
Scheduling algorithms for
Linux

Anders Peter Fugmann

IMM-THESIS-2002-65

IMM

Trykt af IMM, DTU

Foreword

This report is the result of a masters thesis entitled “Scheduling algo-
rithms for Linux”. The thesis was completed during the period January
through October 2002 under the supervision of Associate Professor Jørgen
Steensgaard-Madsen at the section of Computer Science and Engineering
(CSE), under the department of Informatics and Mathematical Modelling
(IMM), at the Technical University of Denmark (DTU).

I would like to thank my supervisor, Jørgen Steensgaard-Madsen, for as-
sistance and guidance. A special thanks to Gitte B. Rasmussen for moral
backup and support.

October 11, 2002

Anders P. Fugmann

Abstract

In this report, general scheduling theory is presented, and the Linux sched-
uler is described in detail. A simulator has been implemented in order
to evaluate scheduling algorithms for Linux. The simulator has been cal-
ibrated successfully, using some characteristic types of processes, and the
behavior of a realistic process mix has been examined. Also, measure-
ments for evaluating scheduler algorithms have been described, and new
algorithms for Linux have been evaluated through simulation.

Keywords

Scheduling, process queues, kernel augmentation, Linux, process simulator,
calibration.

vi

vii

Contents

1 Preface 1

1.1 Executive summary . 1

1.2 Prerequisites . 1

1.3 Typographical conventions 1

1.4 Terminology . 2

2 Introduction 3

2.1 Purpose . 3

2.2 Scope . 4

2.3 Organization . 4

3 Theory 7

3.1 Terms . 7

3.1.1 Fairness . 7

3.1.2 Time-sharing. 7

3.1.3 Space-sharing . 8

3.1.4 Dynamic priority. 8

3.1.5 Make-span . 8

3.1.6 Memory locality . 8

viii CONTENTS

3.2 Global queue . 8

3.2.1 Load sharing . 9

3.2.2 Batch scheduling . 9

3.3 Round-robin scheduling . 9

3.3.1 Weighted round-robin 10

3.3.2 Virtual round-robin 10

3.3.3 Virtual-time round-robin 10

3.4 Local queues . 11

3.4.1 Load-balancing . 11

3.4.2 Two-level scheduling 12

3.4.3 Hierarchical queues 13

3.4.4 Gang scheduling . 13

4 Linux 15

4.1 Overview . 15

4.2 Scheduler . 18

4.2.1 Processes . 20

4.2.2 Measurements . 21

4.3 Instrumentation in Linux 23

4.3.1 Implementation . 23

4.4 Tests . 25

4.4.1 Kernel compilation 25

4.4.2 Test setup . 26

4.4.3 Process execution times and process characteristics . 27

4.4.4 PE utilization . 29

4.4.5 Static tests . 30

4.5 Hypothesis . 33

CONTENTS ix

5 Simulator 37

5.1 Design . 37

5.1.1 Interface . 39

5.1.2 Process modeling . 42

5.1.3 Simulator flow . 43

5.2 Implementation . 44

5.2.1 Process description 44

5.3 Calibration . 45

5.3.1 Process modeling . 45

5.3.2 Static tests . 48

5.4 Restrictions . 48

6 Modifications 53

6.1 Round-robin scheduler . 54

6.1.1 Purpose . 54

6.1.2 Algorithm . 54

6.1.3 Implementation . 55

6.1.4 Tests . 56

6.2 Local-queue scheduler . 59

6.2.1 Purpose . 60

6.2.2 Algorithm . 60

6.2.3 Implementation . 62

6.2.4 Tests . 62

6.3 Two-level scheduler . 66

6.3.1 Purpose . 66

6.3.2 Algorithm . 67

6.3.3 Implementation . 69

6.3.4 Tests . 69

6.4 Summary . 71

x CONTENTS

7 Status 75

7.1 Evaluation of the simulator 75

7.2 Evaluation of the Modifications 76

7.3 Further work . 76

7.3.1 Simulator . 76

7.3.2 Linux modifications 77

8 Conclusion 79

8.1 The project . 79

8.2 The process . 80

Bibliography 81

Index 82

A Project description 91

B Linux augmentation 93

C Simulator 103

C.1 Task description . 103

C.2 Source . 105

xi

List of Figures

4.1 Process states . 17

4.2 Dependency graph for a compilation job 26

4.3 Compilation of the Linux kernel 28

4.4 PE utilization during compilation 30

4.5 Total compile times as a function of the number of concur-
rent processes . 31

4.6 PE service time. 32

4.7 Deviance from optimal PE service time. 32

4.8 PE efficiency . 33

4.9 Deviance from optimal PE efficiency. 34

5.1 Design overview of the simulator 38

5.2 State diagram and transitions for processes in the simula-
tor. The number of possible states have been extended with
pending, stopped and assigned. 39

5.3 Simulation of Linux kernel compilation. 47

5.4 Deviance from optimal PE service time. 49

5.5 Deviance from optimal PE efficiency. 49

5.6 Number of PE switches per process. 50

xii LIST OF FIGURES

6.1 Round-robin: Deviation from optimal PE service time. . . . 56

6.2 Round-robin: Deviation from optimal PE efficiency. 57

6.3 Round-robin: Number of PE switches per process. 57

6.4 Simulation of Linux kernel compilation using the round-
robin scheduler . 59

6.5 Local-queue: Deviation from optimal PE service time. . . . 63

6.6 Local-queue: Deviation from optimal PE efficiency. 64

6.7 Local-queue: Number of PE switches per process. 64

6.8 Simulation of Linux kernel compilation using local queues . 65

6.9 Simulation of Linux kernel compilation using the two-level
scheduler . 70

xiii

List of Tables

5.1 Process mix used in tests. 48

6.1 Constants used in the two-level scheduler implementation . 69

1

Chapter 1

Preface

1.1 Executive summary

This report is the result of a master thesis entitled Scheduling algorithms
for Linux. Through the study of general scheduling theory and the Linux
scheduler in particular, modifications are made to the Linux scheduler.
A simulator has been developed, in order to assess the characteristics of
different scheduler algorithms. The implemented algorithms were evaluated
by comparing results from the simulator with presented theoretical values.

1.2 Prerequisites

In this thesis, it is presumed that the reader has knowledge of the UNIX
operating system and process handling. Terms such as virtual memory
and input/output subsystem should be familiar to the reader. No prior
knowledge of Linux is assumed.

1.3 Typographical conventions

In this report the following typographical conventions are used:

2 Chapter 1. Preface

Italics is used for the introduction of new terms.
Constant width is used for files, function names, variable names, etc.

1.4 Terminology

Process is used to describe a single schedulable entity in an operating sys-
tem.

Task is used as a synonym for process.

Job is used to describe all the activities involved in completing any work
on a computer from start to finish. A job may involve several processes.

PE is an acronym for Processing Element. A processor on which processes
can be executed.

Service. A process is said to be serviced by a PE, when it has exclusive
access to a PE.

3

Chapter 2

Introduction

The focus on schedulers has increased in recent years after the introduc-
tion of multitasking environments in which multiple jobs share the same
hardware.

The purpose of the scheduler is to decide which process should have ac-
cess to the processor. In early Unix systems, the primary use was batch
jobs, which would run until finished, and then the next batch job would
be scheduled. This is called non-preemptive scheduling. Later, preemp-
tive scheduling was introduced, allowing the system to execute processes
seemingly in parallel, by switching between jobs. This has lead to the de-
sign of systems with multiple processors, allowing true parallelism between
processes.

Today machines are widely used as multiuser systems, in which users run
programs in parallel. Also, multi-processor systems are more common, and
available to the desktop market.

2.1 Purpose

The goal is to provide a context to investigate scheduler theory. Exper-
iments will be made in order to evaluate schedulers for multiprocessor
systems. The main focus will be on multi processing, and non real-time
scheduling.

4 Chapter 2. Introduction

2.2 Scope

Many systems exist today that have multiple processors, and it is therefore
relevant to discuss which type of system this theses will focus on. Since the
most supported platform by Linux is the Intel 386, a reasonable restraint
is to focus on this, more specifically the Intel SMP platform. The Linux
scheduler is, however, not strictly platform dependent and algorithms found
may be generic enough to be used on other similar platforms.

As many applications already exist on the Linux platform, this thesis will
not concentrate on how to change system-calls to the kernel, e.g. requiring
their applications to have its own scheduler. This does not exclude the
possibility of adding new system calls, though compatibility with existing
applications are required. In short, this means that suggested algorithms
will primarily focus on the scheduler in the kernel, supporting the existing
kernel-API.

2.3 Organization

The above goal will be obtained through the following tasks:

• Theory
In this chapter, a general overview of terms and algorithms will be
presented.

• Linux
The current scheduler in Linux is described, and modified for instru-
mentation purposes. Tests are made, in order to hypothesize pros
and cons for the existing Linux scheduler.

• Simulator
For evaluating different scheduler strategies and algorithms, a simu-
lator will be constructed. This chapter describes the purpose, design,
implementation and calibration of the simulator.

• Modifications
Based on hypothesis made while examining the Linux scheduler, mod-
ifications to the existing Linux scheduler will be described and results
for the simulator will be used in order to evaluate the modifications.

• Status
A summary of the project, and suggestions for future work will be
presented in this chapter.

2.3 Organization 5

• Conclusion
The findings and work made throughout the project will be summa-
rized, and a personal view of the project will be given.

6 Chapter 2. Introduction

7

Chapter 3

Theory

This section will provide an overview of some terms and algorithms used
in scheduling theory. The algorithms mentioned in this chapter will form
a base for later modifications to the Linux scheduler.

3.1 Terms

3.1.1 Fairness

Fairness describes the property of a scheduler, and describes the ability
of a scheduler algorithm to share system resources between processes. A
Fair share scheduler attempts to give equal service to all processes, a prop-
erty which is generally perceived to be a critical requirement of a sched-
uler [KL88, NWZ01].

3.1.2 Time-sharing.

This policy allows multiple processes to share the same processing element,
PE. This is done by allowing all processes, in turn, to be assigned to a PE
for a small amount of time (a time quantum). Most schedulers, including
the UNIX scheduler, use this form of policy [HS91, NWZ01, Fei97, BC01].

8 Chapter 3. Theory

3.1.3 Space-sharing

Opposed to the time-sharing policy, space-sharing restricts processes to be
scheduled only on a subset of PE’s. PE’s are partitioned, and each partition
is allocated specifically for a job [DA99].

3.1.4 Dynamic priority.

Time-sharing scheduling is often based on a priority. This priority can
either be static, or changed dynamically by the operating system to either
allow sooner execution or delayed execution of processes in order to achieve
some desired scheduling properties [BC01, HS91].

3.1.5 Make-span

Make-span of a schedule is the last process’s finish time, i.e. make-span
defines the amount of work done over time. This closely relates to how
well a scheduler algorithm utilizes the hardware, e.g. keeping the PE busy
100% of the time1.

3.1.6 Memory locality

On non-uniform memory systems, processes can access local memory more
quickly than remote memory. Memory locality denotes this relationship.
In shared memory systems, cache usually exists on a PE, and processes
will be able to access cached memory quicker than non-cached memory
and should therefore ideally always be executed on the same PE [And00].
Studies have shown that bringing data into the local memory results in
an extra overhead ranging between 30%-60% of the total execution time.
[ML92].

3.2 Global queue

One global queue is often used in shared memory systems. All processes in
the ready state (for a description of process states, see 4.1), are placed on

1Also called the scheduler efficiency [TW97]

3.3 Round-robin scheduling 9

the local queue, and the scheduler selects processes from the global queue,
executes them for some time, and then returns the processes to the global
queue. This has the advantage of load sharing [Fei97, DA99], as load is
distributed equally across all PE’s in the system. The disadvantage is the
lack of memory locality, since processes typically runs on different PE’s,
resulting in less use of memory locality (cache affinity) [ML92, ML93].

3.2.1 Load sharing

Load sharing describes a system that does not allow a PE to be idle, if there
is work waiting to be done. This is easily achieved using global queues.

3.2.2 Batch scheduling

Batch scheduling is one of the earliest forms of scheduling, in which pro-
cesses are collected in sets, and then scheduled for execution. Usually a
scheduled process would be run until completion. Batch scheduling was
usually used on, at the time, expensive systems where users would pay for
execution time.

3.3 Round-robin scheduling

The round-robin scheduler [TW97] is a very simple preemptive scheduler.
Opposed to batch scheduling, where processes are run until finished, the
round-robin scheduler allows multiple processes to be run in parallel by
executing each processes for a small period of time, a time quantum. The
round-robin scheduler selects processes from the front of a global queue
of runnable processes. When a process blocks or has expired its quantum
it is placed at the back of the queue (blocked processes are first placed
at the back of the queue after reentering the ready state). The round-
robin scheduler has the advantage of very little administrative overhead, as
scheduling is done in constant time.

10 Chapter 3. Theory

3.3.1 Weighted round-robin

The standard round-robin does not deal with different priorities of pro-
cesses. All processes are executed equally. In the weighted round-robin2,
quantum is based on the priority of the process. A high prioritized process
receives a larger quantum, and by this receives execution time proportional
with its priority. This is a very common extension to the round-robin
scheduler and will be referred to simply as the round-robin scheduler.

3.3.2 Virtual round-robin

The virtual round-robin [Sta01, HS91] scheduler is an extension to the
standard round-robin scheduler. As the round-robin scheduler treats I/O-
bound processes and PE-bound processes equally, an I/O-bound process
which often gives up its time-slice, will therefore be given an unfair amount
of processor time compared to PE-bound processes. For a description of
I/O-bound and PE-bond processes, see 4.2.1.

The virtual round-robin scheduler addresses the unfair treatment of I/O-
bound processes by allowing processes to maintain their quantum when
blocked, and placing the blocked process at the front of the global queue
when it returns to the ready state. A process is only returned to the back
of the queue when is has used its full quantum. Studies have shown that
this algorithm is better than the standard round-robin scheduler in terms
of fairness between I/O-bound processes and PE-bound processes.

3.3.3 Virtual-time round-robin

The round-robin and virtual round-robin schedulers both use a variable
quantum for processes, as priorities are implemented by changing the quan-
tum given to each process. The virtual-time round-robin [NWZ01] uses a
fixed quantum, but changes the frequency by which a process is executed in
order to implement priorities. This has the advantage that response times
are generally improved for high prioritized processes, while the administra-
tive overhead is still constant time.

2The term ’Weighted round-robin’ is used in [NWZ01], while [TW97] does not differ-
entiate the two algorithms

3.4 Local queues 11

3.4 Local queues

Global queues are easy to implement, but cannot be used effectively on
distributed memory systems because of the lack of memory locality. Also,
a global queue can cause queue congestion on multiprocessor systems as
the queue has to be locked whenever the queue is accessed.

Using a local queue for each PE can help resolve the above problems as
queue congestion cannot occur since only one PE uses each queue [Fei97].
Binding processes on a local queue can also provide memory locality, and
is therefore suitable for distributed memory systems. Shared memory mul-
tiprocessor systems can benefit from using local queues, as some memory
locality is present as well on theses systems in the form of processor cache.
[TW97, Fei97, KF01]

3.4.1 Load-balancing

By assigning processes to a local queue and only scheduling the process
on the queue to the PE to which the queue is assigned, load balancing
is required in order to avoid idle PE’s (empty queues) while there are still
processes in the ready state on other queues [Fei97, Mit98]. Load-balancing
is done in order to distribute load equally between the local queues. Usually,
load is defined as the number of processes on a local queue, and by moving
processes between queues load can be distributed equally.

The load balancing algorithm must be stable, and not overreact to small
changes in load, as this would result in processes being bounced between
and thus degrade performance. This stability can be achieved by balancing
only when the imbalance between queues is above a certain threshold.

Work-sharing

Load balancing through work-sharing means that processes are pushed from
a local queue to queues with less load [Mit98, BL94]. Whenever a PE has
a too high load, processes are distributed from the local queue to other
queues. This however has the disadvantage that processors must gather
load information and select what queue to migrate processes to, while the
PE is heavily loaded. One scheme for selecting target for migration is
the gradient [Fei97] model. In this model the system maintains a vector

12 Chapter 3. Theory

pointing to the least loaded PE, and processes are migrated to the PE
pointed to by this vector.

Work-stealing

In contrast to work-sharing, work-stealing steals processes from other queues,
when the load on the local queue is low [Mit98, BP, BL94]. This has the
advantage that balancing is done by the least loaded PE’s, and the penalty
of load balancing has less effect on system throughput. One method to
provide load-balancing using work stealing, is to have an idle process on
each local queue3. Whenever this process is executed, it tries to steal work
from other queues. This however has the disadvantage that work-stealing
only occurs whenever a PE is idle, and big differences can exist between
the local queues, as long a there is at least one runnable process on each
local queue.

3.4.2 Two-level scheduling

Both global queue and local queue algorithms have some advantages over
each other. To summarize, a global queue algorithm is only useful for shared
memory systems, and provides automatic load sharing between PE’s. Local
queues provide memory affinity, but requires load balancing.

Instead of choosing between the two types of scheduling algorithms, both
can be used in combination in order to obtain the advantages of both.
This is called two-level scheduling. In two-level scheduling, a global queue
is often used to hold all processes. Processes are then scheduled to the
second-level scheduler for execution. The second level scheduling can either
be controlled by the OS or by the application itself. This is called self-
scheduling , as either the jobs themselves or the PE’s schedule the processes
themselves.

One scheme is chunking [Fei97], where a set of processes are scheduled in
one go from the first-level scheduler. When processes expire their quantum,
they are returned to the first level scheduler. This has the advantage that
queue congestion is avoided, as only a set of processes are scheduled, instead
of scheduling all processes at once.

3An idle process is executed, only when the PE is idle as a PE cannot stop execution.
Usually the idle process is implemented as an infinite loop

3.4 Local queues 13

3.4.3 Hierarchical queues

Using Hierarchical queues is another way of obtaining the advantages of
both a global queue and local queues [DA99]. This can reduce congestion of
the global queue, while maintaining a degree of load-sharing. New processes
are placed in the global queue, and each PE has a local queue. In between,
there exists a hierarchy of queues. Whenever a local queue is empty, it tries
to get work from its parent queue. If there are more processes than PE’s,
extra processes are placed in the global queue.

3.4.4 Gang scheduling

The term gang scheduling is used when the scheduler selects a set of pro-
cesses (a gang) to be scheduled in parallel on a given set of PE’s. The
processes selected often belong to the same job. The idea is to schedule
cooperating threads together. Since the machine will become dedicated
to the specific jobs, busy-wait is tolerable. Gang scheduling is only useful
when multiple PE’s are available.

Gang-scheduling is often used in combination with partitioning . Partition-
ing is a scheme where PE’s are split up in groups. Processes are then
allowed only to be serviced by PE’s within the partition to which the pro-
cesses are scheduled. Partitioning can be useful if, for example, the cost
of moving a process from one PE to another in not equal for all PE’s. An
example of such a system is hyper-threading processors such as Pentium4,
where each processor can execute two processes in parallel, using the same
processor cache.

14 Chapter 3. Theory

15

Chapter 4

Linux

This chapter will give an overview of the process management in Linux and
describe the Linux 2.4 scheduler in detail, including tests and augmenta-
tions made to the Linux kernel in order to retrieve per process data.

4.1 Overview

Linux is a UNIX1 clone licensed under the GNU public license. It was
created by Linus Thorvald in 1992, with inspiration from Minix created
by Andrew S. Tanenbaum. Today Linux has it biggest market share as a
server operating system, but is to a lesser degree also used on workstations.
Linux is written in the programming language C.

The Linux operating system supports multiple architectures. The primary
architecture is the Intel i386 platform, including both the uniprocessor (UP)
and the symmetric multi-processor (SMP) versions.

The basic idea of an operating system is to provide a base to control ma-
chine resources and allow processes to be executed on the hardware, usually
also providing an abstraction layer for the hardware available. Linux is a
multitasking operating system, which means that it is able to execute mul-
tiple process in parallel. While a processor at any instant of time can only

1UNIX was developed by AT&T Bell Labs in 1969

16 Chapter 4. Linux

execute one process, Linux implements a process scheduler, which switches
between all runnable processes very quickly to provide pseudo-parallelism.
Having multiple processors in the system allows for true parallelism, but
since processors usually is a limited resource, a scheduler is still required
to guarantee pseudo-parallelism.

Originally, a process was defined as an executing program, a program
counter, registers and variables and some memory space in which the pro-
gram executes. A running process is protected from other processes, and
can regard itself as running exclusively on the system2.

When a process starts, it becomes ready to be served by a PE. When the
scheduler selects the process for execution, the process enters the running
state. In this state, the process can either be preempted by the scheduler or
block while waiting for data. When a process is preempted, it reenters the
ready state. If the process is blocked while waiting for data it is suspended
and the PE allocated to the process is released. When data becomes ready,
the process reenters the ready state, waiting to be serviced. To summarize,
the possible states are:

• Ready.
The process is ready to run, and is waiting to be serviced. From this
state the process can only enter the running state.

• Running.
The process is being served by a PE. In this state, the process can
either be preempted and put in the ready state, or make a blocking
call and enter the blocked state.

• Blocked.
The process is waiting for input from another process or IO subsys-
tem. When data is available, the process enters the ready state.

The states and transitions are shown on figure 4.1 on the facing page.

The state blocked covers all possible actions made by a process, when data
is not available. This includes I/O3 communication, page-faults, file system
operations and waiting for some event to happen (e.g. time to elapse or
processes to terminate).

Linux implements Virtual Memory. This allows the system to overcommit
memory by writing non-active memory to disc. Non-active means that the

2Later, the definition has been relaxed to e.g. allow multiple processes to share the
same code and/or memory segments

3Input/Output

4.1 Overview 17

Running

Blocked Ready

1

3

2

4

Figure 4.1: Process states

memory is not currently being accessed by a currently serviced process. The
memory in Linux is split up in four kibibyte (KiB4) pages. In theory, the
physical memory space can be regarded as a cache for the virtual memory,
with the restriction that any page being accessed by an currently serviced
process must be in the cache. If a process accesses a page which is not in the
cache, the operating system receives a page-fault and reads the page from
disc without notifying the process. If the cache is full, a non-active page
in the cache is selected to be removed from the cache (i.e. it is swapped
out). Since this technique would require all memory blocks in the virtual
memory to be allocated on the disc, Linux waits until a block must be
removed from the cache before writing it to the disc, in order to minimize
disc access. This has the effect that the disc is not always synchronized
with the virtual memory. Also this does not limit the virtual memory to be
equal to the number of blocks reserved for swapping, but rather the number
of allocated blocks possible to be equal to the physical memory plus the
disk space allocated for swapping.

The Linux kernel also implement’s a write-back caching system for block
device access. (hard drives, floppy drives, etc.). This means that when a
process reads from or writes to a file, the data is cached, and that a write
request takes very little time, compared to the time it physically takes to
write to the disc. For read request, the first read request will take normal
time, and following identical read request may be shortened, if the data is
still in the cache.

Because of the virtual memory and the block cache, it is non-trivial to
predict process execution times, and would require a thorough analysis to
assess average-case and worst-case cache times.

41 KiB = 210 bytes, as defined by the International Electromechanical Commission
(IEC)

18 Chapter 4. Linux

4.2 Scheduler

Linux 2.4 uses time-sharing scheduling [NWZ01, Fei97, BC01, HS91]. This
is implemented by using a global queue [DA99, Fei97] and dynamic priori-
ties [BC01]. This section will describe in detail how the current scheduler
is implemented.

The global queue [Fei97, DA99] in Linux holds all processes which are in
the ready state and running state. This queue is called the run queue.

To implement fairness [HS91, NWZ01] every task in the system is given a
time quantum based on the priority level of the task. The quantum specifies
how long the process may be serviced by a PE, within one scheduling cycle.
A cycle starts when all processes in the system are given new quantum, and
ends when all processes on the run queue have been serviced equal to their
quantum. The cycle is repeated indefinitely. This ensures that high priority
processes may be serviced longer than low prioritized processes, within a
scheduling cycle in a linear fashion. This is accomplished by giving bigger
quantum to higher prioritized processes, and lower prioritized processes
will receive a smaller quantum. Priority levels range from -20 to 19. The
quantum, QP , given to each process P is given in equation 4.1.

QP = 10− priority

2
(4.1)

where QP is the time quantum given to process P , and priority is the
priority level of the process.

To keep track of serviced time for each process within a scheduling cycle,
a counter is set equal to the quantum at the start of each cycle. For
each system tick5, this counter is decreased by one for all processes in the
running state. By this, the counter represents the quantum left for each
process. To increase PE effectiveness6 for blocked and waiting processes,
some of a process’s unused quantum can be transfered to the next cycle.
The calculation of the counter C for process P , is given in equation 4.2,

CP,n = QP +
1
2
CP,n−1 (4.2)

5A tick is generated by a timer interrupt, which occurs every 1/100 seconds
6See section 4.2.2 on page 22

4.2 Scheduler 19

where CP,n is the value of the counter for process P at the start of cycle n,
and CP,n−1 is the value of the counter at the end of cycle n− 1. QP is the
quantum given to the process, as given in equation 4.1 on the facing page.
Given these formulas, the counter can have the value [1; 40].

The algorithm implements time-sharing scheduling, where each active pro-
cess receives service proportional with its priority within one cycle. Since
the duration of a cycle is finite, no starvation can occur.

Within a cycle, scheduling occurs whenever:

• A process is inserted on the run queue.
• A process enters the blocking state.
• The quantum of a process expires.
• A process yields its service.

If multiple PE’s exist in the system, the scheduler runs locally on the
particular PE to which a process is to be scheduled.

The selection of a new process is based on a goodness value, which is cal-
culated runtime for each process, and the process with the highest value is
selected. Therefore, it is said that the scheduling algorithm uses dynamic
priorities, since the goodness value of a process changes during execution.
The value is based on several parameters of the process. Below is a list of
these parameters and how these affect the goodness value.

• Remaining quantum.
The goodness value is initially set to this. If the quantum is zero, no
further examination is done.

• PE affinity.
If the process was previously serviced by the current PE, the goodness
value is incremented by 15. It is sought to increase the effectiveness
of the PE-cache.

• Avoid page faults.
If the memory space for the process is the same as the previously
serviced process, the goodness value is increased by 1. This is done
to somewhat avoid unnecessary page faults.

• Priority.
Lastly, the value is incremented by 20− priority.

The complexity of the algorithm is O(N), where N is the number of ready
processes in the system, as a goodness value must be calculated for all
running processes for each schedule.

20 Chapter 4. Linux

On systems with multiple PE’s, a locking mechanism is implemented to
guarantee that the run queue remains consistent, since the scheduler runs
locally to a PE, and schedule can be invoked on several PE’s in parallel. It
is also necessary to synchronize with queue insertions and deletions from
other parts of the kernel, for example under process creation and deletion.

Because of this locking mechanism, queue congestion can occur where mul-
tiple PE’s try to access the queue, and thus damaging overall performance
in the system, as scheduling overhead is increased.

4.2.1 Processes

In this section different process classes will be defined, and the desired
properties will be described.

PE-bound processes.
A process is said to be PE-bound if it requires relatively long peri-
ods of computation time (> 1 sec) and seldom enters the blocked
state. For PE-bound processes, it is relevant to only examine the PE
efficiency (i.e. how much PE time the process receives) [HS91, dSS00].

I/O-bound processes.
An I/O bound process uses most of its time waiting for I/O to com-
plete, i.e. in the blocked state. The process will only be serviced in
bursts, for quick processing of data and issuing new I/O commands.
To keep the hardware busy, the delay between each I/O command
should be as low as possible.

Interactive processes.
An interactive process primarily awaits for user interaction. Since
user interaction compared to PE-cycles is very long, an interactive
process should be optimized for response time. In this case PE ser-
vice time is less important, since the user cannot issue commands at
any rate comparable to processor cycles. An interactive processes is
somewhat similar to an I/O-bound process, as the process only needs
service in bursts.

4.2 Scheduler 21

Processes properties

In the above, some important properties have been identified with respect
to optimizing different processes:

• Efficiency.
• Response time.
• I/O command delay.

The I/O command delay is closely related to the response time. If the
response time for a process is low, the process will receive service shortly
after entering the ready state. Naturally, a process can only issue I/O com-
mands when in the running state, so the I/O command delay will improve
when the response time for a process improves.

A process can seldom be classified into one of the above three classes of
processes, but rather a mix of these. This means that it is not relevant only
to optimize a process for one property alone. It is therefore desirable to be
able to monitor the type of a running process, and optimize accordingly.

4.2.2 Measurements

This section will describe how to evaluate a process with respect to the
properties as describe in section 4.2.1 on the preceding page.

Let the service time of a process define the time the process is in the
running state (run time), and let PE efficiency for a process define the
time a process is in the running state, divided by the time the process is in
the running or ready state.

To evaluate make-span, the service time for a process is compared to the
service time under perfect fairness. Process response times can be evaluated
in the same manner, by comparing the response time with the response time
under perfect fairness.

Next, formulas will be given to find the service time under perfect fairness,
denoted as optimal service time and the PE efficiency under perfect fairness,
denoted as optimal PE efficiency.

Let the share, Qp, define the relation between time in the running state,
and time in the blocked state for process p. If Qp = 1, the process never
enters the blocked state, and if Qp = 0, the process never leaves the blocked
state. Let the proportional share, Sa, for a process, a, be defined as:

22 Chapter 4. Linux

Sa =
QA∑
p∈P Qp

(4.3)

where P is the set of all processes in the system.

From this, perfect fairness [NWZ01] is defined as the ideal state in which
each process is serviced equal to their proportional share.

Optimal PE efficiency

Let the PE efficiency, T , of a process, p, be defined as the proportion of
the time the process is not in the blocked state, and the service time of the
process, as show in equation 4.4.

T (p) =
Trunning(p)

Trunning(p) + Tready(p)
(4.4)

Where Trunning(p) is the time spent by process p in the running state, and
Tready(p) is the time spent in the ready state.

Optimal PE efficiency is defined as the PE efficiency under perfect fairness.
Since a process cannot be serviced by a PE while in the blocked state, the
PE efficiency is not defined for processes in the blocked state.

Let H define the number of PE’s in the system. The optimal PE efficiency,
Topt, equals the proportion of total available PE’s on the system to the PE
requirement. The PE requirement is the sum of shares for all processes, P,
in the system. Since the process for which the optimal PE efficiency is to be
calculated, is in the running or ready state, the share for this process is set
to one. The optimal PE efficiency for a process, p, is given in equation 4.5.

Topt(p) = Min{ H

1 +
∑
i∈P/pQi

, 1} (4.5)

Optimal service time

The service time obtained for a process, p, within a time interval, is the
time process P has spent in the running state within the given interval. Let
the optimal service time be defined as the service a process receives during

4.3 Instrumentation in Linux 23

an interval, under perfect fairness. Let the optimal service time received
by a process, p, during the interval (t1, t2) be denoted as W (p, t1, t2). The
optimal service time can then be found by multiplying the proportional
share by the number of PE’s in the system. As a process can never be
serviced by more than one PE at a time, the optimal service time can be
found. The optimal service time is given in equation 4.6.

W (p, t1, t2) = Min{(H · (t2 − t1) · Sp, (t2 − t1)} (4.6)

4.3 Instrumentation in Linux

Currently it is not possible to gather per thread statistics in the Linux
kernel. This section will describe how the kernel is augmented to include
per process statistics.

The idea of the augmentation is to be able to retrieve data from a running
kernel. The data sought should be able to answer two questions: What are
the characteristics of the process, and how has the process been handled
by the scheduler.

The characteristics should explain how long the task is in the running state,
and how long the process has been blocked. The scheduling data should
explain how long the process has been in the ready-state, and how many
times the process has been scheduled. These data can then be used to
calculate PE efficiency, and service time to be compared to optimal values.

4.3.1 Implementation

The implementation is split into two parts: a bookkeeping system, and a
data retrieval part.

Bookkeeping

The bookkeeping system updates the per-process data, and makes the data
available to the data retrieval. The data retrieval system makes all per-
process data available to user-space programs through a device node.

24 Chapter 4. Linux

To avoid overhead in the kernel, the bookkeeping is only updated whenever
a process changes its state. As explained in section 4.2 on page 18, when a
process changes its state to blocking, the active process is removed from the
run queue, and vice versa. The timing measurement is based on the number
of system ticks, which only allows time measurements to have an accuracy
of 1/100 second on the Intel i386 platform. The system also keeps track of
the number of preemptions, and the number of times it was assigned to a
processor.

The bookkeeping data is kept in the general process structure in Linux,
task_struct . The specific fields can be seen in appendix B on page 93.

Data collection

The data collection part of the instrumentation must provide a method for
user space programs to access the data.

Data can be retrieved in several ways from the kernel: through a file-
system node, and through the system log. Writing data to the system log
can be regarded as push-technology, by only writing data to the log when
available. This can reduce the overhead of data gathering, since data can
be restricted only to contain information about process changes. However
it is not possible to use the system log, when the run queue lock is held, i.e.
from within the scheduler, because the printk routine calls wake_up to
activate klogd , the kernel logging daemon. Since wakeup tries to reacquire
the run queue lock, deadlock occurs.

Using a node in the file system (device node) has the limitation that user
space programs must acquire the data, and thus pull technology must be
used. The data obtained through the device node is thus a snapshot of all
processes in the system. This does not require the system to remember state
changes, and does not cause problems if data is not read. The disadvantage
is, that state changes can be lost if data is not read frequently enough.

Data collection is implemented as a module, which can be inserted into the
Linux kernel. When inserted, data can be retrieved through a device node.
The device node receives a dynamically assigned major number, and has
minor number 1. See [Rub98]. The modifications made to the Linux kernel
and the source code for the module to be inserted is listed in appendix B on
page 93. The kernel source can be obtained from [ea02].

4.4 Tests 25

4.4 Tests

In this section, the scheduler in Linux will be tested by repeatedly perform-
ing a heavy multiprocess job. An obvious choice is repeated compilation of
the the Linux kernel, varying the number of forked processes.

4.4.1 Kernel compilation

The compilation of a kernel is one of the most used tests when trying to
determine how well a change in Linux affects overall performance. Usually
the total runtime is examined, but the test can also be used as a stress
test to show how the system handles multiple processes. The processes
examined in this test make state changes numerous times, in order to read
the files needed. This confirms to the usual process behavior, which is to
be processor bound only for short periods of time.

A single compilation of a C file must read the file to be compiled from the
disk, and then start parsing it. While parsing, all included files must be
read from disk. When the parsing is done, the compiler starts to translate
the written code into machine binary code, which is a processor intensive
process. When the binary code has been generated, the process writes the
result back to disk. To summarize, a compilation process will start by
making several file system requests, after which it becomes PE-bound, and
at last makes a single file system request.

To link two or more object files, the process must first read the object files
from the disk, and then resolve all the symbols in the files. After this, the
result is written to disk.

In general, both compilation and linking have the same pattern. Read
some files from disc, process the data, and then write the result to disk.
As described in section 4.1 on page 15, Linux implements a block cache.
This means that block operations may take little or no time if the block
is already in the cache. Since header files are read multiple times during
the compilation of the Linux kernel, they are likely be cached, and read
times are dramatically reduced, depending on the size of the block cache.
Similarly, since linking only links previously created object files, the task
of reading the object files is reduced.

When compiling a Linux kernel numerous files must be compiled and linked
together. This is done recursively, until the kernel itself is built. An ex-

26 Chapter 4. Linux

ample of the dependencies is shown on figure 4.2, which shows that in
order to process the top level linking, three other linker processes must be
completed, and so forth.

Linking Linking Linking

Linking LinkingCompile

Compile Compile Compile

Compile Compile

Compile Compile

Compile

Linking

Figure 4.2: Dependency graph for a compilation job

The program make, is responsible for compiling and linking the Linux
Kernel in the correct order. A Makefile is supplied with the Linux kernel
source. In this file, all dependencies are defined, and this file is used by
make. Make has the ability to spawn several child’s simultaneously, if some
rule’s dependencies needs to be made.

Using make, it is very easy to test how Linux handles different load patterns,
as the number of spawned processes can easily be controlled. The processes
examined in the compilation tests exclude the make-processes themselves,
since these do no real work other than waiting for spawned processes to
complete before spawning new processes.

4.4.2 Test setup

To test kernel compilation, the augmented Linux kernel is booted in single-
user mode, by instructing the kernel to use a shell as the init , thereby
insuring that Linux does not start any other services, normally started
through init . To avoid cache influences, all tests are preceded by a
make dep clean . This scans all files to remake the dependency tree,
and removes all object files. Before starting the compilation, data sam-
pling through the augmented kernel is started. The actual tests are started
by issuing the command:
make -j N

4.4 Tests 27

Where N defines the number of maximum concurrent processes. N ∈
1, 2, 4, .., 32.

Data sampling is stated as a real-time process, in order to guarantee that
the process is not starved by the compilation processes. Data sampling is
done with a frequency of 40 Hz.

All tests are made on a Dual AMD Athlon MP 1500, running at 1.3
GHz. The hard-disc is a Maxtor DiamondMax IDE drive. The system
has 256MiB DDR2100 system Ram.

4.4.3 Process execution times and process character-
istics

In this test, process characteristics are plotted as a function of process exe-
cution time, to see if there is any correlation between I/O-bound processes,
PE-bound processes and the execution time.

Doubling the number of processes will have several effects on the process
execution time. If resources are available, a better utilization of the system
resources will occur and execution time should improve. If the system
resources are already exhausted, then adding extra processes to the system
will result in further administrative overhead, and the total compile time
should increase. Also when doubling the number of processes while system
resources are exhausted, the completion time for a single process is doubled,
disregarding the extra administrative overhead introduced. When adding
more processes, it should also be possible to identify bottlenecks in the
system: if raw processing power is the bottle-neck, adding more processes
will cause processes to remain longer in the ready-state, and if disc-access
is the bottle-neck, processes will become more I/O-bound.

Results

The results are presented in figure 4.3 on the next page. The data has been
normalized by dividing the process execution times by C, as given below:

C =

1 number of concurrent processes
¡ number of PE’s.

number of concurrent processes
number of PE’s otherwise.

28 Chapter 4. Linux

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400 450 500

f(
p)

ticks

Linux kernel complilation with 1 process.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400 450 500

Linux kernel complilation with 2 processes.

f(
p)

ticks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400 450 500

Linux kernel complilation with 4 processes.

f(
p)

ticks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400 450 500

Linux kernel complilation with 8 processes.

f(
p)

ticks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400 450 500

Linux kernel complilation with 16 processes.

f(
p)

ticks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400 450 500

Linux kernel complilation with 32 processes.

f(
p)

ticks

Figure 4.3: Compilation of the Linux kernel

Each point on figure 4.3 represents a process, where the position on the
x-axis specifies the total execution time for the process in ticks, and the
position on the y-axis specifies the behavior, f(p), of the process found by:
f(p) = Trunning(p)/(Trunning(p) + Tblocked(p)), where Trunning(p) is the
time spent by process p in the running state, and Tblocked(p) is the time
spent in the blocked state.

It can be seen in figure 4.3, that the execution time for each process is pro-
portional with the number of concurrent processes. It is also noticed, that
the characteristics of the processes change when the number of concurrent
processes is increased. As seen in the result for a compilation with 16 con-

4.4 Tests 29

current processes, processes tend to become more I/O-bound. In general,
most processes are I/O bound, requiring almost no service on a PE, which
indicates many small compilations.

Since the process times are proportional with the number of processes,
this suggests that the I/O resources are a limited resource like the PE’s.
Increasing the number of concurrent processes clearly shows that processes
become more I/O bound, which suggests that disc access is becoming the
bottleneck.

4.4.4 PE utilization

based on the previous test, it is speculated that when having too many
processes in the system, PE utilization will become lower because the com-
pilation processes tends to become I/O bound. Adding extra processes
should also increase compile times, as it would imply more administrative
overhead due to the use of a global run queue. Also the lack of PE affinity
may show as an increase in compile times, if processes are being bounced
from one PE to another.

In this test PE utilization is measured as a function of the number of
concurrent processes in order to validate the expectations above. In this
test no data sampling has been done, as only the total PE usage and total
runtime for the compilation process is needed. This is done by using the
command:

time make -j N

where N defines the number of maximum concurrent processes. N ∈
1, 2, 4, .., 32.

Results

As seen on figure 4.4 on the following page, the PE utilization falls as the
number of concurrent processes is increased. This indicates that when pro-
cesses begins to compete for I/O, the PE’s are left idle for longer amounts
of time. The compile times shown on figure 4.5 on page 31 also rise as
the PE efficiency falls. The compile times do not display any visible added
overhead in scheduling the processes. This would have resulted in a linear
increase in compile-times. The effect of moving a process from one PE

30 Chapter 4. Linux

to another is not seen either, suggesting that this does not happen to a
significant degree and that the Linux scheduler does honor PE affinity to
some extent. It is hypothesized that the reason to why the compiles times
increase when then number of concurrent processes is over 25, is also be-
cause the system starts swapping as it does not have memory enough to
hold both processes memory, and files read in the block cache.

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30

PE
 u

tli
liz

at
io

n

Number of processes

Figure 4.4: PE utilization during compilation

4.4.5 Static tests

As described in section 4.2 on page 18, the Linux scheduler should improve
process response times for I/O-bound processes, as processes can receive
quantum while in the blocked state, and are therefore likely to have a
higher dynamic priority when reinserted on the run queue after having
been blocked.

The tests in this section will examine how I/O-bound processes are treated
by the Linux scheduler compared to PE-bound processes. To test this, five
processes with different characteristics are started, and service time and
processor efficiency is measured, using the kernel instrumentation. The
process characteristics are the same as those used in the simulator tests,
and a description can be found in table 5.1 on page 48.

4.4 Tests 31

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 5 10 15 20 25 30
Number of processes

C
om

pi
le

 ti
m

e
in

 s
ec

on
ds

Figure 4.5: Total compile times as a function of the number of concurrent
processes

In order to assure that these processes perform as described, the processes
sleep instead of issuing I/O commands. By using sleep, the processes still
enter the blocked state when necessary, but do not compete for I/O service.
Also the time spent in the blocked state is easily controlled when using
sleep. The tests are therefore called static, as process characteristics cannot
change during execution.

To ease creation of the processes, the simulator includes functionality to
spawn real processes according to a file containing process descriptions. See
5.2. The process description file is in appendix C.1 on page 103.

Results

In figure 4.6 on the next page, PE service times are graphed as a function
of the total execution time. It is clearly seen that the more I/O-bound
a process becomes, the less it is serviced, which is in accordance to the
process descriptions.

When service times are compared with the optimal service time for each
process, is is observed, that I/O-bound processes receive more service rel-
ative to their share than PE-bound processes. On figure 4.7 on the follow-
ing page, the deviation from optimal service time is graphed as a func-

32 Chapter 4. Linux

 0

 2000

 4000

 6000

 8000

 10000

 0 2000 4000 6000 8000 10000

tic
ks

ticks

Q=1.0
Q=0.8
Q=0.6
Q=0.4
Q=0.2

Figure 4.6: PE service time.

tion of execution time. The deviation is found by using the formula:
deviation = measurement − optimal/optimal, in which case a positive
deviation indicates that a process has received more service time than its
proportional share, and vice versa.

−1
−0.9
−0.8
−0.7
−0.6
−0.5
−0.4
−0.3
−0.2
−0.1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 2000 4000 6000 8000 10000

de
vi

at
io

n

ticks

Q=1.0
Q=0.8
Q=0.6
Q=0.4
Q=0.2

Figure 4.7: Deviance from optimal PE service time.

When examining response times, the result indicate the same trend as found

4.5 Hypothesis 33

above. This is shown on figure 4.8. The Linux scheduler does a good job
in increasing the response times for I/O-bound processes. The more I/O
bound the process is, the better response time, since I/O processes have a
better PE efficiency than PE-bound processes.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2000 4000 6000 8000 10000

PE
 e

ff
ic

ie
nc

y

ticks

Q=1.0
Q=0.8
Q=0.6
Q=0.4
Q=0.2

Figure 4.8: PE efficiency

On figure 4.9 on the following page, the measured PE efficiency for each
process is compared with the optimal PE efficiency, by plotting the mea-
sured PE efficiency deviation from the optimal PE efficiency. It is seen that
the PE efficiency for the most I/O-bound process is 19% over the optimal
PE efficiency. While the PE-bound process is penalized, it is interesting
to see that the PE-bound process is only penalized by 14%, and thus con-
firms the theory, that increasing PE efficiency for I/O-bound processes does
penalize PE-bound processes to the same degree.

4.5 Hypothesis

Based on the analysis and tests of the scheduler implementation in Linux,
this section will hypothesize on the strengths and weaknesses in the Linux
scheduler.

The tests have shown that I/O-bound processes have very good response
times, as the PE efficiency is considerably higher than the optimal PE

34 Chapter 4. Linux

−1
−0.9
−0.8
−0.7
−0.6
−0.5
−0.4
−0.3
−0.2
−0.1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 2000 4000 6000 8000 10000

de
vi

at
io

n

ticks

Q=1.0
Q=0.8
Q=0.6
Q=0.4
Q=0.2

Figure 4.9: Deviance from optimal PE efficiency.

efficiency, while PE-bound processes are not overly penalized by this. This
property is due to the use of dynamic priorities, which unfortunately has
several disadvantages.

For each schedule all processes are examined, and scheduling overhead is
proportional with the number of processes in the ready state. Traversing
the list of all processes in the ready state for each schedule also has the
disadvantage that cache may be invalidated, as rather large structures has
to be read from memory.

The scheduler algorithm has proved to be predictable, and provides fair
treatment to all processes, which by [KL88] is an important property of a
UNIX scheduler.

As the scheduler uses a global queue, it is hypothesized that queue conges-
tion can occur on systems with multiple PE’s. It is, however, difficult to
hypothesize on the performance impact this will have. Studies have shown
that Linux does not scale well in systems with more than four processors.
The advantage of using a global queue is load-sharing, while cache-affinity
is sacrificed.

To summarize, the strengths of the Linux scheduler are:

• Good response times.
• Fair toward I/O-bound processes.

4.5 Hypothesis 35

• Scheduling is predicable.
• Load-sharing.

It is however hypothesized that the implementation has the following weak-
nesses:

• Scheduling overhead is proportional with the number of processes.
• Queue congestion can occur.
• Cache affinity is not honored.
• Cache is somewhat invalidated for each schedule.

36 Chapter 4. Linux

37

Chapter 5

Simulator

To evaluate different scheduling strategies, a simulator has been imple-
mented. In this chapter the simulator is described and it is argued that
results obtained from simulating a scheduling algorithm will be realistic
compared to implementing and running processes in a live environment.
The chapter will conclude that the properties of a scheduler implementa-
tion can be assessed and used to evaluate the algorithm.

5.1 Design

The goal of the simulator is to make it possible to evaluate scheduler algo-
rithms and the results of changing parameters in these. This section will
describe how the scheduler is designed in order to obtain this property.

The focus of the simulator is to test schedulers to be implemented in Linux.
The result of a simulation should be able to indicate trends with respect
to process scheduling, which are also present in the Linux kernel.

To ease the transition between a Linux implementation of a scheduler and
the simulator, the simulator has been designed to allow a minimum of
changes to the scheduler implementation. This design decision makes it
necessary to closely model the Linux process model and environment within
the simulator. Also an interface is defined between the simulator and sched-
uler implementation. This interface is sought to match the interface in the

38 Chapter 5. Simulator

Linux kernel to the scheduler. As no strict interface to the scheduler in the
Linux kernel exists, it has been necessary to define one.

An overview of the simulator if given on figure 5.1. The simulator consists
of the following elements:

• Global scheduler.
This part handles the task of feeding new processes to the process
scheduler. The global scheduler accepts process specifications from
multiple sources, and maintains rules about how many and which
processes are fed to the process scheduler.

• Process scheduler.
The process scheduler which is to be examined.

• I/O scheduler.
The I/O scheduler represents the I/O subsystem in the Linux kernel.
It handles I/O resource allocations in order to simulate I/O load
generated by multiple processes. The I/O scheduler does not make
any distinction on I/O requests.

• Process specification.
This part keeps track of each process’ internal state, in order to allow
different process mixes in the system.

G
lo

ba
l s

ch
ed

ul
er Process scheduler

I/O scheduler

Simulator environment

Pr
oc

es
s

sp
ec

if
ic

at
io

n

Figure 5.1: Design overview of the simulator

The design of the simulator leads to an extension of the process state di-
agram given in figure 4.1 on page 17, in order to keep track of which

5.1 Design 39

subsystem the process is in. The new state diagram is shown in figure 5.2.
The new states introduced in the simulator are:

• Pending.
A process in this state has been created, but has not yet been sched-
uled by the global scheduler. When the process is scheduled, the state
enters the Running state, by transition 7.

• Stopped.
When a process terminates, it enters this state. A process can only be
stopped when not consuming any resources, and can therefore only
enter the stopped state through transition 8 from the ready state, as
the simulator does not allow processes to be killed.

• Assigned.
Because of the introduction of an I/O scheduler, a new state is needed
to describe when the process is actually being assigned to an I/O
resource. A process can only enter this state while blocked through
transition 6.

All processes start in the pending state, and are simulated until reaching
the stopped state.

Blocked

Running

Ready

Stopped

Pending

1
23

5

6
8

Assigned

4

7

Figure 5.2: State diagram and transitions for processes in the simulator.
The number of possible states have been extended with pending, stopped
and assigned.

5.1.1 Interface

As it has been a design goal to minimize the number of changes necessary
for moving a process scheduler between the simulator and the Linux kernel,

40 Chapter 5. Simulator

#ifndef __SCHED_INTERFACE_H__
#define __SCHED_INTERFACE_H__

#include "simulator_interface.h"

/* Get the id of the "current" processor. */
int smp_processor_id ();

/* Initialize structures and specify idle tasks */
void sched_init (Task ∗idle_task);

void do_timer ();

void schedule ();

int wake_up_process (Task ∗p);

int task_has_cpu (Task ∗task);

Task ∗ get_current ();

#endif /* __SCHED_INTERFACE_H__ */

Listing 5.1: Interface required by the simulator

an interface is provided in the simulator, which must be implemented by
the scheduler.

The interface is split up into two parts: one part of which is the functions
and data structures provided by the simulator for the scheduler, and the
second is the functions and data structures provided by the scheduler. Since
the scheduler in Linux has never been developed with focus on changeabil-
ity, Linux does not provide a clean interface between the environment and
the scheduler, and it has been necessary to define a suitable one. In the
list below, all items in the interface are described and deviations from the
Linux function signatures, if any, are explained.

Scheduler interface

In listing 5.1 the interface required by the simulator is given. Below is
description of all functions and data structures in the interface.

list <*task_list> tasks
This list provides access for the scheduler to all tasks in the sim-
ulator. The list elements are of type Task* , which correspond to

5.1 Design 41

#ifndef __SIMULATOR_INTERFACE_H__
#define __SIMULATOR_INTERFACE_H__

#include "task.h"
#include "globals.h"
#include <list >

void smp_send_reschedule (int cpu);

/* Access to all tasks in the system */
extern list <Task ∗> tasks ;

extern unsigned int jiffies ;

#endif /* __SIMULATOR_INTERFACE_H__ */

Listing 5.2: Interface provided by the simulator

the task_struct structure in Linux. The task_struct in Linux
holds all process information, and structures used by the scheduling
algorithm is contained in this.

void smp_send_reschedule(int cpu)
This function allows the scheduler to invoke scheduling on another
PE. The argument cpu denotes the PE on which schedule should be
invoked.

ungined long jiffies
This variable hold the number of ticks the simulator has been running.

Simulator interface

The interface provided by the simulator to the scheduling implementation
is given in listing 5.2. Following is a complete description of the interface.

int smp_processor_id()
The function returns the id of the current PE, on which code is cur-
rently being executed.

void sched_init(Task *idle_task)
This function is called for each PE in the system before scheduling
starts, in order to allow the scheduler to initialize data structures. In
Linux, this function is only called once. The reason for this devia-

42 Chapter 5. Simulator

tion in the simulator, is to provide a mechanism for the simulator to
provide idle tasks in an explicit manner to be used by the scheduler
whenever a PE is idle.

void do_timer()
This function is called for each timer tick. The function does not ac-
cept any arguments, which is a deviation from Linux, as the function
in Linux requires a structure containing all processor registers values
as argument, to be used for debugging (i.e. stack-traces.).

void schedule()
This is the main scheduler function. This is called whenever a process
leaves the running state, and when a process has the need_resched
flag set. The schedule function is responsible for assigning processes
to PE’s.

int wake_up_process(Task *p)
This function is called whenever a process enters the ready state. The
function argument is the process to be inserted on the run queue.

int task_has_cpu(Task *task)
The scheduler must provide a method to find out if a process is in
the running state. The function should return a non-zero value if the
process argument is currently serviced by a PE.

Task* get_current()
This function must return a pointer to the structure representing the
process currently being serviced by the PE, pointed to by
smp_processor_id .

5.1.2 Process modeling

The simulator must be able to model processes with different properties,
and in order to make this flexible and extensible, any process in the simu-
lator is associated with a set of properties.

A property is a state machine which can change the state of the process
and/or create a new processes to be scheduled. Each property is notified
for each system tick, and if the state of the process changes.

5.1 Design 43

The following properties are available:

• Processor bound task.
Specifies that a process is PE-bound, and should never enter the
blocked state.

• I/O bound process.
This property specifies that the process will enter the blocked state,
after having received a specific amount of service time. The process
then leaves the blocked state after having received a specified amount
of I/O service.

• Periodic process.
A periodic task emulates a real-time process, that requires to be ser-
viced for a specified amount of time on a PE within a specified period.
When the process have obtained its required service time, the process
blocks until the period ends.

• Process forking.
This property describes a process that can fork a number of chil-
dren. When a forked process enters the stopped state, this property
is not notified, but the property itself must keeps track of all pro-
cesses forked. For each tick the property examines how may forked
processes are still active1 and forks new processes if necessary, keeping
the number of forked processes constant.

• Limited runtime.
All properties above describe an endless cycle. This property allows
a process to terminate when it has received a specified amount of
service.

By combining several properties to a process, it is possible to create complex
processes without having to introduce new properties.

Each process property does its own internal bookkeeping, partly to be used
to determine process behavior, and partly to enable monitoring of different
properties, such as deadlines, PE-efficiency, etc.

5.1.3 Simulator flow

When the simulation is started, ticks are sent to every subsystem2 and all
active processes in order to simulate that time passes. When a process

1processes not in the pending state
2I/O-scheduler, global scheduler, etc.

44 Chapter 5. Simulator

receives a tick, it is allowed to change state. If a process serviced by a
PE changes its state, all subsystems are notified. If the process changes
state from running to blocked or vice versa, both the process scheduler and
the I/O scheduler reschedule a new process to be serviced. If a process
enters the stopped state, the global process scheduler selects a process in
the pending state to move to the running state. If any subsystem causes a
process to change state, the process is notified in order to update statistics.

After each tick has been sent, the state of all processes is printed to standard
output, similar to the kernel argumentation as described in section 4.3.1 on
page 24. It should be noted, that the simulator never discards a process,
even if it enters the stopped state. This means that for every tick, data is
printed for all processes ever created.

If no processes can be scheduled on a PE, a special idle process is selected
for execution.

5.2 Implementation

The simulator has been written in C++ in order to allow inheritance and
virtual functions for the process properties. The process structure has been
implemented as a C++ class, requiring the scheduler code to be compiled
in C++ mode in order to access the process list and process descriptions.
Furthermore, the simulator uses C++ Standard Template Library, STL,
for list operations. This means that the list API in Linux has not been
implemented, and must be changed using STL. The source code for the
simulator is listed in appendix C.2 on page 105.

5.2.1 Process description

When the simulator is started, a file containing the global system descrip-
tions and process descriptions is read. This file is a text file, which allows
lines to start with an arbitrary number of spaces and tabulations, and any
line starting with a hash mark is ignored. A sample of this file is given in
appendix appendix C.1 on page 103

The global system settings are: system ticks per second, number of PE’s
and number of I/O resources. Also the maximal number of concurrent
processes and the length of the simulation in ticks are specified.

5.3 Calibration 45

5.3 Calibration

To calibrate the simulator, it is examined how well simulation results con-
cur to real tests done in Linux 2.4. Two types of tests are made. First
the simulator is calibrated to match kernel compilation tests. The second
test maps the processes defined in the simulator to corresponding Linux
processes, and compares the results.

5.3.1 Process modeling

In section 4.4.3 on page 27, it was seen that when increasing the number of
concurrent processes during a kernel compilation, the system became I/O-
bound, and each process would spend more time in the blocked state. In
order to examine if this phenomenon can be reproduced by the simulator,
a suitable process mix must be defined, calibrated and then simulated.

In the compilation tests, two classes of processes are identified:

• Strongly I/O-bound - f(p)→ 0
• Lesser I/O-bound - f(p) ∈ [0.1; 0.9]

Both classes of processes have a total execution time of up to 400 system
ticks, while most of the processes are terminated before 200 system ticks
has elapsed.

To describe this load, a process with the forktask property is used to spawn
processes. The processes spawned have the IOTask property, in order to
specify that spawned processes are I/O-bound.

To describe the two classes of processes, two processes of the above type
were initially defined, each with different parameters for I/O and PE time
required. However, two process descriptions did not provide a sufficiently
nuanced description of the processes, and the process description has there-
fore been extended to three processes, all with the forktask property. The
parameters for process characteristics of the spawned processes and the
environment parameters have then been calibrated to match the results
found in section 4.4.1 on page 25. The final process descriptions are shown
in listing 5.3 on the next page.

While calibrating the process mix, it was found that the results in sec-
tion 4.4.1 on page 25, were best matched when the number of I/O resources
was set to three, by specifying io_resources=3 .

46 Chapter 5. Simulator

Globals: hz=100, cpus=2, io_resources=3, tasks=J, \
ticks=14000

I/O-bound
process {

pid:1, grp:1, nice:0, policy: 0, run: 0
CPU Task:
Fork Task: forkprob=(J,0) durration=(10,15) \
type=’IO Task: cpu=(1,3), io=(50,100)’

}

process {
pid:2, grp:1, nice:0, policy: 0, run: 0
CPU Task:
Fork Task: forkprob=(J,0) durration=(40,80) \
type=’IO Task: cpu=(1,2), io=(5,10)’

}

process {
pid:3, grp:3, nice:0, policy: 0, run: 0
CPU Task:
Fork Task: forkprob=(J,0) durration=(120,240) \
type=’IO Task: cpu=(10,10), io=(5,0)’

}

Listing 5.3: Simulator control file used to simulate a kernel compilation. J
defines the number of concurrent processes

The process mix found above is then simulated repeatably while increasing
the number of concurrent processes. This is done by changing the tasks
value in the simulator control file, and for each value run a simulation for
14000 system ticks. This equals a simulation of 140 seconds, as is was found
in section 4.4.4 on page 29.

Figure 5.3 on the facing page shows the results of simulation of compiling
a kernel after calibration. On the figure, each point represents one process,
where the x-axis is the total execution time of the process, and the y-axis
is the process characteristics found by:

5.3 Calibration 47

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

f(
p)

ticks

Concurrent processes = 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

f(
p)

ticks

Concurrent processes = 2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

f(
p)

ticks

Concurrent processes = 4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

f(
p)

ticks

Concurrent processes = 8

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

f(
p)

ticks

Concurrent processes = 16

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

f(
p)

ticks

Concurrent processes = 32

Figure 5.3: Simulation of Linux kernel compilation.

f(p) =
Trunning(p)

Trunning(p) + Tblocked,assigned(p)

where Trunning(p) is the time spent by process p in the running state, and
Tblocked,assigned(p) is the time spent in the blocked and assigned state.

It is observed that the diversity of process characteristics does not match
those found in the tests made in Linux. It is also observed that the tendency
of processes to become more I/O bound is in fact present.

The lack of diversity in process characteristics leads to the conclusion, that

48 Chapter 5. Simulator

a more complex process description would be preferable. Some studies
exist where process behavior is defined using statistical models, e.g. Sevik’s
model and Dowdy’s model [Wu93]. Implementing these may lead to a closer
match, and this could therefore be a suggestion of future work.

5.3.2 Static tests

The static tests are made to examine how well the simulator can predict
process scheduling, compared to the result found testing the Linux sched-
uler. The process mix tested is given in table 5.1.

Process Type period Share (Q) Prop. share (S)
1 PE-bound ∞ 1.0 0.333
2 IO-bound 100 0.8 0.266
3 IO-bound 100 0.6 0.200
4 IO-bound 100 0.4 0.133
5 IO-bound 100 0.2 0.066

3.0 1.000

Table 5.1: Process mix used in tests.

The number of I/O resources are set to five to avoid processes competing
for I/O, as I/O activity in the Linux tests were implemented using a sleep
call, which can be regarded is as an infinite I/O resource. The control file
for the simulator is given in appendix C.1 on page 103.

On figure 5.4, 5.5 and 5.6, it is observed that results are identical to those
found while testing the Linux scheduler, and that the static process-mix
needs not to be calibrated further.

5.4 Restrictions

As the simulator only sets up a simplified environment, data gathered from
the simulator cannot be expected to excatly match how processes are sched-
uled in the Linux kernel. Following is a list of restrictions in the simulator:

• Time is only measured in ticks. For each tick statistics is collected
based on the state of each process. This means, that the resolution of

5.4 Restrictions 49

−1
−0.9
−0.8
−0.7
−0.6
−0.5
−0.4
−0.3
−0.2
−0.1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 2000 4000 6000 8000 10000

de
vi

an
ce

ticks

S=1.0
S=0.8
S=0.6
S=0.4
S=0.2

Figure 5.4: Deviance from optimal PE service time.

−1
−0.9
−0.8
−0.7
−0.6
−0.5
−0.4
−0.3
−0.2
−0.1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 2000 4000 6000 8000 10000

de
vi

an
ce

ticks

S=1.0
S=0.8
S=0.6
S=0.4
S=0.2

Figure 5.5: Deviance from optimal PE efficiency.

the statistics gathered by the simulator are in ticks, and it is assumed
in the simulator that a process will only change state whenever a tick
occurs. This is not the case in Linux, as a process can change its
state in between two timer ticks, i.e. if an interrupt occurs, or if a
process enters the blocked state.

• Scheduler latency is not measured. The simulator assumes that all

50 Chapter 5. Simulator

 0

 50

 100

 150

 200

 250

 0 2000 4000 6000 8000 10000

PE
 s

w
itc

he
s

ticks

S=1.0
S=0.8
S=0.6
S=0.4
S=0.2

Figure 5.6: Number of PE switches per process.

processing time is assigned to processes in the system, or to idle pro-
cesses. One way to simulate the overhead of scheduling is to add a
process to the environment which has the same processing require-
ments as the scheduler. The problem here is to find out how much
processing time the scheduler algorithm uses and how to model this.
A further complication is that the simulator can only represent time
in ticks. It is hypothesized, that the time it takes to make a schedul-
ing decision is smaller than one system tick, and adding a process to
model scheduling overhead would require a higher resolution of time.

• No penalty for PE change. On the Intel SMP 386 platform cache ex-
ists on each PE, and processes can gain processing efficiency running
on a warm cache compared to running on a PE with a cold cache.
A warm cache denotes that memory structures used by a process are
in the cache. The term cold cache defines that no memory struc-
tures for the process are cached. The simulator does not take this
cache-process relationship into account, and can therefore not penal-
ize process execution times if the scheduler moves a process from one
PE to another.

• No model of memory usage for processes. Processes with high mem-
ory requirements may cause page faults, resulting in memory has to
be read from disk, and thus would have a negative performance im-
pact. This situation is not modeled in the simulator.

5.4 Restrictions 51

• The simulator is implemented as a single-threaded application. This
means that schedule cannot happen in parallel for two PE’s, and that
locking of data structures is not necessary for scheduler implementa-
tions in the simulator. As the simulator does not have locking the
effects of queue congestion cannot be simulated. No studies have here
been made on the effect of queue congestion, and could be a subject
for further investigation.

52 Chapter 5. Simulator

53

Chapter 6

Modifications

In this chapter the theory of scheduler will be used to make modifications
on the existing scheduler in Linux, partly in order to study the implications
of different algorithms, and partly to address some of the imperfections in
the current scheduler.

The following algorithms have been implemented:

• Round-robin scheduler.

• Local-queue scheduler.

• Two-level scheduler.

The current scheduler has a complexity of O(n), where n is the number
of processes in either ready and running state. Every time schedule
is called, a goodness value for each process is calculated, and scheduling
decisions are based on these values.

54 Chapter 6. Modifications

6.1 Round-robin scheduler

6.1.1 Purpose

The complexity of the Linux scheduler implies that the administrative over-
head will rise with the number of non-blocked processes. This is not a prob-
lem when PE’s are not fully utilized, but when the number of processes in
the running state increases, any administrative overhead will only make
the situation worse with respect to make-span. To address this problem, a
round-robin scheduler is implemented and simulated.

6.1.2 Algorithm

The round-robin scheduling algorithm reduces administrative overhead.
This is because only a constant number of elements is examined when a
scheduling decision has to be made, thus giving a complexity of O(1). The
scheduling algorithm is shown below. A scheduling decision is made when
calling roundrobin(p,Q), where p is process serviced by the PE on which
the scheduler is invoked, and Q is the list of all processes in the ready state.

roundrobin(p, q :: Q) =

if
quantum(p) = 0 : (q,Q+ [p])

state(p) 6= running : (q,Q)

state(p) = running ∧ quantum(p) > 0 : (p, q :: Q)
fi

roundrobin(p, []) = (p, [])

where the function quantum(p), returns the remainder of the quantum for
process p, and the function state(p), returns the state for process p.

Whenever a process reenters the ready state having been in the blocked
state, it is inserted to the back of the ready queue.

The round-robin scheduler differs from the Linux scheduler in not using
dynamic priorities. This has a number of drawbacks:

6.1 Round-robin scheduler 55

• Lack of cache affinity.
The round-robin scheduler only based scheduling decisions on the
state and quantum of a process. Since there is no relation between
quantum left and on which PE the process has previously been served,
the round-robin algorithm may cause processes to be bounced be-
tween PE’s.

• Queue congestion.
The round-robin uses a global queue to hold all processes in the ready
state. Whenever scheduling is called on a PE, modifications may oc-
cur on this list. While removing an element from the front of a list
may prove to be inexpensive, a lock is still required to avoid prob-
lems if scheduling is invoked on another PE. Also, if a process spawns
a child, or a process leaves the running state (terminates), modifica-
tions to the list will occur, and access to the list must be synchronized.

• Unfair treatment of I/O bound processes.
As mentioned before, I/O bound processes only requires service in
bursts. When an I/O bound process reenters the ready state from the
blocked state, it must wait until all other processes in the ready state
have been serviced before receiving service. Because of these long
delays before an I/O bound process receives service after reentering
the ready state, the PE efficiency is expected to decrease for I/O
bound processes.

6.1.3 Implementation

In the implementation of the round-robin scheduler, it has been a priority
to make as few changes to the existing scheduler as possible.

The Linux scheduler keeps all processes in the running and ready state on
a global queue (the run queue). This structure is reused in the round robin
implementation. This is done by leaving processes in the running state in
the front of the run queue. This means that when a new process is to be
scheduled, the run queue must be traversed until a process not in the active
state is found. The result of this is that the complexity of the algorithm is
O(p), where p is the number of PE’s in the system, but remains constant
with respect to the number of processes in the ready state.

The implementation for the round-robin scheduler can be seen in appendix C.2 on

56 Chapter 6. Modifications

page 156. The implementation does not contain any locking primitives, as
the simulator does not offer any functions for this.

6.1.4 Tests

To compare the round-robin scheduler to the Linux scheduler, two tests
have been made. The process mix, as described in section 4.4 on page 25,
has been simulated, followed by the kernel compilation tests, using the
process mix as described in section section 5.3 on page 45.

Static process mix

Using the process mix as shown in table 5.1 on page 48, the round-robin
simulator is simulated, and results are compared with those found while
testing the Linux scheduler. As the Linux scheduling algorithm has only
been tested on a dual PE machine, these tests are only made with cpus=2 .
In these tests, only the deviation from optimal values and the number of
PE switches will be examined.

−1
−0.9
−0.8
−0.7
−0.6
−0.5
−0.4
−0.3
−0.2
−0.1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 2000 4000 6000 8000 10000

de
vi

at
io

n

ticks

Q=1.0
Q=0.8
Q=0.6
Q=0.4
Q=0.2

Figure 6.1: Round-robin: Deviation from optimal PE service time.

On figure 6.1, the PE service time deviation from the optimal PE service
time is plotted as a function of time. It is seen that the service time devi-
ation is below zero for PE-bound processes, while the deviation is higher

6.1 Round-robin scheduler 57

−1
−0.9
−0.8
−0.7
−0.6
−0.5
−0.4
−0.3
−0.2
−0.1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 2000 4000 6000 8000 10000

de
vi

at
io

n

ticks

Q=1.0
Q=0.8
Q=0.6
Q=0.4
Q=0.2

Figure 6.2: Round-robin: Deviation from optimal PE efficiency.

 0

 100

 200

 300

 400

 500

 600

 0 2000 4000 6000 8000 10000

PE
 s

w
itc

he
s

ticks

Q=1.0
Q=0.8
Q=0.6
Q=0.4
Q=0.2

Figure 6.3: Round-robin: Number of PE switches per process.

for I/O-bound processes. Compared to the Linux scheduler, I/O-bound
processes receive less service time, and PE-bound processes receives more
service time. This is in accordance with the statement made before, about
expecting I/O-bound processes to be penalized, although it does not hap-
pen to the degree assumed.

58 Chapter 6. Modifications

Figure 6.2 on the preceding page shows that PE efficiency for all processes
is close to the optimal PE efficiency, and that the PE-efficiency is almost
equal for all the processes. This indicates predictability, and that the round-
robin scheduler gives fair service to all processes. Compared to the Linux
scheduler, it is observed that I/O-bound processes have less PE efficiency
using the round-robin scheduler, while PE-bound processes benefit from
this.

Since the round-robin does not honor cache affinity for processes, the num-
ber of times a process is switched from one PE to another should increase.
On figure 6.3 on the page before, this pattern is easily seen, as processes are
moved between PE’s significantly more often than in the Linux scheduler.
I/O-bound processes are moved more often than PE-bound processes, as
the factor for I/O-bound processes is approximately four compared to the
Linux scheduler, while it is approximately 2.5 for the PE-bound process.
This is in accordance with the theory, where the number of PE switches
should be proportional to the number of process preemptions. This how-
ever does not mean that I/O processes suffer more because of lack of PE
affinity, because I/O bound processes requires service less frequently than
PE-bound processes, and would properly not benefit much from PE-affinity.

Compilation tests

In this test, the process-mix found during calibration of the simulator is
used. See listing 5.3 on page 46. For each simulation, the number of concur-
rent processes is doubled, from one process up to 32 concurrent processes.

On figure 6.4 on the next page, each point represents one process, where
the x-axis is the total execution time of the process, and the y-axis is the
process characteristics, f(x) = Trunning(p)

Trunning(p)+Tblocked,assigned(p) . It is seen, that
the results do not vary significantly from those found using the standard
Linux scheduler. When the number of concurrent processes is increased,
processes become more I/O-bound. The goal of the round-robin scheduler
is to reduce the administrative overhead. However, as the simulator does
not take administrative scheduler overhead into account, the advantage of
less administrative overhead for the round-robin scheduler will not show
improvements in the kernel compilation tests.

6.2 Local-queue scheduler 59

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

f(
p)

ticks

Concurrent processes = 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

f(
p)

ticks

Concurrent processes = 2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

f(
p)

ticks

Concurrent processes = 4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

f(
p)

ticks

Concurrent processes = 8

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

f(
p)

ticks

Concurrent processes = 16

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

f(
p)

ticks

Concurrent processes = 32

Figure 6.4: Simulation of Linux kernel compilation using the round-robin
scheduler

6.2 Local-queue scheduler

In this section a local-queue scheduler will be described and simulated.
The results will show, that the algorithm performs very good in terms of
honoring cache affinity. It can however be seen, that PE’s are not utilized
100%, and it is concluded, that this algorithm best suites systems with
many processes, to guarantee that PE’s fully utilized.

60 Chapter 6. Modifications

6.2.1 Purpose

The results from the round robin scheduler tests show that I/O processes
are not significantly prioritized over PE-bound processes, as is the case
in the Linux scheduler. The round robin algorithm has the advantage of
constant execution time, which means that queue congestion is less likely
to occur with the round-robin scheduler than with the Linux scheduler.

Queue congestion can also be avoided by creating multiple queues for pro-
cesses in the ready state, one for each PE - a local-queue scheduler. When
a scheduling decision is to be made, the queue assigned for the PE on which
scheduling is invoked (local queue) is examined, thus allowing scheduling
to occur on multiple PE’s in parallel.

Local queues have the advantage of honoring PE affinity for processes. As
a process can only be on one local queue, it will always be scheduled on the
same PE, unless the process is moved to another local queue. If a process
renters the running state from the blocked state, it is placed in the same
local queue as it was before it entered the blocked state.

6.2.2 Algorithm

To each PE in the system, a local queue is assigned. The selection of a
process to be selected for service is done by examining the local queue for
the PE on which schedule is called. The selection of processes from each
local queue, is the same as in the Linux scheduler.

Load-balancing

Having multiple queues requires load balancing between the queues in order
to assure fairness and to optimize make-span. If no load balancing exists,
a situation where one queue holds multiple processes in the ready state,
while other queues are empty, can arise.

The purpose of load balancing is to distribute processes across the local
queues, trying to keep the number of process in the ready state on each
queue equal.

A change in the total number of processes in either the ready or running
state implies that the number of processes on a local queue has changed.

6.2 Local-queue scheduler 61

Re-balancing the queue is therefore only necessary when a process is in-
serted on or removed from a local queue. Balancing is then called on the
PE for which the number of processes on the local queue has changed.

The algorithm chosen for load-balancing runs local to a PE and tries to keep
the load on the queue equal to the general system load. In this context,
load is defined as the number of processes in the ready or running state
on a queue. From this the system load, is defined as the total number of
processes in either running or ready state divided by the number of PE’s
in the system. This is done by work stealing and work sharing.

Load-balancing must not be done too aggressively, since this can result in
processes being bounced between PE’s, and thus losing the PE affinity. To
avoid processes being bounced between PE’s, a measurement for imbalance
is defined. Whenever the imbalance is greater than a defined threshold, the
upper threshold, processes are balanced in order to bring the imbalance
below a specified threshold, the lower threshold.

As the length of a local queue can only change whenever a process enters or
leaves the blocked state, it is only necessary to balance the queue in these
cases.

The algorithm for load-balancing is:

Balance(P,N):
if

abs(load(P)− S) > Tupper :
do

abs(load(P)− S) > Tlower ∧ load(P) > S :
let (p :: P,Q :: N) = (P,Q)
in (P, p :: Q :: N)
end

abs(load(P)− S) > Tlower ∧ load(P) < S :
let (p :: P,Q :: N) = (P, rev(Q))
in (P, rev(p :: Q :: N))
end

od
fi

Where S is the average system load (number of processes in ready or run-
ning state divided by the total number of PE’s), P is the list of all processes

62 Chapter 6. Modifications

on the local queue for the PE on which balance is called, and N is the sorted
list of local queues, where the queue with the smallest load is the leftmost
element. The function abs(x) returns the absolute value of x, and the func-
tion load(P) returns the number of processes on the queue P . Tupper and
Tlower are the upper and lower thresholds for the load balancing.

Thresholds

Some constraints exist on the upper and lower thresholds in order to guar-
antee that the inner loop of the load-balancing algorithm will terminate:
Tlower ≥ 1 − 1/P , where P is the total number of PE’s in the system.
Obviously the upper threshold must be greater than the lower threshold in
order for the algorithm to work as expected.

Locking

The local-queue implementation requires a lock on each queue to synchro-
nize list-operations between the move and scheduling, and a global lock to
avoid load-balancing being activated in parallel on two different PE’s.

6.2.3 Implementation

The local-queue algorithm as described above has been implemented in
the simulator, see appendix C.2 on page 135. In order to keep track of
the number of processes in either running or ready state, the functions
add_to_runqueue , and delete_from_runqueue has been modified
to update a global variable upon insertions or deletions in any queue.

6.2.4 Tests

The same tests are performed, as described in section 6.1.4 on page 56.
Next the results will be presented, and commented.

6.2 Local-queue scheduler 63

Static process mix

Figure 6.5 graphs the deviation between PE service time and the optimal
PE service time as a function of time. An improvement over the round-
robin scheduler is seen, where I/O-bound processes are serviced more than
their share. This suggests that I/O-bound processes are treated more fairly.
Compared to the standard Linux scheduler, PE-bound processes receives
more service, and I/O-bound processes receives less service when using
the local queue implementation. The local queue implementation is still
very comparable to the standard Linux scheduler in terms of how I/O-
bound processes are prioritized in relation to PE-bound processes. This is
expected, as the multi-queue still uses dynamic priorities.

−1
−0.9
−0.8
−0.7
−0.6
−0.5
−0.4
−0.3
−0.2
−0.1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 2000 4000 6000 8000 10000

de
vi

at
io

n

ticks

Q=1.0
Q=0.8
Q=0.6
Q=0.4
Q=0.2

Figure 6.5: Local-queue: Deviation from optimal PE service time.

On figure 6.6 on the next page is seen that all processes have equal PE-
efficiency, and that all process have a PE efficiency lower than the optimal
PE-efficiency. This is quite different from the behavior of the Linux sched-
uler, and indicates that the PE efficiency is not 100% (PE’s are not utilized
as effectivly as in the Linux scheduler). This difference is easily explained,
as the Linux scheduler has load-sharing, while the local-queue implemen-
tation uses a load balancer, which can result in two processes being on one
queue, while the other queue is empty.

Figure 6.7 on the following page shows the number of times a process
has been moved from one PE to another. The result indicates a major

64 Chapter 6. Modifications

−1
−0.9
−0.8
−0.7
−0.6
−0.5
−0.4
−0.3
−0.2
−0.1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 2000 4000 6000 8000 10000

de
vi

at
io

n

ticks

Q=1.0
Q=0.8
Q=0.6
Q=0.4
Q=0.2

Figure 6.6: Local-queue: Deviation from optimal PE efficiency.

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 2000 4000 6000 8000 10000

PE
 s

w
itc

he
s

ticks

Q=1.0
Q=0.8
Q=0.6
Q=0.4
Q=0.2

Figure 6.7: Local-queue: Number of PE switches per process.

improvement, as no process is moved more than twice over the period of
10000 ticks. This shows that cache affinity is indeed honored using local
queues, as theorized.

6.2 Local-queue scheduler 65

Compilation tests

The local-queue scheduler implementation has been simulated using the
process mix as defined in listing 5.3 on page 46. As the results for the static
tests show that the PE service time is very similar to the values found using
the Linux scheduler, no improvements are expected for simulation of kernel
compilation. This is confirmed on figure 6.9 on page 70.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

f(
p)

ticks

Concurrent processes = 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

f(
p)

ticks

Concurrent processes = 2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

f(
p)

ticks

Concurrent processes = 4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

f(
p)

ticks

Concurrent processes = 8

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

f(
p)

ticks

Concurrent processes = 16

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

f(
p)

ticks

Concurrent processes = 32

Figure 6.8: Simulation of Linux kernel compilation using local queues

66 Chapter 6. Modifications

6.3 Two-level scheduler

The compilation tests made for the previous scheduler modifications show
that processes tend to become I/O-bound as the number of processes rise.
To counter this, a two-level scheduler has been implemented.

6.3.1 Purpose

The purpose of the two level scheduler is to reduce the load on the system
by scheduling processes in batches, and thus delaying execution of a set of
processes for longer periods.

Scheduling only a part of the total processes on the system at a time has
the following benefits:

• Better I/O throughput.
As the number of processes in the running, ready and blocked state
decreases, processes are less likely be waiting for I/O to complete.

• Less swapping.
Suspended processes are more likely to be swapped out than running
processes. This means that running processes are less likely to be
preempted due to page-faults, and trashing can be avoided.

• Better cache usage.
As only a smaller set of processes are in the running state over a period
of time, PE-cache and memory cache are less likely to be invalidated.

Because the two-level processes are scheduled in batches, the scheduler has
some drawbacks:

• Increased response times.
As a process can be suspended for long periods of time, response
times can increased dramatically, and interactive processes would suf-
fer greatly from this.

• Less utilization of system resources.
If for example all processes in the current batch are in the blocked
state, the PE’s would be idle, even if a process suspended by the
first-level scheduler is in the ready state.

6.3 Two-level scheduler 67

6.3.2 Algorithm

The first level scheduler selects a set of processes, a batch, to be scheduled
for a specified amount of time. Rather than selecting a constant number
of processes for each batch, the processes selected are based on the system
load to avoid any subsystem (PE or I/O) to be idle. Statistics are kept
for each process, and PE and I/O load is calculated based on scheduled
processes1.

The first level scheduler keeps processes in two lists: a ready queue and
an expired queue. These queues are used to guarantee fairness. All new
processes are placed on the ready queue and processes to be scheduled
are selected from this queue. When a process has been scheduled for a
defined period of time, Crq, the process is removed from the run queue,
in the second level scheduler, and placed on the expired queue. When
the ready queue becomes empty, all processes from the expired queue are
moved to the ready queue. This is repeated indefinitely. While processes
are executed, the system keeps track of time spent in the running state and
blocked state for each process. The first-level scheduler also keeps track of
overall system load, UPE and UIO, based on process statistics. Whenever
a process, p is scheduled, the utilization values are updated as follows:
UPE += Trunning(p)/Tblocked(p) and UIO += 1−(Trunning(p)/Tblocked(p)).
Processes are only scheduled to the second level scheduler while these values
are under specified thresholds (TPE and TIO).

tick(p :: P,Q) =
if

Trq(p) ≥ Crq : tick(P, p :: Q)
Trq(p) < Crq :

let (P ′, Q′) = tick(P,Q)
in (p :: P ′, Q′)
end

fi
| tick([], Q) = ([], Q)

bestfit(p :: []) = p
| bestfit(p :: P) =

let

1The term scheduled processes, in this context denotes processes that have been
scheduled to the second level scheduler.

68 Chapter 6. Modifications

p′ = bestfit(P)
u = UPE/UIO

in
if

abs(Trunning(p)/Tblocked(p)− u) < abs(Trunning(p′)/Tblocked(p′)− u) : p
abs(Trunning(p)/Ublocked(p)− u) ≥ abs(Trunning(p′)/Tblocked(p′)− u) : p′

fi
end

fill(P,Q,R) =
if

UIO < TIO ∧ nonempty(P) :
let p = bestfit(P)
in fill(P − [p], Q, p :: R)
end

UPE < TPE ∧ nonempty(P) :
let p = bestfit(P)
in fill(P − [p], Q, p :: R)
end

empty(P) ∧ nonempty(Q) : fill(Q,P,R)

UIO ≥ TIO ∧ UPE ≥ TPE : (P,Q,R)
fi

where the function nonempty(P) tests if the given list argument is a nonempty
list, and empty(P) tests if the given list argument is the empty list. UIO is
a measure for the I/O load on the system, and UPE is a measure for the PE
load on the system. These values are updated, whenever a process is re-
moved from the ready queue or added to the expired queue. The constants
TIO and TPE define load thresholds for I/O load and PE load respectively.
The function Trq(p) returns the time process p has been scheduled to the
second level scheduler.

The main function is fill(P,Q,R), where P is the list of ready processes,
Q is the list of expired processes, and R is the list of processes scheduled
to the second-level scheduler. fill is called whenever the system load (UIO
or UPE) changes. The function tick(P,Q) is called for every Crq/2 system

6.3 Two-level scheduler 69

ticks, where P is the list of processes scheduled to the second level scheduler,
and Q is the list of expired processes. Fill is called whenever the system
load (UIO or UPE) changes.

The function tick is called for every Crq/2 system ticks, and removes pro-
cesses which have been scheduled for more than Crq system ticks.

6.3.3 Implementation

The implementation of the first level scheduler can be found in appendix C.2 on
page 129. The second level scheduler is almost identical to Linux scheduler,
with the only change that add_to_runqueue and del_from_qunqueue
has been renamed, as the functions in the first-level scheduler must be
called. The implementation of the second-level scheduler is found in ap-
pendix C.2 on page 166.

The constants used in the implementation are listed in table 6.1.

Constant Value
TPE 4
TIO 4
Crq 400

Table 6.1: Constants used in the two-level scheduler implementation

6.3.4 Tests

Figure 6.9 on the following page shows the results of repeatedly compiling
the kernel while increasing the number of concurrent compilation processes.
It is observed that processes do not become I/O-bound as seen in the pre-
vious tests. This indicates that the two-level scheduling is not saturating
the I/O system, and processes seem to behave better. It is also observed
that the total execution time for the processes is not extended even though
the processes are suspended for longer periods of time. It is therefore hy-
pothesized that that the total compilation time is not significantly reduced,
though no tests are made to confirm this.

70 Chapter 6. Modifications

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

f(
p)

ticks

Concurrent processes = 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

f(
p)

ticks

Concurrent processes = 2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

f(
p)

ticks

Concurrent processes = 4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

f(
p)

ticks

Concurrent processes = 8

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

f(
p)

ticks

Concurrent processes = 16

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

f(
p)

ticks

Concurrent processes = 32

Figure 6.9: Simulation of Linux kernel compilation using the two-level
scheduler

Static process mix

The results from tests using a static process mix, are equal to those found
with the standard Linux scheduler. This is to be expected, as the load
is low, and all processes are scheduled to the second level processor. The
results are not graphed, as these are equal to those for the Linux scheduler.

6.4 Summary 71

6.4 Summary

This section will summarize the findings in this chapter. The section will
conclude that while some of the experiments did lead to better scheduling
properties, the current Linux scheduler is still competitive, even in multi-
processor environments.

Round-robin scheduler

The round-robin has a very low administrative overhead, as scheduling is
done in constant time. The PE’s are utilized 100%, when work is avail-
able, as the algorithm has automatic load-sharing. The algorithm is very
predictable which by [KL88] is a desirable property of a scheduler. The
algorithm, however, has several disadvantages: I/O-bound processes are
treated unfair compared to PE-bound processes, and process cache affinity
is not honored.

Local-queue scheduler

The algorithm has the advantage that queue congestion is less likely to
occur, and scheduling can be done on multiple PE’s in parallel. Load-
balancing is implemented, and the algorithm therefore results in slightly
more overhead than the Linux scheduler. As the algorithm implemented
uses dynamic priorities when scheduling from local queues, the scheduler
behaves very closely to the Linux scheduler. I/O bound processes are still
prioritized higher than PE-bound processes, though not as much as in the
Linux scheduler. Process cache affinity is honored and processes are not
bounced between PE’s. The algorithm has the disadvantage that PE’s are
not always utilized 100%, even when processes in the ready state exists.

Two-level scheduler

Two-level scheduling, is implemented by suspending a set of processes for
longer periods of time. While the load is low, this algorithm performs
exactly as the Linux scheduler though a slightly administrative overhead
is introduced in the first-level scheduling. In the compilation tests it has
been shown that processes do not tend to become I/O bound, and it is

72 Chapter 6. Modifications

hypothesized that trashing2 is less likely to occur. The disadvantage of
this algorithm, is that, when load increases response times becomes longer
as processes are suspended for longer periods of time. Interactive processes
would suffer greatly under this algorithm when there is a high load, why
the algorithm cannot be used on system where interactive jobs are executed.

It has not been possible to improve the Linux scheduler through modifica-
tions to this, while maintaining all of the advantages in the existing Linux
scheduler.

It is hypothesized that if knowledge of the type of jobs which would be
executed on the system exists, this could be used to compile-time select the
scheduler, which is the most efficient for the specific job-mix and usage. The
list below suggests which job load for which the implemented algorithms
performs the best:

Linux scheduler:
Suitable for standard workstation use where few processes is in the
running or ready state at a time, as this proves very good response
times.

Round-robin scheduler:
Suitable for systems with few PE’s on which PE-bound processes are
executed, as the scheduler has very low administrative overhead. An
example is systems used to do large calculations.

Local-queue:
Suitable for large systems with several PE’s, where the number of
processes in either ready or running state is significantly higher than
the number of PE’s. The process mix can be both PE-bound and
I/O-bound processes. Examples of is login servers.

Two-level:
Suitable for systems in where a very high load can exist, and resources
are scarce compared to the load of the system. The system should not
run any interactive processes. A Example of this is web-servers, which
periodically receives huge amounts of hits, saturating the systems
resources.

An alternative to compile-time selection of the scheduler algorithm, is to
select the scheduler algorithm used by the kernel run-time. The run-time

2The term tashing, is used if all system resources are used for administrative tasks,
such as swapping.

6.4 Summary 73

selection could be done by a super-user, who would change the scheduling
algorithm if the usage pattern/job-mix on the system changes. Another
possibility would be to let the kernel itself detect changes in the job-mix,
and select the appropriate scheduler algorithm itself. It is to be noted,
that this would require qualitative measurements in order to classify the
job-mix present in the system, and that the scheduler algorithm must not
be changed too often, as some administrative overhead would be expected
when changing the scheduler.

74 Chapter 6. Modifications

75

Chapter 7

Status

This chapter contains an evaluation of the simulator and the modifications
made, and an overview of possible future work on the simulator, including
ideas for related projects.

7.1 Evaluation of the simulator

Much work has gone into designing and implementing the simulator. Dur-
ing the course of the project, the simulator have been extended in various
ways, proving that the simulator has been modular enough to allow exten-
sions to be added easily.

Portability

The simulator has been designed to allow portability of code between the
simulator and the Linux kernel in terms of function signatures. This proved
not to be an easy task as the scheduler implementation in Linux is not de-
signed for changeability and no exact interface between scheduler and kernel
exist as such. The chosen interface between scheduler implementation and
the simulator does reflect actual functions in the Linux kernel, and as such
does allow portability between the Linux kernel and simulator.

76 Chapter 7. Status

Calibration

The calibrations of the simulator have shown that the simulator can predict
trends present in the current Linux scheduler. Static tests have proved
that the simulator does produce results that are an exact match to those
obtained from the Linux kernel. However, several limitations exist in the
description of processes in the simulator. This meant that a lot of time
went into calibrating the simulator. Also, it proved hard to find suitable
tests as little material exists on this.

7.2 Evaluation of the Modifications

Three modifications have been designed and implemented, and it is hypoth-
esized that real Linux implementation would show results equal to those
found by the simulator. Preliminary tests of a round-robin scheduler in
Linux have been made which have confirmed the above hypothesis. Due
to time limitation and in order to focus on the scope, these tests have
unfortunately not been included in this thesis. This could therefore be a
recommendation for future work in order to prove the above hypothesis.

7.3 Further work

7.3.1 Simulator

Calibration of the simulator has shown that the process description is not
sufficiently advanced to complex processes. A suggestion for future work
would be to implement more complex process descriptions and behaviors.
Below is a list of suggested possible extensions to the process modeling:

• Statistical models
Process behaviors could be based on statistical models, which would
more closely match real process behaviors.

• Interprocess communication
Interprocess is often used to synchronize processes, and the possibility
of modeling interprocess communication would be necessary if jobs
using this were to be simulated.

7.3 Further work 77

The simulator has not been developed for examining real-time applications.
It should however not require much work to introduce the notion of dead-
lines in the simulator, and allow the simulator to test if dead-lines are
reached. Future projects on real-time scheduling on Linux could benefit
from such an extension.

7.3.2 Linux modifications

Results have shown that all of the implemented algorithms have both
strength and weaknesses, and it is hypothesized that if it was possible
to change the scheduler algorithm runtime, improvements could result.

Linux development kernel

A new scheduler algorithm by Ingo Molner have recently been implemented
into the Linux development branch 2.5. The scheduler is a local-queue
implementation with an complexity of O(1). For further studies on the
subject of this theses, it is recommended that this scheduler algorithm is
examined.

78 Chapter 7. Status

79

Chapter 8

Conclusion

8.1 The project

General scheduling theory has been presented, and the Linux scheduler
implementation has been dissected.

Measurements for evaluating scheduler algorithms, in terms of PE service
time and PE efficiency have been devised. The Linux scheduler has been
evaluated and statistics obtained through a modified kernel were compared
to theoretical values.

A simulator has been developed in order to ease evaluation of scheduler
algorithms. The resulting simulator is highly modularized, allowing new
process descriptions / behaviors to be added easily.

A interface between the simulator and scheduler implementation has been
defined, matching a defined interface in the Linux kernel. This allows
almost direct portability between simulator and kernel.

The simulator has been calibrated using both a static and a realistic pro-
cess mix. It has been shown that the simulator can be used to assess the
properties of different scheduler algorithms, though it has been suggested,
that process descriptions could be improved.

Based on properties of the Linux kernel alternative algorithms were se-
lected and subsequently implemented. Tests have shown, that while im-
provements to specific areas of the Linux scheduler are possible, it has not

80 Chapter 8. Conclusion

as hoped been possible to find a scheduler algorithm which is generally
better than the Linux scheduler. It has been hypothesized that selecting
algorithms based on machine work-load, can lead to improvements, though
no further studies have been made on this subject.

8.2 The process

For me, the project has been both educational and interesting. Not only
educational in terms of the subject of this thesis, but also in terms of project
planning. The course of the project has been a mixed journey, where much
time has been spend dissecting the Linux kernel, to understand exactly
how the kernel and the scheduler in particular are implemented. Much
time has been spent developing and calibrating the simulator, which for
awhile removed focus from the main subject. This has however resulted in
better understanding of process behaviors.

If any recommendation were to be given to fellow students, I would advice
them to set up well-defined goals as early in the project as possible.

81

Bibliography

[And00] Gregory R. Andrews. Foundations of Multithreaded, Parallel,
and Distrubuted Programming. Addison-Westley, 2000.

[BC01] Daniel P. Bovet and Marco Cesati. Understanding the Linux
kernel. O’Reilly & Associates, Inc., 2001.

[BL94] R. Blumofe and C. Leiserson. Scheduling multithreaded com-
putations by work stealing. In Proceedings of the 35th Annual
Symposium on Foundations of Computer Science, Santa Fe, New
Mexico., pages 356–368, November 1994.

[BP] Robert D. Blimofe and Dionosios Papadopoulos. The perfor-
mance of work stealing in multiprogrammed environments.

[DA99] Sivarama P. Dandamudi and Samir Ayachi. Performance of hi-
erarchical processor scheduling in shared-memory multiprocessor
systems. IEEE Transactions on Computers, 48(11):1202–1213,
1999.

[dSS00] Fabricio Alves Barbosa da Silva and Isaac D. Scherson. Im-
proving parallel job scheduling using runtime measurements. In
JSSPP, pages 18–38, 2000.

[ea02] Linux Thorvalds et. al. Linux v. 2.4.18 kernel source, 2002.
http://www.kernel.org/pub/linux/kernel/v2.4/linux-
2.4.18.tar.gz.

[Fei97] D. Feitelson. Job scheduling in multiprogrammed parallel sys-
tems ibm research report rc, 1997.

[HS91] S. Haldar and D. K. Subramanian. Fairness in processor schedul-
ing in time sharing systems. Operating Systems Review, Vol 25.
Issue 1.:4–18, 1991.

[KF01] Mike Kravetz and Hubertus Franke. Multi-queue scheduler for
linux. IBM Linux Technology Center, 2001.

82 BIBLIOGRAPHY

http://lse.sourceforge.net/scheduling/mq1.html.
[KL88] J. Kay and P. Lauder. A fair share scheduler. Communications

of the ACM, 31(1):44–55, 1988.
[Mit98] Michael Mitzenmacher. Analyses of load stealing models based

on differential equations. In ACM Symposium on Parallel Algo-
rithms and Architectures, pages 212–221, 1998.

[ML92] E. P. Markatos and T. J. LeBlanc. Using processor affinity in
loop scheduling on shared-memory multiprocessors. Technical
Report TR410, 1992.

[ML93] Evangelos P. Markatos and Thomas J. LeBlanc. Locality-based
scheduling in shared-memory multiprocessors. Technical Re-
port 94, FORTH-ICS / TR-094, 1993.

[NWZ01] Jason Nieh, Chris Waill, and Hua Zhong. Virtual-time round-
robin: An O(1) proportional share scheduler. In Proceedings of
the 2001 USENIX Annual Technical Conferencen, June 2001.

[Rub98] Alessandro Rubini. Linux device drivers. O’Reilly & Associates,
Inc., 1998.

[Sta01] William Stallings. Operating systems. Prentice Hall, fourth edi-
tion, 2001.

[TW97] Andrew S. Tanenbaum and Albert S. Woodhull. Operating sys-
tems: Design and implementation. Prentice Hall, second edition,
1997.

[Wu93] Chee-Shong Wu. Processor scheduling in multiprogrammed
shared memory numa multiprocessors. Master’s thesis, Depart-
ment of Computer Science, University of Toronto, 1993. De-
scribes some models for process execution time.

Index

Batch scheduling, 9

dynamic priority, 8

fairness, 7, 18

gang scheduling, 13
global queue, 8, 18

Hierarchical queues, 13
hyper-threading, 13

load-balancing, 11, 60
lower threshold, 61
upper threshold, 61

local queue, 11, 60

make-span, 8
Memory locality, 8

partition, 8
partitioning, 13
PE efficiency, 21
Perfect fairness, 22
process states, 16
proportional share, 21

quantum, 7, 9

Round-robin, 9, 54
Virtual, 10
Virtual-time, 10

Weighted, 10
run time, 21

self-scheduling, 12
service time, 21
SMP, 15
space-sharing, 8

time-sharing, 7
two-level scheduling, 12, 66

chunking, 12

UNIX, 15

work-sharing, 11, 61
gradient, 11

work-stealing, 12, 61

83

Scheduling algorithms for
Linux

Supplement

Anders Peter Fugmann

IMM-THESIS-2002-65

IMM

Trykt af IMM, DTU

91

Appendix A

Project description

English title: Linux scheduling algorithems
Advisor: Jørgen Steensgaard-Madsen
Period: 1/1 - 11/10-2002
Credit: 45 ECTS points
Participant: Anders Fugmann

English project description

The goal will be pursued partly by studying the relevant literature on
the subject of scheduling algorithms for multiprocessor systems generally,
partly by studying the actual implementation in the Linux kernel. Based on
this studies, evaluation-criteria will be defined, and by relating the actual
implementation to the theoretical work some suggestions for improvements
might result. In any case, it is the goal to find quantitative qualities that
can be tested and measured to assess variations in algorithms.

92 Appendix A. Project description

93

Appendix B

Linux augmentation

This section lists the changes made to the Linux kernel in order to imple-
ment instrumentation.

arch/i386/config.in

At line 425 is inserted:

425 tristate ’ Scheduler statistics’ CONFIG_DEBUG_STAT

Makefile

In the top-level Makefile for Linux, the versionnumber is changed by re-
placing line 4, with:

4 EXTRAVERSION = -stat

include/linux/sched.h

The structure task_struct has been extended, by inserting the folloing
at line 413:

94 Appendix B. Linux augmentation

413
414 /* time on run queue */
415 unsigned long run_queue_time;
416
417 /* Number of times a thread has been removed from the run queue */
418 unsigned long preemptions;
419
420 /* Total PE service time */
421 unsigned long cpu_time;
422
423 /* Number of times the process has been scheduled */
424 unsigned long sched_count;
425
426 /* Temporary variable holding the time of the last update of
427 time values (run_queue_time and cpu_time) */
428 unsigned long last_update;
429
430 /* flag to see if the timestamps has been updated */
431 unsigned long pe_add;
432
433 /* Variables used to calculate process charictaristics */
434 unsigned long intervals;
435 unsigned long interval;
436 unsigned long interval2;
437
438 unsigned long added;
439 unsigned long removed;
440 unsigned long cpu_interval;

In function del_from_runqueue , at line 898 is inserted:

898 p->preemptions++;
899
900 p->run_queue_time += jiffies - p->last_update;
901 p->last_update = -1;
902
903 /* Update the CPU/(CPU+IO) stats */
904 p->removed=jiffies;

linux/sched.c

At line 36 is inserted:

36 #include "../drivers/stat/stat.h"

The function add_to_runqueue at line 325 is replaced with:

325 static inline void add_to_runqueue(struct task_struct * p)
326 {

95

327 unsigned long io,cpu,frac;
328 list_add(&p->run_list, &runqueue_head);
329 nr_running++;
330
331 p->last_update = jiffies;
332
333 /* Updated the stats, but not the firs runqueue add */
334 if (p->added < p->removed)
335 {
336 io=jiffies - p->removed;
337 cpu=p->times.tms_stime - p->cpu_interval;
338 frac=cpu*100/(cpu+io);
339 p->interval+=frac;
340 p->interval2+=frac*frac;
341 p->intervals++;
342 p->removed=jiffies;
343 p->added=jiffies;
344 p->cpu_interval=p->times.tms_stime;
345 }
346 }

In function schedule , at line 697, is inserted:

697 if (prev->pe_add != -1)
698 {
699 prev->cpu_time += jiffies - prev-> pe_add;
700 prev->pe_add = -1;
701 prev->sched_count++;
702 }
703 next->pe_add = jiffies;

drivers/stat/Makefile

1 #
2 # Makefile for the kernel stat device driver.
3 #
4 # Gather statistics information at each schedule,
5 # And at each block or nonblock
6 #
7 # Anders Fugmann (afu@fugmann.dhs.org)
8
9 # CONFIG_DEBUG_STAT can either be ’y’ or undefined

10
11 O_TARGET := statistics.o
12 export-objs := stat.o
13 obj-$(CONFIG_DEBUG_STAT) += stat.o
14
15 include $(TOPDIR)/Rules.make
16
17 fastdep:

96 Appendix B. Linux augmentation

drivers/stat/stat.h

1 #ifndef __STAT_H__
2
3 #define __STAT_H__
4
5
6 #ifdef CONFIG_DEBUG_STAT
7
8 extern int stat_string(char * buffer, struct task_struct * p);
9 extern int stat_on(void);

10
11 #else
12
13 #define stat_string(buffer, p) 0
14 #define stat_on(void) 0
15
16 #endif /* CONFIG_DEBUG_STAT */
17
18
19 #endif /* __STAT_H__ */

drivers/stat/stat.c

1 /**
2 * Stat character driver
3 * The driver creates a character device, to which the current
4 * stat of all tasks is written
5 *
6 * Written by: Anders Fugmann
7 *
8 **/
9

10 #include <linux/kernel.h>
11 #include <linux/module.h>
12
13 #include <linux/proc_fs.h>
14 #include <linux/wait.h>
15 #include <linux/sched.h>
16 #include <linux/fs.h>
17 #include <linux/kdev_t.h>
18 #include <linux/init.h>
19 #include <linux/slab.h>
20 #include <linux/mm.h>
21 #include <linux/errno.h>
22 #include <linux/devfs_fs_kernel.h>
23 #include <linux/smp_lock.h>
24 #include <linux/spinlock.h>
25 #include <linux/ctype.h>
26 #include <asm/uaccess.h>
27 #include <linux/sched.h>
28
29 /* #include "stat.h" */
30
31 #define STAT_MINOR 1

97

32 /*==*
33 * Forward declarations *
34 *==*/
35
36 static int __init stat_init(void);
37 static void __exit stat_exit(void);
38
39 static int stat_open(struct inode *inode, struct file *file);
40 static int stat_release(struct inode *inode, struct file *file);
41
42 /* File operations functions */
43 static loff_t stat_llseek(struct file *file, loff_t offset, int origin);
44 static int stat_open(struct inode *inode, struct file *file);
45 static int stat_release(struct inode *inode, struct file *file);
46
47 static ssize_t stat_read(struct file *file, char * buffer, size_t size,
48 loff_t *offset);
49
50 /* Entry end exit routines */
51 module_init(stat_init);
52 module_exit(stat_exit);
53
54 /*==*
55 * Variables *
56 *==*/
57 static devfs_handle_t devfs_handle;
58 static struct proc_dir_entry* proc_handle;
59
60 /* Major number */
61 static int major;
62
63 static volatile int stat_enabled;
64 static volatile int stat_open_lock = 0;
65 static volatile int stat_read_lock = 0;
66
67 /* File operations structure */
68 static struct file_operations stat_fops =
69 {
70 THIS_MODULE,
71 stat_llseek,
72 stat_read,
73 NULL, /* write nor allowed */
74 NULL, /* readdir */
75 NULL, /* poll */
76 NULL, /* ioctl */
77 NULL, /* mmap */
78 stat_open,
79 NULL, /* flush */
80 stat_release,
81 /* nothing more, fill with NULL’s */
82 };
83
84
85 /*===*
86 * Functions begin *
87 *===*/
88
89 int stat_string(char * buffer, struct task_struct * p)

98 Appendix B. Linux augmentation

90 {
91 unsigned long queue_time = p->run_queue_time;
92 unsigned long cpu_time = p->cpu_time;
93 if (p->last_update != -1)
94 queue_time += jiffies - p->last_update;
95
96 if (p->pe_add != -1)
97 cpu_time += jiffies - p->pe_add;
98 /* No divisions */
99 /* unsigned long avg_wait_time = (100*wait_time)/p->times.tms_utime; */

100
101 return
102 sprintf(buffer,
103 "tick:%lu cpu:%d pid:%d grp:%d policy:%lu "
104 "nice:%lu rt_priority:%lu counter:%ld "
105 "preemptions:%lu "
106 "run_time:%lu "
107 "run_queue_time:%lu "
108 "cpu_time:%lu sched_count:%lu "
109 "parent:%d "
110 "time:%ld "
111 "interval:%lu interval2:%lu intervals:%lu "
112 "\n",
113 jiffies, p->processor, p->pid, (int) p->pgrp, p->policy,
114 p->nice, p->rt_priority, p->counter,
115 p->preemptions,
116 p->times.tms_utime + p->times.tms_stime,
117 queue_time,
118 cpu_time, p->sched_count,
119 p->p_pptr->pid,
120 (jiffies - p->start_time),
121 p->interval, p->interval2, p->intervals);
122 }
123
124 int stat_on(void) {
125 // return test_bit(0,&stat_open_lock);
126 return stat_enabled;
127 }
128
129 /* procfs read/write operations */
130 int stat_proc_read(char *page, char **start, off_t offset, int count, int *eof, void *data)
131 {
132 if (count > 1 && offset == 0)
133 {
134 page[0] = ’0’ + stat_enabled;
135 page[1] = 0;
136 }
137
138 *eof = 1;
139 return 2;
140 }
141
142 int stat_proc_write(struct file *file, const char *buffer, unsigned long count, void *data)
143 {
144 char c;
145 if (count > 0)
146 {
147 /* Read only one char */

99

148 copy_from_user(&c,buffer,1);
149
150 if (c == ’0’ || c == ’1’)
151 {
152 stat_enabled = c - ’0’;
153 if (stat_enabled)
154 printk(KERN_INFO "Stat: Statistics enabled.\n");
155 else
156 printk(KERN_INFO "Stat: Statistics disabled.\n");
157 }
158 }
159 return 1;
160
161 }
162
163 static int __init stat_init(void)
164 {
165 stat_enabled = 0;
166 clear_bit(0, &stat_open_lock);
167 clear_bit(0, &stat_read_lock);
168 /* Create proc entry */
169 proc_handle = create_proc_entry("sched_stat",
170 S_IFREG | S_IRUGO | S_IWUGO,
171 proc_root_driver);
172
173 if (proc_handle) {
174 proc_handle->read_proc=stat_proc_read;
175 proc_handle->write_proc=stat_proc_write;
176 printk(KERN_INFO "Stat: Registered proc device.\n");
177 }
178
179
180 major = devfs_register_chrdev(0, "stat", &stat_fops);
181 printk(KERN_INFO "Stat: Registered with major number: %d\n", major);
182 devfs_handle = devfs_mk_dir (NULL, "stat", NULL);
183 devfs_register(devfs_handle, "sched",
184 DEVFS_FL_DEFAULT,
185 major, STAT_MINOR,
186 S_IFCHR | S_IRUGO | S_IWUGO, &stat_fops, NULL);
187 /* Create the buffer */
188 return 0;
189 }
190
191 static void __exit stat_exit(void)
192 {
193 devfs_unregister(devfs_handle);
194 remove_proc_entry("sched_stat", proc_root_driver);
195 printk(KERN_INFO "Stat: Modules deregistered\n");
196 }
197
198 static int stat_open(struct inode *inode, struct file *file)
199 {
200 /* We can only handle one minor number */
201 if (MINOR(inode->i_rdev) != STAT_MINOR)
202 return -ENXIO;
203
204 /* Only one reader at a time */
205 if (test_and_set_bit(0,&stat_open_lock)) return -EBUSY;

100 Appendix B. Linux augmentation

206
207 /* All ok, return success */
208 return 0;
209
210 }
211 static int stat_release(struct inode *inode, struct file *file)
212 {
213 clear_bit(0, &stat_open_lock);
214 return 0;
215 }
216
217 /*
218 * Seeking is not meaningfull for this type of device.
219 */
220 static loff_t stat_llseek(struct file *file, loff_t offset, int origin)
221 {
222 return -ESPIPE;
223 }
224
225 static ssize_t stat_read(struct file *file, char * buffer, size_t size,
226 loff_t *offset)
227 {
228 int data_copied;
229 char * local_buffer;
230 int data_size;
231 struct task_struct *p;
232
233 if (test_and_set_bit(0, &stat_read_lock)) {
234 // return -EBUSY;
235 }
236 local_buffer = kmalloc(size + 1024, GFP_KERNEL);
237 if (!local_buffer) return -EAGAIN;
238
239 /* Grab the run_queue_lock, disabling IRQ on the local
240 CPU to avoid beeing interrupted in this process */
241 /* IRQ’s must be anabled at this time, so this is not dangerous */
242 local_irq_disable();
243 read_lock(&tasklist_lock);
244
245 data_copied = 0;
246 /* Dont go over the threshold */
247 data_size = 0;
248 for_each_task(p) {
249 if (data_copied >= size)
250 break ;
251 data_size = stat_string(&local_buffer[data_copied],p);
252 data_copied += data_size;
253 if (data_copied > size) {
254 data_copied -= data_size;
255 break ;
256 }
257 }
258 read_unlock(&tasklist_lock);
259 local_irq_enable();
260 /* Subtract offset, and add one for ending ’0’ */
261 //data_copied++;
262
263 /* Only copy data if there is data */

101

264 if (data_copied > 0)
265 {
266 if (copy_to_user(buffer, local_buffer, data_copied) > 0)
267 data_copied = -EFAULT;
268 }
269 else
270 data_copied = 0;
271 /* Clear the bit. */
272 kfree(local_buffer);
273
274 clear_bit(0, &stat_read_lock);
275 return data_copied;
276
277 }
278
279 MODULE_LICENSE("GPL");

102 Appendix B. Linux augmentation

103

Appendix C

Simulator

C.1 Task description

Simulator control file for kernel compilation tests.

#define SCHED_OTHER 0
#define SCHED_FIFO 1
#define SCHED_RR 2

Globals: hz=100, cpus=2, io_resources=3, tasks=J, ticks=14000

I/O-bound
process {

pid:1, grp:1, nice:0, policy: 0, run: 0
CPU Task:
Fork Task: forkprob=(J,0) durration=(10,15) type=’IO Task: cpu=(1,3), io=(50,100)’

}

process {
pid:2, grp:1, nice:0, policy: 0, run: 0
CPU Task:
Fork Task: forkprob=(J,0) durration=(40,80) type=’IO Task: cpu=(1,2), io=(5,10)’

}

process {
pid:3, grp:3, nice:0, policy: 0, run: 0
CPU Task:
Fork Task: forkprob=(J,0) durration=(120,240) type=’IO Task: cpu=(10,10), io=(5,0)’

}

Simulator control file for static tests.

#define SCHED_OTHER 0

104 Appendix C. Simulator

#define SCHED_FIFO 1
#define SCHED_RR 2

Globals: hz=100, cpus=2, io_resources=5, tasks=5, ticks=10000

process {
pid:1, grp:1, nice:0, policy: 0, run: 0
CPU Task:

}

process {
pid:2, grp:1, nice:0, policy: 0, run: 1
CPU Task:
IO Task: cpu=(80,0), io=(20,0)

}

process {
pid:3, grp:1, nice:0, policy: 0, run: 1
CPU Task:
IO Task: cpu=(60,0), io=(40,0)

}

process {
pid:4, grp:1, nice:0, policy: 0, run: 1
CPU Task:
IO Task: cpu=(40,0), io=(60,0)

}

process {
pid:5, grp:1, nice:0, policy: 0, run: 1
CPU Task:
IO Task: cpu=(20,0), io=(80,0)

}

C.2 Source 105

C.2 Source

Makefile . 106
cputask.cc . 107
cputask.h .108
forktask.cc . 108
forktask.h . 111
global sched.cc . 112
global sched.h . 113
globals.cc .114
globals.h . 114
iosched.cc . 114
iosched.h . 116
iotask.cc .116
iotask.h . 119
killtask.cc . 120
killtask.h . 121
main.cc . 121
main.h . 124
periodictask.cc . 124
periodictask.h . 126
processes.cc . 127
processes.h . 129
sched-first level.cc . 129
sched-first level.h . 134
sched-local queue.cc . 135
sched-multi queue.cc . 147
sched-round robin.cc . 156
sched-second level.cc . 166
sched-test.cc .176
sched.cc . 184
sched.h . 194
sched interface.h . 196
simulator.h . 196
simulator interface.h .197
task.cc . 197
task.h . 201

106 Appendix C. Simulator

Makefile

##
Final Thesis
#
Makefile for simulator
Source : $RCSfile: Makefile,v $
#
To change the scheduling algorithem used,
modify the SCHEDULER variable below.
#
Anders Fugmann.
#
###

CFLAGS = -O2 -Wall -g -march=athlon -mcpu=athlon

TARGET = simulate

SCHED_LINUX = sched
SCHED_TWO_LEVEL = sched-first_level sched-second_level
SCHED_MULTI_QUEUE = sched-multi_queue
SCHED_LOCAL_QUEUE = sched-local_queue
SCHED_ROUND_ROBIN = sched-round_robin

This variable holds the names of the C++ files to be linked.
Use this to change the scheduler used.
SCHEDULER = $(SCHED_LINUX)

FILES = main processes globals task \
iotask cputask periodictask killtask forktask iosched \
global_sched $(SCHEDULER)

SRCS = $(addsuffix .cc, $(FILES)) $(addsuffix .cc, $(SCHEDULER))

OBJS = $(addsuffix .o, $(FILES))

TASKS=tasks

.PHONY: all dep clean

all: $(TARGET)

$(TARGET): $(OBJS) Makefile
g++ $(CFLAGS) -o $(TARGET) $(OBJS)

.cc.o:
g++ $(CFLAGS) -c -o $@ $<

.c.o:
gcc $(CFLAGS) -c -o $@ $<

dep:
gccmakedep $(SRCS)

clean:
rm -f *o *˜ $(TARGET) data* *.ps core Makefile.bak \
*ps *fig

C.2 Source 107

cputask.cc

#include <sys/types.h>
#include <unistd.h>
#include <sys/times.h>
#include <time.h>

#include "cputask.h"
#include "task.h"
#include "sched_interface.h"

CpuTask::CpuTask()
{

//initialisation
prev_cpu = -1;
cpu_switches = 0;

}

TaskProp* CpuTask::read(char * line)
{

if (strcmp(line, "CPU Task:") == 0)
{

return new CpuTask();
}
else

return NULL;
}

void CpuTask::statechange(enum task_state state, Task *task)
{

/* Remember what cpu we was running on. This will have some
influence on the run_time (cold cache etc.) */

/* We do not react on this. */
/* A cpu task just wants to know how muck time it gets. */

/* This should be called whenever state changes from running to active */
}

int CpuTask::tick(Task *task)
{

/* Check if the task wants to wait on some IO, or other stuff */
if ((task->state == TASK_RUNNING) && (task->processor != prev_cpu))
{

cpu_switches++;
prev_cpu = task->processor;

}
return 0;

}

void CpuTask::print(int tick)
{

printf("cpu_switches:%d ", cpu_switches);
}

/* start a process */

108 Appendix C. Simulator

void CpuTask::run()
{

int i = 3;
printf ("Pid: %d\t(CpuTask)\n", getpid());
fflush(stdout);
/* Just do some CPU work repeatably */
while (1)

i = i * i;
}

cputask.h

#ifndef __CPUTASK_H__
#define __CPUTASK_H__

#include "task.h"

class CpuTask : public TaskProp
{
public:

int run_time;
int cpu_switches;
int prev_cpu;
int optim_time;
int wait_time;
int run_queue_time;

void statechange(enum task_state state, Task *task);
int tick(Task *task);
void print(int tick);
void run();

static TaskProp* read(char * line);
CpuTask();

};

#endif /* __CPUTASK_H__ */

forktask.cc

#include <sys/types.h>
#include <unistd.h>
#include <sys/times.h>
#include <time.h>
#include <math.h>

#include "forktask.h"
#include "killtask.h"
#include "task.h"
#include "processes.h"
#include "global_sched.h"

C.2 Source 109

#include "globals.h"

ForkTask::ForkTask(struct prop_struct *interval,
struct prop_struct *durration,
char *type)

{
this->interval=interval;
this->durration=durration;
this->type=type;
this->next_change=calc_prop(interval);

forked_tasks = new list<Task*>;
/* Ignore this pid as a live one */
nr_tasks++;

}

TaskProp* ForkTask::read(char * line)
{

struct prop_struct *interval = new prop_struct();
struct prop_struct *durration = new prop_struct();

char * type = new char [256];
if (sscanf(line, "Fork Task: forkprob=(%d,%d) durration=(%d,%d) type=",

&interval->mean, &interval->variance,
&durration->mean, &durration->variance) == 4)

{
/* Read the type. */
int start = strcspn(line, "’") + 1;
int length = strcspn(&line[start], "’");
strncpy(type, &line[start], length);
return new ForkTask(interval, durration, type);

}
delete interval;
delete durration;
return NULL;

}

void ForkTask::statechange(enum task_state state, Task *task)
{
}

int ForkTask::tick(Task *task)
{

int tasks = 0;
/* Make sure that we have the expected number of tasks */
list<Task*>::iterator iter;
for (iter=forked_tasks->begin();iter != forked_tasks->end(); iter++)

if ((*iter)->state != TASK_STOPPED)
tasks++;

/*else
forked_tasks->remove(*iter); */

while (next_change-tasks++ > 0)
{

/* Fork the process. Remember to add a terminating task */
CpuTask *ct = new CpuTask();

110 Appendix C. Simulator

KillTask *kt = new KillTask(calc_prop(durration));
Task* t = new Task(task->pid*1000+1+forks, task->grp,

task->nice, task->policy, 0);
if (strlen(type) > 0)
{

TaskProp *tp = get_task_prop(type);
if (tp == NULL)

fprintf(stderr, "Error: Could not create Forked Task: ’%s’\n",
type);

else
t->add_task_prop(tp);

}
t->add_task_prop(ct);
t->add_task_prop(kt);
prop_list.push_back(ct);
/* Let the simulator and system know of this process */
global_add_task(t);
forked_tasks->push_front(t);
forks++;

}
next_change=calc_prop(this->interval);
/* Suspend if running */
if (task->state == TASK_RUNNING)
{

task->state = TASK_SUSPENDED;
return 1 << task->processor;

}
return 0;

}

void ForkTask::print(int tick)
{

float run_time=0;
float efficiency=0;
/* Go through all Cpu properties */
CpuTask* ct;
list<CpuTask*>::iterator iter;
for (iter = prop_list.begin(); iter != prop_list.end(); iter++)
{

ct = (*iter);
run_time += ct->run_time;
efficiency += ct->run_time * 1.0 / ct->run_queue_time;

}
printf("fork_forked:%d fork_runtime:%f, fork_efficiency:%f ",

forks, run_time/forks, efficiency/forks);
}

/* start a process */
void ForkTask::run()
{

/* This is gonna be hard */
}

int ForkTask::calc_prop(struct prop_struct *prop)
{

if (prop->mean == -1) return INT_MAX; /* Never */
float length = prop->mean;

C.2 Source 111

length += (2.0*random()/RAND_MAX-1.0) * prop->variance/2.0;
return (int) round(length);

}

ForkTask::˜ForkTask()
{

/* Delete all tasks */

}

forktask.h

#ifndef __FORKTASK_H__
#define __FORKTASK_H__

#include "task.h"
#include "cputask.h"
struct prop_struct
{

int mean;
int variance;

};

class ForkTask : public TaskProp
{
public:

/* State attributes */
struct prop_struct *interval;
struct prop_struct *durration;
char *type;
int next_change;

/* Statictics attributes */
int forks;
int terminations;
list<CpuTask*> prop_list;
list<Task*> *forked_tasks;

/* Functions */
ForkTask(struct prop_struct *interval,

struct prop_struct *durration,
char *type);

virtual ˜ForkTask();

void statechange(enum task_state state, Task *task);
int tick(Task *task);
void print(int tick);
void run();

static TaskProp* read(char * line);
int calc_prop(struct prop_struct *prop);

};

#endif /* __FORKTASK_H__ */

112 Appendix C. Simulator

global sched.cc

#include "global_sched.h"
#include "sched_interface.h"
#include "task.h"
#include "globals.h"

/* List of task sources */
list< struct task_source *> sources;

void global_add_task(Task* p)
{

int id = p->grp;
struct task_source *ts = NULL;
/* Find the task source */
list< struct task_source *>::iterator i;

for (i=sources.begin();i != sources.end(); i++)
{

if ((*i)->id == id)
{

ts = *i;
break ;

}
}
/* If none was found, create a new entry */
if (i == sources.end())
{

ts = new struct task_source;
ts->task_list = new list<Task*>;
ts->id = id;
sources.push_back(ts);

}
ts->task_list->push_back(p);

}

/* Make sure that we have excatly <tasks> running tasks */
/* If there is less, only one task is added */
void global_sched(int nr_tasks)
{

Task* p;
list<Task*>::iterator it;
/* First find out if any new tasks are needed */
for (it = tasks.begin();it != tasks.end(); it++)

if ((*it)->state != TASK_STOPPED)
nr_tasks--;

//printf("### Need to add %d tasks\n", nr_tasks);

/* Still tasks to add? */
static list< struct task_source *>::iterator iter;
if (iter == NULL)

iter = sources.begin();

list<Task*> *selected = NULL;
while (nr_tasks-- > 0)
{

/* This implements a RR.

C.2 Source 113

To store where we are, a static variable is used */

for (unsigned int i=0; i < sources.size(); i++)
{

iter++;

if (iter == sources.end())
{

iter = sources.begin();
}

if ((*iter)->task_list->size() > 0)
{

selected = (*iter)->task_list;
break ;

}
}

/* If no lists was found, stop processing */
if (selected == NULL)

return ;

p = selected->front();
p->state = TASK_RUNNING;
tasks.push_front(p);
wake_up_process(p);

selected->remove(p);
selected = NULL;

}
}

global sched.h

#ifndef __GLOBAL_SCHED_H__
#define __GLOBAL_SCHED_H__

#include "task.h"
#include "main.h"

extern list< struct task_source *> sources;

struct task_source {
int id;
list<Task*> *task_list;

};

void global_add_task(Task* p);
void global_remove_task(Task* p, int id);
void global_sched(int tasks);

#endif /* __GLOBAL_SCHED_H__ */

114 Appendix C. Simulator

globals.cc

#include "globals.h"
#include "task.h"

/* Number of PE’s in the system */
int smp_num_cpus;

/* Number of ticks to simulate */
int ticks;

/* Number of IO resources */
int io_resources;

/* System freq */
int HZ;

/* Total number of tasks in the system */
int nr_tasks;

/* Every task that has ever exsisted in the simulation */
list<Task*> tasks;

/* Jiffies counter */
cycles_t jiffies;

globals.h

/* Global defines for the program */
#ifndef __GLOBALS_H__
#define __GLOBALS_H__

#include "task.h"
#define cycles_t unsigned int

extern int ticks;
extern int smp_num_cpus;
extern int io_resources;

extern int HZ;
extern int nr_tasks;

extern list<Task*> tasks;

extern cycles_t jiffies;

#endif /* __GLOBALS_H__ */

iosched.cc

#include <list>
#include <vector>

C.2 Source 115

#include <algorithm>
#include "task.h"
#include "globals.h"
#include "iosched.h"

/* The io queue */
static list<Task*> io_queue;
/* List of tasks receiving IO */
static list<Task*> active;

/* Return true, if the thread is not already assigned to an IO resource */
int can_ioschedule(Task* task)
{

return (!task_has_io(task));
}

/* Return true, if the process is retriving IO */
int task_has_io(Task* task)
{

return (find(active.begin(), active.end(), task) != active.end());
}

/* Return true, if the task is waiting for IO */
int task_on_ioqueue(Task* task)
{

return (find(io_queue.begin(), io_queue.end(), task) != io_queue.end());
}

/* Add a task to the IO-queue */
void add_task_ioqueue(Task* task)
{

/* Add to tail */
io_queue.push_back(task);

}

/* Remove a task to the IO-queue */
void remove_task_ioqueue(Task* task)
{

io_queue.remove(task);
}

/* Schedule tasks waiting for IO */
/* Should be called for each tick */

void iosched(void)
{

/* Remove all tasks from the active queue, that no longer
* wants IO.
* Also count the number of tasks receiving IO */

int active_tasks = 0;
list<Task*>::iterator iter;
for (iter = active.begin(); iter != active.end(); iter++)
{

if ((*iter)->state == TASK_SUSPENDED)
active_tasks++;

else

116 Appendix C. Simulator

{
//printf("### Removing pid from IO: %d\n",(*iter)->pid);
active.remove(*iter);
/* Remove also from the IO wait queue */
io_queue.remove(*iter);
iter--;

}
}

/* Add upto io_resources to the list */
while (active_tasks < io_resources)
{

for (iter = io_queue.begin(); iter != io_queue.end(); iter++)
{

/* Only schedule for IO, if it does not retrieve IO */
if (can_ioschedule(*iter))
{

active.push_back(*iter);
active_tasks++;
break ;

}
}
if (iter == io_queue.end())

break ;
}

}

iosched.h

#ifndef __IOSCHED_H__
#define __IOSCHED_H__

#include "task.h"

/* Return true, if the process is retriving IO */
int task_has_io(Task* task);

/* Return true, if the task is waiting for IO */
int task_on_ioqueue(Task* task);

/* Add a task to the IO-queue */
void add_task_ioqueue(Task* task);

/* Remove a task to the IO-queue */
void remove_task_ioqueue(Task* task);

/* Schedule tasks waiting for IO */
void iosched(void);

#endif /* __IOSCHED_H__ */

iotask.cc

C.2 Source 117

#include <sys/types.h>
#include <unistd.h>
#include <sys/times.h>
#include <time.h>
#include <stdio.h>
#include <math.h>

#include "iotask.h"
#include "task.h"
#include "sched_interface.h"
#include "globals.h"
#include "iosched.h"

IoTask::IoTask(struct prob_struct *cpu, struct prob_struct *io)
{

prob_cpu = cpu;
prob_io = io;

cpu_length = prob_calc_length(prob_cpu);
io_length = prob_calc_length(prob_io);

last_cpu = 0;
last_io = 0;

}

IoTask::˜IoTask()
{

free(prob_cpu);
free(prob_io);

}

/* Construct a ioprob from a string */
TaskProp* IoTask::read(char * line)
{

prob_struct *cpu, *io;
cpu = (prob_struct*) malloc(sizeof (prob_struct));
io = (prob_struct*) malloc(sizeof (prob_struct));

if (sscanf(line, "IO Task: cpu=(%d,%d), io=(%d,%d)",
&cpu->mean, &cpu->variance, &io->mean, &io->variance) == 4)

return new IoTask(cpu, io);
else
{

free(cpu);
free(io);
return NULL;

}

}

void IoTask::statechange(enum task_state state, Task *task)
{
}

int IoTask::tick(Task *task)
{

/* Check if the task wants to wait on some IO, or other stuff */

118 Appendix C. Simulator

/* we use the statistics counter from task */
switch (task->state)
{

case TASK_RUNNING:
if (task->cpu_time - last_cpu >= cpu_length)
{

io_length = prob_calc_length(prob_io);
task->state = TASK_SUSPENDED;
/* Add to io_scheduler */
add_task_ioqueue(task);
last_io = task->io_time;
return 1 << task->processor;

}
break ;

case TASK_SUSPENDED:
if (task->io_time - last_io >= io_length)
{

cpu_length = prob_calc_length(prob_cpu);
task->state = TASK_RUNNING;
/* Remove from the io_scheduler */
remove_task_ioqueue(task);
last_cpu = task->cpu_time;
wake_up_process(task);
return 1 << task->processor;

}
break ;

default :
break ;

}
return 0;

}

void IoTask::print(int tick)
{
}

/* Calcualte the length of a event */
int IoTask::prob_calc_length(struct prob_struct *prob)
{

if (prob->mean == -1) return INT_MAX;
float length = prob->mean;
length += (2.0*random()/RAND_MAX-1.0) * prob->variance/2.0;
return lroundf(length);

}

/* start a process */
void IoTask::run()
{

struct tms buf, nbuf;
clock_t time, ntime;
struct timespec req, rem;
int cpu_length, io_length;

printf ("Pid: %d\t(IoTask) (%d, %d)\n", getpid(), prob_cpu->mean, prob_io
->mean);

fflush(stdout);

C.2 Source 119

while (1)
{

cpu_length = prob_calc_length(prob_cpu);
/* First get the req cpu_time */
time = times(&buf);
ntime = times(&nbuf);

while (nbuf.tms_utime - buf.tms_utime < cpu_length)
{

cputime((cpu_length - (nbuf.tms_utime - buf.tms_utime)) * 10000000);
ntime = times(&nbuf);

}
ntime = times(&nbuf);
/* Ok now sleep the io time */
io_length = prob_calc_length(prob_io);

req.tv_sec = io_length/HZ;
req.tv_nsec = (io_length%HZ) * 1000*1000*(1000/HZ);
nanosleep(&req, &rem);

}

}

iotask.h

#ifndef __IOTASK_H__
#define __IOTASK_H__

#include "task.h"

/* Struct to define io proberbility */
struct prob_struct {

int mean; /* Avarage length in ticks. */
int variance; /* mean_time + [-1;1]*variance/2.0 */

};

class IoTask : public TaskProp
{
public:

/* Prob for io operations. */
struct prob_struct *prob_cpu;
struct prob_struct *prob_io;

/* Internal variables */
int cpu_length;
int io_length;
int last_cpu;
int last_io;

void statechange(enum task_state state, Task *task);
int tick(Task *task);
void print(int tick);
int prob_calc_length(struct prob_struct *prob);
void run();

120 Appendix C. Simulator

static TaskProp* read(char *line);
IoTask(struct prob_struct *cpu, struct prob_struct *io);
virtual ˜IoTask();

};

#endif /* __IOTASK_H__ */

killtask.cc

#include <sys/types.h>
#include <unistd.h>
#include <sys/times.h>
#include <time.h>

#include "killtask.h"
#include "task.h"
#include "sched_interface.h"

KillTask::KillTask(int lifetime)
{

this->lifetime = lifetime;
}

TaskProp* KillTask::read(char * line)
{

int lifetime;

if (sscanf(line, "Kill Task: lifetime=%d", &lifetime) == 1)
{

return new KillTask(lifetime);
}
return NULL;

}

void KillTask::statechange(enum task_state state, Task *task)
{

/* Nothing to do */
}

int KillTask::tick(Task *task)
{

/* Do only if we are running */
if (task_has_cpu(task)) lifetime--;
if (lifetime <= 0)
{

/* printf("### Stopping task: %d\n", task->pid); */
task->state = TASK_STOPPED;
return 1;

}
return 0;

}
void KillTask::print(int tick)
{

/* No extra output */

C.2 Source 121

}

/* start a process */
void KillTask::run()
{

/* Not implemented */
}

killtask.h

#ifndef __KILLTASK_H__
#define __KILLTASK_H__

#include "task.h"

class KillTask : public TaskProp
{
public:

/* State attributes */
int lifetime;

KillTask(int lifetime);

void statechange(enum task_state state, Task *task);
int tick(Task *task);
void print(int tick);
void run();

static TaskProp* read(char * line);
};

#endif /* __KILLTASK_H__ */

main.cc

#include <list>
#include <sys/types.h>
#include <sys/wait.h>
#include <stdio.h>
#include "task.h"
#include "sched_interface.h"
#include "simulator_interface.h"
#include "iosched.h"
#include "globals.h"
#include "processes.h"
#include "global_sched.h"
#include "main.h"

using namespace std;

int current_processor;

122 Appendix C. Simulator

int smp_processor_id()
{

return current_processor;
}

cycles_t get_cucles()
{

return 0;
}

void smp_send_reschedule(int cpu)
{

/* Normally we need to send a request to the other CPU */
int old_cpu = current_processor;
current_processor=cpu;
schedule();
current_processor=old_cpu;

}

void timer_tick()
{

jiffies++;
for (int cpu=0;cpu<smp_num_cpus;cpu++)
{

current_processor=cpu;
do_timer();
if (get_current()->need_resched)

schedule();
}
iosched();

}

/* Print out all statistics */
void statistics(list<Task*> *task_list, int tick)
{

list<Task*>::iterator iter;
for (iter = task_list->begin();iter != task_list->end(); iter++)
{

(*iter)->print(tick);
}

}

void tick(int ticks, list<Task*> *task_list, int print)
{

/* Send this many ticks */
for (int ttick=1;ttick<=ticks;ttick++)
{

/* Make sure that the tasks are there */
global_sched(nr_tasks);
timer_tick();

/* Send a tick to all tasks */
list<Task*>::iterator iter;
for (iter = task_list->begin();iter != task_list->end(); iter++)
{

/* Call schedule on the current cpu? */

C.2 Source 123

/* Dont touch stopped_tasks */
if ((*iter)->state == TASK_STOPPED) continue ;

unsigned int sched_cpus = (*iter)->tick();

if (sched_cpus)
{

/* Schedule on selected cpu’s */
for (int i=0;i<smp_num_cpus;i++)

if (sched_cpus | (1 << i))
{

current_processor = i;
schedule();
iosched();

}
}

}
/* Glocal scheduler */
//global_sched(nr_tasks);
if (print)

statistics(task_list, ttick);
}

}

void run_tasks(list<Task*> l)
{

list<Task*>::iterator iter;
printf("Starting jobs.\n");
for (iter = l.begin();iter != l.end(); iter++)
{

(*iter)->run();
}
fflush(stdout);
wait(NULL);

}

int main(int argc, char *argv[])
{

int cpu=0;
int last = 0;
list<Task*> *task_list;
if (argc == 1)
{

printf("Usage: %s <task_file> [run] [last]\n",argv[0]);
printf(" task_file: A file containing the definition of "

"tasks to simulate.\n");
printf(" run: Given this keyword, the tasks will "

"be executed\n");
printf(" last: Only print out final stats\n");
return 1;

}

task_list = read_tasks(argv[1]);

/* Should the tasks be started on the OS? */

if (argc >= 3 && !strcmp("run", argv[2]))
{

124 Appendix C. Simulator

run_tasks(*task_list);
return 0;

}

if (argc >= 3 && !strcmp("last", argv[2]))
last = 1;

/* Begin schedule all tasks */
list<Task*>::iterator iter;

for (iter = task_list->begin();iter != task_list->end(); iter++)
{

if ((*iter)->pid >= 0)
global_add_task(*iter);

else /* Idle_task */
{

/* No stats can be retrieved for those */
current_processor = cpu++;
sched_init(*iter);
tasks.push_front(*iter);
nr_tasks++;

}
}
/* Lets start the clock */
tick(ticks, &tasks, !last);

if (last)
{

statistics(&tasks, ticks);
}

}

main.h

#ifndef __MAIN_H_
#define __MAIN_H_

#endif /* __MAIN_H_ */

periodictask.cc

#include <sys/types.h>
#include <unistd.h>
#include <sys/times.h>
#include <time.h>

#include "periodictask.h"
#include "task.h"
#include "sched_interface.h"
#include "globals.h"
#include <math.h>

C.2 Source 125

PeriodicTask::PeriodicTask(int period, int cpu_time)
{

this->period = period;
this->cpu_time = cpu_time;

/* Internal variables */
period_left=0, cpu_left=cpu_time, cpu_overdue=0, max_cpu_overdue=0;

}

/* Construct from a string */
TaskProp* PeriodicTask::read(char * line)
{

int period, cpu;

if (sscanf(line, "Periodic Task: period=%d, cpu=%d", &period, &cpu) == 2)
return new PeriodicTask(period, cpu);

else
return NULL;

}

void PeriodicTask::statechange(enum task_state state, Task *task)
{
}

int PeriodicTask::tick(Task *task)
{

if (task->state == TASK_STOPPED) return 0;
--period_left;

if (task_has_cpu(task) && --cpu_left <= 0) /* Implies task->state !=
TASK_STOPPED */

{
/* Now sleep */
task->state = TASK_SUSPENDED;
return 1 << task->processor;

}

/* New period */
if (period_left <= 0)
{

/* Remember cpu overdue */
cpu_overdue += cpu_left;
if (cpu_left > max_cpu_overdue)

max_cpu_overdue = cpu_left;

cpu_left = cpu_time;
period_left = period;

task->state = TASK_RUNNING;
wake_up_process(task);

}

return 0;
}

void PeriodicTask::print(int tick)

126 Appendix C. Simulator

{
printf("period_left:%d per_cpu_left:%d per_cpu_overdue:%d

per_max_cpu_overdue:%d ",
period_left, cpu_left, cpu_overdue, max_cpu_overdue);

}

void PeriodicTask::run()
{

struct tms buf, nbuf;
clock_t time, ntime;
struct timespec req, rem;
long sleep_time;

printf ("Pid: %d\t(PeriodicTask)\n", getpid());
fflush(stdout);

while (1)
{

/* First get the req cpu_time */
time = times(&buf);
ntime = times(&nbuf);

while (nbuf.tms_utime - buf.tms_utime < cpu_time)
{

cputime((cpu_time - (nbuf.tms_utime - buf.tms_utime)) * 10000000);
ntime = times(&nbuf);

}
ntime = times(&nbuf);
/* Ok now sleep untill the period is over */
sleep_time = period - (ntime - time);
req.tv_sec = sleep_time/HZ;
req.tv_nsec = (sleep_time%HZ)*1000000000/HZ;
nanosleep(&req, &rem);

}

}

periodictask.h

#ifndef __PERIODICTASK_H__
#define ___PERIODICTASK_H__

#include "task.h"

class PeriodicTask : public TaskProp
{
public:

int cpu_time;
int period;

/* Internal variables */
int period_left;
int cpu_left;

/* Statistics variables */
int max_cpu_overdue;

C.2 Source 127

int cpu_overdue;

void statechange(enum task_state state, Task *task);
int tick(Task *task);
void print(int tick);
void run();

static TaskProp* read(char *line);
PeriodicTask(int period, int cpu_time);

};

#endif /* ___PERIODICTASK_H__ */

processes.cc

#include <list>
#include <stdio.h>
#include "globals.h"
#include "task.h"
#include "iotask.h"
#include "cputask.h"
#include "periodictask.h"
#include "processes.h"
#include "killtask.h"
#include "forktask.h"

using namespace std;

/* Read all processes from a file
* The structure if the file is defined by each subclass
* A line is scanned, and given to all known modules, and if one
* recognices it, it returns a class to be added to the property list
*/

char * read_line(char * buf, int len, FILE* f)
{

do {
if (!fgets(buf, len, f))

return NULL;
} while (buf[0] == ’#’);

/* Remove all tabs and spaces */
int i=0;

while (buf[i]==’ ’ || buf[i]==’\t’) i++;
if (buf[strlen(buf)-1] == ’\n’)

buf[strlen(buf)-1] = 0;
return &buf[i];

}

list<Task*> *read_tasks(char * file_name)
{

int ln = 0;
list<Task*> *l = new list<Task*>;
Task *t;

128 Appendix C. Simulator

char buf[255];
char * line;

/* Read in the globals */
FILE* file;
if (!(file = fopen(file_name, "r")))
{

fprintf(stderr,"Fatal: Unable to open file: %s\n", file_name);
exit(-1);

}

while ((line = read_line(buf, 255, file)))
{

if (line[0] != 0) break ;
}

if (sscanf(line, "Globals: hz=%d, cpus=%d, io_resources=%d, "
"tasks=%d, ticks=%d",
&HZ, &smp_num_cpus, &io_resources, &nr_tasks, &ticks) != 5)

{
fprintf(stderr, "Fatal: Globals must be defined\n");
exit(-1);

}

/* Create idle_tasks */
for (int i=1; i <= smp_num_cpus;i++)
{

t = new Task(-i,0,0,0,-1);
t->add_task_prop(new CpuTask());
(*l).push_front(t);

}

/* For each line */
while ((line = read_line(buf, 255, file)))
{

ln++;

/* Read "process {" */
if (strcmp("process {", line) == 0)
{

/* Found a process entry
* Start processing */

if (!(line = read_line(buf, 255, file)))
printf("### Missing process parameters on line: %d\n", ln);

ln++;

if ((t = Task::read(line)))
{

for (;;)
{

TaskProp* tp;
if (!(line = read_line(buf, 255, file)))
{

printf("### Missing ’}’ on line: %d\n", ln);
break ;

}

C.2 Source 129

ln++;
if (line[0] == ’}’) break ;

/* Let all properties read the line */
tp = get_task_prop(line);
if (!tp) {

printf("### Unknow property ’%s’ on line: %d\n", line, ln);
continue ;

}
t->add_task_prop(tp);

}
}
else

printf("### Could not read task definitions\n");
(*l).push_front(t);

} else
if (line[0] != 0) printf("### Unknown line(%d): ’%s’\n", ln, line);

}
fclose(file);

printf("### Found and scanned %d tasks\n", (*l).size()-smp_num_cpus);

return l;
}

TaskProp* get_task_prop(char * line) {
TaskProp* tp;
if ((tp = IoTask::read(line))) return tp;
if ((tp = CpuTask::read(line))) return tp;
if ((tp = PeriodicTask::read(line))) return tp;
if ((tp = KillTask::read(line))) return tp;
if ((tp = ForkTask::read(line))) return tp;
fprintf(stderr, "Error: Cannot create property: %s\n", line);
return NULL;

}

processes.h

#ifndef __PROCESSES_H__
#define __PROCESSES_H__

#include <list>
using namespace std;

list<Task*> *read_tasks(char * file_name);
TaskProp* get_task_prop(char *line);
#endif /* __PROCESSES_H__ */

sched-first level.cc

#include <list>
#include <vector>

130 Appendix C. Simulator

#include <math.h>
#include <algorithm>
#include "sched-first_level.h"
#include "task.h"
#include "globals.h"
#include "sched_interface.h"
#include "simulator_interface.h"
#include "sched.h"

/* List of task in the 2. level scheduler */
static list<Task*> *expired;
static list<Task*> *ready;

/* Utilization counters */
/* We have: IO Length, CPU Length. CPU = CPU/CPU+IO IO=IO/IO+CPU */

static int u_cpu;
static int u_io;
static int last_swap;

void add_utilization(Task *t)
{

if (t->util_add==1) return ;
if (t->cpu_length > 0 || t->io_length >= 0)
{

u_cpu += 100*t->cpu_length/(t->cpu_length+t->io_length);
u_io += 100*t->io_length/(t->cpu_length+t->io_length);

}
t->util_add = 1;

}

void sub_utilization(Task *t)
{

if (t->util_add==0) return ;
if (t->cpu_length > 0 || t->io_length >= 0)
{

u_cpu -= 100*t->cpu_length/(t->cpu_length+t->io_length);
u_io -= 100*t->io_length/(t->cpu_length+t->io_length);

}
t->util_add = 0;

}

void update_task_io(Task* t)
{

if (t->io_start > -1)
t->io_length += jiffies - t->io_start;

/* And CPU starts. */
t->cpu_start = jiffies;

}

void update_task_cpu(Task* t)
{

if (t->cpu_start > -1)
t->cpu_length += jiffies - t->cpu_start;

C.2 Source 131

/* And IO starts */
t->io_start = jiffies;

}

Task* get_task()
{

list<Task*>::iterator iter;
int u_sys, u_best;
Task* next = NULL;
/* Choose a new task */
u_sys=100*u_cpu/(u_cpu+u_io+1); /* Range [0..100] */
u_best=101;
int u_task;

/* Find a task in the ready queue,
with stats as close as possible to uSYS.
By tests above the queue cannot be empty. */

for (iter = ready->begin();iter != ready->end(); iter++)
{

if ((*iter)->cpu_length > 0)
u_task = 100*(*iter)->cpu_length/

((*iter)->cpu_length+(*iter)->io_length);
else

u_task=START_UTIL;

if (abs(u_task-u_sys) < u_best)
{

next = *iter;
u_best = abs(u_task-u_sys);

}
}
return next;

}

void swap_queues()
{

list<Task*> *tmp = ready;
ready = expired;
expired = tmp;
last_swap=jiffies;

}

void high_level_stats()
{

printf("### Tasks on ready queue: ");
list<Task*>::iterator iter;
for (iter = ready->begin(); iter != ready->end(); iter++)

printf("%d ", (*iter)->pid);
printf("\n");

printf("### Tasks on expired queue: ");
for (iter = expired->begin(); iter != expired->end(); iter++)

printf("%d ", (*iter)->pid);
printf("\n");

printf("### Utilization. cpu:%d, io:%d\n",

132 Appendix C. Simulator

u_cpu, u_io);

}

/* Schedule processes to the low level scheduler,
until the threasholds are up */

void fill()
{

Task* next;
while ((u_cpu < IO_THRESHOLD) || (u_cpu < CPU_THRESHOLD) ||

(run_queue.size()==0))
{

if (ready->size() == 0)
{

if (expired->size() > 0)
swap_queues();

else
{

/* Break, since there are no process to schedule */
break ;

}
}
/* Select a new task */
next = get_task();
if (next == NULL) break ;
next->sched_stamp=jiffies;
next->cpu_start = jiffies;
ready->remove(next);
add_utilization(next);
sc_add_to_runqueue(next);

}
//high_level_stats();

}

/* This function is called whenever a process enters the runqueue,
and is the base for all desicions. This is where processes
are trapped by the first level scheduler */

void add_to_runqueue(Task* t)
{

if (task_on_runqueue(t)) return ;

if (t->io_length < 1)
{

/* New process */
t->io_start=jiffies;
t->io_length=1;
t->cpu_length=1;
expired->push_back(t);
fill();
return ;

}

t->cpu_start=jiffies;

/* Has the task expired? */
if (jiffies - t->sched_stamp > TASK_THRESHOLD)
{

C.2 Source 133

sub_utilization(t);
expired->push_back(t);
fill();
return ;

}

/* Update global utilization counters */
sub_utilization(t);
update_task_io(t);
add_utilization(t);
sc_add_to_runqueue(t);

}

/* Remove a tasks from the rq.
The function updates the task stats,
and if the task has been terminated, fill is called */

void del_from_runqueue(Task* t)
{

sc_del_from_runqueue(t);

if (t->state == TASK_STOPPED)
{

//printf("### Task is stopped: %d\n", t->pid);
sub_utilization(t);
fill();
return ;

}
/* Recalcualte task info */
sub_utilization(t);
update_task_cpu(t);
add_utilization(t);
t->io_start=jiffies;

}

/* For each tick, this functions is called.
It periodically tests for expired tasks, and moves them to the
expired queue. It then add new tasks to the queue from the ready task
list */

void high_level_tick()
{

Task* t;
list<Task*>::iterator iter;

/* If the period has not yet expired */
if (jiffies - last_swap < HIGH_LEVEL_PERIOD)

return ;

last_swap = jiffies;

for (iter = run_queue.begin();iter != run_queue.end(); iter++)
{

t = *iter;
if ((jiffies - t->sched_stamp) > TASK_THRESHOLD)
{

/* Remove the process from the rq */

134 Appendix C. Simulator

iter=run_queue.erase(iter);

/* Preempt the process, if needed */
if (task_has_cpu(t))

smp_send_reschedule(t->processor);

sub_utilization(t);

update_task_cpu(t);
expired->push_back(t);

}
}
fill();

}

void high_level_init()
{

expired = new list<Task*>;
ready = new list<Task*>;
u_cpu=0;
u_io=0;
last_swap = 0;

}

sched-first level.h

#ifndef __TWO_LEVEL_H__
#define __TWO_LEVEL_H__

#include "task.h"

#define IO_THRESHOLD 200*smp_num_cpus
#define CPU_THRESHOLD 200*smp_num_cpus
#define HIGH_LEVEL_PERIOD 200
#define TASK_THRESHOLD 400
#define START_UTIL 100

/* From low_level_sched */
extern list<Task*> run_queue;

void update_task_io(Task* t);
void update_task_cpu(Task* t);
Task* get_task();
void swap_queues();
void fill();
void add_to_runqueue(Task* t);
void del_from_runqueue(Task* t);
void high_level_tick();
void high_level_init();

void sc_add_to_runqueue(Task* t);
void sc_del_from_runqueue(Task* t);

#endif /* __TWO_LEVEL_H__ */

C.2 Source 135

sched-local queue.cc

#include <list>
#include <vector>
#include <math.h>
#include <algorithm>
#include "simulator_interface.h"
#include "sched_interface.h"
#include "sched.h"
#include "globals.h"

using namespace std;

/* A list of running programs on the cpu’s */
Task ** current;
Task ** idle_tasks;
/* Per CPU data */
struct schedule_data *cpu_schedule_data;

/* The run queues */
list<Task*> *run_queues;
/* Number of running processes */
int nr_running = 0;

#define PROC_CHANGE_PENALTY 0
#define UPPER_THRESHOLD 100+100/smp_num_cpus
#define LOWER_THRESHOLD (100-100/smp_num_cpus)

#define unlikely(x) x
/* Actually this is the original define */
#define prepare_to_switch() do { } while (0)

/* Assembler macro - This sets up the new task.
* This is not needed in this simulator */

#define switch_to(prev,next,last) do { } while (0)

/*
* Scheduling quanta.
*
* NOTE! The unix "nice" value influences how long a process
* gets. The nice value ranges from -20 to +19, where a -20
* is a "high-priority" task, and a "+10" is a low-priority
* task.
*
* We want the time-slice to be around 50ms or so, so this
* calculation depends on the value of HZ.
*/

#if HZ < 200
#define TICK_SCALE(x) ((x) >> 2)
#elif HZ < 400
#define TICK_SCALE(x) ((x) >> 1)
#elif HZ < 800
#define TICK_SCALE(x) (x)
#elif HZ < 1600
#define TICK_SCALE(x) ((x) << 1)
#else
#define TICK_SCALE(x) ((x) << 2)
#endif

136 Appendix C. Simulator

#define NICE_TO_TICKS(nice) (TICK_SCALE(20-(nice))+1)

/* Move a task from one run_queue to another.
Make sure that the task is not in the running state */

void move_task(int from_rq, int to_rq)
{

/* Select a task to be moved */
list<Task*>::iterator iter;
Task *p = NULL;
for (iter = run_queues[from_rq].begin(); iter != run_queues[from_rq].end()

; iter++)
{

if (can_schedule((*iter), to_rq))
{

p = *iter;
break ;

}
}
if (p == NULL)

return ;

/* Move the selected task */
run_queues[from_rq].remove(p);
p->run_queue = to_rq;
run_queues[to_rq].push_back(p);

}

/* This function is used to load balance the run_queues */
/* The function only balance the current run_queue against others. */

void balance()
{

/* printf("### Balance\n"); */
int this_rq = smp_processor_id(), rq;
int imbalance = 0;
int i;

int local = run_queues[this_rq].size()*100;
int avg = nr_running*100/smp_num_cpus;

/* Test is an imbalance may exist */
/* if (abs(avg-local) <= 1)

return;
*/
/* imbalance = (local - avg) * 100 / (local + avg); */
imbalance = local-avg;

if (abs(imbalance) < UPPER_THRESHOLD)
return ;

/* Need to balance */
/* Do this while above the LOWER_THRESHOLD */
while (abs(imbalance) > LOWER_THRESHOLD)
{

C.2 Source 137

/* Need to steal processes from other RQ’s? */
if (imbalance < 0)
{

rq = this_rq;
for (i=0;i<smp_num_cpus;i++)
{

if (run_queues[i].size() > run_queues[rq].size())
rq = i;

}

/* rq points to the longest queue */

/* Steal the task in the back of the queue */
move_task(rq, this_rq);

}

if (imbalance > 0)
{

rq = this_rq;
for (i=0;i<smp_num_cpus;i++)
{

/* printf("### Queue: %d, Length: %d\n",
i,run_queues[i].size()); */

if (run_queues[i].size() < run_queues[rq].size())
rq = i;

}

/* rq points to the shortest queue */

/* Push a task to the shortest rq */
move_task(this_rq, rq);

}

/* Recalculate imbalance */
local = run_queues[this_rq].size()*100;

/* if (abs(avg-local) <= 1)
return;
imbalance = (local - avg) * 100 / (local + avg); */

imbalance = local-avg;
}

}

int preemption_goodness(Task *prev, Task *p, int cpu)
{

return goodness(p, cpu, prev->active_mm) - goodness(prev, cpu, prev->
active_mm);

}

void reschedule_idle(Task *p)
{

int this_cpu = smp_processor_id();
Task *tsk, *target_tsk;
int cpu, best_cpu, i, max_prio;
cycles_t oldest_idle;

138 Appendix C. Simulator

/*
* shortcut if the woken up task’s last CPU is
* idle now.
*/

best_cpu = p->processor;
if (can_schedule(p, best_cpu)) {

tsk = idle_task(best_cpu);
if (cpu_curr(best_cpu) == tsk) {

int need_resched;
send_now_idle:

/*
* If need_resched == -1 then we can skip sending
* the IPI altogether, tsk->need_resched is
* actively watched by the idle thread.
*/

need_resched = tsk->need_resched;
tsk->need_resched = 1;
if ((best_cpu != this_cpu) && !need_resched)

smp_send_reschedule(best_cpu);
return ;

}
}

/*
* We know that the preferred CPU has a cache-affine current
* process, lets try to find a new idle CPU for the woken-up
* process. Select the least recently active idle CPU. (that
* one will have the least active cache context.) Also find
* the executing process which has the least priority.
*/

oldest_idle = (cycles_t) -1;
target_tsk = NULL;
max_prio = 0;

for (i = 0; i < smp_num_cpus; i++) {
cpu = cpu_logical_map(i);
if (!can_schedule(p, cpu))

continue ;
tsk = cpu_curr(cpu);
/*
* We use the first available idle CPU. This creates
* a priority list between idle CPUs, but this is not
* a problem.
*/

if (tsk == idle_task(cpu)) {
/* Added in 2.4.17
#if defined(__i386__) && defined(CONFIG_SMP)

//
* Check if two siblings are idle in the same
* physical package. Use them if found.
//
if (smp_num_siblings == 2) {

if (cpu_curr(cpu_sibling_map[cpu]) ==
idle_task(cpu_sibling_map[cpu])) {

oldest_idle = last_schedule(cpu);
target_tsk = tsk;
break;

}

C.2 Source 139

}
#endif
*/

if (last_schedule(cpu) < oldest_idle) {
oldest_idle = last_schedule(cpu);
target_tsk = tsk;

}
} else {

if (oldest_idle == -1ULL) {
int prio = preemption_goodness(tsk, p, cpu);

if (prio > max_prio) {
max_prio = prio;
target_tsk = tsk;

}
}

}
}
tsk = target_tsk;
if (tsk) {

if (oldest_idle != -1ULL) {
best_cpu = tsk->processor;
goto send_now_idle;

}
tsk->need_resched = 1;
if (tsk->processor != this_cpu)

smp_send_reschedule(tsk->processor);
}
return ;

}

/*
* Wake up a process. Put it on the run-queue if it’s not
* already there. The "current" process is always on the
* run-queue (except when the actual re-schedule is in
* progress), and as such you’re allowed to do the simpler
* "current->state = TASK_RUNNING" to mark yourself runnable
* without the overhead of this.
*/

static inline int try_to_wake_up(Task *p, int synchronous)
{

// unsigned long flags;
int success = 0;

/*
* We want the common case fall through straight, thus the goto.
*/

/* spin_lock_irqsave(&runqueue_lock, flags); */
p->state = TASK_RUNNING;
if (task_on_runqueue(p))

goto out;
add_to_runqueue(p);
if (!synchronous || !(p->cpus_allowed & (1 << smp_processor_id())))

reschedule_idle(p);
success = 1;

out:
/* spin_unlock_irqrestore(&runqueue_lock, flags); */

140 Appendix C. Simulator

return success;
}

int wake_up_process(Task * p)
{

return try_to_wake_up(p, 0);
}

/* Calculate the goodness of the process */
int goodness(Task* p, int this_cpu, int this_mm)
{

/* This is soly based on quantum and nice-level */
int weight = -1;
if (p->policy & SCHED_YIELD)

return weight;

if (p->policy == SCHED_OTHER) {
/*
* Give the process a first-approximation goodness value
* according to the number of clock-ticks it has left.
*
* Don’t do any other calculations if the time slice is
* over..
*/

weight = p->counter;
if (!weight)

return weight;

if (p->processor == this_cpu)
weight += PROC_CHANGE_PENALTY;

/* .. and a slight advantage to the current MM */

if (p->mm == this_mm || !p->mm)
weight += 1;

weight += 20 - p->nice;

return weight;
}

/*
* Realtime process, select the first one on the
* runqueue (taking priorities within processes
* into account).
*/

weight = 1000 + p->rt_priority;
return weight;

}

void __schedule_tail(Task* prev)
{

task_release_cpu(prev);
}

C.2 Source 141

void schedule_tail(Task* prev)
{

__schedule_tail(prev);
}

void schedule()
{

int this_cpu = smp_processor_id();
list<Task*> run_queue = run_queues[this_cpu];
struct schedule_data * sched_data;
Task *prev, *next;
int c;

/*printf("### Sched - Queue %d, Size. %d Total: %d\n",
this_cpu, run_queue.size(), nr_running);*/

need_resched_back:

prev = get_current();
next = idle_task(this_cpu);

/* This is not modeled in the simulator
if (unlikely(in_interrupt())) {

printk("Scheduling in interrupt\n");
BUG();

}
*/

/* release_kernel_lock(prev, this_cpu); */

/*
* ’sched_data’ is protected by the fact that we can run
* only one process per CPU.
*/

sched_data = &cpu_schedule_data[this_cpu];

/* spin_lock_irq(&runqueue_lock); */

/* move an exhausted RR process to be last.. */
if (unlikely(prev->policy == SCHED_RR))

if (!prev->counter) {
prev->counter = NICE_TO_TICKS(prev->nice);
move_last_runqueue(prev);

}
/*
switch (prev->state) {

case TASK_INTERRUPTIBLE:
if (signal_pending(prev)) {

prev->state = TASK_RUNNING;
break;

}
default:

del_from_runqueue(prev);

142 Appendix C. Simulator

case TASK_RUNNING:;
}
*/
/* Since tasks themself set the state running, no need to check for
* a pending signal. All in all this boild down to the following: */

if (prev->state != TASK_RUNNING)
del_from_runqueue(prev);

prev->need_resched = 0;

/*
* this is the scheduler proper:
*/

repeat_schedule:
/*
* Default process to select..
*/

c = -1000;
list<Task*>::iterator iter;

for (iter = run_queue.begin(); iter != run_queue.end(); iter++)
{

if (can_schedule((*iter), this_cpu)) {
int weight = goodness((*iter), this_cpu, prev->active_mm);
if (weight > c)

c = weight, next = (*iter);
}

}

/* Do we need to re-calculate counters? */
if (!c) {

/* Recalculate all counter on all tasks. */
list<Task*>::iterator p;
/* spin_unlock_irq(&runqueue_lock);
* read_lock(&tasklist_lock);
*/

for_all_tasks(p)
if ((*p)->run_queue == this_cpu)

(*p)->counter = ((*p)->counter >> 1) +
NICE_TO_TICKS((*p)->nice);

/*
* read_unlock(&tasklist_lock);
* spin_lock_irq(&runqueue_lock);
*/

goto repeat_schedule;
}

/*
* from this point on nothing can prevent us from
* switching to the next task, save this fact in
* sched_data.
*/

/* Add the task to the running list */
/* Mark which cpu the task is running on */

C.2 Source 143

/* Sched data is locale for the cpu itself */

//sched_data->curr = next;
schedule_tail(prev);
task_set_cpu(next, this_cpu);
/* spin_unlock_irq(&runqueue_lock); */

if (unlikely(prev == next)) {
/* We won’t go through the normal tail, so do this by hand */
prev->policy &= ˜SCHED_YIELD;
goto same_process;

}

/*#ifdef CONFIG_SMP*/
/*
* maintain the per-process ’last schedule’ value.
* (this has to be recalculated even if we reschedule to
* the same process) Currently this is only used on SMP,
* and it’s approximate, so we do not have to maintain
* it while holding the runqueue spinlock.
*/

// sched_data->last_schedule = get_cycles();

/*
* We drop the scheduler lock early (it’s a global spinlock),
* thus we have to lock the previous process from getting
* rescheduled during switch_to().
*/

/*#endif*/ /* CONFIG_SMP */

/* kstat.context_swtch++; */
/*
* there are 3 processes which are affected by a context switch:
*
* prev == ==> (last => next)
*
* It’s the ’much more previous’ ’prev’ that is on next’s stack,
* but prev is set to (the just run) ’last’ process by switch_to().
* This might sound slightly confusing but makes tons of sense.
*/

prepare_to_switch();
/*
{

struct mm_struct *mm = next->mm;
struct mm_struct *oldmm = prev->active_mm;
if (!mm) {

if (next->active_mm) BUG();
next->active_mm = oldmm;
atomic_inc(&oldmm->mm_count);
enter_lazy_tlb(oldmm, next, this_cpu);

} else {
if (next->active_mm != mm) BUG();
switch_mm(oldmm, mm, next, this_cpu);

}

if (!prev->mm) {

144 Appendix C. Simulator

prev->active_mm = NULL;
mmdrop(oldmm);

}
}
*/

/*
* This just switches the register state and the
* stack.
*/

switch_to(prev, next, prev);
__schedule_tail(prev);

same_process:

/* reacquire_kernel_lock(current); */
if (get_current()->need_resched)

goto need_resched_back;
return ;

}

/* Called for each timer interrupt on each processor. */
void do_timer()
{

int cpu=smp_processor_id();
/* A tick actually shouldent be cpu specific. */
/* For now we work out the single cpu problem. */
Task *p = get_current();
if (p == idle_task(cpu))
{

p->need_resched = 1;
}

if (--p->counter <= 0) {
p->counter = 0;
p->need_resched = 1;

}
}

/* Return the idle task for the spec. cpu */
Task* idle_task(int cpu)
{

if (!idle_tasks[cpu])
printf("## No idle task for PE:%d\n", cpu);

return idle_tasks[cpu];
}

/* Return the current task on this cpu */
Task* get_current()
{

return current[smp_processor_id()];
}

/* Remove a task from the run_queue */
void del_from_runqueue(Task *task)

C.2 Source 145

{
/* printf("### Delete from rq: %d\n", task->pid); */
int i = run_queues[task->run_queue].size();
run_queues[task->run_queue].remove(task);
nr_running-= i-run_queues[task->run_queue].size();

/* Balance if nessesary */
balance();

}

/* Set the mask for the task */
void task_set_cpu(Task *task, int cpu)
{

task->set_state(TASK_RUNNING);
current[cpu] = task;
task->processor = cpu;
task->cpus_runnable = 1UL << cpu;

}

/* Change to mask to have no cpu */
void task_release_cpu(Task *task)
{

task->cpus_runnable = ˜0UL;
}

/* Examine if the task is running on a cpu */
int task_has_cpu(Task *task)
{

return (task->cpus_runnable != ˜0UL);
}

/* Move a task to the last of the runqueue */
void move_last_runqueue(Task *task)
{

int i = run_queues[task->run_queue].size();
run_queues[task->run_queue].remove(task);
run_queues[task->run_queue].push_back(task);
nr_running += run_queues[task->run_queue].size()-i;

}

/* Move a task to the front of a runqueue */
void move_first_runqueue(Task *task)
{

int i = run_queues[task->run_queue].size();
run_queues[task->run_queue].remove(task);
run_queues[task->run_queue].push_front(task);
nr_running += run_queues[task->run_queue].size()-i;

}

/* Add a task to the runqueue */
void add_to_runqueue(Task *task)
{

/* Add to the previous runqueue.
If this is negative, then add to the runqueue
for this processor */

if (task->run_queue < 0)
task->run_queue = smp_processor_id();

146 Appendix C. Simulator

/* printf("### Adding task %d to rq:%d\n", task->pid, task->run_queue); */

run_queues[task->run_queue].push_front(task);
nr_running++;

/* Balance if nessesary */
balance();

}

/* Examine if a task can run on the spec. CPU */
int can_schedule(Task *p, int cpu)
{

return (p->cpus_runnable & p->cpus_allowed & (1 << cpu));
}

Task* cpu_curr(int cpu)
{

return current[cpu];
}

/*
* On x86 all CPUs are mapped 1:1 to the APIC space.
* This simplifies scheduling and IPI sending and
* compresses data structures.
*/

int cpu_logical_map(int cpu)
{

return cpu;
}

int cpu_number_map(int cpu)
{

return cpu;
}

/* Check if the task is on any runqueue */
int task_on_runqueue(Task *p)
{

/* Go through the runqueue */
if (p->run_queue < 0) return 0;

/* In linux, the thread would know itself through p->run_list.next */
return (find(run_queues[p->run_queue].begin(),

run_queues[p->run_queue].end(), p) != run_queues[p->run_queue].
end());

}

/* Retrive number of ticks since last schedule in this cpu */
/* This is updated for every tick */
cycles_t last_schedule(int cpu)
{

return cpu_schedule_data[cpu].last_schedule;
}

/* Get System Ticks */
cycles_t get_cycles()
{

return jiffies;

C.2 Source 147

}

void sched_init(Task *idle_task)
{

int cpu = smp_processor_id();
if (!cpu)
{

current = (Task **) malloc(sizeof (Task*)*smp_num_cpus);
idle_tasks = (Task **) malloc(sizeof (Task*)*smp_num_cpus);
cpu_schedule_data = (struct schedule_data*)

malloc(sizeof (struct schedule_data)*smp_num_cpus);
run_queues = new list<Task*>[smp_num_cpus];

}

idle_tasks[cpu] = idle_task;
/* set the idle task as the active task the CPU */
task_set_cpu(idle_task, cpu);

}

sched-multi queue.cc

#include <list>
#include <vector>
#include <math.h>
#include <algorithm>
#include "sched.h"
#include "simulator_interface.h"
#include "sched_interface.h"
#include "globals.h"

using namespace std;

/* A list of running programs on the cpu’s */
Task ** current;
Task ** idle_tasks;
/* Per CPU data */
struct schedule_data *cpu_schedule_data;

#define PROC_CHANGE_PENALTY 15

/*
* Scheduling quanta.
*
* NOTE! The unix "nice" value influences how long a process
* gets. The nice value ranges from -20 to +19, where a -20
* is a "high-priority" task, and a "+10" is a low-priority
* task.
*
* We want the time-slice to be around 50ms or so, so this
* calculation depends on the value of HZ.
*/

#if HZ < 200
#define TICK_SCALE(x) ((x) >> 2)
#elif HZ < 400
#define TICK_SCALE(x) ((x) >> 1)

148 Appendix C. Simulator

#elif HZ < 800
#define TICK_SCALE(x) (x)
#elif HZ < 1600
#define TICK_SCALE(x) ((x) << 1)
#else
#define TICK_SCALE(x) ((x) << 2)
#endif

#define NICE_TO_TICKS(nice) (TICK_SCALE(20-(nice))+1)

struct queue {
int counter; /* The total quantum left for the queue */
int number;
list<Task*> active; /* List of active threads in this cycle */

};

/* Number of queues in the system */
#define NR_QUEUES 4

/* Queue 0, CPU-bound
Queue 3, Interactive.
Fairness are still in place.
Interactive tasks are run for shorter periods of time, more
frequently */

/* Allocate the queues */
static struct queue run_queues[NR_QUEUES];

#define unlikely(x) x
/* Actually this is the original define */
#define prepare_to_switch() do { } while (0)

/* Assembler macro - This sets up the new task.
* This is not needed in this simulator */

#define switch_to(prev,next,last) do { } while (0)
void scheduling_functions_begin() {}

void reschedule_idle(Task *p)
{

int this_cpu = smp_processor_id();
Task *tsk, *target_tsk;
int cpu, best_cpu, i, max_prio;
cycles_t oldest_idle;

/*
* shortcut if the woken up task’s last CPU is
* idle now.
*/

best_cpu = p->processor;
if (can_schedule(p, best_cpu)) {

tsk = idle_task(best_cpu);
if (cpu_curr(best_cpu) == tsk) {

int need_resched;
send_now_idle:

/*
* If need_resched == -1 then we can skip sending
* the IPI altogether, tsk->need_resched is

C.2 Source 149

* actively watched by the idle thread.
*/

need_resched = tsk->need_resched;
tsk->need_resched = 1;
if ((best_cpu != this_cpu) && !need_resched)

smp_send_reschedule(best_cpu);
return ;

}
}

/*
* We know that the preferred CPU has a cache-affine current
* process, lets try to find a new idle CPU for the woken-up
* process. Select the least recently active idle CPU. (that
* one will have the least active cache context.) Also find
* the executing process which has the least priority.
*/

oldest_idle = (cycles_t) -1;
target_tsk = NULL;
max_prio = 0;

for (i = 0; i < smp_num_cpus; i++) {
cpu = cpu_logical_map(i);
if (!can_schedule(p, cpu))

continue ;
tsk = cpu_curr(cpu);
/*
* We use the first available idle CPU. This creates
* a priority list between idle CPUs, but this is not
* a problem.
*/

if (tsk == idle_task(cpu)) {
/* Added in 2.4.17
#if defined(__i386__) && defined(CONFIG_SMP)

//
* Check if two siblings are idle in the same
* physical package. Use them if found.
//
if (smp_num_siblings == 2) {

if (cpu_curr(cpu_sibling_map[cpu]) ==
idle_task(cpu_sibling_map[cpu])) {

oldest_idle = last_schedule(cpu);
target_tsk = tsk;
break;

}

}
#endif
*/

if (last_schedule(cpu) < oldest_idle) {
oldest_idle = last_schedule(cpu);
target_tsk = tsk;

}
}

}
tsk = target_tsk;
if (tsk) {

if (oldest_idle != -1ULL) {

150 Appendix C. Simulator

best_cpu = tsk->processor;
goto send_now_idle;

}
tsk->need_resched = 1;
if (tsk->processor != this_cpu)

smp_send_reschedule(tsk->processor);
}
return ;

}

/*
* Wake up a process. Put it on the run-queue if it’s not
* already there. The "current" process is always on the
* run-queue (except when the actual re-schedule is in
* progress), and as such you’re allowed to do the simpler
* "current->state = TASK_RUNNING" to mark yourself runnable
* without the overhead of this.
*/

static inline int try_to_wake_up(Task *p, int synchronous)
{

// unsigned long flags;
int success = 0;

/*
* We want the common case fall through straight, thus the goto.
*/

/* spin_lock_irqsave(&runqueue_lock, flags); */
p->state = TASK_RUNNING;
if (task_on_runqueue(p))

goto out;
add_to_runqueue(p);
if (!synchronous || !(p->cpus_allowed & (1 << smp_processor_id())))

reschedule_idle(p);
success = 1;

out:
/* spin_unlock_irqrestore(&runqueue_lock, flags); */
return success;

}

int wake_up_process(Task * p)
{

return try_to_wake_up(p, 0);
}

void __schedule_tail(Task* prev)
{

task_release_cpu(prev);
}

void schedule_tail(Task* prev)
{

__schedule_tail(prev);
}

/* We dont know anything about SCHED_RR or SCHED_FIFO.

C.2 Source 151

We could just implement these in a single queue, that
must be empty before scheduling SCHED_OTHER */

void schedule()
{

int this_cpu = smp_processor_id();
list<Task*>::iterator p;

struct schedule_data * sched_data;
Task *prev, *next;
int c;

struct queue* active;
int weight, new_weight;

prev = get_current();
next = idle_task(this_cpu);

printf("### Schedule on PE: %d\n", this_cpu);

/* Write the state of all tasks on one line */
printf("### States: ");
for_all_tasks(p) {

printf("(%d,%d) ", (*p)->run_queue, (*p)->state);
}
printf("\n");

if (prev != idle_task(this_cpu)) {
//task_release_cpu(prev);
if (prev->state != TASK_RUNNING)

del_from_runqueue(prev);
else {

if (prev->counter==0) {
/* Has the thread used all of its timeslice? */
if ((!prev->moved) && (prev->run_queue > 0)) {

printf("### Less interactive: %d\n", prev->pid);
del_from_runqueue(prev);
prev->moved++;
add_to_runqueue_tail(prev);

}
}
/*
if (prev->quantum > 0)
{

move_first_runqueue(prev);
}
*/

}
}

need_resched_back:

weight=-100000;
active=NULL;
int t=-100000;
/* Find the best task to run, if two queues have the same weight,
* Select the late */

for (c=0;c<NR_QUEUES;c++)
{

152 Appendix C. Simulator

printf("### Queue %d: (%d,%d)\n",
c,run_queues[c].number,run_queues[c].counter);

if (run_queues[c].number && can_schedule(*run_queues[c].active.begin(),
this_cpu)) {

new_weight=run_queues[c].counter/run_queues[c].number;
if (new_weight >= weight)
{

weight = new_weight;
active = &run_queues[c];
t=c;

}
}

}

/* Recalculate counters?
* Counter are recalculated, if there was a runqueue, but counter <= 0 */

if (active && active->counter <= 0)
{

printf("### Recalculating\n");
for (c=1;c<NR_QUEUES;c++)

run_queues[c].counter=0;

for_all_tasks(p) {
(*p)->counter = ((*p)->counter >> 2) + NICE_TO_TICKS((*p)->nice);
if ((*p)->state == TASK_RUNNING)
{

run_queues[(*p)->run_queue].counter += (*p)->counter;
(*p)->moved=0;

}

}
goto need_resched_back;

}

/* Ok we got the queue, from which we should schedule */
/* Schedule in a round robin fashion */

/* A process assigned to another PE cannot be scheduled */
if (active) {

next = *active->active.begin();
move_last_runqueue(next);
next->quantum=(NICE_TO_TICKS(next->nice)>>next->run_queue);

} else
printf("### Choosing idle process\n");

/* All process know their quantum.
A extra quantum is added. A thread is only run for this quantum.
The temporary quantum depends on the queue the thread is in. */

/* release_kernel_lock(prev, this_cpu); */

sched_data = &cpu_schedule_data[this_cpu];

/* spin_lock_irq(&runqueue_lock); */

prev->need_resched = 0;

C.2 Source 153

/*
* this is the scheduler proper:
*/

schedule_tail(prev);
task_set_cpu(next, this_cpu);
/* spin_unlock_irq(&runqueue_lock); */

prepare_to_switch();

/*
* This just switches the register state and the
* stack.
*/

printf("### Prev: %d, Next: %d\n", prev->pid, next->pid);
switch_to(prev, next, prev);

}

/* Called for each timer interrupt on each processor. */
void do_timer()
{

/* A tick actually shouldent be cpu specific. */
/* For now we work out the single cpu problem. */
int cpu = smp_processor_id();
Task *p = get_current();
if (p == idle_task(cpu))
{

p->need_resched = 1;
}

run_queues[p->run_queue].counter--;
--p->counter;
--p->quantum;
if (p->quantum <= 0) {

p->need_resched = 1;
p->quantum = 0;

}

if (p->counter <= 0) {
p->need_resched = 1;
p->counter = 0;
p->quantum = 0;

}
}

void scheduling_functions_end() {}

/* Return the idle task for the spec. cpu */
Task* idle_task(int cpu)
{

return idle_tasks[cpu];
}

/* Return the current task on this cpu */
Task* get_current()
{

154 Appendix C. Simulator

return current[smp_processor_id()];
}

/* Remove a task from the run_queue */
void del_from_runqueue(Task *p)
{

if (!task_on_runqueue(p)) return ;
printf("### Del from runqueue: %d,%d\n", p->pid,p->run_queue);
if (!run_queues[p->run_queue].number)
{

printf("### Bug in del. No more processes on queue\n");
//run_queues[p->run_queue].number++;

}

run_queues[p->run_queue].active.remove(p);
run_queues[p->run_queue].number--;
run_queues[p->run_queue].counter-=p->counter;

/* Find out, if the task should be moved to another queue */
/* If the task has used less than half of the temporary quanta */
/* Do not move, if it has been moved before within this scheduling cycle

*/
/* thread suspended. */
if ((!p->moved) &&

(p->run_queue < NR_QUEUES-1) &&
(p->quantum < (NICE_TO_TICKS(p->nice) >> (p->run_queue+2)))) {
printf("### More interactive: %d\n", p->pid);
p->run_queue++;

}
}

/* Set the mask for the task */
void task_set_cpu(Task *task, int cpu)
{

task->set_state(TASK_RUNNING);
current[cpu] = task;
task->processor = cpu;
task->cpus_runnable = 1UL << cpu;

}

/* Change to mask to have no cpu */
void task_release_cpu(Task *task)
{

task->cpus_runnable = ˜0UL;
}

/* Examine if the task is running on a cpu */
int task_has_cpu(Task *task)
{

return (task->cpus_runnable != ˜0UL);
}

/* Move a task to the last of the runqueue */
void move_last_runqueue(Task *p)
{

run_queues[p->run_queue].active.remove(p);
run_queues[p->run_queue].active.push_back(p);

C.2 Source 155

}

/* Move a task to the front of a runqueue */
void move_first_runqueue(Task *p)
{

run_queues[p->run_queue].active.remove(p);
run_queues[p->run_queue].active.push_front(p);

}

/* Add a task to the runqueue */
void add_to_runqueue(Task *p)
{

if (task_on_runqueue(p)) return ;
printf("### Add to runqueue: %d\n", p->pid);

run_queues[p->run_queue].active.push_front(p);
/* Add the rest of the quantum to the run_queue */
run_queues[p->run_queue].counter += p->counter;
run_queues[p->run_queue].number++;

}
void add_to_runqueue_tail(Task *p)
{

if (task_on_runqueue(p)) return ;
printf("### Add to runqueue: %d\n", p->pid);

run_queues[p->run_queue].active.push_back(p);
/* Add the rest of the quantum to the run_queue */
run_queues[p->run_queue].counter += p->counter;
run_queues[p->run_queue].number++;

}

/* Examine if a task can run on the spec. CPU */
int can_schedule(Task *p, int cpu)
{

return (p->cpus_runnable & p->cpus_allowed & (1 << cpu));
}

Task* cpu_curr(int cpu)
{

return current[cpu];
}

/*
* On x86 all CPUs are mapped 1:1 to the APIC space.
* This simplifies scheduling and IPI sending and
* compresses data structures.
*/

int cpu_logical_map(int cpu)
{

return cpu;
}

int cpu_number_map(int cpu)
{

return cpu;
}

/* Check if the task is on any runqueue */

156 Appendix C. Simulator

int task_on_runqueue(Task *p)
{

/* Go through the runqueue */
/* In linux, the thread would know itself through p->run_list.next */
if (p->run_queue == -1)

p->run_queue = 1;

int rq = p->run_queue;
return ((find(run_queues[rq].active.begin(), run_queues[rq].active.end(),

p) !=
run_queues[rq].active.end()) /*||

(find(run_queues[rq].expired.begin(), run_queues[rq].expired.end(), p)
!=

run_queues[rq].expired.end())*/);
}

/* Retrive number of ticks since last schedule in this cpu */
/* This is updated for every tick */
cycles_t last_schedule(int cpu)
{

return cpu_schedule_data[cpu].last_schedule;
}

/* Get System Ticks */
cycles_t get_cycles()
{

return jiffies;
}

void sched_init(Task *idle_task)
{

int cpu = smp_processor_id();
if (!cpu)
{

current = (Task **) malloc(sizeof (Task*)*smp_num_cpus);
idle_tasks = (Task **) malloc(sizeof (Task*)*smp_num_cpus);
cpu_schedule_data = (struct schedule_data*)

malloc(sizeof (struct schedule_data)*smp_num_cpus);
}

idle_tasks[cpu] = idle_task;
/* set the idle task as the active task the CPU */
task_set_cpu(idle_task, cpu);

}

sched-round robin.cc

#include <list>
#include <vector>
#include <algorithm>
#include <math.h>
#include "simulator_interface.h"
#include "sched_interface.h"
#include "sched.h"
#include "globals.h"

C.2 Source 157

using namespace std;

/* A list of running programs on the cpu’s */
Task ** current;
Task ** idle_tasks;
/* Per CPU data */
struct schedule_data *cpu_schedule_data;

#define unlikely(x) x
/* Actually this is the original define */
#define prepare_to_switch() do { } while (0)

/* Assembler macro - This sets up the new task.
* This is not needed in this simulator */

#define switch_to(prev,next,last) do { } while (0)

/* The run queue */
list<Task*> run_queue;

#define HZ 100
#define PROC_CHANGE_PENALTY 15

/*
* Scheduling quanta.
*
* NOTE! The unix "nice" value influences how long a process
* gets. The nice value ranges from -20 to +19, where a -20
* is a "high-priority" task, and a "+10" is a low-priority
* task.
*
* We want the time-slice to be around 50ms or so, so this
* calculation depends on the value of HZ.
*/

#if HZ < 200
#define TICK_SCALE(x) ((x) >> 2)
#elif HZ < 400
#define TICK_SCALE(x) ((x) >> 1)
#elif HZ < 800
#define TICK_SCALE(x) (x)
#elif HZ < 1600
#define TICK_SCALE(x) ((x) << 1)
#else
#define TICK_SCALE(x) ((x) << 2)
#endif

#define NICE_TO_TICKS(nice) (TICK_SCALE(20-(nice))+1)

int preemption_goodness(Task *prev, Task *p, int cpu)
{

return goodness(p, cpu, prev->active_mm) - goodness(prev, cpu, prev->
active_mm);

}

void reschedule_idle(Task *p)

158 Appendix C. Simulator

{
int this_cpu = smp_processor_id();
Task *tsk, *target_tsk;
int cpu, best_cpu, i, max_prio;
cycles_t oldest_idle;

/*
* shortcut if the woken up task’s last CPU is
* idle now.
*/

best_cpu = p->processor;
if (can_schedule(p, best_cpu)) {

tsk = idle_task(best_cpu);
if (cpu_curr(best_cpu) == tsk) {

int need_resched;
send_now_idle:

/*
* If need_resched == -1 then we can skip sending
* the IPI altogether, tsk->need_resched is
* actively watched by the idle thread.
*/

need_resched = tsk->need_resched;
tsk->need_resched = 1;
if ((best_cpu != this_cpu) && !need_resched)

smp_send_reschedule(best_cpu);
return ;

}
}

/*
* We know that the preferred CPU has a cache-affine current
* process, lets try to find a new idle CPU for the woken-up
* process. Select the least recently active idle CPU. (that
* one will have the least active cache context.) Also find
* the executing process which has the least priority.
*/

oldest_idle = (cycles_t) -1;
target_tsk = NULL;
max_prio = 0;

for (i = 0; i < smp_num_cpus; i++) {
cpu = cpu_logical_map(i);
if (!can_schedule(p, cpu))

continue ;
tsk = cpu_curr(cpu);
/*
* We use the first available idle CPU. This creates
* a priority list between idle CPUs, but this is not
* a problem.
*/

if (tsk == idle_task(cpu)) {
/* Added in 2.4.17
#if defined(__i386__) && defined(CONFIG_SMP)

//
* Check if two siblings are idle in the same
* physical package. Use them if found.
//
if (smp_num_siblings == 2) {

C.2 Source 159

if (cpu_curr(cpu_sibling_map[cpu]) ==
idle_task(cpu_sibling_map[cpu])) {

oldest_idle = last_schedule(cpu);
target_tsk = tsk;
break;

}

}
#endif
*/

if (last_schedule(cpu) < oldest_idle) {
oldest_idle = last_schedule(cpu);
target_tsk = tsk;

}
} /*else {

if (oldest_idle == -1ULL) {
int prio = preemption_goodness(tsk, p, cpu);

if (prio > max_prio) {
max_prio = prio;
target_tsk = tsk;

}
}
}*/

}
tsk = target_tsk;
if (tsk) {

if (oldest_idle != -1ULL) {
best_cpu = tsk->processor;
goto send_now_idle;

}
tsk->need_resched = 1;
if (tsk->processor != this_cpu)

smp_send_reschedule(tsk->processor);
}
return ;

}

/*
* Wake up a process. Put it on the run-queue if it’s not
* already there. The "current" process is always on the
* run-queue (except when the actual re-schedule is in
* progress), and as such you’re allowed to do the simpler
* "current->state = TASK_RUNNING" to mark yourself runnable
* without the overhead of this.
*/

static inline int try_to_wake_up(Task *p, int synchronous)
{

// unsigned long flags;
int success = 0;

/*
* We want the common case fall through straight, thus the goto.
*/

/* spin_lock_irqsave(&runqueue_lock, flags); */
p->state = TASK_RUNNING;
if (task_on_runqueue(p))

goto out;

160 Appendix C. Simulator

add_to_runqueue(p);
if (!synchronous || !(p->cpus_allowed & (1 << smp_processor_id())))

reschedule_idle(p);
success = 1;

out:
/* spin_unlock_irqrestore(&runqueue_lock, flags); */
return success;

}

int wake_up_process(Task * p)
{

return try_to_wake_up(p, 0);
}

/* Calculate the goodness of the process */
int goodness(Task* p, int this_cpu, int this_mm)
{

/* This is soly based on quantum and nice-level */
int weight = -1;
if (p->policy & SCHED_YIELD)

return weight;

if (p->policy == SCHED_OTHER) {
/*
* Give the process a first-approximation goodness value
* according to the number of clock-ticks it has left.
*
* Don’t do any other calculations if the time slice is
* over..
*/

weight = p->counter;
if (!weight)

return weight;

if (p->processor == this_cpu)
weight += PROC_CHANGE_PENALTY;

/* .. and a slight advantage to the current MM */

if (p->mm == this_mm || !p->mm)
weight += 1;

weight += 20 - p->nice;

return weight;
}

/*
* Realtime process, select the first one on the
* runqueue (taking priorities within processes
* into account).
*/

weight = 1000 + p->rt_priority;
return weight;

}

C.2 Source 161

void __schedule_tail(Task* prev)
{

task_release_cpu(prev);
}

void schedule_tail(Task* prev)
{

__schedule_tail(prev);
}

void schedule()
{

int this_cpu = smp_processor_id();
struct schedule_data * sched_data;
Task *prev, *next;
int c;

need_resched_back:

prev = get_current();
next = idle_task(this_cpu);

/* This is not modeled in the simulator
if (unlikely(in_interrupt())) {

printk("Scheduling in interrupt\n");
BUG();

}
*/

/* release_kernel_lock(prev, this_cpu); */

/*
* ’sched_data’ is protected by the fact that we can run
* only one process per CPU.
*/

sched_data = &cpu_schedule_data[this_cpu];

/* spin_lock_irq(&runqueue_lock); */

/* move an exhausted RR process to be last.. */

/*
if (unlikely(prev->policy == SCHED_RR))
if (!prev->counter) {
prev->counter = NICE_TO_TICKS(prev->nice);
move_last_runqueue(prev);
}*/

/*
switch (prev->state) {

case TASK_INTERRUPTIBLE:
if (signal_pending(prev)) {

prev->state = TASK_RUNNING;

162 Appendix C. Simulator

break;
}

default:
del_from_runqueue(prev);

case TASK_RUNNING:;
}
*/
/* Since tasks themself set the state running, no need to check for
* a pending signal. All in all this boild down to the following: */

if (prev->state != TASK_RUNNING)
del_from_runqueue(prev);

else
move_last_runqueue(prev);

prev->need_resched = 0;

/*
* this is the scheduler proper:
*/

// repeat_schedule:

/*
* Default process to select..
*/

c = -1000;
list<Task*>::iterator iter;
for (iter = run_queue.begin(); iter != run_queue.end(); iter++)
{

if (can_schedule((*iter), this_cpu)) {
next=(*iter);
if (next->pid > 0)

break ;
}

}
next->counter=NICE_TO_TICKS(next->nice);

/*
* from this point on nothing can prevent us from
* switching to the next task, save this fact in
* sched_data.
*/

/* Add the task to the running list */
/* Mark which cpu the task is running on */

/* Sched data is locale for the cpu itself */

//sched_data->curr = next;
schedule_tail(prev);
task_set_cpu(next, this_cpu);
/* spin_unlock_irq(&runqueue_lock); */

if (unlikely(prev == next)) {
/* We won’t go through the normal tail, so do this by hand */
prev->policy &= ˜SCHED_YIELD;
goto same_process;

C.2 Source 163

}

/*#ifdef CONFIG_SMP*/
/*
* maintain the per-process ’last schedule’ value.
* (this has to be recalculated even if we reschedule to
* the same process) Currently this is only used on SMP,
* and it’s approximate, so we do not have to maintain
* it while holding the runqueue spinlock.
*/

// sched_data->last_schedule = get_cycles();

/*
* We drop the scheduler lock early (it’s a global spinlock),
* thus we have to lock the previous process from getting
* rescheduled during switch_to().
*/

/*#endif*/ /* CONFIG_SMP */

/* kstat.context_swtch++; */
/*
* there are 3 processes which are affected by a context switch:
*
* prev == ==> (last => next)
*
* It’s the ’much more previous’ ’prev’ that is on next’s stack,
* but prev is set to (the just run) ’last’ process by switch_to().
* This might sound slightly confusing but makes tons of sense.
*/

prepare_to_switch();
/*
{

struct mm_struct *mm = next->mm;
struct mm_struct *oldmm = prev->active_mm;
if (!mm) {

if (next->active_mm) BUG();
next->active_mm = oldmm;
atomic_inc(&oldmm->mm_count);
enter_lazy_tlb(oldmm, next, this_cpu);

} else {
if (next->active_mm != mm) BUG();
switch_mm(oldmm, mm, next, this_cpu);

}

if (!prev->mm) {
prev->active_mm = NULL;
mmdrop(oldmm);

}
}
*/

/*
* This just switches the register state and the
* stack.
*/

switch_to(prev, next, prev);

164 Appendix C. Simulator

__schedule_tail(prev);

same_process:

/* reacquire_kernel_lock(current); */
if (get_current()->need_resched)

goto need_resched_back;
return ;

}

void sched_init(Task *idle_task)
{

int cpu = smp_processor_id();
if (!cpu)
{

current = (Task **) malloc(sizeof (Task*)*smp_num_cpus);
idle_tasks = (Task **) malloc(sizeof (Task*)*smp_num_cpus);
cpu_schedule_data = (struct schedule_data*)

malloc(sizeof (struct schedule_data)*smp_num_cpus);
}

idle_tasks[cpu] = idle_task;
/* set the idle task as the active task the CPU */
task_set_cpu(idle_task, cpu);

}

/* Called for each timer interrupt on each processor. */
void do_timer()
{

int cpu = smp_processor_id();
/* A tick actually shouldent be cpu specific. */
/* For now we work out the single cpu problem. */
Task *p = get_current();
if (p == idle_task(cpu))
{

p->need_resched = 1;
}

if (--p->counter <= 0) {
p->counter = 0;
p->need_resched = 1;

}
}

/* Return the idle task for the spec. cpu */
Task* idle_task(int cpu)
{

return idle_tasks[cpu];
}

/* Return the current task on this cpu */
Task* get_current()
{

return current[smp_processor_id()];
}

/* Remove a task from the run_queue */

C.2 Source 165

void del_from_runqueue(Task *task)
{

run_queue.remove(task);
}

/* Set the mask for the task */
void task_set_cpu(Task *task, int cpu)
{

task->set_state(TASK_RUNNING);
current[cpu] = task;
task->processor = cpu;
task->cpus_runnable = 1UL << cpu;

}

/* Change to mask to have no cpu */
void task_release_cpu(Task *task)
{

task->cpus_runnable = ˜0UL;
}

/* Examine if the task is running on a cpu */
int task_has_cpu(Task *task)
{

return (task->cpus_runnable != ˜0UL);
}

/* Move a task to the last of the runqueue */
void move_last_runqueue(Task *task)
{

del_from_runqueue(task);
run_queue.push_back(task);

}

/* Move a task to the front of a runqueue */
void move_first_runqueue(Task *task)
{

del_from_runqueue(task);
run_queue.push_front(task);

}

/* Add a task to the runqueue */
void add_to_runqueue(Task *task)
{

run_queue.push_front(task);
/* nr_running++; */

}

/* Examine if a task can run on the spec. CPU */
int can_schedule(Task *p, int cpu)
{

return (p->cpus_runnable & p->cpus_allowed & (1 << cpu));
}

Task* cpu_curr(int cpu)
{

return current[cpu];
}

166 Appendix C. Simulator

/*
* On x86 all CPUs are mapped 1:1 to the APIC space.
* This simplifies scheduling and IPI sending and
* compresses data structures.
*/

int cpu_logical_map(int cpu)
{

return cpu;
}

int cpu_number_map(int cpu)
{

return cpu;
}

/* Check if the task is on any runqueue */
int task_on_runqueue(Task *p)
{

/* Go through the runqueue */
/* In linux, the thread would know itself through p->run_list.next */
return (find(run_queue.begin(), run_queue.end(), p) != run_queue.end());

}

/* Retrive number of ticks since last schedule in this cpu */
/* This is updated for every tick */
cycles_t last_schedule(int cpu)
{

return cpu_schedule_data[cpu].last_schedule;
}

/* Get System Ticks */
cycles_t get_cycles()
{

return jiffies;
}

sched-second level.cc

#include <vector>
#include <math.h>
#include <algorithm>
#include "simulator_interface.h"
#include "sched_interface.h"
#include "sched.h"
#include "sched-first_level.h"
#include "globals.h"

using namespace std;

/* A list of running programs on the cpu’s */
Task ** current;
Task ** idle_tasks;
/* Per CPU data */
struct schedule_data *cpu_schedule_data;

C.2 Source 167

/* The run queue */
list<Task*> run_queue;

#define PROC_CHANGE_PENALTY 15

#define unlikely(x) x
/* Actually this is the original define */

#define prepare_to_switch() do { } while (0)
/* Assembler macro - This sets up the new task.
* This is not needed in this simulator */

#define switch_to(prev,next,last) do { } while (0)

/*
* Scheduling quanta.
*
* NOTE! The unix "nice" value influences how long a process
* gets. The nice value ranges from -20 to +19, where a -20
* is a "high-priority" task, and a "+10" is a low-priority
* task.
*
* We want the time-slice to be around 50ms or so, so this
* calculation depends on the value of HZ.
*/

#if HZ < 200
#define TICK_SCALE(x) ((x) >> 2)
#elif HZ < 400
#define TICK_SCALE(x) ((x) >> 1)
#elif HZ < 800
#define TICK_SCALE(x) (x)
#elif HZ < 1600
#define TICK_SCALE(x) ((x) << 1)
#else
#define TICK_SCALE(x) ((x) << 2)
#endif

#define NICE_TO_TICKS(nice) (TICK_SCALE(20-(nice))+1)

/* Setup idle tasks.
These will only be run when there is no items in
the run_queue */

void init_cpu(int cpu, Task *idle_task)
{

idle_tasks[cpu] = idle_task;
/* set the idle task as the active task the CPU */
task_set_cpu(idle_task, cpu);

}

int preemption_goodness(Task *prev, Task *p, int cpu)
{

return goodness(p, cpu, prev->active_mm) - goodness(prev, cpu, prev->
active_mm);

}

168 Appendix C. Simulator

void reschedule_idle(Task *p)
{

int this_cpu = smp_processor_id();
Task *tsk, *target_tsk;
int cpu, best_cpu, i, max_prio;
cycles_t oldest_idle;

/*
* shortcut if the woken up task’s last CPU is
* idle now.
*/

best_cpu = p->processor;
if (can_schedule(p, best_cpu)) {

tsk = idle_task(best_cpu);
if (cpu_curr(best_cpu) == tsk) {

int need_resched;
send_now_idle:

/*
* If need_resched == -1 then we can skip sending
* the IPI altogether, tsk->need_resched is
* actively watched by the idle thread.
*/

need_resched = tsk->need_resched;
tsk->need_resched = 1;
if ((best_cpu != this_cpu) && !need_resched)

smp_send_reschedule(best_cpu);
return ;

}
}

/*
* We know that the preferred CPU has a cache-affine current
* process, lets try to find a new idle CPU for the woken-up
* process. Select the least recently active idle CPU. (that
* one will have the least active cache context.) Also find
* the executing process which has the least priority.
*/

oldest_idle = (cycles_t) -1;
target_tsk = NULL;
max_prio = 0;

for (i = 0; i < smp_num_cpus; i++) {
cpu = cpu_logical_map(i);
if (!can_schedule(p, cpu))

continue ;
tsk = cpu_curr(cpu);
/*
* We use the first available idle CPU. This creates
* a priority list between idle CPUs, but this is not
* a problem.
*/

if (tsk == idle_task(cpu)) {
/* Added in 2.4.17
#if defined(__i386__) && defined(CONFIG_SMP)

//
* Check if two siblings are idle in the same
* physical package. Use them if found.
//

C.2 Source 169

if (smp_num_siblings == 2) {
if (cpu_curr(cpu_sibling_map[cpu]) ==

idle_task(cpu_sibling_map[cpu])) {
oldest_idle = last_schedule(cpu);
target_tsk = tsk;
break;

}

}
#endif
*/

if (last_schedule(cpu) < oldest_idle) {
oldest_idle = last_schedule(cpu);
target_tsk = tsk;

}
} else {

if (oldest_idle == -1ULL) {
int prio = preemption_goodness(tsk, p, cpu);

if (prio > max_prio) {
max_prio = prio;
target_tsk = tsk;

}
}

}
}
tsk = target_tsk;
if (tsk) {

if (oldest_idle != -1ULL) {
best_cpu = tsk->processor;
goto send_now_idle;

}
tsk->need_resched = 1;
if (tsk->processor != this_cpu)

smp_send_reschedule(tsk->processor);
}
return ;

}

/*
* Wake up a process. Put it on the run-queue if it’s not
* already there. The "current" process is always on the
* run-queue (except when the actual re-schedule is in
* progress), and as such you’re allowed to do the simpler
* "current->state = TASK_RUNNING" to mark yourself runnable
* without the overhead of this.
*/

static inline int try_to_wake_up(Task *p, int synchronous)
{

// unsigned long flags;
int success = 0;

/*
* We want the common case fall through straight, thus the goto.
*/

/* spin_lock_irqsave(&runqueue_lock, flags); */
p->state = TASK_RUNNING;
if (task_on_runqueue(p))

170 Appendix C. Simulator

goto out;
add_to_runqueue(p);
if (!synchronous || !(p->cpus_allowed & (1 << smp_processor_id())))

reschedule_idle(p);
success = 1;

out:
/* spin_unlock_irqrestore(&runqueue_lock, flags); */
return success;

}

int wake_up_process(Task * p)
{

return try_to_wake_up(p, 0);
}

/* Calculate the goodness of the process */
int goodness(Task* p, int this_cpu, int this_mm)
{

/* This is soly based on quantum and nice-level */
int weight = -1;
if (p->policy & SCHED_YIELD)

return weight;

if (p->policy == SCHED_OTHER) {
/*
* Give the process a first-approximation goodness value
* according to the number of clock-ticks it has left.
*
* Don’t do any other calculations if the time slice is
* over..
*/

weight = p->counter;
if (!weight)

return weight;

if (p->processor == this_cpu)
weight += PROC_CHANGE_PENALTY;

/* .. and a slight advantage to the current MM */

if (p->mm == this_mm || !p->mm)
weight += 1;

weight += 20 - p->nice;

return weight;
}

/*
* Realtime process, select the first one on the
* runqueue (taking priorities within processes
* into account).
*/

weight = 1000 + p->rt_priority;
return weight;

C.2 Source 171

}

void __schedule_tail(Task* prev)
{

task_release_cpu(prev);
}

void schedule_tail(Task* prev)
{

__schedule_tail(prev);
}

void schedule()
{

int this_cpu = smp_processor_id();
struct schedule_data * sched_data;
Task *prev, *next;
int c;

need_resched_back:

prev = get_current();
next = idle_task(this_cpu);

/* This is not modeled in the simulator
if (unlikely(in_interrupt())) {

printk("Scheduling in interrupt\n");
BUG();

}
*/

/* release_kernel_lock(prev, this_cpu); */

/*
* ’sched_data’ is protected by the fact that we can run
* only one process per CPU.
*/

sched_data = &cpu_schedule_data[this_cpu];

/* spin_lock_irq(&runqueue_lock); */

/* move an exhausted RR process to be last.. */
if (unlikely(prev->policy == SCHED_RR))

if (!prev->counter) {
prev->counter = NICE_TO_TICKS(prev->nice);
move_last_runqueue(prev);

}
/*
switch (prev->state) {

case TASK_INTERRUPTIBLE:
if (signal_pending(prev)) {

prev->state = TASK_RUNNING;
break;

172 Appendix C. Simulator

}
default:

del_from_runqueue(prev);
case TASK_RUNNING:;

}
*/
/* Since tasks themself set the state running, no need to check for
* a pending signal. All in all this boild down to the following: */

if (prev->state != TASK_RUNNING)
del_from_runqueue(prev);

prev->need_resched = 0;

/*
* this is the scheduler proper:
*/

repeat_schedule:

/*
* Default process to select..
*/

c = -1000;
list<Task*>::iterator iter;
for (iter = run_queue.begin(); iter != run_queue.end(); iter++)
{

if (can_schedule((*iter), this_cpu)) {
int weight = goodness((*iter), this_cpu, prev->active_mm);
if (weight > c)

c = weight, next = (*iter);
}

}

/* Do we need to re-calculate counters? */
if (!c) {

/* Recalculate all counter on all tasks. */
list<Task*>::iterator p;
/* spin_unlock_irq(&runqueue_lock);
* read_lock(&tasklist_lock);
*/

for_all_tasks(p)
(*p)->counter = ((*p)->counter >> 1) +
NICE_TO_TICKS((*p)->nice);

/*
* read_unlock(&tasklist_lock);
* spin_lock_irq(&runqueue_lock);
*/

goto repeat_schedule;
}

/*
* from this point on nothing can prevent us from
* switching to the next task, save this fact in
* sched_data.
*/

/* Add the task to the running list */

C.2 Source 173

/* Mark which cpu the task is running on */

/* Sched data is locale for the cpu itself */

//sched_data->curr = next;
schedule_tail(prev);
task_set_cpu(next, this_cpu);
/* spin_unlock_irq(&runqueue_lock); */

if (unlikely(prev == next)) {
/* We won’t go through the normal tail, so do this by hand */
prev->policy &= ˜SCHED_YIELD;
goto same_process;

}

/*#ifdef CONFIG_SMP*/
/*
* maintain the per-process ’last schedule’ value.
* (this has to be recalculated even if we reschedule to
* the same process) Currently this is only used on SMP,
* and it’s approximate, so we do not have to maintain
* it while holding the runqueue spinlock.
*/

// sched_data->last_schedule = get_cycles();

/*
* We drop the scheduler lock early (it’s a global spinlock),
* thus we have to lock the previous process from getting
* rescheduled during switch_to().
*/

/*#endif*/ /* CONFIG_SMP */

/* kstat.context_swtch++; */
/*
* there are 3 processes which are affected by a context switch:
*
* prev == ==> (last => next)
*
* It’s the ’much more previous’ ’prev’ that is on next’s stack,
* but prev is set to (the just run) ’last’ process by switch_to().
* This might sound slightly confusing but makes tons of sense.
*/

prepare_to_switch();
/*
{

struct mm_struct *mm = next->mm;
struct mm_struct *oldmm = prev->active_mm;
if (!mm) {

if (next->active_mm) BUG();
next->active_mm = oldmm;
atomic_inc(&oldmm->mm_count);
enter_lazy_tlb(oldmm, next, this_cpu);

} else {
if (next->active_mm != mm) BUG();
switch_mm(oldmm, mm, next, this_cpu);

}

174 Appendix C. Simulator

if (!prev->mm) {
prev->active_mm = NULL;
mmdrop(oldmm);

}
}
*/

/*
* This just switches the register state and the
* stack.
*/

switch_to(prev, next, prev);
__schedule_tail(prev);

same_process:

/* reacquire_kernel_lock(current); */
if (get_current()->need_resched)

goto need_resched_back;
return ;

}

/* Called for each timer interrupt on each processor. */
void do_timer()
{

int cpu = smp_processor_id();
/* Send a tick to the high level scheduler */
if (!cpu)

high_level_tick();

/* A tick actually shouldent be cpu specific. */
/* For now we work out the single cpu problem. */
Task *p = get_current();
if (p == idle_task(cpu))
{

p->need_resched = 1;
}

if (--p->counter <= 0) {
p->counter = 0;
p->need_resched = 1;

}
}

/* Return the idle task for the spec. cpu */
Task* idle_task(int cpu)
{

return idle_tasks[cpu];
}

/* Return the current task on this cpu */
Task* get_current()
{

return current[smp_processor_id()];
}

C.2 Source 175

/* Remove a task from the run_queue */
void sc_del_from_runqueue(Task *task)
{

run_queue.remove(task);
}

/* Set the mask for the task */
void task_set_cpu(Task *task, int cpu)
{

task->set_state(TASK_RUNNING);
current[cpu] = task;
task->processor = cpu;
task->cpus_runnable = 1UL << cpu;

}

/* Change to mask to have no cpu */
void task_release_cpu(Task *task)
{

task->cpus_runnable = ˜0UL;
}

/* Examine if the task is running on a cpu */
int task_has_cpu(Task *task)
{

return (task->cpus_runnable != ˜0UL);
}

/* Move a task to the last of the runqueue */
void move_last_runqueue(Task *task)
{

del_from_runqueue(task);
run_queue.push_back(task);

}

/* Move a task to the front of a runqueue */
void move_first_runqueue(Task *task)
{

del_from_runqueue(task);
run_queue.push_front(task);

}

/* Add a task to the runqueue */
void sc_add_to_runqueue(Task *task)
{

run_queue.push_front(task);
/* nr_running++; */

}

/* Examine if a task can run on the spec. CPU */
int can_schedule(Task *p, int cpu)
{

return (p->cpus_runnable & p->cpus_allowed & (1 << cpu));
}

Task* cpu_curr(int cpu)
{

return current[cpu];
}

176 Appendix C. Simulator

/*
* On x86 all CPUs are mapped 1:1 to the APIC space.
* This simplifies scheduling and IPI sending and
* compresses data structures.
*/

int cpu_logical_map(int cpu)
{

return cpu;
}

int cpu_number_map(int cpu)
{

return cpu;
}

/* Check if the task is on any runqueue */
int task_on_runqueue(Task *p)
{

/* Go through the runqueue */
/* In linux, the thread would know itself through p->run_list.next */
return (find(run_queue.begin(), run_queue.end(), p) != run_queue.end());

}

/* Retrive number of ticks since last schedule in this cpu */
/* This is updated for every tick */
cycles_t last_schedule(int cpu)
{

return cpu_schedule_data[cpu].last_schedule;
}

/* Get System Ticks */
cycles_t get_cycles()
{

return jiffies;
}

void sched_init(Task *idle_task)
{

int cpu = smp_processor_id();
if (!cpu)
{

current = (Task **) malloc(sizeof (Task*)*smp_num_cpus);
idle_tasks = (Task **) malloc(sizeof (Task*)*smp_num_cpus);
cpu_schedule_data = (struct schedule_data*)

malloc(sizeof (struct schedule_data)*smp_num_cpus);

high_level_init();
}

idle_tasks[cpu] = idle_task;
/* set the idle task as the active task the CPU */
task_set_cpu(idle_task, cpu);

}

sched-test.cc

C.2 Source 177

#include <list>
#include "globals.h"
#include "sched.h"
#include "sched_interface.h"
#include "task.h"

using namespace std;

/* A list of running programs on the cpu’s */
Task ** current;
Task ** idle_tasks;
/* Per CPU data */
struct schedule_data *cpu_schedule_data;

cycles_t jiffies;

/* The run queue */
list<Task*> run_queue;

#define HZ 100
#define PROC_CHANGE_PENALTY 15

/*
* Scheduling quanta.
*
* NOTE! The unix "nice" value influences how long a process
* gets. The nice value ranges from -20 to +19, where a -20
* is a "high-priority" task, and a "+10" is a low-priority
* task.
*
* We want the time-slice to be around 50ms or so, so this
* calculation depends on the value of HZ.
*/

#if HZ < 200
#define TICK_SCALE(x) ((x) >> 2)
#elif HZ < 400
#define TICK_SCALE(x) ((x) >> 1)
#elif HZ < 800
#define TICK_SCALE(x) (x)
#elif HZ < 1600
#define TICK_SCALE(x) ((x) << 1)
#else
#define TICK_SCALE(x) ((x) << 2)
#endif

#define NICE_TO_TICKS(nice) (TICK_SCALE(20-(nice))+1)

/* Setup idle tasks.
These will only be run when there is no items in
the run_queue */

int preemption_goodness(Task *prev, Task *p, int cpu)
{

return goodness(p, cpu, prev->active_mm) - goodness(prev, cpu, prev->
active_mm);

178 Appendix C. Simulator

}

void reschedule_idle(Task *p)
{

int this_cpu = smp_processor_id();
Task *tsk, *target_tsk;
int cpu, best_cpu, i, max_prio;
cycles_t oldest_idle;

/*
* shortcut if the woken up task’s last CPU is
* idle now.
*/

best_cpu = p->processor;
if (can_schedule(p, best_cpu)) {

tsk = idle_task(best_cpu);
if (cpu_curr(best_cpu) == tsk) {

int need_resched;
send_now_idle:

/*
* If need_resched == -1 then we can skip sending
* the IPI altogether, tsk->need_resched is
* actively watched by the idle thread.
*/

need_resched = tsk->need_resched;
tsk->need_resched = 1;
if ((best_cpu != this_cpu) && !need_resched)

smp_send_reschedule(best_cpu);
return ;

}
}

/*
* We know that the preferred CPU has a cache-affine current
* process, lets try to find a new idle CPU for the woken-up
* process. Select the least recently active idle CPU. (that
* one will have the least active cache context.) Also find
* the executing process which has the least priority.
*/

oldest_idle = (cycles_t) -1;
target_tsk = NULL;
max_prio = 0;

for (i = 0; i < smp_num_cpus; i++) {
cpu = cpu_logical_map(i);
if (!can_schedule(p, cpu))

continue ;
tsk = cpu_curr(cpu);
/*
* We use the first available idle CPU. This creates
* a priority list between idle CPUs, but this is not
* a problem.
*/

if (tsk == idle_task(cpu)) {
/* Added in 2.4.17
#if defined(__i386__) && defined(CONFIG_SMP)

//
* Check if two siblings are idle in the same

C.2 Source 179

* physical package. Use them if found.
//
if (smp_num_siblings == 2) {

if (cpu_curr(cpu_sibling_map[cpu]) ==
idle_task(cpu_sibling_map[cpu])) {

oldest_idle = last_schedule(cpu);
target_tsk = tsk;
break;

}

}
#endif
*/

if (last_schedule(cpu) < oldest_idle) {
oldest_idle = last_schedule(cpu);
target_tsk = tsk;

}
} else {

if (oldest_idle == -1ULL) {
int prio = preemption_goodness(tsk, p, cpu);

if (prio > max_prio) {
max_prio = prio;
target_tsk = tsk;

}
}

}
}
tsk = target_tsk;
if (tsk) {

if (oldest_idle != -1ULL) {
best_cpu = tsk->processor;
goto send_now_idle;

}
tsk->need_resched = 1;
if (tsk->processor != this_cpu)

smp_send_reschedule(tsk->processor);
}
return ;

}

/*
* Wake up a process. Put it on the run-queue if it’s not
* already there. The "current" process is always on the
* run-queue (except when the actual re-schedule is in
* progress), and as such you’re allowed to do the simpler
* "current->state = TASK_RUNNING" to mark yourself runnable
* without the overhead of this.
*/

static inline int try_to_wake_up(Task *p, int synchronous)
{

// unsigned long flags;
int success = 0;

/*
* We want the common case fall through straight, thus the goto.
*/

/* spin_lock_irqsave(&runqueue_lock, flags); */

180 Appendix C. Simulator

p->state = TASK_RUNNING;
if (task_on_runqueue(p))

goto out;
add_to_runqueue(p);
if (!synchronous || !(p->cpus_allowed & (1 << smp_processor_id())))

reschedule_idle(p);
success = 1;

out:
/* spin_unlock_irqrestore(&runqueue_lock, flags); */
return success;

}

int wake_up_process(Task * p)
{

return try_to_wake_up(p, 0);
}

/* Calculate the goodness of the process */
int goodness(Task* p, int this_cpu, int this_mm)
{

/* This is soly based on quantum and nice-level */
int weight = -1;
if (p->policy & SCHED_YIELD)

return weight;

if (p->policy == SCHED_OTHER) {
/*
* Give the process a first-approximation goodness value
* according to the number of clock-ticks it has left.
*
* Don’t do any other calculations if the time slice is
* over..
*/

weight = p->counter;
if (!weight)

return weight;

if (p->processor == this_cpu)
weight += PROC_CHANGE_PENALTY;

/* .. and a slight advantage to the current MM */

if (p->mm == this_mm || !p->mm)
weight += 1;

weight += 20 - p->nice;

return weight;
}

/*
* Realtime process, select the first one on the
* runqueue (taking priorities within processes
* into account).
*/

C.2 Source 181

weight = 1000 + p->rt_priority;
return weight;

}

void __schedule_tail(Task* prev)
{

task_release_cpu(prev);
}

void schedule_tail(Task* prev)
{

__schedule_tail(prev);
}

void schedule(int this_cpu)
{

struct schedule_data * sched_data;
Task *prev, *next;
int c;

need_resched_back:

prev = get_current(this_cpu);
next = idle_task(this_cpu);

/* This is not modeled in the simulator
if (unlikely(in_interrupt())) {

printk("Scheduling in interrupt\n");
BUG();

}
*/

/* release_kernel_lock(prev, this_cpu); */

/*
* ’sched_data’ is protected by the fact that we can run
* only one process per CPU.
*/

sched_data = &cpu_schedule_data[this_cpu];

/* spin_lock_irq(&runqueue_lock); */

/* move an exhausted RR process to be last.. */
if (unlikely(prev->policy == SCHED_RR))

if (!prev->counter) {
prev->counter = NICE_TO_TICKS(prev->nice);
move_last_runqueue(prev);

}
/*
switch (prev->state) {

case TASK_INTERRUPTIBLE:
if (signal_pending(prev)) {

prev->state = TASK_RUNNING;

182 Appendix C. Simulator

break;
}

default:
del_from_runqueue(prev);

case TASK_RUNNING:;
}
*/
/* Since tasks themself set the state running, no need to check for
* a pending signal. All in all this boild down to the following: */

if (prev->state != TASK_RUNNING)
del_from_runqueue(prev);

prev->need_resched = 0;

/*
* this is the scheduler proper:
*/

repeat_schedule:

/*
* Default process to select..
*/

c = -1000;
list<Task*>::iterator iter;
for (iter = run_queue.begin(); iter != run_queue.end(); iter++)
{

if (can_schedule((*iter), this_cpu)) {
int weight = goodness((*iter), this_cpu, prev->active_mm);
if (weight > c)

c = weight, next = (*iter);
}

}

/* Do we need to re-calculate counters? */
if (!c) {

/* Recalculate all counter on all tasks. */
list<Task*>::iterator p;
/* spin_unlock_irq(&runqueue_lock);
* read_lock(&tasklist_lock);
*/

for_all_tasks(p)
(*p)->counter = NICE_TO_TICKS((*p)->nice);

/*
* read_unlock(&tasklist_lock);
* spin_lock_irq(&runqueue_lock);
*/

goto repeat_schedule;
}

/*
* from this point on nothing can prevent us from
* switching to the next task, save this fact in
* sched_data.
*/

/* Add the task to the running list */

C.2 Source 183

/* Mark which cpu the task is running on */

/* Sched data is locale for the cpu itself */

//sched_data->curr = next;
schedule_tail(prev);
task_set_cpu(next, this_cpu);
/* spin_unlock_irq(&runqueue_lock); */

if (unlikely(prev == next)) {
/* We won’t go through the normal tail, so do this by hand */
prev->policy &= ˜SCHED_YIELD;
goto same_process;

}

/*#ifdef CONFIG_SMP*/
/*
* maintain the per-process ’last schedule’ value.
* (this has to be recalculated even if we reschedule to
* the same process) Currently this is only used on SMP,
* and it’s approximate, so we do not have to maintain
* it while holding the runqueue spinlock.
*/

// sched_data->last_schedule = get_cycles();

/*
* We drop the scheduler lock early (it’s a global spinlock),
* thus we have to lock the previous process from getting
* rescheduled during switch_to().
*/

/*#endif*/ /* CONFIG_SMP */

/* kstat.context_swtch++; */
/*
* there are 3 processes which are affected by a context switch:
*
* prev == ==> (last => next)
*
* It’s the ’much more previous’ ’prev’ that is on next’s stack,
* but prev is set to (the just run) ’last’ process by switch_to().
* This might sound slightly confusing but makes tons of sense.
*/

prepare_to_switch();
/*
{

struct mm_struct *mm = next->mm;
struct mm_struct *oldmm = prev->active_mm;
if (!mm) {

if (next->active_mm) BUG();
next->active_mm = oldmm;
atomic_inc(&oldmm->mm_count);
enter_lazy_tlb(oldmm, next, this_cpu);

} else {
if (next->active_mm != mm) BUG();
switch_mm(oldmm, mm, next, this_cpu);

}

184 Appendix C. Simulator

if (!prev->mm) {
prev->active_mm = NULL;
mmdrop(oldmm);

}
}
*/

/*
* This just switches the register state and the
* stack.
*/

switch_to(prev, next, prev);
__schedule_tail(prev);

same_process:

/* reacquire_kernel_lock(current); */
if (get_current(this_cpu)->need_resched)

goto need_resched_back;
return ;

}

/* Called for each timer interrupt on each processor. */
void do_timer(int cpu)
{

/* A tick actually shouldent be cpu specific. */
/* For now we work out the single cpu problem. */
Task *p = get_current(cpu);
if (p == idle_task(cpu))
{

p->need_resched = 1;
}

if (--p->counter <= 0) {
p->counter = 0;
p->need_resched = 1;

}
}

void sched_init(int cpu, Task *idle_task)
{

if (!cpu)
{

current = (Task **) malloc(sizeof (Task*)*smp_num_cpus);
idle_tasks = (Task **) malloc(sizeof (Task*)*smp_num_cpus);
cpu_schedule_data = (struct schedule_data*)

malloc(sizeof (struct schedule_data)*smp_num_cpus);
}

idle_tasks[cpu] = idle_task;
/* set the idle task as the active task the CPU */
task_set_cpu(idle_task, cpu);

}

sched.cc

C.2 Source 185

#include <list>
#include <vector>
#include <math.h>
#include <algorithm>
#include "simulator_interface.h"
#include "sched_interface.h"
#include "sched.h"
#include "globals.h"

using namespace std;

/* A list of running programs on the cpu’s */
Task ** current;
Task ** idle_tasks;
/* Per CPU data */
struct schedule_data *cpu_schedule_data;

/* The run queue */
list<Task*> run_queue;

#define PROC_CHANGE_PENALTY 15

#define unlikely(x) x
/* Actually this is the original define */
#define prepare_to_switch() do { } while (0)

/* Assembler macro - This sets up the new task.
* This is not needed in this simulator */

#define switch_to(prev,next,last) do { } while (0)

/*
* Scheduling quanta.
*
* NOTE! The unix "nice" value influences how long a process
* gets. The nice value ranges from -20 to +19, where a -20
* is a "high-priority" task, and a "+10" is a low-priority
* task.
*
* We want the time-slice to be around 50ms or so, so this
* calculation depends on the value of HZ.
*/

#if HZ < 200
#define TICK_SCALE(x) ((x) >> 2)
#elif HZ < 400
#define TICK_SCALE(x) ((x) >> 1)
#elif HZ < 800
#define TICK_SCALE(x) (x)
#elif HZ < 1600
#define TICK_SCALE(x) ((x) << 1)
#else
#define TICK_SCALE(x) ((x) << 2)
#endif

#define NICE_TO_TICKS(nice) (TICK_SCALE(20-(nice))+1)

int preemption_goodness(Task *prev, Task *p, int cpu)
{

186 Appendix C. Simulator

return goodness(p, cpu, prev->active_mm) - goodness(prev, cpu, prev->
active_mm);

}

void reschedule_idle(Task *p)
{

int this_cpu = smp_processor_id();
Task *tsk, *target_tsk;
int cpu, best_cpu, i, max_prio;
cycles_t oldest_idle;

/*
* shortcut if the woken up task’s last CPU is
* idle now.
*/

best_cpu = p->processor;
if (can_schedule(p, best_cpu)) {

tsk = idle_task(best_cpu);
if (cpu_curr(best_cpu) == tsk) {

int need_resched;
send_now_idle:

/*
* If need_resched == -1 then we can skip sending
* the IPI altogether, tsk->need_resched is
* actively watched by the idle thread.
*/

need_resched = tsk->need_resched;
tsk->need_resched = 1;
if ((best_cpu != this_cpu) && !need_resched)

smp_send_reschedule(best_cpu);
return ;

}
}

/*
* We know that the preferred CPU has a cache-affine current
* process, lets try to find a new idle CPU for the woken-up
* process. Select the least recently active idle CPU. (that
* one will have the least active cache context.) Also find
* the executing process which has the least priority.
*/

oldest_idle = (cycles_t) -1;
target_tsk = NULL;
max_prio = 0;

for (i = 0; i < smp_num_cpus; i++) {
cpu = cpu_logical_map(i);
if (!can_schedule(p, cpu))

continue ;
tsk = cpu_curr(cpu);
/*
* We use the first available idle CPU. This creates
* a priority list between idle CPUs, but this is not
* a problem.
*/

if (tsk == idle_task(cpu)) {
/* Added in 2.4.17
#if defined(__i386__) && defined(CONFIG_SMP)

C.2 Source 187

//
* Check if two siblings are idle in the same
* physical package. Use them if found.
//
if (smp_num_siblings == 2) {

if (cpu_curr(cpu_sibling_map[cpu]) ==
idle_task(cpu_sibling_map[cpu])) {

oldest_idle = last_schedule(cpu);
target_tsk = tsk;
break;

}

}
#endif
*/

if (last_schedule(cpu) < oldest_idle) {
oldest_idle = last_schedule(cpu);
target_tsk = tsk;

}
} else {

if (oldest_idle == -1ULL) {
int prio = preemption_goodness(tsk, p, cpu);

if (prio > max_prio) {
max_prio = prio;
target_tsk = tsk;

}
}

}
}
tsk = target_tsk;
if (tsk) {

if (oldest_idle != -1ULL) {
best_cpu = tsk->processor;
goto send_now_idle;

}
tsk->need_resched = 1;
if (tsk->processor != this_cpu)

smp_send_reschedule(tsk->processor);
}
return ;

}

/*
* Wake up a process. Put it on the run-queue if it’s not
* already there. The "current" process is always on the
* run-queue (except when the actual re-schedule is in
* progress), and as such you’re allowed to do the simpler
* "current->state = TASK_RUNNING" to mark yourself runnable
* without the overhead of this.
*/

static inline int try_to_wake_up(Task *p, int synchronous)
{

// unsigned long flags;
int success = 0;

/*
* We want the common case fall through straight, thus the goto.

188 Appendix C. Simulator

*/
/* spin_lock_irqsave(&runqueue_lock, flags); */
p->state = TASK_RUNNING;
if (task_on_runqueue(p))

goto out;
add_to_runqueue(p);
if (!synchronous || !(p->cpus_allowed & (1 << smp_processor_id())))

reschedule_idle(p);
success = 1;

out:
/* spin_unlock_irqrestore(&runqueue_lock, flags); */
return success;

}

int wake_up_process(Task * p)
{

return try_to_wake_up(p, 0);
}

/* Calculate the goodness of the process */
int goodness(Task* p, int this_cpu, int this_mm)
{

/* This is soly based on quantum and nice-level */
int weight = -1;
if (p->policy & SCHED_YIELD)

return weight;

if (p->policy == SCHED_OTHER) {
/*
* Give the process a first-approximation goodness value
* according to the number of clock-ticks it has left.
*
* Don’t do any other calculations if the time slice is
* over..
*/

weight = p->counter;
if (!weight)

return weight;

if (p->processor == this_cpu)
weight += PROC_CHANGE_PENALTY;

/* .. and a slight advantage to the current MM */

if (p->mm == this_mm || !p->mm)
weight += 1;

weight += 20 - p->nice;

return weight;
}

/*
* Realtime process, select the first one on the
* runqueue (taking priorities within processes

C.2 Source 189

* into account).
*/

weight = 1000 + p->rt_priority;
return weight;

}

void __schedule_tail(Task* prev)
{

task_release_cpu(prev);
}

void schedule_tail(Task* prev)
{

__schedule_tail(prev);
}

void schedule()
{

int this_cpu = smp_processor_id();
struct schedule_data * sched_data;
Task *prev, *next;
int c;

need_resched_back:

prev = get_current();
next = idle_task(this_cpu);

/* This is not modeled in the simulator
if (unlikely(in_interrupt())) {

printk("Scheduling in interrupt\n");
BUG();

}
*/

/* release_kernel_lock(prev, this_cpu); */

/*
* ’sched_data’ is protected by the fact that we can run
* only one process per CPU.
*/

sched_data = &cpu_schedule_data[this_cpu];

/* spin_lock_irq(&runqueue_lock); */

/* move an exhausted RR process to be last.. */
if (unlikely(prev->policy == SCHED_RR))

if (!prev->counter) {
prev->counter = NICE_TO_TICKS(prev->nice);
move_last_runqueue(prev);

}
/*
switch (prev->state) {

190 Appendix C. Simulator

case TASK_INTERRUPTIBLE:
if (signal_pending(prev)) {

prev->state = TASK_RUNNING;
break;

}
default:

del_from_runqueue(prev);
case TASK_RUNNING:;

}
*/
/* Since tasks themself set the state running, no need to check for
* a pending signal. All in all this boild down to the following: */

if (prev->state != TASK_RUNNING)
del_from_runqueue(prev);

prev->need_resched = 0;

/*
* this is the scheduler proper:
*/

repeat_schedule:

/*
* Default process to select..
*/

c = -1000;
list<Task*>::iterator iter;
for (iter = run_queue.begin(); iter != run_queue.end(); iter++)
{

if (can_schedule((*iter), this_cpu)) {
int weight = goodness((*iter), this_cpu, prev->active_mm);
if (weight > c)

c = weight, next = (*iter);
}

}

/* Do we need to re-calculate counters? */
if (!c) {

/* Recalculate all counter on all tasks. */
list<Task*>::iterator p;
/* spin_unlock_irq(&runqueue_lock);
* read_lock(&tasklist_lock);
*/

for_all_tasks(p)
(*p)->counter = ((*p)->counter >> 1) +
NICE_TO_TICKS((*p)->nice);

/*
* read_unlock(&tasklist_lock);
* spin_lock_irq(&runqueue_lock);
*/

goto repeat_schedule;
}

/*
* from this point on nothing can prevent us from
* switching to the next task, save this fact in

C.2 Source 191

* sched_data.
*/

/* Add the task to the running list */
/* Mark which cpu the task is running on */

/* Sched data is locale for the cpu itself */

//sched_data->curr = next;
schedule_tail(prev);
task_set_cpu(next, this_cpu);
/* spin_unlock_irq(&runqueue_lock); */

if (unlikely(prev == next)) {
/* We won’t go through the normal tail, so do this by hand */
prev->policy &= ˜SCHED_YIELD;
goto same_process;

}

/*#ifdef CONFIG_SMP*/
/*
* maintain the per-process ’last schedule’ value.
* (this has to be recalculated even if we reschedule to
* the same process) Currently this is only used on SMP,
* and it’s approximate, so we do not have to maintain
* it while holding the runqueue spinlock.
*/

// sched_data->last_schedule = get_cycles();

/*
* We drop the scheduler lock early (it’s a global spinlock),
* thus we have to lock the previous process from getting
* rescheduled during switch_to().
*/

/*#endif*/ /* CONFIG_SMP */

/* kstat.context_swtch++; */
/*
* there are 3 processes which are affected by a context switch:
*
* prev == ==> (last => next)
*
* It’s the ’much more previous’ ’prev’ that is on next’s stack,
* but prev is set to (the just run) ’last’ process by switch_to().
* This might sound slightly confusing but makes tons of sense.
*/

prepare_to_switch();
/*
{

struct mm_struct *mm = next->mm;
struct mm_struct *oldmm = prev->active_mm;
if (!mm) {

if (next->active_mm) BUG();
next->active_mm = oldmm;
atomic_inc(&oldmm->mm_count);
enter_lazy_tlb(oldmm, next, this_cpu);

192 Appendix C. Simulator

} else {
if (next->active_mm != mm) BUG();
switch_mm(oldmm, mm, next, this_cpu);

}

if (!prev->mm) {
prev->active_mm = NULL;
mmdrop(oldmm);

}
}
*/

/*
* This just switches the register state and the
* stack.
*/

switch_to(prev, next, prev);
__schedule_tail(prev);

same_process:

/* reacquire_kernel_lock(current); */
if (get_current()->need_resched)

goto need_resched_back;
return ;

}

/* Called for each timer interrupt on each processor. */
void do_timer()
{

int cpu=smp_processor_id();
/* A tick actually shouldent be cpu specific. */
/* For now we work out the single cpu problem. */
Task *p = get_current();
if (p == idle_task(cpu))
{

p->need_resched = 1;
}

if (--p->counter <= 0) {
p->counter = 0;
p->need_resched = 1;

}
}

/* Return the idle task for the spec. cpu */
Task* idle_task(int cpu)
{

if (!idle_tasks[cpu])
printf("## No idle task for PE:%d\n", cpu);

return idle_tasks[cpu];
}

/* Return the current task on this cpu */
Task* get_current()
{

C.2 Source 193

return current[smp_processor_id()];
}

/* Remove a task from the run_queue */
void del_from_runqueue(Task *task)
{

run_queue.remove(task);
}

/* Set the mask for the task */
void task_set_cpu(Task *task, int cpu)
{

task->set_state(TASK_RUNNING);
current[cpu] = task;
task->processor = cpu;
task->cpus_runnable = 1UL << cpu;

}

/* Change to mask to have no cpu */
void task_release_cpu(Task *task)
{

task->cpus_runnable = ˜0UL;
}

/* Examine if the task is running on a cpu */
int task_has_cpu(Task *task)
{

return (task->cpus_runnable != ˜0UL);
}

/* Move a task to the last of the runqueue */
void move_last_runqueue(Task *task)
{

del_from_runqueue(task);
run_queue.push_back(task);

}

/* Move a task to the front of a runqueue */
void move_first_runqueue(Task *task)
{

del_from_runqueue(task);
run_queue.push_front(task);

}

/* Add a task to the runqueue */
void add_to_runqueue(Task *task)
{

run_queue.push_front(task);
/* nr_running++; */

}

/* Examine if a task can run on the spec. CPU */
int can_schedule(Task *p, int cpu)
{

return (p->cpus_runnable & p->cpus_allowed & (1 << cpu));
}

194 Appendix C. Simulator

Task* cpu_curr(int cpu)
{

return current[cpu];
}

/*
* On x86 all CPUs are mapped 1:1 to the APIC space.
* This simplifies scheduling and IPI sending and
* compresses data structures.
*/

int cpu_logical_map(int cpu)
{

return cpu;
}

int cpu_number_map(int cpu)
{

return cpu;
}

/* Check if the task is on any runqueue */
int task_on_runqueue(Task *p)
{

/* Go through the runqueue */
/* In linux, the thread would know itself through p->run_list.next */
return (find(run_queue.begin(), run_queue.end(), p) != run_queue.end());

}

/* Retrive number of ticks since last schedule in this cpu */
/* This is updated for every tick */
cycles_t last_schedule(int cpu)
{

return cpu_schedule_data[cpu].last_schedule;
}

void sched_init(Task *idle_task)
{

int cpu = smp_processor_id();
if (!cpu)
{

current = (Task **) malloc(sizeof (Task*)*smp_num_cpus);
idle_tasks = (Task **) malloc(sizeof (Task*)*smp_num_cpus);
cpu_schedule_data = (struct schedule_data*)

malloc(sizeof (struct schedule_data)*smp_num_cpus);
}

idle_tasks[cpu] = idle_task;
/* set the idle task as the active task the CPU */
task_set_cpu(idle_task, cpu);

}

sched.h

#ifndef __SCHED_H__
#define __SCHED_H__

C.2 Source 195

#include <list>
#include <vector>
#include "globals.h"
#include "task.h"
#include "sched.h"
/* Code generation optimation - Not needed here */
#define unlikely(x) x

/* Actually this is the original define */
#define prepare_to_switch() do { } while (0)

/* Assembler macro - This sets up the new task.
* This is not needed in this simulator */

#define switch_to(prev,next,last) do { } while (0)

#define for_all_tasks(p) for (p = tasks.begin(); p != tasks.end(); p++)

struct schedule_data {
cycles_t last_schedule;
Task* curr;

};

/* A list of running programs on the cpu’s */
extern Task ** current;
extern Task ** idle_tasks;
extern struct schedule_data *cpu_schedule_data;
extern cycles_t jiffies;

/* The run queue */
extern list<Task*> run_queue;

/* Specify idle tasks */

int goodness(Task* p, int this_cpu, int this_mm);

Task* idle_task(int cpu);

Task* current_task();

/* Remove a tash from the run_queue */
void del_from_runqueue(Task *task);

/* Check if the task is on any runqueue */
int task_on_runqueue(Task *p);

void task_set_cpu(Task *task, int cpu);

void task_release_cpu(Task *task);

int task_has_cpu(Task *task);

void move_last_runqueue(Task *task);

void move_first_runqueue(Task *task);

void add_to_runqueue(Task *task);
void add_to_runqueue_tail(Task *task);

196 Appendix C. Simulator

int can_schedule(Task *p, int cpu);

cycles_t last_schedule(int cpu);

Task* cpu_curr(int cpu);

int cpu_logical_map(int cpu);

int cpu_number_map(int cpu);

#endif /* __SCHED_H__ */

sched interface.h

#ifndef __SCHED_INTERFACE_H__
#define __SCHED_INTERFACE_H__

#include "simulator_interface.h"

/* Get the id of the "current" processor. */
int smp_processor_id();

/* Initialize structures and specify idle tasks */
void sched_init(Task *idle_task);

void do_timer();

void schedule();

int wake_up_process(Task *p);

int task_has_cpu(Task *task);

Task* get_current();

#endif /* __SCHED_INTERFACE_H__ */

simulator.h

/* Give all tasks a tick */
/* Call each cpu, and all the tasks */
void tick();

/* Wakeup a specific task */
/* (Tell the scheduler that the task is ready) */
void wakeup();

C.2 Source 197

simulator interface.h

#ifndef __SIMULATOR_INTERFACE_H__
#define __SIMULATOR_INTERFACE_H__

#include "task.h"
#include "globals.h"
#include <list>

void smp_send_reschedule(int cpu);

/* Access to all tasks in the system */
extern list<Task*> tasks;

extern unsigned int jiffies;

#endif /* __SIMULATOR_INTERFACE_H__ */

task.cc

#include <sys/types.h>
#include <unistd.h>
#include <stdio.h>
#include <sched.h>
#include <list>
#include "task.h"
#include "globals.h"
#include "sched_interface.h"
#include "iosched.h"

using namespace std;

/* Make unique mm’s */
static int mm_count = 0;

/*************** TASK **************/
Task::Task(int pid, int grp, int nice, int policy, int run_prob)
{

/* Default initializers */
state = TASK_RUNNING;
policy = SCHED_OTHER;
rt_priority = 0;
counter = 0;
processor = 0; /* No previous CPU */
cpus_runnable = ˜0UL;
cpus_allowed = ˜0UL;
need_resched = 0;
mm = mm_count++;
active_mm = mm_count++;
quantum = 0;
/* Put in next most CPU-bound queue */
run_queue = -1;
/* Dont relocate before it has been active for a whole scheduling cycle */
moved = 1;

198 Appendix C. Simulator

/* Reset statistics counters */
life_time = 0;
cpu_time = 0;
io_time = 0;
wait_cpu = 0;
wait_io = 0;

this->pid = pid;
this->grp = grp;
this->nice = nice;
this->policy = policy;
this->run_prob = run_prob;

io_start=-1, io_length=-1;
cpu_start=-1, cpu_length=-1;
sched_stamp=-1;
util_add=0;

}

Task::˜Task()
{

//delete all stored properties.
/*list<TaskProp*>::iterator iter;
for (iter = prop_list.begin(); iter != prop_list.end(); iter++)
delete (*iter);*/

}
/* Construct a task from a string */
Task* Task::read(char * line)
{

int pid, grp, nice, policy, run_prob;

/* Default run value (run is optional)*/
run_prob = 0;
if (sscanf(line, "pid:%d, grp:%d, nice:%d, policy:%d, run:%d", &pid, &grp

, &nice, &policy, &run_prob) >= 4)
return new Task(pid,grp,nice,policy,run_prob);

else
return NULL;

}

/* Printout all information */
void Task::print(int tick)
{

printf("tick:%d pid:%d grp:%d nice:%d policy:%d processor:%d "
"rt_priority:%d counter:%d state:%d "
"cpus_runnable:%x cpus_allowed:%x ",
tick, pid, grp, nice, policy, processor,
rt_priority, counter, state,
cpus_runnable, cpus_allowed);

/* Print stats */
float cpuiocpu=1.0*cpu_time/(wait_io+io_time+cpu_time);
float test=1.0*cpu_time/(io_time+cpu_time);
float wait=1.0*wait_cpu/(wait_cpu+wait_io);
float cpu_eff=1.0*cpu_time/(cpu_time+wait_cpu);
float io_eff=1.0*io_time/(io_time+wait_io);

C.2 Source 199

int real_time=cpu_time+io_time;

printf("life_time:%d real_time:%d "
"cpu_time:%d io_time:%d wait_cpu:%d wait_io:%d "
"cpuiocpu:%f cpu_efficiency:%f io_efficiency:%f "
"task_char:%f wait:%f ",
life_time, real_time,
cpu_time, io_time, wait_cpu, wait_io,
cpuiocpu, cpu_eff, io_eff,
test, wait);

list<TaskProp*>::iterator iter;
for (iter = prop_list.begin(); iter != prop_list.end(); iter++)
{

(*iter)->print(tick);
printf(" ");

}
printf("\n");

}

void Task::set_state(enum task_state state)
{

/* Break if this is really a state change */
if (state == this->state) return ;
/* Set the new state */
this->state = state;

/* let all properties know about this change.*/
list<TaskProp*>::iterator iter;
for (iter = prop_list.begin(); iter != prop_list.end(); iter++)
{

(*iter)->statechange(state, this);
}

}

/* Do one tick in the system. */
/* @param: none */
/* @returns: true if resched should be called */

int Task::tick()
{

/* Update the statistics counters */
switch (state)
{
case TASK_RUNNING:

life_time++;
if (task_has_cpu(this))

cpu_time++;
else

wait_cpu++;
break ;

case TASK_SUSPENDED:
life_time++;
if (task_has_io(this))

io_time++;
else

wait_io++;

200 Appendix C. Simulator

break ;
default :

break ;
}

list<TaskProp*>::iterator iter;
for (iter = prop_list.begin();iter != prop_list.end(); iter++)
{

if ((*iter)->tick(this))
need_resched = 1;

}
/* Done sending tick */
return need_resched;

}

void Task::add_task_prop(TaskProp *task_prop)
{

prop_list.push_back(task_prop);
}

/* Utility function */
int set_nice(int val)
{

return nice(val);
}

int Task::run()
{

fflush(stdout);
struct sched_param p;
int i, pid, res;
/* Dont run if prob < 0 */
if (run_prob < 0)

return 0;
/* Spawn a new process */
pid = fork();

if (pid)
return pid;

p.sched_priority = rt_priority;
res = sched_setscheduler(getpid(), policy, &p);
if (res)

fprintf(stderr, "Unable to set scheduler for pid:%d\n",getpid());
res = set_nice(nice);
if (res)

fprintf(stderr, "Unable to set nice level for pid:%d\n",getpid());

/* Set process properties */
/* Find the correct process */
list<TaskProp*>::iterator iter;
for (iter = prop_list.begin(), i = 0;

iter != prop_list.end() && i < run_prob; iter++,i++);

/* Run the process */
(*iter)->run();
return 0;

}

C.2 Source 201

/******* Utility functions *********/

/* Use more n cycles */
/* Just remember to compile with -O2 */
void cputime(int cycles)
{

for (int i=0;i<cycles/2;i++);
}

task.h

#ifndef __TASK_H__
#define __TASK_H__

#include <list>
using namespace std;

#define SCHED_YIELD 0x10
enum task_state
{

TASK_SUSPENDED,
TASK_RUNNING,
TASK_STOPPED

};

/* Forward declaration */
class Task;
class TaskProb;

/* Pure virtual class TaskProb */
class TaskProp
{
public:

virtual void statechange(enum task_state state, Task *task) = 0;
/* Allow callback - a property can change the state of a task */

virtual int tick(Task *task) = 0;

virtual void print(int tick) = 0;

/* Start a process using fork, and return the process id. */
/* This is used when testing processes on a live kernel */
/* This will not work if the process has more than one property. */
virtual void run() = 0;

};

/* General class for tasks */
class Task
{
public:

/* The state of the task */
enum task_state state;

int pid;
/* thread group */

202 Appendix C. Simulator

int grp;
/* nice level (-20 -> 20) */
int nice;

/* List properties */
list<TaskProp*> prop_list;

/* Sched */
int policy;

int rt_priority;

/* The CPU the process was running on. */
int processor;

/* Bitmask for runnable cpu’s. ˜0UL means that the task is running.
*/

unsigned int cpus_runnable;

/* Bitmask for allowd CPU’s. Default ˜0UL */
unsigned int cpus_allowed;

/* Has this task used its quantum? */
int need_resched;

/* Quantum (dynamic priority) */
int counter;

/* Temporary quantum */
int quantum;

/* Runqueue (should be a pointer to the actual struct, instead of index)*/
int run_queue;

/* Indication weather the proces has been moved to another runqueu
within this scheduling cycle */

int moved;

/* Memory */
int mm, active_mm;

/* On real testing, the n’th process is run. */
int run_prob;

/* Statistics */
int life_time;
int cpu_time;
int io_time;
int wait_cpu;
int wait_io;

/* Two Level scheduler */
int io_start, io_length;
int cpu_start, cpu_length;
int sched_stamp;
int util_add;

C.2 Source 203

Task(int pid, int grp, int nice, int policy, int run);
˜Task();
/* the change is the state cascades to all properties. */
void set_state(enum task_state state);
void add_task_prop(TaskProp *task_prop);
int tick();
void print(int tick);
static Task* read(char * line);

/* Run the tasks on the CPU’s */
int run();

};

/* use the cpu for n cycles*/
extern void cputime(int cycles);

#endif /* __TASK_H__ */

