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Abstract

The goal of this paper is to study various issues in the numerical treatment of
inverse potential-field problems in geophysics, focusing on a formulation of the
problem that uses multiple levels of data. We use the singular value decompo-
sition to study issues related to the interspacing of the data levels as well as the
discretization parameters, and we investigate the use of a new preconditioned
iterative solver.

1 Introduction

It is well known that potential field interpretation is characterized by an ambiguity
in determination of the source from field data. This non-uniqueness is related to the
fact that observations are finite in number and therefore the knowledge of the source
function is insufficient. Moreover, approximation errors as well as measurement
errors always put a restriction on the accuracy of the computed reconstruction.
Still the main difficulty in potential field interpretation is connected to the inherent
ambiguity. By (Gauss’ theorem, any magpetic field measured on the surface can be
reproduced by an infinitesimally thin zone of magnetic dipoles immediately beneath
the surface. This means a lack of depth resolution in potential-field data inversion.

Over the years the fundamental problem of obtaining depth resolution in both
gravitational and magnetic inverse problemns has been considered and discussed by
many researchers, e.g., Li and Oldenburg [13] and Fedi and Rapolla {5]. One way
to achieve depth resolution is to incorporate prior knowledge of the unknown source
function. The prior information can be supplied, e.g., by searching for a source
whose weighted norm is minimized with respect to some reference model [7], or by
solving a constrained linear least-squares problem with upper and lower bounds for
the solution and the requirement that the source function increases monotonically



with depth [6]. Other methods seek to avoid dispersion of the source by imposing
the condition that the volume of the source body is minimized [12], by constraining
the source to have a minimum momentum of inertia with respect to the center of
gravity or to an axis of a given dip passing through it [8], or by allowing compactness
along several axes given prior information about the axis length [4].

Yet another possibility is to use a Tikhonov formulation, i.e., to minimize a
global objective function composed of the model objective function and the data
misfit. The prior information is in this case incorporated into the model objective
function, e.g., by using one or more appropriate weight functions as done by Li and
Oldenburg [13]. In their algorithm the depth resolution is strongly dependent on
the chosen weight functions.

More recently, Fedi and Rapolla [5] proposed an alternative Tikhonov formula-
tion that avoids the use of weighting functions. Instead, the authors demonstrated
that knowledge of the field in multiple data levels provides the desired depth res-
olution. When the additional data levels are introduced the discretized system of
equations becomes larger, and the good depth resolution is obtained from intrinsic
properties of this matrix as discussed by Andersen et al. [1].

The aim of this paper is to study the numerical treatment of the multi-level
approach, and to show the importance that the characteristics of the discretization
has on the performance of the inversion algorithm. Although the importance of
these features is well recognized, we feel that this issue has not been deeply explored
yet. In this work we will focus on a discretization based on a division of the source
volume into a 3-D grid of rectangular prisms. Then we will use the singular value
decomposition to study the influence of both the geometry of the prisms and the
interspacing of the data levels on the performance of the reconstruction of the source.

We also study the use of a new preconditioned iterative method for solving the
linear system of equations involved in the multi-level approach. The new algorithm
incorporates a preconditioner based on a low-dimensional subspace chosen by the
user, and we discuss the choice of this subspace for our class of problems. The
purpose of the preconditioner is to speed up the convergence of the iterative algo-
rithm, and we demonstrate that we are able to achieve a substantial reduction in
computing time compared to existing iterative solvers, without any deterioration of
the reconstructed source.

Qur paper is organized as follows. In section 2 we introduce the mathematical
formulation of the problem and we describe the numerical method which is based
on Tikhonov regularization. In section 3 we perform an analysis of the properties of
the linear systems of equations, with emphasis on the influence of the thickness of
the prisms and the interspacing of the data levels. Finally, in section 4 we study the
use of the new iterative algorithm in connection with several choices of the Tikhonov
smoothing norm.

2  Formulation and Discretization of the Inverse Geo-
magnetic Problem

Inverse potential field problems are described by first-kind Fredholm integral equa-
tions which, by nature, are ill-posed problems. In this work we consider the inverse



geomagnetic problem of the form
, [ K(r,x0) M(ro) d*ro = AT(r), (1)
Q

where  is our rectangular source volume, AT(r) is the measured magnetic field at
position r, and the source function M(rg) is the unknown distribution of magneti-
zation. The kernel K of the integral equation is given by
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where the differentiation is with respect to the orientations o and x of the magne-
tization of the source and the induced field. We note that in the special case where
these directions are both vertical, K takes the special form
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(3)

K(r,ro) =

where z and zg are the vertical components of r and 1y, respectively.

The problem (1) is discretized as follows. First we subdivide © into prisms
arranged in an Ny X Ny X N, grid, and then we use an approximate source function
M (ro) that is piecewise constant within each prism. If ]\AAF;, denotes the constant
value of M(rg) in prism number j, and if P denotes the number of data points
in each of the L levels, then we obtain an LP x N least squares system of linear
equations (with N = Ny Ny N.):

min K m —di, 4)

whose coefficient matrix K has elements given by
Kij = /ﬂ K(I‘i, I'()) dgrOJ (5)
j

while the data vector d contains the mg%urements d; = AT(r;), and the solution
vector m contains the unknown values M;. The matrix elements Kj; are computed
by means of Eq. {9.19) in [3].

Tn order to analyze the discretized problem (4) we use the singular value decom-
position (SVD) of the coefficient matrix:

q
K= Z w; o5 vE, (6)
i=1

where ¢ = min(N, LP). Here u; and v; are the left and right singular vectors, and
o; are the singular values which are nonnegative and appear in decreasing order.

Throughout the paper we will solely use Tikhonov regularization for the stabiliza-
tion of the solution, and we recall that in the discretized formulation the Tikhonov
solution m, solves the regularized problem

min { K m — d|f + XD ml3}, (1)
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in which ) is a regularization parameter chosen by the user, and D is a matrix that
defines an appropriate smoothing norm suited for the particular problem. This ma-
trix is often either the identity matrix, D = I, or an approximation to a derivative op-
erator. The case D = I represents the smoothing functional || M||5 = fo M(ro)? d®ro,
and it is well known that in this case the Tikhonov solution can be written in terms

of the SVD as ; \ r
g ujd
3=

where the role of the “flter factors” ¢2/(o? + A?) is to dampen the contributions to
m,, corresponding to the smallest singular values. Note that this damping effectively
sets in for singular values o; slightly smaller than A. In this way A can be used to
control the filtering/smoothing of the solution.

The choice of A depends on the amount of noise in the data d. If the noise in each
data element d; = AT(r;) is additive and has standard deviation opngice then right-
hand side coefficients with iu;fdl > Onoise are dominated by the pure field, while
coefficients with [u?dl < Oyoise are dominated by the noise. Hence A should be
chosen in such a way that the Tikhonov filter factors o7 /{07 + A%} dampen — or filter
out — the coefficients smaller than opese While maintaining the large components.
The large components to be maintained are, in turn, associated with the largest
singular values because, on the average, the coeflicients |ufd| always decay - cf,
e.g., [10}.

Consequently, with a small amount of noise many SVD components can be in-
cluded in the regularized solution and therefore a small A can be chosen. As the
noise level increases, less SVD components can be used and A must be increased.
And since depth resolution improves as the number of included SVD components
increases, cf. [1], with a fixed noise level it is desirable to obtain a discretized system
in which as many SVD components as possible can be included in the regularized
solution my. The main goal of this manuscript is to investigate this issue.

The analysis by Andersen et al. [1] shows that the depth resolution can sometimes
be improved if the matrix I is chosen to be different from the identity matrix, such
as a matrix that involves spatial derivatives of the source function M(ro). In this
study, in addition to D = I, we use the matrix Dy, that represents the smoothing
functional
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and the matrix D, representing the smoothing functional

2 2

The second main goal of our paper is to investigate how the Tikhonov problem (7
with these different D-matrices can be solved by means of a new iterative method,
which is of potential interest for future work on large-scale problems.
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3 Influence of Discretization Parameters

The purpose of this section is to study how the reconstruction capabilities of the
multi-level approach are influenced by the various discretization parameters. To
this end we use a synthetic problem. We keep the physical size of the source volume
) fixed as a cube of dimensions 6000 X 6000 x 3000 meters, and we use a grid of
N, x Ny x N, prisms with Ny = N, = 12, while N, varies. Thus the length and

width of each prism are both 500 meters, while the prism thickness is given by
t = 3000/N . (11)

Throughout we use L = 5 data levels, and the data points in each level lie on a grid
consisting of Ny x Ny points, covering an area of 6000 x 6000 meters.

The exact source M (rg) used in our study consists of a cube of gize 1500 x 1500 X
600 meters with constant magnetization, located at depth 600-1200 meters and
covering prisms 57 in the x and y directions. The magnetization in the remaining
prisms is zero.

A word about the number L of data levels is in place here. Previous work 5],
[1] has shown that more than one level of data is necessary in order to achieve
depth resolution. Recall that the maximum number of SVD components that can
be included in the regularized solution is the «mallest dimension of the coefficient
matrix K, and this number 1s ¢ = min(N, LP) = Nz Ny min{L, N;). Also recall
that with noise in the data, the effective number of SVD components that should
be included in the regularized solution is determined by the noise level; the smaller
the noise level the more SVD components can be included. Extensive numerical
experiments (not included in this paper) have shown that with any realistic noise
level in the data, usually we cannot hope to include more than about 5 Ny Ny SVD
components in the regularized solution. Hence we have chosen to use L =5 in this
study.

3.1 Prism Thickness and Data-Level Interspacing

One of the important parameters to choose in our solution procedure is the distance
hg from the top of the solution volume € to the lowest level of data points. As hp
increases, the data contained in this level becomes more smooth and thus holds less
information about details in the solution M (r). Therefore it is obvious that a small
value of hg is preferable, as long as several levels of data are used. In the present
study we use hg = 10 meters.

Another important parameter is the interspacing h between the data levels. The
physics of the problems dictates that there must be an optimal value of A. When h
is very large the highest data levels correspond to a field with very small magnitude,
and due to the smoothing process of the integration with the kernel in (1) these
fields are all very smooth; for both reasons the information content in the additional
levels is small. Thus, there must be an optimal range of values for h for which the
collected data contains a masximum amount of information. Figure 1 illustrates this
point; when h is either very small or very large then the singular values decay faster
than they do for an intermediate vahie of h. However, a more thorough analysis is
needed in order to determine the optimal range of h; we return to this shortly.
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Figure 1: Singular values o; for three values of the data-level interspacing: h = 2,
200, and 2000 meters.

Yet another important parameter is, of course, the thickness ¢ of the prisms.
Again we do not expect to determine a single optimal value, but rather a range of
suitable choices.

Our goal is now to determine suitable ranges for h and t, with ¢ given by (11),
which is done by numerical experiments. We performed an SVD analysis for all nine
combinations of the following parameter values (in meters):

h =600, 200, 66.67; t =600, 200, 66.67. (12)
The values of N, that correspond to the above values of ¢ are thus
N, =15, 15, 45. (13)

We remark that N, = 5 leads to a square matrix, while the other two values lead to
underdetermined problems.

The results of our SVD analysis are shown in the nine plots in Fig. 2. Each plot
shows the first 500 singular values o; and the absolute values lufd| of the right-
hand side coefficients (recall that the solution coefficients in the Tikhonov solution
are 02/(o? + X?) ufd/s;). There is no need to show singular values or coefficients
for larger indices, because the right-hand side coefficients will be below any realistic
noise level.

In all nine plots we see a distinct plateau in the singular value spectrumn in the
index range from i = 1 to i = Ny N = 144. The SVD components in this range
represent the shallow components of the reconstructed solution, cf. the analysis in
[1]. When most of the coefficients |uZd| in this range are small, we can conclude
that the solution does not have a shallow component; this is actually the case in our
study where the source is located at some depth.
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Figure 2: Singular values o; (solid line) and right-hand side coefficients |u?d|
(crosses) for the nine combinations of the data-level interspacing: h = 600, 200,
and 66.67 meters and the prism thickness = 600, 200 and 66.67 meters.



For indices i beyond 144 the right-hand side coeflicients always decay, on the
average. This is a consequence of the fact that the discrete Picard condition must
always be satisfied for a discretization of an ill-posed problem, cf. [10]. Throughout,
when we talk about decays we always consider the average behavior for i > 144.

When both h and ¢ are large (top left plot), we see a rather fast decay of both the
singular values and the right-hand side coefficients, indicating that the discretized
problem is severely ill-posed and only a fairly small number of SVD components can
be recovered in the regularized solution when noise is present.

Now we consider the behavior when the interspacing h is fixed and ¢ decreases
(and thus N, increases), i.e., we study the changes in the plots going from top to
bottom. Then we see a gradual change toward slower decays of both the singular
values and the right-hand side coefficients. The change in decay rate is more pro-
nounced when ¢ changes from 600 to 200, and much less pronounced when ¢ changes
from 200 to 66.67. A slower decay is preferable because it allows the recovery of
more SVD components, but it should be emphasized that the “cost” is a larger
matrix and thus more computations. Hence, in this study we prefer to use £ ~ 200
which yields a good trade-off between matrix size and depth resolution (as measured
by the number of recoverable SVD components). In general, we advocate to use a
prism thickness which is about half of {or less than) the prism dimensions along the
x and y directions.

Next we consider the behavior when the prism thickness ¢ is fixed and h decreases,
i.e., we study the changes in the plots going from left to right. Again we see a change
towards slower decays of both singular values and right-hand side coefficients, the
change in decay being more pronounced when going from A = 600 to 200 than when
going from 200 to 66.67. Since there is no change in the matrix size when h varies,
there is no clear optimal choice of k to be deduced from these plots with respect to
computational work in solving the problem. More experiments are performed below
to decide on the optimal range of h.

3.2 Synthetic Noisy Data

The above analysis showed that for the particular problem studied here, a prism
thickness of £ = 250 is a good choice; but no definite conclusion could be made
about the optimal choice of h. We know that h must not be too small; the question
remains what is “too small,” and the purpose of this section is to study this aspect
in more detail, again nsing the synthetic model but now with noise added to the
data.

To be specific, the perturbed data is given by

d=d+e (14)

where the vector d is the “pure data” from the exact source, and the vector e is
a random vector with elements from a Gaussian distribution with zero mean and
standard deviation opeise &~ 1073, Consequently we expect that the perturbed right-
hand side coefficients iu;-fd| will level off at a plateau around opeise. Only the right-
hand side coefficients above this noise level should be included in the regularized
solution.
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Figure 3: Singular values o; (solid line) and right-hand side coefficients |ufd|
(crosses) for three values of the data-level interspacing: h = 200, 66.67 and 5 meters.

Figure 3 shows the singular values o; and right-hand side coefficientsju? d| for
the following three values of the data-level interspacing (in meters):

h =200, 66.67, 5.

The first two values are identical to those used in the previous experiments, while
the third was chosen to illustrate the behavior of the discretized problem when h is
too small. For the smallest value of h we see a faster decay of the singular values,
caused by the fact that information carried in the five levels is almost redundant.

In all three plots in Fig. 3 we see that the right-hand side coeflicients indeed level
off at the noise level oneice = 10~3. For h = 200 this means that the first 450 SVD
components can be included in the regularized solution, and consequently we should
choose A ~ 2-1072. Similarly, for h = 66.67 and h = 5 we can include, respectively,
440 and 300 SVD components in the regularized solution, and therefore we choose
A\~ 3-10~2 and A ~ 3- 1072, respectively. In this way, we have chosen A in all three
cases such that as many SVD components are included, with respect to the given
noise level.

The three regularized solutions computed by these values of X\ are shown in
Fig. 4, together with the exact solution. For clarity, we show a vertical slice through
the center of the source volume £2. ¥or h = 200 and h = 66.67 we compute almost
the same regularized solution, in which the depth localization is reasonably good
(with the usual “shadow” beneath the reconstructed source). However, for the small
value A = 5 the reconstruction is unsatisfactory. The figure clearly illustrates the
observation made above that there is no obvious choice of an optimal value of h, as
long as it is not too small. When h is too small, the reconstruction deteriorates.
From Fig. 77 we also know that h should not be too large, either.

Our conclusion is that with the discretization parameters chosen here, we choose
to use h of the order 100, which yields discretized problems that are not too ill-
posed and therefore provide the desired depth resolution. In general, as for the
prims thickness, we suggest to use a level interspacing h which is about half of (or
less than) the prism dimensions along the z and y directions. (



Exact solution Reconstructed solution with h = 200

Reconstructed solution with h = 66.7 Reconstructed solution withh=5

Figure 4: Exact solution (top left) and three regularized solutions for h = 200, 66.67
and 5 meters. In each case, the regularization parameter was chosen to include as
many SVD components as possible, with respect to the noise level.
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4 Solving the Linear System by an Iterative Algorithm

The purpose of this section is to study the use of a state-of-the-art iterative algo-
rithm for solving the general Tikhonov problem (7), in connection with the three
D-matrices mentioned in section 2.

4.1 Introduction to SP-LSQR

Large linear systems of equations are often solved by means of iterative methods
such as the conjugate gradient (CG) method. The Tikhonov problem with a general
smoothing norm is equivalent to a least squares problem of the form

K d
(A D) o (0)
and this problem should be solved by specialized versions of CG, such as CGLS
or LSQR. In this study, we use LSQR which is known to be more accurate than
QLS for ill-conditioned problems. We refer to [2] for theoretical and algorithmic
details; suffice it here to say that LSQR (and CGLS) involve multiplications with
the coefficient matrix in (15) and its transpose. Any sparsity or structure of the
matrices should be utilized in these multiplications.

The key ingredient in our new preconditioned version of LSQR involves an matrix
W whose k columns should preferably be chosen to approximate the k principal
(i.e., the smoothest) right singular values of the coefficient matrix K. The Tikhonov
solution is then split into two components, one lying in the column space of W
and one lying in its orthogonal complement. The first component is expected to
carry a dominating part of the information about the reconstructed source, and this
component is computed by means of a direct equation solver that factorizes a Exk
matrix. The latter component is a correction necessary to obtain the Tikhonov
solution, and this component is computed by the LSQR algorithm.

The gain in the use of the stubspace splitting comes from the fact that usually we
can choose the number of columns k in W much smaller than the dimensions of K.
“The direct method is then used to solve a small k x k system, while LSQR is still used
to solve a large system for a correction term. “The splitting of the solution into two
components thus, effectively, acts as a preconditioner for LSQR. For more details
about the subspace preconditioned algorithm, hereafter referred to as SP-LSQR, we
refer to [11] and the appendix.

The choice of the colurnns in the matrix W is important. Ideally we want to use
the principal singular vectors, but these vectors are too expensive to compute to be
of practical use. One alternative is to use the first k basis vectors of the discrete
cogine transform (DCT). These vectors have the property that they are smooth and
have an increasing number of sign changes — thus resembling the generic behavior
of the singular vectors of K. We shall refer to this matrix as WpcT. and we remark
that all computations involving Wpcr can be implemented very efficiently by means
of the fast Fourier transform (FFT) algorithm.

In connection with the geomagnetic inverse problem considered here, we found
in [11] that another good choice of W consists of the principal right singular vectors
of the coeficient matrix corresponding to a single level of measurements. This

min

(15)

2
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LSQR SP-LSQR

D| 1 D, D | Dyys — —— Di —
w Wper Wsvp Wper Wsvp Woer Wsvp
(AY problem with Nz x Ny x N, =12 x 12X 15
sec. | 2987 H34 55 1984 903 317 219 a3 38
its. | BH9T 1586 235 2009 1048 452 304 68 43

(BJ problem with Ny X IV, X V; =20 X 20 x 15
ccc. | 5185 13221 11827 | 1722 979 5212 3253 4228 2497
its. | 1656 4663 4026 | 572 321 1486 903 1338 777

Table 1: Comparison of performance of the ordinary LSQR algorithm with no pre-
conditioning, and the new subspace preconditioned version SP-LSQR. Each cell
contains two numbers: the computing time in seconds to reach a relative accu-
racy of 1073 (top) and the number of iterations (bottom). (A) is a small sys-
tem with N x Ny x N, = 12 x 12 x 15, while (B) is a larger system with
N: x Ny x N, = 20 x 20 x 15. In both problems the number of data levels is
L =5.

coefficient matrix is much smaller than the matrix K in a multi-level problem, thus
making the computation of the singular vectors feasible. We refer to this SVD-based
matrix as Wgyp.

4.2 Comparison of Performance

The following numerical experiments demonstrate the performance gain achieved
by using the subspace preconditioned LSQR algorithm, compared to the standard
LSQR method. We use two test problems, both with L =5 data levels and a noise
level ggpoise &~ 1073 in the data. The small test problem uses a discretization with
Ny x Nyx N; =12x12x%x15 cells and 144 columns in both Wper and Wgyp. The
large test problem is a 20 x 20 X 15 discretization with 200 columns in Wpet and
Wayp. The exact solutions to the two test problems are shown in Fig. 5.

In order to compare the performance of the LSQR and SP-LSQR. algorithms, we
first compute the Tikhonov solution m) explicitly by means of a QR factorization.
In all cases the regularization parameter A was chosen to yield the Tikhonov solution
closest to the exact solution m.

Then we compute the Tikhonov solution again using the iterative algorithms,
and we stop the iterations when the iterative solution fﬁgj} after ;7 iterations has
achieved a relative accuracy of 1073, i.e., when

< 1073,
[l ]l

Table 1 shows the computing times, using a Matlab implementation of the algo-
rithms, while the computed solutions are shown in Figs. 6 and 7.

From the table we see that the computing times (in seconds) for the subspace-
preconditioned LSQR methods can be up to three times smaller than those for the
standard LSQR method — in spite of the fact that each SP-LSQR iteration requires

12
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Figure 5: Exact solutions for the small and the larger test problems mentioned in
the text.

more computing time than a LSQR. iteration. The reason is, of course, that much
fewer iterations are needed in SP-LSQR, compared to LSQR. - which is an effect of
the choice of the subspace matrix W. We also see that Wgyp leads to somewhat
smaller computing times, at the expense of the need to explicitly compute and store
the Wgyp matrix (while the DCT-based approach can be implemented without the
matrix Wper because all computations are implemented using the FFT algorithm).
The time to compute Wgyp 1 6 seconds and ? seconds, respectively, for the small
and the large problem.

The table also shows that the number of iterations for both LSQR and SP-L5QR
depends on the choice of the matrix 1. This is expected, since the choice of D
influences the properties (and therefore the potential for achieving depth resolution)
of the Tikhonov solutions.

Figures 6 and 7 show the computed solutions using QR factorization, LSQR,
and SP-LSQR with Wgyp and Wper, and using our three different choices of D.
These figures clearly illustrate that we compute the same solutions with the different
iterative methods, which is as desired — only the computing time is different. For
both test problems we achieve the best reconstruction from noisy data with D=0,
while the two other choices of D lead to less satisfactory reconstructions; especially
the reconstruction for D = Dy, has a »hadow” and the source appears to be
located too deep.

Figure 8 shows convergence histories for the different methods applied to the
small test problems, i.e., plots of the relative error |y — ’rﬁgf) ||l2/ilmes |2 versus the
aumber of iterations j. Clearly the convergence rate improves as the dimension k of
the subspace (i.e., the number of columns in the matrix W increases. For the DCT-
based preconditioner, the convergence improvement is quite inexpensive because the
all the DCT computations are done with the FFT algorithm, i.e., without the need
to store the matrix Wper explicitly. For the SVD based preconditioner, one should
take into account the overhead involved n the explicit computation and storage of
the matrix Wsyp. The actual choice between the two preconditioners is obviously

13
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Figure 6: Tikhonov solutions to the small and noisy data problem with Ny % Ny x
N, = 12 x 12 x 15. computed with QR factorization, LSQR, and SP-LSQR with
both Wgyp and Wper. The solution depends on the choice of D, but not on the
choice of iterative algorithm or the choice of W, as desired.
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Figure 7: Same as previous figure, except that the problem is now larger, with
dimensions Ny x Ny, x N, =20 X 20 x 15.
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Figure 8: Convergence histories, i.e., plots of the relative error imy —m
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columns in the matrix W.
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problem dependent.

The main conclusion is that we can compute regularized solutions faster with
the new algorithm SP-LSQR than with LSQR, without loosing any accuracy. The
new preconditioned method is always faster than the ordinary method, independent
of the choice of D.

5 Conclusion

We have demonstrated how to perform an analysis of the discretization parameters
involved in the numerical treatment of multi-level geomagnetic inverse problems, in
order to achieve the best depth resolution possible within the given noise level in the
data. We also demonstrated the use of a new preconditioner for the LSQR iterative
least-squares solver, and illustrated the performance gain that can be achieved by
the preconditioner.

Appendix: LSQR and SP-LSQR

As mentioned in section 4, the Tikhonov problem is actually a linear least squares
problem if the form (15), and this problem should be solved by specialized versions
of CG, such as CGLS or LSQR [2]. These methods apply the CG method implicitly
to the normal equations associated with (15):

(K™K +X° D'D)m=K'd. (16)

In this study, we use LSQR which is known to be more accurate than CGLS for ill-
conditioned problems. The LSQR algorithm produces a sequence of solutions that is
guaranteed to converge to the Tikhonov solution my, and the number of iterations
is proportional to the condition number of the normal equation matrix in (16):

A=K'K+\D'D.
For the case D = I, this condition number is approximately given by
cond(A) ~ K3/ A\,

and although this pumber is smaller than the condition number for the unregularized
problem, the convergence may still be quite slow. Hence there is a need to speed up
the iterations and we show this can achieved by introducing preconditioning.
Preconditioning for Tikhonov regularization is known to be difficult because
the normal equation matrix A has a large cluster of singular values at A2, Hanke
and Vogel [9] proposed a subspace preconditioner which takes the characteristics of

the Tikhonov problem into account. Their idea is to choose a so-called “smooth
subspace” spanned by the k columns of a matrix W, and then formally consider the

problem
WIAW WTAZY (yw) _ (W'd an
7TAW ZTAZ )\y.) \Z'd
in which
(y"“) — (W Z)'m. (18)
Yz
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Then the Tikhonov solution is given by
my,=Wy,+2Zy,. (19)

The matrix Z is chosen such that the matrix { W Z ) is square and invertible, and
we emphasize that Z is introduced only for the derivation of the algorithm - it is
not needed in the actual implementation.

The k columns of the matrix W should preferably be chosen to approximate
the principal k right singular values of the matrix K, in which case most of the
Tikhonov solution is contained in the component Wy, in [9], while the component
7y contains the small but necessary correction to obtain the desired solution.

In [11] it is proved that the latter component is the solution to a least squares
problem obtained from K and W, and the actual implementation uses the LSQR
iterative algorithm to solve this least squares problem for the term Zy. Once this
term is computed by LSQR, the second term Wy, is easily computed by solving
a small k x k system for y,,; see [11] for details. The key issue is that we still use
LSQR to solve a problem with large dimensions, but since we are using LSQR to
compute a correction term to the term W y,, which, hopefully, contains most of the
desired information, we can expect fast convergence of the LSQR method - at the
expense of a slight overhead in setting up the modified problem and computing the
term W ., after completion of the LSQR algorithm. We refer to this new algorithm
as the subspace preconditioned LSQR method, SP-LSQR.
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