
1

CHAPTER

1.1 Abstract

In this thesis, we have designed a core model of microprocessor that can be used for
performance evaluation of any communication architecture. In its outer form, this model
is an entity in VHDL. To do performance evaluation for any communication architecture,
several instances of this entity can be made depending upon the requirement and are then
connected to the memory according to the configuration of that communication
architecture. These models then generate traffic on the bus to communicate with the
memory. At the end, these models generate report about their performance. Most
important in that report is the effective CPI (Cycles per Instruction) under the given
communication architecture.

The main feature of this model is that it performs simulation very fast as compared to the
behavior models of microprocessors. For e.g., it can simulate 1 million instructions in
nearly 1-2 minutes on SUN machines. Whereas, the complex models of microprocessors
require 2-3 hours or even more for the same number of instructions. Moreover, it doesn’t
require any software to run i.e. to perform simulation it does not require that some
software should be loaded into the memory. It can perform simulation without any
original software to generate some performance statistics.

Although in its outer form it is a core model of a microprocessor (an entity in VHDL), it
can also be termed as a ‘tool’ to analyze performance of a system. Because it can only be
used for performance estimation purposes and is not a hardware design.

Introduction

2

1.2 Background

Systems on chips (SOC) are becoming increasingly more complex and dense. A single
SOC design may consist of a processor, memory, some dedicated hardware and
Input/output interface. SOC designs that consist of more than 1 processor are common
these days. To deal with the complexity, we rely on use of intellectual Property (IP)
cores. With increasing number of IP cores, it is important to connect these in a structured
and efficient way. The communication architecture becomes essential in providing a
flexible platform, and it is essential for the overall SOC performance. Decisions about the
communication architecture should be made as early as possible in the design process.

These decisions have been made by simulating the system and evaluating the
performance of the system. By performance, we mean how fast the system completes its
task. However simulating the system with the real cores is too slow and time consuming.
It is not possible to simulate a system in a short period of time that consists of many
complex IP cores. At the early phase of the design, which is likely to undergo lot of
changes it is not a good idea to spend too much time on extensive simulation. A general
rough estimation is quite enough at the start of the design. Therefore methods for faster
performance simulation are always attractive and a tradeoff between faster execution and
accurate performance estimation is justified. Hence at the early phase of design process,
we can replace the real cores with their simple core models. These core models are much
faster to simulate than the real cores.

When dealing with performance evaluation we are not interested in the functionality of
the system. For example, if we have to make a performance estimation of a system
comprising of two processors sharing a single memory, we are only interested in knowing
how frequently the processors communicate with the memory, how many times we have
a conflict between processors to access the memory, how much time the processor
remains stalled waiting for its turn to access the memory, is the memory has been
efficiently shared or not etc.

3

Figure 1.1 Two CPUs sharing the interconnection network to access the single
memory

For simulation we also need software that is going to be executed on the processor. The
processor communicates with the memory architectures when it needs instructions which
are not in its cache or when it requires some data which are not in its cache as well. This
behavior largely depends on the software and different softwares generate different
traffic. It can be a case that we don’t know which software would be executed on this
given architecture. It is also difficult to get a significant number of softwares that are
written for performance estimation.

Hence the objective is that we don’t know which software is going to be executed on a
given architecture and so we don’t want to make performance estimation by running few
self-made programs

In this project, we have targeted on these two different problems:
� If we don’t know what software would be executed on a given architecture then

how can we make the performance estimation?
� How can we make the simulation much faster than the simulation that involves

real cores or the behavior models of the cores?

To tackle the first problem, we will make some models of the different program
behaviors and a core model of microprocessor uses these behaviors to generate traffic
that involves communication with the outside environment. Since we are not executing
any real program, the job of the core model is to generate traffic only. This means that the
model would not do any thing for the instructions, which do not involve communication
with the memory. The communication with the memory takes place when the processor
needs instruction to execute which is not found in the instruction cache or when the

CPU CPU

Interconnection

Memory

4

processor needs to read or write some data, which is not in the data cache. The former
case would happen only when the instruction is not found in the instruction cache and the
latter case would happen only when the given instruction is either load or store and the
processor faces a data miss in the data cache. Thus whenever there is a miss in either
instruction or data cache the processor communicates with the memory and there is
traffic on the bus connecting the processor and the memory. The job of the model is to
make decisions at which time traffic is generated i.e. when there is a miss in the cache.
As there is no real software executing on the model so it has to make this decision by its
own. This requires some input parameters from the user of this model. Some of these
parameters are:

� Number of instructions
� Load/store instructions
� Cycles per instruction (CPI)
� Instruction miss rate
� Data miss rate

Based on these parameters the microprocessor model would communicate with the
memory from time to time. Our job is to study different program behaviors that cause
communication between the CPU and the memory and characterize these behaviors in the
CPU model. Thus the CPU model will generate traffic that looks like a normal program
executing on the processor.

In most CAD tools, which are used for performance evaluation, we provide them some
software to execute along with some cache configuration parameters (cache size, block
size etc.). These tools then calculate the effective instruction and data miss rate. Our
model, nearly works in opposite direction. It takes total number of instructions,
instruction miss rate and data miss rate as an input and then generate different possible
sequences of these misses. In other words, by using these inputs it generates different
possible traffic patterns that may result due to different types of softwares.

Hence we will develop a CPU model, which can generate traffic by using some input
parameters that statically corresponds to the real cores and also do some performance
measurements like execution time of given number of instructions, no of memory
accesses, effective CPI, number of clock cycles CPU remains stalled waiting for the
memory, number of clock cycles during which CPU is perfectly in execution etc. We can
connect this CPU model in different configurations and then evaluate the traffic statistics
between different components. In a multiprocessing environment the performance is
highly dependent on the communication architecture and different configurations may
result in different performance results.

The second requirement is to make it much faster than normal simulation. This
simulation should be very fast because in the absence of real software the performance
estimation would not be very accurate. The aim is to get some rough approximation at the
very early stage of design process.

5

In fact, the steps taken to solve the first requirement have also solved the second
requirement. When simulating with real cores the simulation of every instruction
consumes some time. The simulator needs to record every event that happened inside or
outside the CPU. However in our model we only do some processing in the case of a
miss. So in every clock cycle we just need to make decision whether we have a miss or
not. The simulation time for making such decisions is much smaller than the time for
simulating real processor core that involve lot of signals and millions of gates. Off course
the high-level behavior models of the processors can do the performance simulation. But
still it doesn’t provide that much speedup and also they require software to be executed
on these models.

Therefore the simulation with this behavior model of a microprocessor would be much
faster than executing any program on the processor as well as it doesn’t contain any
effect introduce by a particular program. As mentioned earlier, since we are only
interested in the performance it is possible to make some rough estimate of the system
without executing the software.

The CPU model is designed to be used in different architectures; therefore it is necessary
that it should follow some standard interface. The CPU model follows the Open Core
Protocol (OCP) interface i.e. it can be connected to any component that follows the OCP
interface. Or we can say that the communication between the processor and the memory
would be through some interconnect following the OCP. The relevant details of OCP are
given in Chapter 2.

Developing CPU model requires a lot of programming features, which are hard to find in
a Hardware Description Language like VHDL. Therefore the model is written in C
language. However most of the IP cores currently used in the industry are in VHDL. As a
result of this, we need to work in a mixed language environment with our processor
model in C language and the other cores which are connected with the model are in
VHDL. This requires an interface between C and VHDL. So that when seen from
outside, the model looks like an entity written in VHDL but from inside, its all
functionality is written in C language. We have used Foreign Language Interface (FLI)
provided by the tool ModelSim. This means that our simulation environment consists of
our model written in C language and the other cores written in VHDL all running in
ModelSim. It may happen that in a given test bench we have more than one copies of our
model along with other IP cores (written in VHDL) all connected to each other through
OCP. The relevant details of FLI and its use in the thesis are given in Chapter 3.

1.3 Tasks of the project

Based on the above discussion we can say that we need to develop a core model of the
general-purpose microprocessor that must have the following characteristics:

� It must follow the OCP and FLI interface.
� It must be able to generate traffic according to the input parameters discussed

above.

6

� The simulation with the model should be much faster than the simulation with the
real core.

� The statistics generated by the model should be reasonably accurate when
compared with real program execution.

The next two chapters give an overview of OCP and FLI and the features, which are used
in the model. Chapters 4 and 5 include the discussion how the misses have been
introduced or we can say how the traffic has been generated. Chapter 6 deals with the
discussion related to the testing of the model.

1.4 SUMMARY

In this chapter, we have introduced our project. We have described the motivation behind
this project and our proposed steps that we will take to complete the requirements of the
project. At the end, we have set the tasks that have to be met in this project.

We will design a CPU model, which is following OCP interface. The purpose of the
model is to do faster simulation to make some performance measurements. It has to do
these performance calculations without using any software. In the absence of real
software, the task of the model is to behave in a manner as some real software is
executing on it. This model is supposed to be used at the very early phase of design
process where the tradeoff between accuracy and speed can be justified to a larger extent.

7

 CHAPTER

When an instruction or data miss occurs in a CPU, the CPU needs to communicate with
the memory. This communication is brought through some protocol, which defines how
the request to read or write data will be generated, how the memory responds to the
request, how many minimum clock cycles are required to complete the data transfer, etc.
The interface of the CPU and the memory (or any component which needs to
communicate with the outside world) is designed according to that protocol. It means that
any two or more components that follow the same protocol can be connected to each
other without any modifications in the design.

We have used Open Core Protocol (OCP) in our CPU model. Since our CPU model can
be used only for simulation there is no particular advantage of using any kind of protocol.
We have used OCP because it is the most fast emerging protocol. To make simulation in
any environment the CPU model needs to be connected with some other entities. Since
OCP is the most widely used protocol these days, so it is very likely that the simulation
would be done in an environment where the entities are following the OCP protocol.

The OCP defines complete standard from the basic data flow signals to the signals that
are used for test purposes. Broadly, OCP signals can be divided into two main categories,
the basic OCP signals and the optional OCP signals. The presence of basic OCP signals
in any core is necessary if it is following the OCP interface. The optional OCP signals
can be included according to the requirement. In our model, we have used only the basic
OCP signals and very few optional signals. These signals are included both in our CPU
model and the memory, which we have designed for testing purposes.

This chapter covers the very basic introduction about the OCP. Only the features used in
the thesis are described here. Detailed information can be found from the online manual
of OCP at www.ocp-ip.com.

Open Core
Protocol

8

2.1 An Overview of Open Core Protocol

The Open Core Protocol (OCP) defines a high-performance, bus-independent interface
between IP cores that reduces design time, design risk, and manufacturing costs for SOC
designs.

An IP core can be a simple peripheral core, a high-performance microprocessor, or an on-
chip communication subsystem such as a wrapped on-chip bus. The Open Core Protocol:

� Achieves the goal of IP design reuse. The OCP transforms IP cores making them

independent of the architecture and design of the systems in which they are used.
� Optimizes die area by configuring into the OCP only those features needed by the

communicating cores.
� Simplifies system verification and testing by providing a firm boundary around

each IP core that can be observed, controlled, and validated.

2.1.1 OCP Characteristics

The OCP defines a point-to-point interface between two communicating entities, such as
IP cores and bus interface modules (bus wrappers). One entity acts as the master of the
OCP instance, and the other as the slave. Only the master can present commands and is
the controlling entity. The slave responds to commands presented to it, either by
accepting data from the master, or presenting data to the master. For two entities to
communicate in a peer-to-peer fashion, there need to be two instances of the OCP
connecting them - one where the first entity is a master, and one where the first entity is a
slave. In our case, the CPU is the master and the memory is a slave entity.

Figure 2.1 shows a simple system containing a wrapped bus and three IP core entities:
one that is a system target, one that is a system initiator, and an entity that is both.

The characteristics of the IP core determine whether the core needs master, slave, or both
sides of the OCP; the wrapper interface modules must act as the complementary side of
the OCP for each connected entity. A transfer across this system occurs as follows. A
system initiator (as the OCP master) presents command, control, and possibly data to its
connected slave (a bus wrapper interface module). The interface module plays the request
across the on-chip bus system. The OCP does not specify the embedded bus
functionality. Instead, the interface designer converts the OCP request into an embedded
bus transfer. The receiving bus wrapper interface module (as the OCP master) converts
the embedded bus operation into a legal OCP command. The system target (OCP slave)
receives the command and takes the requested action. Each instance of the OCP is
configured (by choosing signals or bit widths of a particular signal) based on the
requirements of the connected entities and is independent of the others.

9

Figure 2.1 System Showing Wrapped Bus and OCP instances

For instance, system initiators may require more address bits in their OCP instances than
do the system targets; the extra address bits might be used by the embedded bus to select
which bus target is addressed by the system initiator.

The OCP is flexible. There are several useful models for how existing IP cores
communicate with one another. Some employ pipelining to improve bandwidth and
latency characteristics. Others use multiple-cycle access models, where signals are held
static for several clock cycles to simplify timing analysis and reduce implementation
area. Support for this wide range of behavior is possible through the use of synchronous
handshaking signals that allow both the master and slave to control when signals are
allowed to change.

2.1.2 OCP Interface Signals

OCP interface signals are grouped into dataflow, sideband, and test signals. A small set
of the signals from the dataflow group called the basic OCP, is required in all OCP
configurations. Optional signals can be configured to support additional core
communication requirements. The optional dataflow signals are divided into simple and
complex extensions. All sideband and test signals are optional. We will restrict our
discussion to only basic OCP signals and signal used in burst access, which is in simple
OCP extension category.

The OCP is a synchronous interface with a single clock signal. All OCP signals are
driven with respect to and sampled by the rising edge of the OCP clock. Except for clock
and reset, OCP signals are strictly point-to-point and uni-directional.

Dataflow Signals
The dataflow signals consist of a small set of required signals called the basic OCP and
optional signals that can be configured to support additional core communication
requirements. The optional dataflow signals are grouped into simple and complex
extensions.

10

The naming conventions for dataflow signals use the prefix M for signals driven by the
OCP master and S for signals driven by the OCP slave.

Basic Signals
Table 2.1 lists the basic OCP signals that must be present in any OCP interface.

Name Width Driver Function

Clk 1 Varies OCP clock
MAddr 1-32 Master Transfer address
MCmd 3 Master Transfer command
MData 8/16/32/64/128 Master Write data
SCmdAccept 1 Slave Slave accepts transfer
SData 8/16/32/64/128 Slave Read data
SResp 2 Slave Transfer response

Table 2.1: Basic OCP Signals
Clk
Clock signal for the OCP. All interface signals are synchronous to the rising edge of Clk.

MAddr
The Transfer address, MAddr specifies the slave-dependent address of the resource
targeted by the current transfer.

MCmd
Transfer command. This signal indicates the type of transfer at the OCP. Commands are
encoded as follows in table 2.2.

MCmd[2:0] Transaction Type Mnemonic
000 Idle IDLE
001 Write WR
010 Read RD
011 ReadEx RDEX
100 Reserved
101 Reserved
110 Reserved
111 Broadcast BCST

Table 2.2 : Command Encoding
MData
Write data. This field carries data from the master to the slave.

SCmdAccept
Slave accepts transfer. A value of 1 on the SCmdAccept signal indicates that the slave
accepts the master’s transfer request.

11

SData
Read data. This field carries data from the slave to the master.

SResp
Response field from the slave to a transfer request from the master. Response encoding is
as follows in table 2.3.

SResp[1:0] Response Mnemonic

00 No response NULL
01 Data valid/ accept DVA
10 Reserved
11 Response error ERR

Table 2.3 : Response Encoding

MBurst
Burst type. This signal allows linking related transfers into a burst transaction. It is
configured into the OCP using the burst parameter. Mburst is not a basic OCP signal. It
encodes both the burst type and the burst code, as shown in the Table 2.4.

MBurst[2:0] Burst Type Burst Code
000 All LAST
001 Incrementing TWO
010 Incrementing FOUR
011 Incrementing EIGHT
100 Custom (packed) DFLT1
101 Custom (not packed) DFLT2
110 Streaming STRM
111 Incrementing CONT

Table 2.4 : Burst Encoding

All these interface signals are used in CPU (Master) and (Memory). The VHDL
declarations of CPU and Memory are shown in fig 2.2 and 2.3. It should be noted that in
OCP the width of the address and data signals could be varied according to the
requirement. Therefore their widths are declared as ‘generic’.

12

Figure 2.2 VHDL declaration of CPU model following the OCP interface

Figure 2.3 VHDL declaration of Memory model following the OCP interface

__
entity memory is
 generic (
 addr_width : integer ;
 data_width : integer);

 port (
 nreset : in bit;
 clk : in bit; -- OCP signal
 MCmd : in bit_vector(2 downto 0); -- OCP signal
 MBurst : in bit_vector(2 downto 0); -- OCP signal
 MAddr : in bit_vector(addr_width-1 downto 0); -- OCP signal
 Mdata : in bit_vector(data_width-1 downto 0); -- OCP signal
 SCmdAccept : out bit; -- OCP signal
 SResp : out bit_vector(1 downto 0); -- OCP signal
 SData : out bit_vector(data_width-1 downto 0) -- OCP signal
);

end memory;
__

__
entity cpu is
 generic (
 addr_width : integer ;
 data_width : integer);

 port (
 nreset : in bit;
 clk : in bit; -- OCP signal
 SCmdAccept : in bit; -- OCP signal
 SResp : in bit_vector(1 downto 0); -- OCP signal
 SData : in bit_vector(data_width-1 downto 0); -- OCP signal
 MCmd : out bit_vector(2 downto 0); -- OCP signal
 MBurst : out bit_vector(2 downto 0); -- OCP signal
 MAddr : out bit_vector(addr_width-1 downto 0); -- OCP signal
 MData : out bit_vector(data_width-1 downto 0); -- OCP signal
 cpu_stall : out bit;
 cpu_out : out bit);

end cpu;
__

13

2.1.3 Timing Diagrams

The following timing diagrams show the data transfer in its various forms between the
Master and the Slave using OCP basic signals. The data transfer would become more
versatile by the addition of simple and complex extensions. In our case, consider the
Master as a CPU, which is originating communication with the memory, which is acting
as a slave.

Simple Write and Read Transfer

Figure 2.4 illustrates a simple write and read transfer on a basic OCP interface. This
diagram shows typical behavior for a synchronous SRAM or for the control and status
registers of a core.

Figure 2.4 Simple Write and Read Transfer

Sequence
A. The master starts a request phase on clock 1 by switching the MCmd field from IDLE
to WR. At the same time, it presents a valid address (A1) on Addr and valid data (D1) on
MData. The slave asserts SCmdAccept in the same cycle, making this a 0-latency
transfer.

B. The slave captures the values from MAddr and MData and uses them internally to
perform the write. Since SCmdAccept is asserted, the request phase ends.

C. The master starts a read request by driving RD on MCmd. At the same time, it
presents a valid address on MAddr. The slave asserts SCmdAccept in the same cycle for
a request-accept latency of 0.

D. The slave captures the value from MAddr and uses it internally to determine what data
to present. The slave starts the response phase by switching SResp from NULL to DVA.

14

The slave also drives the selected data on SData. Since SCmdAccept is asserted, the
request phase ends.

E. The master recognizes that SResp indicates data valid and captures the read data from
SData, completing the response phase. This transfer has request-to-response latency of 1.

Request Handshake
Figure 2.5 illustrates the basic flow-control mechanism for the request phase using
SCmdAccept. There are three write transfers, each with a different request accept latency.

Figure 2.5 Request Handshake

Sequence
A. The master starts a write request by driving WR on MCmd and valid address and data
on MAddr and MData, respectively. The slave asserts SCmdAccept in the same cycle, for
a request accept latency of 0.

B. The master starts a new transfer in the next cycle. The slave captures the write address
and data. It deasserts SCmdAccept, indicating that it is not yet ready for a new request.

C. Recognizing that SCmdAccept is not asserted, the master holds all request phase
signals (MCmd, MAddr, and MData). The slave asserts SCmdAccept in the next cycle,
for a request-accept latency of 1.

D. The slave captures the write address and data.

E. After 1 idle cycle, the master starts a new write request. The slave deasserts
SCmdAccept.

15

F. Since SCmdAccept is asserted, the request phase ends. SCmdAccept was low for 2
cycles, so the request-accept latency for this transfer is 2. The slave captures the write
address and data.

Request Handshake and Separate Response
Figure illustrates a single read transfer in which a slave introduces delays in the request
and response phases. The request accept latency 2, corresponds to the number of clock
cycles that SCmdAccept was deasserted. The request to response latency 3, corresponds
to the number of clock cycles from the end of the request phase (D) to the end of the
response phase (F).

Figure 2.6 Request Handshake and Separate Response

Sequence
A. The master starts a request phase by issuing the RD command on the MCmd field. At
the same time, it presents a valid address on MAddr. The slave is not ready to accept the
command yet, so it deasserts SCmdAccept.

B. The master sees that SCmdAccept is not asserted, so it keeps all request phase signals
steady. The slave may be using this information for a long decode operation, and it
expects the master to hold everything steady until it asserts SCmdAccept.

C. The slave asserts SCmdAccept. The master continues to hold the request phase
signals.

D. Since SCmdAccept is asserted, the request phase ends. The slave captures the address,
and although the request phase is complete, it is not ready to provide the response, so it
continues to drive NULL on the SResp field.

16

E. The slave is ready to present the response, so it issues DVA on the SResp field, and
drives the read data on SData.
F. The master sees the DVA response and captures the read data.

Burst Read
Figure 2.7 illustrates a burst read transaction that is composed of four-pipelined burst
read transfers. An additional field, MBurst, is added to the request phase, indicating the
type of the burst and the number of transfers that the master expects. In this diagram,
MData and SData are assumed to be 32 bits.

Figure 2.7 Burst Read

Sequence
A. The master starts the burst read by driving RD on MCmd, the first address of the burst
on MAddr, and the burst code FOUR on MBurst. The burst code indicates that this is an
incrementing burst and that four or more transfers are expected. The slave is ready for
anything, so it asserts SCmdAccept.

B. The master issues the next read in the burst. MAddr is set to the next word-aligned
address. For 32-bit words, the address is incremented by 4.The master also changes
MBurst to TWO, meaning that two or more transfers remain in the transaction.

C. The master issues the next read in the burst, incrementing MAddr and leaving MBurst
set to TWO, because there are still two or more transfers remaining. The slave is now
ready to respond to the first read in the burst, so it drives DVA on SResp and valid data
on SData. The request-to-response latency for this transfer is 2.

D. The master issues the final read in the burst, incrementing MAddr and setting MBurst
to LAST. The master also captures the data for the first read from the slave. The slave

17

responds to the second transfer. The request-to-response latency for this transfer is 2,
although it is possible for the slave to introduce more latency for each response in a burst
transaction. (In OCP, bursts do not impose any additional constraints on protocol timing.)

E. The master captures the data for the second read from the slave. The slave responds to
the third transfer.

F. The master captures the data for the third read from the slave. The slave responds to
the fourth and last transfer.

G. The master captures the data for the last read from the slave.

2.2 OCP Implementation

The OCP interface is implemented in the CPU model according to the requirements
discussed in the previous sections. As described in the first chapter, the CPU model is
written in C. The OCP handshake protocol is implemented in a C function
bus_interface_process(). When a miss occurs, this function is called to initiate
communication with the memory. The total clock cycles required to complete the data
transfer depend on the memory latency and the OCP protocol overhead. After the start of
the handshake, the function bus_interface_process() is executed on every clock cycle
until the end of the handshake. All the variables that store different transitions of the OCP
signals during the handshake are declared globally in the C program so that their values
would not be lost at the end of the clock cycle. This function is capable of handling both
normal and burst OCP accesses. The C source code is given in the appendix.

2.3 Summary

In this chapter, we have discussed various features of OCP that are used in our CPU
model. This includes the description of basic OCP signals and their signaling
requirements. Later, their use has been demonstrated through timing diagrams, which
show different types of handshakes. As told earlier, this chapter covers very basic
information about OCP. Detailed information can be found from the online manual of
OCP at www.ocp-ip.com. The important thing to remember is that the detection of a miss
causes the CPU model to initiate communication with the memory. This communication
is done through OCP and is implemented in the model by a C function
bus_interface_process().

REFERENCES

Online manual of OCP at www.ocp-ip.com.

18

19

 CHAPTER

As described in the first chapter, our CPU model is written in C language. However, most
existing IP cores today are written either in VHDL or Verilog. In Europe, VHDL is the
widely used Hardware Description Language. Therefore to make the simulation in a
mixed language environment we need some interface between C and VHDL. The VHDL
Foreign Language Interface (FLI) by ‘Mentors Graphics’ provides this interface.

The VHDL FLI allows us to replace VHDL architectures and subprogram bodies with
code written in C. The FLI also provides a number of C functions to allow the VHDL
database to be accessed and manipulated.

FLI has lot of features and can be used for many different tasks. This chapter only covers
the portion of FLI, which is used in the thesis. Detailed information can be found from
the ModelSim technical manual. However, it is our experience that the chapter
concerning FLI in the ModelSim technical manual lacks some practical information that
should be included for the beginner. In this chapter, we have tried to provide this
information. We hope that this chapter would not only serve to understand the simulation
environment of our thesis but also as a quick start guide for the beginner. It is assumed
that the reader is familiar with VHDL.

Foreign
Language
Interface

20

3.1 Using VHDL FLI with Foreign
 Architectures

The purpose of the following discussion is not to explain FLI but to make it clear how to
use FLI i.e. how we can integrate our C and VHDL code so that we can simulate in a
mixed language environment.

 Figure 3.1
We start with the example of our test bench, which is our simulation environment. Our
test bench consists of following entities:
� Clock
� CPU
� Memory

CPU is the entity whose whole behavior is described in C language. The Clock and
Memory are purely in VHDL. We start with the VHDL description of the CPU. The test
bench is shown in figure 3.1. The VHDL description of the CPU in which its ports and
generics are declared, is shown in figure 3.2.

CPU
(Port declaration in

VHDL)

Memory
(VHDL)

Clock
(VHDL)

Behavior
description

in C
 OCP

FL
I

TEST BENCH

21

Figure 3.2 VHDL description of CPU entity

This is all what we need to specify in VHDL.

To use the foreign language interface with C models, you first create and compile
architecture with the FOREIGN attribute. The string value of the attribute is used to
specify the name of a C initialization function and the name of an object file to load.
When ModelSim elaborates the architecture, the initialization function is called.
Parameters to the function include a list of ports and a list of generics.

Starting with VHDL93, the FOREIGN language attribute is declared in package
STANDARD. With the 1987 version, you need to declare the attribute yourself. You can
declare it in a separate package, or you can declare it in the architecture that you are
replacing. (This will also work with VHDL93).

__
entity cpu is
 generic (
 input_file_C :string :="";
 output_file_C :string :="";
 addr_width : integer ;
 data_width : integer);

 port (
 nreset : in bit;
 clk : in bit; -- OCP signal
 SCmdAccept : in bit; -- OCP signal
 SResp : in bit_vector(1 downto 0); -- OCP signal
 SData : in bit_vector(data_width-1 downto 0); -- OCP signal
 MCmd : out bit_vector(2 downto 0); -- OCP signal
 MBurst : out bit_vector(2 downto 0); -- OCP signal
 MAddr : out bit_vector(addr_width-1 downto 0); -- OCP signal
 MData : out bit_vector(data_width-1 downto 0); -- OCP signal
 cpu_stall : out bit;
 cpu_out : out bit);

end cpu;

architecture behaviour of cpu is
 attribute foreign : string;
 attribute foreign of behaviour : architecture is "cpu_init ./ptool.sl ;";
begin
end;
__

22

The value of the FOREIGN attribute is a string containing two parts. For the following
declaration:
attribute foreign of behaviour : architecture is "cpu_init ./ptool.sl";

The attribute string parses this way:
cpu_init
The name of the initialization function for this architecture. This part is required.

ptool.sl
The path to the shared object file to load. This part is required.

In our example we have used only two parameters and these are both required. Some
optional parameters can also be used whose details can be found from the ModelSim
manual.

In our example the cpu_init() function is written in the C file ptool.c. The file ptool.sl is
generated by compiling and linking ptool.c using GNU compiler. So when the ModelSim
loads the CPU entity it searches for the file ptool.sl where all the behavior of the CPU
entity is elaborated. Normally the .so extension is used but on HP machines (which we
are using) .sl extension is used.

If the initialization function has a leading ‘+’ or ‘-’, the VHDL architecture body will be
elaborated in addition to the foreign module. If ‘+’ is used (as in the example below), the
VHDL will be elaborated first. If ’-’ is used, the VHDL will be elaborated after the
foreign initialization function is called.

3.1.1 The C initialization function

This is the entry point into the foreign C model. The initialization function typically:

� Allocates memory to hold variables for the instance
� Registers a callback function to free the memory when ModelSim is restarted
� Saves the handles to the signals in the port list
� Creates drivers on the ports that will be driven
� Creates one or more processes (a C function that can be called when a signal

changes)
� Sensitizes each process to a list of signals

The ModelSim FLI has provided a lot of library functions and types, which are declared
in the header file mti.h. The type mtiSignalIdt is used for the input signals of the entity
(in VHDL) and the type mtiDriverIdt is used for the output signals. In the VHDL
description of the CPU entity the signals nreset, clk, SCmdAccept, SResp and SData are
the input signals so they are declared as type mtiSignalIdT and the output signals of the
cpu entity are MCmd, MBurst, MAddr MData, cpu_stall and cpu_out and they are
declared as types mtiDriverIdT in the C program of the CPU model. So these are declared

23

as shown below in figure 3.3. Note that names of the signals should be the same as in
VHDL.

Figure 3.3 : Declaration in C

Now we look at the cpu_init() function. This function is executed when we load the
CPU entity in ModelSim .In addition to specifying inputs, outputs and sensitivity we can
also use that function to initialize other variables which has to be used later in the code.
We can also add file read/write functions and anything, which we need to use just like a
normal C program. Only the part of the cpu_init() function, which is used to
interface with VHDL, is shown in figure 3.4.

typedef struct {

 mtiSignalIdT nreset;
 mtiSignalIdT clk;
 mtiSignalIdT SCmdAccept;
 mtiSignalIdT SResp;
 mtiSignalIdT SData;
 mtiDriverIdT MCmd;
 mtiDriverIdT MBurst;
 mtiDriverIdT MAddr;
 mtiDriverIdT MData;
 mtiDriverIdT cpu_stall;
 mtiDriverIdT cpu_out;

} inst_rec;

24

Figure 3.4 : C initialization function cpu_init()

We have declared a pointer *cpu_ip of type inst_rec. This pointer is used to point the
variables of inst_rec, which are basically the input and output signals of the CPU entity.
Then we have used ModelSim FLI library functions whose detail is given below:

void mti_AddRestartCB(mtiVoidFuncPtrT func, void *param)
Causes the specified function to be called before the simulator is restarted. The function
is passed the parameter specified by “param”, and it should free any memory that was
allocated.

__
void cpu_init(
 mtiRegionIdT region,
 char *param,
 mtiInterfaceListT *generics,
 mtiInterfaceListT *ports
)
{
 inst_rec *cpu_ip;
 mtiProcessIdT cpu_proc;
 mtiSignalIdT outp;
 cpu_ip = (inst_rec *)mti_Malloc(sizeof(inst_rec));
 mti_AddRestartCB(mti_Free, cpu_ip);

 /* Here we can add our additional code. This can be found in the Appendix. */
 cpu_ip->clk = mti_FindPort(ports, "clk");
 cpu_ip->nreset = mti_FindPort(ports, "nreset");
 cpu_ip->SCmdAccept = mti_FindPort(ports, "SCmdAccept");
 cpu_ip->SResp = mti_FindPort(ports, "SResp");
 cpu_ip->SData = mti_FindPort(ports, "SData");
 outp = mti_FindPort(ports, "cpu_out");
 cpu_ip->cpu_out = mti_CreateDriver(outp);

 cpu_ip->MCmd = mti_CreateDriver(mti_FindPort(ports, "MCmd"));
 cpu_ip->MBurst = mti_CreateDriver(mti_FindPort(ports, "MBurst"));
 cpu_ip->MAddr = mti_CreateDriver(mti_FindPort(ports, "MAddr"));
 cpu_ip->MData = mti_CreateDriver(mti_FindPort(ports, "MData"));
 cpu_ip->cpu_stall = mti_CreateDriver(mti_FindPort(ports, "cpu_stall"));

 cpu_proc = mti_CreateProcess("cpu_process", cpu_process, cpu_ip);
 mti_Sensitize(cpu_proc, cpu_ip->clk, MTI_EVENT);
 mti_Sensitize(cpu_proc, cpu_ip->nreset, MTI_EVENT);
}
__

25

void *mti_Malloc(unsigned long size)
Allocates a block of memory of the specified size and returns a pointer to it. The memory
is initialized to zero. On restore, the memory block is guaranteed to be restored to the
same location with the values contained at the time of the checkpoint. This memory can
be freed by mti_Free(). It cannot be freed by a call to the free() C-library function.

mtiSignalIdT mti_FindPort(mtiInterfaceListT *list, char *name)
This function searches linearly through the specified interface list and returns the signal
ID of the port whose name matches the one specified. It returns NULL if it does not find
the port. The search is not case-sensitive. So this function is used for all the input and
output ports of the CPU entity. As shown in the code of cpu_init() function, all the input
and output signals nreset, clk, SCmdAccept, SResp, SData, MCmd, Mburst, Maddr,
Mdata, cpu_stall and cpu_out are specified using mti_FindPort() function.

mtiDriverIdT mti_CreateDriver(mtiSignalIdT sig)
Creates a driver on a signal. A driver must be created for a resolved signal in order to be
able to drive values onto that signal and have the values be resolved. Multiple drivers can
be created for a resolved signal, but no more than one driver can be created for an
unresolved signal. This function is used for all the output signals of the entity. In our
example the output signals are MCmd, MBurst, MAddr, MData, cpu_stall and cpu_out,
which are used alongwith mti_FindPort() function.

mtiProcessIdT mti_CreateProcess(char *name, mtiVoidFuncPtrT func, void
*param)
Creates a new process. The parameter "name" is the name that will appear in the
Simulator’s process window, which in our case is cpu_process. If the process is created
during elaboration, the specified function will be called at time 0 after all the signals have
been initialized. The mti_Sensitize() and mti_ScheduleWakeup() functions can be used
to cause the function to be called at other times. When the function is called, it is passed
the parameter specified by "param".

void mti_Sensitize(mtiProcessIdT proc, mtiSignalIdT sig,
mtiProcessTriggerT when)
Causes the specified process to be called when the specified signal is updated. If the when
parameter is MTI_EVENT, then the process is called when the signal changes value. If
the when parameter is MTI_ACTIVE, then the process is called whenever the signal is
active. Since the CPU is strictly sequential so it is only sensitive to nreset (reset signal)
and clk (clock) signal. So whenever the nreset or clk signal changes this process
cpu_process() function is called. The nreset signal is only used at the beginning for
initialization.

Input sensitive function
So cpu_init() function is used for initialization and cpu_process() function is used to
describe the functionality of the CPU on every clock cycle. Again, only the portion of
cpu_process() related to FLI is shown here.

26

__
static� void� cpu_process(� inst_rec� *cpu_ip�)�
{�
� � � � int� clk,nreset;�
� � � � int� SCmdAccept;�
� � � � int� count,stall;�
� � �
� � � � char� SData[DATA_WIDTH],MData[DATA_WIDTH],MAddr[ADDR_WIDTH];�
� � � � char� MCmd[3];�
� � � � char� SResp[2];�
�
� � � � clk� � � � � � =� mti_GetSignalValue(� cpu_ip->clk�);�
� � � � nreset� � � =� mti_GetSignalValue(� cpu_ip->nreset�);�
� � � � SCmdAccept� =� mti_GetSignalValue(� cpu_ip->SCmdAccept);�
�
� � � � mti_GetArraySignalValue(cpu_ip->SResp,SResp);�
� � � � mti_GetArraySignalValue(cpu_ip->SData,SData);�
�
� � � � convert(&clk,1);�
� � � � convert(&nreset,1);�
� � � � convert(&SCmdAccept,1);�
� �
� � count=clk;�
� � if(nreset==0)�
� � � � {� count=0;�
� � � � � � stall=0;�
� � � � � � bus_active=0;�
� � � � � � convert(&count,0);�
� � � � � � convert(&stall,0);�
� � � � � � MCmd[0]=MCmd[1]=MCmd[2]=� BIT_0;�
� � � � � � mti_ScheduleDriver(� cpu_ip->MCmd,(long)MCmd,� 0,� MTI_INERTIAL�);� �
� � � � � � mti_ScheduleDriver(� cpu_ip->cpu_out,count,� 0,� MTI_INERTIAL�);�
� � � � � � mti_ScheduleDriver(� cpu_ip->cpu_stall,stall,� 0,� MTI_INERTIAL�);�
� � � � }�
� � else� if(clk==1)�
� � � � {convert(&count,0);�
� � � � � convert(&stall,0);�
�
/*� the� functionality� of� cpu� is� described� here.� Complete� version� is�
given� in� � Appendix*/�
�
� � � � mti_ScheduleDriver(� cpu_ip->cpu_out,count,� 0,� MTI_INERTIAL�);�
� � � � mti_ScheduleDriver(� cpu_ip->cpu_stall,stall,� 0,� MTI_INERTIAL�);�
� � � � �
� � � � mti_ScheduleDriver(� cpu_ip->MCmd,(long)MCmd,� 0,� MTI_INERTIAL�);�
� � � � mti_ScheduleDriver(� cpu_ip->MAddr,(long)MAddr,� 0,� MTI_INERTIAL�);�
� � � � mti_ScheduleDriver(� cpu_ip->MData,(long)MData,� 0,� MTI_INERTIAL�);�
� � � � � � }�
� � }�

}__
__

Figure 3.5 cpu_process()

27

As evident the process cpu_process only runs when there is a change in clock signal. To
make it sensitive only with the positive edge of the clock, all the code is written under the
“if” condition: clk=1. For all the input and output signals the corresponding variables
have been declared. Hence the signals nreset, clk and SCmdAccept, which are single bit
signals, are declared as integers of type int. And the signals having more than one bit
SData, MData, MAddr, MCmd and SResp as arrays of type char having length equal to
their bit width. The input variables get the values from the VHDL environment from the
FLI functions mti_GetSignalValue() and mti_GetArraySignalValue(). These variables
have been updated every time when the process runs and are then assigned to their
corresponding signals by the function mti_ScheduleDriver(). All the input signals to CPU
entity are generated by the entities, which are in VHDL. By using the FLI library
functions (which are used in cpu_init() function and cpu_process() function) these values
of these signals are assigned to their corresponding variables in cpu_process() function.
Based on these values we update the output variables whose values are in turn assigned to
the output signals of CPU entity. These output signals are inputs to memory, which is
again an entity fully in VHDL.

3.1.2 Some important issues

1. The logic level ‘1’ in VHDL is equivalent to 3 in C and logic level ‘0’ is equivalent to
We use our own simple function convert() which convert the input signal values from
integer 3 to integer 1, integer 2 to integer 0 and vice versa for the output signals. This is
done just to make the code more readable.

2. As described earlier that the signals having more than one bit have been used as
characters. These signals are of type bit_vector in VHDL. To deal with these signals in C,
we have declared a type of enumerated data.

typedef enum {BIT_0, BIT_1} bit;

If we want to assign logic level ‘0’ to a particular bit we assign it BIT_0 and for logic
level ‘1’ we assign BIT_1. Thus if we want to assign “001” to the three bit signal MCmd,
it would be as follows:
MCmd[0]=BIT_0;
MCmd[1]=BIT_1;
MCmd[2]=BIT_1;

3. Since cpu_process() is basically a C function so all the variables declared inside are
actually local variables i.e. they lost their values at the end of the function. Therefore if
we want for some variables to retain their values after the function, they must be declared
globally.

4. To get the values of generics specified in VHDL, the pointer *generics is used as
shown in C initialization function cpu_init(). The pointer *generics is of type
mtiInterfaceListT which is declared in the header file mti.h. Consider the example of our
model in which the two generics specified in VHDL are input_file_C and output_file_C

28

and they are of type string. As evident from the name, the user provides the names of the
input and output files through these generics. The name of the files can be retrieved in the
C program by using the *generics pointer as shown below:

A linked list is created in header file mti.h and successive generic elements can be
retrieved by using the pointers shown in the above example.

3.2 SUMMARY

The FLI is used to make communication between entities written in C and in VHDL. The
entity whose behavior is described in C is still has its port declaration in VHDL. But in its
architecture description in VHDL, the name of the ‘C initialization function’ and ‘C
shared file’ containing this function is specified. In the ‘C shared file’ the complete
behavior of the entity is elaborated. When the entity is loaded in the simulator the control
is transferred to that ‘C initialization function’. This function uses FLI library functions to
transfer the information about the ports and generics of the entity, which are specified in
its VHDL declaration. It also specifies different functions, which are sensitive to the
input signals of this entity. Whenever these inputs change, the corresponding functions
are executed. Whenever these functions are executed they update some variables, which
are basically the updated values of the output signals of the entity. The FLI library
functions then convert these values according to VHDL standards so that can be
understood by the entities written purely in VHDL and vice versa.

In this chapter we have described, how we can simulate in a mixed language environment
by using FLI. The FLI has lot of features and options available and there is lot of ways to
do same things. We have used which is most simple and we have covered only those
features, which are required in our task.

REFERENCES

Foreign Language Interface (FLI), Mentors Graphics’ ModelSim Technical Manual.

if((fptr1= fopen(generics->u.generic_array_value,"r")) ==NULL)
 {
 printf("\n Couldn't open the file %s",generics->u.generic_array_value);
 }

if((fptr2= fopen(generics->nxt->u.generic_array_value,"w")) ==NULL)
 {

 printf("\n Couldn't open the file %s",generics->nxt->u.generic_array_value);
 }

29

 CHAPTER

Now we know about OCP and FLI and also how they are used in the model. In this
chapter, we will describe the overall structure and working of our CPU model. We start
with some features of general-purpose microprocessors and then we will explain how
these features are included in our model.

4.1 An overview of the General-purpose
 Microprocessor

To make a model of the processor we need to study the features and functionality of the
processors used today. All processors today are pipelined and have separate instruction
and data cache. In a given clock cycle more than one instruction are in progress. Their
number depends on the depth of the pipeline. The modern processors used today are very
complex. To increase the throughput the parallelism among instructions is exploited by
out of order execution [1] and more than one instruction may be issued in every clock
cycle [2]. However, in our model we haven’t targeted these architectures. Our model is
focused on the processors used in embedded applications. These processors are not as
much complex like the processors used in Personal Computers, Workstations or High end
Servers. Their architecture is much simpler than that and the pipeline scheme is also not
that much complex. The instruction execution is also in order and in a given pipeline
stage only one instruction is active. In most embedded processors the pipeline depth is
between 5 to 8 stages [3]. ARM processor is one of them, which is largely used, in
embedded applications. Therefore we can focus ourselves to study the behavior of these
processors and try to include this behavior in our model.

Let’s have a quick look on a five stage pipelined processor [4] with separate instruction
and data cache. The first stage of the pipeline is called Instruction Fetch stage in which
the processor fetches instruction from the instruction cache by generating the instruction
address. In some processors this Instruction Fetch stage is further divided into two stages
to decrease the clock period. The next step is to decode the instruction, which is normally

An Overview
of the CPU
Model

30

called Instruction Decode (ID) stage. The instruction is decoded and the specified
registers are accessed. In most architectures if the instruction is Jump or Branch some
action has been taken in the ID stage that involve change in the next instruction target
address. The next stage is called the Execution stage where the instruction is treated
according to its type. If it is an R-Format instruction (instruction that require arithmetic
operation by ALU on its operands) then some arithmetic or logical operation is
performed in the ALU (Arithmetic Logic Unit) and in the case of a load or store
instruction the memory address has been calculated. The next stage is the memory stage
where the data cache is accessed for either data read or data write. And the last stage is
Write Back stage where the output of the ALU or the data from the memory is written
into the register file.

Figure 4.1 Five-stage Pipeline MIPS R1000

In the ideal case, every instruction consumes one clock cycle and the CPI (cycles per
instruction) is 1. In Superscalar machines where more than one instruction can be issued
in a clock cycle the ideal CPI can also be decreased from 1. However, these machines are
not the targets in our model. The actual CPI is always greater than 1 due to structural,
data and control hazards. There are also instructions like multiply/divide that consume
several clock cycles, and depending upon the frequency of these instructions the CPI
increases. But the most dominant factor is the misses produced during the execution.

There are only two cases when the processor needs to communicate with the memory:
� When the instruction miss occurs
� When the data miss occurs

The instruction cache is accessed in every clock cycle. So there is always a probability
that an instruction miss can occur. Thus in the first stage if the instruction is not found in
the instruction cache, instruction miss occurs and the CPU has to fetch the instruction
from the memory. This involves consumption of many cycles depending on the latency of
the memory. When the instruction is brought in the cache the normal execution
continues.

Instruction Cache Register File ALU Data Cache Register File

Instruction Fetch
(IF)

Instruction Decode
(ID)

Execution (EX) Data Fetch (DF) Write Back (WB)

31

Data miss can only occur in the case of load or store instruction and also when these
instructions result in a data miss. All other types of instructions that do not access data
cache cannot generate data misses. Because of these reasons, instruction misses are
higher than data misses in most programs. However, the opposite is also true in many
programs. In the case of load or store instruction, when the miss arises in the data cache,
the pipeline is stalled and remains stalled until the required data reaches the data cache
from the memory. There are two types of data misses: read misses and write misses. In
the case of a read miss the CPU initiates communication with the memory to read some
data elements while in the case of a write miss the CPU initiates communication to write
on some particular location in the memory.

The instruction miss and the data read miss are similar in terms of communication with
the memory. Whenever any of these misses occur, the access to the memory is ‘burst
access’. An access to the memory brings the next four instructions or data items from the
memory into the cache to exploit spatial locality. However, write accesses to the memory
are not burst accesses. When memory is accessed for write operation, only one location in
the memory is updated. The ‘burst access’ occupies the bus for a greater number of clock
cycles as compared to normal access as shown in section 2.1.3 where both the normal and
burst OCP accesses are shown.

There are two kinds of write policies in cache designs: write through and write back. In
write through scheme, the information is written to both the block in the cache and to the
block in the memory. So in this scheme every store instruction results in a write miss. In
write back scheme, the information is written only to the block in the cache. The
modified block is written to the memory only when it is replaced.

So whenever a miss occurs, the pipeline is stalled and remains stalled until the
corresponding miss is handled. It may happen that the instruction and data miss occurs at
the same time then both the misses are handled one by one with the data miss to be
handled first so that the pipeline can continue. These factors increase the completion time
of an individual instruction, which in ideal case is 1 clock cycle. We can say that if there
is no miss or no other hazard then at the end of every clock cycle one instruction is
completed other wise it is not.

Some processors also have second-level cache that is bigger than the first-level caches. It
can be a unified cache that is used for both data and instruction or it may be a case that
there are separate instruction and data second-level caches. When there is a miss in the
first-level cache then before accessing the memory, second-level cache is accessed. If the
required instruction or data is found in the second-level cache it is supplied to the first-
level cache otherwise the memory is accessed. In the case of a hit in the second-level
cache the penalty for accessing the second-level cache is lesser than accessing the
memory. But in the worst case when there is a miss in the second-level cache the miss
penalty is the number of clock cycles to access the second-level cache plus the number of
clock cycles to access the memory. The effective miss rate in the presence of second-
level cache is the product of the individual miss rates of both first-level and second-level
caches.

32

As described in the first chapter, our aim is to generate traffic on the bus in a realistic
manner. Therefore, in the above discussion we have focused ourselves on the factors,
which generate traffic on the bus connecting the CPU and memory. Following are the
important observations from the above discussion:

� In ideal case, every instruction requires 1 clock cycle in a pipelined processor.
� In every clock cycle, the number of active instructions is usually equal to the

depth of the pipeline.
� In every clock cycle, there is a probability that an instruction miss or data miss or

both can occur.
� When a miss occurs, memory is accessed and the pipeline is stalled. The pipeline

remains stalled until the required data is brought into the cache.
� Instruction misses and data read misses generate burst access to the memory while

the write misses generate single access.

Based on this information we made our model which include the behavior of all these
phenomenon discussed above

4.2 Structure and working of the model

We will start the discussion of our model with the explanation of the basic input
parameters of the CPU model and then we will show how the necessary data is collected
from these inputs. Later, we will show how the model is organized into different parts
and then we will describe the overall sequence of operation during the whole simulation.

4.2.1 Basic inputs of the model

The basic input parameters are supplied by the user to carry out the simulation. These
inputs are written in a specially designed file, which is made for this model. These basic
inputs are the required inputs and are necessary to carry out the simulation. In addition to
these basic inputs there are also some optional inputs, which will be discussed in the next
chapter. The basic inputs are given below:

� Total number of instructions
� Percentage of load instructions
� Percentage of store instructions
� Instruction miss rate
� Data miss rate
� CPI (including the effect of structural, data and control hazards)
� Memory Access startup latency (Number of cycles required to initiate memory

transfer after detecting a miss)
� Memory Accesses end latency (Number of cycles required to restore the normal

execution after the completion of memory transfer)
� Seed for the random functions

33

The ‘total number of instructions’ tells us about the total number of instructions which we
have to simulate. These ‘total number of instructions’ are not the total number of
instructions, which we can found in the assembly program. They are the total number of
instructions, which are actually executed. For e.g., if there is a loop consisting of 10
instructions and that loop runs for 100 times then the total number of instructions that are
executed are 1000 not 10.

‘Percentage of load instructions’ and ‘Percentage of store instructions’ tell us how many
instructions are load/store from the total number of instructions. These are the
instructions that may cause a data miss. These two parameters and ‘Data miss rate’ also
help us to distinguish between read and write misses as these two misses have different
behaviors on the bus.

‘Instruction miss rate’ and ‘Data miss rate’ tell us about how many data and instruction
misses are generated during the execution of the total number of instructions. We have to
generate these misses in a manner that resembles to a real traffic.

The basic input CPI (cycles per instruction) tells the CPI without taking into account the
effect of the misses. However, the CPU model demands that this input CPI includes the
effect of different data, control and structural hazards. The reason for this demand is that
the CPU model can’t include the effect of these hazards by itself because of the absence
of real software. However, even if the user provides the ideal CPI it doesn’t have a very
remarkable affect on the simulation. Therefore, the ideal CPI can also serves the purpose.

‘Memory Access startup latency’ is the number of clock cycles required to initiate
memory transfer after detecting a miss. Nearly all processors, after detecting a miss can’t
initiate communication with the memory in the same cycle. Generally it is started at the
start of the next cycle and in some processors depending upon their pipeline technique
more than one clock cycle is required. Similarly, ‘Memory Accesses end latency’ is the
number of clock cycles required to restore the normal execution after the completion of
the memory transfer and is different for different processors.

The input ‘Seed for random functions’ is any integer number, which is used as a seed in
different random functions in the C program of the model.

4.2.2 Execution clock cycles

By using the values of these inputs the CPU model generates traffic on the bus. Based on
these parameters we can approximate the total number of clock cycles required to
complete the given number of instructions. The total number of clock cycles in which the
CPU does some useful work is given by (let’s call it Execution clock cycles):

Execution clock cycles = CPI × Total number of instructions (4.1)

The parameter ‘Execution clock cycles’ is one of the most important parameters of our
model. The ‘Execution clock cycles’ to complete the given number of instructions remain

34

constant and is independent of memory latency and bus arbitration. In this chapter and in
the next chapter, whenever we use the term ‘Execution clock cycles’, we mean the
effective clock cycles in which the CPU is perfectly in execution i.e. the number of clock
cycles during which the CPU is not stalled.

If we take into account the misses occurred during the execution, the total number of
clock cycles will be:

Total number of clock cycles = Execution clock cycles + Total number of misses × Miss

penalty (4.2)

Where,

Total number of misses = instruction misses + data misses

Total Execution time = Total number of clock cycles × Clock period (4.3)

Thus before the start of the simulation, we can calculate the Execution clock cycles from
the CPI and the total number of instructions, which are the user-supplied inputs. We also
know the total number of misses, which have to be introduced within these Execution
clock cycles. However, we can’t calculate the Total number of clock cycles by using
equation 4.2 because we don’t know about the Miss penalty i.e. the number of clock
cycles required to access the memory. Different memories have different miss penalties
and the miss penalty for the same memory may be different in the same simulation
depending upon the traffic on the bus. It may happen that when CPU initiates
communication with the memory, the memory is busy handling request from some other
component of the SOC design and causes the CPU to stall for the clock cycles more than
the latency of the memory. Hence we can only know about the total number of
consumed clock cycles (to execute the given number of instructions) only at the end of
the simulation. However, we can calculate the Total execution cycles and we can use it in
our model.

As already described, no real software is running on our model, so during the simulation
we have to make some guess whether in a given cycle we have any kind of miss or not. If
we don’t have a miss we can say that one instruction is completed other wise instruction
is not completed. This process is repeated until the given number of instructions has been
completed i.e. the Total execution cycles are completed. Chapter 5 is dedicated to the
discussion about how we make the decision about a miss in a given cycle.

Before the start of the actual simulation, the CPU model is initialized with the total
number of execution cycles and the total number of misses and with lots of other data
elements that will be used during the simulation. A variable is initialized that counts the
execution clock cycles. This counter increment by one in every useful clock cycle. When
this count becomes equal to the Total execution clock cycles, the simulation is ended. In
every clock cycle separate functions are called to make decision about the misses. If there
is no miss then the normal execution continues. In the other case, when a miss has been
found the model initiates communication with memory. During this whole memory

35

access, the CPU remains stalled i.e. not doing useful work. So the execution clock cycle
counter does not increment during this period. When the memory transfer is completed
the normal execution continues i.e. execution clock cycle counter starts incrementing
again after every useful clock cycle.

4.2.3 Three major parts of the model

The whole model is divided into three major parts. Each part consists of a group of
functions to carry out a particular task.

� A set of initialization functions that takes control from VHDL through FLI. This

part is explained in chapter 3.

� A set of functions that communicates with the outside world like memory through

OCP. This involves updating of the signals that communicates with the memory
and the variables that keep track of the transitions occurred during the
handshaking. The signals transitions are according to OCP as explained in chapter
2.

� A set of functions that takes care of the generation of misses during the

simulation. They are divided into parts. The first part consists of initialization
functions that initializes the model with the input parameters and makes necessary
calculation that will help in the rest of the simulation. The second part consists of
functions that make decision about a miss in a given cycle

The third part contributes the major part of the model and is explained in Chapter 5.

4.2.4 Sequence of Operations

The whole simulation is carried out in the following sequence. All these steps are shown
in figure 4.2.

1. Initialize the CPU model with the variables that contain the values of the input
parameters i.e. total number of instructions, load/store instructions, instruction
miss rate, data miss rate etc and make some necessary calculations. The inputs are
read from the file by using C file read functions. The initialization takes place
when we load the design in the simulator (Modelsim) window. This step is called
‘Initialization’ and is shown as the grey shaded region in figure 4.2. This part is
explained in detail in Chapter 5.

All the remaining steps are performed during the simulation i.e. in each clock cycle the
model undergoes the following steps.

2. Check at the start of each cycle if the CPU is in some stage of memory transfer.
This can be seen by checking the variable, which shows whether CPU is stalled or

36

not. If the CPU is stalled then it is already in the communication phase i.e.
communicating with the memory through OCP, which requires some cycles to
complete. In that case call the function bus_interface_process(), which is
responsible for the memory transfer. The function also checks the current status of
the handshaking and takes necessary actions accordingly. This step is repeated in
every clock cycle until the memory transfer is completed. If the memory transfer
is completed then clear the variables that contain information about the misses
that needs to be handled i.e. sets them to 0. If the CPU is not currently involved in
memory transfer or the memory transfer is completed then go to the next step.

3. Increment the Execution clock cycle count.

4. Call the functions that make decision about the introduction of instruction and

data misses in a given cycle. Update these variables according to the decision i.e.
set them to 1 if a miss has been found or 0 if there is no miss. This step is also
indicated as a grey shaded region in figure 4.2 and is explained in detail in the
next chapter.

5. Check the variables that contain information about the instruction and data

misses. If there is no miss then go to the next step otherwise go to step 8.

6. The clock cycle has ended. Save the values of all the variables that will be used in
the next cycle. All necessary variables are declared globally so that their values
will not be lost at the end of the function. Go to the next step.

7. Compare the value of the execution clock cycle count variable with the Total

execution clock cycles value. If it is less than the total value then it means that the
simulation is not ended yet and thus go back to step 2. If it is equal or greater than
the total value then it means that all the instructions have been simulated so go to
the step 9.

8. If a miss has been found then stall the processor model. Call the function that

starts communication with the memory through OCP. Keep the processor stalled
until the miss has been handled. This has been checked at the start of every cycle
as shown in step2. If there is a miss in both the instruction and data then handle
the data miss first and then handle the instruction miss. Go to step 6.

9. All the instructions have been simulated. Generate report about the total execution

time of the instructions, the number of cycles in which the CPU remain stalled
waiting for the memory response, the number of cycles the CPU is executing
instructions, the number of clock cycles consumed in the longest handshake as
well as in the shortest handshake etc. Terminate the simulation.

37

Figure 4.2

Initialization Start of simulation

Start of clock cycle

CPU already in
memory transfer?

Increment the
Execution clock

cycle count

Call the functions
to decide the

misses

Misses found?

End of clock cycle

All instructions
simulated? End Simulation

Call the function to
complete the

remaining transfer or
initiate a new

memory transfer
depending upon the

condition.

YES

 NO

 NO

YES

YESNO

Flowchart of the complete process

38

4.3 SUMMARY

In this chapter, we have discussed those features of general-purpose processors, which
are used in our CPU model. We have described what happens to the pipeline when a miss
occurs. We have described the basic input parameters of the model and their purpose in
the model. We have shown how the model is divided into three different parts and then at
the end we have described the flowchart of the whole process.

 From the basic parameters, the CPU calculates the total Execution clock cycles and the
total number of instruction and data (read and write) misses. These misses have to be
introduced by the model within these Execution clock cycles. During the simulation, the
CPU model decides in every clock cycle whether a miss has to be introduced or not. The
variable that counts the Execution clock cycles increments by one after every Execution
clock cycle except when the CPU is stalled. When this count reaches the limit i.e. the
total number of Execution clock cycles, it implies that all the instructions are completed.
The model ensures that at this point all the misses have already been introduced. The
simulation is then completed and the model generates the report, which tells the effective
CPI that includes the effect of the misses. It also calculates the total number of clock
cycles that are required to complete the execution of the given number of instructions, the
number of clock cycles during which the CPU remains stalled and the longest and
shortest time to complete the data transfer with the memory.

REFERENCES

[1] DLX using Tomasulo’s algorithm, Computer Architecture A Quantitative Approach
by John L Hennessy & David A Patterson

[2] Superscalar version of DLX, Computer Architecture A Quantitative Approach by
John L Hennessy & David A Patterson

[3] ARM9 Embedded Trace Macrocell (ETM9) Technical Reference Manual

[4] MIPS R1000, Computer Organization and Design by John L Hennessy & David A
Patterson

39

 CHAPTER

In the previous chapter we have explained the overall structure and working of the model.
The model is divided into three parts. The first part consists of set of functions that are
used to transform different signals and variables’ values from C to VHDL and vice versa.
The second part is responsible to communicate with the memory. The third part, which is
the most important part, makes necessary calculations about the misses and introduces
them during the simulation. The third part is the two grey shaded regions in fig 4.2. The
first two parts have already been explained in chapters 2,3 and 4. In this chapter we will
explain the third part i.e. the two grey shaded regions in fig 4.2. So this chapter includes
the discussion about different techniques that are used to generate the misses in the
simulation.

When a miss occurs, it generates traffic on the bus. Our main aim is to generate traffic
that resembles to a real traffic that occurs as a result of execution of real software on real
IP cores. And to accomplish this, we have to generate misses in a manner that resembles
to the misses generated in a real program.

We start with a very brief overview of caches. As evident from the above discussion, it is
assumed that you have read chapter 4.

5.1 An Overview of Caches

Following is a quick review of some cache related concepts. The intention here is not to
describe caches but to show later how these particular cache-related concepts are used in
our model and also why some of these concepts are not used in our model. So we assume
that the reader has enough knowledge of caches and the related concepts. The interested
reader can read more about caches from [1] and [2]. Most information in this section is
also taken from [1] and [2].

Miss
Generation
Techniques

40

5.1.1 Cache Basics

Cache is the first level of memory hierarchy. The next instruction (to be executed) or the
data item is first searched into the cache. When the CPU finds a requested data item in
the cache, it is called a cache hit. When the CPU does not find a data item it needs in the
cache, a cache miss occurs. A fixed-size collection of data containing the requested word,
called a block, is retrieved from the main memory and placed into the cache. Temporal
locality tells us that the same word is likely to be needed again in the near future, so it is
useful to place it in the cache where it can be accessed quickly. Because of spatial
locality, there is high probability that the other data in the block will be needed soon.

The time required for the cache miss depends on both the latency and bandwidth of the
memory. Latency determines the time to retrieve the first word of the block, and
bandwidth determines the time to retrieve the rest of this block. Bandwidth can also be
taken as the width of the bus connecting the cache or CPU to the memory. A cache miss
is handled by hardware and causes processors following in-order execution to pause, or
stall, until the data are available.

5.1.2 Division of address

Caches have an address tag on each block frame that gives the block address. The tag of
every cache block that might contain the desired information is checked to see if it
matches the block address from the CPU. As a rule, all possible tags are searched in
parallel because speed is critical.

There must be a way to know that a cache block does not have valid information. The
most common procedure is to add a valid bit to the tag to say whether or not this entry
contains a valid address. If the bit is not set, there cannot be a match on this address.

Figure 5.1 : Three portions of address in a set-associative or direct-mapped cache

Figure 5.1 shows how an address is divided. The first division is between the block
address and the block offset. The block frame address can be further divided into the tag
field and the index field. The block-offset field selects the desired data from the block,
the index field selects the set, and the tag field is compared against it for a hit.

If the total cache size is kept the same, increasing associativity increases the number of
blocks per set, thereby decreasing the size of the index and increasing the size of the tag.
That is, the tag-index boundary in Figure 5.1 moves to the right with increasing
associativity, with the end point of fully associative caches having no index field.

41

5.1.3 Miss Rate

Miss rate can be defined as the fraction of cache accesses that result in a miss (i.e.,
number of accesses that miss divided by number of accesses).

Miss rate = Number of accesses that miss
 Total number of accesses

Instruction miss rate = Number of instruction cache accesses that miss
 Total number of instructions

Data miss rate = Number of data cache accesses that miss
 Total number of load/store instructions

5.1.4 Different Cache Configurations

There are three different types of cache configuration:

� Direct mapped
� Set Associative
� Fully Associative

If each block can appear at only one place in the cache, the cache is said to be direct
mapped. The mapping is done according to the formula:

(Block address) MOD (Number of blocks in cache)

If a block can be placed anywhere in the cache, the cache is said to be fully associative.

If a block can be placed in a restricted set of places in the cache, the cache is set
associative. A set is a group of blocks in the cache. A block is first mapped onto a set,
and then the block can be placed anywhere within that set. The set is usually chosen by
bit selection; that is,

(Block address) MOD (Number of sets in cache)

If there are n blocks in a set, the cache placement is called n-way set associative.

The range of caches from direct mapped to fully associative is really a continuum of
levels of set associativity. Direct mapped is simply one-way set associative and a fully
associative cache with m blocks could be called m-way set associative. Equivalently,
direct mapped can be thought of as having m sets and fully associative as having one set.

42

5.1.5 Types of Misses

Compulsory: The very first access to a block cannot be in the cache, so the block must
be brought into the cache. These are also called cold start misses or first reference misses.

Moving from direct mapped to full associativity has no impact on the compulsory misses.
Larger block size can reduce the compulsory misses.

Capacity: If the cache cannot contain all the blocks needed during execution of a
program, capacity misses (in addition to compulsory misses) will occur because of blocks
being discarded and later retrieved.

A little can be done to improve the capacity misses except to increase the size of the
cache.

Conflict: If the block placement strategy is set associative or direct mapped, conflict
misses (in addition to compulsory and capacity misses) will occur because a block may
be discarded and later retrieved if too many blocks map to its set. These misses are also
called collision misses or interference misses. The idea is that hits in a fully associative
cache which become misses in an N-way set associative cache are due to more than N
requests on some popular sets.

Our objective here is not to study the ways by which these three kinds of misses can be
improved. Our objective is to model these misses.

5.2 Modeling and distribution of the misses

Based on the issues and the concepts, which were discussed in the previous section, we
will develop our model that is used to generate misses. The modeling of the misses
consists of two parts.

� Initialization
� Simulation

The ‘Initialization’ part is done before the start of the actual simulation i.e. when the
design containing the CPU core model is loaded in the simulator. The ‘Simulation’ part
takes place during the actual simulation. During every clock cycle a decision is made
about the introduction of a miss according to some rule described in the later section. The
Initialization and the Simulation part can be identified in figure 4.2 as the grey shaded
regions.

We start with the discussion of the ‘Initialization’ part, which include all the initial
calculation of the model that takes place before the start of the simulation.

43

5.2.1 Initialization

In this part the total number of Execution clock cycles and the total number of instruction
and data misses are calculated. The total number of Execution cycles is divided into
many parts and the misses are distributed among these parts according to some
procedure, which is described in this section. We have made several assumptions and
decisions in this part. Our goal is to build some information that will be used to make
decisions about the introduction of the misses during the ‘Simulation’ part. We will show
all the steps of our calculations in the same order as they are performed in the model. The
discussion of these steps is coupled with the reasons and the background theories, which
enable us to make these steps and decisions.

5.2.1.1 Initial calculation of the basic input parameters

The model starts by reading the basic and optional inputs from the input file. Details
about the input file are given in the appendix. As described in the previous chapter, our
basic inputs include:

� Total number of instructions
� Percentage of load instructions
� Percentage of store instructions
� Instruction miss rate
� Data miss rate
� CPI (including the effect of structural, data and control hazards)
� Memory Access startup latency (Number of cycles required to initiate memory

transfer after detecting a miss)
� Memory Accesses end latency (Number of cycles required to restore the normal

execution after the completion of memory transfer)
� Seed for the random functions

We can obtain the necessary data from these basic inputs that can help in the rest of the
simulation.

As described earlier, the total Execution clock cycles can be calculated as:

Execution clock cycles = CPI × Total number of instructions (5.1)

These are the total number of clock cycles in which the CPU does some useful work i.e.
the cycles, which are consumed in executing the instructions during which the CPU is not
stalled. The execution clock cycles are independent of the memory latency and bus
arbitration.

44

The total number of load/store instructions is given by:

Percentage of load/store instructions = Percentage of load instructions + Percentage of

 store instructions (5.2)

Total number of load/store instructions = Percentage of load/store instructions × Total
 number of instructions (5.3)

Similarly, we can find:

Total number of load instructions = Percentage of load instructions × Total number of
 instructions (5.4)

Total number of store instructions = Percentage of store instructions × Total number of

 instructions (5.5)

We can calculate the total number of instruction and data misses which are generated
during the execution of the given number of instructions:

Instruction misses = Instruction miss rate × Total number of instructions (5.6)

Data misses = Data miss rate × Total number of load/store instructions (5.7)

Write misses = Total number of store instructions × data miss rate (5.8)

Percentage of write misses = Write misses Data misses (5.9)

Read misses = Data misses – Write misses (5.10)

The Data cache Access rate can be calculated by dividing the total number of load/store
instructions with the total number of instructions.

Data cache Access rate = Total number of load/store instructions
 Total number of instructions (5.11)

Total misses = Instruction misses + Data misses (5.12)

Now we have the following parameters, which will be used during the rest of the
calculations and during the simulation.

� Execution clock cycles
� Instruction miss rate
� Data miss rate
� Data cache Access rate
� Instruction misses
� Data misses

45

� Read misses
� Write misses
� Seed for different random functions

From the basic inputs, we have calculated the Execution clock cycles and the total
number of instruction and data misses. Now we have to distribute these misses within
these Execution clock cycles. No matter how we distribute these misses in these execution
clock cycles; the miss rate would remain the same. Our job is to introduce these misses in
such a way that they generate traffic on the bus that looks similar to the traffic that arises
as a result of the execution of real softwares on real IP cores of the processors.

Before proceeding to the next steps of our initial calculations, we need to discuss some
issues, which forces us to make some assumptions.

5.2.1.2 Some Basic Issues

The misses that are generated during the program execution depends on two factors.
� Cache configuration (associativity, cache size, block size, number of blocks)
� Software

To introduce the misses in a way that looks like the misses due to the real program, we
need to study the effect of the different cache configurations and different software
routines running on the CPU.

If we want to calculate a miss in a given cycle by using the block placement formulas of
the direct mapped or set associative caches given in section 5.1.4, we must know the
Block Address and the number of cache blocks in direct mapped cache while in the case
of set associative or fully associative caches we need to know about the Block address
and the number of sets in the cache. Number of blocks or the number of sets can be made
user supplied inputs but we can’t know the block address because we are not running any
real software. Same software generates different number of misses on different cache
configurations. Therefore we can’t use the conventional methods which are used in most
simulators that take an address trace of the instruction and data references and cache
configuration, simulate the cache behavior to determine which references hit and which
miss, and then report the hit and miss totals.

Direct mapped caches have higher miss rates than set associative and fully associative
caches. Increasing associativity of the cache always result in decrease in miss rate.
However set associative caches are little bit slow than the direct mapped caches resulting
in an increase in the clock period.

The cache configuration has a direct impact on the miss rate, which is also one of the
basic input parameter of our model. Since miss rate is itself an input parameter, there is
no need to include cache configuration as an input parameter. We can’t make use of it
any way without executing the real software. Therefore when the user enters the
instruction miss rate and the data miss rate, we assume that it includes the effect of

46

different cache configurations. This miss rate is the most important parameter and the
whole behavior of the model depends on its value.

Similarly, the second-level cache decreases the total accesses to the memory. In the
presence of second-level cache the global miss rate is the actual miss rate, which is the
product of first-level cache miss rate and the second-level cache miss rate. Therefore it is
assumed that a small value of instruction and data miss rate as an input parameter can
approximate the effect of second-level cache.

The second factor that affects on the number of misses are the software routines. All
software routines are combinations of loops, conditional statements, functions, arrays,
pointers and structures. Although we don’t know the software but still it is possible to
model the behavior due to these basic programming constructs. We have already
discussed the three C’s of misses (compulsory, capacity, conflict) in section 5.1.5. The
misses introduced by these software routines are the combination of these three different
kinds of misses. For example, an instruction miss occurs when an instruction is not found
in the cache. There can be many reasons of an instruction miss. Either it is the first time
that this instruction is accessed (compulsory miss). The program reaches to this
instruction either through sequential execution or because of a jump (either conditional or
non-conditional). If it is the first time that this part of code is accessed then the bunch of
misses would occur when the next sequential instructions are accessed (compulsory
misses). It may happen that this part of code was in the cache before but due to conflict it
was replaced by some other instructions (conflict misses). The important point to note
here is that this sort of behavior is present in most programs and we can introduce some
misses in our model that resembles to the misses originated because of the above-
mentioned behavior. In the same manner most data misses are produced in loops and
when arrays are accessed. We can also introduce data misses in our model, which
resemble to the misses originated when different parts of the arrays are accessed and
when they are accessed in a loop. These two cases are not the only behaviors that can be
modeled approximately. There are many that can be modeled and they will be discussed
in the later sections. Since we don’t know the software we can’t say which behavior is
mostly present in a program unless specified by the user. What we can do is to introduce
these behaviors in significant proportions in the given number of available Execution
clock cycles. It is also not possible to model all different behaviors but they are present in
the programs and we can’t just eliminate them. Summarizing, we can say that there are
many software behaviors that can be modeled approximately, but there are many of them,
which can’t be modeled. Remember that the total number of instructions and the total
number of instruction and data misses are constant. We can distribute these misses to
represent different behaviors. We have to decide that in a given number of Execution
clock cycles how we introduce these special behaviors and in which proportions and what
we have to do about the behaviors, which can’t be modeled.

47

5.2.1.3 Three modes of simulation

Based on what we can model and what we can’t model, we divide the whole execution
sequence into three major modes. In other words, we can say that the total Execution
cycles and total number of instruction and data misses are divided into three parts and are
assigned to these modes. However, the distribution among the three modes is not even.
The three modes are:

� Compulsory mode
� Random mode
� Special mode

The compulsory mode is used to model the compulsory misses. This mode is introduced
at the beginning of the simulation.

Random mode is used for the behavior, which we can’t model. Therefore when this mode
is in execution (during simulation) it makes decisions about the misses based on
randomness. A full detail of this mode is described in the next section. The results have
shown that the traffic generated by this mode resembles like a real traffic.

Special mode introduces a behavior due to specific software routines. It is further divided
into many small modes each representing a special kind of behavior.

During the simulation, after the completion of Compulsory mode, the execution sequence
switches between Random and Special modes (within different modes of Special mode
each representing some particular behavior) till the end of the total Execution cycles.

During this whole 5.2.1.3 section, we will describe how we divide this total number of
Execution clock cycles and total instruction and data misses among these modes. As
written many times, our goal is to generate traffic on the bus in a realistic manner. And to
achieve this, we have made some rules for this division of Execution clock cycles and the
misses. Therefore in this whole section, we will describe how we are doing this division
and why it is necessary to make such division.

C Random function
During the calculation and the simulation C random function is used many times. These
functions generate pseudo random numbers in the range 0 to RAND_MAX. There are
many C random functions and are classified on the basis of the range of pseudo random
numbers they produce, number of arguments and whether they are thread safe or not. We
have used C rand_r() function. Its prototype declaration is:

rand_r(int &,int &)
And can be used as:
 rand_r(&seed,&randomvalue);

48

Every time this function is called the integer variable ‘randomvalue’ gets some pseudo
random number. The sequence of the pseudo random numbers depends on the value of
the seed. This integer variable seed gets its value from the user and is also one of the
basic input parameter. A different value of seed every time when the program runs,
means that every time different sequence of pseudo random number will be generated. If
the same value of seed is used again, the same sequence will be generated. For this
reason, the ‘seed’ is user-defined parameter.

Now we will calculate the Execution clock cycles, instruction and data misses assigned to
each mode.

5.2.1.3.1 Calculations of Compulsory mode

The compulsory misses contribute 1-25% of the overall misses [1]. In a perfect ideal
cache, all the misses are compulsory misses. In most caches the compulsory misses
contribute a very little percentage of the overall misses. But in better caches, compulsory
misses contribute a significant portion of the overall misses because very little can be
done to improve these misses.
The compulsory misses have been initialized according to the method described below. It
is based on some calculations, which have been done during the initialization i.e. before
the start of the simulation.

First we have to decide about the percentage of the compulsory misses. It has been
calculated by using the random function. The seed for this random function is calculated
from the user supplied input seed. The random function is called to get some random
value and then its modulo with some limit (which in this case is 12) is calculated:

Percentage of compulsory instruction misses = (random value) MOD (12)
Percentage of compulsory data misses = (random value) MOD (12)

As described earlier, compulsory misses contribute 1-25% of the overall misses. We have
divided this percentage equally between instruction and data misses as 12. So the
percentage of both instruction and data misses can range between 1 to 12 percent.

Proceeding this way, we can now calculate the number of compulsory instruction and
data misses:

Compulsory instruction misses = Percentage of compulsory instruction misses ×
 Instruction misses (5.13)

Compulsory data misses = Percentage of compulsory data misses × Data misses

 (5.14)

Generally, most of the compulsory misses occur at the beginning of the program
execution. Because when the program starts, the instruction and data cache are both
empty. It is reasonable to assume that most misses at the beginning of the program

49

execution are compulsory misses. So this special behavior can be introduced at the start
of the simulation. We can calculate the approximate number of compulsory misses that
can occur at the start of the program execution.

Compulsory instruction misses at startup = Percentage of compulsory instruction misses
 at startup × Compulsory instruction misses
 (5.15)

Compulsory data misses at startup = Percentage of compulsory data misses at startup ×
 Compulsory data misses (5.16)
This percentage at startup is user defined. The default value is 0.4 or 40%. So if the user
doesn’t provide any value for that parameter it is taken as 0.4. In other words, we have
assumed that 40% of the compulsory misses of both types occur at the beginning of the
program execution. The reason for making this default percentage as 40% is that it may
happen that by random calculations the percentage of compulsory misses come up to be
in the range 20-25%. If we assume that all compulsory misses occur at the startup then
nearly one fourth of the whole simulation would be dominated by one behavior, which is
unlikely in most programs. Conversely a very low percentage of compulsory misses at
startup fail to give any impression of compulsory misses. The percentage 40% seems to
be most optimum.

The compulsory data misses at startup are divided into read and write misses at startup.

Write misses at startup = Compulsory data misses at startup × Percentage of write
 misses (5.17)

Read misses at startup = Compulsory data misses at startup - Write misses at startup
 (5.18)

Now we have to calculate the number of Execution clock cycles during which the CPU
model remains in this mode. This will be the execution cycles during which we need to
introduce these compulsory instruction and data misses at startup. We proceed as follows:

We assumed that the miss rate during the given number of execution cycles in the
compulsory mode is higher than the overall miss rate. It is because that at the start of the
program execution the instruction and data cache are both empty so most accesses to the
caches result in a miss. Or we can say that it is one of the regions of the whole program
trace that contain more misses as compared to other regions. We have scaled the miss rate
during this mode as 3 times higher than the overall miss rate, which is our default value.

Compulsory miss rate at startup = 3 × Instruction miss rate (5.19)

Compulsory miss rate = Compulsory instruction misses at startup
 No. of instructions in compulsory mode

50

No. of instructions in compulsory mode = Compulsory instruction misses at startup
 Compulsory miss rate (5.20)

No of execution cycles in compulsory mode ≈ No of instructions in compulsory mode ×
 CPI

No of execution cycles in compulsory mode ≈

Compulsory instruction misses at startup × CPI
 Compulsory miss rate (5.21)

Now we know the total number of Execution clock cycles of this mode and the
compulsory instruction and data misses which we have to introduce within these
Execution clock cycles. The order in which these misses are introduced will be described
in the next section when we discuss simulation part. The compulsory mode appears only
once and it appears at the beginning of the simulation.

All the above calculation has been done before the start of the simulation.

5.2.1.3.2 Calculations of Random and Special modes

Now we have to calculate the same parameters for the Random and Special modes. The
remaining number of Execution clock cycles and misses are distributed between these
two modes according to the procedure, which we will discuss now.

The Random and Special modes are further divided into smaller parts. During the
simulation, after the completion of Compulsory mode these smaller modes appear in
random order till the end of the total number of Execution clock cycles. Recall that the
Random mode represent the general behavior of the software on misses, which is not
dominated by some particular software routine or the behavior which can’t be modeled
and the Special mode represent the behavior which is introduced as a result of some
specific software routine. Therefore the simulation is a combination of different
behaviors appearing in random order one after the other.

First we will calculate the total number of Random and Special modes. In other words,
we can say that we will calculate the total number of parts in which the total Execution
clock cycles are divided. Each part will represent some particular behavior.

Calculation of number of modes
The total number of modes has been divided on the basis of Execution clock cycles. The
number of modes increases by 20 (by default) depending upon the range of Execution
cycles. If it is within 50000 cycles the number of modes will be 20. If it is between 50000
to 100000 the number of modes become 40 and so on. This has been done so that the
simulation would not be dominated by some particular mode for a long period unless
specified by the user. So if we use the default value of this ‘increasing factor’, which is
20, in this case then each mode (except the compulsory mode) would consist 2500

51

execution clock cycles. However, if the user changes this value then the division would
be different. For example, if the user enters the value of ‘increasing factor’ as 10 then
each mode (except the compulsory mode) would consist of 5000 execution clock cycles.
This ‘increasing factor’ is one of the optional inputs of the model. If the user doesn’t
provide any value for this, the default value of 20 would be taken.

After calculating the total number of modes, the individual number of Random and
Special modes has been calculated. The percentages of these modes are also user
configurable. User can use the optional input parameter “percentage of Random mode” to
modify the number of modes of each type. It is possible to run the simulation with only
Random mode or the Special mode or a combination of both. By default, the execution
sequence is equally divided between these two modes i.e. 50% of the available Execution
cycles are assigned to the Random mode and 50% to the Special mode. So by default,
both Random and Special have equal number of modes and their quantity depends on the
total Execution cycles. However, the distributions of misses are different which we will
see shortly.

The Special mode introduce misses that are originated due to specific software routines
like loops accessing the arrays, conditional statements etc. These routines do not remain
active during whole execution of the program. They occur for some definite number of
clock cycles and then vanish. Therefore the default percentage for both these major
categories is set to 50% so that simulation is not dominated by some behaviors. However,
some particular behavior can be introduced in greater number according to the will of the
user.

Now we can calculate the individual number of Random and Special modes.

Number of Random modes = Total number of modes × percentage of random mode

 (5.22)

Number of Special modes = Total number of modes – Number of Random modes (5.23)

The execution cycles for these two major modes can be calculated as:

Number of execution cycles of the Random mode = (Total number of Execution cycles –
 Execution cycles of compulsory mode)
 × percentage of Random mode
 (5.24)

Number of execution cycles of the Special mode = Total number of execution cycles
 – Execution cycles of compulsory mode
 – Number of execution cycles of the Random mode
 (5.25)

52

The execution cycles are divided equally between each individual mode of the Random
and Special mode.

Execution cycles in each individual mode of Random mode =
 Number of execution cycles of the Random mode
 Number of Random modes (5.26)

Execution cycles in each individual mode of Special mode =
 Number of execution cycles of the Special mode
 Number of Special modes (5.27)

We have calculated the total number of modes and then we have divided these modes
into two categories the Random and the Special mode. We have divided the available
Execution clock cycles between these two categories. Then we have calculated the
individual number of modes of each category and then divide the execution clock cycles
assigned to each category among their individual modes.

Now we will distribute the instruction and data misses between these two major
categories and then further distribute them among their individual modes. These are the
misses, which will be introduced during simulation within the execution clock cycles
assigned to each mode.

Distribution of instruction and data misses

The distribution of misses can be divided into parts.
� When the distribution is done according to default values.
� When the distribution is done according to user-defined values.

In the first case, it means that the user hasn’t provided relative percentages of Random
and Special modes. Therefore simulation will be done according to default values and the
default percentages of these two major modes are 50%. It implies that the Execution
cycles are divided equally between Random and Special mode and both have equal
number of modes. In that case, 70% of the data misses and 30% of the available
instruction misses are assigned to the Special mode. This also means that the 30% of the
data misses and 70% of the instruction misses are assigned to the “Random mode”.

As described before, that the execution sequence is divided on the basis of what we can
model (Compulsory & Special mode) and what we can’t model (Random mode). Data
misses are easier to model than instruction misses. Most data misses occurred when the
program is in some kind of loop and it accesses different portions of data in each
iteration. During the loops, same instructions are executed again and again but they
access different data elements most of the time. During the execution of these routines,
data misses are much higher than instruction misses. This is a behavior, which can be
easily modeled. Most modes of the “Special mode” represent this kind of behavior.
Because of these reasons, 70% of the data misses are assigned to the Special mode by
default. On the other hand, it is hardly to find any behavior of the instruction misses due

53

to software except the conditional and unconditional jumps. One individual mode of the
“Special mode” represents this behavior. Therefore 70% of the instruction misses is
assigned to the Random mode by default.

Total data misses of the Special mode = (Total data misses – Compulsory data misses) ×
 percentage of data misses assigned to the
 Special mode (5.28)

Total instruction misses of the Special mode = (Total instruction misses – Compulsory
 instruction misses) × percentage of
 instruction misses assigned to the
 Special mode (5.29)

Total data misses of the Random mode = Total data misses – Compulsory data misses –
 Total data misses of the Special mode
 (5.30)

Total instruction misses of the Random mode = Total instruction misses –
 Compulsory instruction misses –
 Total instruction misses of the Special mode
 (5.31)

The above equations are used to calculate the misses when the default percentages of the
Random and Special mode are used. In that case, the default percentages of instruction
and data misses for each mode are used. If the user has changed the percentages of
Random and Special mode, then the distribution of misses should also change
accordingly i.e. the percentage of these misses allotted to each mode should increase or
decrease in the same proportion as the increase or decrease of the corresponding mode.
For example, the default percentage of data misses assigned to Special mode is 70%. This
percentage is used when the default percentage of Special mode is used which is 50%.
Now if the user changes this percentage from 50% to 70% then percentage of data and
instruction misses assigned to Special mode should also increase from 70% and 30%
respectively to some value in the same ratio. In the same way, the percentage of data and
instruction misses of the Random mode should also decrease from 30% and 70% to some
new value in the same ratio.

If the user-defined percentage of the Special mode is greater than the default percentage,
then

Percentage of instruction misses of the Special mode =

 Default percentage of the instruction misses + Scale factor ×
(user-defined percentage of Special mode – default percentage of Special mode)
 (5.32)
Where,

54

Scale factor = 1.0 – default percentage of the instruction misses
 Default percentage of the Special mode

Percentage of data misses of the Special mode =
Default percentage of the data misses + Scale factor ×
(user-defined percentage of Special mode – default percentage of Special mode)
 (5.33)

Where

Scale factor = 1.0 – default percentage of the data misses
 Default percentage of the Special mode

If the user-defined percentage of the Special mode is less than the default percentage,
then

Percentage of instruction misses of Special mode =
Default percentage of the instruction misses - Scale factor ×
(default percentage of Special mode – user-defined percentage of Special mode)
 (5.34)
Where,

Scale factor = default percentage of the instruction misses
 Default percentage of Special mode

Percentage of data misses of Special mode =
Default percentage of the data misses – Scale factor ×
(default percentage of Special mode – user-defined percentage of Special mode)
 (5.35)
Where,

Scale factor = default percentage of the data misses
 Default percentage of Special mode

After calculating the percentages of instruction and data misses according to the above
formulas, equations 5.28,5.29,5.30 and 5.31 can be used to calculate the number of
instruction and data misses. But this time, the percentages of instruction and data misses
would be according to the formulas given above (5.32-5.35) and not the default
percentages. The percentages for the Random mode can be found simply by subtracting
the instruction and data misses assigned to the Special mode from the available total
misses.

It should be noted that in the above formulas only the parameter “percentage of Special
mode” is user defined. If the user changes this value, the percentage of the misses varies
according to the scale factor. This scale factor depends on two values; the default
percentage of the Special mode and the default percentage of the instruction and data

55

misses assigned to this mode. These parameters are declared as #define in the C code.
Therefore if the user doesn’t agree with this distribution and also has the access to the
source code, the user can change them easily and all the calculations would be adjusted
accordingly with the new default distribution.

We have distributed the instruction and data misses between Random and Special modes.
Now we will distribute them among their individual modes.

Distribution of misses within individual modes

The number of instruction and data misses in each individual Random mode is calculated
as:

Instruction misses in each Random mode =
 Total number of instruction misses in the Random mode
 Total number of Random modes (5.36)
Similarly,

Data misses in each Random mode =
 Total number of data misses in the Random mode
 Total number of Random modes (5.37)

Write misses in each Random mode = Data misses in each Random mode ×
 Percentage of write misses (5.38)

Read misses in each Random mode = Data misses in each Random mode –
 Write misses in each Random mode (5.39)

As evident, the instruction and data misses in each individual Random mode is the same.
But during the simulation they don’t look like the same because the decision about the
miss is taken randomly in each cycle. Also the order in which these random modes
appear is also based on randomness. We will explain this in detail in the later section.

We have already calculated the total number of misses for the Special mode. Now we
have to distribute these misses within different types of Special mode. As told earlier,
these modes are used to model the misses due to some special software routines. These
are divided into the following categories according to their behavior:

� Routines that generate lot of data misses and few instruction misses.
� Routines that generate many instruction misses but few data misses.
� Routines that generate significant amount of both instruction and data misses.
� Routines that do not generate misses.

56

These following modes are used to represent these behaviors respectively:

� Loop Array data misses mode
� Instruction misses mode
� Zero misses mode
� Instruction data misses mode1
� Instruction data misses mode2

We will explain these modes in the later section. All these above mentioned modes are in
Special category. In this section, we will restrict our discussion about how the misses
have been distributed among them and the reasons behind these distributions.

The individual number of each of these modes can be found by multiplying its percentage
with the total number of Special modes.

Number of modes = Percentage of that mode × Total number of Special modes (5.40)

This percentage in 5.40 is a user-defined perimeter i.e. the user can change the percentage
of any individual mode of the Special mode. However, if the user doesn’t make any
changes default values will be used. The default percentage of each of these modes and
the default percentages of the misses allotted to them are summarized in the table 5.1.

“Loop Array data misses mode” represent the behavior when the program is in a loop
accessing different locations of the arrays, which result in misses. As most of the data
misses are produced due to these pieces of code, most of the data misses are assigned to
this mode as shown in table 5.1. Off course, not all loops which access arrays result in
many misses but here we represent those loops, which access arrays in a manner that
result in many data misses. At the same time, very few instruction misses are assigned to
this mode because in a loop same instructions are repeated most of the times so it is very
likely that they are found in the cache.

Mode
Default percentage of

the mode
Within Special mode

Default percentage
of

Instruction misses
Default percentage

of data misses

Loop Array data
misses mode 20 5 40

Instruction misses
mode 20 40 5

Zero misses mode 10 0 0

Instruction data
misses mode1 30 30 25

Instruction data
misses mode2 20 25 30

Table 5.1

57

“Instruction misses mode” represent the behavior when the program jumps in a piece of
code, which is not in a cache, and result into many instruction misses. And also the
instruction misses, which occur because of many conditional jumps. Therefore it is
assigned with many instruction misses and few data misses. It has assigned very few data
misses because the mode represent the behavior of those conditional statements which
operate differently on the same data elements based on which conditions become true.
Although it seems that a huge percentage of instruction misses are assigned to this mode
but actually it is not. The total percentage of instruction misses assigned to the Special
mode by default is 30%. And out of these instruction misses 40% are assigned to the
modes of this type.

“Zero misses mode” represents the behavior when the CPU is perfectly in execution and
do not produce any misses. So no miss is assigned to this mode. This may happen when
the CPU is performing some long arithmetic operations (multiplication/division) on some
data that consumes many cycles and cache accesses result in hits.

“Instruction data misses mode1” and “Instruction data misses mode2” represent the
behavior when we have both instruction and data misses in a significant number at the
same time. These modes are basically the combinations of “Loop Array Data misses
mode” and “Instruction misses mode” but introduce instruction and data misses in a
different fashion during the simulation. Because of these reasons, a significant percentage
of both types of misses are assigned to these modes.

Again the distribution of instruction and data misses among these different types of
Special modes depends on whether the percentages of these modes are modified by the
user or not. If they are not modified, then the default percentages of instruction and data
misses will be taken and are calculated by multiplying these percentages with the total
number of instruction and data misses of the Special mode.

Instruction misses of any individual mode of Special mode =
Number of instruction misses of the Special mode × Percentage of instruction misses of
that mode (5.41)

Data misses of any individual mode of Special mode =
Number of Data misses of the Special mode × Percentage of data misses of that mode
 (5.42)

If the user changes the percentages of these modes, then percentages of the misses should
also be scaled accordingly.

If the user-defined percentage of the mode is greater than the default percentage, then

58

Percentage of instruction misses of the mode =
Default percentage of the instruction misses + Scale factor ×
(user-defined percentage of the mode – default percentage of the mode)
 (5.43)
Where,

Scale factor = 1.0 – default percentage of the instruction misses
 Default percentage of the mode

Percentage of data misses of the mode =
 Default percentage of the data misses + Scale factor ×
(user-defined percentage of the mode – default percentage of the mode) (5.44)

Where,

Scale factor = 1.0 – default percentage of the data misses
 Default percentage of the mode

If the user-defined percentage of the mode is less than the default percentage, then

Percentage of instruction misses of the mode =
Default percentage of the instruction misses – Scale factor ×
(default percentage of the mode – user-defined percentage of the mode)
 (5.45)
Where,

Scale factor = default percentage of the instruction misses
 Default percentage of the mode

Percentage of data misses of the mode =
Default percentage of the data misses – Scale factor ×
(default percentage of the mode – percentage of the mode) (5.46)

Where,

Scale factor = default percentage of the data misses
 Default percentage of the mode

Again, the parameters default percentage of the mode and the default percentage of
instruction and data misses of each mode are declared as #define in the C code and can be
changed if required.

After the above calculation, these misses are divided equally among the modes of the
same type. For e.g., the instruction and data misses of the ‘Loop Array data misses mode’
can be calculated as:

59

Instruction misses in each ‘Loop Array data misses mode’ =
Total instruction misses of the ‘Loop Array data misses mode’

 Total number of ‘Loop Array data misses mode’ (5.47)

Data misses in each ‘Loop Array data misses mode’ =

Total data misses of the ‘Loop Array data misses mode’
 Total number of ‘Loop Array data misses mode’ (5.48)

Write misses in each ‘Loop Array data misses mode’ =
 Data misses in each ‘Loop Array data misses mode’ × Percentage of write misses
 (5.49)

Read misses in each ‘Loop Array data misses mode’ =
(Data misses in each ‘Loop Array data misses mode’ – Write misses in each ‘Loop Array
data misses mode’) (5.50)

5.2.1.3.3 Scheduling the simulation

From the above calculations, we have calculated the following parameters:

� Total Execution cycles
� Total number of instruction and data misses
� Total number of read and write misses
� Execution cycles for the Compulsory mode
� Total number of Instruction and data misses of the Compulsory mode
� Total number of read and write misses in the Compulsory mode
� Total number of modes
� Total number of Random modes
� Total number of Special modes
� Total number of instruction and data misses of the Random mode
� Total number of instruction and data misses of the Special mode
� Execution cycles in each individual mode of Random mode
� Instruction and data misses in each individual mode of Random mode
� Read and write misses in each individual mode of Random mode
� Total number of modes of each type of the Special mode
� Total number of Instruction and data misses of each type of Special mode
� Execution cycles in each individual mode of the Special mode
� Instruction and data misses in each individual mode of each type of the Special

mode
� Read and write misses in each individual mode of each type of the Special mode

From these parameters we can schedule the simulation. For this purpose an array of
structures is created which contain all the necessary data. This array is called schedule
array in the code. The length of the array is equal to the total number of modes. The first
location of the array is dedicated to the compulsory mode. The remaining locations are

60

filled based on randomness i.e. the order in which these modes occupy each location in
the array is determined randomly. Each location of the array contains the following data:

 Type of mode
Total Execution cycles Execution cycles count Execution cycles left
Total instruction misses of the
mode Instruction misses count Instruction misses left

Total Data misses of the mode Data misses count Data misses left
Total Write misses of the mode Write misses count Write misses left
Total Read misses of the mode Read misses count Read misses left

Figure 5.2

The ‘type of mode’ tells the ID of the mode. Each mode is assigned an ID. At the start of
the clock cycle, the ID is checked to know which mode is currently active in the
simulation and then the program jumps to the function, which represent the
corresponding mode. For e.g., after accessing some location of the schedule array, the
mode ID comes out to be 2. Then it means that ‘Loop Array data misses mode’ is the
currently active mode, so the program jumps to the function representing ‘Loop Array
data misses mode’. The modes with their corresponding ID are given in table 5.2.

Mode Type ID
Compulsory mode 0
Random mode 1
Loop Array data misses mode 2
Instruction misses mode 3
Zero misses mode 4
Instruction data misses mode1 5
Instruction data misses mode2 6

Table 5.2

Every location of the array is initialized as follows:

Type� of� mode� =� ID� of� the� mode�
�
Total� Execution� cycles� � � =� Total� Execution� cycles� in� each� mode� of� that�
type�
Execution� cycles� count� � =� 0�
Execution� cycles� left� � � =� Total� Execution� cycles�
�
Total� instruction� misses� of� the� mode� � =� Total� instruction� misses� in�
each� mode� of� that� type�
Instruction� misses� count� � � � � =� 0�
Instruction� misses� left� � � � � � =� Total� instruction� misses� of� the� mode�
�
�

61

Total� data� misses� of� the� mode� =� Total� data� misses� in� each� mode� of� that�
type�
Data� misses� count� � =� 0�
Data� misses� left� � � =� Total� data� misses� of� the� mode�
�
Total� Write� misses� of� the� mode� � =� Total� Write� misses� in� each� mode� of�
that� type�
Write� misses� count� =� 0�
Write� misses� left� � =� Total� Write� misses� of� the� mode�
�
Total� Read� misses� of� the� mode� � =� Total� Read� misses� in� each� mode� of� that�
type�
Read� misses� count� =� 0�
Read� misses� left� � =� Total� Read� misses� of� the� mode�
�

During the simulation, at the end of every Execution clock cycle the ‘Execution cycles
count’ increments by 1 and ‘Execution cycles left’ decrements by 1.When the ‘Execution
cycles count’ becomes equal to ‘Total Execution cycles’ the mode is ended and from the
next cycle the next location of the array is accessed which contains the same data for
some other mode.

In the same way, ‘Instruction misses count’, ‘data misses count’ increment by 1 and
‘Instruction misses left’, ‘data misses left’ decrement by 1 after the introduction of
instruction or data miss respectively. The parameter ‘Execution cycles left’ is compared
with ‘Instruction misses left’ and ‘data misses left’ to ensure that enough Execution
cycles are available to introduce the given number of misses. If the ‘Execution cycles
left’ is found equal to either ‘instruction misses left’ or ‘data misses left’ then the
corresponding misses have to be introduced in all the remaining Execution cycles of that
mode to ensure that all the given misses have been introduced completely. Certainly, this
is a deviation from the behavior which we are trying to introduce but we have to do it to
ensure that all the misses allotted to the mode are introduced. Simulations have shown
that this condition rarely became true and when it became true only one or two misses
have been left.

When any mode is ended, the ‘Execution cycles left’, ’instruction misses left’, ‘data
misses left’, ’read misses left’ and ‘write misses left’ become equal to zero and
‘Execution cycles count’, ‘instruction misses count’, ‘data misses count’,’ read misses
count’,’ write misses count’ become equal to ‘Total Execution cycles’, ‘Total instruction
misses of the mode’,’ Total data misses of the mode’, ’Total read misses of the mode’
and ‘Total write misses of the mode’ respectively.

Example

Now we will illustrate all these steps through the following example. For the sake of
simplicity lets assume that the user has provided only the basic inputs (no optional input),
so the distribution would be done using the default values. The inputs are:

Total� number� of� instructions� � � � � =� � 96,178�
Percentage� of� load� instructions� � =� � 20%�

62

Percentage� of� store� instructions� =� � 5%�
Instruction� miss� rate� � � � � � � � � � � � =� 0.101�
Data� miss� rate� � � � � � � � � � � � � � � � � � � =� 0.144�
CPI� (including� the� effect� of� structural,� data� and� control� hazards)� =�
1.1� �
Memory� Access� startup� latency� (Number� of� cycles� required� to� initiate�
memory� transfer� after� detecting� a� miss)� � =� 1�
Memory� Accesses� end� latency� (Number� of� cycles� required� to� restore� the�
normal� execution� after� the� completion� of� memory� transfer)� =� 1�
Seed� for� the� random� functions� � =� 10�

Now we will use all the above equations (5.1-5.50) to calculate the necessary data for the
simulation. By using these equations we calculate the following parameters:

Execution clock cycles = CPI × Total number of instruction
⇒� 1.1� ×� � 96178� � � =� 105795�

Percentage of load/store instructions = Percentage of load instructions +
 Percentage of store instructions
⇒� � 20%� +� 5%� =� 25%�� � � � � � � � � �

Total number of load/store instructions = Percentage of load/store instructions ×
 Total number of instructions
⇒� 0.25� ×� 96178� =� 24044� �

Total number of load instructions = Percentage of load instructions ×
 Total number of instructions
⇒� 0.20� ×� 96178� =� 19235� �

Total number of store instructions = Percentage of store instructions ×
 Total number of instructions
⇒� 0.05� ×� 96178� =� 4808��

We can calculate the total number of instruction and data misses which are generated
during the execution of the given number of instructions:

Instruction misses = Instruction miss rate × Total number of instructions
⇒� � 0.101×� 96178� =� 9713� � � � � �

Data misses = Data miss rate × Total number of load/store instructions
⇒� � 0.144� ×� 24044� =� 3462�

Write misses = Total number of store instructions × data miss rate
⇒� � 4808� ×� 0.144� =� 692� �

Percentage of write misses = Write misses
 Data misses
⇒� � � 692/3462� =� 0.2000�

63

Read misses = Data misses – Write misses
⇒� � 3462� –� 692� =� 3370� � �

Data cache Access rate = Total number of load/store instructions
 Total number of instructions
⇒� 24044/96178� =� 0.2499�

Total misses = Instruction misses + Data misses
⇒� � 9713� +� 3462� =� 13175�

Now, we will calculate all the necessary data for the Compulsory mode:

Compulsory instruction misses = Percentage of compulsory instruction misses ×
 Instruction misses
⇒� � 0.06� ×� 9713� =� 582�

Compulsory data misses = Percentage of compulsory data misses × Data misses
⇒� 0.04� ×� 3462� =� 138�

Compulsory instruction misses at startup = Percentage of compulsory instruction misses
 at startup × Compulsory instruction misses
⇒� 0.40� ×� 582� =� 232� � � � � � �

Compulsory data misses at startup = Percentage of compulsory data misses at startup ×
 Compulsory data misses
⇒� 0.40� ×� 138� =� 55� � � � � � � � � � � � �

Write misses at startup = Compulsory data misses at startup × Percentage of write
 misses
⇒� 55� ×� 0.2000� =� 11� � � � �

Read misses at startup = Compulsory data misses at startup - Write misses at startup
⇒� 55� –� 11� =� 44� � � � � � � � � � �

Compulsory miss rate at startup = 3 × Instruction miss rate
⇒� 3� ×� 0.101� =� 0.303� � � � � �

No of execution cycles in compulsory mode ≈

 Compulsory instruction misses at startup × CPI
 Compulsory miss rate
⇒� 842� � � � � � � � � � � � � � � � � �

64

Now, we will calculate the total number of Random and Special modes:

Assume that the ‘increasing factor’ of the modes is 14 per 50,000 execution clock cycles.

Total number of modes = 42 (Execution cycles lay in the range 100,000 to 150,000)

Number of Random modes = Total number of modes × percentage of random mode
⇒� 42� ×� 0.5� =� 21�

Number of Special modes = Total number of modes – Number of Random modes
⇒� 42� –� 21� =� 21�

The execution cycles for these two major modes can be calculated as:

Number of execution cycles of the Random mode =
(Total number of Execution cycles – Execution cycles of compulsory mode)
× percentage of Random mode

⇒� (105795� –� 842)� ×� 0.5� =� 52476�

Number of execution cycles of the Special mode =
Total number of execution cycles – Execution cycles of compulsory mode –
 Number of execution cycles of the Random mode

⇒� 105795� –� 842� –� 52476� =� 52477� � � � � � �
�
The execution cycles are divided equally between each individual mode of the Random
and Special mode.

Execution cycles in each individual mode of Random mode =
 Number of execution cycles of the Random mode
 Number of Random modes

⇒� � 52476/21� =� 2498� � � �

Execution cycles in each individual mode of Special mode =
 Number of execution cycles of the Special mode
 Number of Special modes

� =� 52477/21� =� 2498�

The total instruction and data misses for these two major modes can be calculated as:

65

Total data misses of the Special mode =
(Total data misses – Compulsory data misses) ×
percentage of data misses assigned to the Special mode

⇒� (3462� –� 55)� ×� 0.70� =� 2384�

Total instruction misses of the Special mode =
(Total instruction misses – Compulsory instruction misses) ×
percentage of instruction misses assigned to the Special mode

⇒� (9713� –� 232)� ×� 0.30� =� 2844�

Total data misses of the Random mode =
Total data misses – Compulsory data misses – Total data misses of the Special mode

⇒� 3462� –� 55� –� 2384� =� 1023� � � � � � � � � � � � � � � � � �

Total instruction misses of the Random mode =
Total instruction misses – Compulsory instruction misses – Total instruction misses of
 the Special mode
⇒� 9713� –� 232� –� 2844� =� 6637� �

Instruction misses in each Random mode =
Total number of instruction misses in the Random mode
 Total number of Random modes

⇒� 6637/21� =� 316� �

Similarly,
Data misses in each Random mode =
Total number of data misses in the Random mode
 Total number of Random modes

⇒� 1023/21� =� 48� �

Write misses in each Random mode =
Data misses in each Random mode × Percentage of write misses
⇒� 48� ×� 0.2000� =� 9� �

Read misses in each Random mode =
Data misses in each Random mode – Write misses in each Random mode
⇒� 48� –� 9� =� 39�

66

Now we will calculate the misses for the individual modes of Special mode:

The individual number of each mode can be found by multiplying its percentage with the
total number of Special modes. Similarly, instruction and data misses can be found by
using the equations 5.47-5.50. Following data is collected for each mode by using the
values in Table 5.1.

‘Loop Array data misses mode’:
Number� of� � ‘Loop� Array� data� misses� mode’� =� 0.20� ×� 21� � =� � 4�
Instruction� misses� =� 0.05� ×� 2844� =� 142�
Data� misses� =� 0.40� ×� 2384� =� 953�
Instruction� misses� in� each� mode� =� 142/4� =� 35�
Data� misses� in� each� mode� =� 953/4� =� 238�
Write� misses� in� each� mode=� 238� ×� 0.2000� =� 47�
Read� misses� in� each� mode=� 238� –� 27� =� 191�

‘Instruction misses mode’:
Number� of� ‘Instruction� misses� mode’=� 0.20� ×� 21� =� 4�
Instruction� misses� =� 0.40� ×� 2844� =� 1137�
Data� misses� =� 0.05� ×� 2384� =� 119�
Instruction� misses� in� each� mode� =� 1137/4� =� 284�
Data� misses� in� each� mode� =� 119/4� =� 29�
Write� misses� in� each� mode=� 29� ×� 0.2000� =� 5�
Read� misses� in� each� mode� =� 29� –� 5� =� 24�

‘Zero misses mode’:
Number� of� ‘Zero� misses� mode’=� 0.10� ×� 21� =� 2�
Instruction� misses� =� 0�
Data� misses� =� 0� �
Instruction� misses� in� each� mode� =� 0�
Data� misses� in� each� mode� =� 953/4� =� 0�
Write misses in each mode = 0
Read� misses� in� each� mode� =� 0�

‘Instruction data misses mode1’:
Number� of� ‘Instruction� data� misses� mode1’=� 0.30� ×� 21� =� 6�
Instruction� misses� =� 0.30� ×� 2844� =� 853�
Data� misses� =� 0.25� ×� 2384� =� 596�
Instruction� misses� in� each� mode� =� 853/6� =� 142�
Data� misses� in� each� mode� =� 596/6� =� 99�
Write� misses� in� each� mode� =� 99� ×� 0.2000� =� 19�
Read� misses� in� each� mode� =� 99� –� 19� =� 80�

67

‘Instruction data misses mode2’:

Number� of� ‘Instruction� data� misses� mode2’=� 21� –� 4� –� 4� –� 2� –� 6� � =�
5�
Instruction� misses� =� 0.25� ×� 2844� =� 711�
Data� misses� =� 0.30� ×� 2384� =� 715�
Instruction� misses� in� each� mode� =� 711/5� =� 142�
Data� misses� in� each� mode� =� 715/5� =� 143�
Write� misses� in� each� mode� =� 143� ×� 0.2000� =� 28�
Read� misses� in� each� mode� =� 143� –� 28� =� 115�

All the necessary calculated data for all the modes is summarized in the following table.

Mode
Total number

of
appearances

Total
number of
instruction

misses

Total
number
of data
misses

Instruction
misses in

each mode

Data
misses

in
each
mode

Execution
clock cycles
in each mode

Compulsory
mode 1 232 55 232 55 842

Random
mode 21 6637 1023 316 48 2498

Loop Array
data misses
mode

4 142 953 35 238 2498

Instruction
misses
mode

4 1137 119 284 29 2498

Zero misses
mode 2 0 0 0 0 2498

Instruction
data misses
mode1

6 853 596 142 99 2498

Instruction
data misses
mode2

5 711 715 142 143 2498

Table 5.3

Now we have all the necessary data to schedule the simulation. We will place all this data
in an array. The total number of modes is 43, so the length of the array will be 43. The
first location is fixed for the compulsory mode and the remaining locations are filled
randomly depending upon the value of the seed i.e. different value of seed fills the array
in different order. During the simulation, the array is accessed sequentially from location
0 to 43. A possible sequence of the order through random calculation is shown in figure
5.3.

68

Location of the Array Mode Occupied

0 Compulsory mode
 1 Random mode
2 Random mode
3 Instruction misses mode
4 Instruction misses mode
5 Zero misses mode
6 Random mode
7 Random mode
8 Loop Array data misses mode
9 Instruction data misses mode1

10 Random mode
11 Instruction data misses mode2
12 Random mode
13 Random mode
14 Random mode
15 Instruction data misses mode1
16 Instruction data misses mode1
17 Random mode
18 Random mode
19 Random mode
20 Random mode
21 Instruction misses mode
22 Instruction data misses mode1
23 Loop Array data misses mode
24 Random mode
25 Random mode
26 Loop Array data misses mode
27 Instruction misses mode
28 Random mode
29 Instruction data misses mode1
30 Random mode
31 Instruction data misses mode2
32 Instruction data misses mode2
33 Random mode
 34 Random mode
35 Instruction data misses mode1
36 Random mode
37 Instruction data misses mode2
38 Loop Array data misses mode
39 Random mode
40 Instruction data misses mode2
41 Random mode
42 Zero misses mode
43 Random mode

Figure 5.3 A possible order of execution of different modes

69

5.2.2 Simulation

This part starts when the user begins the simulation. All the necessary data that is
required to carry out the simulation is calculated in the Initialization part. All this
necessary data is stored in an array. During the simulation each location of the array is
accessed one by one. Each location represent one mode and in that location all necessary
information for that mode is stored, which tells about the total number of Execution clock
cycles during which the simulation remains in this mode and also the total number of
misses which have to be introduced in this mode. During each clock cycle, the function
representing the mode has to decide whether a miss has to be introduced or not. These
decisions have been made according to some rules. In this section we will describe the
reasons behind these rules. The introduction of a miss is as simple as updating the
variables that contain information about the misses and then calling the functions, which
initiates communication with the memory. The important factor is the reasons behind
these rules. Therefore in this section we will focus ourselves on the reasons, which enable
us to set some rules for each mode.

Before starting this discussion, refer to figure 5.2 which shows the data elements of each
location of the schedule array. The count variables ‘instruction misses count’, ‘data
misses count’ increment after the introduction of their corresponding misses. Read misses
count and write misses count variables increment depending upon the whether the
corresponding data miss is a read miss or a write miss respectively. Before introducing
any kind of miss, the corresponding count variables are checked and the miss can only be
introduced if the value of these count variables is lesser than their maximum value which
is stored in variables Total instruction misses of the mode, Total data misses of the mode,
Total read misses of the mode and Total write misses of the mode. When this limit is
reached, no further miss of that type is introduced during that mode.

5.2.2.1 Compulsory mode

When the simulation is started, the first location i.e. 0 location of the array is accessed
which contains the data for the compulsory mode. Every simulation starts with the
compulsory mode.

In this mode we have to introduce a behavior, which occurs at the beginning of the
program. At the start of the program both instruction and data caches are empty so lot of
misses occur at the beginning of the program. Most accesses to the memory are burst
accesses. So when an instruction miss occurred an access to memory bring next 4
instructions in the cache. If there is no jump or branch instruction in these next 4
instructions then there will be no instruction miss in the next 4 cycles but if it is not, an
instruction miss may occur. After 4 clock cycles an instruction miss will occur again.
Many of these instructions are load/store instructions. Most load/store instructions at the
beginning are initializing some data elements. So data misses occur frequently at the
beginning. These misses are may be due to the initialization of an array or due to the
initialization of some individual variables.

70

It is not possible to model all the above-mentioned behavior. We can only model the most
general behavior that occurs at the beginning of the program. So we again follow our old
rule i.e. model the most optimum behavior and the rest should be characterize by the use
of Random functions.

Based on the above discussion, the simulation of the compulsory mode is divided into
two parts each having equal number of execution clock cycles i.e. (Total execution cycles
of the mode)/2 in each part. Instruction and data misses have also been divided equally
between these two parts.

During the first part, the misses have been introduced in the following manner:

� Introduce one instruction miss after every 4 clock cycles.
� Introduce one data miss after every 7 clock cycles.

During the second part we use our random calculation method to decide about the misses.
This is explained in the description of the Random model. However the comparison has
been made with the miss rate of the compulsory mode, which is three times higher than
the overall actual miss rate. So the misses generated during this mode through random
calculations is higher than those produced in the Random mode. (Read this paragraph
again after reading the next topic ‘Random mode’).

5.2.2.2 Random mode

In this mode, instruction and data misses are produced by using random function. It
represents the behavior, which is not easier to model.

The question arises, are the origination of misses are random? The answer is yes if we
look at all the misses that produce during the whole execution of a program. Their
generation does not follow any rule and can be originated in any cycle. This is because
there are many factors (cache configuration, software) that decide about a miss in a given
cycle and it is difficult to say which limitation becomes the cause of a miss. However
when we start observing the misses of a program in a shorter duration, they don’t look
like originating in a random fashion at some places. This may be due to some particular
piece of code. We have tried to model these behaviors in the Special mode. However, the
basic programming constructs can appear in the programs in an infinite number of
combinations and it is not possible to model all of them. Therefore the misses that arises
because of that pieces of code or where they don’t follow any pattern can be considered
as originating in a random fashion. There is no way to model these misses except by the
use of random calculations.

We start with the observation that miss rate can also be taken as a probability that in a
given cycle the cache access can result in a miss. Recall that the probability of any event
is equal to the total number of occurrences of that event divided by the total number of all
probable events.

71

Probability of a miss in a given cycle = Number of accesses that miss
 Total number of accesses

During the simulation, when the random mode is in execution, undergoing the following
steps makes the decision about a miss in a given cycle.

The decision about the instruction miss is taken as follows:

1. Call the C random function (rand_r()) to get some random value.
2. Divide this random value with the maximum random value (termed as

RAND_MAX). It means that after division we will get a value that ranges from 0
to 1.

3. Compare this value with the instruction miss rate, which is also the probability of
an instruction miss in a given cycle.

4. If it is less than the instruction miss rate then it will be taken as a miss otherwise a
hit.

These steps are illustrated with the following example.

Suppose the miss rate is 0.21 means the probability of a miss in a given cycle is 0.21.
Then by following the above procedure, if we get some value less than 0.21 say 0.16 then
it can be taken as a miss because it lies in the shaded region (as shown in figure 5.4). On
the other hand, if it is greater than 0.21 then it can be taken as a hit. This shaded region
can also be taken as the PDF (probability density function) of misses. So all the returned
values that fall in the PDF would be taken as misses.
The decision about the data miss is taken as follows:

1. Call the C random function (rand_r()) to get some random value.
2. Divide this random value with the maximum random value (termed as

RAND_MAX). It means that after division we will get a value that ranges from 0
to 1.

3. Compare this value with the data cache access rate, which is the probability that
the given instruction is either load or store.

4. If it is less than the data cache access rate then it can be taken as a load/store
instruction otherwise not. If it is not a load/store instruction then this process ends
here, otherwise it continues to the next step.

5. Repeat the first two steps again.
6. Compare this value with the data miss rate, which is also the probability of a data

miss in a given cycle.
7. If it is less than the data miss rate then it can be taken as a miss otherwise a hit.
8. If it is a miss then repeat the first two steps again.
9. Compare this value with the percentage of write misses, which is the probability

of write miss in total number of data misses.
10. If it is less than the percentage of write misses then it will be taken as a write miss

otherwise a read miss.

72

Figure 5.4 PDF of misses

By using the random model, it is found that when the miss rates are low, then most of the
resulting misses are spaced apart by many clock cycles (more than 50) and when the miss
rates are normal or high most misses are close to each other i.e. the time difference
between two successive misses is normally less than 10-15 clock cycles most of the
times. This is the same kind of behavior, which we can find in actual programs execution.
When the miss rates are low which implies that a cache is big and after each memory
access a large amount of data comes in the cache. There would also be less conflict and
capacity misses and so it is very likely that the number of clock cycles between two
successive memory accesses are large. In the same way, a high miss rate means a small
cache or a bad software that result in many misses which are close to each other in terms
of number of clock cycles among them. There are many behaviors where random mode
doesn’t provide enough approximation and we have tried to model these behaviors in
Special mode.

5.2.2.3 Loop Array Data misses mode during simulation

In this mode we model the misses that are originated when the program is in a loop
accessing the arrays. As shown in table 5.1, this mode has been assigned the highest
percentage of data misses. Therefore lots of misses are introduced when this mode is
active during the simulation. In most programs, most data misses are produced when the
program is accessing arrays in the loops. It doesn’t mean that all loops generate lot of
misses. Our aim in this mode is to target those loops, which generate many data misses.
The loops that do not generate many misses can be approximated by the Random mode.
To demonstrate our model, we begin with the examples of few loops that generate many
misses. Consider the example of following nested loop, which accesses two two-
dimensional arrays.

0 probability
 0.21 1

73

� �
for� (� i� =� 0;� i<3;i++)�
� for� (j=0;j<100;j++)�

a[i][j]� =� b[j][0]+b[j+1][0];�

The number of misses produced during the whole execution of this loop depends on the
size of the cache, block size and the degree of associativity, but as discussed earlier, we
can’t make use of these parameters. If we consider the body of the loop, we can observe
that in each iteration of the inner loop for j, at least two load instructions are required to
access b[j][0] and b[j+1][0] and one store instruction to store the result of the addition in
a[i][j]. If we consider the worst case, there will be three data misses in each iteration of
the inner loop. The array a can be benefited from spatial locality but the array b couldn’t
since the accesses to the array b are not in order in which they are stored in the memory.
However, array b can be benefited from temporal locality since the same elements of the
array b are accessed in each iteration of the loop. Remember that nearly in all
microprocessors used today, all read accesses to the memory are burst accesses. This
means each read access to the memory brings the next four data items or instructions in
the cache. Therefore if we ignore the conflict misses for a moment then during the first
complete execution of the inner loop when i=0, there will two data misses due to array b
and one data miss for array a after every fourth iteration. During i=1 and i=2 there would
be one data miss due to array a after every fourth iteration and there would be few data
misses due to array b because most of the elements would already be in the data cache.
So the first complete execution of the inner loop i=0 is of particular interest for us. There
may be few instruction misses at i=0,j=0 during the very first iteration but after that there
would be no instruction miss unless the instruction cache is very small. This is because
same instructions are executed again and again. Each iteration would approximately
consists of 8-10 assembly instructions (2 load, 1 store, 4 add, 1 branch) and require 8-10
clock cycles plus clock cycles consumed to access the memory in case of a miss, to
complete each iteration in a pipelined machine.

Now consider another loop,

for� (j=0;j<100;j++)�

for� (i=0;i<100;i++)�
x[i][j]=x[i][j]+s;�

The above loop would generate two data misses (one read and one write) in each iteration
of the inner loop since the accesses to the memory are not in order in which they are
stored. Off course, the above loop couldn’t be written by a good programmer but our aim
here is to study only the effect of different codes on the misses and not to improve them.
In MIPS assembly, the inner loop may look like as follows:

74

Loop:� � LD� F0,0(R1);� � � � � F0=array� element�
� ADDD� F4,F0,F2;� � � � � add� scalar� in� F2�

� � SD� 0(R1),F4;� � � � � store� result�
� SUBI� R1,R1,#800;� � � � � decrement� pointer�
� BNE� R1,Loop;� � � � � branch� R1!=zero�

The above loop requires at least five clock cycles to complete each iteration (ignoring
data hazards) and most probably would generate two data misses in each iteration. The
improved version of this loop is as follows:

for� (i=0;i<100;i++)�
� � � � for� (j=0;j<100;j++)�
� � � � � � � � x[i][j]=x[i][j]+s;�

Most probably the above loop would generate data misses after every fourth iteration of
the inner loop since the memory accesses are in order and loop would benefit from spatial
locality. This means that we will see some misses after 20-25 clock cycles. Definitely,
modeling such a loop is not our target in this mode. Random mode can represent such
kinds of loops.

As evident from the above discussion, our focus is on the loops that generate lots of data
misses. The above two examples are few among them. We couldn’t just take these few
examples and study them thoroughly and include their behavior exactly in our model.
There can be many loops that have nearly the same behavior (number of misses in each
iteration and clock cycles required to complete the iterations) with some variations. But
there can be many loops of these types with different behaviors. It is impossible to model
all of them. We can only generalize them and by generalizing we can say that when these
loops (which generate many data misses) are in execution there are at least two data
misses within every 10 clock cycles.

There are very few instruction misses that occur in a loop because same instructions are
executed again and again. Most of these instruction misses occur during the first and the
second iteration of the loop. The main reasons for this are that during the first iteration
the instructions are not in the loop and the branches are also miss predicted.

The number of Execution clock cycles, instruction and data misses for this mode are
already calculated in the Initialization part. So when this mode appears in the simulation
two data misses (one read and one write) are introduced after every 8 clock cycles. This
will continue until the data misses count reaches to the values of the total misses assigned
to this mode. Some instruction misses are also introduced at the beginning of the mode.
One instruction miss is introduced after every 4 clock cycles during the first 20 clock
cycles. After that only the data misses are introduced.

75

5.2.2.4 Instruction misses mode

In this mode we represent the behavior when instruction misses occur in quick
succession. In terms of software, the most obvious reasons for these misses are
conditional and unconditional jumps. The conditional jumps occur because of ‘if and if
else’ statements and the test conditions of the loops. The unconditional jumps occur when
some function is called and when the function is returned. In this mode, we have focused
on the conditional statements that occur due to ‘if and if else’ statements or switch
statements.

If the program is in a part of a code, which is run for the first time, or which is not in the
cache, an instruction miss is generated after every 4 clock cycles of sequential execution.
Each access to the memory brings the next 4 sequential statements. If there are branches
or jumps within these 4 instructions then an instruction miss can occur before 4 clock
cycles (if the branch target instructions are also not in the cache). Consider the following
example:

if� (a� =� =1)� �
� {�
� � if� (b=� =1){�
� � do� some� thing� on� variables� a� and� b;}�
� � else�
� � do� some� thing;�
� }�
else� if� (a� =� =� 2)�
� {�
� � if� (b=� =1){�
� � do� some� thing� on� variables� a� and� b;}�
� � else�
� � do� some� thing;�
� }� �

and so on.

Imagine if this code is run for the first time or if this code is not in the cache. Suppose
there are lot of conditional if else statements in the above code, which become true
depending on the value of variable a. Consider the worst case, when there are even nested
if statements under each condition. In that case there will be lot conditional jumps and the
code will not execute sequentially. Assuming the code is not in the cache, this particular
software behavior result in instruction misses and the clock cycles between two
consecutive instruction misses would be less than 4 clock cycles. Data misses may occur
but in this particular scenario the data misses would be less than instruction misses
because these statements operate on the same data elements but in a different manner.

In this mode, the codes that resemble with the above example are the targets. The aim is
to generate some instruction misses in a manner that the difference between two
consecutive instruction misses is sometimes less than 4 clock cycles and sometimes
greater than 4 clock cycles. The generation of these instruction misses should also be
coupled with some data misses but with a lesser frequency than the instruction misses.

76

Based on these requirements, when this mode is active during the simulation, an
instruction miss is introduced after every 5th, 7th and 9th clock cycles and a data miss is
introduced after every 20 clock cycles until they reach limits assigned to the mode.

As described earlier, at first glance it seems that this mode introduces unreasonably large
number of instruction misses in quick succession. But actually, it is not. Only 30% of the
instruction misses is assigned to all the modes of Special type. Out of this 30%, 40% of
the instruction misses is assigned to this mode, which is further subdivided according to
the total number of ‘instruction misses modes’. When this mode is active in simulation,
the maximum limit of instruction misses usually reaches very early (usually one fourth of
the execution clock cycles).

5.2.2.5 Zero misses mode

As evident from the name this mode doesn’t introduce any kind of misses. The basic
purpose of this mode is to produce a gap between regions that have lots of misses. In real
programs, generally misses occur in quick succession and then there are no misses for a
quite a number of clock cycles. This mode basically represents these clock cycles when
the CPU is perfectly in execution. When this mode is active in simulation it counts the
number of Execution clock cycles that are executed in this mode. When this count
reaches to the limit assigned to it, it ends.

5.2.2.6 Instruction data misses mode1

The ‘Loop Array data misses mode’ and ‘Instruction misses mode’ represent the extreme
behavior i.e. when a burst of data misses and burst of instruction misses occur. In many
pieces of code both instruction and data misses occur frequently. The ‘Instruction data
misses mode1’ and the ‘Instruction data misses mode2’ generate both instruction and data
misses in significant number. Also the misses generated in these modes are not
representing some particular software routines all the time. They also represent some
combination of misses, which are difficult to visualize in terms of software. They model
the behavior when both instruction and data misses occur in quick succession and when
both instruction and data miss occur at the same time i.e. in the same clock cycle.

During the simulation, this mode is further divided into three parts. In the first part it
represent the approximate behavior of the misses that occur in a sequential code, which is
not in the cache. Therefore it introduces one instruction miss after every 4 clock cycles.
Data misses can also occur in a straight sequential (not in the cache) but usually less than
instruction misses because all instructions are not load/store and all load/store
instructions doesn’t result into a miss. Therefore one data miss is introduced after every
10 clock cycles. This data miss toggles as a read and write miss, every time it is
introduced. This behavior continues until half of the instruction misses allotted to this
mode are introduced. After that it switches to another behavior.

77

In the second part, it represents the behavior when data misses are produced in greater
number than the instruction misses. This may be due to a loop but not of that types which
are modeled in ‘Loop Array data misses mode’. In this part, we assume loops that have a
big body consisting of many instructions and each iteration requires many clock cycles.
Therefore instruction misses may occur in every iteration but to a lesser extent than the
data misses. Therefore in this part, one data miss is introduced after every 6 clock cycles
and one instruction miss is introduced after every 10 clock cycles. Again the introduction
of data misses is divided into read and write misses. One write miss is introduced after
every two read misses. This behavior continues until ¾ of the data misses allotted to this
mode are introduced.

At the end it represents the behavior when an instruction and data miss occurs very
closely. In a pipeline processor, the instruction cache is accessed in every clock cycle and
when some load/store instruction reaches in a pipeline stage where it has to access the
data cache, the instruction and data caches are both simultaneously accessed in that
particular clock cycle. It may happen that both of these accesses result in a miss. In that
case, data miss is handled first followed by the handling of instruction miss. This causes
the processor to stall for a larger number of clock cycles. In the outside world, it may
mean that it will occupy the bus for a larger number of clock cycles.

So in the third part of this mode, this behavior is introduced after every 6 clock cycles.
One instruction and one data miss is introduced in the same cycle after every 6 clock
cycles. The data miss is handled first and then instruction miss is handled. This third part
is very small (it should be small) and it is found by simulation that it normally occurs less
than 10 times. It is because; instruction misses allotted to this mode is already small. And
nearly 90% of the instruction misses are introduced in the first two parts of the mode.
Remember that an instruction or data miss can only be introduced if the current values of
their respective counters are lesser than the maximum value of the misses allotted to the
mode. Therefore in the third part, after few simultaneous instruction and data misses,
instruction misses count reaches the maximum value and there will be no more
instruction misses. However, data misses are continuously introduced until they also
reach their limit.

5.2.2.7 Instruction data misses mode2

The behavior represented by this mode resemble to the behavior introduced in
‘Instruction misses mode’. In ‘Instruction misses mode’ the instruction misses are
introduced in greater number than data misses. In that mode we have represented the
behavior when the time difference between two successive instruction misses is less than
4 clock cycles. This effect is due to the conditional statements. In that mode, we have
focused on the conditional statements, which operate on the same data elements resulting
in lesser number of data misses.

It may be a case that these conditional statements operate on different data elements,
which are also not in the cache and hence result in data misses. Also the generation of
instruction misses in ‘Instruction misses mode’ represent the extreme behavior i.e. lot of

78

instruction misses are introduced in that mode. It may be a case that the generation of
instruction misses due to these conditional statements is not that much high as
represented in ‘Instruction misses mode’.

In this mode, we have represented the similar behavior of conditional statements with the
difference that they operate on many data elements and these statements result in lesser
number of instruction misses. Therefore it generates both instruction and data misses in
significant proportions.

Therefore when this mode is active in the simulation, two instruction and two data misses
are introduced in every 15 clock cycles. The two instruction misses are introduced
consecutively one after the other. The data misses are also introduced one after the other.
One of the data miss is read miss and the other is write miss.

5.3 An Overview of sequence of Operations

In this section we will describe the sequence in which different steps are carried out. The
whole simulation sequence is described in section 4.2.4 of chapter 4. For ease the figure
4.2 is reproduced here as figure 5.5. In section 4.2.4 all the steps have been explained
except the two grey shaded blocks labeled as ‘Initialization’ and ‘Call the functions to
decide the misses’. The first block ‘Initialization’ is basically the Initialization part
discussed in section 5.2.1 and the second block ‘Call the functions to decide the misses’
is the simulation part discussed in section 5.2.2. These two blocks in figure 5.5 can be
replaced by figure 5.6 and fig 5.7. Now we will describe the whole execution sequence
again that also include the detailed steps which were missing in section 4.2.4.We start
with the ‘Initialization’ part which takes place before the start of the simulation. All these
steps are shown in figure 5.6

1. Read the input parameters from the file, which include both the basic and optional
input parameters.

2. Calculate the total number of Execution clock cycles, total number of instruction
and data misses (read and write misses) for the whole simulation.

3. Calculate the Execution clock cycles, instruction and data misses for the
Compulsory mode.

4. Calculate the total number of modes from the Execution clock cycles by using the
procedure described in section 5.2.1. Calculate the individual number of Random
and Special modes and divide the remaining Execution clock cycles among these
modes according to their percentages.

5. Check whether the user has changed the default percentages of the Random and
Special modes. If the user hasn’t changed them, then use the default percentages
of instruction and data misses to calculate the total number of instruction and data
misses assigned to each mode. On the other hand, if the user has changed the
default percentages of Random and Special modes, then first scale the percentages
of instruction and data misses according to the relative percentages of Random

79

and Special modes and then calculate the total number of instruction and data
misses for each mode.

6. Divide the total Execution clock cycles, instruction and data misses which are

assigned to the Random mode, equally among individual small modes of Random
mode.

Figure 5.5

In itia lization Start of sim ulation

Start of c lock cycle

CPU already in
m em ory transfer?

Increm ent the
Execution clock

cycle count

Call the functions
to decide the

m isses

M isses found?

End of clock cycle

All instructions
sim ulated? End Sim ulation

Call the function to
com plete the

rem aining transfer or
initiate a new

m em ory transfer
depending upon the

condition.

YES

 NO

 NO

YES

YESNO

Flowchart of the com plete process

80

Figure 5.6

Read input
parameters from

the file.

Calculate total
number of Execution

clock cycles,
instruction misses
and data misses
(read and write).

 User has changed the
 default percentage of Random

and Other modes?

Calculate the
Execution clock

cycles and instruction
and data misses for

the compulsory mode.

Calculate the total
number of modes

and the total number
of Random and
Other modes.

Use the default percentages of
instruction and data misses for
the Random and Other mode

to calculate the total number of
misses for each mode.

Scale the percentages of
instruction and data for
each mode according to
user-defined values and
then calculate the total
number of misses for

each mode.

Divide the Execution
cycles and the misses

within individual modes of
random mode.

User has changed the
 default percentage of different

modes of the Other mode?

Scale the percentages of
instruction and data for
each mode according to

user-defined values.

Use the default
percentages of instruction
and data misses for each

individual mode of the
Other mode to calculate

the total number of misses
for each mode.

Build the schedule
array for the
simulation.

Calculate the total number
of modes of each type of

Other mode and divide the
Execution cycles between

them.

Start the
simulation

Flowchart of the initialization part

NO

 YES

 NO

YES

81

7. Divide the total Execution clock cycles assigned to the Special mode among
individual modes of different types of the Special mode.

8. Check whether the user has changed the default percentages of the different types

of Special modes. If the user hasn’t changed them, then use the default
percentages of instruction and data misses to calculate the total number of
instruction and data misses assigned to each mode. On the other hand, if the user
has changed the default percentages of these modes, then first scale the
percentages of instruction and data misses according to their relative percentages
and then calculate the total number of instruction and data misses for each mode.

9. Build the schedule array that contains all the necessary information to carry out
the simulation. Each location of the array represents one individual mode. The
length of the array is equal to the total number of modes.

This completes the ‘initialization’ part. All the remaining steps are performed during
the simulation. In each clock cycle, the following steps are carried out until the end of
the simulation. These steps are shown in figure 5.7.

10. Check at the start of each cycle if the CPU is in some stage of memory transfer.

This can be seen by checking the variable, which shows whether CPU is stalled,
or not. If the CPU is stalled then it is already in the communication phase i.e.
communicating with the memory through OCP, which requires some cycles to
complete. In this case call the function bus_interface_process(), which is
responsible for the memory transfer. The function also checks the current status of
the handshaking and takes necessary actions accordingly. This step is repeated in
every clock cycle until the memory transfer is completed. If the CPU is not
currently involved in memory transfer or the memory transfer is completed then
go to the next step.

11. Increment the ‘Execution clock cycles count’ variable, which is the counter for
the total Execution clock cycles for the whole simulation including all the modes.

12. Access the schedule array using schedule_count variable to know which mode is
currently active. This can be found by checking the mode ID. Jump to the
function, which represent this mode.

13. Increment the ‘Execution clock cycles count’ variable (this variable is different
from the variable used in step 11 and is different for each mode) for that mode
and decrement the ‘Execution clock cycles left’ variable for that mode.

14. Decide whether an instruction miss or data miss or both have to be introduced in
this cycle or not. The decision procedure is different depending upon which mode
is active in a given cycle.

15. Based on the decision procedure, check whether any miss or misses have been
found or not.

16. If a miss or misses have been found then set the variables to 1 that contain
information about the misses. Increment the ‘instruction misses count’ or ‘data
misses count’ variables depending upon whether instruction miss or data miss
have been found. Also decrement the ‘instruction misses left’ or ‘data misses left’
variables depending upon the type of the miss.

82

17. If no miss has been found then check whether enough Execution cycles are
available to introduce the given number of instruction and data misses for that
mode. This has been done by comparing the ‘Execution cycles left’ variable with
the ‘instruction misses left’ and ‘data misses left’ variables.

18. If the ‘Execution cycles left’ variable becomes equal to either ‘instruction misses
left’ or ‘data misses left’(enough cycles are not available) then go to step 16 ,
otherwise (enough cycles are available) go to the next step.

19. Compare the ‘Execution clock cycle count’ variable with the ‘Execution clock
cycles’ variable for that mode. If the ‘Execution clock cycle count’ variable
becomes equal or greater than the ‘Execution clock cycles’ for the mode then
increment the ‘schedule_count’ variable so that from the next cycle the next
location of the schedule array will be accessed which would contain some other
mode.

This completes the steps which are used to take decision about the introduction of a
miss in a given cycle during simulation.

20. Check the variables that contain information about the instruction and data

misses. If there is no miss then go to step 21 otherwise go to the step 23.

21. The clock cycle has ended. Save the values of all the variables that will be used in
the next cycle. All necessary variables are declared globally so that their values
will not be lost at the end of the function.

22. Compare the value of the ‘Execution clock cycle count variable’ with the Total

execution clock cycles value. If it is less than the total value then go back to step
10. If it is equal or greater than the total value then it means that all the
instructions have been simulated so go to the step 24.

23. If a miss has been found then stall the processor model. Call the function that
starts communication with the memory through OCP. Keep the processor stalled
until the miss has been handled. This has been checked at the start of every cycle
as shown in step 10. If there is a miss in both the instruction and data then handle
the data miss first and then handle the instruction miss. Clear the variables that
contain information about the misses that needs to be handled i.e. sets them to 0.
Go to step 21.

24. All the instructions have been simulated. Generate report about the total

execution time of the instructions, the number of cycles in which the CPU remain
stalled waiting for the memory response, the number of cycles the CPU is
executing instructions, shortest and longest memory access, effective CPI etc.
Terminate the simulation.

83

Figure 5.7

Access the schedule array
using schedule_count

variable to know which mode
is currently active. Jump to

the function which
represents the

corresponding mode.

Increment the variable that
contains Execution clock
cycle count for that mode

and decrement the variable
that contains the count of
the Execution clock cycles

that are left.

Decide whether an
instruction miss,
data miss or both

have to be
introduced or not.

Misses found?

Set the variables to 1 that contain
information about the misses so
that a miss will be introduced.

Increment the instruction misses
count or data misses count

variables depending upon the
type of the miss and also

decrement the variables that
contains the remaining number of

misses of the mode.

Check enough cycles
are available to
introduce the

remaining number of
instruction and data

misses

Enough
Execution cycles

available?

Compare the
Execution clock cycle
count variable with the

total number of
Execution clock cycles

for that mode.

Execution clock
cycles of the mode

are completed.

Increment the
schedule_count

variable

Return to the main
process of CPU

NO

 YES

NO

 YES

 YES

NO

Flowchart of the simulation part

84

5.4 SUMMARY

In this chapter we have described the methods which we have used to generate misses.
We have started with the brief overview of the caches. Then we have described the
method used to generate misses which consists of two parts the Initialization (that takes
place before the start of the simulation) and the Simulation (that takes place during the
simulation). We have described these two parts in detail in section 5.2.In the end, we
have described the complete sequence of the whole process. The overall objective of all
of these steps is to generate the misses in a manner that they look like the misses of a real
program.

From the input parameters, the model calculate the total number of misses and the
Execution clock cycles in which it has to generate these misses. To introduce these
misses in a realistic manner, it does some calculations on the available data before the
start of the simulation. It divides the total Execution clock cycles into three parts. These
parts represent different modes of behaviors of program execution and are called
Compulsory mode, Random mode and Special mode. It then divides these available
number of instruction and data misses among these three modes. The distribution of
misses has been done according to some rules. These rules have been made based on the
study of different behaviors of software routines and their affects on the misses. The
Execution clock cycles assigned to the Random and Special mode are further divided into
small parts or modes. The total number of these parts or modes increases with the
increase of total number of Execution cycles. The instruction and data misses assigned to
Random and Special mode are then further distributed within these smaller parts of each
category. This distribution is also done with some rules which have been made with some
theoretical background. In all the steps of the distributions, the user has the ability to
change the rules of distribution of misses. At the end a number of different modes are
created. Each mode represent some software behavior. Each has assigned some
Execution clock cycles and the misses which have to be introduced within these clock
cycles. The total number of Execution clock cycles and the total number of misses are
thus distributed among these small parts or modes. All this information is then placed in
an array called schedule array. Each mode occupy one location. The length of the array is
equal to the total number of modes. When the simulation is started this array is accessed
in order i.e. from the first location to the last one. These modes starts appearing in the
simulation generating misses according to the procedure representing the mode. Each
mode stays for a fixed number of clock cycles assigned to it , introduces its misses and
then vanishes. In this way all the locations of the arrays are accessed. When the mode in
the last location of the array completes its clock cycles, the simulation is ended. At that
time, the total execution cycles have completed and all the required number of misses
have also been introduced as well. The model then generate the report about the effective
CPI which include the effect of all the misses.

85

REFERENCES

[1] Computer Architecture A Quantitative Approach by John L Hennessy & David A
Patterson.

[2] Computer Organization and Design by John L Hennessy & David A Patterson.

86

 CHAPTER

In the first five chapters we have described the complete functionality of the model. The
last task is to test its accuracy. In this chapter we will discuss all the issues related to it.

The first question in this regard is: Can we really test it? If yes then how can we test it?
This is not a conventional software or hardware design. Normally to test any
software/hardware we apply different combinations of inputs and then compare the
output of the system with the desired output. In that cases, we know the desired output
but in our case we don’t completely know the desired output.

This chapter starts with the discussion about different approaches used for testing. We
will describe different steps, which we have taken to do this testing process. This
discussion is coupled with the description of different problems, which encountered
during this process and the tasks, which haven’t been completed because of these
problems.

6.1 Different Approaches for testing

First we have to see in which patterns misses originate in most programs. In other words,
how the generation of misses looks like when viewed with respect to the time i.e. during
the complete execution. Figure 6.1 shows some general traces of the programs, in which
the generation of misses are plotted with the elapsed time. This is the general behavior,
which we can find in most programs. The dark grey regions show the instants during
program execution when significant number of misses are produced. The light grey
regions represent the instants when misses are produced but not in very large number.
Finally, the white regions show where very few misses are produced or when most
accesses are hits. A deviation from this behavior means that the whole trace is occupied
by same region, which can be either dark grey, light grey or white. Many programs
deviate from the general behavior shown in figure 6.1 but we are interested in the most
general behavior which we can find in most programs i.e. according to figure 6.1.

Testing the
CPU Model

87

Therefore in the complete execution trace of most programs, at some points the
concentration of misses is high and at some points the concentration is low. Generally,
misses do not originate in regular order. Due to some special piece of code, large number
of misses occur in quick succession. When the program leaves this part of code and
enters some other part, which is in the cache, the generation of misses decreases.

Figure 6.1 Generation of misses with respect to time

This is the behavior, which we want in our model: the irregularity in the generation of
misses. We get the total number of available misses as an input and our job is to
distribute them in different parts and then originate them in a manner that they look like
appearing in irregular fashion. So for some particular number of clock cycles we have to
introduce large number of misses. Then for some number of clock cycles, we have to
introduce very little number of misses and then for some number of clock cycles we have
to originate some optimum number of misses. To achieve this, we have developed some
techniques, which are described in detail in Chapter 5 and it is assumed in the later
discussion that you have read Chapter 5.

To test our techniques, we need to evaluate the traces generated by our CPU model as a
result of some user supplied inputs and then see whether they are similar to the one
shown in figure 6.1. There is one important question in this approach: how we can set the
length of the region which can be termed as a region of high, medium or low misses. For
e.g., consider the first trace of figure 6.1. The first region is dark grey (high misses) and

High
misses Low misses High

misses
Medium
misses Low misses High

misses
Medium
misses

High
misses Low misses High misses Low misses Medium

misses Low misses

High
misses Low misses

Med-
ium

misses
Low misses High misses Low misses

Execution time

Execution time

Execution time

High
mis-
ses

Low
mis-
ses

88

the second region is white (low misses). If we combine them into one region, it will
become light grey (medium misses).

Figure 6.2 Generation of misses viewed in another way

Figure 6.2 shows an alternative. It shows how a bar graph between ‘number of misses
generated during program execution ‘ and ‘time between memory accesses’ in terms of
number of clock cycles looks like. To understand this figure, consider the bar at 1, which
shows the value of ‘Number of misses’ between 400 and 500, say 450. It means that 450
times it happens that the time difference between two successive memory accesses is 1
clock cycle. This graph represents the scenario, when a single CPU is connected to the
memory and there is no sharing. Also the latency of the memory is eliminated. If the
memory latency is included, then the minimum time difference between two successive
accesses would be memory latency (number of clock cycles to complete memory access)
+1. So if the memory latency is 20 clock cycles we will see the first non-zero value at 21.

Figure 6.2 shows that there are peaks on the left side of the graph. As we move from left
to right these peaks start decreasing and nearly vanish after 60-70 (not shown in figure).
This is what we can find in most programs. Most misses occur in quick succession i.e. the
time difference between two successive memory accesses is small. For some period of
time either zero or very few misses occur and then for some period of time a bunch of
misses occur. Therefore most programs execution generates peaks on the left side of the
graph. If we compare figure 6.1 with figure 6.2,it can be clearly seen that the peaks on the
left side of the graph in figure 6.2 is due to these dark grey regions. Figure 6.2 shows the
same behavior, which is shown in figure 6.1. But the method use in figure 6.2 is a more
clear way and provides better judgment to make comparison.

So we have to perform simulations with our CPU model using different values of input
parameters, record the misses and then generate bar graph like in figure 6.2 and then see

0
100
200
300
400
500
600
700
800
900

1000

1 4 7 10 13 16 19 22 25 28

Time between Memory accesses (Number of clock cycles)

Nu
m

be
r o

f m
is

se
s

89

whether we get the peaks or not and if we get them then whether they are on the left side,
right side or in the middle of the graph.

6.2 Recording Activity on the bus
To follow the approach of section 6.1, we need to record all the events on the bus
connecting the CPU and the memory. An activity on the bus means that a miss is
generated.

We have shown our test bench in figure 3.1 in chapter 3. The test bench consists of our
CPU model, memory and the clock. We have added another entity in the test bench
known as ‘Log entity’. The ‘Log entity’ records activity on the bus. Whenever CPU
communicates with the memory, it records that event i.e. write it in a file. It records
whether it is a read access or a write access. If it is a read access then whether it is an
instruction read or a data read. It also records the cycle number at which the access is
initiated. The variable that contains the value of cycle number increments by one at the
end of every clock cycle. At the end of the simulation, it generates two files. The first file
contains the complete data i.e. a record of all the accesses that contains the cycle number
at which the access was initiated as well as type of access. The second file is used to
generate a graph shown in figure 6.2. The time difference between every two successive
memory accesses is calculated and is stored in an array. Therefore array[7] = 123 means
that 123 times it has happened that the time difference between two successive accesses
is 7 clock cycles. Therefore every time when it is found that the difference between two
successive accesses is 7 clock cycles the value stored in location array[7] increments by
1.

Figure 6.3 Log Entity recording the activity on the bus

CPU

Memory

Log Entity

90

6.3 Testing the Simulation of the model
As described in the previous chapter, the simulation is divided among three major modes:
Compulsory mode, Random mode and Special mode. The Compulsory mode is a small
mode and appears only once during simulation. Random and Special modes are the most
prominent one. It is also possible to run the simulation with either Random mode or
Special mode.

We have performed number of experimentations with our model. We have used different
values of input parameters (number of instructions, miss rates, seeds). Since we are
making many decisions in our model based on randomness, therefore value of seed is
also important. We have tried different values of seeds by keeping all other parameters as
constant. It is found that the different values of seeds doesn’t affect on the output. Off
course, every new value of seed produce different combination but the bar graph remains
the same i.e. the peaks on the left side.

Consider the following example. The following input data is used to perform simulation.
Figures 6.4,6.5 and 6.6 show the outputs when the simulation is performed with only
Random mode, with only Special mode and then equal number of Random and Special
mode. However, Compulsory mode is present in all these simulations but its appearance
is very small as compared to the other two modes.

The input data is:

Total� number� of� instructions� � � � � =� � 313917�
Percentage� of� load� instructions� � =� � 20%�
Percentage� of� store� instructions� =� � 5%�
Instruction� miss� rate� � � � � � � � � � � � =� 0.0993�
Data� miss� rate� � � � � � � � � � � � � � � � � � � =� 0.1445�
CPI� (including� the� effect� of� structural,� data� and� control� hazards)� =� 1�
Memory� Access� startup� latency� (Number� of� cycles� required� to� initiate�
memory� transfer� after� detecting� a� miss)� � =� 1�
Memory� Accesses� end� latency� (Number� of� cycles� required� to� restore� the�
normal� execution� after� the� completion� of� memory� transfer)� =� 1�
Seed� for� the� random� functions� � =� 25�

91

0
2000
4000
6000
8000

10000
12000
14000

Number of
misses

1 4 7 10 13 16 19 22 25 28 31 34 37 40

Time between Memory Accesses
(Number of clock cycles)

Simulation with only Random mode

Figure 6.4

0
2000
4000
6000
8000

10000
12000
14000
16000
18000

Number of
misses

1 4 7 10 13 16 19 22 25 28 31 34 37 40

Time between Memory Accesses
(Number of clock cycles)

Simulation with only Special mode

Figure 6.5

92

0

5000

10000

15000

Number of
misses

1 4 7 10 13 16 19 22 25 28 31 34 37 40

Time between Memory Accesses

Simulation with equal percentages of
Random and Special mode

Figure 6.6

As shown from the figures, all combinations generate peaks on the left side. The heights
of the peaks are not important, the variation with respect to each other is important. In all
the figures, as we go from left to right they starts decaying and this is our desired
behavior. The special mode is used to introduce region of high misses of figure 6.1 and
Random mode is used to produce region of medium misses. Therefore the peaks
generated by Special mode are higher than Random mode. When all these modes are
combined together they approximate the behavior shown in figure 6.1.

6.4 Comparison with Real Programs

Initially, it was decided that the simulation with CPU model is compared with the
simulation of real cores to test the accuracy of our CPU model. This means that we will
take some original software and run it in a system consisting of a memory and real CPU
core. We will record the activity on the bus in the same manner as we have done in our
test bench i.e. creating a log entity and connect it with the bus connecting the CPU core
and the memory. Then we will generate the same bar graph shown in figure 6.2 from this
real simulation and then we will compare it with the graph generated by our CPU model.

The first question about this approach is: Is this approach correct?
Suppose we have followed the above-mentioned procedure and at the end we have two
bar graphs that have to be compared with each other. If we find that these two graphs are
not similar then what should we do? Does it mean that our CPU model is not correct?
Conversely, if we have found that the two bar graphs are very similar to each other. Does
it mean that our model is very accurate?

93

We have designed our CPU model by keeping in mind how general software behaves?
The bar graph generated by the real simulation is due to that specific single software. If
the two bar graphs are not similar then should we start modifying our model so that it
generates the graph similar to that one? We shouldn’t do that. If the two graphs are not
similar it doesn’t mean that the CPU model is not correct and if they are similar we
shouldn’t finish our testing process by calling it a success.

We should collect number of softwares at least more than dozen, which are different from
each other in terms of routines written in it. Then we should repeat the same procedure
with the output of all of these programs. Calculate the total number of instructions of
each program, instruction miss rate, data miss rate etc. Then we use this data as input in
our CPU model and then collect the statistics generated by our program. Then with the
help of these numbers of comparisons, we will be confident to comment on the accuracy
of the CPU model.

6.4.1 Design of testing system

Unfortunately, in most projects a significant amount of time is consumed in doing things,
which are not the actual part of the project. This thesis was also not an exception. The
following discussion of testing process will illustrate this.

The first step of this testing process is to build a test environment for the real simulation.
For this we need an IP core of real CPU and the memory. We have found a behavioral
model of ARM processor, designed for simulation purposes. The simulation of this ARM
model is equivalent to the simulation of synthesized version of IP core.

Before the simulation this processor model needs to be configured. A software has to be
written to configure it i.e. setting the TLB tables, enable or disable the caches etc. This
software has to be combined with the software that has to be run on the processor. Both
these programs are compiled by a Make file, which combine the output binary files of
both of these programs into a single file. The combined software is then loaded into the
memory.

When the simulation starts, the processor starts accessing the memory from the first
location. Therefore the configuration software starts executing i.e. the configuration of
the processor starts. After the completion of this configuration, the normal software starts
executing. The processor has 16 KB of separate instruction and data caches. It is possible
to enable or disable the caches with the help of configuration software [1].

A memory has been designed to interface with this ARM processor. The memory, which
we have used in our test bench, cannot be used because this model of the ARM processor
doesn’t follow the OCP interface. The interfacing with the processor didn’t prove to be a
small task because it requires knowing about architecture of the processor i.e. transitions
of different signals, when the input and output data is latched etc and how the data is
aligned in memory.

94

As told earlier, this processor model has 16 KB of separate instruction and data cache.
Also the memory with which the processor communicates consists of only software i.e.
the configuration software that executes at the beginning and then the normal software,
which is our testing software. This situation is different from the usual execution i.e.
when the given software is executed under the supervision of an operating system. The
operating system allocates memory to execute the software and also handles the
exceptions, which occur during program execution. In nearly every program, we use
input/output functions (printf(),scanf() etc) and memory allocation functions
(malloc(),pointers, linked lists). Absence of operating systems means these programming
features should not be present in the code. Summarizing the above discussion, this
situation sets two major restrictions on the programs, which have to be used for testing
purposes:

� The program should be large enough in size, so that it will not fit in 16 KB cache.
� The program should not contain any piece of code, which requires operating

system.

The first condition implies that significant number of misses should be generated during
the execution of the program. The whole comparison and in fact the whole project is
based on misses. If the program is small it will fit into the caches and so the misses
produced would be very small. The conflict misses (which contribute the major part of
misses in most programs) would be almost zero. Most misses would be compulsory.
Therefore to make some real evaluation, we need big programs, which have a code size
much larger than 16 KB. So that during its execution a significant number of conflict
misses would occur.

As explained, the second condition implies that the software code shouldn’t contain any
operating system dependent programming. It means that the program should be free of all
input /output functions, memory allocation functions.

The required softwares are basically the benchmarks specially written for the
performance analysis of different systems. Therefore for testing, we need benchmarks
with large code size and they shouldn’t contain any operating system dependent code.
Due of this restriction we can’t use benchmarks, which are used in normal PCs because
they have lot of input/output functions as well as operating system functions. It is
possible to clean the code with the input/output functions by putting an effort. But its
nearly impossible to remove operating system dependent piece of code, which include
complex data structures. Therefore, we need benchmarks that are used for embedded
applications and our CPU model is also focused on processors used in embedded
applications. The embedded benchmarks use much simpler programming constructs than
other conventional benchmarks. Thus to make a good analysis of our model we need
some embedded benchmarks which follows the above-mentioned conditions so that we
would be able to run them in our test system containing the ARM processor model.

The design of the test system was started even before the completion of the CPU model.
The intention was that the detailed traffic analysis of embedded benchmarks also helps us

95

in making right decisions in the development of the model. However, at that time these
benchmarks were not available and we were hoping that we would get them soon.
Unfortunately, this wasn’t happened. A lot of effort has been made but we haven’t been
able to find any benchmark, which also fulfill the above-mentioned conditions. Because
of the absence of the benchmarks, we can’t able to make any comparison with the real
programs, although every other necessary requirement was fulfilled.

Another Approach

During the last month of the project, we have tried another approach. As mentioned
earlier, that simulation with this ARM processor model can be done by either enabling or
disabling caches. We have changed the configuration software to disable the caches. It
means that now the processor does not have any cache. In other words, we can say that
every access to a cache result in a miss. We have written some small programs keeping in
mind the above limitations (operating system conditions). Although, these programs are
small but now we can find some traffic on the bus because the caches are disabled. We
recorded the activity on the bus with the help of our ‘Log entity’ but this time we have
recorded the memory addresses as well. Whenever the memory is accessed the
corresponding address is also recorded.

We wrote a C program in which different cache formulas given in section 5.1.4 or in [2]
and [3] are implemented. These formulas are used to find cache hits or miss with the help
of block address, tag size, number of blocks in the cache etc. Block address is obtained
from the address trace. For e.g. in a direct mapped cache the block placement is done by
the formula:

 (Block address) MOD (Number of blocks in cache)

We have implemented these formulas and made some arrays, which represent the
instruction and data caches. In short we have developed a model of the cache in a C
program. The program reads the log file generated by the ‘Log entity’. Takes all the
information about type of access, clock cycle at which it is accessed, address of the
access etc. And then with the help of these cache formulas it calculates that in a presence
of a cache whether that access would result in a hit or a miss. We assumed a small cache
i.e. small size with less number of blocks. Thus proceeding in this way we have generated
the bar graph from the executions of these small programs.

We have made some comparisons between the output of the test system and the output of
our CPU model. We have found similarities in few cases and dissimilarities as well.
However, we have rejected our results i.e. we haven’t felt confident to comment on the
accuracy because of the presence of following doubt in the approach:

The CPU model is designed keeping in view a pipeline machine when more than one
instructions are active in a cycle and we can expect misses closer to each other in the
order of occurrence. If the caches are disabled, the processor is not really working as a

96

pipeline machine. In a pipeline machine, instruction cache is accessed in every clock
cycle. Therefore every instruction access should be a miss. This stalls the processor. To
prevent the pipeline from permanent stall, it is required that the instructions in the next
pipeline stages should remain continue executing. When the memory access is completed
then at that time the previously issued instruction is already completed. After issuing this
new instruction the processor starts accessing memory again and thus stalls again. So in
practical, the processor would not work as a pipelined processor. Therefore, it is not safe
to come to any conclusion based on the results of these test systems.

6.5 Concluding Remarks

We have designed our model according to the general behavior of the CPU i.e. how it
behaves during the execution of most programs. The relationship between misses and the
software is carefully studied and implemented in the best possible way. We have shown
through our test approaches that we have correctly implemented the concepts, which we
have developed in our study of misses. We got the behavior, which we wanted to see in
our CPU model.

Special mode is designed to introduce lot of misses therefore it is targeted towards
smaller caches and thus high miss rates. Random mode is designed to produce medium
number of misses based on the miss rate. It is our observation that Special mode represent
high miss rate behavior better than Random mode and similarly Random mode represent
low miss rates better than Special mode.

We have done a reasonable effort to test our model against the real program execution.
We have developed every necessary item that can help us in this process. Unfortunately,
due to the unavailability of embedded benchmarks we can’t complete this process. We
have every necessary item except the benchmarks. In future, if we get them we can do the
testing with much lesser effort.

The model is made in a very a flexible manner. It provides lot of options to the user to
run the simulation in different flavors. The traffic analysis generated by the model
depends on two major factors. The first factor is the rules of distribution of Execution
clock cycles and the misses among different modes. The working depends on two parts:
the distribution of execution clock cycles and the misses and the rules with which these
misses are originated in each cycle. These rules of distribution are very much user
controlled. And the parameters which are not user controlled, their values are #define in
the code. If these values are modified, changes at the beginning will adjust all the
formulas in the code accordingly. The second factor is the rules of generation of misses in
each cycle. These rules are different for each mode. Separate functions are written to
represent each mode. Therefore its also very easy to modify them.

Consider the worst case, if in future some serious bugs are found in the model, it will be
easy to remove them. All the rules can be modified very easily. But remember we are
talking about the very worst case. We are very hopeful that this will never happen and

97

even if some thing goes wrong the user-supplied options will be enough to control. We
feel that we have completed the tasks given section 1.3.

6.6 SUMMARY

In this chapter, we have described our approach for testing. First we have shown that
what kind of results we are looking for and then we have shown some simulation outputs
of our model. We have shown that we became successful in implementing the desired
behavior in our model. Then we described, our different efforts to do testing with the real
programs, which haven’t been completed due to the unavailability of embedded
benchmarks.

REFERENCES

[1] ARM9 Embedded Trace Macrocell (ETM9) Technical Reference Manual

[2] Computer Architecture A Quantitative Approach by John L Hennessy & David A
Patterson.

[3] Computer Organization and Design by John L Hennessy & David A Patterson.

98

 CHAPTER

Finally we came to the last chapter. In this chapter we will briefly describe our
experiences during the whole project, possible future expansions and our feelings at the
end.

7.1 Possible usage of CPU model

During the whole project, we have designed and experimented in an environment of one
CPU and one memory. And it is because we have to make solo model of CPU i.e. how it
behaves in isolation. But definitely it will not be used for performance estimation in such
an environment. It will be used in an environment when a bus is shared by more than one
CPU to access the memory. Therefore the most common use of the CPU model is to
make two or more instances of it and then connect it in a given communication
architecture and then simulate. At the end, we are basically interested in estimating the
effective CPI for each instance of the CPU model. All the effort we have done to generate
the misses is basically used to estimate this value. In an environment of more than one
CPU, when the misses are generated in two CPUs in the same cycle, only one would be
able to get access of the bus, therefore the latency for the other CPU would be more than
what it has in isolation. Therefore depending upon the configuration of the
communication architecture, the effective CPI of each CPU instance would be different
than what it has in isolation. The communication architecture, which gives the smallest
CPI for most CPUs, is the best communication architecture.

Although we are not able to comment on the accuracy of the model with confidence but it
should be noted that expectations were not very high even before the start of the project.
For us even the 50% accuracy is enough. We should keep in mind what we are doing:
Running simulation without any software. Imagine the ease what this tool is providing.
We can simulate millions of instructions in five minutes (in fact we are not running the
instructions). Running same number of instructions on real cores require a full day. It is
also possible that we can make use of all the options of the model, collect different

Conclusion

99

figures (CPI) and then take the average to increase the accuracy. Even if we need to run it
several times with different settings: it will not take more than an hour (in fact even less).
And most important we don’t need to look and search for the softwares (like we did for
the benchmarks) that need to be run for simulation. If more work has to be done on it (to
increase its accuracy through testing and adding more behaviors) and its credibility has
been proven then it will prove to be an excellent tool for performance evaluation.

7.2 Future Expansions

After reading chapter 6, it is clear that one of the most important future works is to get
some embedded benchmarks and then follow the testing procedure given in chapter 6 and
try to uncover the bugs (if they are) present in the model.

We have done our best to make the model as modular and flexible as possible. We have
divided our simulation into many modes. In each mode we have represented some
behavior. It is possible to add more behaviors in the model by adding more modes. Table
5.2 shows the ID of each mode, which is used to go to the function representing the
particular mode. The mode with highest ID is 6. Therefore numbers greater than 7 can be
used for future modes. If some new behavior needs to be added, we can write a separate
function representing it, assigned it an ID along with some percentage of Execution clock
cycles and misses. And then that mode will start appearing in the simulation like others.

The Special mode is added to introduce greater number of misses in quick succession i.e.
it is focused towards high miss rates or we can say small caches. One possible expansion
would be to add some modes which are focused towards low miss rates i.e. they
introduce gaps between misses. In other words, they generate peaks on the right side of
the bar graph in figure 6.2.

7.3 Experiences

The programming in this project was quiet straightforward except few stuff of FLI. The
challenging task in this project was to come up with some good ideas that also have
strong theoretical background. In this project we have shown many new ideas. What you
have read in this project are only those ideas, which remains valid until the end. Many
ideas have been made, implemented and then rejected. The technique, which we have
used in this model, is a result of continuous thinking and discussions consisting of many
weeks.

It has been found during the initial phase, that no work has been done on this topic
before. When we have started this work we have tried to gather the maximum
information that can help us. We have read more than 50 papers related to caches. The
intention was to get some mathematical formulas about the misses. If we get or able to
develop some mathematical formulas for the misses then we can straightaway implement

100

them in the model. Some papers have been found that present some mathematical
analysis of the misses. But all these formulas were based on the memory addresses. And
as written many times, without software we can’t know the address. Therefore we
realized that we have to do something completely at our own and this is what we have
made.

Although the implementation of FLI is as straightforward as shown in Chapter 3. This
straightforward way was not known at the beginning. For even a small minor error, the
ModelSim crashed every time leaving no clue about the error. The job was then to find
this error, which consumed significant time. What we have learnt from this FLI
implementation is: try to do as simple as possible. Fancy programming approaches
always result in problems for this FLI at least in our case.

Although the model was written in C but at many places in the C code (OCP protocol
implementation) we have to think like writing code in VHDL because the functions
written in the C program runs with the rising transitions of the clock, which was a new
experience. The study and implementation of OCP was also worthwhile.

A lot of effort has been made in the testing process. Unfortunately, it went unrewarded at
the end.

Project as learning point of view

As a student, I have learned a lot in this project. This thesis was an excellent learning
opportunity to know more about Computer Architecture. The task assigned in the thesis
was very unique. Since it was totally a new kind of work and enough help from the
reading materials were not available therefore it forced me a lot to think. I haven’t
worked on such kind of project before where you have to come up with some new idea of
your own and then test whether it is right or not. At the end, I am satisfied with my work
but still feel that more could be done.

