one packet is sent at the elapse of one time interval.

If there is a session with multiple calls, the easiest way to handle their packets trans-
missions is to change the sending of a packet when the time interval elapses, with a
sequence of sendings of packets for all calls. In this case the behaviour of the sending
mechanism will look like in the �gure 4.2.

In �gure 4.2 may be seen that when the time interval elapses, the packets, one for
each call, are sent in a sequence one after the other, without break between trans-
missions. This creates an inconvenience because the actual sending of the packets
on the network does not take place exactly at the same time when the application
issues several Send commands in a sequence without breaks. They are bu�ered into

4.2 Distributed vs. Burst Transmission 43

Figure 4.1: Transmission of packets in one call

Figure 4.2: Transmission of packets for multiple calls - burst sending

the network bu�er by the send command, from where they are sent by OS further
on the network. The actual sending on the network is slower than the placing of
the packets into the sending bu�er. Therefore this burst sending process introduces
some delay such that the last packet sent may have up to 10-20 ms extra delay than
the �rst one (see section 5.2.1 for results of these tests).

In order to solve this problem, the packets sending process is distributed over one
time interval. In this way a small break between transmissions of any single packet
(not belonging to the same calls) is introduced. The rate between packets belonging
to the same call is maintained and the bu�ering problems like before are eliminated,
because the operating system has enough time between transmissions of a single
packet to handle it properly.

The time interval is divided into smaller time intervals for handling single pack-
ets belonging to each call. This behaviour may be seen in the �gure 4.3. In this
�gure there are 4 calls named A, B, C and D. Each time interval is then divided in

44 Chapter 4. E�ciency Aspects

4 smaller time intervals, such that at the end of each one of them the sending of a
packet belonging to one of the calls is handled. As may be seen from the picture,
the rate between packets belonging to the same call is still as in the other cases.
Now there is a small break between transmissions of single packets which o�ers the
operating system enough time to perform the actual sending.

Figure 4.3: Transmission of packets for multiple calls - distributed sending

Using the last method, the operating system's sending function does not in�uence
the delay between packets (round trip delay between Sender and Re�ector). All the
sent packets have almost the same delay (also depending on other factors), even if
there is a multiple call session.

4.3 Parallel Operations

Upon receiving back a data packet the information about sequence number and
sending time is extracted from its payload. It is used further in computation of
the Statistics parameters. These Statistics are computed from the information con-
tained in packets that arrive during a certain time period. After this time period
elapses, the Statistic becomes inactive and later it is closed and becomes "ready to
save".

The data from a "ready to save" Statistic needs to be saved into the database
after every elapsed time period, for future use. The operations with the database:
connection, data transmission and updating of the tables are time consuming oper-
ations that also depend on the network load. Therefore saving data may be time
consuming. As seen in appendix A.8 and described in section 3.2, the number of
packets sent, counted in the Sending thread, determines the start of saving process.
Therefore the saving of data may in�uence the sending rate of the data packets.

4.3 Parallel Operations 45

This saving may also in�uence the reception of the packets by blocking the access
to the critical region 1 (see A.8) more than it is required. Delaying the sending or
the reception of the packets may in�uence the results by introducing more delay
into the packets transmission (round trip delay). This problem occurs if the saving
of data is performed in the same thread with the packets sending and if the access
to the critical region takes longer than permitted (more than the interarrival time
between two data packets).

The solution to this problem is to perform the saving of the Statistic data in a
separate thread. As seen in the appendix A.8 there is a separate saving thread that
saves Statistic data from a bu�er into the data-base. The Statistic data is placed
into this bu�er by another thread called "Place Data" thread. There is a "Place
Data" thread for each Statistic but the "saving" thread is only one for the whole
session. This was done in order to avoid the concurrent access to the database when
several Statistics (belonging to several calls) wanted to be saved at the same time.
In this way they are only placed into a queue from where they are saved sequential
by the saving thread.

The placing of Statistic data into the queue is not a copy operation of a mem-
ory zone from one place to another, but it is the placing of the address (pointer)
of the Statistic into the queue . In this way the time needed to keep the critical
region blocked is very small, so the in�uence of the reception of the packets is almost
negligible.

As a conclusion, for better results, the saving operation is placed into a separate
thread than the sending thread. On the other hand the saving operation is cen-
tralized not to have concurrent access to the database from all the Statistics. This
centralization is realized by having only one saving thread and multiple "Place Data"
threads that also keep the critical region blocked for a very short time period without
in�uencing the rest of the application.

46 Chapter 4. E�ciency Aspects

47

Chapter 5

Tests and Results

This section shows and describe results obtained from measurements performed with
VIPSim. Some results are used to determine VIPSim's limitations and to �nd out
the parameters' values that assure a proper functionality of VIPSim.

5.1 Testing plan

In order to observe VIPSim's behaviour and to determine if the results obtained
from its measurements have real meaning some tests have to be made. Two sets of
tests are performed. First set of tests regards the application characteristics, mon-
itoring VIPSim's behaviour. In the second set of tests VIPSim is used to perform
real measurements on a real environment.

1st Set of Tests

The �rst set of tests is intended to check the performances of VIPSim:

• the transmission precision.
• the delays introduced by the implementation.
• its limitations by determining the values allowed in order to have a normal
operation
� maximum number of calls
� maximum packet size
� minimum packets transmission rate

In order to test all theses factors, the environment VIPSim runs in should be ideal,
and meaning that it should not in�uence the measured parameters. In an ideal en-
vironment all the delays due to OS, network and network devices should be 0. This
is not possible to be obtained in normal conditions, so all these tests are performed
in an "almost ideal" environment.

48 Chapter 5. Tests and Results

This "almost ideal" environment is created by reducing the impact of all the com-
ponents of the environment. The OS has a big impact on the operation of any
application through its multitasking scheduler. Therefore the number of applica-
tions including services and background application that run on the OS during the
measurements is reduced very much. In this way the impact of the OS remains
mainly due to network operations to serve VIPSim. These operations are packeti-
zation, bu�ering and network write/read.

To reduce the impact of the network, a very simple network is used without ex-
tra devices, like routers, �rewalls and gatekeepers. The measuring system is made
from two computers connected between them with a network cable. The round trip
delay of the signal should be very small and it is considered 0 for the purpose of this
test. Therefore, in these tests, the delays that appear are due to the application and
the OS. Not having a dedicated OS, it is almost impossible to separate these two
sources of delay. Therefore, VIPSim performances are strongly connected with the
OS on which it runs. During these tests the measurements that involve a gatekeeper
are not included.

The parameters that are changed during these measurements are:

• the number of calls, starting with one call and going up until the limit is
reached

• the bandwidth to be �lled by a call
• the packet size. Providing a certain bandwidth and the size of a packet, the
application determines the rate at which to send packets for a certain call.

In order to measure the precision of the transmission (sending of packets) and the
impact of the OS's sending function some extra parameters are introduced:

• mean and maximum transmission timing deviation - showing how much the
real transmission moment is deviated from the expected transmission moment,
the last one being computed as the last transmission timestamp plus the time
interval between consecutive transmissions (rate). The mean value shows an
average during the whole session and the maximum shows only the maximum
value during this session.

If T is the transmission rate and t1 is the last time when the transmission
occurred then the next (expected) time when the transmission should occur is
t2 = t1 + T. VIPSim continuously reads the current time value in a variable
ct, and if this value is greater or equal to the next transmission time t2 (ct >=
t2) then the transmission occurs again and the next transmission time (a new
t2) is computed. The di�erence d = ct - t2 gives the transmission deviation.
In an ideal case this value should be 0 so that the transmission occurs exactly
at the expected moment.

5.1 Testing plan 49

• minimum, mean and maximum sending time - showing how much time it takes
for the OS's sending function to execute. This execution time is measured by
making the di�erence between the time value after the OS's send function
returns and the time value before the OS's send is called. The reading of the
two time values and the execution of the OS's send function are not atomic
operations. The OS may interrupt the current process any time making the
measured time to indicate more than the execution of the sending function.
Therefore this value does not gives an exact information, so one should take
into account that the real execution time is less or equal than the reported
value.

2nd Set of Tests

The second set of tests are performed in order to measure the performances of the
environment from a VoIP application point of view, which is the original purpose of
VIPSim.

These tests consist of measurement sessions with one, up to N calls between two
terminals as well as sessions with one or more calls between 1 Sender and M Re-
�ectors. The network may contain routers, �rewalls, and especially Gatekeepers. It
is required that these tests should be performed on WAN not on local networks in
order to measure a real environment that also involves Gatekeepers functionality.

If the Sender and Re�ector are situated in separate local networks and they cannot
see each other, the calls are made through gatekeepers, meaning that their tra�c is
routed through these gatekeepers. In this way the impact of the gatekeeper on the
voice quality as well as on the time needed to establish the calls is measured.

Knowing the delays introduced by the application-OS entity from the 1st set of
tests the impact of the network (including devices) over the quality of voice may
be determined from the results obtained from this set of tests. If the impact of
application-OS entity may be considered more or less constant in certain conditions,
this 2nd set of tests gives di�erent results from one network con�guration (links
plus devices) to another. The results show if a certain network con�guration is good
enough to carry on VoIP tra�c. Neglecting the optimization of OS's performances
that may be a problem of each user, these results may be used to enhance the per-
formances of a network together with the network devices in order to provide better
conditions for VoIP tra�c.

50 Chapter 5. Tests and Results

5.2 Tests on an "almost ideal" network

5.2.1 Burst vs. Distributed Transmission test

The description of burst transmission and distributed transmission as well as the
di�erences between them are presented in section 4.2 on page 42. In the current
section (5.2.1) the numbers (measured data) that show the di�erence between the
two types of transmissions are presented.

Two versions of the application are used. One having burst transmission imple-
mented, meaning that theoretically the packets belonging to di�erent calls are all
sent at "the same time" and this repeated with a �xed rate. Practically they are
not sent in parallel at the same time but in a tide sequence without delays between
them like in the �gure 4.2 on the page 44. The second version of the application
has implemented a transmission mechanism that distributes the sending of packets
belonging to separate calls over the time interval between successive transmissions
of the same call, see �gure 4.3 on page 44.

The results obtained with the burst transmission from 10 calls may be seen in table
5.1. This table contains two Statistics. Each Statistic contains the mean packets
delay for the 10 calls. As may be seen, the �rst packet sent, belonging to the �rst
call handled (having CRV = 55958), has the smallest delay. For the other calls the
packets delay increases continuously so that the last call handled has a delay around
17 ms. This behaviour is due to the fact that the packets bu�ering is faster then
the actual transmission on the network, so that the last packet bu�ered has to wait
more in the queue until it is sent. Therefore the measured delay also includes the
waiting time in the queue.

The next table, table 5.2, contains the delays from two Statistics with 10 calls
handled with the distributed transmission algorithm. On this table may be seen
that the mean packets delays are almost the same, around 2.1 ms, no matter what
call it is (the �rst or the last). This is because the packets are not queued any more
and because the OS now has enough time to handle each packet separately at the
right time, due to the fact that their sending moment is distributed over a time
interval.

As may be seen from these values as well as from description from section 4.2 the
best solution is to use the implementation of the distributed transmission, in order
not to introduce extra delays in packets transmission.

5.2.2 Number of calls and transmission rate limits

In this section results from the measurements that are used to determine VIPSim's
limitations are presented. These limitations regards the number of calls that can be

5.2 Tests on an "almost ideal" network 51

CRV Packets Mean Delay
11492 20 17.65
30647 20 16.73
50170 20 15.67
3018 20 14.18
21666 20 13.71
43010 20 12.61
64141 20 11.14
18285 20 8.79
35642 20 9.08
55958 20 7.09

11492 20 17.06
30647 20 16.19
50170 20 15.88
3018 20 15.30
21666 20 14.62
43010 20 13.04
64141 20 11.83
18285 20 8.20
35642 20 8.54
55958 20 5.63

Table 5.1: Two Statistics of 10 calls showing the delays obtained using burst trans-
mission algorithm.

establish, the maximum bandwidth and the packet size that can be used in order
to have a normal operation, as well as the limitations imposed by di�erent types of
machines and OSs.

The two machines used are setup as follows: �rst the Sender is running on an Athlon-
1GHz with Windows 2000 and the Re�ector is running on an Athlon-500MHz with
Windows 98 and then they are switched so that the Sender and the Re�ector run
on the oposite machine.

The table 5.3 shows the mean packets delays obtained from sessions having dif-
ferent number of calls and di�erent transmission rates. The rows show the number
of calls and the columns show bandwidths and respective the sending rates. The
sending rate, expressed in ms, is determined from the bandwidth input, expressed
in Kbytes/s, and a constant packet size used in all sessions (in the case of these
measurements it is 1024 Bytes + headers). The transmission rate shown in table
5.3 is the distance between packets belonging to the same call. Because there are
several calls and all packets belonging to them need to be handled there is an overall
sending rate, involving all packets. The overall sending rate of all packets (not only

52 Chapter 5. Tests and Results

CRV Packets Mean Delay
56381 50 2.1654
4686 50 2.1654
20425 50 2.1921
35825 50 2.1678
49456 50 2.1715
65437 50 2.1691
6911 50 2.1301
16418 50 2.1477
29613 50 2.1617
43458 50 2.1352

56381 50 2.1407
4686 50 2.1384
20425 50 2.1447
35825 50 2.1479
49456 50 2.1382
65437 50 2.1600
6911 50 2.1793
16418 50 2.1614
29613 50 2.1835
43458 50 2.1615

Table 5.2: Two Statistics of 10 calls showing the delay obtained using distributed
transmission algorithm.

one call) is lower, due to the usage of the distributed transmission algorithm (see
section 4.2 on page 42). This overall rate may be seen in table 5.4. The overall
transmission rate is obtained by dividing the transmission rate of packets belonging
to the same call to the number of calls, distributing in this way the transmission for
all packets over this interval. All data is expressed in ms. For example consider that
for a call, the packets need to be sent every 200 ms. If there are 10 calls, a packet,
one for each call, is sent every 200 / 10 = 20 ms.

5 KB/s
(200 ms)

16 KB/s
(62.5 ms)

20 KB/s
(50 ms)

21 KB/s
(47.6 ms)

24 KB/s
(41.6 ms)

32 KB/s
(31.25 ms)

1 2.28 2.21 - - 2.13 2.13
2 2.31 2.16 - - 2.11 2.1
10 2.18 2.13 - - 2.13 2.1
20 2.16 2.19 - - 2.48 152.39
27 2.19 2.34 3.99 201.47 204.1 207.03

Table 5.3: Mean packet delays obtained on an Athlon 1GHz with Win 2K.

The next table, table 5.5, shows the mean delays obtained from sessions with dif-

5.2 Tests on an "almost ideal" network 53

5 KB/s
(200 ms)

16 KB/s
(62.5 ms)

20 KB/s
(50 ms)

21 KB/s
(47.6 ms)

24 KB/s
(41.6 ms)

32 KB/s
(31.25 ms)

1 200 62.5 - - 41.6 31.25
2 100 31.25 - - 20.8 15.6
10 20 6.25 - - 2.4 3.125
20 10 3.125 - - 2.08 1.56
27 7.4 2.31 1.85 1.76 1.5 1.15
42 4.76 1.48 1.19 1.13 0.99 0.74

Table 5.4: Overall transmission rate computed by distributing the transmissions of
all calls over the transmission interval of one call.

ferent number of calls and di�erent transmission rates obtained on a system with
Athlon-500MHz running Windows 98.

5 KB/s
(200 ms)

16 KB/s
(62.5 ms)

20 KB/s
(50 ms)

21 KB/s
(47.6 ms)

24 KB/s
(41.6 ms)

32 KB/s
(31.25 ms)

1 12.14 12.9 - - 12.54 12.6
10 4.82 12.88 - - 12.09 12.14
20 6.77 12.09 - - 12.49 1095.13
27 4.35 12.44 14.37 991.31 780.23 -
42 4.24 1320.03 - - - -

Table 5.5: Mean packet delays obtained on an Athlon 500MHz with Win 98.

First observation is that when the Sender is running on the Athlon-1GHz/Win2k
machine and the Re�ector is running on the Athlon-500MHz/Win98 there is a lim-
itation of 27 calls that can be established. When the machines on which the Sender
and the Re�ector are running are switched, there is a limit of 42 calls that can be
established. This is because the limit of some OS's resourses is reached, which in
this case are some network bu�ers (An error of "No bu�er space is available" is
received from the OS).

As may be seen from the table 5.3, in the most of the cases the mean packets
delay is more or less constant, and has a value around 2.15 ms. For this machine
(when the Sender runs on it), this value may be considered as the normal packets
delay, representing the delay introduced by the implementation and the activity of
the OS which in this case is Windows 2000. Whenever VIPSim operates in normal
conditions the obtained delay is close to this value, depending of course on the input
parameters (bandwidth, packet size).

It may also be seen in the table 5.3 that there is a limit from where the mean
packets delay suddenly grows very much reaching 150-200 ms. Looking at the table
5.3 and the table 5.4 at the same time, one may see that whenever the distance

54 Chapter 5. Tests and Results

between transmissions of two consecutive packets (no matter what calls they belong
to) is less that a certain value the mean packets delay increases very much. This
value is in this case around 1.80 ms. The application obviously does not run any
more in the normal conditions. The conclusion is that this mean delay growth does
not depend separately on the number of calls or on the bandwidth and packet size.
It depends on the combination of the two factors. More precisely depends on the
overall transmission rate of packets that should not be less than a certain value (1.8
ms in this case). The number of calls together with the bandwidth and packet size
that determine a very small overall transmission rate, make VIPSim to reach its
limit and to have an abnormally operation.

Reducing the packet size, for example to 512 bytes, one may observe that maximum
overall transmission rate that can be reached in order to keep a normal operation is
around 1.15 ms, smaller than 1.8 ms as in the case of a packet size of 1024 bytes. So,
one may conclude that decreasing the packet size, also moves the border between
normal and abnormally operation, by decreasing the permitted overall transmission
rate.

Looking at the table 5.5, where the mean packets delays for the case when the
Sender runs on the Athlon-500MHz/Win98 machine are shown, one may see that
the mean delays are not more or less constant. They may vary from 4 ms up to 15
ms. These delays are obtained when VIPSim has a normal operation. Like in the
previous case when the overall transmission rate drops under a certain value (1.8
ms), VIPSim starts to behave abnormally and the mean packets delay increases up
to 1300 ms.

A conclusion that may be drawn from this, is that when the Sender runs on a
Windows 98 OS and a slower machine (Athlon 500MHz) the mean delays are big-
ger, and that Windows 98 does not o�er a constant behaviour (big variation of mean
delay, 4 - 15 ms). The border between a normal operation and an abnormally oper-
ation of VIPSim is the same on the two machines, which is the overall transmission
rate less than 1.8 ms, in case of a packet size of 1024 bytes.

The big di�erece of delays obtained on Windows 98, 4 to 17 ms may be due to
OS's scheduling algorithm.

On one hand, one of VIPSim's limitations is the number of calls that it can es-
tablish due to the available OS's resources. On the other hand the combination
of number of calls, bandwidth and packet size that determine a very small overall
transmission rate is another limit.

Di�erent tests made on di�erent operating systems shows the impact of the op-
erating system on the mean delay obtained. For example from another sets of tests

5.2 Tests on an "almost ideal" network 55

made with a Sender running on a Windows ME operating system and a Re�ector
runing on a Windows XP operating system, a mean delay around 18-24 ms has been
obtaned and a very big jitter (around 20). On the other hand, running a Sender
on a Windows 2000 and a Re�ector on a Windows XP operating system a much
smaller delay, around 1.3, (even smaller than the 2.15 ms discussed above) has been
obtained. All these were obtained from one call with a packet size of 1024 bytes and
a bandwidth of 32 KB/s.

Also the maximum number of possible calls was bigger than 27 when using Win-
dows 2000/Windows XP systems., and the minimum overall transmission rate is not
around 1.8 ms as presented before in this section but much lower. An overall trans-
mission rate of 1.66 ms has been reached without having an abnormal operation of
VIPSim.

All these tests show the impact of the operating system VIPSim runs on. The
operating system imposes many limits. The recommended operating system to run
VIPSim on (Sender and Re�ector) is Windows 2000 or Windows XP. There should
be mentioned that any other Unix/Linux operating systems have not been tested.

5.2.3 Packet Size in�uence

This section shows the impact of the packet size on the mean packets delay.

The data from the table 5.6 shows the delays obtained from a sessions having one call
and a bandwidth of 5 Kbytes/s (transmission rate = 200 ms) when using di�erent
packet sizes.

packet size (Bytes) delay (ms)
64 0.51
128 0.63
256 0.9
512 1.44
1024 2.29
1025 36.99
1088 36.49
1280 36.22
1408 36.34
1536 37.29
1792 33.5
2048 33.88
2500 35.58

Table 5.6: Packet size in�uence over the mean delay.

56 Chapter 5. Tests and Results

As may be seen, the delay increases constantly with the increase of the packet size
until a certain limit is reached. From this limit, which here is 1024 bytes the mean
packets delay increases suddenly very much up to 33 - 38 ms. Usage of a big packet
size introduce more delay. It is recommended to use small packet size in a voice
transmission.

Figure 5.1: Mean Delay vs. Packet Size on Windows 2000. The packet size in the
graph does not contain the UDP/IP headers.

5.2.4 Transmission Precision

One important issue is how precise the transmission mechanism is. This section
shows some numbers related to this issue.

The table 5.7 shows the transmission timing deviation and the sending time ob-
tained on an Athlon 1GHz/Win 2K system, and table 5.8 shows the transmission
timing deviation and the sending time obtained on an Athlon 500MHz/Win 98 sys-
tem.

As may be seen from these tables as well as from the charts from the appendix B.1
made based on the data from these tables, generally the mean transmission timing
deviation is higher on the Windows 98 operating system (< 0.08 ms) than on the
Windows 2000 operating system (< 0.01 ms). The maximum transmission timing
deviations are very close (1.5 - 3.5 ms). Both the mean and maximum transmission
deviations have small values, but less than the overall transmission rate so they do
not in�uence the mean packets delay. Because the mean transmission timing devi-
ation is very small (0.01 - 0.08 ms) in comparison with the mean packets delay and

5.2 Tests on an "almost ideal" network 57

5 KB/s
(200 ms)

16 KB/s
(62.5 ms)

24 KB/s
(41.6 ms)

32 KB/s
(31.25 ms)

mean dev 0.0024 0.0053 0.0031 0.0044
max dev 0.24 3.0982 1.4114 2.7909
min snd tm 0.0285 0.0179 0.0173 0.0168
mean snd tm 0.1004 0.0641 0.041 0.0377
max snd tm 0.1774 1.1761 0.4339 1.1175

Table 5.7: Transmission timing deviation and transmission duration on an Athlon
1GHz with Win 2K.

5 KB/s
(200 ms)

16 KB/s
(62.5 ms)

24 KB/s
(41.6 ms)

32 KB/s
(31.25 ms)

mean dev 0.04 0.0376 0.00609 0.00777
max dev 1.7784 3.2141 3.3155 3.3683
min snd tm 0.1039 0.0388 0.0939 0.0888
mean snd tm 0.1245 0.0473 0.1109 0.1103
max snd tm 1.8463 3.2141 2.9702 4.3061

Table 5.8: Transmission timing deviation and transmission duration on an Athlon
500MHz with Win 98.

the transmission rate, it may be considered that the transmission mechanism is pre-
cise enough for its functionality. Of course that the transmission timing deviation
may increase on certain moments depending on the stress of the operating system,
and its process scheduling algorithm.

Looking at the sending function (OS's sending function) execution time one may
see that it takes more time on Athlon 500MHz/Windows 98 machine than on the
Athlon 1GHz/Windows 2000 machine. In both cases the sending function execution
time is very small compared with the transmission rate so it does not in�uence the
transmission timing and the mean packets delay. Of course like in the previous case
the OS's activity may in�uence this value too.

5.2.5 OS stress test

All the tests made to �nd out VIPSim's limits from section 5.2.2 were made in a non
stressed operating system conditions. An operating system becomes stressed when
several applications are running in parallel requiring much processor time and many
resources. In this case the operating system responds very slow to applications'
requests.

This section shows the di�erence between VIPsim's operation in a stressed and
non stressed operating system. The next two tables, 5.9 and 5.10 show the packets

58 Chapter 5. Tests and Results

lost (L), packets out of order (OO), jitter (J), packets delay (D) and interarrival
time (I) from a session with one call and a bandwidth of 32 KB/s and packets size
of 1024 bytes in both cases of non stressed OS (table 5.9) and stressed OS (table
5.10).

Pkt L OO J min D mean D max D min I mean I max I
320 0 0 0.0000 2.0603 2.1565 2.6353 29.9935 31.2499 32.4424
320 0 0 0.0379 2.0634 2.1654 3.5599 28.4413 31.2495 33.9317
320 0 0 0.0000 2.0662 2.1564 2.7610 29.5613 31.2496 32.8193
320 0 0 0.0460 2.0670 2.1701 3.9687 29.4300 31.2493 33.1461
320 0 0 0.0000 2.0620 2.1574 2.6677 30.0994 31.2496 32.4944
320 0 0 0.0000 2.0617 2.1572 2.7755 29.0115 31.2498 33.3922
320 0 0 0.0019 2.0620 2.1787 6.7855 26.5372 31.2502 35.9155
320 0 0 0.0000 2.0642 2.1602 2.7881 30.6335 31.2501 31.8608
320 0 0 0.0000 2.0659 2.1623 3.2317 30.0667 31.2499 32.3047

Table 5.9: VIPSim operation on a non stressed OS. The table contains measured
parameters related to the network packets.

Pkt L OO J min D mean D max D min I mean I max I
320 0 0 0.0553 2.7138 3.0316 10.2985 21.0887 31.2494 41.4134
320 0 0 0.1803 2.7696 2.9976 5.3253 22.1729 31.2534 40.4711
320 0 0 0.1037 2.6855 2.9500 10.3879 13.7492 31.2493 49.7030
320 0 0 0.0026 2.6749 2.9002 7.5342 7.5149 31.2492 50.5659
320 0 0 0.0489 2.6936 3.0807 14.1007 6.5782 31.1972 55.8655
320 0 0 1.0238 2.6858 3.0612 10.3809 8.1421 31.2500 54.9827
320 0 0 0.4159 2.7677 3.1120 17.1290 0.8085 31.4506 89.2499
320 0 0 0.2470 2.3003 3.1095 16.1973 12.2071 31.8287 89.7561
320 0 0 0.1256 2.7070 3.0032 6.2857 8.4539 31.8552 84.1411
320 0 0 0.4814 2.7154 3.1014 17.9573 3.8580 31.9585 104.1090
320 0 0 0.0595 2.6819 2.9145 5.2674 14.6527 31.2497 47.9027
320 0 0 0.0524 2.2944 3.1439 42.9800 0.8082 31.6168 94.7741
320 0 0 0.2165 2.6582 2.8818 6.4469 20.9907 31.2497 41.4743
320 0 0 0.0024 2.6506 2.8729 5.4937 25.3236 32.0993 253.5467
320 0 0 1.2834 2.6833 3.0031 17.0902 12.1353 31.2487 58.0873
319 0 0 0.0329 2.6473 2.8046 5.4943 19.9947 31.2495 42.6915

Table 5.10: VIPSim operation on a stressed OS. The table contains measured pa-
rameters related to the network packets.

As may be seen, in the case of a non stressed operating system (table 5.9) VIPSim
runs in normal conditions and the delay is more or less constant (around 2.15 ms) al

5.3 Tests on "real" network 59

the time. Also the jitter is very small almost equal to 0.0 and the interarrival time
is generally 31.25 ms as resulted also from the usage of a bandwidth of 32 KB/s and
packet size of 1024B.

In the second table 5.10, where the results from a stressed system are shown there
may be seen a small increase of the mean delay, now being around 3 ms, and an
increase of the jitter, in several cases going above 1. When the system is stressed the
delay and the interarrival time are not constant any more and they vary from one
Statistic to another, also determining the increase of the jitter as well. The delay
may in some cases increase up to 42 ms and the interarrival time up to 250 ms as
may be seen from the maximum values of delay and interarrival time from the table
5.10.

In a stressed operating system even the transmission timing deviation increases,
so that the mean value is greater than 1 ms and the maximum value may be around
250 ms. The duration of the OS's sending function may take, in the case of a stressed
system, more time (up to 40 ms). The increase of the transmission timing deviation
shows that the transmission rate is not constant any more and that the packets
have a delay even from the sending. Therefore the voice quality is lowered from the
source. The long duration of the OS's sending function in some cases shows that a
stressed system cannot serve the applications in the proper way in order to ensure
a normal operation.

From this test there may be drawn the conclusion that a stressed operating sys-
tem has a big negative in�uence over the packets transmission.

5.3 Tests on "real" network

These measurements show an example of VIPSim's usage. In these measurements
the tested or monitored part is not VIPSim like in the 1st set of tests, but the
environment that is measured. The target of these measurements is to �nd the
characteristics of this environment.

This section does not present special cases and problems that can occur on real
environments. Only as an example of VIPSim's usage the table from appendix B.2
is attached. The environment was a network with multiple devices and some extra
tra�c (DTU's network). The operating systems, on which VIPSim ran, were Win-
dows 2000/Windows XP.

In this table a session with 30 calls, each with a 20 Kbytes/s bandwidth and a
packet size of 1024 bytes is shown. There may be seen that even that the mean de-
lay is more or less constant (around 1.45 ms) the maximum delays varies a lot (2-12

60 Chapter 5. Tests and Results

ms), indicating some extra tra�c activity on the network. Therefore the jitter is
also higher compared with the one obtained from tests on an "almost ideal" network.

The mean transmission timing deviation and the sending function execution time
have very small values (less than 0.1 ms) indicating a good transmission precision.

Having a small jitter, a constant interarrival rate and a very small delay (1.45 < 150
ms) this system is suitable to run VoIP applications.

61

Chapter 6

Conclusions

This section o�ers the �nal conclusions of the study of a voice over IP quality of
service measurement tool.

Knowing the QoS that can be o�ered by a system is important for consultants and
engineers. On one hand, they can determine the behaviour of a future installation
of a VoIP application on that system and on the other hand they can troubleshoot
VoIP system already installed on di�erent systems. VIPSim is a tool that can help
them to do this job. It o�ers important information about parameters that char-
acterize system's QoS such that VIPsim's users start to know and understand that
system from a VoIP application's point of view.

VIPSim does not only provide information about the state of the QoS, but it can
also be used to locate in time and to identify the bottlenecks problems. In this way
one may know where to bring improvements to the system for better results.

The actual version of VIPSim is a measuring tool that reports the measured values.
A user is needed to read and interpret these results. As future versions, VIPSim,
or its base principle, can be implemented directly in VoIP applications. In this way
a VoIP application will be able to monitor the QoS and adjust itself in order to
provide better services. On the other hand, a similar tool may be implemented as
part of the operating system, informing the user about the state of the QoS and
maybe also triggering some actions meant to improve the quality.

Measuring VoIP quality is not the only way VIPSim can be used. It measures
the operating system's impact and the network transmissions quality. Therefore the
results obtained with VIPSim can be used to determine the behaviour of any other
application that uses network tranmissions and needs a real-time response.

As this version of VIPSim is built now, the posibility of running a VoIP appli-

62 Chapter 6. Conclusions

cation at the same time with VIPSim on the same machine to observe the QoS state
while experiencing the voice quality is not available. This is because this version
of VIPSim uses too much the operating system's resources. Having a Real-Time
priority for its threads, it uses almost 100% of the CPU, slowing down in this way
the other applications that might run at the same time.

This thesis describes the �rst version of VIPSim. This version is concentrated more
on o�ering the posibility of multiple calls between two endpoints (Sender and Re�ec-
tor) than on optimizing the implementation from the usage of OS's resources point
of view. Trying to optimize the implementation to use fewer resources (threads,
sockets, bu�ers) is for a future development of VIPSim.

63

Chapter 7

Glossary

VIPSim - Voice over IP Simulations - application that measures the QoS that can
be o�ered by a system from a VoIP point of view.

VoIP Voice over IP
QoS - Quality of Service
Delay (Latency) - Also called Round Trip Delay, is the time needed for the data

packet to travel through the system to the destination and back.
Jitter - An estimate of the statistical variance of the RTP data packet interarrival

time.
Packets Lost - Packets lost on the network.
Packets out of Order - Packets that arrive at the destination but not in the order

they were sent.
Interarrival time - The time between consecutive packets that arrived at the des-

tination.
Intersending time - The time between two consecutive sent packets.
Statistic - a data structure that containes measured/computed values like (de-

lay,jitter,interarrival time, e.t.c.) for a certain time period.
Call Procedure measurements - Measurements related to call establishment and

call ending. They containes counters for calls established correctly and failed,
calls ended normal and abnormal, and call establishment time.

Voice Quality measurements - Measurements related to data packets. They
contains information about packets' delays, jitter, interaarival time, packets
lost and out of order.

Sender - VIPSim's part that sends packets to the Re�ector and receives them back
to perform the measurements.

Re�ector - VIPSim's part that receives packets from the Sender and sends them
back to it.

Bottleneck - A bottleneck is a congestion in a �ow. Here is the congestion of bits
�owing on the network.

CRV - Call Reference Value. A value intended to uniquely identify a call.

64 Chapter 7. Glossary

Producer/Consumer bu�er (queue) - A bu�er, or queue that does not allow
concurrent access of several processes over its data. Producers provide input
data and Consumers retrieve it as the output from this bu�er.

Transmission timing deviation - Shows the deviation of the sending (transmis-
sion) moment of a packet from the expected (required) value.

Sending execution time - Is the time of execution of the operating system's send-
ing function.

65

Appendix A

Graphs, Diagrams and Procedures

A.1 Call Establishment Procedures using H.225.0

and H.245 Messages

H.225.0 messages.

Setup message is sent between H.323 terminals in order to signal the desire of
establishing a call.

Call Proceeding message is sent as an answer to the Setup message signaling that
the called endpoint is processing the request.

Alerting message is sent by the called endpoint in order to signal that the phone
is ringing.

Connect message is sent by the called endpoint in order to accept the call and to
connect to signal that they are connected.

Release Complete message sent by any endpoint to notify the other party that
it ended or wants to end the call. It may be also sent after Alerting to signal
that it does not want to establish the call.

H.225.0 - RAS messages.

Gatekeeper Request - GRQ - message sent by a terminal to a gatekeeper when
it wants to discover the existence of a gatekeeper.

Gatekeeper Con�rm / Reject - GCF/GRJ - two messages sent by the gate-
keeper as a reply to GRQ. The gatekeeper sends only one of them in order to
accept and respectively to reject the GRQ.

Registration Request - RRQ - message sent by a terminal to a gatekeeper when
it wants to register to a gatekeeper.

Registration Con�rm / Reject - RCF/RRJ - two messages sent by the gate-
keeper as a reply to RRQ. The gatekeeper sends only one of them in order to
accept and respectively to reject the RRQ.

66 Appendix A. Graphs, Diagrams and Procedures

Admission Request - ARQ - message sent by a terminal to a gatekeeper when
it wants to be allowed by the gatekeeper to access the packet-based network.

Admission Con�rm / Reject - RCF/RRJ - two messages sent by the gate-
keeper as a reply to ARQ. The gatekeeper sends only one of them in order to
accept and respectively to reject the ARQ.

Disengage Request - DRQ - message sent by a terminal to a gatekeeper or by a
gatekeeper to a terminal when it wants to cancel the admission to packet-based
network.

Disengage Con�rm / Reject - DCF/DRJ - two messages sent as a reply to
DRQ. There is sent only one of them in order to accept and respectively to
reject the DRQ.

Unregistration Request - URQ - message sent by a terminal to a gatekeeper
when it wants to unregister from the gatekeeper.

Unregistration Con�rm / Reject - UCF/URJ - two messages sent by the gate-
keeper as a reply to URQ. The gatekeeper sends only one of them in order to
accept and respectively to reject the URQ.

Location Request - LRQ - message sent by a terminal to a gatekeeper when it
wants to translate some alias address or phone number of another terminal to
an IP address.

Location Con�rm / Reject - LCF/LRJ - two messages sent by the gatekeeper
as a reply to LRQ. The gatekeeper sends only one of them in order to accept
and respectively to reject the LRQ.

Bandwidth Request - BRQ - message sent by a terminal to a gatekeeper or by
the gatekeeper to a terminal when it wants to change the bandwidth used in
a call.

Bandwidth Con�rm / Reject - BCF/BRJ - two messages sent as a reply to
BRQ. There is sent only one of them in order to accept and respectively to
reject the BRQ.

H.245 messages.

Terminal Capability Set - contains the video/audio or data capability of an end-
point. This message is used to inform the other endpoint about these capabil-
ities.

Master Slave Determination - message used in the master/slave determination
procedure. One endpoint needs to be a master in order to solve con�icts
between endpoint involved in a connection.

Open Logical Channel - message signalling the desire of opening of a logical
channel. It contains the data type of the information that is transmitted
on this channel. The acknowledge message contains the address (IP and port
number) where to send this information.

End Session - message signalling the termination of an H.245 session.

A.2 Master Slave Determination Procedure using H.245 Messages 67

A.2 Master Slave Determination Procedure using

H.245 Messages

This appendix describes the H.245 procedure of determining the master and slave
between two terminals involved in a call. The following text is extracted from
appendix C.2 of Recommendation H.245 - Control Protocol for Multimedia Com-
munication.

C.2.1.1 Protocol overview - initiation by local user

A master slave determination procedure is initiated when the DETERMINE.request
primitive is issued by the MSDSE user. A MasterSlaveDetermination message is sent
to the peer MSDSE, and timer T106 is started. If a MasterSlaveDeterminationAck
message is received in response to the MasterSlaveDetermination message then timer
T106 is stopped and the user is informed with the DETERMINE.con�rm primitive
that the master slave determination procedure was successful and a MasterSlaveDe-
terminationAck message is sent to the peer MSDSE. If however a MasterSlaveDe-
terminationReject message is received in response to the MasterSlaveDetermina-
tion message, then a new status determination number is generated, timer T106 is
restarted, and another MasterSlaveDetermination message is sent. If after sending
a MasterSlaveDetermination message N100 times, a MasterSlaveDeterminationAck
still has not been received, then timer T106 is stopped and the user is informed
with the REJECT.indication primitive that the master slave determination proce-
dure has failed to produce a result.

If timer T106 expires then the MSDSE user is informed with the REJECT.indication
primitive and a MasterSlaveDeterminationRelease message is sent to the peer MS-
DSE.

C.2.1.2 Protocol overview - initiation by remote user

When a MasterSlaveDetermination message is received at the MSDSE, a status
determination procedure is initiated. If the status determination procedure returns
a determinate result, then the user is informed of the master slave determination
result with the DETERMINE.indication primitive, a MasterSlaveDeterminationAck
message is sent to the peer MSDSE, and timer T106 is started. If a MasterSlaveDe-
terminationAck message is received in response to the MasterSlaveDeterminationAck
message, then timer T106 is stopped and the user is informed with the DETER-
MINE.con�rm primitive that the master slave determination procedure was success-
ful.

If timer T106 expires then the MSDSE user is informed with the REJECT.indication

68 Appendix A. Graphs, Diagrams and Procedures

primitive.

If however the status determination procedure returns an indeterminate result, then
the MasterSlaveDeterminationReject message is sent to the peer MSDSE.

C.2.1.3 Protocol overview - simultaneous initiation

When a MasterSlaveDetermination message is received at the MSDSE that itself
has already initiated a status determination procedure, and is awaiting a Master-
SlaveDeterminationAck or MasterSlaveDeterminationReject message, then a status
determination procedure is initiated. If the status determination procedure returns
a determinate result, the MSDSE responds as if the procedure was initiated by the
remote user, and the procedures described above for this condition apply.

If however the status determination procedure returns an indeterminate result, then
a new status determination number is generated, and the MSDSE responds as if the
procedure was again initiated by the local MSDSE user as described above.

C.2.1.4 Status determination procedure

The following procedure is used to determine which terminal is the master from
the terminalType and statusDeterminationNumber values. Firstly, the terminal-
Type values are compared and the terminal with the larger terminal type number
is determined as the master. If the terminal type numbers are the same, the status-
DeterminationNumbers are compared using modulo arithmetic to determine which
is master.

If both terminals have equal terminalType �eld values and the di�erence between
statusDeterminationNumber �eld values modulo 224 is 0 or 223, an indeterminate
result is obtained.

A.3 Measuring Algorithm Flowchart 69

A.3 Measuring Algorithm Flowchart

This appendix shows the algorithm used to compute the Statistic data.

70 Appendix A. Graphs, Diagrams and Procedures

A.4 Class Diagram

This appendix contains VIPSim's class diagram.

A.4 Class Diagram 71

72 Appendix A. Graphs, Diagrams and Procedures

A.5 Jitter Calculation

The following de�nition is extracted from Recommendation H.225.0 - Call
Signaling Protocols and Media Stream Packetization for Packet-Based
Multimedia Communication Systems - Appendix A.6.3.1

interarrival jitter: 32 bits. An estimate of the statistical variance of the RTP data
packet interarrival time, measured in timestamp units and expressed as an unsigned
integer. The interarrival jitter J is de�ned to be the mean deviation (smoothed
absolute value) of the di�erence D in packet spacing at the receiver compared to the
sender for a pair of packets. As shown in the equation below, this is equivalent to
the di�erence in the "relative transit time" for the two packets; the relative transit
time is the di�erence between a packet's RTP timestamp and the receiver's clock at
the time of arrival, measured in the same units.

D(i,j) = (Rj-Ri)-(Sj-Si) = (Rj-Sj) - (Ri-Si)

The interarrival jitter is calculated continuously as each data packet i is received
from source SSRC_n, using this di�erence D for that packet and the previous packet
i - 1 in order of arrival (not necessarily in sequence), according to the formula:

J = J + |D(i−1,i)|−J
16

Whenever a reception report is issued, the current value of J is sampled. The jitter
calculation is prescribed here to allow pro�le-independent monitors to make valid
interpretations of reports coming from di�erent implementations. This algorithm is
the optimal �rst-order estimator and the gain parameter 1/16 gives a good noise
reduction ratio while maintaining a reasonable rate of convergence [A-9]. A sample
implementation is shown in A.8.

A.6 Call Procedure threads 73

A.6 Call Procedure threads

This appendix contains the Petri-Nets diagrams of call procedures threads.

74 Appendix A. Graphs, Diagrams and Procedures

A.6 Call Procedure threads 75

76 Appendix A. Graphs, Diagrams and Procedures

A.6 Call Procedure threads 77

78 Appendix A. Graphs, Diagrams and Procedures

A.7 RTP Packets and Statistic Computation threads 79

A.7 RTP Packets and Statistic Computation threads

This appendix contains the Petri-Nets diagrams of threads involved in RTP packets
transmission and Statistic computation and saving to data-base.

80 Appendix A. Graphs, Diagrams and Procedures

A.8 Data Flow in Packets Transmission Stage 81

A.8 Data Flow in Packets Transmission Stage

This appendix contains the diagram of data �ow between threads, from sending of
network packets up to receiving, computation of Statistics and saving them into the
data-base.

82 Appendix A. Graphs, Diagrams and Procedures

A.9 Timers Testing Procedure 83

A.9 Timers Testing Procedure

This appendix describe an algorithm used for measuring the accuracy of some time
functions. See also the studies of mr. Chih-Hao Tsai at
http://www.geocities.com/hao510/w98timer/.

The following algorithm tries to measure the precision of reporting of the time value
of some time functions provided by standard C run-time library and Win32 API,
by measuring the actual response and comparing it to the expected one.

The algorith is the following:

for (i = 100; i <= 120; i++)
{

start = time_function();
while (time_function () < (start + i));
�nish = time_function () ();
duration = �nish - start;
printf ("expected:%d actual:%ld ", i, duration);

}

The function time_function() used above may be any time function that retrieves
the current time value. It returns the time value in time units that may be seconds,
milliseconds or in case of other functions like QueryPerformanceCounter, fractions
of a second up to microseconds. As may be seen the test is repeated 20 times.
Each time the duration of execution of the "while" loop is expected to be as many
time units as given by the variable i, that takes values between 100 and 119 (20
values). The actual duration of execution of the "while" loop is computed by the
di�erence between variables "�nish" and "start" and kept in variable "duration". A
comparison between the variables "duration" and "i" shows the di�erence between
the actual duration and expected duration, showing the precission and actual reso-
lution of the measured time function. The results may look like in the next example
(clock() function returning milliseconds).

expected:100 actual:100, err: 0.000000 ms
expected:101 actual:110, err: 9.000000 ms
expected:102 actual:111, err: 9.000000 ms
expected:103 actual:110, err: 7.000000 ms
expected:104 actual:110, err: 6.000000 ms
expected:105 actual:110, err: 5.000000 ms
expected:106 actual:110, err: 4.000000 ms
expected:107 actual:110, err: 3.000000 ms

84 Appendix A. Graphs, Diagrams and Procedures

expected:108 actual:111, err: 3.000000 ms
expected:109 actual:110, err: 1.000000 ms
expected:110 actual:110, err: 0.000000 ms
expected:111 actual:120, err: 9.000000 ms
expected:112 actual:120, err: 8.000000 ms
expected:113 actual:120, err: 7.000000 ms
expected:114 actual:121, err: 7.000000 ms
expected:115 actual:120, err: 5.000000 ms
expected:116 actual:120, err: 4.000000 ms
expected:117 actual:120, err: 3.000000 ms
expected:118 actual:120, err: 2.000000 ms
expected:119 actual:120, err: 1.000000 ms

It may be seen that in this case the maximum error is 9 ms so the function is con-
sidered to have a precision of around 9 ms.

This algorithm may be used to test any other time function. With small modi-
�cations it may be used to test also timer services like sleep or SetTimer.

85

Appendix B

Graphs

B.1 Transmission Timing Deviation Charts

The �rst two charts show the di�erences between transmission timing deviations ob-
tained on two di�erent systems: Athlon 1GHz with Win 2K and an Athlon 500MHz
with Win 98. The last three charts show the di�erences between sending function
execution time obtained on two di�erent systems: Athlon 1GHz with Win 2K and
an Athlon 500MHz with Win 98.

86 Appendix B. Graphs

B.1 Transmission Timing Deviation Charts 87

88 Appendix B. Graphs

B.2 Real Environment Measurements Results

Results obtained from measurements on DTU's network.

Sender runs on Windows XP.
Re�ector runs on Windows 2000.

Total nr of calls: 30
Calls not established: 0
Calls ended correctly: 30
Calls ended abnormally: 0

Skipped frames: 0
Transmission timing deviation, mean: 0.0418 ms, max: 45.9676 ms
Sending time, min: 0.0369 ms, mean: 0.0605 ms, max: 2.6358 ms

Pkt L OO J min D mean D max D min I mean I max I
200 0 0 0.0842 0.7778 1.3380 2.2265 46.5461 49.9999 53.4512
200 0 0 0.0844 0.7789 1.3888 5.8298 46.0193 50.0000 55.0788
200 0 0 0.0856 0.7747 1.4026 7.4725 43.3435 49.9997 55.6101
200 0 0 0.0867 0.7775 1.4515 9.0894 42.7750 50.0001 58.3057
200 0 0 0.1011 0.7803 1.4671 9.1679 41.6441 49.9998 58.3641
200 0 0 0.1015 0.7780 1.4987 12.5396 41.3147 49.9998 58.6424
200 0 0 0.0735 0.7764 1.4968 10.9623 39.7970 50.0052 59.1285
200 0 0 0.0855 0.7778 1.4606 9.0419 42.8163 49.9964 57.3696
200 0 0 0.1729 0.7803 1.4313 9.7845 40.9750 50.0107 57.9317
200 0 0 0.3101 0.7808 1.4124 9.9462 41.9274 50.0127 58.1392
200 0 0 0.2570 0.7853 1.4214 5.6164 46.6165 50.0244 53.7289
200 0 0 0.4808 0.7766 1.4705 7.2115 45.1258 50.0268 56.4156
200 0 0 0.6025 0.7797 1.4873 8.8481 44.2045 50.0404 56.9824
200 0 0 0.7690 0.7797 1.5006 10.4167 42.0905 50.0429 59.6500
. .

89

Bibliography

90 BIBLIOGRAPHY

[1] International Telecommunication Union (ITU-T), H.323 - Packet-Based Multi-

media Communication Systems

URL : http://www.itu.org
[2] International Telecommunication Union (ITU-T), H225.0 - Call Signaling Pro-

tocols and Media Stream Packetization for Packet-Based Multimedia Commu-

nication Systems

URL : http://www.itu.org
[3] International Telecommunication Union (ITU-T), H.245 - Control Protocol for

Multimedia Communication

URL : http://www.itu.org
[4] International Telecommunication Union (ITU-T), Q.931 - ISDN user-network

interface layer 3 speci�cation for basic call control

URL : http://www.itu.org
[5] Agilent Technologies, white paper

URL : http://www.agilent.com
[6] CISCO Systems, Understanding Delay in Packet Voice Networks, white paper

URL: http://www.cisco.com
[7] Magis Networks Inc. , Quality of Service Considerations in a Multimedia Home

Network, white Paper Feb. 2001
URL : http://www.magisnetworks.com

[8] Most Valuable Professional - MVPS, Selecting Timer Functions, Robert Dunlop
URL : http://www.mvps.org

[9] Most Valuable Professional - MVPS, Writing the Game Loop, Robert Dunlop
URL : http://www.mvps.org

[10] Texas Instruments, Voice over Packet White paper - Jan. 1998
[11] Microsoft Software Developer Network, Articles: Timer Functions, Time Man-

agement, Multimedia Timer Functions, Article ID: Q45702

