
1 

CHAPTER 
 
 
 
 
 
 
 
 
 

 
1.1 Abstract 
 
In this thesis, we have designed a core model of microprocessor that can be used for 
performance evaluation of any communication architecture. In its outer form, this model 
is an entity in VHDL. To do performance evaluation for any communication architecture, 
several instances of this entity can be made depending upon the requirement and are then 
connected to the memory according to the configuration of that communication 
architecture. These models then generate traffic on the bus to communicate with the 
memory. At the end, these models generate report about their performance. Most 
important in that report is the effective CPI (Cycles per Instruction) under the given 
communication architecture. 
 
The main feature of this model is that it performs simulation very fast as compared to the 
behavior models of microprocessors. For e.g., it can simulate 1 million instructions in 
nearly 1-2 minutes on SUN machines. Whereas, the complex models of microprocessors 
require 2-3 hours or even more for the same number of instructions. Moreover, it doesn’t 
require any software to run i.e. to perform simulation it does not require that some 
software should be loaded into the memory. It can perform simulation without any 
original software to generate some performance statistics.   
 
Although in its outer form it is a core model of a microprocessor (an entity in VHDL), it 
can also be termed as a ‘tool’ to analyze performance of a system. Because it can only be 
used for performance estimation purposes and is not a hardware design. 

Introduction
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1.2 Background 
 
Systems on chips (SOC) are becoming increasingly more complex and dense. A single 
SOC design may consist of a processor, memory, some dedicated hardware and 
Input/output interface. SOC designs that consist of more than 1 processor are common 
these days. To deal with the complexity, we rely on use of intellectual Property (IP) 
cores. With increasing number of IP cores, it is important to connect these in a structured 
and efficient way. The communication architecture becomes essential in providing a 
flexible platform, and it is essential for the overall SOC performance. Decisions about the 
communication architecture should be made as early as possible in the design process.  
 
These decisions have been made by simulating the system and evaluating the 
performance of the system. By performance, we mean how fast the system completes its 
task. However simulating the system with the real cores is too slow and time consuming. 
It is not possible to simulate a system in a short period of time that consists of many 
complex IP cores. At the early phase of the design, which is likely to undergo lot of 
changes it is not a good idea to spend too much time on extensive simulation. A general 
rough estimation is quite enough at the start of the design. Therefore methods for faster 
performance simulation are always attractive and a tradeoff between faster execution and 
accurate performance estimation is justified. Hence at the early phase of design process, 
we can replace the real cores with their simple core models. These core models are much 
faster to simulate than the real cores. 
 
When dealing with performance evaluation we are not interested in the functionality of 
the system. For example, if we have to make a performance estimation of a system 
comprising of two processors sharing a single memory, we are only interested in knowing 
how frequently the processors communicate with the memory, how many times we have 
a conflict between processors to access the memory, how much time the processor 
remains stalled waiting for its turn to access the memory, is the memory has been 
efficiently shared or not etc. 
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Figure 1.1    Two CPUs sharing the interconnection network to access the single                                   
memory 

 
For simulation we also need software that is going to be executed on the processor. The 
processor communicates with the memory architectures when it needs instructions which 
are not in its cache or when it requires some data which are not in its cache as well. This 
behavior largely depends on the software and different softwares generate different 
traffic. It can be a case that we don’t know which software would be executed on this 
given architecture. It is also difficult to get a significant number of softwares that are 
written for performance estimation. 
 
Hence the objective is that we don’t know which software is going to be executed on a 
given architecture and so we don’t want to make performance estimation by running few 
self-made programs 
 
In this project, we have targeted on these two different problems: 
� If we don’t know what software would be executed on a given architecture then 

how can we make the performance estimation? 
� How can we make the simulation much faster than the simulation that involves 

real cores or the behavior models of the cores? 
 
To tackle the first problem, we will make some models of the different program 
behaviors and a core model of microprocessor uses these behaviors to generate traffic 
that involves communication with the outside environment. Since we are not executing 
any real program, the job of the core model is to generate traffic only. This means that the 
model would not do any thing for the instructions, which do not involve communication 
with the memory. The communication with the memory takes place when the processor 
needs instruction to execute which is not found in the instruction cache or when the 
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processor needs to read or write some data, which is not in the data cache. The former 
case would happen only when the instruction is not found in the instruction cache and the 
latter case would happen only when the given instruction is either load or store and the 
processor faces a data miss in the data cache. Thus whenever there is a miss in either 
instruction or data cache the processor communicates with the memory and there is 
traffic on the bus connecting the processor and the memory. The job of the model is to 
make decisions at which time traffic is generated i.e. when there is a miss in the cache. 
As there is no real software executing on the model so it has to make this decision by its 
own. This requires some input parameters from the user of this model. Some of these 
parameters are: 
 
� Number of instructions 
� Load/store instructions 
� Cycles per instruction (CPI) 
� Instruction miss rate 
� Data miss rate  

 
Based on these parameters the microprocessor model would communicate with the 
memory from time to time. Our job is to study different program behaviors that cause 
communication between the CPU and the memory and characterize these behaviors in the 
CPU model. Thus the CPU model will generate traffic that looks like a normal program 
executing on the processor. 
 
In most CAD tools, which are used for performance evaluation, we provide them some 
software to execute along with some cache configuration parameters (cache size, block 
size etc.). These tools then calculate the effective instruction and data miss rate. Our 
model, nearly works in opposite direction. It takes total number of instructions, 
instruction miss rate and data miss rate as an input and then generate different possible 
sequences of these misses. In other words, by using these inputs it generates different 
possible traffic patterns that may result due to different types of softwares. 
 
Hence we will develop a CPU model, which can generate traffic by using some input 
parameters that statically corresponds to the real cores and also do some performance 
measurements like execution time of given number of instructions, no of memory 
accesses, effective CPI, number of clock cycles CPU remains stalled waiting for the 
memory, number of clock cycles during which CPU is perfectly in execution etc. We can 
connect this CPU model in different configurations and then evaluate the traffic statistics 
between different components. In a multiprocessing environment the performance is 
highly dependent on the communication architecture and different configurations may 
result in different performance results.   
 
The second requirement is to make it much faster than normal simulation. This 
simulation should be very fast because in the absence of real software the performance 
estimation would not be very accurate. The aim is to get some rough approximation at the 
very early stage of design process.  
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In fact, the steps taken to solve the first requirement have also solved the second 
requirement. When simulating with real cores the simulation of every instruction 
consumes some time. The simulator needs to record every event that happened inside or 
outside the CPU. However in our model we only do some processing in the case of a 
miss. So in every clock cycle we just need to make decision whether we have a miss or 
not. The simulation time for making such decisions is much smaller than the time for 
simulating real processor core that involve lot of signals and millions of gates. Off course 
the high-level behavior models of the processors can do the performance simulation. But 
still it doesn’t provide that much speedup and also they require software to be executed 
on these models. 
 
Therefore the simulation with this behavior model of a microprocessor would be much 
faster than executing any program on the processor as well as it doesn’t contain any 
effect introduce by a particular program. As mentioned earlier, since we are only 
interested in the performance it is possible to make some rough estimate of the system 
without executing the software. 

     
The CPU model is designed to be used in different architectures; therefore it is necessary 
that it should follow some standard interface. The CPU model follows the Open Core 
Protocol (OCP) interface i.e. it can be connected to any component that follows the OCP 
interface. Or we can say that the communication between the processor and the memory 
would be through some interconnect following the OCP. The relevant details of OCP are 
given in Chapter 2. 
 
Developing CPU model requires a lot of programming features, which are hard to find in 
a Hardware Description Language like VHDL. Therefore the model is written in C 
language. However most of the IP cores currently used in the industry are in VHDL. As a 
result of this, we need to work in a mixed language environment with our processor 
model in C language and the other cores which are connected with the model are in 
VHDL. This requires an interface between C and VHDL. So that when seen from 
outside, the model looks like an entity written in VHDL but from inside, its all 
functionality is written in C language. We have used Foreign Language Interface (FLI) 
provided by the tool ModelSim. This means that our simulation environment consists of 
our model written in C language and the other cores written in VHDL all running in 
ModelSim. It may happen that in a given test bench we have more than one copies of our 
model along with other IP cores (written in VHDL) all connected to each other through 
OCP. The relevant details of FLI and its use in the thesis are given in Chapter 3.  
 

1.3 Tasks of the project 
 
Based on the above discussion we can say that we need to develop a core model of the 
general-purpose microprocessor that must have the following characteristics: 
 
� It must follow the OCP and FLI interface. 
� It must be able to generate traffic according to the input parameters discussed 

above. 
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� The simulation with the model should be much faster than the simulation with the 
real core. 

� The statistics generated by the model should be reasonably accurate when 
compared with real program execution. 

  
The next two chapters give an overview of OCP and FLI and the features, which are used 
in the model. Chapters 4 and 5 include the discussion how the misses have been 
introduced or we can say how the traffic has been generated. Chapter 6 deals with the 
discussion related to the testing of the model. 
 

1.4 SUMMARY 
 
In this chapter, we have introduced our project. We have described the motivation behind 
this project and our proposed steps that we will take to complete the requirements of the 
project. At the end, we have set the tasks that have to be met in this project.   
 
We will design a CPU model, which is following OCP interface. The purpose of the 
model is to do faster simulation to make some performance measurements. It has to do 
these performance calculations without using any software. In the absence of real 
software, the task of the model is to behave in a manner as some real software is 
executing on it. This model is supposed to be used at the very early phase of design 
process where the tradeoff between accuracy and speed can be justified to a larger extent. 
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   CHAPTER 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
When an instruction or data miss occurs in a CPU, the CPU needs to communicate with 
the memory. This communication is brought through some protocol, which defines how 
the request to read or write data will be generated, how the memory responds to the 
request, how many minimum clock cycles are required to complete the data transfer, etc. 
The interface of the CPU and the memory (or any component which needs to 
communicate with the outside world) is designed according to that protocol. It means that 
any two or more components that follow the same protocol can be connected to each 
other without any modifications in the design. 
 
We have used Open Core Protocol (OCP) in our CPU model. Since our CPU model can 
be used only for simulation there is no particular advantage of using any kind of protocol. 
We have used OCP because it is the most fast emerging protocol. To make simulation in 
any environment the CPU model needs to be connected with some other entities. Since 
OCP is the most widely used protocol these days, so it is very likely that the simulation 
would be done in an environment where the entities are following the OCP protocol.  
 
The OCP defines complete standard from the basic data flow signals to the signals that 
are used for test purposes. Broadly, OCP signals can be divided into two main categories, 
the basic OCP signals and the optional OCP signals. The presence of basic OCP signals 
in any core is necessary if it is following the OCP interface. The optional OCP signals 
can be included according to the requirement. In our model, we have used only the basic 
OCP signals and very few optional signals. These signals are included both in our CPU 
model and the memory, which we have designed for testing purposes.  
 
This chapter covers the very basic introduction about the OCP. Only the features used in 
the thesis are described here. Detailed information can be found from the online manual 
of OCP at www.ocp-ip.com.  

Open Core 
Protocol 
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2.1 An Overview of Open Core Protocol 
 
The Open Core Protocol (OCP) defines a high-performance, bus-independent interface 
between IP cores that reduces design time, design risk, and manufacturing costs for SOC 
designs. 
 
An IP core can be a simple peripheral core, a high-performance microprocessor, or an on-
chip communication subsystem such as a wrapped on-chip bus. The Open Core Protocol: 
 
� Achieves the goal of IP design reuse. The OCP transforms IP cores making them 

independent of the architecture and design of the systems in which they are used. 
� Optimizes die area by configuring into the OCP only those features needed by the 

communicating cores. 
� Simplifies system verification and testing by providing a firm boundary around 

each IP core that can be observed, controlled, and validated. 
 
 
2.1.1 OCP Characteristics 
 
The OCP defines a point-to-point interface between two communicating entities, such as 
IP cores and bus interface modules (bus wrappers). One entity acts as the master of the 
OCP instance, and the other as the slave. Only the master can present commands and is 
the controlling entity. The slave responds to commands presented to it, either by 
accepting data from the master, or presenting data to the master. For two entities to 
communicate in a peer-to-peer fashion, there need to be two instances of the OCP 
connecting them - one where the first entity is a master, and one where the first entity is a 
slave. In our case, the CPU is the master and the memory is a slave entity. 
 
Figure 2.1 shows a simple system containing a wrapped bus and three IP core entities: 
one that is a system target, one that is a system initiator, and an entity that is both. 
 
The characteristics of the IP core determine whether the core needs master, slave, or both 
sides of the OCP; the wrapper interface modules must act as the complementary side of 
the OCP for each connected entity. A transfer across this system occurs as follows. A 
system initiator (as the OCP master) presents command, control, and possibly data to its 
connected slave (a bus wrapper interface module). The interface module plays the request 
across the on-chip bus system. The OCP does not specify the embedded bus 
functionality. Instead, the interface designer converts the OCP request into an embedded 
bus transfer. The receiving bus wrapper interface module (as the OCP master) converts 
the embedded bus operation into a legal OCP command. The system target (OCP slave) 
receives the command and takes the requested action. Each instance of the OCP is 
configured (by choosing signals or bit widths of a particular signal) based on the 
requirements of the connected entities and is independent of the others. 
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Figure 2.1 System Showing Wrapped Bus and OCP instances 

 
For instance, system initiators may require more address bits in their OCP instances than 
do the system targets; the extra address bits might be used by the embedded bus to select 
which bus target is addressed by the system initiator. 
 
The OCP is flexible. There are several useful models for how existing IP cores 
communicate with one another. Some employ pipelining to improve bandwidth and 
latency characteristics. Others use multiple-cycle access models, where signals are held 
static for several clock cycles to simplify timing analysis and reduce implementation 
area. Support for this wide range of behavior is possible through the use of synchronous 
handshaking signals that allow both the master and slave to control when signals are 
allowed to change. 
 
2.1.2 OCP Interface Signals 
 
OCP interface signals are grouped into dataflow, sideband, and test signals. A small set 
of the signals from the dataflow group called the basic OCP, is required in all OCP 
configurations. Optional signals can be configured to support additional core 
communication requirements. The optional dataflow signals are divided into simple and 
complex extensions. All sideband and test signals are optional. We will restrict our 
discussion to only basic OCP signals and signal used in burst access, which is in simple 
OCP extension category. 
 
The OCP is a synchronous interface with a single clock signal. All OCP signals are 
driven with respect to and sampled by the rising edge of the OCP clock. Except for clock 
and reset, OCP signals are strictly point-to-point and uni-directional. 
 
Dataflow Signals 
The dataflow signals consist of a small set of required signals called the basic OCP and 
optional signals that can be configured to support additional core communication 
requirements. The optional dataflow signals are grouped into simple and complex 
extensions. 



10 

 
The naming conventions for dataflow signals use the prefix M for signals driven by the 
OCP master and S for signals driven by the OCP slave. 
 
Basic Signals 
Table 2.1 lists the basic OCP signals that must be present in any OCP interface. 
 

Name Width Driver Function 

Clk 1 Varies OCP clock 
MAddr 1-32 Master Transfer address 
MCmd 3 Master Transfer command 
MData 8/16/32/64/128 Master Write data 
SCmdAccept 1 Slave Slave accepts transfer 
SData 8/16/32/64/128 Slave Read data 
SResp 2 Slave Transfer response 

Table 2.1: Basic OCP Signals 
Clk 
Clock signal for the OCP. All interface signals are synchronous to the rising edge of Clk. 
 
MAddr 
The Transfer address, MAddr specifies the slave-dependent address of the resource 
targeted by the current transfer.  
 
MCmd 
Transfer command. This signal indicates the type of transfer at the OCP. Commands are 
encoded as follows in table 2.2. 
 

MCmd[2:0] Transaction Type Mnemonic 
000 Idle IDLE 
001 Write WR 
010 Read RD 
011 ReadEx RDEX 
100 Reserved  
101 Reserved  
110 Reserved  
111 Broadcast BCST 

Table 2.2 : Command Encoding 
MData 
Write data. This field carries data from the master to the slave.  
 
SCmdAccept 
Slave accepts transfer. A value of 1 on the SCmdAccept signal indicates that the slave 
accepts the master’s transfer request. 
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SData 
Read data. This field carries data from the slave to the master. 
  
SResp 
Response field from the slave to a transfer request from the master. Response encoding is 
as follows in table 2.3. 
 

SResp[1:0] Response Mnemonic 

00 No response NULL 
01 Data valid/ accept DVA 
10 Reserved  
11 Response error ERR 

Table 2.3 : Response Encoding 
 
MBurst 
Burst type. This signal allows linking related transfers into a burst transaction. It is 
configured into the OCP using the burst parameter. Mburst is not a basic OCP signal. It 
encodes both the burst type and the burst code, as shown in the Table 2.4. 
 

MBurst[2:0] Burst Type Burst Code 
000 All LAST 
001 Incrementing TWO 
010 Incrementing FOUR 
011 Incrementing EIGHT 
100 Custom (packed) DFLT1 
101 Custom (not packed) DFLT2 
110 Streaming STRM 
111 Incrementing CONT 

Table 2.4 : Burst Encoding 
 
All these interface signals are used in CPU (Master) and (Memory). The VHDL 
declarations of CPU and Memory are shown in fig 2.2 and 2.3. It should be noted that in 
OCP the width of the address and data signals could be varied according to the 
requirement. Therefore their widths are declared as ‘generic’. 
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Figure 2.2   VHDL declaration of CPU model following the OCP interface 
 

Figure 2.3 VHDL declaration of Memory model following the OCP interface 
 

________________________________________________________________________
entity memory is 
  generic ( 
    addr_width : integer ; 
    data_width : integer ); 
 
  port ( 
    nreset           : in   bit; 
    clk              : in   bit;     -- OCP signal 
    MCmd            : in   bit_vector(2 downto 0);   -- OCP signal 
    MBurst          : in   bit_vector(2 downto 0);   -- OCP signal 
    MAddr           : in   bit_vector(addr_width-1 downto 0); -- OCP signal 
    Mdata           : in   bit_vector(data_width-1 downto 0); -- OCP signal 
    SCmdAccept      : out  bit;     -- OCP signal 
    SResp           : out  bit_vector(1 downto 0);   -- OCP signal 
    SData           : out  bit_vector(data_width-1 downto 0) -- OCP signal 
    ); 
 
end memory; 
________________________________________________________________________

________________________________________________________________________
entity cpu is 
  generic ( 
    addr_width : integer ; 
    data_width : integer ); 
   
  port ( 
    nreset           : in  bit; 
    clk              : in  bit;     -- OCP signal 
    SCmdAccept      : in  bit;     -- OCP signal 
    SResp           : in  bit_vector(1 downto 0);   -- OCP signal 
    SData           : in  bit_vector(data_width-1 downto 0); -- OCP signal 
    MCmd            : out bit_vector(2 downto 0);    -- OCP signal 
    MBurst          : out bit_vector(2 downto 0);   -- OCP signal 
    MAddr           : out bit_vector(addr_width-1 downto 0); -- OCP signal 
    MData           : out bit_vector(data_width-1 downto 0); -- OCP signal 
    cpu_stall       : out bit; 
    cpu_out         : out bit); 
 
end cpu; 
________________________________________________________________________
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2.1.3 Timing Diagrams 
 
The following timing diagrams show the data transfer in its various forms between the 
Master and the Slave using OCP basic signals. The data transfer would become more 
versatile by the addition of simple and complex extensions. In our case, consider the 
Master as a CPU, which is originating communication with the memory, which is acting 
as a slave. 
 
Simple Write and Read Transfer 
 
Figure 2.4 illustrates a simple write and read transfer on a basic OCP interface. This 
diagram shows typical behavior for a synchronous SRAM or for the control and status 
registers of a core. 

 
Figure 2.4 Simple Write and Read Transfer 

Sequence 
A. The master starts a request phase on clock 1 by switching the MCmd field from IDLE 
to WR. At the same time, it presents a valid address (A1) on Addr and valid data (D1) on 
MData. The slave asserts SCmdAccept in the same cycle, making this a 0-latency 
transfer. 
 
B. The slave captures the values from MAddr and MData and uses them internally to 
perform the write. Since SCmdAccept is asserted, the request phase ends. 
 
C. The master starts a read request by driving RD on MCmd. At the same time, it 
presents a valid address on MAddr. The slave asserts SCmdAccept in the same cycle for 
a request-accept latency of 0. 
 
D. The slave captures the value from MAddr and uses it internally to determine what data 
to present. The slave starts the response phase by switching SResp from NULL to DVA. 
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The slave also drives the selected data on SData. Since SCmdAccept is asserted, the 
request phase ends. 
 
E. The master recognizes that SResp indicates data valid and captures the read data from 
SData, completing the response phase. This transfer has request-to-response latency of 1. 
 
Request Handshake 
Figure 2.5 illustrates the basic flow-control mechanism for the request phase using 
SCmdAccept. There are three write transfers, each with a different request accept latency. 
 

 
Figure 2.5 Request Handshake 

 
Sequence 
A. The master starts a write request by driving WR on MCmd and valid address and data 
on MAddr and MData, respectively. The slave asserts SCmdAccept in the same cycle, for 
a request accept latency of 0. 
 
B. The master starts a new transfer in the next cycle. The slave captures the write address 
and data. It deasserts SCmdAccept, indicating that it is not yet ready for a new request. 
 
C. Recognizing that SCmdAccept is not asserted, the master holds all request phase 
signals (MCmd, MAddr, and MData). The slave asserts SCmdAccept in the next cycle, 
for a request-accept latency of 1. 
 
D. The slave captures the write address and data. 
 
E. After 1 idle cycle, the master starts a new write request. The slave deasserts 
SCmdAccept. 
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F. Since SCmdAccept is asserted, the request phase ends. SCmdAccept was low for 2 
cycles, so the request-accept latency for this transfer is 2. The slave captures the write 
address and data. 
 
Request Handshake and Separate Response 
Figure illustrates a single read transfer in which a slave introduces delays in the request 
and response phases. The request accept latency 2, corresponds to the number of clock 
cycles that SCmdAccept was deasserted. The request to response latency 3, corresponds 
to the number of clock cycles from the end of the request phase (D) to the end of the 
response phase (F). 
 

 
Figure 2.6 Request Handshake and Separate Response 

 
Sequence 
A. The master starts a request phase by issuing the RD command on the MCmd field. At 
the same time, it presents a valid address on MAddr. The slave is not ready to accept the 
command yet, so it deasserts SCmdAccept. 
 
B. The master sees that SCmdAccept is not asserted, so it keeps all request phase signals 
steady. The slave may be using this information for a long decode operation, and it 
expects the master to hold everything steady until it asserts SCmdAccept. 
 
C. The slave asserts SCmdAccept. The master continues to hold the request phase 
signals. 
 
D. Since SCmdAccept is asserted, the request phase ends. The slave captures the address, 
and although the request phase is complete, it is not ready to provide the response, so it 
continues to drive NULL on the SResp field. 
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E. The slave is ready to present the response, so it issues DVA on the SResp field, and 
drives the read data on SData. 
F. The master sees the DVA response and captures the read data. 
 
Burst Read 
Figure 2.7 illustrates a burst read transaction that is composed of four-pipelined burst 
read transfers. An additional field, MBurst, is added to the request phase, indicating the 
type of the burst and the number of transfers that the master expects. In this diagram, 
MData and SData are assumed to be 32 bits. 
 

 
Figure 2.7 Burst Read 

 
Sequence 
A. The master starts the burst read by driving RD on MCmd, the first address of the burst 
on MAddr, and the burst code FOUR on MBurst. The burst code indicates that this is an 
incrementing burst and that four or more transfers are expected. The slave is ready for 
anything, so it asserts SCmdAccept. 
 
B. The master issues the next read in the burst. MAddr is set to the next word-aligned 
address. For 32-bit words, the address is incremented by 4.The master also changes 
MBurst to TWO, meaning that two or more transfers remain in the transaction. 
 
C. The master issues the next read in the burst, incrementing MAddr and leaving MBurst 
set to TWO, because there are still two or more transfers remaining. The slave is now 
ready to respond to the first read in the burst, so it drives DVA on SResp and valid data 
on SData. The request-to-response latency for this transfer is 2. 
 
D. The master issues the final read in the burst, incrementing MAddr and setting MBurst 
to LAST. The master also captures the data for the first read from the slave. The slave 
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responds to the second transfer. The request-to-response latency for this transfer is 2, 
although it is possible for the slave to introduce more latency for each response in a burst 
transaction. (In OCP, bursts do not impose any additional constraints on protocol timing.) 
 
E. The master captures the data for the second read from the slave. The slave responds to 
the third transfer. 
 
F. The master captures the data for the third read from the slave. The slave responds to 
the fourth and last transfer. 
 
G. The master captures the data for the last read from the slave. 
 

2.2 OCP Implementation 
 
The OCP interface is implemented in the CPU model according to the requirements 
discussed in the previous sections. As described in the first chapter, the CPU model is 
written in C. The OCP handshake protocol is implemented in a C function 
bus_interface_process(). When a miss occurs, this function is called to initiate 
communication with the memory. The total clock cycles required to complete the data 
transfer depend on the memory latency and the OCP protocol overhead. After the start of 
the handshake, the function bus_interface_process() is executed on every clock cycle 
until the end of the handshake. All the variables that store different transitions of the OCP 
signals during the handshake are declared globally in the C program so that their values 
would not be lost at the end of the clock cycle. This function is capable of handling both 
normal and burst OCP accesses. The C source code is given in the appendix.   
 

2.3 Summary 
 
In this chapter, we have discussed various features of OCP that are used in our CPU 
model. This includes the description of basic OCP signals and their signaling 
requirements. Later, their use has been demonstrated through timing diagrams, which 
show different types of handshakes. As told earlier, this chapter covers very basic 
information about OCP. Detailed information can be found from the online manual of 
OCP at www.ocp-ip.com. The important thing to remember is that the detection of a miss 
causes the CPU model to initiate communication with the memory. This communication 
is done through OCP and is implemented in the model by a C function 
bus_interface_process().  
 

REFERENCES 
 
Online manual of OCP at www.ocp-ip.com.  
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 CHAPTER 
 
 
 
 
 
 
 
 
 
 
 
 
As described in the first chapter, our CPU model is written in C language. However, most 
existing IP cores today are written either in VHDL or Verilog. In Europe, VHDL is the 
widely used Hardware Description Language. Therefore to make the simulation in a 
mixed language environment we need some interface between C and VHDL. The VHDL 
Foreign Language Interface (FLI) by ‘Mentors Graphics’ provides this interface. 
   
The VHDL FLI allows us to replace VHDL architectures and subprogram bodies with 
code written in C. The FLI also provides a number of C functions to allow the VHDL 
database to be accessed and manipulated.  
 
FLI has lot of features and can be used for many different tasks. This chapter only covers 
the portion of FLI, which is used in the thesis. Detailed information can be found from 
the ModelSim technical manual. However, it is our experience that the chapter 
concerning FLI in the ModelSim technical manual lacks some practical information that 
should be included for the beginner. In this chapter, we have tried to provide this 
information. We hope that this chapter would not only serve to understand the simulation 
environment of our thesis but also as a quick start guide for the beginner. It is assumed 
that the reader is familiar with VHDL. 
  

Foreign 
Language 
Interface 
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3.1 Using VHDL FLI with Foreign 
      Architectures 
 
The purpose of the following discussion is not to explain FLI but to make it clear how to 
use FLI i.e. how we can integrate our C and VHDL code so that we can simulate in a 
mixed language environment.  
 

        Figure 3.1 
We start with the example of our test bench, which is our simulation environment. Our 
test bench consists of following entities: 
� Clock 
� CPU 
� Memory 

 
CPU is the entity whose whole behavior is described in C language. The Clock and 
Memory are purely in VHDL. We start with the VHDL description of the CPU. The test 
bench is shown in figure 3.1. The VHDL description of the CPU in which its ports and 
generics are declared, is shown in figure 3.2. 

CPU
(Port declaration in

VHDL)

Memory
(VHDL)

Clock
(VHDL)

Behavior
description

in C
     OCP

FL
I

TEST BENCH
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Figure 3.2 VHDL description of CPU entity 
 
This is all what we need to specify in VHDL. 
 
To use the foreign language interface with C models, you first create and compile 
architecture with the FOREIGN attribute. The string value of the attribute is used to 
specify the name of a C initialization function and the name of an object file to load. 
When ModelSim elaborates the architecture, the initialization function is called. 
Parameters to the function include a list of ports and a list of generics.  
 
Starting with VHDL93, the FOREIGN language attribute is declared in package 
STANDARD. With the 1987 version, you need to declare the attribute yourself. You can 
declare it in a separate package, or you can declare it in the architecture that you are 
replacing. (This will also work with VHDL93). 
 

________________________________________________________________________
entity cpu is 
  generic ( 
    input_file_C  :string :=""; 
    output_file_C :string :=""; 
    addr_width : integer ; 
    data_width : integer ); 
   
  port ( 
    nreset           : in  bit; 
    clk              : in  bit;     -- OCP signal 
    SCmdAccept      : in  bit;     -- OCP signal 
    SResp           : in  bit_vector(1 downto 0);   -- OCP signal 
    SData           : in  bit_vector(data_width-1 downto 0); -- OCP signal 
    MCmd            : out bit_vector(2 downto 0);    -- OCP signal 
    MBurst          : out bit_vector(2 downto 0);   -- OCP signal 
    MAddr           : out bit_vector(addr_width-1 downto 0); -- OCP signal 
    MData           : out bit_vector(data_width-1 downto 0); -- OCP signal 
    cpu_stall       : out bit; 
    cpu_out         : out bit); 
 
end cpu; 
 
 
architecture behaviour of cpu is 
    attribute foreign : string; 
    attribute foreign of behaviour : architecture is "cpu_init ./ptool.sl ;"; 
begin 
end; 
________________________________________________________________________
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The value of the FOREIGN attribute is a string containing two parts. For the following 
declaration: 
attribute foreign of behaviour : architecture is "cpu_init ./ptool.sl"; 
 
The attribute string parses this way: 
cpu_init 
The name of the initialization function for this architecture. This part is required.  
 
ptool.sl 
The path to the shared object file to load. This part is required.  
  
In our example we have used only two parameters and these are both required. Some 
optional parameters can also be used whose details can be found from the ModelSim 
manual. 
 
In our example the cpu_init() function is written in the C file ptool.c. The file ptool.sl is 
generated by compiling and linking ptool.c using GNU compiler. So when the ModelSim 
loads the CPU entity it searches for the file ptool.sl where all the behavior of the CPU 
entity is elaborated. Normally the .so extension is used but on HP machines (which we 
are using) .sl extension is used. 
   
If the initialization function has a leading ‘+’ or ‘-’, the VHDL architecture body will be 
elaborated in addition to the foreign module. If ‘+’ is used (as in the example below), the 
VHDL will be elaborated first. If ’-’ is used, the VHDL will be elaborated after the 
foreign initialization function is called. 
 
3.1.1 The C initialization function 
 
This is the entry point into the foreign C model. The initialization function typically: 
 
�  Allocates memory to hold variables for the instance 
�  Registers a callback function to free the memory when ModelSim is restarted 
�  Saves the handles to the signals in the port list 
�  Creates drivers on the ports that will be driven 
�  Creates one or more processes (a C function that can be called when a signal 

changes) 
�  Sensitizes each process to a list of signals 

 
The ModelSim FLI has provided a lot of library functions and types, which are declared 
in the header file mti.h. The type mtiSignalIdt is used for the input signals of the entity 
(in VHDL) and the type mtiDriverIdt is used for the output signals. In the VHDL 
description of the CPU entity the signals nreset, clk, SCmdAccept, SResp and SData are 
the input signals so they are declared as type mtiSignalIdT and the output signals of the 
cpu entity are MCmd, MBurst, MAddr MData, cpu_stall and cpu_out and they are 
declared as types mtiDriverIdT in the C program of the CPU model. So these are declared 
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as shown below in figure 3.3. Note that names of the signals should be the same as in 
VHDL. 

Figure 3.3 : Declaration in C 
 
Now we look at the cpu_init() function. This function is executed when we load the 
CPU entity in ModelSim .In addition to specifying inputs, outputs and sensitivity we can 
also use that function to initialize other variables which has to be used later in the code. 
We can also add file read/write functions and anything, which we need to use just like a 
normal C program. Only the part of the cpu_init() function, which is used to 
interface with VHDL, is shown in figure 3.4.   
 
 
 
 
 
 
 
 

_____________________________________________________________ 
typedef struct { 
 
    mtiSignalIdT nreset;  
    mtiSignalIdT clk;  
    mtiSignalIdT SCmdAccept; 
    mtiSignalIdT SResp; 
    mtiSignalIdT SData; 
    mtiDriverIdT MCmd; 
    mtiDriverIdT MBurst; 
    mtiDriverIdT MAddr; 
    mtiDriverIdT MData; 
    mtiDriverIdT cpu_stall;  
    mtiDriverIdT cpu_out; 
   
} inst_rec; 
_____________________________________________________________ 
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Figure 3.4 : C initialization function  cpu_init() 
 

We have declared a pointer *cpu_ip of type inst_rec. This pointer is used to point the 
variables of inst_rec, which are basically the input and output signals of the CPU entity. 
Then we have used ModelSim FLI library functions whose detail is given below:   
 
void mti_AddRestartCB(mtiVoidFuncPtrT func, void *param) 
Causes the specified function to be called before the simulator is restarted. The function 
is passed the parameter specified by “param”, and it should free any memory that was 
allocated. 
 

________________________________________________________________________
void cpu_init( 
  mtiRegionIdT       region, 
  char              *param, 
  mtiInterfaceListT *generics, 
  mtiInterfaceListT *ports 
) 
{ 
  inst_rec     *cpu_ip; 
  mtiProcessIdT cpu_proc; 
  mtiSignalIdT  outp;                                                                                                      
  cpu_ip = (inst_rec *)mti_Malloc(sizeof(inst_rec)); 
  mti_AddRestartCB(mti_Free, cpu_ip); 
 
  /* Here we can add our additional code. This can be found in the Appendix. */ 
    cpu_ip->clk    = mti_FindPort(ports, "clk"); 
    cpu_ip->nreset = mti_FindPort(ports, "nreset"); 
    cpu_ip->SCmdAccept = mti_FindPort(ports, "SCmdAccept"); 
    cpu_ip->SResp = mti_FindPort(ports, "SResp"); 
    cpu_ip->SData = mti_FindPort(ports, "SData"); 
    outp = mti_FindPort( ports, "cpu_out" ); 
    cpu_ip->cpu_out = mti_CreateDriver( outp ); 
  
    cpu_ip->MCmd   = mti_CreateDriver(mti_FindPort(ports, "MCmd")); 
    cpu_ip->MBurst = mti_CreateDriver(mti_FindPort(ports, "MBurst")); 
    cpu_ip->MAddr  = mti_CreateDriver(mti_FindPort(ports, "MAddr")); 
    cpu_ip->MData  = mti_CreateDriver(mti_FindPort(ports, "MData")); 
    cpu_ip->cpu_stall = mti_CreateDriver(mti_FindPort(ports, "cpu_stall")); 
    
    cpu_proc = mti_CreateProcess("cpu_process", cpu_process, cpu_ip); 
    mti_Sensitize(cpu_proc, cpu_ip->clk, MTI_EVENT); 
    mti_Sensitize(cpu_proc, cpu_ip->nreset, MTI_EVENT); 
} 
________________________________________________________________________
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void *mti_Malloc(unsigned long size) 
Allocates a block of memory of the specified size and returns a pointer to it. The memory 
is initialized to zero. On restore, the memory block is guaranteed to be restored to the 
same location with the values contained at the time of the checkpoint. This memory can 
be freed by mti_Free(). It cannot be freed by a call to the free() C-library function. 
 
mtiSignalIdT mti_FindPort(mtiInterfaceListT *list, char *name) 
This function searches linearly through the specified interface list and returns the signal 
ID of the port whose name matches the one specified. It returns NULL if it does not find 
the port. The search is not case-sensitive. So this function is used for all the input and 
output ports of the CPU entity. As shown in the code of cpu_init() function, all the input 
and output signals nreset, clk, SCmdAccept, SResp, SData, MCmd, Mburst, Maddr, 
Mdata, cpu_stall and cpu_out are specified using mti_FindPort() function. 
 
mtiDriverIdT mti_CreateDriver(mtiSignalIdT sig) 
Creates a driver on a signal. A driver must be created for a resolved signal in order to be 
able to drive values onto that signal and have the values be resolved. Multiple drivers can 
be created for a resolved signal, but no more than one driver can be created for an 
unresolved signal. This function is used for all the output signals of the entity. In our 
example the output signals are MCmd, MBurst, MAddr, MData, cpu_stall and cpu_out, 
which are used alongwith mti_FindPort() function. 
 
mtiProcessIdT mti_CreateProcess(char *name, mtiVoidFuncPtrT func, void 
*param) 
Creates a new process. The parameter "name" is the name that will appear in the 
Simulator’s process window, which in our case is cpu_process. If the process is created 
during elaboration, the specified function will be called at time 0 after all the signals have 
been initialized. The mti_Sensitize() and mti_ScheduleWakeup( ) functions can be used 
to cause the function to be called at other times. When the function is called, it is passed 
the parameter specified by "param". 
 
void mti_Sensitize(mtiProcessIdT proc, mtiSignalIdT sig, 
mtiProcessTriggerT when) 
Causes the specified process to be called when the specified signal is updated. If the when 
parameter is MTI_EVENT, then the process is called when the signal changes value. If 
the when parameter is MTI_ACTIVE, then the process is called whenever the signal is 
active. Since the CPU is strictly sequential so it is only sensitive to nreset (reset signal) 
and clk (clock) signal. So whenever the nreset or clk signal changes this process 
cpu_process() function is called. The nreset signal is only used at the beginning  for 
initialization. 
 
Input sensitive function 
So cpu_init() function is used for initialization and cpu_process() function is used to 
describe the functionality of the CPU on every clock cycle. Again, only the portion of 
cpu_process() related to FLI is shown here. 
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____________________________________________________________________________________ 
static� void� cpu_process(� inst_rec� *cpu_ip� )�
{�
� � � � int� clk,nreset;�
� � � � int� SCmdAccept;�
� � � � int� count,stall;�
� � �
� � � � char� SData[DATA_WIDTH],MData[DATA_WIDTH],MAddr[ADDR_WIDTH];�
� � � � char� MCmd[3];�
� � � � char� SResp[2];�
�
� � � � clk� � � � � � =� mti_GetSignalValue(� cpu_ip->clk� );�
� � � � nreset� � � =� mti_GetSignalValue(� cpu_ip->nreset� );�
� � � � SCmdAccept� =� mti_GetSignalValue(� cpu_ip->SCmdAccept);�
�
� � � � mti_GetArraySignalValue(cpu_ip->SResp,SResp);�
� � � � mti_GetArraySignalValue(cpu_ip->SData,SData);�
�
� � � � convert(&clk,1);�
� � � � convert(&nreset,1);�
� � � � convert(&SCmdAccept,1);�
� �
� � count=clk;�
� � if(nreset==0)�
� � � � {� count=0;�
� � � � � � stall=0;�
� � � � � � bus_active=0;�
� � � � � � convert(&count,0);�
� � � � � � convert(&stall,0);�
� � � � � � MCmd[0]=MCmd[1]=MCmd[2]=� BIT_0;�
� � � � � � mti_ScheduleDriver(� cpu_ip->MCmd,(long)MCmd,� 0,� MTI_INERTIAL� );� �
� � � � � � mti_ScheduleDriver(� cpu_ip->cpu_out,count,� 0,� MTI_INERTIAL� );�
� � � � � � mti_ScheduleDriver(� cpu_ip->cpu_stall,stall,� 0,� MTI_INERTIAL� );�
� � � � }�
� � else� if(clk==1)�
� � � � {convert(&count,0);�
� � � � � convert(&stall,0);�
�
/*� the� functionality� of� cpu� is� described� here.� Complete� version� is�
given� in� � Appendix*/�
�
� � � � mti_ScheduleDriver(� cpu_ip->cpu_out,count,� 0,� MTI_INERTIAL� );�
� � � � mti_ScheduleDriver(� cpu_ip->cpu_stall,stall,� 0,� MTI_INERTIAL� );�
� � � � �
� � � � mti_ScheduleDriver(� cpu_ip->MCmd,(long)MCmd,� 0,� MTI_INERTIAL� );�
� � � � mti_ScheduleDriver(� cpu_ip->MAddr,(long)MAddr,� 0,� MTI_INERTIAL� );�
� � � � mti_ScheduleDriver(� cpu_ip->MData,(long)MData,� 0,� MTI_INERTIAL� );�
� � � � � � }�
� � }�

}______________________________________________________________________
__ 

Figure 3.5 cpu_process() 
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As evident the process cpu_process only runs when there is a change in clock signal. To 
make it sensitive only with the positive edge of the clock, all the code is written under the 
“if” condition: clk=1. For all the input and output signals the corresponding variables 
have been declared. Hence the signals nreset, clk and SCmdAccept, which are single bit 
signals, are declared as integers of type int. And the signals having more than one bit 
SData, MData, MAddr, MCmd and SResp as arrays of type char having length equal to 
their bit width. The input variables get the values from the VHDL environment from the 
FLI functions mti_GetSignalValue() and mti_GetArraySignalValue(). These variables 
have been updated every time when the process runs and are then assigned to their 
corresponding signals by the function mti_ScheduleDriver(). All the input signals to CPU 
entity are generated by the entities, which are in VHDL. By using the FLI library 
functions (which are used in cpu_init() function and cpu_process() function) these values 
of these signals are assigned to their corresponding variables in cpu_process() function. 
Based on these values we update the output variables whose values are in turn assigned to 
the output signals of CPU entity. These output signals are inputs to memory, which is 
again an entity fully in VHDL.   
 
3.1.2 Some important issues  
 
1. The logic level ‘1’ in VHDL is equivalent to 3 in C and logic level ‘0’ is equivalent to 
We use our own simple function convert() which convert the input signal values from 
integer 3 to integer 1, integer 2 to integer 0 and vice versa for the output signals. This is 
done just to make the code more readable. 
 
2. As described earlier that the signals having more than one bit have been used as 
characters. These signals are of type bit_vector in VHDL. To deal with these signals in C, 
we have declared a type of enumerated data. 
   
typedef enum {BIT_0, BIT_1} bit; 
 
If we want to assign logic level ‘0’ to a particular bit we assign it BIT_0 and for logic 
level ‘1’ we assign BIT_1. Thus if we want to assign “001” to the three bit signal MCmd, 
it would be as follows: 
MCmd[0]=BIT_0;  
MCmd[1]=BIT_1;  
MCmd[2]=BIT_1;  
 
3. Since cpu_process() is basically a C function so all the variables declared inside are 
actually local variables i.e. they lost their values at the end of the function. Therefore if 
we want for some variables to retain their values after the function, they must be declared 
globally.   
 
4. To get the values of generics specified in VHDL, the pointer *generics is used as 
shown in C initialization function cpu_init(). The pointer *generics is of type 
mtiInterfaceListT which is declared in the header file mti.h. Consider the example of our 
model in which the two generics specified in VHDL are input_file_C and output_file_C 
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and they are of type string. As evident from the name, the user provides the names of the 
input and output files through these generics. The name of the files can be retrieved in the 
C program by using the *generics pointer as shown below: 
 

A linked list is created in header file mti.h and successive generic elements can be 
retrieved by using the pointers shown in the above example. 

 
3.2 SUMMARY 
 
The FLI is used to make communication between entities written in C and in VHDL. The 
entity whose behavior is described in C is still has its port declaration in VHDL. But in its 
architecture description in VHDL, the name of the ‘C initialization function’ and ‘C 
shared file’ containing this function is specified. In the ‘C shared file’ the complete 
behavior of the entity is elaborated. When the entity is loaded in the simulator the control 
is transferred to that ‘C initialization function’. This function uses FLI library functions to 
transfer the information about the ports and generics of the entity, which are specified in 
its VHDL declaration. It also specifies different functions, which are sensitive to the 
input signals of this entity. Whenever these inputs change, the corresponding functions 
are executed. Whenever these functions are executed they update some variables, which 
are basically the updated values of the output signals of the entity. The FLI library 
functions then convert these values according to VHDL standards so that can be 
understood by the entities written purely in VHDL and vice versa. 
 
In this chapter we have described, how we can simulate in a mixed language environment 
by using FLI. The FLI has lot of features and options available and there is lot of ways to 
do same things. We have used which is most simple and we have covered only those 
features, which are required in our task. 
 
REFERENCES 
 
Foreign Language Interface (FLI), Mentors Graphics’ ModelSim Technical Manual. 

if( (fptr1= fopen(generics->u.generic_array_value,"r")) ==NULL) 
    { 
      printf("\n Couldn't open the file %s",generics->u.generic_array_value); 
    } 
 
if( (fptr2= fopen(generics->nxt->u.generic_array_value,"w")) ==NULL) 
    { 
       
      printf("\n Couldn't open the file %s",generics->nxt->u.generic_array_value);  
    } 
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   CHAPTER 
 
 
 
 
 
 
 
 
 
 
 
 
 
Now we know about OCP and FLI and also how they are used in the model. In this 
chapter, we will describe the overall structure and working of our CPU model. We start 
with some features of general-purpose microprocessors and then we will explain how 
these features are included in our model. 
 
4.1  An overview of the General-purpose 
       Microprocessor    
 
To make a model of the processor we need to study the features and functionality of the 
processors used today. All processors today are pipelined and have separate instruction 
and data cache. In a given clock cycle more than one instruction are in progress. Their 
number depends on the depth of the pipeline. The modern processors used today are very 
complex. To increase the throughput the parallelism among instructions is exploited by 
out of order execution [1] and more than one instruction may be issued in every clock 
cycle [2]. However, in our model we haven’t targeted these architectures. Our model is 
focused on the processors used in embedded applications. These processors are not as 
much complex like the processors used in Personal Computers, Workstations or High end 
Servers. Their architecture is much simpler than that and the pipeline scheme is also not 
that much complex. The instruction execution is also in order and in a given pipeline 
stage only one instruction is active. In most embedded processors the pipeline depth is 
between 5 to 8 stages [3]. ARM processor is one of them, which is largely used, in 
embedded applications. Therefore we can focus ourselves to study the behavior of these 
processors and try to include this behavior in our model. 
 
Let’s have a quick look on a five stage pipelined processor [4] with separate instruction 
and data cache. The first stage of the pipeline is called Instruction Fetch stage in which 
the processor fetches instruction from the instruction cache by generating the instruction 
address. In some processors this Instruction Fetch stage is further divided into two stages 
to decrease the clock period. The next step is to decode the instruction, which is normally 

An Overview 
of the CPU 
Model 
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called Instruction Decode (ID) stage. The instruction is decoded and the specified 
registers are accessed. In most architectures if the instruction is Jump or Branch some 
action has been taken in the ID stage that involve change in the next instruction target 
address. The next stage is called the Execution stage where the instruction is treated 
according to its type.  If it is an R-Format instruction (instruction that require arithmetic 
operation by ALU on its operands) then some arithmetic or logical operation is 
performed in the ALU (Arithmetic Logic Unit) and in the case of a load or store 
instruction the memory address has been calculated. The next stage is the memory stage 
where the data cache is accessed for either data read or data write. And the last stage is 
Write Back stage where the output of the ALU or the data from the memory is written 
into the register file. 
 
 

Figure 4.1 Five-stage Pipeline MIPS R1000 
 
In the ideal case, every instruction consumes one clock cycle and the CPI (cycles per 
instruction) is 1. In Superscalar machines where more than one instruction can be issued 
in a clock cycle the ideal CPI can also be decreased from 1. However, these machines are 
not the targets in our model. The actual CPI is always greater than 1 due to structural, 
data and control hazards. There are also instructions like multiply/divide that consume 
several clock cycles, and depending upon the frequency of these instructions the CPI 
increases. But the most dominant factor is the misses produced during the execution. 
 
There are only two cases when the processor needs to communicate with the memory: 
� When the instruction miss occurs 
� When the data miss occurs 

 
The instruction cache is accessed in every clock cycle. So there is always a probability 
that an instruction miss can occur. Thus in the first stage if the instruction is not found in 
the instruction cache, instruction miss occurs and the CPU has to fetch the instruction 
from the memory. This involves consumption of many cycles depending on the latency of 
the memory. When the instruction is brought in the cache the normal execution 
continues.  
 

Instruction Cache Register File ALU Data Cache Register File

Instruction Fetch
(IF)

Instruction Decode
(ID)

Execution (EX) Data Fetch (DF) Write Back (WB)
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Data miss can only occur in the case of load or store instruction and also when these 
instructions result in a data miss. All other types of instructions that do not access data 
cache cannot generate data misses. Because of these reasons, instruction misses are 
higher than data misses in most programs. However, the opposite is also true in many 
programs. In the case of load or store instruction, when the miss arises in the data cache, 
the pipeline is stalled and remains stalled until the required data reaches the data cache 
from the memory. There are two types of data misses: read misses and write misses. In 
the case of a read miss the CPU initiates communication with the memory to read some 
data elements while in the case of a write miss the CPU initiates communication to write 
on some particular location in the memory. 
 
The instruction miss and the data read miss are similar in terms of communication with 
the memory. Whenever any of these misses occur, the access to the memory is ‘burst 
access’. An access to the memory brings the next four instructions or data items from the 
memory into the cache to exploit spatial locality. However, write accesses to the memory 
are not burst accesses. When memory is accessed for write operation, only one location in 
the memory is updated. The ‘burst access’ occupies the bus for a greater number of clock 
cycles as compared to normal access as shown in section 2.1.3 where both the normal and 
burst OCP accesses are shown. 
 
There are two kinds of write policies in cache designs: write through and write back. In 
write through scheme, the information is written to both the block in the cache and to the 
block in the memory. So in this scheme every store instruction results in a write miss. In 
write back scheme, the information is written only to the block in the cache. The 
modified block is written to the memory only when it is replaced. 
 
So whenever a miss occurs, the pipeline is stalled and remains stalled until the 
corresponding miss is handled. It may happen that the instruction and data miss occurs at 
the same time then both the misses are handled one by one with the data miss to be 
handled first so that the pipeline can continue. These factors increase the completion time 
of an individual instruction, which in ideal case is 1 clock cycle. We can say that if there 
is no miss or no other hazard then at the end of every clock cycle one instruction is 
completed other wise it is not.  
 
Some processors also have second-level cache that is bigger than the first-level caches. It 
can be a unified cache that is used for both data and instruction or it may be a case that 
there are separate instruction and data second-level caches. When there is a miss in the 
first-level cache then before accessing the memory, second-level cache is accessed. If the 
required instruction or data is found in the second-level cache it is supplied to the first-
level cache otherwise the memory is accessed. In the case of a hit in the second-level 
cache the penalty for accessing the second-level cache is lesser than accessing the 
memory. But in the worst case when there is a miss in the second-level cache the miss 
penalty is the number of clock cycles to access the second-level cache plus the number of 
clock cycles to access the memory. The effective miss rate in the presence of second-
level cache is the product of the individual miss rates of both first-level and second-level 
caches. 
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As described in the first chapter, our aim is to generate traffic on the bus in a realistic 
manner. Therefore, in the above discussion we have focused ourselves on the factors, 
which generate traffic on the bus connecting the CPU and memory. Following are the 
important observations from the above discussion: 
 
� In ideal case, every instruction requires 1 clock cycle in a pipelined processor. 
� In every clock cycle, the number of active instructions is usually equal to the 

depth of the pipeline. 
� In every clock cycle, there is a probability that an instruction miss or data miss or 

both can occur. 
� When a miss occurs, memory is accessed and the pipeline is stalled. The pipeline 

remains stalled until the required data is brought into the cache. 
� Instruction misses and data read misses generate burst access to the memory while 

the write misses generate single access. 
 
Based on this information we made our model which include the behavior of all these  
phenomenon discussed above 
 
4.2 Structure and working of the model 
 
We will start the discussion of our model with the explanation of the basic input 
parameters of the CPU model and then we will show how the necessary data is collected 
from these inputs. Later, we will show how the model is organized into different parts 
and then we will describe the overall sequence of operation during the whole simulation. 
 
4.2.1 Basic inputs of the model 
 
The basic input parameters are supplied by the user to carry out the simulation. These 
inputs are written in a specially designed file, which is made for this model. These basic 
inputs are the required inputs and are necessary to carry out the simulation. In addition to 
these basic inputs there are also some optional inputs, which will be discussed in the next 
chapter. The basic inputs are given below:  
 
� Total number of instructions 
� Percentage of load instructions 
� Percentage of store instructions 
� Instruction miss rate 
� Data miss rate 
� CPI (including the effect of structural, data and control hazards)  
� Memory Access startup latency (Number of cycles required to initiate memory 

transfer after detecting a miss) 
� Memory Accesses end latency (Number of cycles required to restore the normal 

execution after the completion of memory transfer) 
� Seed for the random functions 
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The ‘total number of instructions’ tells us about the total number of instructions which we 
have to simulate. These ‘total number of instructions’ are not the total number of 
instructions, which we can found in the assembly program. They are the total number of 
instructions, which are actually executed. For e.g., if there is a loop consisting of 10 
instructions and that loop runs for 100 times then the total number of instructions that are 
executed are 1000 not 10. 
 
‘Percentage of load instructions’ and ‘Percentage of store instructions’ tell us how many 
instructions are load/store from the total number of instructions. These are the 
instructions that may cause a data miss. These two parameters and ‘Data miss rate’ also 
help us to distinguish between read and write misses as these two misses have different 
behaviors on the bus.  
 
‘Instruction miss rate’ and ‘Data miss rate’ tell us about how many data and instruction 
misses are generated during the execution of the total number of instructions. We have to 
generate these misses in a manner that resembles to a real traffic. 
 
The basic input CPI (cycles per instruction) tells the CPI without taking into account the 
effect of the misses. However, the CPU model demands that this input CPI includes the 
effect of different data, control and structural hazards. The reason for this demand is that 
the CPU model can’t include the effect of these hazards by itself because of the absence 
of real software. However, even if the user provides the ideal CPI it doesn’t have a very 
remarkable affect on the simulation. Therefore, the ideal CPI can also serves the purpose.     
 
‘Memory Access startup latency’ is the number of clock cycles required to initiate 
memory transfer after detecting a miss. Nearly all processors, after detecting a miss can’t 
initiate communication with the memory in the same cycle. Generally it is started at the 
start of the next cycle and in some processors depending upon their pipeline technique 
more than one clock cycle is required. Similarly, ‘Memory Accesses end latency’ is the 
number of clock cycles required to restore the normal execution after the completion of 
the memory transfer and is different for different processors. 
   
The input ‘Seed for random functions’ is any integer number, which is used as a seed in 
different random functions in the C program of the model. 
 
4.2.2 Execution clock cycles 
 
By using the values of these inputs the CPU model generates traffic on the bus. Based on 
these parameters we can approximate the total number of clock cycles required to 
complete the given number of instructions. The total number of clock cycles in which the 
CPU does some useful work is given by (let’s call it Execution clock cycles): 

 
Execution clock cycles = CPI × Total number of instructions                           (4.1) 

 
The parameter ‘Execution clock cycles’ is one of the most important parameters of our 
model. The ‘Execution clock cycles’ to complete the given number of instructions remain 
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constant and is independent of memory latency and bus arbitration. In this chapter and in 
the next chapter, whenever we use the term ‘Execution clock cycles’, we mean the 
effective clock cycles in which the CPU is perfectly in execution i.e. the number of clock 
cycles during which the CPU is not stalled.    
 
If we take into account the misses occurred during the execution, the total number of 
clock cycles will be: 
 
Total number of clock cycles = Execution clock cycles + Total number of misses × Miss 

penalty               (4.2) 
 
Where,  

Total number of misses = instruction misses + data misses 
 

Total Execution time = Total number of clock cycles × Clock period                          (4.3) 
 
Thus before the start of the simulation, we can calculate the Execution clock cycles from 
the CPI and the total number of instructions, which are the user-supplied inputs. We also 
know the total number of misses, which have to be introduced within these Execution 
clock cycles. However, we can’t calculate the Total number of clock cycles by using 
equation 4.2 because we don’t know about the Miss penalty i.e. the number of clock 
cycles required to access the memory. Different memories have different miss penalties 
and the miss penalty for the same memory may be different in the same simulation 
depending upon the traffic on the bus. It may happen that when CPU initiates 
communication with the memory, the memory is busy handling request from some other 
component of the SOC design and causes the CPU to stall for the clock cycles more than 
the latency of the memory.  Hence we can only know about the total number of 
consumed clock cycles (to execute the given number of instructions) only at the end of 
the simulation. However, we can calculate the Total execution cycles and we can use it in 
our model. 
 
As already described, no real software is running on our model, so during the simulation 
we have to make some guess whether in a given cycle we have any kind of miss or not. If 
we don’t have a miss we can say that one instruction is completed other wise instruction 
is not completed. This process is repeated until the given number of instructions has been 
completed i.e. the Total execution cycles are completed. Chapter 5 is dedicated to the 
discussion about how we make the decision about a miss in a given cycle.  
 
Before the start of the actual simulation, the CPU model is initialized with the total 
number of execution cycles and the total number of misses and with lots of other data 
elements that will be used during the simulation. A variable is initialized that counts the 
execution clock cycles. This counter increment by one in every useful clock cycle. When 
this count becomes equal to the Total execution clock cycles, the simulation is ended.  In 
every clock cycle separate functions are called to make decision about the misses. If there 
is no miss then the normal execution continues. In the other case, when a miss has been 
found the model initiates communication with memory. During this whole memory 
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access, the CPU remains stalled i.e. not doing useful work. So the execution clock cycle 
counter does not increment during this period. When the memory transfer is completed 
the normal execution continues i.e. execution clock cycle counter starts incrementing 
again after every useful clock cycle. 
 
4.2.3 Three major parts of the model 
 
The whole model is divided into three major parts. Each part consists of a group of 
functions to carry out a particular task. 
 
� A set of initialization functions that takes control from VHDL through FLI. This 

part is explained in chapter 3. 
 
� A set of functions that communicates with the outside world like memory through 

OCP. This involves updating of the signals that communicates with the memory 
and the variables that keep track of the transitions occurred during the 
handshaking. The signals transitions are according to OCP as explained in chapter 
2. 

 
� A set of functions that takes care of the generation of misses during the 

simulation. They are divided into parts. The first part consists of initialization 
functions that initializes the model with the input parameters and makes necessary 
calculation that will help in the rest of the simulation. The second part consists of 
functions that make decision about a miss in a given cycle   

 
The third part contributes the major part of the model and is explained in Chapter 5. 
 
4.2.4 Sequence of Operations 
 
The whole simulation is carried out in the following sequence. All these steps are shown 
in figure 4.2.  
    

1. Initialize the CPU model with the variables that contain the values of the input 
parameters i.e. total number of instructions, load/store instructions, instruction 
miss rate, data miss rate etc and make some necessary calculations. The inputs are 
read from the file by using C file read functions.  The initialization takes place 
when we load the design in the simulator (Modelsim) window. This step is called 
‘Initialization’ and is shown as the grey shaded region in figure 4.2. This part is 
explained in detail in Chapter 5.  

 
All the remaining steps are performed during the simulation i.e. in each clock cycle the 
model undergoes the following steps. 
 

2. Check at the start of each cycle if the CPU is in some stage of memory transfer. 
This can be seen by checking the variable, which shows whether CPU is stalled or 
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not. If the CPU is stalled then it is already in the communication phase i.e. 
communicating with the memory through OCP, which requires some cycles to 
complete. In that case call the function bus_interface_process(), which is 
responsible for the memory transfer. The function also checks the current status of 
the handshaking and takes necessary actions accordingly. This step is repeated in 
every clock cycle until the memory transfer is completed. If the memory transfer 
is completed then clear the variables that contain information about the misses 
that needs to be handled i.e. sets them to 0. If the CPU is not currently involved in 
memory transfer or the memory transfer is completed then go to the next step. 

       
3. Increment the Execution clock cycle count. 

 
4. Call the functions that make decision about the introduction of instruction and 

data misses in a given cycle. Update these variables according to the decision i.e. 
set them to 1 if a miss has been found or 0 if there is no miss. This step is also 
indicated as a grey shaded region in figure 4.2 and is explained in detail in the 
next chapter. 

 
5.  Check the variables that contain information about the instruction and data 

misses. If there is no miss then go to the next step otherwise go to step 8. 
 

6. The clock cycle has ended. Save the values of all the variables that will be used in 
the next cycle. All necessary variables are declared globally so that their values 
will not be lost at the end of the function. Go to the next step. 

 
7. Compare the value of the execution clock cycle count variable with the Total 

execution clock cycles value. If it is less than the total value then it means that the 
simulation is not ended yet and thus go back to step 2. If it is equal or greater than  
the total value then it means that all the instructions have been simulated so go to        
the step 9. 

 
8. If a miss has been found then stall the processor model. Call the function that 

starts communication with the memory through OCP. Keep the processor stalled 
until the miss has been handled. This has been checked at the start of every cycle 
as shown in step2. If there is a miss in both the instruction and data then handle 
the data miss first and then handle the instruction miss. Go to step 6.   

 
9. All the instructions have been simulated. Generate report about the total execution 

time of the instructions, the number of cycles in which the CPU remain stalled 
waiting for the memory response, the number of cycles the CPU is executing 
instructions, the number of clock cycles consumed in the longest handshake as 
well as in the shortest handshake etc. Terminate the simulation.      
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4.3 SUMMARY 
 
In this chapter, we have discussed those features of general-purpose processors, which 
are used in our CPU model. We have described what happens to the pipeline when a miss 
occurs. We have described the basic input parameters of the model and their purpose in 
the model. We have shown how the model is divided into three different parts and then at 
the end we have described the flowchart of the whole process. 
 
 From the basic parameters, the CPU calculates the total Execution clock cycles and the 
total number of instruction and data (read and write) misses.  These misses have to be 
introduced by the model within these Execution clock cycles. During the simulation, the 
CPU model decides in every clock cycle whether a miss has to be introduced or not. The 
variable that counts the Execution clock cycles increments by one after every Execution 
clock cycle except when the CPU is stalled. When this count reaches the limit i.e. the 
total number of Execution clock cycles, it implies that all the instructions are completed. 
The model ensures that at this point all the misses have already been introduced. The 
simulation is then completed and the model generates the report, which tells the effective 
CPI that includes the effect of the misses. It also calculates the total number of clock 
cycles that are required to complete the execution of the given number of instructions, the 
number of clock cycles during which the CPU remains stalled and the longest and 
shortest time to complete the data transfer with the memory. 
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 CHAPTER 
 
 
 
 
 
 
 
 
 
 
 
 
In the previous chapter we have explained the overall structure and working of the model. 
The model is divided into three parts. The first part consists of set of functions that are 
used to transform different signals and variables’ values from C to VHDL and vice versa. 
The second part is responsible to communicate with the memory. The third part, which is 
the most important part, makes necessary calculations about the misses and introduces 
them during the simulation. The third part is the two grey shaded regions in fig 4.2. The 
first two parts have already been explained in chapters 2,3 and 4. In this chapter we will 
explain the third part i.e. the two grey shaded regions in fig 4.2. So this chapter includes 
the discussion about different techniques that are used to generate the misses in the 
simulation.  
 
When a miss occurs, it generates traffic on the bus. Our main aim is to generate traffic 
that resembles to a real traffic that occurs as a result of execution of real software on real 
IP cores. And to accomplish this, we have to generate misses in a manner that resembles 
to the misses generated in a real program. 
 
We start with a very brief overview of caches. As evident from the above discussion, it is 
assumed that you have read chapter 4.  
 
5.1 An Overview of Caches 
 
Following is a quick review of some cache related concepts. The intention here is not to 
describe caches but to show later how these particular cache-related concepts are used in 
our model and also why some of these concepts are not used in our model. So we assume 
that the reader has enough knowledge of caches and the related concepts. The interested 
reader can read more about caches from [1] and [2]. Most information in this section is 
also taken from [1] and [2]. 
 
 
 

Miss 
Generation 
Techniques
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5.1.1 Cache Basics 
 
Cache is the first level of memory hierarchy. The next instruction (to be executed) or the 
data item is first searched into the cache. When the CPU finds a requested data item in 
the cache, it is called a cache hit. When the CPU does not find a data item it needs in the 
cache, a cache miss occurs. A fixed-size collection of data containing the requested word, 
called a block, is retrieved from the main memory and placed into the cache. Temporal 
locality tells us that the same word is likely to be needed again in the near future, so it is 
useful to place it in the cache where it can be accessed quickly. Because of spatial 
locality, there is high probability that the other data in the block will be needed soon. 
 
The time required for the cache miss depends on both the latency and bandwidth of the 
memory. Latency determines the time to retrieve the first word of the block, and 
bandwidth determines the time to retrieve the rest of this block. Bandwidth can also be 
taken as the width of the bus connecting the cache or CPU to the memory. A cache miss 
is handled by hardware and causes processors following in-order execution to pause, or 
stall, until the data are available. 
 
5.1.2 Division of address 
 
Caches have an address tag on each block frame that gives the block address. The tag of 
every cache block that might contain the desired information is checked to see if it 
matches the block address from the CPU. As a rule, all possible tags are searched in 
parallel because speed is critical. 
 
There must be a way to know that a cache block does not have valid information. The 
most common procedure is to add a valid bit to the tag to say whether or not this entry 
contains a valid address. If the bit is not set, there cannot be a match on this address. 
 

 
Figure 5.1 : Three portions of address in a set-associative or direct-mapped cache 

  
Figure 5.1 shows how an address is divided. The first division is between the block 
address and the block offset. The block frame address can be further divided into the tag 
field and the index field. The block-offset field selects the desired data from the block, 
the index field selects the set, and the tag field is compared against it for a hit. 
 
If the total cache size is kept the same, increasing associativity increases the number of 
blocks per set, thereby decreasing the size of the index and increasing the size of the tag. 
That is, the tag-index boundary in Figure 5.1 moves to the right with increasing 
associativity, with the end point of fully associative caches having no index field. 
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5.1.3 Miss Rate 
 
Miss rate can be defined as the fraction of cache accesses that result in a miss (i.e., 
number of accesses that miss divided by number of accesses). 
 
Miss rate = Number of accesses that miss 
                      Total number of accesses 
 
Instruction miss rate = Number of instruction cache accesses that miss 
                                                 Total number of instructions  
 
Data miss rate = Number of data cache accesses that miss 
                             Total number of load/store instructions 
 
 
5.1.4 Different Cache Configurations 
 
There are three different types of cache configuration: 
 
� Direct mapped 
� Set Associative  
� Fully Associative 

 
If each block can appear at only one place in the cache, the cache is said to be direct 
mapped. The mapping is done according to the formula: 
 

(Block address) MOD (Number of blocks in cache) 
 
If a block can be placed anywhere in the cache, the cache is said to be fully associative. 
 
If a block can be placed in a restricted set of places in the cache, the cache is set 
associative. A set is a group of blocks in the cache. A block is first mapped onto a set, 
and then the block can be placed anywhere within that set. The set is usually chosen by 
bit selection; that is, 
 

(Block address) MOD (Number of sets in cache) 
 
If there are n blocks in a set, the cache placement is called n-way set associative. 
 
The range of caches from direct mapped to fully associative is really a continuum of 
levels of set associativity. Direct mapped is simply one-way set associative and a fully 
associative cache with m blocks could be called m-way set associative. Equivalently, 
direct mapped can be thought of as having m sets and fully associative as having one set. 
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5.1.5 Types of Misses 
 
Compulsory: The very first access to a block cannot be in the cache, so the block must 
be brought into the cache. These are also called cold start misses or first reference misses. 
 
Moving from direct mapped to full associativity has no impact on the compulsory misses. 
Larger block size can reduce the compulsory misses. 
 
Capacity: If the cache cannot contain all the blocks needed during execution of a 
program, capacity misses (in addition to compulsory misses) will occur because of blocks 
being discarded and later retrieved. 
 
A little can be done to improve the capacity misses except to increase the size of the 
cache. 
 
Conflict: If the block placement strategy is set associative or direct mapped, conflict 
misses (in addition to compulsory and capacity misses) will occur because a block may 
be discarded and later retrieved if too many blocks map to its set. These misses are also 
called collision misses or interference misses. The idea is that hits in a fully associative 
cache which become misses in an N-way set associative cache are due to more than N 
requests on some popular sets. 
 
Our objective here is not to study the ways by which these three kinds of misses can be 
improved. Our objective is to model these misses. 
 

5.2 Modeling and distribution of the misses 
 
Based on the issues and the concepts, which were discussed in the previous section, we 
will develop our model that is used to generate misses. The modeling of the misses 
consists of two parts. 
 
� Initialization  
� Simulation 

 
The ‘Initialization’ part is done before the start of the actual simulation i.e. when the 
design containing the CPU core model is loaded in the simulator. The ‘Simulation’ part 
takes place during the actual simulation. During every clock cycle a decision is made 
about the introduction of a miss according to some rule described in the later section. The 
Initialization and the Simulation part can be identified in figure 4.2 as the grey shaded 
regions. 
 
We start with the discussion of the ‘Initialization’ part, which include all the initial 
calculation of the model that takes place before the start of the simulation.       
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5.2.1 Initialization 
 
In this part the total number of Execution clock cycles and the total number of instruction 
and data misses are calculated. The total number of Execution cycles is divided into 
many parts and the misses are distributed among these parts according to some 
procedure, which is described in this section. We have made several assumptions and 
decisions in this part. Our goal is to build some information that will be used to make 
decisions about the introduction of the misses during the ‘Simulation’ part. We will show 
all the steps of our calculations in the same order as they are performed in the model. The 
discussion of these steps is coupled with the reasons and the background theories, which 
enable us to make these steps and decisions.  
 
5.2.1.1 Initial calculation of the basic input parameters 
 
The model starts by reading the basic and optional inputs from the input file. Details 
about the input file are given in the appendix. As described in the previous chapter, our 
basic inputs include: 
 
� Total number of instructions 
� Percentage of load instructions 
� Percentage of store instructions 
� Instruction miss rate 
� Data miss rate 
� CPI (including the effect of structural, data and control hazards)  
� Memory Access startup latency (Number of cycles required to initiate memory 

transfer after detecting a miss) 
� Memory Accesses end latency (Number of cycles required to restore the normal 

execution after the completion of memory transfer) 
� Seed for the random functions 

 
We can obtain the necessary data from these basic inputs that can help in the rest of the 
simulation.  
 
As described earlier, the total Execution clock cycles can be calculated as: 

 
Execution clock cycles = CPI × Total number of instructions     (5.1) 

 
These are the total number of clock cycles in which the CPU does some useful work i.e. 
the cycles, which are consumed in executing the instructions during which the CPU is not 
stalled. The execution clock cycles are independent of the memory latency and bus 
arbitration. 
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The total number of load/store instructions is given by:  
 
Percentage of load/store instructions = Percentage of load instructions + Percentage of  

                                                                 store instructions                                          (5.2) 
 
Total number of load/store instructions = Percentage of load/store instructions × Total 
                                                                    number of instructions                              (5.3) 
 
Similarly, we can find: 
 

Total number of load instructions = Percentage of load instructions × Total number of   
                                                             instructions                                                    (5.4) 
 
Total number of store instructions = Percentage of store instructions × Total number of 

                                                             instructions                                                    (5.5) 
 
We can calculate the total number of instruction and data misses which are generated 
during the execution of the given number of instructions: 
 
Instruction misses = Instruction miss rate × Total number of instructions      (5.6) 

 
Data misses = Data miss rate × Total number of load/store instructions                 (5.7) 

 
Write misses = Total number of store instructions × data miss rate                            (5.8) 

 
Percentage of write misses = Write misses Data misses                                              (5.9) 

 
Read misses = Data misses – Write misses         (5.10) 
 
The Data cache Access rate can be calculated by dividing the total number of load/store 
instructions with the total number of instructions. 
 
Data cache Access rate = Total number of load/store instructions 
                                           Total number of instructions                                             (5.11) 
                                                                         
Total misses = Instruction misses + Data misses          (5.12) 
  
Now we have the following parameters, which will be used during the rest of the 
calculations and during the simulation. 

 
� Execution clock cycles 
� Instruction miss rate 
� Data miss rate 
� Data cache Access rate 
� Instruction misses 
� Data misses 
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� Read misses 
� Write misses 
� Seed for different random functions 

 
From the basic inputs, we have calculated the Execution clock cycles and the total 
number of instruction and data misses. Now we have to distribute these misses within 
these Execution clock cycles. No matter how we distribute these misses in these execution 
clock cycles; the miss rate would remain the same. Our job is to introduce these misses in 
such a way that they generate traffic on the bus that looks similar to the traffic that arises 
as a result of the execution of real softwares on real IP cores of the processors. 
 
Before proceeding to the next steps of our initial calculations, we need to discuss some 
issues, which forces us to make some assumptions.   
 
5.2.1.2 Some Basic Issues 
 
The misses that are generated during the program execution depends on two factors. 
� Cache configuration (associativity, cache size, block size, number of blocks) 
� Software 

 
To introduce the misses in a way that looks like the misses due to the real program, we 
need to study the effect of the different cache configurations and different software 
routines running on the CPU.  
 
If we want to calculate a miss in a given cycle by using the block placement formulas of 
the direct mapped or set associative caches given in section 5.1.4, we must know the 
Block Address and the number of cache blocks in direct mapped cache while in the case 
of set associative or fully associative caches we need to know about the Block address 
and the number of sets in the cache. Number of blocks or the number of sets can be made 
user supplied inputs but we can’t know the block address because we are not running any 
real software. Same software generates different number of misses on different cache   
configurations. Therefore we can’t use the conventional methods which are used in most 
simulators that take an address trace of the instruction and data references and cache 
configuration, simulate the cache behavior to determine which references hit and which 
miss, and then report the hit and miss totals. 
 
Direct mapped caches have higher miss rates than set associative and fully associative 
caches. Increasing associativity of the cache always result in decrease in miss rate. 
However set associative caches are little bit slow than the direct mapped caches resulting 
in an increase in the clock period.  
 
The cache configuration has a direct impact on the miss rate, which is also one of the 
basic input parameter of our model. Since miss rate is itself an input parameter, there is 
no need to include cache configuration as an input parameter. We can’t make use of it 
any way without executing the real software. Therefore when the user enters the 
instruction miss rate and the data miss rate, we assume that it includes the effect of 
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different cache configurations. This miss rate is the most important parameter and the 
whole behavior of the model depends on its value. 
 
Similarly, the second-level cache decreases the total accesses to the memory. In the 
presence of second-level cache the global miss rate is the actual miss rate, which is the 
product of first-level cache miss rate and the second-level cache miss rate. Therefore it is 
assumed that a small value of instruction and data miss rate as an input parameter can 
approximate the effect of second-level cache. 
 
The second factor that affects on the number of misses are the software routines. All 
software routines are combinations of loops, conditional statements, functions, arrays, 
pointers and structures. Although we don’t know the software but still it is possible to 
model the behavior due to these basic programming constructs. We have already 
discussed the three C’s of misses (compulsory, capacity, conflict) in section 5.1.5. The 
misses introduced by these software routines are the combination of these three different 
kinds of misses. For example, an instruction miss occurs when an instruction is not found 
in the cache. There can be many reasons of an instruction miss. Either it is the first time 
that this instruction is accessed (compulsory miss). The program reaches to this 
instruction either through sequential execution or because of a jump (either conditional or 
non-conditional). If it is the first time that this part of code is accessed then the bunch of 
misses would occur when the next sequential instructions are accessed (compulsory 
misses). It may happen that this part of code was in the cache before but due to conflict it 
was replaced by some other instructions (conflict misses). The important point to note 
here is that this sort of behavior is present in most programs and we can introduce some 
misses in our model that resembles to the misses originated because of the above-
mentioned behavior. In the same manner most data misses are produced in loops and 
when arrays are accessed. We can also introduce data misses in our model, which 
resemble to the misses originated when different parts of the arrays are accessed and 
when they are accessed in a loop. These two cases are not the only behaviors that can be 
modeled approximately. There are many that can be modeled and they will be discussed 
in the later sections. Since we don’t know the software we can’t say which behavior is 
mostly present in a program unless specified by the user. What we can do is to introduce 
these behaviors in significant proportions in the given number of available Execution 
clock cycles. It is also not possible to model all different behaviors but they are present in 
the programs and we can’t just eliminate them. Summarizing, we can say that there are 
many software behaviors that can be modeled approximately, but there are many of them, 
which can’t be modeled. Remember that the total number of instructions and the total 
number of instruction and data misses are constant. We can distribute these misses to 
represent different behaviors. We have to decide that in a given number of Execution 
clock cycles how we introduce these special behaviors and in which proportions and what 
we have to do about the behaviors, which can’t be modeled.   
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5.2.1.3 Three modes of simulation 
 
Based on what we can model and what we can’t model, we divide the whole execution 
sequence into three major modes. In other words, we can say that the total Execution 
cycles and total number of instruction and data misses are divided into three parts and are 
assigned to these modes. However, the distribution among the three modes is not even. 
The three modes are:  
 
� Compulsory mode 
� Random mode 
� Special mode  

 
The compulsory mode is used to model the compulsory misses. This mode is introduced 
at the beginning of the simulation. 
 
Random mode is used for the behavior, which we can’t model. Therefore when this mode 
is in execution (during simulation) it makes decisions about the misses based on 
randomness. A full detail of this mode is described in the next section. The results have 
shown that the traffic generated by this mode resembles like a real traffic. 
 
Special mode introduces a behavior due to specific software routines. It is further divided 
into many small modes each representing a special kind of behavior. 
 
During the simulation, after the completion of Compulsory mode, the execution sequence 
switches between Random and Special modes (within different modes of Special mode 
each representing some particular behavior) till the end of the total Execution cycles.    
 
During this whole 5.2.1.3 section, we will describe how we divide this total number of 
Execution clock cycles and total instruction and data misses among these modes. As 
written many times, our goal is to generate traffic on the bus in a realistic manner. And to 
achieve this, we have made some rules for this division of Execution clock cycles and the 
misses. Therefore in this whole section, we will describe how we are doing this division 
and why it is necessary to make such division. 
 
C Random function 
During the calculation and the simulation C random function is used many times. These 
functions generate pseudo random numbers in the range 0 to RAND_MAX. There are 
many C random functions and are classified on the basis of the range of pseudo random 
numbers they produce, number of arguments and whether they are thread safe or not. We 
have used C rand_r() function. Its prototype declaration is: 
 

rand_r(int &,int &) 
And can be used as: 
                     rand_r(&seed,&randomvalue); 
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Every time this function is called the integer variable ‘randomvalue’ gets some pseudo 
random number.  The sequence of the pseudo random numbers depends on the value of 
the seed. This integer variable seed gets its value from the user and is also one of the 
basic input parameter. A different value of seed every time when the program runs, 
means that every time different sequence of pseudo random number will be generated. If 
the same value of seed is used again, the same sequence will be generated. For this 
reason, the ‘seed’ is user-defined parameter.  
 
Now we will calculate the Execution clock cycles, instruction and data misses assigned to 
each mode. 
 
5.2.1.3.1 Calculations of Compulsory mode   
 
The compulsory misses contribute 1-25% of the overall misses [1]. In a perfect ideal 
cache, all the misses are compulsory misses. In most caches the compulsory misses 
contribute a very little percentage of the overall misses. But in better caches, compulsory 
misses contribute a significant portion of the overall misses because very little can be 
done to improve these misses. 
The compulsory misses have been initialized according to the method described below. It 
is based on some calculations, which have been done during the initialization i.e. before 
the start of the simulation.  
 
First we have to decide about the percentage of the compulsory misses. It has been 
calculated by using the random function. The seed for this random function is calculated 
from the user supplied input seed. The random function is called to get some random 
value and then its modulo with some limit (which in this case is 12) is calculated: 
  

Percentage of compulsory instruction misses  =  (random value) MOD (12) 
Percentage of compulsory data misses  =  (random value) MOD (12) 

 
As described earlier, compulsory misses contribute 1-25% of the overall misses. We have 
divided this percentage equally between instruction and data misses as 12. So the 
percentage of both instruction and data misses can range between 1 to 12 percent. 
 
Proceeding this way, we can now calculate the number of compulsory instruction and 
data misses:  
  
Compulsory instruction misses = Percentage of compulsory instruction misses ×  
                                                     Instruction misses                         (5.13) 

 
Compulsory data misses = Percentage of compulsory data misses × Data misses   

                                                                                                                                  (5.14)           
 
Generally, most of the compulsory misses occur at the beginning of the program 
execution. Because when the program starts, the instruction and data cache are both 
empty. It is reasonable to assume that most misses at the beginning of the program 
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execution are compulsory misses. So this special behavior can be introduced at the start 
of the simulation. We can calculate the approximate number of compulsory misses that 
can occur at the start of the program execution. 
 
Compulsory instruction misses at startup = Percentage of compulsory instruction misses 
                                                                       at startup × Compulsory instruction misses  
                                                                                                                                    (5.15) 
 
Compulsory data misses at startup = Percentage of compulsory data misses at startup ×  
                                                            Compulsory data misses                         (5.16) 
This percentage at startup is user defined. The default value is 0.4 or 40%. So if the user 
doesn’t provide any value for that parameter it is taken as 0.4. In other words, we have 
assumed that 40% of the compulsory misses of both types occur at the beginning of the 
program execution. The reason for making this default percentage as 40% is that it may 
happen that by random calculations the percentage of compulsory misses come up to be 
in the range 20-25%. If we assume that all compulsory misses occur at the startup then 
nearly one fourth of the whole simulation would be dominated by one behavior, which is 
unlikely in most programs. Conversely a very low percentage of compulsory misses at 
startup fail to give any impression of compulsory misses. The percentage 40% seems to 
be most optimum.  
 
The compulsory data misses at startup are divided into read and write misses at startup.   
 
Write misses at startup = Compulsory data misses at startup × Percentage of write 
                                                                                                      misses                    (5.17) 
 
Read misses at startup = Compulsory data misses at startup - Write misses at startup     
                      (5.18) 
 
Now we have to calculate the number of Execution clock cycles during which the CPU 
model remains in this mode. This will be the execution cycles during which we need to 
introduce these compulsory instruction and data misses at startup. We proceed as follows: 
  
We assumed that the miss rate during the given number of execution cycles in the 
compulsory mode is higher than the overall miss rate. It is because that at the start of the 
program execution the instruction and data cache are both empty so most accesses to the 
caches result in a miss. Or we can say that it is one of the regions of the whole program 
trace that contain more misses as compared to other regions. We have scaled the miss rate 
during this mode as 3 times higher than the overall miss rate, which is our default value.  
 
Compulsory miss rate at startup = 3 × Instruction miss rate                                     (5.19) 
 
Compulsory miss rate = Compulsory instruction misses at startup  
                                         No. of instructions in compulsory mode 
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No. of instructions in compulsory mode = Compulsory instruction misses at startup  
                                                               Compulsory miss rate   (5.20) 
 
No of execution cycles in compulsory mode ≈ No of instructions in compulsory mode ×  
                                                                         CPI 
 
No of execution cycles in compulsory mode ≈ 

Compulsory instruction misses at startup × CPI 
                                                       Compulsory miss rate                (5.21) 
 
Now we know the total number of Execution clock cycles of this mode and the 
compulsory instruction and data misses which we have to introduce within these 
Execution clock cycles. The order in which these misses are introduced will be described 
in the next section when we discuss simulation part. The compulsory mode appears only 
once and it appears at the beginning of the simulation.  
 
All the above calculation has been done before the start of the simulation. 
 
5.2.1.3.2 Calculations of Random and Special modes 
 
Now we have to calculate the same parameters for the Random and Special modes. The 
remaining number of Execution clock cycles and misses are distributed between these 
two modes according to the procedure, which we will discuss now. 
 
The Random and Special modes are further divided into smaller parts. During the 
simulation, after the completion of Compulsory mode these smaller modes appear in 
random order till the end of the total number of Execution clock cycles. Recall that the 
Random mode represent the general behavior of the software on misses, which is not 
dominated by some particular software routine or the behavior which can’t be modeled 
and the Special mode represent the behavior which is introduced as a result of some 
specific software routine. Therefore the simulation is a combination of different 
behaviors appearing in random order one after the other.  
 
First we will calculate the total number of Random and Special modes. In other words, 
we can say that we will calculate the total number of parts in which the total Execution 
clock cycles are divided. Each part will represent some particular behavior.  
 
Calculation of number of modes  
The total number of modes has been divided on the basis of Execution clock cycles. The 
number of modes increases by 20 (by default) depending upon the range of Execution 
cycles. If it is within 50000 cycles the number of modes will be 20. If it is between 50000 
to 100000 the number of modes become 40 and so on. This has been done so that the 
simulation would not be dominated by some particular mode for a long period unless 
specified by the user. So if we use the default value of this ‘increasing factor’, which is 
20, in this case then each mode (except the compulsory mode) would consist 2500 
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execution clock cycles. However, if the user changes this value then the division would 
be different. For example, if the user enters the value of ‘increasing factor’ as 10 then 
each mode (except the compulsory mode) would consist of 5000 execution clock cycles. 
This ‘increasing factor’ is one of the optional inputs of the model. If the user doesn’t 
provide any value for this, the default value of 20 would be taken. 
 
After calculating the total number of modes, the individual number of Random and 
Special modes has been calculated. The percentages of these modes are also user 
configurable. User can use the optional input parameter “percentage of Random mode” to 
modify the number of modes of each type. It is possible to run the simulation with only 
Random mode or the Special mode or a combination of both. By default, the execution 
sequence is equally divided between these two modes i.e. 50% of the available Execution 
cycles are assigned to the Random mode and 50% to the Special mode. So by default, 
both Random and Special have equal number of modes and their quantity depends on the 
total Execution cycles. However, the distributions of misses are different which we will 
see shortly.      
 
The Special mode introduce misses that are originated due to specific software routines 
like loops accessing the arrays, conditional statements etc. These routines do not remain 
active during whole execution of the program. They occur for some definite number of 
clock cycles and then vanish. Therefore the default percentage for both these major 
categories is set to 50% so that simulation is not dominated by some behaviors. However, 
some particular behavior can be introduced in greater number according to the will of the 
user. 
 
Now we can calculate the individual number of Random and Special modes. 
 
Number of Random modes = Total number of modes × percentage of random mode 

              (5.22) 
 
Number of Special modes = Total number of modes – Number of Random modes   (5.23) 
 
The execution cycles for these two major modes can be calculated as: 
 
Number of execution cycles of the Random mode = (Total number of Execution cycles –  
                                                                                  Execution cycles of compulsory mode)  
                                                                                 ×  percentage of Random mode  
                                                                                                                                    (5.24) 
 
Number of execution cycles of the Special mode = Total number of execution cycles 
                                                                              – Execution cycles of compulsory mode 
                                                             – Number of execution cycles of the Random mode 
                     (5.25) 
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The execution cycles are divided equally between each individual mode of the Random 
and Special mode. 
 
Execution cycles in each individual mode of Random mode = 
 Number of execution cycles of the Random mode 
                    Number of Random modes                                     (5.26) 
 
Execution cycles in each individual mode of Special mode = 
  Number of execution cycles of the Special mode 
       Number of Special modes                                                           (5.27) 
 
We have calculated the total number of modes and then we have divided these modes 
into two categories the Random and the Special mode. We have divided the available 
Execution clock cycles between these two categories. Then we have calculated the 
individual number of modes of each category and then divide the execution clock cycles 
assigned to each category among their individual modes.    
 
Now we will distribute the instruction and data misses between these two major 
categories and then further distribute them among their individual modes. These are the 
misses, which will be introduced during simulation within the execution clock cycles 
assigned to each mode. 
 
Distribution of instruction and data misses 
 
The distribution of misses can be divided into parts.  
� When the distribution is done according to default values. 
� When the distribution is done according to user-defined values. 
 

In the first case, it means that the user hasn’t provided relative percentages of Random 
and Special modes. Therefore simulation will be done according to default values and the 
default percentages of these two major modes are 50%. It implies that the Execution 
cycles are divided equally between Random and Special mode and both have equal 
number of modes. In that case, 70% of the data misses and 30% of the available 
instruction misses are assigned to the Special mode. This also means that the 30% of the 
data misses and 70% of the instruction misses are assigned to the “Random mode”.    
 
As described before, that the execution sequence is divided on the basis of what we can 
model (Compulsory & Special mode) and what we can’t model (Random mode). Data 
misses are easier to model than instruction misses.  Most data misses occurred when the 
program is in some kind of loop and it accesses different portions of data in each 
iteration. During the loops, same instructions are executed again and again but they 
access different data elements most of the time. During the execution of these routines, 
data misses are much higher than instruction misses. This is a behavior, which can be 
easily modeled. Most modes of the “Special mode” represent this kind of behavior. 
Because of these reasons, 70% of the data misses are assigned to the Special mode by 
default. On the other hand, it is hardly to find any behavior of the instruction misses due 
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to software except the conditional and unconditional jumps. One individual mode of the 
“Special mode” represents this behavior. Therefore 70% of the instruction misses is 
assigned to the Random mode by default.  
 
Total data misses of the Special mode = (Total data misses – Compulsory data misses) ×  
                                                                   percentage of data misses assigned to the 
                                                                  Special mode                           (5.28) 
 
Total instruction misses of the Special mode =  (Total instruction misses – Compulsory 
                                                                              instruction misses) × percentage of  
                                                                              instruction misses assigned to the  
                                                                             Special mode                                  (5.29) 
 
Total data misses of the Random mode = Total data misses – Compulsory data misses –  
                                                                   Total data misses of the Special mode 
                                                                                                                                   (5.30) 
 
Total instruction misses of the Random mode = Total instruction misses – 
                                                                             Compulsory instruction misses – 
                                                                        Total instruction misses of the Special mode                               
                                                                                                                                  (5.31) 
 
The above equations are used to calculate the misses when the default percentages of the 
Random and Special mode are used. In that case, the default percentages of instruction 
and data misses for each mode are used. If the user has changed the percentages of 
Random and Special mode, then the distribution of misses should also change 
accordingly i.e. the percentage of these misses allotted to each mode should increase or 
decrease in the same proportion as the increase or decrease of the corresponding mode. 
For example, the default percentage of data misses assigned to Special mode is 70%. This 
percentage is used when the default percentage of Special mode is used which is 50%. 
Now if the user changes this percentage from 50% to 70% then percentage of data and 
instruction misses assigned to Special mode should also increase from 70% and 30% 
respectively to some value in the same ratio. In the same way, the percentage of data and 
instruction misses of the Random mode should also decrease from 30% and 70% to some 
new value in the same ratio. 
 
If the user-defined percentage of the Special mode is greater than the default percentage, 
then 
    
Percentage of instruction misses of the Special mode = 
 
 Default percentage of the instruction misses + Scale factor ×  
(user-defined percentage of Special mode – default  percentage of Special mode)    
                                                                                                                                     (5.32) 
Where, 
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Scale factor  =   1.0 – default percentage of the instruction misses 
                                  Default percentage of the Special mode 
      
Percentage of data misses of the Special mode =  
Default percentage of the data misses + Scale factor ×  
(user-defined percentage of Special mode – default percentage of Special mode)  
                                                                                                                                   (5.33) 
 
Where 
 
Scale factor =   1.0 – default percentage of the data misses 
                         Default percentage of the Special mode 
 
If the user-defined percentage of the Special mode is less than the default percentage, 
then 
 
Percentage of instruction misses of Special mode =  
Default percentage of the instruction misses - Scale factor ×   
(default percentage of Special mode – user-defined percentage of Special mode)   
                                                                                                                               (5.34) 
Where, 
 
Scale factor  =  default percentage of the instruction misses 
                                Default percentage of Special mode 
 
Percentage of data misses of Special mode =  
Default percentage of the data misses – Scale factor ×   
(default  percentage of Special mode – user-defined percentage of Special mode)    
                                                (5.35) 
Where, 
 
Scale factor = default percentage of the data misses 
                        Default percentage of Special mode 
 
After calculating the percentages of instruction and data misses according to the above 
formulas, equations 5.28,5.29,5.30 and 5.31 can be used to calculate the number of 
instruction and data misses. But this time, the percentages of instruction and data misses 
would be according to the formulas given above (5.32-5.35) and not the default 
percentages. The percentages for the Random mode can be found simply by subtracting 
the instruction and data misses assigned to the Special mode from the available total 
misses. 
 
It should be noted that in the above formulas only the parameter “percentage of Special 
mode” is user defined. If the user changes this value, the percentage of the misses varies 
according to the scale factor. This scale factor depends on two values; the default 
percentage of the Special mode and the default percentage of the instruction and data 
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misses assigned to this mode. These parameters are declared as #define in the C code. 
Therefore if the user doesn’t agree with this distribution and also has the access to the 
source code, the user can change them easily and all the calculations would be adjusted 
accordingly with the new default distribution.  
 
We have distributed the instruction and data misses between Random and Special modes. 
Now we will distribute them among their individual modes. 
 
Distribution of misses within individual modes  
 
The number of instruction and data misses in each individual Random mode is calculated 
as: 
 
Instruction misses in each Random mode =  
                                     Total number of instruction misses in the Random mode 
          Total number of Random modes                            (5.36) 
Similarly, 
 
Data misses in each Random mode =  
                                        Total number of data misses in the Random mode 
          Total number of Random modes                         (5.37) 
 
Write misses in each Random mode = Data misses in each Random mode × 
                                                              Percentage of write misses                           (5.38) 
 
Read misses in each Random mode = Data misses in each Random mode – 
                                                             Write misses in each Random mode             (5.39) 
 
As evident, the instruction and data misses in each individual Random mode is the same. 
But during the simulation they don’t look like the same because the decision about the 
miss is taken randomly in each cycle. Also the order in which these random modes 
appear is also based on randomness. We will explain this in detail in the later section. 
 
We have already calculated the total number of misses for the Special mode. Now we 
have to distribute these misses within different types of Special mode. As told earlier, 
these modes are used to model the misses due to some special software routines. These 
are divided into the following categories according to their behavior: 
 
� Routines that generate lot of data misses and few instruction misses. 
� Routines that generate many instruction misses but few data misses. 
� Routines that generate significant amount of both instruction and data misses. 
� Routines that do not generate misses. 
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These following modes are used to represent these behaviors respectively: 
 
� Loop Array data misses mode 
� Instruction misses mode 
� Zero misses mode 
� Instruction data misses mode1 
� Instruction data misses mode2 

 
We will explain these modes in the later section. All these above mentioned modes are in 
Special category. In this section, we will restrict our discussion about how the misses 
have been distributed among them and the reasons behind these distributions. 
 
The individual number of each of these modes can be found by multiplying its percentage 
with the total number of Special modes. 
 
Number of modes = Percentage of that mode × Total number of Special modes        (5.40) 
 
This percentage in 5.40 is a user-defined perimeter i.e. the user can change the percentage 
of any individual mode of the Special mode. However, if the user doesn’t make any 
changes default values will be used. The default percentage of each of these modes and 
the default percentages of the misses allotted to them are summarized in the table 5.1. 
 
“Loop Array data misses mode” represent the behavior when the program is in a loop 
accessing different locations of the arrays, which result in misses. As most of the data 
misses are produced due to these pieces of code, most of the data misses are assigned to 
this mode as shown in table 5.1. Off course, not all loops which access arrays result in 
many misses but here we represent those loops, which access arrays in a manner that 
result in many data misses. At the same time, very few instruction misses are assigned to 
this mode because in a loop same instructions are repeated most of the times so it is very 
likely that they are found in the cache. 
 
 

Mode 
Default percentage of 

the mode 
Within Special mode 

Default percentage 
of 

Instruction misses  
Default percentage 

of data misses  

Loop Array data 
misses mode 20 5 40 

Instruction misses 
mode 20 40 5 

Zero misses mode 10 0 0 

Instruction data 
misses mode1 30 30 25 

Instruction data 
misses mode2 20 25 30 

Table 5.1 
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“Instruction misses mode” represent the behavior when the program jumps in a piece of 
code, which is not in a cache, and result into many instruction misses. And also the 
instruction misses, which occur because of many conditional jumps. Therefore it is 
assigned with many instruction misses and few data misses. It has assigned very few data 
misses because the mode represent the behavior of those conditional statements which 
operate differently on the same data elements based on which conditions become true. 
Although it seems that a huge percentage of instruction misses are assigned to this mode 
but actually it is not. The total percentage of instruction misses assigned to the Special 
mode by default is 30%. And out of these instruction misses 40% are assigned to the 
modes of this type. 
 
“Zero misses mode” represents the behavior when the CPU is perfectly in execution and 
do not produce any misses. So no miss is assigned to this mode. This may happen when 
the CPU is performing some long arithmetic operations (multiplication/division) on some 
data that consumes many cycles and cache accesses result in hits. 
 
“Instruction data misses mode1” and “Instruction data misses mode2” represent the 
behavior when we have both instruction and data misses in a significant number at the 
same time. These modes are basically the combinations of “Loop Array Data misses 
mode” and “Instruction misses mode” but introduce instruction and data misses in a 
different fashion during the simulation. Because of these reasons, a significant percentage 
of both types of misses are assigned to these modes. 
 
Again the distribution of instruction and data misses among these different types of 
Special modes depends on whether the percentages of these modes are modified by the 
user or not. If they are not modified, then the default percentages of instruction and data 
misses will be taken and are calculated by multiplying these percentages with the total 
number of instruction and data misses of the Special mode. 
 
 
Instruction misses of any individual mode of Special mode =  
Number of instruction misses of the Special mode × Percentage of instruction misses of 
that mode                                                                                                                     (5.41) 
 
Data misses of any individual mode of Special mode =  
Number of Data misses of the Special mode × Percentage of data misses of that mode    
                                                                                                                                     (5.42) 
 
If the user changes the percentages of these modes, then percentages of the misses should 
also be scaled accordingly.  
 
If the user-defined percentage of the mode is greater than the default percentage, then 
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Percentage of instruction misses of the mode =  
Default percentage of the instruction misses + Scale factor ×  
(user-defined percentage of the mode – default percentage of the mode)   
                                           (5.43) 
Where, 
 
Scale factor = 1.0 – default percentage of the instruction misses 
                           Default percentage of the mode 
      
Percentage of data misses of the mode = 
 Default percentage of the data misses + Scale factor ×  
(user-defined percentage of the mode – default percentage of the mode)               (5.44) 
 
Where, 
 
Scale factor =  1.0 – default percentage of the data misses 
                                Default percentage of the mode 
 
If the user-defined percentage of the mode is less than the default percentage, then 
 
Percentage of instruction misses of the mode =  
Default percentage of the instruction misses – Scale factor ×   
(default percentage of the mode – user-defined percentage of the mode)                        
                                                  (5.45) 
Where, 
 
Scale factor = default percentage of the instruction misses 
                                Default percentage of the mode 
 
Percentage of data misses of the mode =  
Default percentage of the data misses – Scale factor ×   
(default percentage of the mode – percentage of the mode)                              (5.46) 
 
Where, 
 
Scale factor = default percentage of the data misses 
                           Default percentage of the mode 
 
Again, the parameters default percentage of the mode and the default percentage of 
instruction and data misses of each mode are declared as #define in the C code and can be 
changed if required.  
 
After the above calculation, these misses are divided equally among the modes of the 
same type. For e.g., the instruction and data misses of the ‘Loop Array data misses mode’ 
can be calculated as: 
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Instruction misses in each ‘Loop Array data misses mode’ =  
Total instruction misses of the ‘Loop Array data misses mode’  

   Total number of ‘Loop Array data misses mode’               (5.47) 
 
Data misses in each ‘Loop Array data misses mode’ =  

Total data misses of the ‘Loop Array data misses mode’  
        Total number of ‘Loop Array data misses mode’                          (5.48) 
 
Write misses in each ‘Loop Array data misses mode’ = 
 Data misses in each ‘Loop Array data misses mode’ × Percentage of write misses  
                                                                                                   (5.49) 
 
Read misses in each ‘Loop Array data misses mode’ =  
(Data misses in each ‘Loop Array data misses mode’ – Write misses in each ‘Loop Array 
data misses mode’ )                                                                                                   (5.50) 
 
5.2.1.3.3 Scheduling the simulation 
 
From the above calculations, we have calculated the following parameters: 
 
� Total Execution cycles 
� Total number of instruction and data misses 
� Total number of read and write misses 
� Execution cycles for the Compulsory mode 
� Total number of Instruction and data misses of the Compulsory mode 
� Total number of read and write misses in the Compulsory mode 
� Total number of modes 
� Total number of Random modes 
� Total number of Special modes 
� Total number of instruction and data misses of the Random mode 
� Total number of instruction and data misses of the Special mode 
� Execution cycles in each individual mode of Random mode 
� Instruction and data misses in each individual mode of Random mode 
� Read and write misses in each individual mode of Random mode 
� Total number of modes of each type of the Special mode 
� Total number of Instruction and data misses of each type of Special mode 
� Execution cycles in each individual mode of the Special mode 
� Instruction and data misses in each individual mode of each type of the Special 

mode  
� Read and write misses in each individual mode of each type of the Special mode  

 
From these parameters we can schedule the simulation. For this purpose an array of 
structures is created which contain all the necessary data. This array is called schedule 
array in the code. The length of the array is equal to the total number of modes. The first 
location of the array is dedicated to the compulsory mode. The remaining locations are 
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filled based on randomness i.e. the order in which these modes occupy each location in 
the array is determined randomly. Each location of the array contains the following data: 
 
 Type of mode  
Total Execution cycles Execution cycles count Execution cycles left 
Total instruction misses of the 
mode Instruction misses count Instruction misses left 

Total Data misses of the mode Data misses count Data misses left 
Total Write misses of the mode Write misses count Write misses left 
Total Read misses of the mode Read misses count Read misses left 

Figure 5.2 
 
The ‘type of mode’ tells the ID of the mode. Each mode is assigned an ID. At the start of 
the clock cycle, the ID is checked to know which mode is currently active in the 
simulation and then the program jumps to the function, which represent the 
corresponding mode. For e.g., after accessing some location of the schedule array, the 
mode ID comes out to be 2. Then it means that ‘Loop Array data misses mode’ is the 
currently active mode, so the program jumps to the function representing ‘Loop Array 
data misses mode’. The modes with their corresponding ID are given in table 5.2.   
 
 

Mode Type ID 
Compulsory mode 0 
Random mode 1 
Loop Array data misses mode 2 
Instruction misses mode 3 
Zero misses mode 4 
Instruction data misses mode1 5 
Instruction data misses mode2 6 

Table 5.2 
 
 
Every location of the array is initialized as follows: 
 
Type� of� mode� =� ID� of� the� mode�
�
Total� Execution� cycles� � � =� Total� Execution� cycles� in� each� mode� of� that�
type�
Execution� cycles� count� � =� 0�
Execution� cycles� left� � � =� Total� Execution� cycles�
�
Total� instruction� misses� of� the� mode� � =� Total� instruction� misses� in�
each� mode� of� that� type�
Instruction� misses� count� � � � � =� 0�
Instruction� misses� left� � � � � � =� Total� instruction� misses� of� the� mode�
�
�
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Total� data� misses� of� the� mode� =� Total� data� misses� in� each� mode� of� that�
type�
Data� misses� count� � =� 0�
Data� misses� left� � � =� Total� data� misses� of� the� mode�
�
Total� Write� misses� of� the� mode� � =� Total� Write� misses� in� each� mode� of�
that� type�
Write� misses� count� =� 0�
Write� misses� left� � =� Total� Write� misses� of� the� mode�
�
Total� Read� misses� of� the� mode� � =� Total� Read� misses� in� each� mode� of� that�
type�
Read� misses� count� =� 0�
Read� misses� left� � =� Total� Read� misses� of� the� mode�
�

During the simulation, at the end of every Execution clock cycle the ‘Execution cycles 
count’ increments by 1 and ‘Execution cycles left’ decrements by 1.When the ‘Execution 
cycles count’ becomes equal to ‘Total Execution cycles’ the mode is ended and from the 
next cycle the next location of the array is accessed which contains the same data for 
some other mode. 
 
In the same way, ‘Instruction misses count’, ‘data misses count’ increment by 1 and 
‘Instruction misses left’, ‘data misses left’ decrement by 1 after the introduction of 
instruction or data miss respectively. The parameter ‘Execution cycles left’ is compared 
with ‘Instruction misses left’ and ‘data misses left’ to ensure that enough Execution 
cycles are available to introduce the given number of misses. If the ‘Execution cycles 
left’ is found equal to either ‘instruction misses left’ or ‘data misses left’ then the 
corresponding misses have to be introduced in all the remaining Execution cycles of that 
mode to ensure that all the given misses have been introduced completely. Certainly, this 
is a deviation from the behavior which we are trying to introduce but we have to do it to 
ensure that all the misses allotted to the mode are introduced. Simulations have shown 
that this condition rarely became true and when it became true only one or two misses 
have been left. 
 
When any mode is ended, the ‘Execution cycles left’, ’instruction misses left’, ‘data 
misses left’, ’read misses left’ and ‘write misses left’ become equal to zero and 
‘Execution cycles count’, ‘instruction misses count’, ‘data misses count’,’ read misses 
count’,’ write misses count’ become equal to ‘Total Execution cycles’, ‘Total instruction 
misses of the mode’,’ Total data misses of the mode’, ’Total read misses of the mode’ 
and ‘Total write misses of the mode’ respectively.  
 
Example 
 
Now we will illustrate all these steps through the following example. For the sake of 
simplicity lets assume that the user has provided only the basic inputs (no optional input), 
so the distribution would be done using the default values. The inputs are: 
    
Total� number� of� instructions� � � � � =� � 96,178�
Percentage� of� load� instructions� � =� � 20%�
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Percentage� of� store� instructions� =� � 5%�
Instruction� miss� rate� � � � � � � � � � � � =� 0.101�
Data� miss� rate� � � � � � � � � � � � � � � � � � � =� 0.144�
CPI� (including� the� effect� of� structural,� data� and� control� hazards)� =�
1.1� �
Memory� Access� startup� latency� (Number� of� cycles� required� to� initiate�
memory� transfer� after� detecting� a� miss)� � =� 1�
Memory� Accesses� end� latency� (Number� of� cycles� required� to� restore� the�
normal� execution� after� the� completion� of� memory� transfer)� =� 1�
Seed� for� the� random� functions� � =� 10�

 
Now we will use all the above equations (5.1-5.50) to calculate the necessary data for the 
simulation. By using these equations we calculate the following parameters: 
 
Execution clock cycles = CPI  ×  Total number of instruction 
⇒� 1.1� ×� � 96178� � � =� 105795�
 
Percentage of load/store instructions = Percentage of load instructions + 
                                                               Percentage of store instructions 
⇒� � 20%� +� 5%� =� 25%�� � � � � � � � � �

 
Total number of load/store instructions = Percentage of load/store instructions ×  
                                                                   Total number of instructions  
⇒� 0.25� ×� 96178� =� 24044� �
            
Total number of load instructions = Percentage of load instructions ×  
                                                          Total number of instructions  
⇒� 0.20� ×� 96178� =� 19235� � � � � � � � � � � � � � � � � � � � � �
 
Total number of store instructions = Percentage of store instructions ×  
                                                           Total number of instructions 
⇒� 0.05� ×� 96178� =� 4808��
                         
We can calculate the total number of instruction and data misses which are generated 
during the execution of the given number of instructions: 
 
Instruction misses = Instruction miss rate × Total number of instructions  
⇒� � 0.101×� 96178� =� 9713� � � � � �
 
Data misses = Data miss rate × Total number of load/store instructions  
⇒� � 0.144� ×� 24044� =� 3462�
 
Write misses = Total number of store instructions × data miss rate  
⇒� � 4808� ×� 0.144� =� 692� � � � � � � � � � � � � � � � � � � � � � � � � � �
 
Percentage of write misses =  Write misses      
     Data misses                                                                      
⇒� � � 692/3462� =� 0.2000�
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Read misses = Data misses – Write misses  
⇒� � 3462� –� 692� =� 3370� � �
 
Data cache Access rate = Total number of load/store instructions                                              
                                     Total number of instructions  
⇒� 24044/96178� =� 0.2499�
                                                                
                                                                         
Total misses = Instruction misses + Data misses  
⇒� � 9713� +� 3462� =� 13175�
 
Now, we will calculate all the necessary data for the Compulsory mode: 
 
Compulsory instruction misses = Percentage of compulsory instruction misses ×  
                                                     Instruction misses  
⇒� � 0.06� ×� 9713� =� 582�
 
Compulsory data misses = Percentage of compulsory data misses × Data misses 
⇒� 0.04� ×� 3462� =� 138�
           
Compulsory instruction misses at startup = Percentage of compulsory instruction misses  
                                                                      at startup × Compulsory instruction misses 
⇒� 0.40� ×� 582� =� 232� � � � � � �
 
Compulsory data misses at startup = Percentage of compulsory data misses at startup × 
                                                            Compulsory data misses  
⇒� 0.40� ×� 138� =� 55� � � � � � � � � � � � �
 
Write misses at startup = Compulsory data misses at startup × Percentage of write 
                                                                                                      misses   
⇒� 55� ×� 0.2000� =� 11� � � � �
                                                                                     
Read misses at startup = Compulsory data misses at startup - Write misses at startup    
⇒� 55� –� 11� =� 44� � � � � � � � � � �
 
Compulsory miss rate at startup = 3 × Instruction miss rate   
⇒� 3� ×� 0.101� =� 0.303� � � � � �
 
No of execution cycles in compulsory mode ≈ 

  Compulsory instruction misses at startup × CPI  
                                             Compulsory miss rate 
⇒� 842� � � � � � � � � � � � � � � � � �
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Now, we will calculate the total number of Random and Special modes: 
  
Assume that the ‘increasing factor’ of the modes is 14 per 50,000 execution clock cycles.  
 
Total number of modes = 42  (Execution cycles lay in the range 100,000 to 150,000) 
 
Number of Random modes = Total number of modes × percentage of random mode 
⇒� 42� ×� 0.5� =� 21�
 
Number of Special modes = Total number of modes – Number of Random modes 
⇒� 42� –� 21� =� 21�
 
The execution cycles for these two major modes can be calculated as: 
 
Number of execution cycles of the Random mode =  
(Total number of Execution cycles – Execution cycles of compulsory mode)  
× percentage of Random mode  
 
⇒� (105795� –� 842)� ×� 0.5� =� 52476�
 
Number of execution cycles of the Special mode = 
Total number of execution cycles – Execution cycles of compulsory mode – 
 Number of execution cycles of the Random mode 
 
⇒� 105795� –� 842� –� 52476� =� 52477� � � � � � �
�       
The execution cycles are divided equally between each individual mode of the Random 
and Special mode. 
 
Execution cycles in each individual mode of Random mode = 
    Number of execution cycles of the Random mode   
          Number of Random modes 
   
⇒� � 52476/21� =� 2498� � � �
 
Execution cycles in each individual mode of Special mode = 
    Number of execution cycles of the Special mode 
          Number of Special modes   
                            
� =� 52477/21� =� 2498�
 
The total instruction and data misses for these two major modes can be calculated as: 
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Total data misses of the Special mode =  
(Total data misses – Compulsory data misses) ×  
percentage of data misses assigned to the Special mode 
 
⇒� (3462� –� 55)� ×� 0.70� =� 2384�
 
Total instruction misses of the Special mode =   
(Total instruction misses – Compulsory instruction misses) ×  
percentage of instruction misses assigned to the Special mode  
 
⇒� (9713� –� 232)� ×� 0.30� =� 2844�
 
Total data misses of the Random mode =  
Total data misses – Compulsory data misses – Total data misses of the Special mode    
 
⇒� 3462� –� 55� –� 2384� =� 1023� � � � � � � � � � � � � � � � � �
 
Total instruction misses of the Random mode =  
Total instruction misses – Compulsory instruction misses – Total instruction misses of  
                                                                                                the Special mode  
⇒� 9713� –� 232� –� 2844� =� 6637� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
 
 
Instruction misses in each Random mode =  
Total number of instruction misses in the Random mode 
    Total number of Random modes  
 
⇒� 6637/21� =� 316� � � � � � � � � � � � � � � � � � � � � � � � � � �
 
Similarly, 
Data misses in each Random mode =  
Total number of data misses in the Random mode 
 Total number of Random modes 
 
⇒� 1023/21� =� 48� � � � � � � � � � � � � � � � � � � � � � � � � � �
 
Write misses in each Random mode =  
Data misses in each Random mode × Percentage of write misses  
⇒� 48� ×� 0.2000� =� 9� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
 
Read misses in each Random mode =  
Data misses in each Random mode – Write misses in each Random mode 
⇒� 48� –� 9� =� 39�
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Now we will calculate the misses for the individual modes of Special mode: 
 
The individual number of each mode can be found by multiplying its percentage with the 
total number of Special modes. Similarly, instruction and data misses can be found by 
using the equations 5.47-5.50. Following data is collected for each mode by using the 
values in Table 5.1. 
 
‘Loop Array data misses mode’: 
Number� of� � ‘Loop� Array� data� misses� mode’� =� 0.20� ×� 21� � =� � 4�
Instruction� misses� =� 0.05� ×� 2844� =� 142�
Data� misses� =� 0.40� ×� 2384� =� 953�
Instruction� misses� in� each� mode� =� 142/4� =� 35�
Data� misses� in� each� mode� =� 953/4� =� 238�
Write� misses� in� each� mode=� 238� ×� 0.2000� =� 47�
Read� misses� in� each� mode=� 238� –� 27� =� 191�
 
‘Instruction misses mode’: 
Number� of� ‘Instruction� misses� mode’=� 0.20� ×� 21� =� 4�
Instruction� misses� =� 0.40� ×� 2844� =� 1137�
Data� misses� =� 0.05� ×� 2384� =� 119�
Instruction� misses� in� each� mode� =� 1137/4� =� 284�
Data� misses� in� each� mode� =� 119/4� =� 29�
Write� misses� in� each� mode=� 29� ×� 0.2000� =� 5�
Read� misses� in� each� mode� =� 29� –� 5� =� 24�
 
 
‘Zero misses mode’: 
Number� of� ‘Zero� misses� mode’=� 0.10� ×� 21� =� 2�
Instruction� misses� =� 0�
Data� misses� =� 0� �
Instruction� misses� in� each� mode� =� 0�
Data� misses� in� each� mode� =� 953/4� =� 0�
Write misses in each mode = 0 
Read� misses� in� each� mode� =� 0�
 
‘Instruction data misses mode1’: 
Number� of� ‘Instruction� data� misses� mode1’=� 0.30� ×� 21� =� 6�
Instruction� misses� =� 0.30� ×� 2844� =� 853�
Data� misses� =� 0.25� ×� 2384� =� 596�
Instruction� misses� in� each� mode� =� 853/6� =� 142�
Data� misses� in� each� mode� =� 596/6� =� 99�
Write� misses� in� each� mode� =� 99� ×� 0.2000� =� 19�
Read� misses� in� each� mode� =� 99� –� 19� =� 80�
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‘Instruction data misses mode2’: 
 
Number� of� ‘Instruction� data� misses� mode2’=� 21� –� 4� –� 4� –� 2� –� 6� � =�
5�
Instruction� misses� =� 0.25� ×� 2844� =� 711�
Data� misses� =� 0.30� ×� 2384� =� 715�
Instruction� misses� in� each� mode� =� 711/5� =� 142�
Data� misses� in� each� mode� =� 715/5� =� 143�
Write� misses� in� each� mode� =� 143� ×� 0.2000� =� 28�
Read� misses� in� each� mode� =� 143� –� 28� =� 115�
 
All the necessary calculated data for all the modes is summarized in the following table. 
                                                                                               

Mode 
Total number 

of 
appearances  

Total 
number of 
instruction 

misses  

Total 
number 
of data 
misses 

Instruction 
misses in 

each mode 

Data 
misses 

in 
each 
mode 

Execution 
clock cycles 
in each mode  

Compulsory 
mode 1 232 55 232 55 842 

 
Random 
mode 21 6637 1023 316 48 2498 

Loop Array 
data misses 
mode 

4 142 953 35 238 2498 

Instruction 
misses 
mode 

4 1137 119 284 29 2498 

Zero misses 
mode 2 0 0 0 0 2498 

Instruction 
data misses 
mode1 

6 853 596 142 99 2498 

Instruction 
data misses 
mode2 

5 711 715 142 143 2498 

Table 5.3 
 
Now we have all the necessary data to schedule the simulation. We will place all this data 
in an array. The total number of modes is 43, so the length of the array will be 43. The 
first location is fixed for the compulsory mode and the remaining locations are filled 
randomly depending upon the value of the seed i.e. different value of seed fills the array 
in different order. During the simulation, the array is accessed sequentially from location 
0 to 43. A possible sequence of the order through random calculation is shown in figure 
5.3. 
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Location of the Array Mode Occupied 

0 Compulsory mode 
 1 Random mode 
2 Random mode 
3 Instruction misses mode 
4 Instruction misses mode 
5 Zero misses mode 
6 Random mode 
7 Random mode 
8 Loop Array data misses mode 
9 Instruction data misses mode1 

10 Random mode 
11 Instruction data misses mode2 
12 Random mode 
13 Random mode 
14 Random mode 
15 Instruction data misses mode1 
16 Instruction data misses mode1 
17 Random mode 
18 Random mode 
19 Random mode 
20 Random mode 
21 Instruction misses mode 
22 Instruction data misses mode1 
23 Loop Array data misses mode 
24 Random mode 
25 Random mode 
26 Loop Array data misses mode 
27 Instruction misses mode 
28 Random mode 
29 Instruction data misses mode1 
30 Random mode 
31 Instruction data misses mode2 
32 Instruction data misses mode2 
33 Random mode 
 34 Random mode 
35 Instruction data misses mode1 
36 Random mode 
37 Instruction data misses mode2 
38 Loop Array data misses mode 
39 Random mode 
40 Instruction data misses mode2 
41 Random mode 
42 Zero misses mode 
43 Random mode 

Figure 5.3 A possible order of execution of different modes 
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5.2.2 Simulation 
 
This part starts when the user begins the simulation. All the necessary data that is 
required to carry out the simulation is calculated in the Initialization part. All this 
necessary data is stored in an array. During the simulation each location of the array is 
accessed one by one. Each location represent one mode and in that location all necessary 
information for that mode is stored, which tells about the total number of Execution clock 
cycles during which the simulation remains in this mode and also the total number of 
misses which have to be introduced in this mode. During each clock cycle, the function 
representing the mode has to decide whether a miss has to be introduced or not. These 
decisions have been made according to some rules. In this section we will describe the 
reasons behind these rules. The introduction of a miss is as simple as updating the 
variables that contain information about the misses and then calling the functions, which 
initiates communication with the memory. The important factor is the reasons behind 
these rules. Therefore in this section we will focus ourselves on the reasons, which enable 
us to set some rules for each mode. 
 
Before starting this discussion, refer to figure 5.2 which shows the data elements of each 
location of the schedule array. The count variables ‘instruction misses count’, ‘data 
misses count’ increment after the introduction of their corresponding misses. Read misses 
count and write misses count variables increment depending upon the whether the 
corresponding data miss is a read miss or a write miss respectively. Before introducing 
any kind of miss, the corresponding count variables are checked and the miss can only be 
introduced if the value of these count variables is lesser than their maximum value which 
is stored in variables Total instruction misses of the mode, Total data misses of the mode, 
Total read misses of the mode and Total write misses of the mode. When this limit is 
reached, no further miss of that type is introduced during that mode. 
 
5.2.2.1 Compulsory mode  
 
When the simulation is started, the first location i.e. 0 location of the array is accessed 
which contains the data for the compulsory mode. Every simulation starts with the 
compulsory mode. 
 
In this mode we have to introduce a behavior, which occurs at the beginning of the 
program. At the start of the program both instruction and data caches are empty so lot of 
misses occur at the beginning of the program. Most accesses to the memory are burst 
accesses. So when an instruction miss occurred an access to memory bring next 4 
instructions in the cache. If there is no jump or branch instruction in these next 4 
instructions then there will be no instruction miss in the next 4 cycles but if it is not, an 
instruction miss may occur. After 4 clock cycles an instruction miss will occur again. 
Many of these instructions are load/store instructions. Most load/store instructions at the 
beginning are initializing some data elements. So data misses occur frequently at the 
beginning. These misses are may be due to the initialization of an array or due to the 
initialization of some individual variables. 
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It is not possible to model all the above-mentioned behavior. We can only model the most 
general behavior that occurs at the beginning of the program.  So we again follow our old 
rule i.e. model the most optimum behavior and the rest should be characterize by the use 
of Random functions. 
 
Based on the above discussion, the simulation of the compulsory mode is divided into 
two parts each having equal number of execution clock cycles i.e. (Total execution cycles 
of the mode)/2 in each part. Instruction and data misses have also been divided equally 
between these two parts.  
 
During the first part, the misses have been introduced in the following manner: 
 
� Introduce one instruction miss after every 4 clock cycles. 
� Introduce one data miss after every 7 clock cycles. 

 
During the second part we use our random calculation method to decide about the misses. 
This is explained in the description of the Random model. However the comparison has 
been made with the miss rate of the compulsory mode, which is three times higher than 
the overall actual miss rate. So the misses generated during this mode through random 
calculations is higher than those produced in the Random mode. (Read this paragraph 
again after reading the next topic ‘Random mode’). 
 
5.2.2.2 Random mode  
 
In this mode, instruction and data misses are produced by using random function. It 
represents the behavior, which is not easier to model. 
 
The question arises, are the origination of misses are random? The answer is yes if we 
look at all the misses that produce during the whole execution of a program. Their 
generation does not follow any rule and can be originated in any cycle. This is because 
there are many factors (cache configuration, software) that decide about a miss in a given 
cycle and it is difficult to say which limitation becomes the cause of a miss. However 
when we start observing the misses of a program in a shorter duration, they don’t look 
like originating in a random fashion at some places. This may be due to some particular 
piece of code. We have tried to model these behaviors in the Special mode. However, the 
basic programming constructs can appear in the programs in an infinite number of 
combinations and it is not possible to model all of them.  Therefore the misses that arises 
because of that pieces of code or where they don’t follow any pattern can be considered 
as originating in a random fashion. There is no way to model these misses except by the 
use of random calculations.  
 
We start with the observation that miss rate can also be taken as a probability that in a 
given cycle the cache access can result in a miss. Recall that the probability of any event 
is equal to the total number of occurrences of that event divided by the total number of all 
probable events. 
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Probability of a miss in a given cycle =    Number of accesses that miss 
                                                                     Total number of accesses 
 
During the simulation, when the random mode is in execution, undergoing the following 
steps makes the decision about a miss in a given cycle. 
 
The decision about the instruction miss is taken as follows: 
 

1. Call the C random function (rand_r()) to get some random value. 
2. Divide this random value with the maximum random value (termed as 

RAND_MAX). It means that after division we will get a value that ranges from 0 
to 1. 

3. Compare this value with the instruction miss rate, which is also the probability of 
an instruction miss in a given cycle. 

4. If it is less than the instruction miss rate then it will be taken as a miss otherwise a 
hit. 

     
These steps are illustrated with the following example. 
 
Suppose the miss rate is 0.21 means the probability of a miss in a given cycle is 0.21. 
Then by following the above procedure, if we get some value less than 0.21 say 0.16 then 
it can be taken as a miss because it lies in the shaded region (as shown in figure 5.4). On 
the other hand, if it is greater than 0.21 then it can be taken as a hit. This shaded region 
can also be taken as the PDF (probability density function) of misses. So all the returned 
values that fall in the PDF would be taken as misses.  
The decision about the data miss is taken as follows: 
 

1. Call the C random function (rand_r()) to get some random value. 
2. Divide this random value with the maximum random value (termed as 

RAND_MAX). It means that after division we will get a value that ranges from 0 
to 1. 

3. Compare this value with the data cache access rate, which is the probability that 
the given instruction is either load or store. 

4. If it is less than the data cache access rate then it can be taken as a load/store 
instruction otherwise not. If it is not a load/store instruction then this process ends 
here, otherwise it continues to the next step.  

5. Repeat the first two steps again. 
6. Compare this value with the data miss rate, which is also the probability of a data 

miss in a given cycle. 
7. If it is less than the data miss rate then it can be taken as a miss otherwise a hit. 
8. If it is a miss then repeat the first two steps again. 
9. Compare this value with the percentage of write misses, which is the probability 

of write miss in total number of data misses. 
10. If it is less than the percentage of write misses then it will be taken as a write miss 

otherwise a read miss. 
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Figure 5.4  PDF of misses 
 
 
By using the random model, it is found that when the miss rates are low, then most of the 
resulting misses are spaced apart by many clock cycles (more than 50) and when the miss 
rates are normal or high most misses are close to each other i.e. the time difference 
between two successive misses is normally less than 10-15 clock cycles most of the 
times. This is the same kind of behavior, which we can find in actual programs execution. 
When the miss rates are low which implies that a cache is big and after each memory 
access a large amount of data comes in the cache. There would also be less conflict and 
capacity misses and so it is very likely that the number of clock cycles between two 
successive memory accesses are large. In the same way, a high miss rate means a small 
cache or a bad software that result in many misses which are close to each other in terms 
of number of clock cycles among them. There are many behaviors where random mode 
doesn’t provide enough approximation and we have tried to model these behaviors in 
Special mode.     
 
5.2.2.3 Loop Array Data misses mode during simulation 
 
In this mode we model the misses that are originated when the program is in a loop 
accessing the arrays. As shown in table 5.1, this mode has been assigned the highest 
percentage of data misses. Therefore lots of misses are introduced when this mode is 
active during the simulation. In most programs, most data misses are produced when the 
program is accessing arrays in the loops. It doesn’t mean that all loops generate lot of 
misses. Our aim in this mode is to target those loops, which generate many data misses. 
The loops that do not generate many misses can be approximated by the Random mode. 
To demonstrate our model, we begin with the examples of few loops that generate many 
misses. Consider the example of following nested loop, which accesses two two-
dimensional arrays.  
 

 
 
 
 
 
 
 
 
 
 
 
 
0                                                                                    probability 
                  0.21         1  
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� �
for� (� i� =� 0;� i<3;i++)�
� for� (j=0;j<100;j++)�

a[i][j]� =� b[j][0]+b[j+1][0];�

 
The number of misses produced during the whole execution of this loop depends on the 
size of the cache, block size and the degree of associativity, but as discussed earlier, we 
can’t make use of these parameters. If we consider the body of the loop, we can observe 
that in each iteration of the inner loop for j, at least two load instructions are required to 
access b[j][0] and b[j+1][0] and one store instruction to store the result of the addition in 
a[i][j]. If we consider the worst case, there will be three data misses in each iteration of 
the inner loop. The array a can be benefited from spatial locality but the array b couldn’t 
since the accesses to the array b are not in order in which they are stored in the memory. 
However, array b can be benefited from temporal locality since the same elements of the 
array b are accessed in each iteration of the loop. Remember that nearly in all 
microprocessors used today, all read accesses to the memory are burst accesses. This 
means each read access to the memory brings the next four data items or instructions in 
the cache.   Therefore if we ignore the conflict misses for a moment then during the first 
complete execution of the inner loop when i=0, there will two data misses due to array b 
and one data miss for array a after every fourth iteration. During i=1 and i=2 there would 
be one data miss due to array a after every fourth iteration and there would be few data 
misses due to array b because most of the elements would already be in the data cache. 
So the first complete execution of the inner loop i=0 is of particular interest for us. There 
may be few instruction misses at i=0,j=0 during the very first iteration but after that there 
would be no instruction miss unless the instruction cache is very small. This is because 
same instructions are executed again and again. Each iteration would approximately 
consists of 8-10 assembly instructions (2 load, 1 store, 4 add, 1 branch) and require 8-10 
clock cycles plus clock cycles consumed to access the memory in case of a miss, to 
complete each iteration in a pipelined machine.    
 
Now consider another loop, 
 
for� (j=0;j<100;j++)�

for� (i=0;i<100;i++)�
x[i][j]=x[i][j]+s;�

 
The above loop would generate two data misses (one read and one write) in each iteration 
of the inner loop since the accesses to the memory are not in order in which they are 
stored. Off course, the above loop couldn’t be written by a good programmer but our aim 
here is to study only the effect of different codes on the misses and not to improve them. 
In MIPS assembly, the inner loop may look like as follows: 
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Loop:� � LD� F0,0(R1);� � � � � F0=array� element�
� ADDD� F4,F0,F2;� � � � � add� scalar� in� F2�

� � SD� 0(R1),F4;� � � � � store� result�
� SUBI� R1,R1,#800;� � � � � decrement� pointer�
� BNE� R1,Loop;� � � � � branch� R1!=zero�

 
The above loop requires at least five clock cycles to complete each iteration (ignoring 
data hazards) and most probably would generate two data misses in each iteration. The 
improved version of this loop is as follows:   
 

for� (i=0;i<100;i++)�
� � � � for� (j=0;j<100;j++)�
� � � � � � � � x[i][j]=x[i][j]+s;�

 
Most probably the above loop would generate data misses after every fourth iteration of 
the inner loop since the memory accesses are in order and loop would benefit from spatial 
locality. This means that we will see some misses after 20-25 clock cycles. Definitely, 
modeling such a loop is not our target in this mode. Random mode can represent such 
kinds of loops.  
 
As evident from the above discussion, our focus is on the loops that generate lots of data 
misses. The above two examples are few among them. We couldn’t just take these few 
examples and study them thoroughly and include their behavior exactly in our model. 
There can be many loops that have nearly the same behavior (number of misses in each 
iteration and clock cycles required to complete the iterations) with some variations. But 
there can be many loops of these types with different behaviors. It is impossible to model 
all of them. We can only generalize them and by generalizing we can say that when these 
loops (which generate many data misses) are in execution there are at least two data 
misses within every 10 clock cycles. 
 
There are very few instruction misses that occur in a loop because same instructions are 
executed again and again. Most of these instruction misses occur during the first and the 
second iteration of the loop. The main reasons for this are that during the first iteration 
the instructions are not in the loop and the branches are also miss predicted.  
 
The number of Execution clock cycles, instruction and data misses for this mode are 
already calculated in the Initialization part. So when this mode appears in the simulation 
two data misses (one read and one write) are introduced after every 8 clock cycles. This 
will continue until the data misses count reaches to the values of the total misses assigned 
to this mode. Some instruction misses are also introduced at the beginning of the mode. 
One instruction miss is introduced after every 4 clock cycles during the first 20 clock 
cycles. After that only the data misses are introduced.  
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5.2.2.4 Instruction misses mode  
 
In this mode we represent the behavior when instruction misses occur in quick 
succession. In terms of software, the most obvious reasons for these misses are 
conditional and unconditional jumps. The conditional jumps occur because of ‘if and if 
else’ statements and the test conditions of the loops. The unconditional jumps occur when 
some function is called and when the function is returned. In this mode, we have focused 
on the conditional statements that occur due to ‘if and if else’ statements or switch 
statements.  
 
If the program is in a part of a code, which is run for the first time, or which is not in the 
cache, an instruction miss is generated after every 4 clock cycles of sequential execution. 
Each access to the memory brings the next 4 sequential statements. If there are branches 
or jumps within these 4 instructions then an instruction miss can occur before 4 clock 
cycles (if the branch target instructions are also not in the cache). Consider the following 
example: 
 
if� (a� =� =1)� �
� {�
� � if� (b=� =1){�
� � do� some� thing� on� variables� a� and� b;}�
� � else�
� � do� some� thing;�
� }�
else� if� (a� =� =� 2)�
� {�
� � if� (b=� =1){�
� � do� some� thing� on� variables� a� and� b;}�
� � else�
� � do� some� thing;�
� }� �

 
and so on. 
 
Imagine if this code is run for the first time or if this code is not in the cache. Suppose 
there are lot of conditional if else statements in the above code, which become true 
depending on the value of variable a. Consider the worst case, when there are even nested 
if statements under each condition. In that case there will be lot conditional jumps and the 
code will not execute sequentially. Assuming the code is not in the cache, this particular 
software behavior result in instruction misses and the clock cycles between two 
consecutive instruction misses would be less than 4 clock cycles. Data misses may occur 
but in this particular scenario the data misses would be less than instruction misses 
because these statements operate on the same data elements but in a different manner. 
 
In this mode, the codes that resemble with the above example are the targets. The aim is 
to generate some instruction misses in a manner that the difference between two 
consecutive instruction misses is sometimes less than 4 clock cycles and sometimes 
greater than 4 clock cycles. The generation of these instruction misses should also be 
coupled with some data misses but with a lesser frequency than the instruction misses.  
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Based on these requirements, when this mode is active during the simulation, an 
instruction miss is introduced after every 5th, 7th and 9th clock cycles and a data miss is 
introduced after every 20 clock cycles until they reach limits assigned to the mode.    
 
As described earlier, at first glance it seems that this mode introduces unreasonably large 
number of instruction misses in quick succession. But actually, it is not. Only 30% of the 
instruction misses is assigned to all the modes of Special type. Out of this 30%, 40% of 
the instruction misses is assigned to this mode, which is further subdivided according to 
the total number of ‘instruction misses modes’. When this mode is active in simulation, 
the maximum limit of instruction misses usually reaches very early (usually one fourth of 
the execution clock cycles). 
 
5.2.2.5 Zero misses mode 
 
As evident from the name this mode doesn’t introduce any kind of misses. The basic 
purpose of this mode is to produce a gap between regions that have lots of misses. In real 
programs, generally misses occur in quick succession and then there are no misses for a 
quite a number of clock cycles. This mode basically represents these clock cycles when 
the CPU is perfectly in execution. When this mode is active in simulation it counts the 
number of Execution clock cycles that are executed in this mode. When this count 
reaches to the limit assigned to it, it ends. 
 
5.2.2.6 Instruction data misses mode1  
 
The ‘Loop Array data misses mode’ and ‘Instruction misses mode’ represent the extreme 
behavior i.e. when a burst of data misses and burst of instruction misses occur. In many 
pieces of code both instruction and data misses occur frequently. The ‘Instruction data 
misses mode1’ and the ‘Instruction data misses mode2’ generate both instruction and data 
misses in significant number. Also the misses generated in these modes are not 
representing some particular software routines all the time. They also represent some 
combination of misses, which are difficult to visualize in terms of software. They model 
the behavior when both instruction and data misses occur in quick succession and when 
both instruction and data miss occur at the same time i.e. in the same clock cycle. 
 
During the simulation, this mode is further divided into three parts. In the first part it 
represent the approximate behavior of the misses that occur in a sequential code, which is 
not in the cache. Therefore it introduces one instruction miss after every 4 clock cycles. 
Data misses can also occur in a straight sequential (not in the cache) but usually less than 
instruction misses because all instructions are not load/store and all load/store 
instructions doesn’t result into a miss. Therefore one data miss is introduced after every 
10 clock cycles. This data miss toggles as a read and write miss, every time it is 
introduced. This behavior continues until half of the instruction misses allotted to this 
mode are introduced. After that it switches to another behavior. 
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In the second part, it represents the behavior when data misses are produced in greater 
number than the instruction misses. This may be due to a loop but not of that types which 
are modeled in ‘Loop Array data misses mode’. In this part, we assume loops that have a 
big body consisting of many instructions and each iteration requires many clock cycles. 
Therefore instruction misses may occur in every iteration but to a lesser extent than the 
data misses. Therefore in this part, one data miss is introduced after every 6 clock cycles 
and one instruction miss is introduced after every 10 clock cycles. Again the introduction 
of data misses is divided into read and write misses. One write miss is introduced after 
every two read misses. This behavior continues until ¾ of the data misses allotted to this 
mode are introduced. 
 
At the end it represents the behavior when an instruction and data miss occurs very 
closely. In a pipeline processor, the instruction cache is accessed in every clock cycle and 
when some load/store instruction reaches in a pipeline stage where it has to access the 
data cache, the instruction and data caches are both simultaneously accessed in that 
particular clock cycle. It may happen that both of these accesses result in a miss. In that 
case, data miss is handled first followed by the handling of instruction miss. This causes 
the processor to stall for a larger number of clock cycles. In the outside world, it may 
mean that it will occupy the bus for a larger number of clock cycles. 
 
So in the third part of this mode, this behavior is introduced after every 6 clock cycles. 
One instruction and one data miss is introduced in the same cycle after every 6 clock 
cycles. The data miss is handled first and then instruction miss is handled. This third part 
is very small (it should be small) and it is found by simulation that it normally occurs less 
than 10 times. It is because; instruction misses allotted to this mode is already small. And 
nearly 90% of the instruction misses are introduced in the first two parts of the mode. 
Remember that an instruction or data miss can only be introduced if the current values of 
their respective counters are lesser than the maximum value of the misses allotted to the 
mode. Therefore in the third part, after few simultaneous instruction and data misses, 
instruction misses count reaches the maximum value and there will be no more 
instruction misses. However, data misses are continuously introduced until they also 
reach their limit. 
 
5.2.2.7 Instruction data misses mode2 
 
The behavior represented by this mode resemble to the behavior introduced in 
‘Instruction misses mode’. In ‘Instruction misses mode’ the instruction misses are 
introduced in greater number than data misses. In that mode we have represented the 
behavior when the time difference between two successive instruction misses is less than 
4 clock cycles. This effect is due to the conditional statements. In that mode, we have 
focused on the conditional statements, which operate on the same data elements resulting 
in lesser number of data misses.  
 
It may be a case that these conditional statements operate on different data elements, 
which are also not in the cache and hence result in data misses. Also the generation of 
instruction misses in ‘Instruction misses mode’ represent the extreme behavior i.e. lot of 
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instruction misses are introduced in that mode. It may be a case that the generation of 
instruction misses due to these conditional statements is not that much high as 
represented in ‘Instruction misses mode’. 
 
In this mode, we have represented the similar behavior of conditional statements with the 
difference that they operate on many data elements and these statements result in lesser 
number of instruction misses. Therefore it generates both instruction and data misses in 
significant proportions.   
 
Therefore when this mode is active in the simulation, two instruction and two data misses 
are introduced in every 15 clock cycles. The two instruction misses are introduced 
consecutively one after the other. The data misses are also introduced one after the other. 
One of the data miss is read miss and the other is write miss. 
 
 

5.3 An Overview of sequence of Operations 
 
In this section we will describe the sequence in which different steps are carried out. The 
whole simulation sequence is described in section 4.2.4 of chapter 4. For ease the figure 
4.2 is reproduced here as figure 5.5. In section 4.2.4 all the steps have been explained 
except the two grey shaded blocks labeled as ‘Initialization’ and ‘Call the functions to 
decide the misses’.  The first block ‘Initialization’ is basically the Initialization part 
discussed in section 5.2.1 and the second block ‘Call the functions to decide the misses’ 
is the simulation part discussed in section 5.2.2. These two blocks in figure 5.5 can be 
replaced by figure 5.6 and fig 5.7. Now we will describe the whole execution sequence 
again that also include the detailed steps which were missing in section 4.2.4.We start 
with the ‘Initialization’ part which takes place before the start of the simulation. All these 
steps are shown in figure 5.6 
 

1. Read the input parameters from the file, which include both the basic and optional 
input parameters. 

2. Calculate the total number of Execution clock cycles, total number of instruction 
and data misses (read and write misses) for the whole simulation. 

3. Calculate the Execution clock cycles, instruction and data misses for the 
Compulsory mode. 

4. Calculate the total number of modes from the Execution clock cycles by using the 
procedure described in section 5.2.1. Calculate the individual number of Random 
and Special modes and divide the remaining Execution clock cycles among these 
modes according to their percentages. 

5. Check whether the user has changed the default percentages of the Random and 
Special modes. If the user hasn’t changed them, then use the default percentages 
of instruction and data misses to calculate the total number of instruction and data 
misses assigned to each mode. On the other hand, if the user has changed the 
default percentages of Random and Special modes, then first scale the percentages 
of instruction and data misses according to the relative percentages of Random 
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and Special modes and then calculate the total number of instruction and data 
misses for each mode. 

 
6. Divide the total Execution clock cycles, instruction and data misses which are 

assigned to the Random mode, equally among individual small modes of Random 
mode. 

 
Figure 5.5 
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Figure 5.6 
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7. Divide the total Execution clock cycles assigned to the Special mode among 
individual modes of different types of the Special mode. 

 
8. Check whether the user has changed the default percentages of the different types 

of Special modes. If the user hasn’t changed them, then use the default 
percentages of instruction and data misses to calculate the total number of 
instruction and data misses assigned to each mode. On the other hand, if the user 
has changed the default percentages of these modes, then first scale the 
percentages of instruction and data misses according to their relative percentages 
and then calculate the total number of instruction and data misses for each mode. 

9. Build the schedule array that contains all the necessary information to carry out 
the simulation. Each location of the array represents one individual mode. The 
length of the array is equal to the total number of modes. 

 
This completes the ‘initialization’ part. All the remaining steps are performed during 
the simulation. In each clock cycle, the following steps are carried out until the end of 
the simulation. These steps are shown in figure 5.7.  
 
10.  Check at the start of each cycle if the CPU is in some stage of memory transfer. 

This can be seen by checking the variable, which shows whether CPU is stalled, 
or not. If the CPU is stalled then it is already in the communication phase i.e. 
communicating with the memory through OCP, which requires some cycles to 
complete. In this case call the function bus_interface_process(), which is 
responsible for the memory transfer. The function also checks the current status of 
the handshaking and takes necessary actions accordingly. This step is repeated in 
every clock cycle until the memory transfer is completed. If the CPU is not 
currently involved in memory transfer or the memory transfer is completed then 
go to the next step. 

11.  Increment the ‘Execution clock cycles count’ variable, which is the counter for 
the total Execution clock cycles for the whole simulation including all the modes. 

12.  Access the schedule array using schedule_count variable to know which mode is 
currently active. This can be found by checking the mode ID. Jump to the 
function, which represent this mode. 

13.  Increment the ‘Execution clock cycles count’ variable (this variable is different 
from the variable used in step 11 and is different for each mode) for that mode 
and decrement the ‘Execution clock cycles left’ variable for that mode. 

14. Decide whether an instruction miss or data miss or both have to be introduced in 
this cycle or not. The decision procedure is different depending upon which mode 
is active in a given cycle. 

15. Based on the decision procedure, check whether any miss or misses have been 
found or not. 

16.  If a miss or misses have been found then set the variables to 1 that contain 
information about the misses. Increment the ‘instruction misses count’ or ‘data 
misses count’ variables depending upon whether instruction miss or data miss 
have been found. Also decrement the ‘instruction misses left’ or ‘data misses left’ 
variables depending upon the type of the miss. 
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17.  If no miss has been found then check whether enough Execution cycles are 
available to introduce the given number of instruction and data misses for that 
mode. This has been done by comparing the ‘Execution cycles left’ variable with 
the ‘instruction misses left’ and ‘data misses left’ variables.  

18. If the ‘Execution cycles left’ variable becomes equal to either ‘instruction misses 
left’ or ‘data misses left’(enough cycles are not available)  then go to step 16 , 
otherwise (enough cycles are available) go to the next step. 

19.  Compare the ‘Execution clock cycle count’ variable with the  ‘Execution clock 
cycles’ variable for that mode. If the ‘Execution clock cycle count’ variable 
becomes equal or greater than the ‘Execution clock cycles’ for the mode then 
increment the ‘schedule_count’ variable so that from the next cycle the next 
location of the schedule array will be accessed which would contain some other 
mode. 

 
This completes the steps which are used to take decision about the introduction of a 
miss in a given cycle during simulation. 
 
20.   Check the variables that contain information about the instruction and data 

misses. If there is no miss then go to step 21 otherwise go to the step 23. 
 

21. The clock cycle has ended. Save the values of all the variables that will be used in 
the next cycle. All necessary variables are declared globally so that their values 
will not be lost at the end of the function. 

 
22.  Compare the value of the ‘Execution clock cycle count variable’ with the Total 

execution clock cycles value. If it is less than the total value then go back to step 
10. If it is equal or greater than the total value then it means that all the 
instructions have been simulated so go to the step 24. 

23.  If a miss has been found then stall the processor model. Call the function that 
starts communication with the memory through OCP. Keep the processor stalled 
until the miss has been handled. This has been checked at the start of every cycle 
as shown in step 10. If there is a miss in both the instruction and data then handle 
the data miss first and then handle the instruction miss. Clear the variables that 
contain information about the misses that needs to be handled i.e. sets them to 0. 
Go to step 21.   

 
24.  All the instructions have been simulated. Generate report about the total 

execution time of the instructions, the number of cycles in which the CPU remain 
stalled waiting for the memory response, the number of cycles the CPU is 
executing instructions, shortest and longest memory access, effective CPI etc. 
Terminate the simulation.      
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Figure 5.7 
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5.4 SUMMARY 
 
In this chapter we have described the methods which we have used to generate misses. 
We have started with the brief overview of the caches. Then we have described the 
method used to generate misses which consists of two parts the Initialization (that takes 
place before the start of the simulation) and the Simulation (that takes place during the 
simulation). We have described these two parts in detail in section 5.2.In the end, we 
have described the complete sequence of the whole process. The overall objective of all 
of these steps is to generate the misses in a manner that they look like the misses of a real 
program. 
 
From the input parameters, the model calculate the total number of misses and the 
Execution clock cycles in which it has to generate these misses. To introduce these 
misses in a realistic manner, it does some calculations on the available data before the 
start of the simulation. It divides the total Execution clock cycles into three parts. These 
parts represent different modes of behaviors of program execution and are called 
Compulsory mode, Random mode and Special mode. It then divides these available 
number of instruction and data misses among these three modes. The distribution of 
misses has been done according to some rules. These rules have been made based on the 
study of different behaviors of software routines and their affects on the misses. The 
Execution clock cycles assigned to the Random and Special mode are further divided into 
small parts or modes. The total number of these parts or modes increases with the 
increase of total number of Execution cycles. The instruction and data misses assigned to 
Random and Special mode are then further distributed within these smaller parts of each 
category. This distribution is also done with some rules which have been made with some 
theoretical background. In all the steps of the distributions, the user has the ability to 
change the rules of distribution of misses. At the end a number of different modes are 
created. Each mode represent some software behavior. Each has assigned some 
Execution clock cycles and the misses which have to be introduced within these clock 
cycles. The total number of Execution clock cycles and the total number of misses are 
thus distributed among these small parts or modes. All this information is then placed in 
an array called schedule array. Each mode occupy one location. The length of the array is 
equal to the total number of modes. When the simulation is started this array is accessed 
in order i.e. from the first location to the last one. These modes starts appearing in the 
simulation generating misses according to the procedure representing the mode. Each 
mode stays for a fixed number of clock cycles assigned to it , introduces its misses and 
then vanishes. In this way all the locations of the arrays are accessed. When the mode in 
the last location of the array completes its clock cycles, the simulation is ended. At that 
time, the total execution cycles have completed and all the required number of misses 
have also been introduced as well. The model then generate the report about the effective 
CPI which include the effect of all the misses.  
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      CHAPTER 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the first five chapters we have described the complete functionality of the model. The 
last task is to test its accuracy. In this chapter we will discuss all the issues related to it. 
 
The first question in this regard is: Can we really test it? If yes then how can we test it? 
This is not a conventional software or hardware design. Normally to test any 
software/hardware we apply different combinations of inputs and then compare the 
output of the system with the desired output. In that cases, we know the desired output 
but in our case we don’t completely know the desired output.  
 
This chapter starts with the discussion about different approaches used for testing. We 
will describe different steps, which we have taken to do this testing process. This 
discussion is coupled with the description of different problems, which encountered 
during this process and the tasks, which haven’t been completed because of these 
problems. 
 

6.1 Different Approaches for testing 
 
First we have to see in which patterns misses originate in most programs. In other words, 
how the generation of misses looks like when viewed with respect to the time i.e. during 
the complete execution. Figure 6.1 shows some general traces of the programs, in which 
the generation of misses are plotted with the elapsed time. This is the general behavior, 
which we can find in most programs. The dark grey regions show the instants during 
program execution when significant number of misses are produced. The light grey 
regions represent the instants when misses are produced but not in very large number. 
Finally, the white regions show where very few misses are produced or when most 
accesses are hits. A deviation from this behavior means that the whole trace is occupied 
by same region, which can be either dark grey, light grey or white. Many programs 
deviate from the general behavior shown in figure 6.1 but we are interested in the most 
general behavior which we can find in most programs i.e. according to figure 6.1. 

Testing the 
CPU Model 
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Therefore in the complete execution trace of most programs, at some points the 
concentration of misses is high and at some points the concentration is low. Generally, 
misses do not originate in regular order. Due to some special piece of code, large number 
of misses occur in quick succession. When the program leaves this part of code and 
enters some other part, which is in the cache, the generation of misses decreases. 
 

Figure 6.1 Generation of misses with respect to time 
 
This is the behavior, which we want in our model: the irregularity in the generation of 
misses. We get the total number of available misses as an input and our job is to 
distribute them in different parts and then originate them in a manner that they look like 
appearing in irregular fashion. So for some particular number of clock cycles we have to 
introduce large number of misses. Then for some number of clock cycles, we have to 
introduce very little number of misses and then for some number of clock cycles we have 
to originate some optimum number of misses. To achieve this, we have developed some 
techniques, which are described in detail in Chapter 5 and it is assumed in the later 
discussion that you have read Chapter 5. 
 
To test our techniques, we need to evaluate the traces generated by our CPU model as a 
result of some user supplied inputs and then see whether they are similar to the one 
shown in figure 6.1. There is one important question in this approach: how we can set the 
length of the region which can be termed as a region of high, medium or low misses. For 
e.g., consider the first trace of figure 6.1. The first region is dark grey (high misses) and 
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the second region is white (low misses). If we combine them into one region, it will 
become light grey (medium misses). 
 
 

Figure 6.2 Generation of misses viewed in another way 
 
Figure 6.2 shows an alternative. It shows how a bar graph between ‘number of misses 
generated during program execution ‘ and ‘time between memory accesses’ in terms of 
number of clock cycles looks like. To understand this figure, consider the bar at 1, which 
shows the value of ‘Number of misses’ between 400 and 500, say 450. It means that 450 
times it happens that the time difference between two successive memory accesses is 1 
clock cycle. This graph represents the scenario, when a single CPU is connected to the 
memory and there is no sharing. Also the latency of the memory is eliminated. If the 
memory latency is included, then the minimum time difference between two successive 
accesses would be memory latency (number of clock cycles to complete memory access) 
+1. So if the memory latency is 20 clock cycles we will see the first non-zero value at 21.  
 
Figure 6.2 shows that there are peaks on the left side of the graph. As we move from left 
to right these peaks start decreasing and nearly vanish after 60-70 (not shown in figure). 
This is what we can find in most programs. Most misses occur in quick succession i.e. the 
time difference between two successive memory accesses is small. For some period of 
time either zero or very few misses occur and then for some period of time a bunch of 
misses occur. Therefore most programs execution generates peaks on the left side of the 
graph. If we compare figure 6.1 with figure 6.2,it can be clearly seen that the peaks on the 
left side of the graph in figure 6.2 is due to these dark grey regions. Figure 6.2 shows the 
same behavior, which is shown in figure 6.1. But the method use in figure 6.2 is a more 
clear way and provides better judgment to make comparison. 
 
So we have to perform simulations with our CPU model using different values of input 
parameters, record the misses and then generate bar graph like in figure 6.2 and then see 
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whether we get the peaks or not and if we get them then whether they are on the left side, 
right side or in the middle of the graph. 
 

6.2 Recording Activity on the bus 
To follow the approach of section 6.1, we need to record all the events on the bus 
connecting the CPU and the memory. An activity on the bus means that a miss is 
generated. 
 
We have shown our test bench in figure 3.1 in chapter 3. The test bench consists of our 
CPU model, memory and the clock. We have added another entity in the test bench 
known as ‘Log entity’. The ‘Log entity’ records activity on the bus. Whenever CPU 
communicates with the memory, it records that event i.e. write it in a file. It records 
whether it is a read access or a write access. If it is a read access then whether it is an 
instruction read or a data read. It also records the cycle number at which the access is 
initiated. The variable that contains the value of cycle number increments by one at the 
end of every clock cycle. At the end of the simulation, it generates two files. The first file 
contains the complete data i.e. a record of all the accesses that contains the cycle number 
at which the access was initiated as well as type of access. The second file is used to 
generate a graph shown in figure 6.2. The time difference between every two successive 
memory accesses is calculated and is stored in an array. Therefore array[7] = 123 means 
that 123 times it has happened that the time difference between two successive accesses 
is 7 clock cycles. Therefore every time when it is found that the difference between two 
successive accesses is 7 clock cycles the value stored in location array[7] increments by 
1. 
 
 
 

 
Figure 6.3 Log Entity recording the activity on the bus 
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6.3 Testing the Simulation of the model 
As described in the previous chapter, the simulation is divided among three major modes: 
Compulsory mode, Random mode and Special mode. The Compulsory mode is a small 
mode and appears only once during simulation. Random and Special modes are the most 
prominent one. It is also possible to run the simulation with either Random mode or 
Special mode. 
 
We have performed number of experimentations with our model. We have used different 
values of input parameters (number of instructions, miss rates, seeds). Since we are 
making many decisions in our model based on randomness, therefore value of seed is 
also important. We have tried different values of seeds by keeping all other parameters as 
constant. It is found that the different values of seeds doesn’t affect on the output. Off 
course, every new value of seed produce different combination but the bar graph remains 
the same i.e. the peaks on the left side. 
 
Consider the following example. The following input data is used to perform simulation. 
Figures 6.4,6.5 and 6.6 show the outputs when the simulation is performed with only 
Random mode, with only Special mode and then equal number of Random and Special 
mode. However, Compulsory mode is present in all these simulations but its appearance 
is very small as compared to the other two modes. 
 
The input data is:    
 
Total� number� of� instructions� � � � � =� � 313917�
Percentage� of� load� instructions� � =� � 20%�
Percentage� of� store� instructions� =� � 5%�
Instruction� miss� rate� � � � � � � � � � � � =� 0.0993�
Data� miss� rate� � � � � � � � � � � � � � � � � � � =� 0.1445�
CPI� (including� the� effect� of� structural,� data� and� control� hazards)� =� 1�
Memory� Access� startup� latency� (Number� of� cycles� required� to� initiate�
memory� transfer� after� detecting� a� miss)� � =� 1�
Memory� Accesses� end� latency� (Number� of� cycles� required� to� restore� the�
normal� execution� after� the� completion� of� memory� transfer)� =� 1�
Seed� for� the� random� functions� � =� 25�
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Figure 6.6 

 
As shown from the figures, all combinations generate peaks on the left side. The heights 
of the peaks are not important, the variation with respect to each other is important. In all 
the figures, as we go from left to right they starts decaying and this is our desired 
behavior. The special mode is used to introduce region of high misses of figure 6.1 and 
Random mode is used to produce region of medium misses. Therefore the peaks 
generated by Special mode are higher than Random mode. When all these modes are 
combined together they approximate the behavior shown in figure 6.1.  
 
 

6.4 Comparison with Real Programs 
 
Initially, it was decided that the simulation with CPU model is compared with the 
simulation of real cores to test the accuracy of our CPU model. This means that we will 
take some original software and run it in a system consisting of a memory and real CPU 
core. We will record the activity on the bus in the same manner as we have done in our 
test bench i.e. creating a log entity and connect it with the bus connecting the CPU core 
and the memory. Then we will generate the same bar graph shown in figure 6.2 from this 
real simulation and then we will compare it with the graph generated by our CPU model.   
 
The first question about this approach is: Is this approach correct? 
Suppose we have followed the above-mentioned procedure and at the end we have two 
bar graphs that have to be compared with each other. If we find that these two graphs are 
not similar then what should we do? Does it mean that our CPU model is not correct? 
Conversely, if we have found that the two bar graphs are very similar to each other. Does 
it mean that our model is very accurate? 
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We have designed our CPU model by keeping in mind how general software behaves? 
The bar graph generated by the real simulation is due to that specific single software. If 
the two bar graphs are not similar then should we start modifying our model so that it 
generates the graph similar to that one? We shouldn’t do that. If the two graphs are not 
similar it doesn’t mean that the CPU model is not correct and if they are similar we 
shouldn’t finish our testing process by calling it a success. 
 
We should collect number of softwares at least more than dozen, which are different from 
each other in terms of routines written in it. Then we should repeat the same procedure 
with the output of all of these programs. Calculate the total number of instructions of 
each program, instruction miss rate, data miss rate etc. Then we use this data as input in 
our CPU model and then collect the statistics generated by our program. Then with the 
help of these numbers of comparisons, we will be confident to comment on the accuracy 
of the CPU model.   
 
6.4.1 Design of testing system 
 
Unfortunately, in most projects a significant amount of time is consumed in doing things, 
which are not the actual part of the project. This thesis was also not an exception. The 
following discussion of testing process will illustrate this. 
 
The first step of this testing process is to build a test environment for the real simulation. 
For this we need an IP core of real CPU and the memory. We have found a behavioral 
model of ARM processor, designed for simulation purposes. The simulation of this ARM 
model is equivalent to the simulation of synthesized version of IP core. 
 
Before the simulation this processor model needs to be configured. A software has to be 
written to configure it i.e. setting the TLB tables, enable or disable the caches etc. This 
software has to be combined with the software that has to be run on the processor. Both 
these programs are compiled by a Make file, which combine the output binary files of 
both of these programs into a single file. The combined software is then loaded into the 
memory. 
 
When the simulation starts, the processor starts accessing the memory from the first 
location. Therefore the configuration software starts executing i.e. the configuration of 
the processor starts. After the completion of this configuration, the normal software starts 
executing. The processor has 16 KB of separate instruction and data caches. It is possible 
to enable or disable the caches with the help of configuration software [1]. 
 
A memory has been designed to interface with this ARM processor. The memory, which 
we have used in our test bench, cannot be used because this model of the ARM processor 
doesn’t follow the OCP interface. The interfacing with the processor didn’t prove to be a 
small task because it requires knowing about architecture of the processor i.e. transitions 
of different signals, when the input and output data is latched etc and how the data is 
aligned in memory. 
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As told earlier, this processor model has 16 KB of separate instruction and data cache. 
Also the memory with which the processor communicates consists of only software i.e. 
the configuration software that executes at the beginning and then the normal software, 
which is our testing software. This situation is different from the usual execution i.e. 
when the given software is executed under the supervision of an operating system. The 
operating system allocates memory to execute the software and also handles the 
exceptions, which occur during program execution. In nearly every program, we use 
input/output functions (printf(),scanf() etc) and memory allocation functions 
(malloc(),pointers, linked lists). Absence of operating systems means these programming 
features should not be present in the code. Summarizing the above discussion, this 
situation sets two major restrictions on the programs, which have to be used for testing 
purposes: 
 
� The program should be large enough in size, so that it will not fit in 16 KB cache. 
� The program should not contain any piece of code, which requires operating 

system. 
 
The first condition implies that significant number of misses should be generated during 
the execution of the program. The whole comparison and in fact the whole project is 
based on misses. If the program is small it will fit into the caches and so the misses 
produced would be very small. The conflict misses (which contribute the major part of 
misses in most programs) would be almost zero. Most misses would be compulsory. 
Therefore to make some real evaluation, we need big programs, which have a code size 
much larger than 16 KB. So that during its execution a significant number of conflict 
misses would occur. 
 
As explained, the second condition implies that the software code shouldn’t contain any 
operating system dependent programming. It means that the program should be free of all 
input /output functions, memory allocation functions. 
 
The required softwares are basically the benchmarks specially written for the 
performance analysis of different systems. Therefore for testing, we need benchmarks 
with large code size and they shouldn’t contain any operating system dependent code. 
Due of this restriction we can’t use benchmarks, which are used in normal PCs because 
they have lot of input/output functions as well as operating system functions. It is 
possible to clean the code with the input/output functions by putting an effort. But its 
nearly impossible to remove operating system dependent piece of code, which include 
complex data structures. Therefore, we need benchmarks that are used for embedded 
applications and our CPU model is also focused on processors used in embedded 
applications. The embedded benchmarks use much simpler programming constructs than 
other conventional benchmarks. Thus to make a good analysis of our model we need 
some embedded benchmarks which follows the above-mentioned conditions so that we 
would be able to run them in our test system containing the ARM processor model.  
 
The design of the test system was started even before the completion of the CPU model. 
The intention was that the detailed traffic analysis of embedded benchmarks also helps us 
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in making right decisions in the development of the model. However, at that time these 
benchmarks were not available and we were hoping that we would get them soon. 
Unfortunately, this wasn’t happened. A lot of effort has been made but we haven’t been 
able to find any benchmark, which also fulfill the above-mentioned conditions. Because 
of the absence of the benchmarks, we can’t able to make any comparison with the real 
programs, although every other necessary requirement was fulfilled.  
 
Another Approach 
 
During the last month of the project, we have tried another approach. As mentioned 
earlier, that simulation with this ARM processor model can be done by either enabling or 
disabling caches. We have changed the configuration software to disable the caches. It 
means that now the processor does not have any cache. In other words, we can say that 
every access to a cache result in a miss. We have written some small programs keeping in 
mind the above limitations (operating system conditions). Although, these programs are 
small but now we can find some traffic on the bus because the caches are disabled. We 
recorded the activity on the bus with the help of our ‘Log entity’ but this time we have 
recorded the memory addresses as well. Whenever the memory is accessed the 
corresponding address is also recorded. 
 
We wrote a C program in which different cache formulas given in section 5.1.4 or in [2] 
and [3] are implemented. These formulas are used to find cache hits or miss with the help 
of block address, tag size, number of blocks in the cache etc. Block address is obtained 
from the address trace. For e.g. in a direct mapped cache the block placement is done by 
the formula: 
 

 (Block address) MOD (Number of blocks in cache) 
 
 
We have implemented these formulas and made some arrays, which represent the 
instruction and data caches. In short we have developed a model of the cache in a C 
program. The program reads the log file generated by the ‘Log entity’. Takes all the 
information about type of access, clock cycle at which it is accessed, address of the 
access etc. And then with the help of these cache formulas it calculates that in a presence 
of a cache whether that access would result in a hit or a miss. We assumed a small cache 
i.e. small size with less number of blocks. Thus proceeding in this way we have generated 
the bar graph from the executions of these small programs. 
 
We have made some comparisons between the output of the test system and the output of 
our CPU model. We have found similarities in few cases and dissimilarities as well. 
However, we have rejected our results i.e. we haven’t felt confident to comment on the 
accuracy because of the presence of following doubt in the approach: 
 
The CPU model is designed keeping in view a pipeline machine when more than one 
instructions are active in a cycle and we can expect misses closer to each other in the 
order of occurrence. If the caches are disabled, the processor is not really working as a 
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pipeline machine. In a pipeline machine, instruction cache is accessed in every clock 
cycle. Therefore every instruction access should be a miss. This stalls the processor. To 
prevent the pipeline from permanent stall, it is required that the instructions in the next 
pipeline stages should remain continue executing. When the memory access is completed 
then at that time the previously issued instruction is already completed. After issuing this 
new instruction the processor starts accessing memory again and thus stalls again. So in 
practical, the processor would not work as a pipelined processor. Therefore, it is not safe 
to come to any conclusion based on the results of these test systems. 
 

6.5 Concluding Remarks 
 
We have designed our model according to the general behavior of the CPU i.e. how it 
behaves during the execution of most programs. The relationship between misses and the 
software is carefully studied and implemented in the best possible way. We have shown 
through our test approaches that we have correctly implemented the concepts, which we 
have developed in our study of misses. We got the behavior, which we wanted to see in 
our CPU model.  
 
Special mode is designed to introduce lot of misses therefore it is targeted towards 
smaller caches and thus high miss rates. Random mode is designed to produce medium 
number of misses based on the miss rate. It is our observation that Special mode represent 
high miss rate behavior better than Random mode and similarly Random mode represent 
low miss rates better than Special mode.  
 
We have done a reasonable effort to test our model against the real program execution. 
We have developed every necessary item that can help us in this process. Unfortunately, 
due to the unavailability of embedded benchmarks we can’t complete this process. We 
have every necessary item except the benchmarks. In future, if we get them we can do the 
testing with much lesser effort. 
 
The model is made in a very a flexible manner. It provides lot of options to the user to 
run the simulation in different flavors. The traffic analysis generated by the model 
depends on two major factors. The first factor is the rules of distribution of Execution 
clock cycles and the misses among different modes. The working depends on two parts: 
the distribution of execution clock cycles and the misses and the rules with which these 
misses are originated in each cycle. These rules of distribution are very much user 
controlled.  And the parameters which are not user controlled, their values are #define in 
the code. If these values are modified, changes at the beginning will adjust all the 
formulas in the code accordingly. The second factor is the rules of generation of misses in 
each cycle. These rules are different for each mode.   Separate functions are written to 
represent each mode. Therefore its also very easy to modify them. 
 
Consider the worst case, if in future some serious bugs are found in the model, it will be 
easy to remove them. All the rules can be modified very easily. But remember we are 
talking about the very worst case. We are very hopeful that this will never happen and 
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even if some thing goes wrong the user-supplied options will be enough to control. We 
feel that we have completed the tasks given section 1.3. 
 

6.6 SUMMARY 
 
In this chapter, we have described our approach for testing. First we have shown that 
what kind of results we are looking for and then we have shown some simulation outputs 
of our model. We have shown that we became successful in implementing the desired 
behavior in our model. Then we described, our different efforts to do testing with the real 
programs, which haven’t been completed due to the unavailability of embedded 
benchmarks. 
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      CHAPTER 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Finally we came to the last chapter. In this chapter we will briefly describe our 
experiences during the whole project, possible future expansions and our feelings at the 
end. 
 
7.1 Possible usage of CPU model 
 
During the whole project, we have designed and experimented in an environment of one 
CPU and one memory. And it is because we have to make solo model of CPU i.e. how it 
behaves in isolation. But definitely it will not be used for performance estimation in such 
an environment. It will be used in an environment when a bus is shared by more than one 
CPU to access the memory. Therefore the most common use of the CPU model is to 
make two or more instances of it and then connect it in a given communication 
architecture and then simulate. At the end, we are basically interested in estimating the 
effective CPI for each instance of the CPU model. All the effort we have done to generate 
the misses is basically used to estimate this value. In an environment of more than one 
CPU, when the misses are generated in two CPUs in the same cycle, only one would be 
able to get access of the bus, therefore the latency for the other CPU would be more than 
what it has in isolation. Therefore depending upon the configuration of the 
communication architecture, the effective CPI of each CPU instance would be different 
than what it has in isolation. The communication architecture, which gives the smallest 
CPI for most CPUs, is the best communication architecture.  
 
Although we are not able to comment on the accuracy of the model with confidence but it 
should be noted that expectations were not very high even before the start of the project. 
For us even the 50% accuracy is enough. We should keep in mind what we are doing: 
Running simulation without any software. Imagine the ease what this tool is providing. 
We can simulate millions of instructions in five minutes (in fact we are not running the 
instructions). Running same number of instructions on real cores require a full day. It is 
also possible that we can make use of all the options of the model, collect different 

Conclusion 
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figures (CPI) and then take the average to increase the accuracy. Even if we need to run it 
several times with different settings: it will not take more than an hour (in fact even less). 
And most important we don’t need to look and search for the softwares (like we did for 
the benchmarks) that need to be run for simulation. If more work has to be done on it (to 
increase its accuracy through testing and adding more behaviors) and its credibility has 
been proven then it will prove to be an excellent tool for performance evaluation. 
 
 

7.2 Future Expansions 
 
After reading chapter 6, it is clear that one of the most important future works is to get 
some embedded benchmarks and then follow the testing procedure given in chapter 6 and 
try to uncover the bugs (if they are) present in the model. 
 
We have done our best to make the model as modular and flexible as possible. We have 
divided our simulation into many modes. In each mode we have represented some 
behavior. It is possible to add more behaviors in the model by adding more modes. Table 
5.2 shows the ID of each mode, which is used to go to the function representing the 
particular mode. The mode with highest ID is 6. Therefore numbers greater than 7 can be 
used for future modes. If some new behavior needs to be added, we can write a separate 
function representing it, assigned it an ID along with some percentage of Execution clock 
cycles and misses. And then that mode will start appearing in the simulation like others. 
 
The Special mode is added to introduce greater number of misses in quick succession i.e. 
it is focused towards high miss rates or we can say small caches. One possible expansion 
would be to add some modes which are focused towards low miss rates i.e. they 
introduce gaps between misses. In other words, they generate peaks on the right side of 
the bar graph in figure 6.2. 
 

7.3 Experiences  
 
The programming in this project was quiet straightforward except few stuff of FLI. The 
challenging task in this project was to come up with some good ideas that also have 
strong theoretical background. In this project we have shown many new ideas. What you 
have read in this project are only those ideas, which remains valid until the end. Many 
ideas have been made, implemented and then rejected. The technique, which we have 
used in this model, is a result of continuous thinking and discussions consisting of many 
weeks. 
 
It has been found during the initial phase, that no work has been done on this topic 
before. When we have started this work we have tried to gather the maximum 
information that can help us. We have read more than 50 papers related to caches. The 
intention was to get some mathematical formulas about the misses. If we get or able to 
develop some mathematical formulas for the misses then we can straightaway implement 
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them in the model. Some papers have been found that present some mathematical 
analysis of the misses. But all these formulas were based on the memory addresses. And 
as written many times, without software we can’t know the address. Therefore we 
realized that we have to do something completely at our own and this is what we have 
made. 
 
Although the implementation of FLI is as straightforward as shown in Chapter 3. This 
straightforward way was not known at the beginning. For even a small minor error, the 
ModelSim crashed every time leaving no clue about the error. The job was then to find 
this error, which consumed significant time. What we have learnt from this FLI 
implementation is: try to do as simple as possible. Fancy programming approaches 
always result in problems for this FLI at least in our case. 
 
Although the model was written in C but at many places in the C code (OCP protocol 
implementation) we have to think like writing code in VHDL because the functions 
written in the C program runs with the rising transitions of the clock, which was a new 
experience. The study and implementation of OCP was also worthwhile.  
 
A lot of effort has been made in the testing process. Unfortunately, it went unrewarded at 
the end. 
 
Project as learning point of view 
 
As a student, I have learned a lot in this project. This thesis was an excellent learning 
opportunity to know more about Computer Architecture. The task assigned in the thesis 
was very unique. Since it was totally a new kind of work and enough help from the 
reading materials were not available therefore it forced me a lot to think. I haven’t 
worked on such kind of project before where you have to come up with some new idea of 
your own and then test whether it is right or not. At the end, I am satisfied with my work 
but still feel that more could be done. 
 

 
 


