
AgentC:
A Compiled Agent

Programming Language

Henrik Lauritzen

LYNGBY 2002
EKSAMENSPROJEKT

NR. 61/02

IMM

3

Abstract

For more than a decade agents and (multi-)agent systems have been subject
to extensive research. However, this research has mostly been focused on
theoretical areas, and has to some degree neglected the issue of making
agent programs usable (and useful) in practice.

This thesis introduces the AgentC Toolkit (ACT), a software toolkit de-
signed to aid the construction of agent software, and to encourage experi-
ments with agent based software systems.

The core of the ACT is AgentC, an agent programming language which
allows direct compilation into JavaTM source code; the resulting code can
then easily be integrated into a user application.

Some fundamental properties of AgentC are borrowed from earlier agent
programming languages like Agent-0 and PLACA. In contrast to such
languages, however, AgentC is not founded on a highly specialised formal
logic, but does in many respects bear a closer resemblance to traditional
procedural programming languages.

Keywords: Intelligent agents, Programming languages, Compilers, Agent
programs, Object-oriented programming.

5

Sammendrag

Agenter og (multi-)agentsystemer har været genstand for forskning igen-
nem mere end ti år. Forskningen har dog for en stor dels vedkommende
været rettet mod omr̊ader af hovedsageligt teoretisk interesse, hvorfor det
i nogen grad er blevet forsømt at adressere de problemer der er forbundet
ved at realisere og anvende agentprogrammer i praksis.

Dette eksamensprojekt omhandler et programbibliotek kaldet ACT (en
forkortelse af AgentC Toolkit); programbibliotekets formål er at gøre det
lettere at konstruere agentprogrammer, samt at anspore til eksperimenter
med agentbaserede programsystemer.

Hovedbestanddelen i ACT er AgentC, et agentprogrammeringssprog som
tillader direkte oversættelse til JavaTM-programkode; denne programkode
kan efterfølgende let integreres i en brugerdefineret applikation.

Visse fundamentale træk ved AgentC er i høj grad inspireret af tidligere
agentprogrammeringssprog s̊asom Agent-0 og PLACA. I modsætning til
s̊adanne sprog baserer AgentC sig dog ikke p̊a en meget specialiseret
formel logik, men ligner i mange tilfælde mere et traditionelt proceduralt
programmeringssprog.

Nøgleord: Intelligente agenter, programmeringssprog, oversættere, agent-
programmer, objekt-orienteret programmering.

6

7

Preface

This document has been produced as part of a Master’s thesis which was
carried out at the section of Computer Science and Engineering (CSE) of
the Institute of Informatics and Mathematical Modelling (IMM) at the
Technical University of Denmark (DTU).

Work on the thesis has been supervised at the CSE by prof. Jørgen Fischer
Nilsson and assoc. prof. Hans Bruun.

I would like to thank both Hans and Jørgen for their feedback, helpful
suggestions and comments. I also would like to thank Petra Dalgaard
(former librarian at the IMM library) for her efforts to obtain a copy of
[32] on my behalf.

Henrik Lauritzen

DTU, Lyngby, September 2002

8

9

Typographical
Conventions

A brief overview of the general typographical conventions employed in this
document is given in the following. In addition to these conventions some
specialised notation (which is not relevant to the entire document) will be
introduced before its first use.

Normal Text

The document text is presented in the font used in this paragraph.

Emphasised text

Text which has been emphasised by the author is presented in the font used
here.

Quoted Material

Quoted material is presented in one of two forms: Shorter quotations whose
contents are directly integrated in the running text, are presented “inline,
such as this”.

“Longer quotations whose contents are not necessarily inte-
grated in the running text are formatted like this paragraph”.

10

Footnotes

Footnotes are consecutively numbered for each chapter, and are placed
directly in the running text, such as shown here1.

Cross-references

As customary, cross-references are usually integrated in the running text,
such as: See section 1.1 on page 25.

In many cases where a more cursory reference is given, the cross-reference is
shown as a small distinctive symbol suffixed to the last word of the relevant
text. The format of such symbols is described in the following.

References to Parts of the Document

Chapters, sections, subsections, etc. are all parts of the document, and
they have been given a unique number and/or letter combination. A cross-
reference to a part of the document is presented in subscript, such as here1.1

(which incidentally means section 1.1 on page 25).

References to System Requirements

System requirements2 are each given consecutive numbers. Cross-references
to system requirements are presented in superscript, showing the unique
number preceded by the symbol #. For example, a reference to system
requirement 1 takes the form#1.

Terms and Definitions

Terms whose importance is deemed to be significant are emphasised when
first used, and are given an entry in the index. If the meaning of a term
is particular to this document, then the index entry corresponding to the
definition will be formatted in bold face.

1This is a footnote

11

Acronyms

The acronyms which are used in this document, but which are not in com-
mon use outside of the fields of software and software agents, have been
collected on the list of acronyms D on page 217.

Special Notation

Special entities which are found throughout the document, like File, class
or package names, and snippets of Java code or AgentC code are visually
formatted in the style just shown. Larger program listings of either Java or
AgentC code are set off from the running text, may contain line numbers,
and enhance the visual appearance of the keywords of the language; the
largest examples of such listings are found in found in appendix D and
appendix C respectively.

Names of trademarks, languages, software programs and the like (Java and
AgentC used in the preceding paragraph are examples of such names),
are formatted in a particular typeface regardless of their surroundings.
The particular visual format of such a name will be the normal document
font, unless a particular visual format has been used for the name since its
first origin. Java is an example of a name belonging to former category,
while LATEX2ε — which incidentally was used to typeset this document
— and many of the names invented for this thesis — among these most
notably AgentC and Haplomacy — are examples of names belonging to
the latter category.

12

13

Document Structure

The document has been divided into six parts, each having somewhat dis-
tinct subjects. The contents of each document part are briefly summarised
in the following.

Part I: Problem Analysis

The text in this part is intended to be read sequentially, since much of the
terminology of the document is defined here. The text is divided into two
chapters, the first of which provides a general introduction to the general
problem area, in addition to identifying the particular problems which are
to be addressed by this thesis. The second chapter defines requirements for
the program system which was developed as part of the thesis. These re-
quirements are individually numbered for ease of reference, and a summary
of all system requirements is additionally provided in section 2.7.

Part II: System Design

The chapters in this part each describe the design of a separate part of the
software system under development. The parts into which the system is
divided were already identified in the requirements specification found in
part I.

14

Part III: AgentC Language Reference

The text found in part III describes in detail the syntax and semantics of
AgentC. The text is mainly intended to serve as a language reference
manual, but hopefully parts of it will also serve to provide an introduction
to the language.

Part IV: System Test

This part of the document introduces a test scenario for the software sys-
tem. The purpose of the system test is threefold:

1. The system test will ensure with a reasonable certainty that the soft-
ware system works as intended.

2. The test scenario contains a general-purpose test bed which provides
a basis for a rather wide range of experiments with agent-based soft-
ware; the test scenario may be considered one such experiment.

3. The way the test scenario is implemented documents how the soft-
ware system as a whole can be used. This part of the document
can therefore also serve as a user’s guide to the software system —
provided that the user is willing to make good use of the index.

Part V: Conclusion

This part provides a discussion of the work described in the document,
identifies future work, and concludes by providing a brief summary of the
results of the thesis.

Part VI: Appendices

Contains various listings for the document, including the list of references,
and a fairly rich index for ease of reference.

15

Contents

I Problem Analysis 23

1 Introduction 25
1.1 What is an [Intelligent] Agent? 25
1.2 Why use Agents? . 27
1.3 What is Required to Build an Agent? 28

1.3.1 The Deliberative Constituent 28
1.3.2 The Reactive Constituent 29
1.3.3 The Communicative Constituent 30

1.4 How do Agents and Objects Correlate? 31

2 Requirements Specification 33
2.1 Design Objectives . 33
2.2 Design Considerations . 34
2.3 General Design Requirements 34
2.4 The Agent Foundation Classes 35

2.4.1 The Reactive Constituent 35
2.4.2 The Deliberative Constituent 37
2.4.3 The Communicative Constituent 37

2.5 The AgentC . 39
2.6 The AgentC Compiler . 41
2.7 Summary of System Requirements 42

II System Design 43

3 Organisation of the ACT 45

4 The Generic Message Interface 47

16 CONTENTS

5 Design of the AFC 49
5.1 The Abstract ACME . 49
5.2 The ACME Extension Modules 51

5.2.1 The Actuator . 52
5.2.2 The Messenger . 52
5.2.3 The Investigator . 52

5.3 The Knowledge Base . 53
5.3.1 Facts . 54

5.3.1.1 Terminology of Facts 54
5.3.2 Knowledge Base Operations 55
5.3.3 Implementation of the Knowledge Base 56

5.3.3.1 Structure of the AcmeKnowledgeBase . . . 57
5.3.3.2 Complexity of Knowledge Base Operations 58

6 Influential Factors in the Design of AgentC 61
6.1 The Knowledge Base . 61
6.2 Fundamental Properties . 62

6.2.1 Lexical Syntax . 62
6.2.1.1 Variables 62

6.2.2 Keywords . 63
6.3 Grammar . 63
6.4 Message Guards . 63
6.5 Memory of Past Actions . 63

7 Implementation of the ACC 65
7.1 Using the ACC . 66

7.1.1 Running The ACC 66
7.1.2 Choosing the Input 66
7.1.3 Controlling the Output 67

7.1.3.1 Choosing the Package Name 67
7.1.3.2 Choosing the Class Name 67
7.1.3.3 Specifying a Superclass 68
7.1.3.4 Specifying Interfaces 68

7.1.4 Inheritance in AgentC 68
7.1.4.1 Fields . 68
7.1.4.2 Methods 69

8 Generic Utilities 71
8.1 Generic Communication Components 71

8.1.1 The Mailbox . 71

CONTENTS 17

8.1.2 The PostOffice . 71
8.1.3 The DefaultMessenger 72
8.1.4 The MessageController 72

8.2 Generic ACME Extension Modules 72

III AgentC Language Reference 75

9 Notation 77
9.1 About Grammars . 77

9.1.1 Non-terminals . 77
9.1.2 Terminals . 78
9.1.3 Production Rules . 78

9.1.3.1 Parentheses 78
9.1.3.2 Alternatives 78
9.1.3.3 Optional Productions 78
9.1.3.4 Repeated Productions 78

9.1.4 Scope of Grammar Rules 79
9.2 Semantics Specifications . 79

10 Lexical Structure 81
10.1 Input Alphabet . 81
10.2 Lexical Translations . 81
10.3 White Space . 81
10.4 Comments . 82
10.5 Identifiers . 82
10.6 Variables . 82

10.6.1 Wildcards . 83
10.7 Attitude Tokens . 83
10.8 Keywords . 83
10.9 Literals . 83

10.9.1 Integer Literals . 84
10.9.2 Double Literals . 84
10.9.3 String Literals . 84

11 Types & Values 85
11.1 Simple Values . 86

11.1.1 Integer Values . 86
11.1.2 Double Values . 86
11.1.3 String Values . 86

18 CONTENTS

11.2 Logical Values . 86

12 Scope Rules 87

13 Program Structure 89
13.1 Symbol Definitions . 89
13.2 Attitude Declarations . 90
13.3 Initial Facts . 92
13.4 Procedures . 92

13.4.1 Calling Procedures 94
13.4.2 Temporary Variables 94

14 Values and Expressions 97
14.1 Literal Expressions . 97
14.2 Variable Expressions . 98
14.3 Symbolic References . 99
14.4 The Self Reference . 99
14.5 Procedure Calls . 100
14.6 Queries . 101
14.7 Sentences . 101

14.7.1 Facts . 102

15 Rules and Statements 103
15.1 Action Statements . 104

15.1.1 The Achievement Attitude 105
15.2 Assignment Statements . 105
15.3 The IF Statement . 106

15.3.1 Conditions . 106
15.3.1.1 Comparison Conditions 107
15.3.1.2 Negated Conditions 108
15.3.1.3 Action Statements as Conditions 108
15.3.1.4 Mental Conditions 109

15.3.2 About the Order of Conditions 110
15.3.2.1 Scope Rules in Conditions 110
15.3.2.2 Conditions with Side-effects 111
15.3.2.3 Efficient Condition Evaluation 111

15.3.3 Semantics of the IF Statement 112
15.4 The LET Statement . 115
15.5 The LOCKED Statement . 116
15.6 Mental Updates . 117

CONTENTS 19

15.6.1 The ADOPT statement 117
15.6.2 The DROP statement 118

15.7 The RETURN statement . 119
15.8 The SAY statement . 120
15.9 Message Rules . 121

IV System Test 125

16 System Test Strategy 127
16.1 Choosing a Test Bed . 128

17 The Game of Haplomacy 131
17.1 Design Idea . 131
17.2 Basic Game Concepts . 132
17.3 The Haplomacy Game Board 132
17.4 Giving Orders . 133
17.5 Resolving Orders . 134
17.6 Retreats . 135
17.7 Adjustments . 135

18 The Haplomacy Test Bed 137
18.1 The HaplomacyBoard Class 137

18.1.1 The Display Class 138
18.2 The NeighbourGraph Class 138
18.3 The Province Class . 139

18.3.1 The DefaultProvince Class 139
18.4 The Unit Class . 139
18.5 The HaplomacyGame Class 139

18.5.1 A Defensive Strategy 140
18.5.2 An Offensive Strategy 141
18.5.3 Complexity of the Adjudication Algorithm 142

19 Playing Haplomacy With AgentC 145
19.1 The DemoAgent . 146
19.2 The DemoAcme . 146

19.2.1 The DemoAcme Signature 146
19.2.2 The DemoInvestigator 148
19.2.3 The DemoActuator 148

19.3 The HaplomacyDemo . 149

20 CONTENTS

19.4 Using the Knowledge Base 150
19.4.1 The Player Relation 151

19.5 Communication Protocol . 151
19.5.1 Message Structure 151
19.5.2 Message Contents 152
19.5.3 Message Semantics 152
19.5.4 Message Protocol . 152

19.6 Haplomacy Player ACMEs 154
19.6.1 Characteristics of the Ruthless Player 155
19.6.2 Characteristics of the Vindictive Player 155
19.6.3 Characteristics of the Cautious Player 155
19.6.4 Characteristics of the Cowardly Player 156

20 System Test Results 157
20.1 Test Scenario . 157
20.2 Test Results . 158

V Conclusion 161

21 Discussion 163
21.1 Design Objective . 163
21.2 System Requirements . 166
21.3 Interpretation of System Test Results 167

21.3.1 Undecided Games 167
21.3.2 Winning Strategies 167
21.3.3 Analysis of the Ruthless Player 168
21.3.4 Analysis of the Vindictive Player 169
21.3.5 Analysis of the Cautious Player 169
21.3.6 Analysis of the Cowardly Player 169

21.4 Future Work . 170

22 Conclusion 171

VI Appendices 173

A AgentC Grammar 175
A.1 Lexical Syntax . 175
A.2 Program Structure . 176

CONTENTS 21

A.3 Values . 176
A.4 Rules . 177

B Adjudicating Orders in Haplomacy 179
B.1 Example Diagrams . 179
B.2 Haplomacy Rules . 180

B.2.1 About the Rules . 188
B.3 Adjudication Principles . 188

B.3.1 The Adjudication Algorithm 190

C Sample AgentC Code 195
C.1 Common Code . 195
C.2 The Ruthless Player . 199
C.3 The Vindictive Player . 201
C.4 The Cautious Player . 204
C.5 The Cowardly Player . 206

D ACT Source Code Volume II

References 211

List of Acronyms 217

Index 219

22 CONTENTS

Part I

Problem Analysis

23

25

Chapter 1

Introduction

The notion of an agent is one of the more recent additions to the field of
Artificial Intelligence. Agents have been the subject of active research dur-
ing the past two decades, and real-life applications of multi-agent systems
are beginning to emerge in areas as diverse as process control, information
management and electronic commerce and patient monitoring [22]. How-
ever, many issues regarding the use of agents are still unresolved, not the
least of which is the problem of how to engineer software systems based on
agents [37].

The following sections introduce some fundamental problems relating to the
use of agents. Where applicable, forward references to system requirements
related to the problem will be included. Such references are formatted using
a footnote-like symbol; for example, #9 refers to system requirement 9.

1.1 What is an [Intelligent] Agent?

Contrary to what one might believe, the fundamental question of what
makes an agent cannot easily be answered; to be more precise: the question
is answered differently by different people.

It may be beneficial to distinguish between the terms agent and intelligent
agent, to stress that the term agent is a very broad definition. For exam-
ple, Shoham [31] states that “An agent is an entity whose state is viewed

26 Chapter 1. Introduction

as consisting of mental components such as beliefs, capabilities, choices,
and commitments”, then proceeds to remark that “anything can be so de-
scribed.” Wooldridge [36] uses a slightly stronger definition, namely that
“. . . agents are simply computer systems that are capable of autonomous
action in some environment in order to meet their design objectives”, re-
stricting the notion of an intelligent agent to “. . . one that is capable of
flexible autonomous action in order to meet its design objectives”, using
the following definition of the term flexible:

• reactivity: intelligent agents are able to perceive their en-
vironment, and respond in a timely fashion to changes that
occur in it in order to satisfy their design objectives;

• pro-activeness: intelligent agents are able to exhibit goal-
directed behaviour by taking the initiative in order to sat-
isfy their design objectives;

• social ability: intelligent agents are capable of interacting
with other agents (and possibly humans) in order to satisfy
their design objectives.

The above definition corresponds to the weak notion of agency given in
[35]. In the rest of this document the definition of an intelligent agent
denotes a computer system which, in addition to the definition just given, is
conceptualised and/or implemented in terms of mentalistic notions such as
beliefs, capabilities etc. This corresponds to the stronger notion of agency
described in [35].

For the sake of brevity, the term intelligent agent will be replaced by the
shorter term agent in the following. No ambiguity should arise from this
usage, as the loose definition of an agent will not used further.

The term multi-agent system is used to denote a computer system whose
operation relies on the existence of at least two intercommunicating agents,
whereas the weaker definition agent-based system is used to denote com-
puter systems which merely contain or service one or more possibly inter-
communicating agents.

The term environment denotes the parts of an agent-based system which
are directly perceived or acted upon by agents. The subset of the envi-
ronment which is comprised solely of agents is denoted the social envi-
ronment , while the remains of the environment are denoted the physical
environment . Although the interaction between an agent and its social

1.2 Why use Agents? 27

environment can be standardised through the use of ACLs#8
1.3.3, the way in

which the agent(s) interact with the physical environment#5 will necessar-
ily be highly application-specific, because the physical environment itself is
completely application-specific.

1.2 Why use Agents?

One of the most prominent reasons that agents are studied and used is that
the notion of an agent is a natural metaphor [37]. This is by no means a
recent idea. McCarthy [26] states that

“To ascribe certain beliefs, knowledge, free will, intentions, con-
sciousness, abilities or wants to a machine or computer program
is legitimate when such an ascription expresses the same infor-
mation about the machine that it expresses about a person. It
is useful when the ascription helps us understand the structure
of the machine, its past or future behaviour, or how to repair or
improve it. It is perhaps never logically required even for hu-
mans, but expressing reasonably briefly what is actually known
about the state of the machine in a particular situation may
require mental qualities or qualities isomorphic to them. The-
ories of belief, knowledge and wanting can be constructed for
machines in a simpler setting than for humans, and later applied
to humans. Ascription of mental qualities is most straightfor-
ward for machines of known structure such as thermostats and
computer operating systems, but is most useful when applied
to entities whose structure is incompletely known.”

The above paragraph is quoted in [35] as well as in [31], which furthermore
mentions that “. . . the gradual elimination of animistic explanations with
the increase in knowledge is correlated very nicely with both developmen-
tal and evolutionary phenomena. In the evolution of science, theological
notions were replaced over the centuries with mathematical ones.”

While the above suggests why it may be a good idea to explain or analyse
complex systems in terms of agents, this does not automatically justify why
complex systems should be implemented or engineered in the same way
(c.f. section 2.1). Indeed, [38] argues that “given the relative immaturity
of agent technology and the small number of deployed agent applications,

28 Chapter 1. Introduction

there should be clear advantages to an agent-based solution before such
an approach is even contemplated”, and “There is certainly no scientific
evidence to support the claim that agents offer any advance in software
development — the evidence to date is purely anecdotal.”

1.3 What is Required to Build an Agent?

The parts from which the agent is composed will in the following be denoted
the agent constituent , while the structure of their composition is denoted
the intra-agent architecture. The choice of intra-agent architecture is then
an essential limiting factor of an agent’s capabilities. Indeed, it is likely
that different problems can only be solved by agent-based systems which
employ different intra-agent architectures#4.

The following agent constituents are identified as being necessary to build
an agent as defined in section 1.1:

The deliberative constituent is responsible for the representation and
maintenance of the agent’s mental state, and thus realises the agent’s
pro-activeness and mentalistic aspects. In popular terms, the delibera-
tive constituent can be described as the brain of the agent.

The reactive constituent is responsible for the agent’s perception of the
physical environment, as well as its reaction to the environment, which
includes effectuation of any actions intended by the deliberative con-
stituent. The reactive constituent thus covers the agent’s autonomy and
reactivity. In popular terms, the reactive constituent can be regarded
as the motor, sensory and central nervous system of the agent.

The communicative constituent provides a means for the agent to in-
teract with its social environment, thus covering the social ability. How-
ever, in this document the communicative constituent is viewed solely
as a medium as well as a protocol for communication: only the reactive
constituent can effectuate actions. Therefore, the communicative con-
stituent will in popular terms correspond to the language and the air
which is used to transfer verbal communication.

1.3.1 The Deliberative Constituent

The deliberative constituent has proven to be the most problematic con-
stituent to realise in practice. Indeed, much effort (see e.g. [35, 36] for

1.3 What is Required to Build an Agent? 29

an overview) has been put into the question of developing logics which are
computable as well as expressive enough to allow agent behaviour to be
specified in terms of such logics. To date, two different approaches have
been used with some success:

1. Specifying an agent in terms of temporal logic specifications, and di-
rectly executing these specifications [8]. While providing a formal
framework for specification and verification of agents [9], this does
however put serious restrictions on the choice of an intra-agent archi-
tecture.

2. Using a (restricted) first-order logical language in conjunction with
modal operators in order to represent and to reason about the men-
tal attitudes of the agent. Numerous examples exist: dMARS [3], is
based on beliefs and intentions, using a temporal language to specify
goals. AgentSpeak(L) [28] operates with beliefs, desires and inten-
tions. PLACA [33, 32] adds plans to the beliefs, capabilities and
commitments of Agent-0 [31, 30]. Interestingly, 3APL [19] allows an
arbitrary (first order) logical language to be used for representation
of beliefs.

While dMARS, AgentSpeak(L) and 3APL all have been formally specified,
they do not directly provide the possibility of transforming an agent pro-
gram into an implementation#12. The semantics of PLACA and Agent-0
has not been as strictly specified as the other languages just mentioned; on
the other hand, they include an experimental interpreter [33, 34], which,
however, enforces a specific intra-agent architecture#4.

1.3.2 The Reactive Constituent

In itself, implementation of a reactive constituent does not cause serious
problems. However, when it comes to the balance between reactivity and
deliberation, problems begin to occur. The question of how to make an
agent’s beliefs correspond to the reality of its environment is by no means
easily answered [27]. Furthermore, the balance between reactivity and de-
liberation is not very well investigated, and few attempts have been made
to address this problem: existing systems mainly focus on either of the
two areas, instead of trying to unify them#5 [23]. For example, Agent-0
and PLACA assume a fixed execution cycle in which all received messages
can be processed; such an assumption cannot be fulfilled in practice, where

30 Chapter 1. Introduction

multiple concurrently executing agents often will be desirable, if not re-
quired.

1.3.3 The Communicative Constituent

Although the ability to communicate has been defined as synonymous with
agency itself — “An entity is a software agent if and only if it communicates
correctly in an agent communication language” [16] — such a definition is
too narrow in practice: the ability to communicate is a necessary but not
a sufficient condition when describing what an agent is1.1. The importance
of communication should not be belittled, however: “It is because agents
communicate that they can cooperate, coordinate their actions, carry out
tasks jointly and so become truly social beings” [7]. Additionally, agent-
based communication can be used as a means of ensuring interoperability
with legacy systems [16, 22], if a suitable intermediate agent communication
layer is added to the system.

In contrast to almost every area involved in building multi-agent systems,
the area of of inter-agent communication has actually been the subject of a
substantial standardization effort. Already in 1993, the first standardised
ACL, KQML, was proposed [18]. Although the standard has never officially
progressed beyond the draft stage, quite much subsequent work, most no-
tably [24], has been carried out in order to improve the original proposal of
[18]. Furthermore, KQML has actually developed into a de-facto standard
for inter-agent communication [38], and many toolkits providing KQML
functionality are available; one example of such a toolkit is described in [1].

A more recent development has been undertaken by FIPA, the result of
which is FIPA ACL. Surprisingly, FIPA ACL’s syntax resembles KQML
to a very high degree, but the language has been more thoroughly and
rigorously specified in terms of its semantics, although it is still at the ex-
perimental stage. As a notable feature, the specification of FIPA ACL has
been split into many smaller specifications, each dealing with a separate
area: The inter-agent architecture (the infrastructure required to exchange
messages) is the subject of the Abstract Architecture Specification [10]; Mes-
sage structure (the syntax of a single message) is treated in the Message
Structure Specification [11]; Languages to encode message contents (the in-
formation which is transferred in a message) are described in the Content
Language Library Specification [13] and the documents referenced therein;

1.4 How do Agents and Objects Correlate? 31

message semantics (rules for the use of different message types, or perfor-
matives) are treated in the Communicative Act Library Specification [12];
finally, message protocols (rules for sequences of messages) are specified in
the Interaction Protocol Library Specification [14].

1.4 How do Agents and Objects Correlate?

Analogous to the question of what an agent is1.1, the question of how to
integrate agent-oriented and object-oriented programming paradigms is not
easily answered.

In [31], Shoham proposes Agent-Oriented Programming as a new program-
ming paradigm, which “. . . specialises the framework by fixing the state
(now called mental state) of the modules (now called agents) to consist of
components such as beliefs (including beliefs about the world, about them-
selves, and about one another), capabilities and decisions, each of which
enjoys a precisely defined syntax.”

One of the key differences between the two concepts as stated in [37] is that
“the locus of control with respect to the decision about whether to execute
an action is [thus] different in agent and object systems. In the object-
oriented case, the decision lies with the object that invokes the method. In
the agent case, the decision lies with the agent that receives the request”.
Nevertheless, this differentiation is an academic one: the State pattern
described in [15] is a simple example of how a purely object-oriented sys-
tem may exhibit the behaviour used in [37] to characterise an agent-based
system.

The preceding may lead one to conclude that the differences between agent-
and object-oriented systems are small. This is not generally so: “Put
crudely, agents are more coarse-grained computational objects than are
agents; they are typically assumed to have the computational resources of
a UNIX process, or at least a Java thread. Agent systems implemented
using object-oriented programming languages will typically contain many
objects (perhaps millions), but will contain far fewer agents” [37].

In the context of this document, as will be shown in the following5.1, an
agent is built from between two and five objects: the ACME#6

2.4.2, whose
behaviour has been specified and implemented in terms of mentalistic atti-
tudes; a component#5

2.4.1 which controls the ACME as well as the environ-

32 Chapter 1. Introduction

ment; and 3 extension modules5.2, some or all of which could be combined
in the aforementioned component.

33

Chapter 2

Requirements
Specification

The following chapter contains the requirements specification for the pro-
gram system whose construction is the subject of this thesis. The program
system is named ACT1; in the following, ACT and the system will be used
interchangeably.

As already mentioned in the introduction on page 25, system requirement
x is referred to by the symbol#x.

2.1 Design Objectives

The main purpose of this thesis is to provide a toolkit (the ACT) which
facilitates implementation of agents, in a way such that these agents can
be deployed in the widest possible range of agent-based systems; the ACT
can then serve as a foundation on which agent-based systems of varying
complexity can be built.

Furthermore, it is the intention that the ACT encourage experiments with
agent-based systems, by aiding the design and construction of such exper-
iments.

1an acronym for AgentC Toolkit, c.f. the list of acronyms on page 217 and
requirement#9

34 Chapter 2. Requirements Specification

With the above objectives the ACT will hopefully be useful both in the
process of prototyping larger-scale agent-based systems, but also in the
important educational application gaining a better understanding of how
best to solve problems in an agent-oriented way.

2.2 Design Considerations

In order to be of any value, the system must provide a suitable range of
substantial components; failing this, the system cannot sufficiently reduce
the workload of building an agent-based system2.1. On the other hand,
the components of the system must be general-purpose; if not, the system
cannot be useful in a wide range of applications2.1.

The goal of providing substantial yet general-purpose components cannot
easily be achieved in practice, however, as the time available to the con-
struction of the system is limited. The ACT will therefore necessarily
exhibit a compromise between the two demands. The way the compromise
falls out in practice may well prove to be the Achilles’ heel of the system,
since only a careful balance between the two demands will ensure that the
design objectives are met.

The design requirements and considerations described in the preceding lead
to a design which divides the ACT into three main components. The
remaining sections define these components and provides a discussion of
the requirements for each of these components affect the balance between
substance and flexibility.

2.3 General Design Requirements

Requirement #1: A program system which fulfils the design objec-
tives stated in section 2.1 shall be designed, implemented and made avail-
able as part of this thesis. �

Requirement #2: The system shall have the form of a toolkit. Where
possible, the components of this toolkit should be generic components
which provide the basic functionality, but which also lend themselves to
further extensions and specializations. �

2.4 The Agent Foundation Classes 35

Requirement #3: The Java Programming Language shall be used to
implement the ACT, in order to allow for maximal portability. By doing
so it is ensured that the widest possible range of agent-based systems can
be built2.1. �

2.4 The Agent Foundation Classes

So far2.1, the word toolkit has been used without giving a precise definition
of what it should be taken to mean. This is intentional, as the word is used
with different meanings in this document.

When used as the final letter in the acronym ACT, toolkit should be taken
to mean a collection of software tools or applications, which each address
a well-defined part of a common problem domain.

The fundamental component of the ACT being the subject of the current
section is a toolkit named the Agent Foundation Classes, denoted AFC.
Here, toolkit assumes the traditional OOP terminology of [15]: “A toolkit
is a set of related and reusable classes designed to provide useful, general-
purpose functionality. . . . Toolkits don’t impose a particular design on your
application; they just provide functionality that can help your application
to do its job”.

In the remains of this document, the words toolkit, package, class, inter-
face, method and field will be used exclusively in accordance with their
mainstream use in OOP terminology in general and [15] and [17] in partic-
ular.

Requirement #4: The system shall contain a substantial class li-
brary (the AFC), which contains the components necessary to produce an
ACME2.4.2. The design should ensure that the components are indepen-
dent of a specific intra-agent architecture. �

2.4.1 The Reactive Constituent

No reactive constituent will be provided by the AFC, and it is furthermore
assumed that the intra-agent architecture is delivered by the reactive con-
stituent. In this way, it is ensured that no specific intra-agent architecture
is enforced#4, but the decision may seem to be radical. However, as will be

36 Chapter 2. Requirements Specification

argued in the following, the reactive constituent will inadvertently consist
almost entirely of application-specific components, which necessarily will
have to be provided by the user in any case.

The main task of the reactive constituent is to provide a control loop, which
in abstract terms can be defined by:

1 Receive input.
2 Process input.
3 Execute reaction.

Input to the agent consists of a number of events. An event is either
a message originating from the social environment and received by the
communicative constituent#8; an internal event , which is generated by and
effects the deliberative constituent#6 alone; or an external event , that is, an
event originating from the physical environment. The two former kinds of
events are being handled by components provided by the AFC, and so the
reactive constituent will only need to deal with the latter kind of events. As
it is likely that even the simplest application will need very specific code in
this regard, it makes good sense to give the reactive constituent complete
freedom to provide this code.

The way messages and external events are handled is a task of the delib-
erative constituent#6. Still, most time-critical applications, or applications
which will employ high-level communication protocols along the lines of
[14], will most likely need to pre-process events. In the time-critical case,
such pre-processing will be application specific (and probably mission criti-
cal), and is therefore best provided by the programmer who implements the
specific system. Otherwise, the absence of a specific event pre-processing
procedure provides maximal flexibility to design such a procedure, should
the need arise. Thus, event pre-processing is essentially a hook through
which the capabilities of the agent can be extended beyond the (necessarily
limited) capabilities provided by the ACT.

The reaction to an event may be any combination of internal actions, which
are carried out entirely within the deliberative constituent#6; communica-
tive actions, which are carried out by the communicative constituent#8 in
cooperation with the social environment; or external actions, whose mean-
ing and execution depends solely on the physical environment. Again, only
the latter possibility needs special care by the reactive constituent, and yet
again the necessary code will be highly application-specific.

2.4 The Agent Foundation Classes 37

Requirement #5: The contents of the AFC shall be designed in such
a way that a reactive constituent has freedom to receive, discard or pro-
duce messages; to receive, discard or produce external events; to modify
(pre-process) or reorder received events; to inspect or modify the state of
the deliberative constituent, and to allocate computing resources to the
deliberative constituent. In this way, independence of a specific intra-agent
architecture#4 is ensured.

To ensure that the pre-processing of events can be fully effective, the reac-
tive constituent should be allowed full access to inspect and even modify
the state of the deliberative constituent, if so desired.

Finally, the reactive constituent should be free to choose and interpret the
possible external actions. This will require that the deliberative constituent
should be able to represent and reason about arbitrary external actions. �

2.4.2 The Deliberative Constituent

To make up for the lack of reactive constituent#5, the AFC should contain a
substantial class library which provides the requisites necessary to directly
build a deliberative constituent. In order to do so, it will be necessary
to decide on a specific design of the deliberative constituent itself. The
specific design of deliberative constituent provided by the ACT is denoted
an AgentC#9 Mental Engine, written ACME.

Requirement #6: The AFC shall allow for construction of an ACME,
which essentially is a mental state machine. The mental state is specified in
mentalistic notions such as beliefs, capabilities etc.; the inputs are the pos-
sible messages that can be received (in addition to any direct manipulation
of the mental state#5); the transition relation or behaviour is specified by
the ACME programmer and is realised through the rules15 of the AgentC
language#9; the outputs are the communicative actions and external actions
which are executed as the result of a state transition. �

2.4.3 The Communicative Constituent

The ACL should ideally provide a communicative constituent which is flex-
ible enough to allow the agent[s] built from it to be used in varying inter-
agent architectures. On the other hand, the communicative constituent

38 Chapter 2. Requirements Specification

provided should be substantial enough to allow for applications which di-
rectly use the communicative constituent provided by the AFC.

While providing an implementation of a general-purpose, standardised ACL
such as KQML or FIPA ACL would fulfil these requirements, such an im-
plementation will not be provided for the following reasons:

• It is not evident whether to prefer the old but de facto KQML stan-
dard [18, 24] over the recent but yet tentative FIPA ACL standard
[12, 11].

• It is already possible to obtain various specific KQML implementa-
tions such as e.g. [1], and it will most likely be possible to obtain
specific FIPA ACL implementations in the near future.

• Providing support for a full-scale ACL will not be feasible nor even
desirable, since such functionality can be obtained elsewhere.

With these issues in mind, the requirements for the communicative con-
stituent provided by the ACT are refined to the following:

Requirement #7: The ACT shall provide a simple Generic Mes-
sage Interface, written GMI, in lieu of support for a full-scale ACL. The
requirements for the GMI are the following:

• The GMI shall provide a message structure which is flexible enough
to contain any message which is valid KQML or FIPA ACL. The
GMI will therefore merely serve as an abstract ACL, which provides
a means of passing information without assuming any semantics of
this information.

• The GMI message structure shall allow a systematic translation be-
tween GMI messages and messages originating from a specific imple-
mentation of KQML, FIPA ACL or any similar ACL. Any message
from such a concrete ACL should be convertible to an GMI message,
whereas the reverse conversion is not necessarily possible since the
contents of an GMI message are nearly unrestricted.

• Within the components provided by the AFC, most notably the
ACME, it is required that the GMI is used exclusively for commu-
nication. The reactive constituent, which is application-specific, will
then manage the conversion of GMI messages to and from any con-
crete ACL being employed, if necessary.
As any outgoing GMI message’s will have been generated by the
reactive constituent itself or by the ACME it controls, the only re-
quirement necessary in order to guarantee that these messages can

2.5 The AgentC 39

be converted to a concrete ACL is that the ACME does not generate
messages which cannot be converted; since the format of messages
generated by the ACME is defined by the user, this requirement can
only be enforced by the user.

�

With the preceding requirements#7, it is ensured that no specific intra-
agent architecture is enforced#4, at the cost of a substantial communicative
constituent. However, an extra requirement addresses this problem:

Requirement #8: The ACT shall provide the necessary generic com-
ponents to allow a communicative constituent based on GMI communica-
tion to be built directly. �

2.5 The AgentC

As already specified#6, the AFC provides the requisites necessary to di-
rectly build an ACME. These requisites, however, must be supplemented
with tools which are sufficiently powerful, lest the ACT will not be able
to facilitate implementation of agents2.1. To address this problem a very
important requirement is made:

Requirement #9: The system shall provide a high-level Agent Pro-
gramming Language, which is able to express the conduct of an ACME.
This specification language is denoted the AgentC. �

The design of the AgentC will have a great impact on the range of ACMEs
whose conduct can be specified, and hence the range of agent-based systems
which can be built by the ACT will necessarily be limited by the design.
However, due to the nature of this thesis and the issue at hand being quite
complex, it is to be expected that the result will be somewhat simplistic.
Rather than designing the AgentC from scratch, it makes good sense to
borrow from existing APLs in this regard.

Requirement #10: In order to keep things simple, AgentC shall be
based on the basic ideas of Agent-0 [31, 30, 34]. As a means of preserving
generality, AgentC should not be based on a specific underlying logic and
axiomatic system, but rather on a general — and simple — logical language.
In this way it is ensured that a wide range of experiments with the design

40 Chapter 2. Requirements Specification

of agent-based systems can be conducted2.1, and these experiments will
furthermore serve to identify the areas where more complexity is needed.

In order not to oversimplify matters, AgentC should incorporate as wide
a range of the features of PLACA [32, 33] (most notably planning capabil-
ities) as possible. �

The choice of language just presented#10 may seem an arbitrary one; fur-
thermore, the choice of an old APL like Agent-02 may seem a dubious
idea. Surprisingly, however, one of the conclusions of [20] is that “Agent-0,
AgentSpeak(L), ConGolog and 3APL form a close family of related lan-
guages”, indicating that the choice of a specific APL perhaps is of less
importance than one might think. Starting from a simple language like
Agent-0 and extending it to a more complex language like PLACA makes
it possible to provide a working language design even under tight time con-
straints, but still makes it possible to refine the language at a later time.

What remains to be shown is that AgentC actually provides something
which is not already provided by an existing APL. To this end, an extra,
important requirement is given:

Requirement #11: AgentC shall be designed specifically to allow
a specification to be compiled into an ACME, which exhibits the specified
conduct, i.e., which directly executes the given agent program. Further-
more, the preceding requirements ensure that an ACME is minimal in
terms of the amount of code whose availability must be assumed or whose
mode of operation must be known, in order to integrate the ACME into
an application. �

In contrast to the existing more widely known, non-commercial APLs, the
use of compilation in AgentC is new: 3APL is an abstract APL, which
cannot be directly compiled, interpreted or executed. AgentSpeak(L) and
Concurrent MetateM operate by directly executing a logic specification;
doing so, the capabilities of agents constructed in the language are necessar-
ily limited by the expressiveness of the language — a limitation which can
be circumvented when using AgentC#5. Finally, languages like Agent-0,
Agent-K and PLACA all rely on the existence of a specific interpreter,
which again limits the range of applications in which the language can be
used.

2Agent-0 was among the very first APLs to be suggested

2.6 The AgentC Compiler 41

2.6 The AgentC Compiler

Requirement #12: In order to succeed in facilitating implementa-
tion of agents2.1, it will be necessary to provide an automated tool which
produces a working agent implementation directly from a high-level specifi-
cation. To this end, the ACT shall provide an AgentC compiler, denoted
the ACC. �

Requirement #13: The ACC shall take any valid AgentC spec-
ification as input, and as output produce an ACME whose behaviour is
fully consistent with the given specification. The ACME which is produced
shall be in the form of the source code for a single Java class which depends
only on the classes found in the Java API and in the AFC. �

By producing source code rather than byte code, it will be slightly less
convenient to use the ACC in many cases; on the other hand, the source
code will be an invaluable tool when validating, debugging or manually
modifying the ACME produced by the ACC. Moreover, valuable time is
saved because the ACC can rely on the Java compiler to perform basic
optimizations, rather than having to handle these optimizations itself.

42 Chapter 2. Requirements Specification

2.7 Summary of System Requirements

1 A software system which fulfils the design objectives stated in sec-
tion 2.1 shall be designed, implemented and made available as part
of this thesis.

2 The the system shall be provided in form of a toolkit (the ACT)
whose contents should preferably be as generic and reusable as pos-
sible.

3 The ACT is to be implemented in the Java programming language.
4 The ACT shall contain a class library (the Agent Foundation Classes,

AFC), which is sufficiently general to ensure independence of a spe-
cific intra-agent architecture.

5 The components of the AFC shall be designed in such a way that
the reactive constituent has maximal freedom to handle events and
to directly access the deliberative constituent, if necessary.

6 The contents of the AFC shall be substantial enough to allow a de-
liberative constituent (AgentC Mental Engine, ACME) to be built
directly.

7 The AFC shall provide an abstract ACL (Generic Message Interface,
GMI), which enables transport of arbitrary messages.

8 The ACT shall provide generic components suitable for construction
of a communicative constituent based on GMI.

9 The system shall contain an APL, AgentC, which can express the
conduct of a single agent (ACME).

10 The syntax of AgentC will be based on Agent-0 and the extensions
found in other languages, most notably PLACA.

11 AgentC shall be designed specifically to allow for compilation of an
AgentC specification into an ACME program which exhibits the
specified behaviour.

12 The ACT shall include a compiler (AgentC Compiler, ACC) among
its contents.

13 Output from the ACC shall be in the form of Java source code.

Part II

System Design

43

45

Chapter 3

Organisation of the ACT

The ACT has been organised into four different packages, all of which are
placed under the common namespace dk.dtu.imm.cse.agent.act. For the
sake of readability, the package name prefix has been omitted from class
names in the rest of this document part.

The packages of the ACT are the following:

acc contains the ACC implementation. A more detailed description
is found in chapter 7.

afc contains the classes of the AFC. A detailed description is found
in chapter 5.

demo contains an example application based on the components of the
ACT. The example application is described in chapter 19.

testbed contains the implementation of a standardised test bed application
which can be used as the basis of experiments with the design of
agents. The contents of the package are described in chapter 18.

util contains various generic classes. The contents of the package are
described in chapter 8.

In addition to the above, the AgentC language is itself an intangible part
of the ACT. A description of the general design considerations can be
found in chapter 6; a full language reference is the subject of part III.

The following chapters contain high-level descriptions of the most impor-
tant aspects of the contents of the ACT. A full API reference manual is
provided in electronic form on the companion CD found in appendix D.

46 Chapter 3. Organisation of the ACT

47

Chapter 4

The Generic Message
Interface

The system requirements#7 specify that a Generic Message Interface should
be included in the ACT, and that the GMI message structure should be
sufficiently general to encode any message originating from a specific ACL
like KQML or FIPA ACL. The implication of the requirement is that it
is not possible to assume or define any semantics of the message content
language.

In recognition of the above it has been decided that the GMI message struc-
ture should be a general Map data structure, with the only restriction that
the key values should be String instances. A communicative constituent
is then free to decide the set of keys it will recognise, and no restrictions
are placed on the values which can be stored under these keys. Hence it is
ensured that the communicative constituent is free to choose how translate
between GMI and the specific ACL employed — if the GMI is not used
directly. Indeed, the GMI message structure should be sufficient for any
application where interoperability with other agent-based systems is not
required.

The ACT includes a generic communicative constituent based on GMI8.1.

48 Chapter 4. The Generic Message Interface

49

Chapter 5

Design of the AFC

The contents of the AFC have been kept to a minimum. Essentially, the
AFC contains only two classes (in addition to the components necessary to
construct them), namely afc.Acme and afc.AcmeKnowledgeBase. These are
described in the following sections.

5.1 The Abstract ACME

The class afc.Acme is the abstract superclass of all ACMEs generated by
the ACC. The UML diagram in figure 5.1 on the next page shows which
classes and interfaces the ACME relies on; all of these are described in the
following.

A brief account of the methods provided by the class afc.Acme itself is found
below.

public final Object getId();
Returns the unique object used for identification of the ACME.

The object must be provided to the constructor.

public final Actuator getActuator();
public final Investigator getInvestigator();
public final Messenger getMessenger();

Accessor methods to obtain the extension modules5.2.

50 Chapter 5. Design of the AFC

Acme«interface»

Investigator

«interface»

Actuator

«interface»

Messenger

«interface»

KnowledgeBase

AcmeKnowledgeBase

Figure 5.1: ACME Relationship Diagram

public final KnowledgeBase getKnowledgeBase();
Retrieves the knowledge base. The method makes it possible to

modify the knowledge base outside of the ACME, e.g. by the reactive
constituent#5.

public abstract int getMaxAttitude();
Determines the maximal attitude which the knowledge base can

hold. The method is generated by the ACC13.2.

protected abstract void initKnowledgeBase(KnowledgeBase kb);
Initialises the given knowledge base to its initial state. The method

is produced by the ACC13.3.

protected KnowledgeBase createKnowledgeBase();
Creates a new knowledge base (used in init()). The default im-

plementation returns a new AcmeKnowledgeBase5.3 instance.

public void init(Actuator, Messenger, Investigator);
Initialises the knowledge base and sets the extension modules.

public int getAchievementId();
Specifies the achievement attitude15.1.1. The default implementa-

tion returns 0.

5.2 The ACME Extension Modules 51

public boolean doAction(String, Object[]);
public boolean xeqAction(String, Object[]);

Executes the specified action, delegating to the ACMEs actuator;
the former method also updates the knowledge base on a successful
operation, using the achievement attitude15.1.1. The methods are used
to execute an AgentC action statement15.1.

public Object query(String, Object[]);
Delegates to the investigator to perform the given query. The

method is used to execute an AgentC query14.6.

public void send(Map);
Sends the given GMI message, using the ACMEs messenger. The

method is used to execute an AgentC SAY-statementsec-sayStm.

public final boolean isEqual(Object, Object);
A utility method used in the generated code to compare two ob-

jects for equality. The method is used in order to evaluate for equality
as a Java expression rather than generating temporary variables, be-
cause each operand needs to be referred twice.

5.2 The ACME Extension Modules

The Actuator, Investigator and Messenger interfaces are collectively known
as extension modules. Their prime function is to ensure independence of
a specific intra-agent architecture#4, by providing an abstract interface
between the ACME and its environment.

The user can freely choose whether or not to implement the extension mod-
ules into a single class (which could also make up the reactive constituent,
if desired.), and whether or not to share these extension modules between
more than one ACME (if proper synchronization is provided in the imple-
mentation).

52 Chapter 5. Design of the AFC

5.2.1 The Actuator

The actuator serves as the interface between the ACME and the physical
environment. The interface specifies one method:

public boolean xeq(String, Object[]);

The interpretation of the parameter values is determined by the specific
actuator#5. The return value is required to be true if and only if

1. the String is identified as a known action.
2. the Object[] action parameters have the required number and run-

time types.
3. the specified action could be effectuated in the physical environment

of the agent.

5.2.2 The Messenger

The messenger serves as the interface between the ACME and the social
environment, but not vice-versa1. The interface specifies one method:

public void send(java.util.Map);

The Map instance contains a GMI4 message. The messenger is free to choose
how to obtain an addressee from the properties of the provided message.

5.2.3 The Investigator

The investigator serves as an interface between the ACME and the Java
program in which it runs. The module is provided in order to allow the
ACME to calculate or access values which AgentC cannot directly express
or obtain. The investigator also provides a way to optimise critical parts of
the ACME code, if desired, since there is no restriction on the code which
can be performed by the investigator.

The interface specifies one method:

public Object query(String, Object[]);

1The reactive constituent is responsible for retrieving messages and handling these
(typically by calling a specific procedure in the ACME).

5.3 The Knowledge Base 53

The investigator implementation is free to determine what operations to
perform and which value to return for any combination of parameters.

5.3 The Knowledge Base

The knowledge base is an intrinsic part of the ACME — it contains the
mental state of the ACME, which, in the normal case, is the only internal
state maintained by the ACME2.

The range of values which can be stored in the knowledge base must be
carefully chosen, because this range of values effectively determines the
logical foundation of AgentC, and thus limits the usability of the language.

As the requirements#10 have already stated, it has been decided to use a
simple, but generic logical representation in AgentC. This decision di-
rectly opposes what is the customary way of designing ACLs: Agent-0, for
example, is founded on a logic system based on choice and commitments;
the specification of properties, assumptions and axioms related to that spe-
cific logic (which never was very strictly formalised) fills up 8 pages in [31].
According to [33], PLACA operates with a mental state of beliefs, capabil-
ities, plans and intentions, for which a formal specification is supposedly
the main topic of [32]. AgentSpeak(L) [28] and its successor dMARS [3]
are based on a logic of beliefs, desires, and intentions (a so-called BDI ar-
chitecture), which is the subject of a large — and still growing — quantity
of articles.

The benefits of using a simple logical system are many, however. First
of all, it allows the construction of a working implementation which can
be refined at a later time, rather than producing a nonworking implemen-
tation which has only theoretical interest. Second, a simple underlying
logic drastically reduces the computational resources required to execute
an agent program. Third, by allowing the user to determine which mental
attitudes to be used, rather than enforcing a specific set of these attitudes,
the system is more suitable for experiments2.1, and for prototyping larger
agent-based systems2.1: although the BDI architecture is predominant in
the agent literature, and even in some applications, it is far from certain
that BDI logics are the best choice for agent construction in the general

2The extension modules are allowed to maintain and modify an internal state, if
required, but normally they will not need to do so.

54 Chapter 5. Design of the AFC

case (although it is almost certain that such logics are not the best choice
in every case).

5.3.1 Facts

As a starting point for the implementation, the simplest possible knowledge
base has been chosen: The knowledge base is a data structure which holds
a set of facts.

The facts used in the system correspond to DATALOG ground facts (c.f. [29]
§6.2.4), with the addition of a mental attitude, simply written attitude. An
attitude is a nonnegative integer value, which the AgentC programmer is
free to choose13.2. A fact therefore consists of 3 components: an attitude, a
predicate symbol (a string), and a list of terms, which are simple values11.1.

The AFC includes a class Fact, which is used to represent the facts just
defined. The class uses the types int, String and Object[] to represent
the attitude, predicate symbol and list of terms, respectively. The main
function of the class is to encapsulate these 3 values into a single Java
object, which can be transferred in a message3; to provide the necessary
code to match5.3.1.1 such values against each other; and to compare them
for equality.

5.3.1.1 Terminology of Facts

Consider two arbitrary facts α πα τα0 , . . . , ταn and β πβ τβ0 , . . . , τβm .

The arity of a fact is equal to the number of terms; hence, the facts above
have arities n and m, respectively.

The facts are similar iff α = β ∧ πα = πβ .

The facts are compatible iff they are similar and additionally n = m.

Consider two compatible facts α π τα0 , . . . , ταn and α π τβ0 , . . . , τβn . Let
µ ⊆ {0, . . . , n}. Then, the facts are said to match with regards to µ iff

∀i : i ≥ 0 ∧ i ≤ n ⇒ i ∈ µ ∨ τalphai = τbetai

Two facts are equal iff they are compatible and match with regards to the
empty set.

3The Fact is serializable for the same reason.

5.3 The Knowledge Base 55

5.3.2 Knowledge Base Operations

The KnowledgeBase interface specifies a number of operations which are nec-
essary for an AgentC program to be run. For efficiency, all operations are
specified in two variants: whenever an operation requires a Fact as a pa-
rameter, a corresponding method requiring three parameters of types int,
String and Object[], is also specified. The knowledge base implementation
can easily implement one of the operations in terms of the other, either by
specifying

. . . operation(int attitude, String psymb, Object[] terms) {
return operation(new Fact(attitude, psymb, terms));

}

or4

. . . operation(Fact f) {
return operation(f.getAttitude(), f.getName(), f.getTermList());

}

The benefit of specifying the two variants is that a new Fact instance may
not be necessary in some cases. The ACC, for example, avoids explicitly
creating Fact instances if possible.

public boolean clear();
public boolean isEmpty();
public int size();
public Iterator iterator();

General methods to maintain and investigate the contents of the
knowledge base.

public Object getLock();
Returns the object on which the operations of the knowledge base

are synchronised.

public boolean add(Fact);

4 Because the Fact assumes immutability of its terms and internally caches its hash
code for efficiency, the getTermList method, which directly returns the Object[] instance
used by the Fact, is package-private. In some implementations, therefore, it will be
necessary to retreive the list of terms in another way, e.g. by using the less efficient
getTerms method.

56 Chapter 5. Design of the AFC

public boolean add(int, String, Object[]);
Ensures that the given fact is found in the knowledge base; returns

true if the fact was not present before the addition.

public boolean contains(Fact);
public boolean contains(int, String, Object[]);

Queries whether a given fact is present in the knowledge base.

public List match(Fact, BitSet);
public List match(int, String, Object[], BitSet);

Returns the facts in the knowledge base which match the given
fact with regards to the given set5.

public boolean remove(Fact);
public boolean remove(int, String, Object[]);

Removes a fact from the knowledge base.

public int remove(Fact, BitSet);
public int remove(int, String, Object[], BitSet);

Removes all the facts from the knowledge base which match the
given fact with regards to the given set.

5.3.3 Implementation of the Knowledge Base

The AFC contains one implementation of the KnowledgeBase interface, namely
the class AcmeKnowledgeBase. The implementation has been designed with
the following requirements:

• The running time of the operations should be moderate, even for a
large knowledge base.

• The memory requirements for even a large knowledge base should be
moderate.

• All access to the knowledge base should be synchronised, such that
the reactive constituent can concurrently inspect or modify the state
of the knowledge base#5, if required.

5 The BitSet has been chosen because it is the most memory-efficient way of storing
a set of relatively small integers — memory consumption is 8 · d n

64
e when the largest

number stored in the set is n. Due to the highly optimised nextSetBit routine provided
by the BitSet, the added penalty to iteration performance is negligible.

5.3 The Knowledge Base 57

5.3.3.1 Structure of the AcmeKnowledgeBase

The structure of the AcmeKnowledgeBase has been dictated by the require-
ments to keep both running time and memory consumption low. The key
idea behind the design is that all operations (except iteration, which is not
required for an AgentC program anyway) are dependent on the ability
to quickly locate facts which are compatible with another fact. There-
fore, the AcmeKnowledgeBase has been structured such that similar facts are
placed into their own separate container, which can be queried or modified
independently of the remains of the knowledge base6

Since similar facts are grouped together, it is possible to reduce memory
consumption by eliminating redundant attitudes and predicate symbols,
a strategy which is used by the AcmeKnowledgeBase. Hence the knowledge
base does not store any Fact instances internally, but only lists of terms.
As already described, this choice may also save a few Fact instances to be
created when the knowledge base is merely queried; however, a set of new
Fact instances will necessarily be instantiated as the result of a match.

Figure 5.2 shows the structure of a knowledge base which has been ini-
tialised by the AgentC code listed here (please refer to part III for a
detailed explanation):

ATTITUDES {
#BELIEVE = 1;
#INTEND = 2;

}
FACTS {

#INTEND i(”a”, ”b”);
#INTEND i(”d”, ”c”);
#BELIEVE b1(”a”, ”b”, ”c”);
#BELIEVE b1(”d”, ”e”, ”f”);
#BELIEVE b2(”A”, ”B”, ”C”);
#BELIEVE b2(”D”, ”E”, ”F”);
#BELIEVE b2(”G”, ”H”, ”I”);

}
6The AcmeKnowledgeBase groups similar facts rather than compatible facts as a com-

promise between memory consumption and running time. If the AgentC programmer
does not use the same predicate symbol with term lists of different arities, however, the
facts which are similar will coincide with the facts that are compatible, thus yielding
optimal performance.

58 Chapter 5. Design of the AFC

0 1 2

b1

b2

i

["a", "b", "c"]
["d", "e", "f"]

["A", "B", "C"]
["D", "E", "F"]
["G", "H", "I"]

["a", "b"]
["c", "d"]

Map[]

HashMap LinkedHashSet

Figure 5.2: AcmeKnowledgeBase internal structure

5.3.3.2 Complexity of Knowledge Base Operations

Let α π τ0, . . . , τn−1 be an arbitrary fact. The running time of any operation
will asymptotically be the same regardless of whether the value is given as
a Fact instance or as three values, since the three values can be extracted
from the Fact instance in three constant-time operations.

Given the knowledge base structure shown in figure 5.2, a set of facts similar
to another fact can be found in amortised constant time, since the oper-
ation involves one array indexation and a subsequent table lookup7. The
asymptotical running time of any knowledge base operation will therefore
not be affected by the time required to look up the set8.

The add, contains operations, and the simple remove operation, will require
O(max(1, n)) running time, since the operations need O(1) running time

7It is assumed here as well as in the following analysis, that strings can be considered
as having a maximal size, such that the time required to compare two predicate symbols
or terms for equality can be considered to be a constant. In general, however, the longer
the string values involved, the lower performance will be.

8The constant times involved in iteration operations will generally be large. Iteration
need not be very efficient, though, since the operation is not required for an AgentC
program.

5.3 The Knowledge Base 59

to locate the required set and a subsequent O(n) add, contains or remove

operation in that set.

The match and the extended remove operation require a O(1) set lookup
operation, and subsequently need to iterate over that set. Let σ be the
size of the set; then σ iterations are necessary, and each iteration will cost
O(n) if the arity of the current list of terms is n, and O(1) otherwise (i.e. if
the facts under consideration are similar, but not compatible). The total
running time therefore amounts to O(max(1, σ, n · σ)).

To restate the above in general terms, if the size of a Fact is defined as
being the sum of

1 for each numeric value in a term.
n for each string value of length n, either in a term or in the predicate

symbol.

then the worst-case running time of the simple knowledge base operations
is therefore directly proportional to the size of the fact; for the matching
knowledge base operations the worst case running time is proportional to
the size of the fact multiplied by the number of similar facts existing in the
knowledge base.

60 Chapter 5. Design of the AFC

61

Chapter 6

Influential Factors in the
Design of AgentC

To paraphrase the preceding design considerations, the key idea behind
AgentC is to provide a general language which allows agent-oriented spec-
ifications to be compiled into traditional object-oriented programs, which
can be seamlessly integrated into object-oriented applications.

Rather than removing itself from the OOP paradigm and reinventing every-
thing in an agent-based way, AgentC adds a new layer of functionality to
traditional OOP programs, a functionality which is rooted in (but not lim-
ited to) agent-oriented programming. The result is a procedural language
which operates on a mental state, and which allows for communication with
other programs.

6.1 The Knowledge Base

As already described in section 5.3, the knowledge base design has a large
impact on the design of AgentC. Its capabilities in terms of logical expres-
siveness are admittedly simple. However, the present design is a starting
point for a future more advanced language. Indeed, the simplicity of the
present design has been influenced by the intention to use the ideas of

62 Chapter 6. Influential Factors in the Design of AgentC

PLACA, which turned out to be impossible at a rather late stage in the
design process (the footnote to [32] elaborates on this difficulty).

6.2 Fundamental Properties

Some fundamental properties of AgentC programs are partly borrowed
from the ideas originally found in [31]: an Agent-0 program basically con-
sists of a series of commitment rules — which in PLACA have become
mental change rules — guarded by a message condition and a mental con-
dition. The terminology of rules15 and mental conditions15.3.1.4 remains in
AgentC, but due to its more procedural nature, rules make up a proce-
dure13.4 which is executed sequentially, and most rules can be recursively
composed. An Agent-0 program, on the other hand, contains a single list
of commitment rules, and depends on the interpreter to continuously check
and execute these rules when their condition is fulfilled; the same scheme
is carried over in PLACA.

6.2.1 Lexical Syntax

Overall, the lexical syntax of AgentC resembles that of Java, except that
keywords consist of uppercase letters. Comments10.4 and literals10.9, for
instance, are directly borrowed from the lexical syntax of Java.

6.2.1.1 Variables

The use of variables in AgentC — as well as their lexical syntax10.6 —
originates directly from Agent-0. In contrast to the original Agent-0 imple-
mentation1, variables in AgentC’s mental conditions are implicitly uni-
versally quantified — but the effect of implicit universal quantification in
mental conditions result in AgentC behaving somewhat like PLACA as
described in [33]: “Every rule is fired once for each possible match”.

1Variables are normally existentially quantified in Agent-0. Universally quantified
variables are described in [31] as a feature which “was not included in is actual imple-
mentation”.

6.3 Grammar 63

6.2.2 Keywords

The lexical syntax of AgentC shares two keywords with PLACA: ADOPT15.6.1

and DROP15.6.2. Otherwise, the syntax of AgentC does not resemble Agent-0
or PLACA: the keywords of these languages mostly relate to specific at-
titudes or actions (DO, INFORM, REQUEST, BELIEVE, INTEND) — which
AgentC lets the user define13.2,15.1.

6.3 Grammar

The syntax of AgentC bears a closer resemblance to that of Pascal than
to Agent-0 or PLACA: AgentC does not require (or generally even allow)
parentheses before a keyword, and is more readable for the same reason.
Additionally, AgentC has the keywords IF15.3, ELSE15.3, PROCEDURE13.4

and SELF14.4 in common with Pascal, and its pattern matching syntax bor-
rows from the syntax of SML.

6.4 Message Guards

The syntax of message guards15.9 (corresponding to Agent-0’s message con-
ditions) has been inspired by the syntax used in Agent-K [2] (an integration
of Agent-0 with KQML communication).

6.5 Memory of Past Actions

The DO-statement15.1 of AgentC automatically records in the knowledge
base the actions which has been performed, effectively allowing the AgentC
program to ‘remember’ its past actions. This idea was originally found in
the Elephant 2000 language [25], and persists as an axiom of the logic of
PLACA, according to [33].

64 Chapter 6. Influential Factors in the Design of AgentC

65

Chapter 7

Implementation of the
ACC

With the establishment of the syntax of AgentC and the implementation
of the AFC, implementation of the ACC is rather straightforward.

The parser and lexer of the ACC has been constructed using JavaCC [21],
while the data structure to represent the abstract syntax tree is coded by
hand (most of the classes of the acc package fall into this category).

Compilation is performed in three stages

1. Parse the input into an abstract syntax tree (using an instance of
acc.ParseTree as the top-level container). Part III describes in details
the syntax of AgentC, which is also listed in appendix A.

2. Do a semantic check on the procedures of the program, to verify that
variables are properly used. At the same time variables are classified
into variable defs and variable uses as described in chapter 12.

3. Generate code from the abstract syntax. The language reference
found in Part III contains detailed descriptions of the code which
results from compiling the abstract syntax.

66 Chapter 7. Implementation of the ACC

7.1 Using the ACC

The purpose of the ACC is to translate AgentC into Java code, following
the specifications in part III. What is missing from these specifications,
however, is a description of how to run the ACC itself. Such a description
is the subject of this section; the reader should be warned that some of the
terminology used here is first defined in part III.

7.1.1 Running The ACC

The ACC is implemented in the class acc.Acc. As the remaining compo-
nents of the ACT it requires a Java runtime environment of version 1.4 or
later in order to run1.

Since the Acc class implements the compiler routine as the method
public static void main(String[] args), the ACC can be invoked directly
by the system command line

java dk.dtu.imm.cse.agent.act.acc.Acc

assuming that the ACT binary code is found somewhere in the class path.
The file act.jar found on the CD enclosed with appendix D contains the
ACT in binary form; it defines Acc as its main class, which allows use of
the shorter command line

java -jar act.jar

Each contiguous character sequence following the above command line are
known as arguments; the arguments whose first character is a hyphen (-),
are known as options.

7.1.2 Choosing the Input

The location from where the ACC takes its input is determined from the
arguments in the following way:

1The ACT depends on the new classes java.util.LinkedHashSet and
java.util.LinkedHashMap found in Java 1.4, as well as the method nextSetBit which
was added to java.util.BitSet in the same release. Otherwise the ACT only depends
on components already found in Java 1.2.

7.1 Using the ACC 67

• If at least one argument which is not (part of) an option is specified,
then the input will be the concatenation of the files whose names were
specified in these arguments2.

• Otherwise input will be taken from System.in.

7.1.3 Controlling the Output

The output from the ACC is controlled in the following way:

• If the option -o has been specified, the following argument will be
interpreted as a file path, and the resulting output will be written to
that location3.

• Otherwise the output will be written to System.out.

7.1.3.1 Choosing the Package Name

The generated output will by default not contain a package declaration.
However, it will if a package name is specified as explained below:

• If the -o option is used, the specified path ends with the suffix .java,
and the path contains at least one path separator character, then the
package name will be the part of the path name which precedes the
last path separator character, with the modification that all path
separator characters are substituted by a ‘dot’ (.).

• A package name can optionally be specified as the argument following
the option -pck.

7.1.3.2 Choosing the Class Name

The generated output will by default use the class name AccOutput. The
class name to be used can be specified in two different ways:

2The files are concatenated in the order they are specified. In case of an error the line
number in the error message will be a logical line number with reference to the whole
input.

3In case of multiple -o options being given, then only the last of these will have any
effect. If a file already exists in the specified location, it will be overwritten without
further notice.

68 Chapter 7. Implementation of the ACC

• If the -o option is used and the specified path ends with the suffix
.java, then the class name will be a substring of the path delimited
by the last occurrence of a path separator character (or the beginning
of the path, if no such character is found), and the .java suffix.

• A class name can optionally be specified as the argument following
the option -cls.

7.1.3.3 Specifying a Superclass

The superclass of the generated class can be specified as the argument
following the -ext option (the full class name should be used). The ACC
will verify that the the specified superclass is or descends from afc.Acme.

As a side-effect of defining a superclass, the generated code will inherit
some properties of that class; section 7.1.4 describes how.

7.1.3.4 Specifying Interfaces

For each interface which should be implemented by the generated class, a
-impl option should be given, followed by an argument containing the full
path of the interface.

As a side-effect of defining an interface, the generated code will inherit
some properties of that interface; section 7.1.4 describes how.

7.1.4 Inheritance in AgentC

The output from ACC is a Java class which inherits from its superclass
and implemented interfaces in the normal way. However, the AgentC code
from which it is created can also inherit from these entities in the sense
that the ACC produces implicit AgentC code based on their contents, in
the manner described in the following.

7.1.4.1 Fields

Fields which are public, static and final may result in a symbol definition13.1

subject to the following conditions:

7.1 Using the ACC 69

• If the field has a primitive type then
◦ If the type of the field is int or double, then a new symbol

definition using the field’s value will be generated; when the
AgentC program is compiled, the corresponding code will be
produced as normal13.1.

◦ Otherwise the presence of the field will have no effect.
• Otherwise the name of the field will be defined as a symbol, but no

corresponding code will be generated : any use of the symbol will refer
directly to field inherited by the output class.

7.1.4.2 Methods

Inherited methods which have a suitable signature will result in a procedure
requirement declaration13.4 subject to the rules defined below.

A method signature is suitable for inheritance only if

1. The method is either public or protected.
2. The declared return type is Object

3. The number of declared parameters is at least 1.
4. The declared parameter type is java.util.Map for the first parameter

and Object for every subsequent parameter.
5. The method does not throw any checked exceptions (c.f. [17] §11.2).

Each suitable method causes the ACC to do the following:

• If the method is final a procedure requirement declaration is gener-
ated, but no procedure body is allowed to be specified. No extra code
will be generated, but any use of the corresponding procedure in the
AgentC program will call the inherited method.

• Otherwise, if the method is abstract4 then a normal procedure re-
quirement declaration is produced.

• Otherwise the result is a procedure requirement declaration which
does not require nor prohibit a procedure body to be declared.
◦ If no body is subsequently declared, the generated code will refer

to the method inherited by the output class.
◦ Otherwise the generated code will override the inherited method.

4All methods inherited from an interface are abstract by definition.

70 Chapter 7. Implementation of the ACC

71

Chapter 8

Generic Utilities

In accordance with the system requirements#2, the ACT contains a collec-
tion of generic utilities, all of which are placed in the util package. The
most important of these utilities are described here.

8.1 Generic Communication Components

As required#8, the ACT includes generic components to allow a GMI com-
municative constituent to be built directly.

8.1.1 The Mailbox

The Mailbox class implements a FIFO queue for GMI messages (i.e. Map

instances). The implementation is designed to be used by multiple threads,
and provides functionality to suspend a thread which tries to receive a
message from an empty mailbox, and to resume it once a new message
becomes available.

8.1.2 The PostOffice

The PostOffice class is a data structure which contains a number of Mailboxes,
indexed by a user ID (an Object instance). The PostOffice allows users

72 Chapter 8. Generic Utilities

to be registered and unregistered dynamically, and provides a facility to
broadcast a message to all registered users.

8.1.3 The DefaultMessenger

The DefaultMessenger class uses a PostOffice to distribute messages to
their recipients. The DemoMessenger extracts the addressee of a message
under the key value "to"; if such a value does not exist, the message will
instead be broadcast to all users known to the PostOffice. Before a message
is sent, the sender (the ID of the ACME to which the DefaultMessenger is
attached) will be automatically added to the message under the key value
"from", if such a value does not already exist.

8.1.4 The MessageController

The abstract class MessageController provides the basis for a communica-
tive constituent which uses a Mailbox to receive incoming messages.

The MessageController is a Thread which continuously waits for new mes-
sages, and lets a method defined by a subclass handle the message at the
time they are extracted from the Mailbox queue; the MessageController can
optionally also generate ‘empty’ messages1 after a given period has expired
without real messages being received.

The functionality provided by the MessageController makes it well suited
as the basis of a communicative constituent, a reactive constituent or (in
simple cases) a combination of the two — the example application described
in chapter 19 uses such a combination.

8.2 Generic ACME Extension Modules

The classes GenericInvestigator and GenericActuator are abstract inves-
tigator and actuator implementations. They implement the query and
xeq methods, respectively, by using Java reflection to find an appropri-
ate method in the class which extends them. By extending these classes,

1Technically, the value null is used to represent an empty message when the handler
method is invoked.

8.2 Generic ACME Extension Modules 73

the user needs only to specify the operations which are supported by the
extension module, using Object as the type for each parameter.

As an example, consider the two Java classes

public class ExampleActuator extends GenericActuator {
public void testAction(Object p1) {

System.out.println(p1);
}

}
and

public class ExampleInvestigator extends GenericInvestigator {
public Object add(Object p1, Object p2) {

return new Integer(((Number)p1).intValue() +
((Number)p2).intValue()));

}
}

and assume that these are used as extension modules for an ACME con-
structed by the AgentC code

PROCEDURE example() {
IF (XEQ testAction()) {

RETURN −1;
}
ELSIF (XEQ testAction(”testParam”)) {

RETURN Q add(4, 5);
}
ELSE {

RETURN −2;
}

}
The return value from the example method in the generated ACME would
then be 9 (an Integer instance), and the string "testParam" would have
been printed to System.out. The reason is that testAction() fails because
no matching method is found in the ExcampleActuator;
testAction("testParam") succeeds, however, because the ExampleActuator
does specify a matching method in this case, and hence the result of the
query Q add(4, 5) — for which the ExampleInvestigator specified an ap-
propriate method — will be returned from the procedure.

74 Chapter 8. Generic Utilities

Part III

AgentC Language
Reference

75

77

Chapter 9

Notation

The current part of the document contains a reference manual to the
AgentC language; the following sections introduce the special notation
used in the language description. While the text provides an exhaustive
language reference, explanations are kept short. For further details regard-
ing how the ACC is implemented or about the contents of the AFC, please
consult part II.

9.1 About Grammars

All syntactical aspects of the AgentC language are specified using the
type of BNF grammar defined below:

9.1.1 Non-terminals

Non-terminals are presented in the normal document font, and are enclosed
in angular brackets:

〈Non-Terminal〉

78 Chapter 9. Notation

9.1.2 Terminals

Terminals are presented verbatim, in typewriter font:

terminal

9.1.3 Production Rules

Production rules contain a non-terminal on the left-hand side, the expan-
sion on the right-hand side, and the symbol ::= in between:

〈Non-Terminal〉 ::= Terminal

Various special symbols are used on the right-hand side of a production
rule. These symbols are explained in the following.

9.1.3.1 Parentheses

Ordinary parentheses are used around productions for metasyntactic group-
ing.

9.1.3.2 Alternatives

Alternative productions are separated by the metasyntactic infix operator
|.

9.1.3.3 Optional Productions

Optional productions (that is, productions which may occur either zero or
one time) are identified by the metasyntactic postfix operator ?.

9.1.3.4 Repeated Productions

Productions which may be repeated are identified by one the metasyntactic
postfix operators ∗ and +. The former indicates that the production may
be repeated any number of times, while the latter indicates that at least
one occurrence is required.

9.2 Semantics Specifications 79

9.1.4 Scope of Grammar Rules

The grammar rules given in this reference manual are to be taken as global
definitions for the entire document.

9.2 Semantics Specifications

Throughout the AgentC documentation a special notation is used to de-
scribe how the ACC translates AgentC code into Java ditto. The notation
not only documents how the ACC handles each language construct, but
also defines the precise semantics of the AgentC code in terms of the
corresponding Java code.

The notation uses a special semantic function χ; the argument to this
function is shown as an AgentC language construct where some of the
tokens are replaced by syntactic variables, which will be Greek lowercase
letters; the corresponding Java code is then shown, using the same syntactic
variables. It should be clear from the context (i.e., from the grammar rules
for the language construct specified) what the syntactic variables should
be taken to mean.

An auxiliary semantic function ∆ is defined in section 15.4. The special
notational suffix −1 is defined in section 15.3.1.

An example semantic specification is found below:

χ(ε1 == ε2)

≡
isEqual(χ(ε1), χ(ε2))

The specification shows that the compiler for an AgentC comparison con-
dition15.3.1.1 in case of an == operator produces the Java code to invoke the
isEqual5.1 method on the compiled code of the two operands.

80 Chapter 9. Notation

81

Chapter 10

Lexical Structure

10.1 Input Alphabet

The input alphabet of an AgentC program consists of the first 256 charac-
ters of the Unicode character set. However, only characters among the first
128 of these characters, corresponding to the standard ASCII character set,
are necessary to write an AgentC program.

10.2 Lexical Translations

The lexical analyser (lexer) automatically decodes Unicode escape sequences
(cf. [17] §3.3) in the input; in this way the full Unicode character set can
be produced. Since only the ASCII character set is necessary to write the
program, Unicode escapes are provided with the sole purpose of allowing
arbitrary string literals10.9.3 to be produced.

10.3 White Space

The characters whose only function are to separate tokens are called white
space characters. The lexer treats the first 33 characters of the input al-
phabet as white space.

82 Chapter 10. Lexical Structure

10.4 Comments

Comments are sequences of input which the lexer treats as white space.
AgentC shares the lexical syntax of comments with Java; cf. [17] §3.7.

10.5 Identifiers

The first character of Identifiers in AgentC must belong to a restricted
class:

〈Identifier〉 ::= 〈IdentifierStart〉 (〈Letter〉 | 〈Digit〉)∗
〈IdentifierStart〉 ::= a ... z | $ 〈Letter〉
〈Letter〉 ::= A ... Z | a ... z |
〈Digit〉 ::= 0 | 〈NonZeroDigit〉
〈NonZeroDigit〉 ::= 1 ... 9

The main reason for this is that the lexer, which has been generated by
JavaCC [21], does not allow keywords to be recognised as a subset of the
legal identifiers — the lexical syntax must be unique.

Since all AgentC keywords consist of uppercase letters, the first letter of
identifiers must then be a lowercase letter in order to differentiate it from a
keyword token. The $ character serves as an escape character (it will itself
not be part of the identifier), such that it is possible to create identifiers
whose first character is an uppercase letter.

10.6 Variables

Variables in AgentC use a special syntax distinct from the syntax of
identifiers:

〈Variable〉 ::= ? 〈Letter〉 (〈Letter〉 | 〈Digit〉)∗ |

Apart from the reasons given in section 10.5, the syntax has been chosen
to resemble the variable syntax originally used in Agent-0 [30].

10.7 Attitude Tokens 83

10.6.1 Wildcards

The variable whose syntax is has a special significance. It is denoted the
wildcard variable.

10.7 Attitude Tokens

The AgentC language uses a set of symbolic names, called attitude to-
kens, in the syntax of sentences14.7. These attitude tokens as well as their
assigned values, called attitudes, are defined by the AgentC programmer.
However, all attitude tokens share a common lexical syntax:

〈AttitudeToken〉 ::= # 〈Letter〉 (〈Letter〉 | 〈Digit〉)∗

10.8 Keywords

The keywords of AgentC are used to distinguish different syntactical con-
structs, to be defined later. The full list of AgentC keywords is the fol-
lowing:

ADOPT
AS
ATTITUDES
CALL
DEFS
DO
DROP

ELSE
ELSIF
FACTS
IF
LET
LOCKED
NOTHING

PROCEDURE

Q

RETURN

SAY

WHEN

XEQ

10.9 Literals

The simple values of the AgentC language are all produced by means of
literals. Three different kinds of literals are used:

〈Literal〉 ::= 〈IntegerLiteral〉 | 〈DoubleLiteral〉 | 〈StringLiteral〉

84 Chapter 10. Lexical Structure

10.9.1 Integer Literals

Integer literals produce integral numeric values. The syntax of integer
literals is as decimal integer literals in Java ([17] §3.10.1), except that the
negation sign is considered part of the literal in AgentC, and that no type
suffix character is used:

〈IntegerLiteral〉 ::= 0 | -? 〈NonZeroDigit〉 〈Digit〉∗

10.9.2 Double Literals

Double literals produce floating-point values. The syntax of double literals
is similar to the syntax of floating-point literals in Java ([17] §3.10.2), except
that no type suffix character is used:

〈DoubleLiteral〉 ::= 〈Digit〉+ . 〈Digit〉∗ 〈Exponent〉?
| . 〈Digit〉+ 〈Exponent〉?
| 〈Digit〉+ 〈Exponent〉

〈Exponent〉 ::= (e | E) (+ | -)? 〈Digit〉+

10.9.3 String Literals

String literals produce string values. The syntax of string literals in AgentC
is similar to the syntax of string literals in Java, except that the input al-
phabet, as already defined10.1, is different. Please refer to [17] §3.10.5–6 for
a full definition of the string literal syntax.

85

Chapter 11

Types & Values

Internally, all AgentC values are represented as Object instances, and the
compiled code mainly uses variables typed as Object to represent them.
Only a few different kinds of values can be directly produced by means of
AgentC code, however, and these are explained in the following sections.

Although only a few different kinds of values are inherent to the AgentC
language, no type system per se is offered by the ACC: all variables are
treated as having the same type.

The main reason that AgentC has such a simple type system is that only
little is to be gained by providing a strict type system as e.g. Java does:
the ACC must internally use a compile-time type of Object for all values,
because they are represented by classes which do not share a common
interface and whose only possible common superclass is java.lang.Object.
Although the specific type of a simple value could be inferred from the
way it is produced (i.e. from the literal), the type of a value obtained by
a query14.6 cannot be determined during compilation, since the common
Object type must be used at that time. Instead of introducing type names
and requiring explicit casts, as Java does (c.f. [17] §15.16), it seems a better
choice to avoid using different types and to rely on Java’s runtime type
check to detect type errors when they occur (this will happen anyway).
By doing so, a cleaner language and a simpler compiler implementation is
gained, and future extensions to the language are made easier. The only
price of this choice is that it is more difficult to detect type inconsistencies

86 Chapter 11. Types & Values

during compilation — it is impossible to determine all type inconsistencies
at compile time in Java.

11.1 Simple Values

The simple values of AgentC are the values which are produced by means
of a literal10.9.

11.1.1 Integer Values

Integer values result from the an integer literal10.9.1. Internally in the pro-
gram, such a value is represented by an instance of java.lang.Integer.

11.1.2 Double Values

Double values are the result of a double literal10.9.2. Internally in the pro-
gram, such a value is represented by an instance of java.lang.Double.

11.1.3 String Values

String values result from string literals10.9.3. Internally in the program,
such a value is represented by an instance of java.lang.String.

11.2 Logical Values

Logical values are created by means of a sentence14.7. Due to the nature
of the AgentC language, a very simple set of sentences is allowed: a
sentence is simply a DATALOG fact (c.f. [29] §6.2.4), combined with an
integer attitude.

Normally, logical values are stored in a compact form in the ACME’s
knowledge base, which only allows ground facts to be stored. Sentences can
also be extracted from the knowledge base or received in a message, in addi-
tion to being created directly by a sentence. In such a case the logical value
will be represented by an instance of dk.dtu.imm.cse.agent.act.afc.Fact.

87

Chapter 12

Scope Rules

Every time a variable occurs in the AgentC program, it has one of two
different meanings: either it is a variable def or a variable use. In a vari-
able use the variable serves as a reference to a value which was previously
evaluated and bound to the symbolic variable in a preceding variable def.
A variable def is said to bind a value, which can then be referenced at a
later point by a variable use.

The way in which the ACC classifies variable occurrences into variable
defs and variable uses is determined by the lexical scope of these variable
occurrences. In general, each block15 constitutes a new scope, which ini-
tially contains the bindings of the enclosing scope (if any). At the end of
the block the enclosing scope will be restored. Certain language constructs
may also produce a new scope, or temporarily enforce the scope to have
a certain type (typically read-only]); if so, the detailed documentation of
these constructs will mention the fact.

The variable classification scheme is subject to a set of general rules, which
depend on the kind of scope in which the variable occurs: a scope may be
either read-only, write-only or read-write. In case a language construct en-
forces a specific kind of scope rather than using the enclosing scope (which
it normally will), the detailed language documentation will mention this
fact.

The scope rules rules employed by the ACC are listed below. Each rule is
checked in the order listed here, and the first matching rule will determine

88 Chapter 12. Scope Rules

how the variable is classified.

• Occurrences of wildcard variables10.6.1 will always be treated as vari-
able defs. Thus, no wildcard variable can ever refer to the same value.
It is a semantic error to use a wildcard variable in a read-only scope.

• In a write-only scope, any variable occurrence will be a variable def.
• In a read-only scope, any variable occurrence will be a variable use.

It is a semantic error not to let a variable occurring in a read-only
scope be preceded by a corresponding variable def in the current or
an enclosing scope.

• In a read-write scope, two possibilities exist:
◦ If the variable has not been preceded by a variable def in the

current or enclosing scope, then the occurrence will be a variable
def.

◦ Otherwise, the occurrence will be a variable use referring to the
preceding variable def which is closest to the occurrence.

89

Chapter 13

Program Structure

An AgentC program consists of a number of compilation modules, which
are to be defined in this and the following sections. The shorter term
module will be used instead of compilation module in the rest of this part
of the document.

The order in which the modules are specified is not significant, and except
for procedures, the order in which their contents are specified is not signif-
icant either. The full program is combined from a set of modules, which
can be placed in any number of files. In this way the programmer is free to
structure the program as (s)he pleases, and to reuse common definitions.

The syntax of an AgentC program is:

〈Program〉 ::= 〈CompilationModule〉∗

A module is defined to be
〈CompilationModule〉 ::= 〈Definitions〉 | 〈Attitudes〉 |

〈Facts〉 | 〈Procedure〉

13.1 Symbol Definitions

The symbol definition module allows a set of constant values to be defined
under symbolic names. These names can then be used in the program as

90 Chapter 13. Program Structure

symbolic reference expressions14.3.

In addition to making it easier to reuse and maintain common code, the
symbol definition module also helps to optimise the resulting code, since
the values for the symbolic reference expressions are instantiaed only once1.

Syntax:

〈Definitions〉 ::= DEFS { 〈Definition〉∗ }
〈Definition〉 ::= 〈Identifier〉 = 〈Literal〉 ;

Notes:

It is a semantic error to use the same identifier twice unless the right-hand
value is identical in both definitions. Assuming that x = 2.0; was defined
previously, then x = 2e0 would be legal, because 2.0 and 2e0 represent
the same value; similarly, x = 2; would be illegal, since the integer literal
2 does not represent the same value as the double literal 2.0.

Semantics:

For each definition ι = λ the ACC generates a field in the output ACME.
Assuming that the Java type of the literal is τ , the generated code is spec-
ified by

χ(ι = λ)

≡
public static final τ C_ι = χ(λ) ;

13.2 Attitude Declarations

In contrast to most other APLs, AgentC does not specify a fixed set of
mental attitudes to be used — the programmer is free to choose the set of
attitudes (s)he finds to be appropriate for the task. The choice of attitudes
is specified by means of the attitude declaration module.

1as shown in section 14.1, every use of a numeric literal results in a Java instance
creation expression. This is not the case for a symbolic reference expression14.3

13.2 Attitude Declarations 91

Syntax:

〈Attitudes〉 ::= 〈AttitudeDecl〉∗
〈AttitudeDecl〉 ::= 〈AttitudeToken〉 = 〈IntegerLiteral〉 ;

Notes:

It is a semantic error to specify a negative number, or to assign differ-
ent attitudes to the same attitude token. Otherwise, it is legal to repeat
definitions, or to declare the same attitude under different names.

It is strongly recommended to use the same attitude declarations for all
ACMEs in a given application, since the compiled program does not use
the symbolical names, but rather the declared integer attitudes. It is the
responsibility of the programmer to ensure that sentences communicated
between different ACMEs are handled appropriately — and this is most
easily ensured by using a consistent set of attitude declarations.

It is also strongly recommended to use reasonably small values in the atti-
tude declarations, since the initial size of the resulting knowledge base will
be directly proportional to the largest value specified.

Semantics:

The declarations given in the attitude declaration module are indirectly
used to translate a attitude10.7 into an integer value. However, given a
attitude declaration module whose largest value is ω, the compiler produces
the following method in the ACME:

public int getMaxAttitude() {
return ω;

}

This method is used in construction of the knowledge base which, as already
mentioned, has an initial size proportional to ω2

2The knowledge base internally uses an array of containers to hold its contents; a
given fact is then placed in the container indexed by its attitude. The value returned by
getMaxAttitude then determines the length of this array

92 Chapter 13. Program Structure

13.3 Initial Facts

The initial facts module provides an easy way to specify the initial contents
of the knowledge base.

Syntax:

〈Facts〉 ::= 〈InitialFact〉∗
〈InitialFact〉 ::= 〈Fact〉 ;

Notes:

Although the syntax of a 〈Fact〉 allows variables, it is a semantic error to
use a variable inside the initial facts.

The compiler does not check for duplicate facts in the specification — the
result of a duplicate will be a less than optimal program, but the contents
of the knowledge base will not be affected by a duplicate addition.

Semantics:

For each initial fact φ, the compiler adds

kb.add(χ(φ));

to the body of the method

protected void initKnowledgeBase(KnowledgeBase kb) {
}

which is invoked by the ACME when it is initialised.

13.4 Procedures

Procedures are the main modules of an AgentC program, as they result in
executable code whereas the other kinds of modules produce or configure
the data of the program.

Since the intra-agent architecture is not restricted by AgentC, there is
no requirement regarding which procedures to include in the program, and
what their names should be — it is up to the programmer to determine

13.4 Procedures 93

the number and names of the procedures to be included, and how to call
these from outside the ACME.

Syntax:

〈Procedure〉 ::= PROCEDURE 〈Identifier〉 〈ParameterList〉
(; | 〈ProcedureBody〉)

〈ParameterList〉 ::= ((〈Variable〉 (, 〈Variable〉)∗)?)
〈ProcedureBody〉 ::= { 〈Rule〉∗ }

Notes:

The combination of a procedure name and a parameter list is known as a
procedure signature. Different procedures may use the same identifier, as
long as the procedure signatures are different.

• If no body is given, then the only result of the declaration — which
in this case is known as a procedure requirement declaration — is to
ensure that the given procedure signature is usable in the rest of the
program.
A procedure requirement declaration can legally be specified any
number of times, and only the number of variables is significant.
However, it is a semantic error to omit specifying a corresponding
procedure elsewhere in the program.

• Otherwise, the procedure whose behaviour is specified in the code
of the body will be added to the program. It is a semantic error to
declare a procedure body more than once, even if the declarations are
identical; it is furthermore a semantic error to use a wildcard variable
as part of the procedure signature, or to use the same variable more
than once.
The procedure body constitutes a new read-write scope, which ini-
tially contains the variables which were used in the procedure signa-
ture accompanying the procedure body.

Semantics:

For each procedure having a body,

χ(PROCEDURE π(ξ0, . . . , ξn) {ρ0 . . . ρm})

≡

94 Chapter 13. Program Structure

public Object π(Map msg, Object χ(ξ0)3, . . ., Object χ(ξn)) {
χ(ρ0)
. . .
χ(ρm)

}

13.4.1 Calling Procedures

The methods resulting from the compilation of a procedure can be used
in two ways: either they are called directly from somewhere (normally
the main execution loop) of the intra-agent architecture, or from within a
procedure call14.5 in the generated code.

For each invocation of the method, the caller must supply a value to the
parameter Map msg, which is the next message to be handled. When in-
voking the method, the intra-agent architecture has full freedom to choose
the value of this message; furthermore, the intra-agent architecture has full
freedom to choose when, and how often to invoke the method — and to
choose which methods to invoke.

In most cases, the main execution loop would probably look like this:

1. Wait until a message is available, or a timeout occurs.
2. (a) If the operation timed out, then supply null as a parameter.

(b) Otherwise, supply the received message as a parameter.
3. Repeat.

13.4.2 Temporary Variables

The compiled code of many rules depend on one or more temporary vari-
ables. A temporary variable is a Java variable which the generated code
uses to store an intermediate result. The ACC declares the necessary tem-
porary variables at the beginning of a procedure; because of the way the
ACC translates code, at most one temporary variable of each kind will be
necessary, regardless of how the translated code is composed.

The possible temporary variables, in conjunction with their Java initialiser,
are listed here:

3Here, χ(ξ) denotes the meaning defined for a variable use (ξυ) in section 14.2,
although the variables are technically variable defs.

13.4 Procedures 95

BitSet bitSet = new BitSet();
KnowledgeBase kBase = getKnowledgeBase();
Object tempObj;
Map tempMap;
Fact tempFact;

96 Chapter 13. Program Structure

97

Chapter 14

Values and Expressions

An AgentC value is either an expression or a sentence:

〈Value〉 ::= 〈Expression〉 | 〈Sentence〉

where

〈Expression〉 ::= 〈Literal〉 | 〈Variable〉 | 〈SymbolReference〉 |
〈SelfReference〉 | 〈ProcedureCall〉

14.1 Literal Expressions

Any literal10.9 constitutes a literal expression.

Semantics:

For each integer literal ι,

χ(ι)

≡
new Integer(ι)

For each double literal δ,

98 Chapter 14. Values and Expressions

χ(δ)

≡
new Double(δ)

For each string literal σ,

χ(σ)

≡
σ

14.2 Variable Expressions

Every occurence of a variable is a variable expression.

Notes:

As already mentioned in chapter 11, it is the responsibility of the pro-
grammer to ensure that the value stored in a variable has a type which is
appropriate at the point of the variable expression.

Semantics:

During the semantic check performed before compilation, every variable
def is assigned a unique ID, and for every variable use is is determined to
which variable def — and hence to which unique ID — the variable use
belongs. Given a variable use ξυ referring to a variable def having ID ι, the
corresponding Java code is an identifier whose name will be

χ(ξυ)

≡
vι_ξυ

The compilation of variable defs will result in separate code which will be
described in the documentation for the language constructs allowing them.
However, for the sake of completeness in the documentation, the default
case for a variable def ξδ is defined as

14.3 Symbolic References 99

χ(ξδ)

≡
null

14.3 Symbolic References

A symbolic reference expression is a reference to one of the global symbol
definitions13.1.

Syntax:

〈SymbolReference〉 ::= 〈Identifier〉

Notes:

It is a semantic error to use a symbolic reference expression which has not
been declared in at least one symbol definition module.

Semantics:

Symbolic reference expressions compile into a Java identifier which refers
to the field produced by the symbol definition (c.f. section 13.1):

χ(ι)

≡
C_ι

14.4 The Self Reference

Each ACME is constructed using a unique Object instance to identify the
ACME. The value of this ID can be referenced from within the AgentC
program using the self reference expression.

100 Chapter 14. Values and Expressions

Syntax:

〈SelfReference〉 ::= SELF

Semantics:

χ(SELF)

≡
getId()

14.5 Procedure Calls

A procedure call allows the code of one procedure to call another procedure;
the expression evaluates to the value returned15.7 by the called procedure.
The message parameter of the calling procedure will be transferred as the
message parameter of the called procedure.

Syntax:

〈ProcedureCall〉 ::= CALL 〈identifier〉 〈TermList〉

Notes:

The 〈TermList〉 has a read-only scope.

It is a semantic error to use a procedure signature which is not defined
elsewhere in the program.

Semantics:

χ(CALL π(τ0, . . . , τn))

≡
π(msg, χ(τ0) , . . . , χ(τn))

14.6 Queries 101

14.6 Queries

A query allows the AgentC program access or evaluate values which can-
not otherwise be produced in AgentC code. The request for information
is serviced by the investigator of the ACME, which should have been spe-
cially written in order to support the possible requests of the program.

Syntax:

〈Query〉 ::= Q 〈Identifier〉 〈TermList〉
〈TermList〉 ::= ((〈Expression〉 (, 〈Expression〉)∗)?)

Notes:

The query itself has a read-only scope.

Semantics:

Given a 〈TermList〉 τ = (τ0, τ1, . . . , τn),

χ(Q ι τ)

≡
query(ι, χ(τ))

where

χ(τ)

≡
new Object[] { χ(τ0), χ(τ1), . . . , χ(τn) }

14.7 Sentences

Sentences in AgentC are simply facts:

〈Sentence〉 ::= 〈Fact〉

102 Chapter 14. Values and Expressions

The reason why this document distinguished between sentences and facts
may be a bit obscure; however, the word sentence is used with reference
to a general class of language constructs which at the moment only count
facts, but which may be extended in future versions of the language. Fact,
however, is used with reference to the specific syntactical construct defined
in section 14.7.1.

14.7.1 Facts

As mentioned in section 11.2, a fact in AgentC corresponds to a DATA-
LOG fact combined with an attitude.

Syntax:

〈Fact〉 ::= 〈AttitudeToken〉 〈Identifier〉 〈TermList〉

Notes:

It is a semantic error to specify an attitude token for which no attitude
value has been declared in an attitude declaration13.2.

Semantics:

χ(α ι τ)

≡
χ(α) , ι , χ(τ)

Here, χ(α) simply results in the attitude declared for the attitude token α.

Note that the compiled code does not in itself constitute a valid Java ex-
pression. The reason is that the ACC tries to avoid creating a new Fact

instance, if possible; the specific occurrence of the fact will then determine
how the code above will be used.

103

Chapter 15

Rules and Statements

Rules are the building blocks of a procedure. A rule is defined as

〈Rule〉 ::= 〈Statement〉 | 〈MessageRule〉

where
〈Statement〉 ::= 〈Action〉 | 〈Assignment〉 | 〈IfStatement〉 |

〈LetStatement〉 | 〈LockedStatement〉 |
〈MentalUpdate〉 | 〈ReturnStatement〉 |
〈SayStatement〉

Each kind of rule is explained in the following sections. Common to the
syntax of some of these rules is the notion of a block , which simply is a
sequence of statements enclosed in braces:

〈Block〉 ::= { 〈Statement〉∗ }

For a block containing statements σ0 . . . σn,

χ({ σ0 . . . σn })
≡

χ(σ0)
. . .
χ(σn)

104 Chapter 15. Rules and Statements

15.1 Action Statements

The DO-statement and XEQ-statement are collectively known as action state-
ments. Common to both statements is that they delegate to the ACME’s
actuator to execute an operation identified by a string, and that the success
of this operation can be queried by using the statement as a condition15.3.1.

Syntax:

〈ActionStatement〉 ::= 〈DoStatement〉 | 〈XeqStatement〉
〈DoStatement〉 ::= DO 〈Identifier〉 〈TermList〉 ;
〈XeqStatement〉 ::= XEQ 〈Identifier〉 〈TermList〉 ;

Notes:

The whole action statement constitutes a read-only scope.

The only difference between the two kinds of statements is that the DO-
statement updates the knowledge base when it has been executed; assume
that #DID has been declared as the achievement attitude15.1.1. Then

DO α(τ0, τ1, . . . , τn)

will have the same effect as

IF (XEQ α(τ0, τ1, . . . , τn)) {
ADOPT #DID α(τ0, τ1, . . . , τn);

}

Semantics:

χ(XEQ α τ)

≡
xeqAction(α, χ(τ))

χ(DO α τ)

≡
doAction(α, χ(τ))

15.2 Assignment Statements 105

15.1.1 The Achievement Attitude

The achievement attitude is a special attitude which is used in the DO-
statement, as already shown in the preceding compiler specification. The
value of the achievement attitude is determined by the return value of the
ACME’s getAchievementId method, which by default is 0.

It is the responsibility of the ACME programmer to ensure that the achieve-
ment attitude does not interfere with any other attitude in the program.
This could be done by overriding the getAchievementId method, but for
the sake of interoperability, it is recommended to reserve attitude 0 for this
purpose, regardless of whether the DO-statement is used or not, and to avoid
declaring attitudes having the value 0 unless they will be used exactly for
this purpose. The price for such a reservation will only be a small increase
in the size of the knowledge base1.

15.2 Assignment Statements

An asignment statement updates the value of a previously bound variable
to a new value.

Syntax:

〈Assigmnent〉 ::= 〈Variable〉 = 〈Expression〉 ;

Notes:

The asignment statement has a read-only scope.

It is a semantic error to assign to an undefined variable, a wildcard variable
or to a variable which is not assignable15.4.

Semantics:

χ(ξ = ε)

≡
χ(ξ) = χ(ε) ;

1The extra memory amounts to an empty Map instance and a reference to it

106 Chapter 15. Rules and Statements

15.3 The IF Statement

The IF-statement is by far the most complex language construct in AgentC,
although its syntax is deceptively simple:

Syntax:

〈IfStatement〉 ::= IF 〈Guard〉 〈Block〉
(ELSIF 〈Guard〉 〈Block〉)∗
(ELSE 〈Block〉)?

〈Guard〉 ::= ((〈Condition〉 (, 〈Condition〉)∗)?)

Notes:

A block contained in an IF-statement are called branches.

Loosely defined, the IF-statement executes as follows:

• For each branch
◦ For each guard condition

∗ If the condition is not fulfilled, then continue to the next
branch.

∗ Otherwise, continue to the next condition
◦ Execute the branch once for each possible combination of values

which fulfil the guard condition(s), then exit the loop.

Hence, at most once branch can be executed, but it can execute any number
of times, depending on the guard conditions.

15.3.1 Conditions

A condition is a constraint on some expression values, or on the state of
the knowledge base. A simple condition is a condition which has only two
possible outcomes: either it is fulfilled, or it is not. A complex condition,
on the other hand, can be fulfilled in more than one way.

All simple conditions have an inverse condition, which is fulfilled exactly
when the condition itself is not. The compiler specifications found in the
following sections all mention how the inverse condition is produced. The
suffix notation −1 is used on syntactic variables to specify that the inverse
condition is used.

15.3 The IF Statement 107

The possible conditions are:

〈Condition〉 ::= 〈Comparison〉 | 〈NegatedCondition〉 |
〈MentalCondition〉 | 〈Action〉 | (〈Condition〉)

15.3.1.1 Comparison Conditions

Comparison conditions are simple conditions which are fulfilled only if the
two operand expressions fulfil the given relation.

Syntax:

〈Comparison〉 ::= 〈Expression〉 〈Relation〉 〈Expression〉
〈Relation〉 ::= < | <= | = | != | >= | >

Notes:

The entire comparison condition has a read-only scope.

It is the responsibility of the programmer to ensure that the types of the
two operand expression are compatible — otherwise a ClassCastException

will result when the condition is evaluated.

Semantics:

χ(ε1 == ε2)

≡
isequal(χ(ε1), χ(ε2))

χ(ε1 != ε2)

≡
!isequal(χ(ε1), χ(ε2))

χ(ε1 ρ ε2)

≡

108 Chapter 15. Rules and Statements

(((Comparable)χ(ε1)).compareTo(χ(ε2)) ρ 0

The inverse condition is handled as shown above, with the exception that
the symbols == and != should be exchanged, and that the second occurrence
of ρ should be replaced by ρ−1.

15.3.1.2 Negated Conditions

A negated condition is a simple condition which behaves as the inverse
condition of its operand.

Syntax:

〈NegatedCondition〉 ::= ! 〈Condition〉

Notes:

The negated condition has a read-only scope

Semantics:

χ(! ζ)

≡
χ(ζ−1)

15.3.1.3 Action Statements as Conditions

An action statement15.1 can be used as a simple condition. The condition
is fulfilled only if the action could be successfully executed. Hence, an
attempt to execute the action will occur when the condition is evaluated,
regardless of whether the corresponding branch will be executed.

Notes:

The action statement has a read-only scope

Semantics:

As defined in section 15.1. The inverse condition is obtained by prefixing
a ! to the compiled code.

15.3 The IF Statement 109

15.3.1.4 Mental Conditions

The fulfilment of mental conditions depends on the state of the knowledge
base. A mental condition is a simple condition iff it is a ground fact, and
a complex condition otherwise.

Syntax:

〈MentalCondition〉 ::= 〈Fact〉 (AS 〈Variable〉)?

Notes:

The optional variable following the fact is known as an alias; it will be
updated to contain the fact on its left every time the mental condition is
found to be fulfilled, and its scope extends from the location immediately
to the right of the alias and ends with the branch in which it occurs.

In the simple case, the mental condition is fulfilled iff the given ground fact
exists in the knowledge base.

In the complex case, the mental condition is fulfilled once for every ground
fact in the knowledge base which matches the given pattern. Let #B be an
attitude token; if the knowledge base contains the three facts

#B p(”a”, 0)
#B p(”b”, 0)
#B p(”c”, 1)

then the mental condition

#B p(?X, 0)

would be fulfilled twice, and the variable ?X would be bound once to the
value "a" and once to the value "b". The order in which these bindings
would occur is not generally known, but depends on the specific knowledge
base2.

2The specific knowledge base implementation in use by the ACME determines the
order in which facts are retrieved, and hence how the bindings will occur. The knowl-
edge base used by default — dk.dtu.imm.cse.agent.act.afc.AcmeKnowledgeBase — delivers
matching facts in the iteration order of the LinkedHashSet internally used to store them.
By default, therefore, facts will be returned in the order they were originally stored in
the knowledge base.

110 Chapter 15. Rules and Statements

Semantics:

For a ground fact φ used as a mental condition,

χ(φ)

≡
kBase.contains(χ(φ))

where the first φ refers to a mental condition, while the second φ refers to
a fact, for which χ(φ) has been defined in in section 14.7.1. The inverse
condition will result in an additional ! in front of the code.

The complex case is described in section 15.3.3.

15.3.2 About the Order of Conditions

Conceptually, the IF-statement resembles a DATALOG definite clause (c.f. [29]
§6.2.2): the head of the clause may be viewed as the branch of the IF-
statement, while the body of the clause corresponds to the list of conditions;
in both cases, variables are implicitly universally quantified.

For a number of reasons, the order in which conditions are specified is
significant, despite that the conditions implicitly are joined by a logical
conjunction, which in itself is commutative:

1. The occurrence of variable defs may make it impossible to swap two
conditions15.3.2.1

2. Conditions may have side-effects15.3.2.2

3. Efficiency of the resulting code depends on the order in which condi-
tions occur15.3.2.3

15.3.2.1 Scope Rules in Conditions

As the preceding descriptions of the various conditions have shown, only the
mental condition allows variable defs, since it is the only kind of condition
having a read-write scope; the occurence of a variable defs which is not an
alias will make the mental condition a complex condition. Since the general
scope rules12 also apply to the IF-statement, a variable use cannot precede

15.3 The IF Statement 111

a variable def, because the scope of a variable def only extends forwards
till the end of the branch.

For example, if ?X is not found in the enclosing scope, then

IF (Q q(?X) < 0, #B p(?X)) {
. . .

}

would be illegal, because the first occurrence of the variable ?X occurs in a
read-only scope (in the query). On the other hand,

IF (#B p(?X), Q q(?X) < 0) {
. . .

}

is legal, since the unbound variable ?X first occurs within a read-write scope
(in the mental condition), which affects the scope of the remaining branch,
such that ?X is not unbound inside the read-only scope of the query.

15.3.2.2 Conditions with Side-effects

Generally speaking, many conditions may have side-effects, that is, their
evaluation may affect the state of the program (ACME). For example, an
action statement is used solely for its side-effect. In many cases procedure
calls would be used for their side-effects rather than their result, and, de-
pending on the specific investigator, even a query might have a side-effect.

Because the ACC cannot determine which conditions will have side-effects
(let alone which of these side-effects are intended), the ACC does not try to
optimise code by rearranging conditions — this is the job of the AgentC
programmer15.3.2.3.

15.3.2.3 Efficient Condition Evaluation

Let c0, . . . , cn be a series of conditions, and φi denote the number of times
condition ci is fulfilled. Furthermore, let εi denote the number of times
condition ci is evaluated. Then,

εi =
i−1∏

j=0

φj

112 Chapter 15. Rules and Statements

In other words, every condition which is fulfilled n times will cause the
following condition to be evaluated n times as many as the preceding con-
dition (assuming that all conditions are fulfilled at least once).

In order to ensure that the whole IF-statement can be executed as effi-
ciently, it is therefore wise to place conditions in increasing order of com-
plexity, if possible, such that the combined number of condition evaluations
is minimised, and such that more expensive condition evaluations3 are per-
formed after the less expensive conditions evaluations4. For example,

IF (#B p(?X, ?Y), Q q(””) == 0) {
. . .

}

would evaluate Q q("") == 0 three times (if it were fulfilled), assuming
the same example knowledge base as shown in section 15.3.1.4. It would
be much more efficient to use

IF (Q q(””) == 0, #B p(?X, ?Y)) {
. . .

}

since Q q("") == 0 would then only be evaluated once. Furthermore, in
case it were not fulfilled, the evaluation of the complex condition would be
avoided altogether.

15.3.3 Semantics of the IF Statement

In the general case, the IF-statement can result in quite complex code. In
order to preserve readability, the semantics description is therefore given
in parts rather than all at once.

Consider a general IF-statement
3The evaluation of a complex condition requires a knowledge base match

operation5.3.3.2, whereas a simple condition only requires a knowledge base contains

operation5.3.3.2.
4Generally, evaluation of a negated condition or a comparison condition has the same

computational complexity as evaluation of the constituent condition(s). The computa-
tional complexity involved in evaluating an action statement depends on the actuator
implementation, while the expense of a procedure call depends on the contents of the
code for that procedure.

15.3 The IF Statement 113

IF (γ00, . . . , γ0λ0) {
β0

}
ELSIF (γ10, . . . , γ1λ1) {

β1

}
. . .
ELSIF (γ(n−1)0, . . . , γ(n−1)λn−1) {

βn−1

}
ELSE {

βn

}

Let Ξ(i, j) be a semantic function which specifies the compilation of guard
condition γij , and let ν be denote an integer which can be used as a suffix
in order to generate a new local variable5. Then the result would be

for (boolean matchedν = false; ;) {
do {

Ξ(0, 0)
matchedν = true;
χ(β0)

} while (false);
if (matchedν) break;
do {

Ξ(1, 0)
matchedν = true;
χ(β1)

} while false;
if (matchedν) break;
. . .
do {

Ξ(n− 1, 0)
matchedν = true;
χ(βn−1)

} while (false);
if (matchedν) break;

5The ACC uses the indentation level (i.e., the number of indentations prefixed on
the Java statement in question) for this purpose.

114 Chapter 15. Rules and Statements

χ(βn)
break;6

}

When compiling a guard γi0, . . . , γiλi , Ξ(i, n) is recursively defined using 4
different cases.

• For n > λi, Ξ(i, n) produces the empty string.
• If γin is a simple condition without an alias7, then

Ξ(i, n)

≡
if (χ(γ−1

in)) break;
Ξ(i, n + 1)

• If γin is a simple condition having an alias α, then

Ξ(i, n)

≡
tempFact = new Fact(χ(γin));
if (! kBase.contains(tempFact)) break;
∆(α , tempFact)
Ξ(i, n + 1)

• If γin is a complex condition having variable defs ξ0, . . . , ξµi at indices
δ0, . . . , δµi , then

Ξ(i, n)

≡
tempBitSet.clear();
tempBitSet.set(δ0);
. . .
tempBitSet.set(δµi);
List matchν = kBase.match(χ(γin), tempBitSet);

6The break is not produced if χ(βn) contains a RETURN-statement — otherwise the
breakstatement would be unreachable.

7Even though it is legal to explicitly use a wildcard variable as an alias, it will
technically not be an alias because it has no effect: the ACC represents the absence of
an explicit alias in the same way as an explicit wildcard variable alias.

15.4 The LET Statement 115

for (int iν = 0, maxν = matchν.size(); iν < maxν; iν++) {
tempFact = (Fact)matchν.get(iν);
∆(ξ0 , tempFact.getTerm(δ0))
. . .
∆(ξµi , tempFact.getTerm(δµi))
Ξ(i, n + 1)

}
In case the complex condition had an alias (other than a wildcard
variable) α, then the line

∆(α , tempFact)

should be inserted in the above before Ξ(i, n + 1).

15.4 The LET Statement

The LET-statement introduces a new variable binding in the scope in which
the statement occurs. The LET-statement is the only means of introducing
an assignable variable, that is, a variable whose value can be modified
explicitly in AgentC code15.2.

Syntax:

〈LetStatement〉 ::= LET 〈Variable〉 = 〈Expression〉 ;

Notes:

The scope of the variable is a write-only scope; the scope of the right-hand
expression is a read-only scope; after the statement, the enclosing scope
will bind the variable to the expression — unless the variable is a wildcard
variable, in which case the enclosing scope will not be modified and the
evaluated value will be discarded.

Semantics:

χ(LET _ = ε)

≡

116 Chapter 15. Rules and Statements

tempObj = χ(ε);

The reason that the ACC uses a temporary variable in this case is to
avoid ending up producing a simple expression, which is not a legal Java
statement; a more optimal solution would be to detect this case specially
and to avoid producing code, since no visible effect would result from the
simple expression evaluation.

Let ξ be a variable def, and let ι denote the corresponding ID. Then,

χ(LET ξ= ε)

≡
Object vι_ξ = χ(ε);

The above case generally demonstrates how the ACC produces code for a
variable def, although the right-hand side may vary. For this purpose, the
special notation

∆(ξ, ε)

≡
Object vι_ξ = ε;

will be used instead.

15.5 The LOCKED Statement

The LOCKED-statement is a means to ensure that the contents of the knowl-
edge base are consistent during execution of an entire block.

Syntax:

〈LockedStatement〉 ::= LOCKED 〈Block〉

Notes:

The block constitutes a new read-write scope.

15.6 Mental Updates 117

Concurrent access to the knowledge base is disallowed for the entire execu-
tion of the block. It is legal to nest LOCKED-statements, although only the
first of these will have any effect (except for a slight performance degrada-
tion).

Semantics:

χ(LOCKED β)

≡
synchronized (kBase.getLock()) {

χ(β)
}

15.6 Mental Updates

Mental update statements are statements which direcly influence the con-
tents of the knowledge base. Two kinds of mental update statements exist:

〈MentalUpdate〉 ::= 〈AdoptStatement〉 | 〈DropStatement〉

15.6.1 The ADOPT statement

The ADOPT-statement places a fact in the knowledge base; if the sentence
already existed in the knowledge base, the statement will not have any
effect.

Syntax:

〈AdoptStatement〉 ::= ADOPT (〈Fact〉 | 〈Variable〉) ;

Notes:

The scope of the ADOPT-statement is a read-only scope.

In case the adopted value is a variable, it is the responsibility of the pro-
grammer to ensure that the variable contains a Fact instance.

118 Chapter 15. Rules and Statements

Semantics:

For a variable ξ,

χ(ADOPT ξ)

≡
kBase.add((Fact)χ(ξ));

For a fact φ,

χ(ADOPT φ)

≡
kBase.add(χ(φ));

15.6.2 The DROP statement

The DROP-statement removes any number of facts from the knowledge base
which match a given pattern.

Syntax:

〈DropStatement〉 ::= DROP (〈Fact〉 | 〈Variable〉) ;

Notes:

If the right-hand side is a fact, it will belong to a read-write scope. A
variable def will have the effect that any term will match the variable.

If the right-hand side is a variable, it will belong to a read-only scope. It is
the responsibility of the programmer to ensure that the variable contains
a Fact instance.

Semantics:

For a variable ξ,

χ(DROP ξ)

≡

15.7 The RETURN statement 119

kBase.remove((Fact)χ(ξ));

For a ground fact φ

χ(DROP φ)

≡
kBase.remove(χ(φ));

For a fact φ having variable defs at indices δ0, . . . , δn,

χ(DROP φ)

≡
tempBitSet.clear();
tempBitSet.set(δ0);
. . .
tempBitSet.set(δn);
kBase.remove(χ(φ), tempBitSet);

15.7 The RETURN statement

The RETURN-statement determines which value should be returned from the
method generated from a procedure, and thus the value resulting from a
procedure call14.5.

Syntax:

〈ReturnStatement〉 ::= RETURN 〈Expression〉? ;

Notes:

The expression enforces a read-only scope.

If no RETURN-statement is explicitly given in a procedure, the ACC will
automatically insert RETURN; at the end of the procedure.

120 Chapter 15. Rules and Statements

It is a semantic error to let the RETURN-statement — or a LOCKED-statement15.5

whose block ends with a RETURN-statement — be succeeded by any rule in-
side the same block8.

Semantics:

χ(RETURN;)

≡
return null;

χ(RETURN ε;)

≡
return χ(ε);

15.8 The SAY statement

The SAY-statement allows the ACME to send an arbitrary message. The
message is sent using the ACME’s messenger, which, depending on the
implementation, determines how the addressee should be specified and how
to transport the message to the addressee.

Syntax:

〈SayStatement〉 ::= SAY 〈MessagePattern〉 ;
〈MessagePattern〉 ::= [(〈Attribute〉 (, 〈Attribute〉)∗)?]
〈Attribute〉 ::= 〈Identifier〉 = 〈Value〉

Notes:

The SAY-statement enforces a read-only scope.

It is a semantic error to use the same identifier in more than one attribute.

Semantics:

8The restriction is necessary in order to ensure that the generated code is free of
unreachable statements as defined in [17] §14.20

15.9 Message Rules 121

χ(SAY [ι0 = ε0, . . ., ιn = εn] ;)

≡
tempMap = new HashMap(2(n + 1));
tempMap.put(ι0, χ(ε0));
. . .
tempMap.put(ιn, χ(εn));
send(tempMap);

15.9 Message Rules

A message rule conditionally executes a block based on whether the mes-
sage parameter of the procedure matches a given pattern. Message rules
are not statements and hence cannot be nested; however, since the mes-
sage parameter is fixed for the entire procedure, there is no reason to do so
anyway.

Syntax:

〈MessageRule〉 ::= WHEN (NOTHING | 〈MessageGuard〉) 〈Block〉
〈MessageGuard〉 ::= [(〈xAttribute〉 (, 〈xAttribute〉)∗)?]
〈xAttribute〉 ::= 〈Identifier〉 = (〈Expression〉 |

〈Fact〉 (AS 〈Variable〉)?)

Notes:

In case an AS-clause is given, the variable is denoted an alias for the expres-
sion; an alias always occurs in a write-only scope. Otherwise, the message
rule, including the block, constitute a read-write scope.

Semantics:

The simplest case is

χ(WHEN NOTHING β)

≡

122 Chapter 15. Rules and Statements

if (msg == null) {
χ(β)

}

In general, let α0, . . . , αn be the attributes of the guard pattern. Then,

χ(WHEN [α0, . . ., αn] β)

≡
while (msg != null) {

χ(α0)
. . .
χ(αn)
χ(β)
break;9

}

Consider an attribute ι = ε which does not contain any variable defs. Then,

χ(ι = ε)

≡
if (! msg.containsKey(ι)) break;
tempObj = msg.get(ι);
if (! isEqual(tempObj, χ(ε))) break;

If ε were a variable def ξ, then

χ(ι = ε)

≡
if (! msg.containsKey(ι)) break;
tempObj = msg.get(ι);
∆(ξ , tempObj)

Finally, consider the case where ε is a fact. First, the lines
9The break will not be added if β ends with a RETURN-statement

15.9 Message Rules 123

if (! msg.containsKey(ι)) break;
tempObj = msg.get(ι);
if (!(tempObj instanceof Fact)) break;
tempFact = (Fact)tempObj;

will be produced. Then, in case of a ground fact, the line

if (! tempFact.equals(χ(ε)) break;

will be added. Otherwise the fact in question will contain variable defs ξi

for i ∈ δ0, . . . , δn; in this case the lines

tempBitSet.clear();
tempBitSet.set(δ0);
. . .
tempBitSet.set(δn);
if (! tempFact.equals(χ(ε), tempBitSet) break;
∆(ξδ0 , tempFact.getTerm(δ0))
. . .
∆(ξδn , tempFact.getTerm(δn))

will result. Finally, if an alias not being a wildcard variable, say ξα, has
been specified, then the line

∆(ξα , tempFact)

will be produced.

124 Chapter 15. Rules and Statements

Part IV

System Test

125

127

Chapter 16

System Test Strategy

Each component of the ACT has been thoroughly hand-tested during de-
velopment. In order to ensure overall system correctness, however, an ex-
tensive and reproducible test setup is required. Since it is a key design
objective that the ACT should serve as a tool for experiments with agent-
based systems2.1, it seems a good idea to make a combined solution to the
two goals. Therefore:

• The ACT should incorporate a large-scale test bed on which the
toolkit can be thoroughly tested.

• The test bed should be somewhat complex in order to discover the
strengths and uncover the weaknesses of the ACT.

• The test bed application should make a relevant case for the use of
agents, in order to ensure that the evaluation of the ACT is mean-
ingful.

• The test bed should preferably allow for solutions of a complexity
ranging from the very simple to the highly complex. In this way
some significant benefits are gained:
◦ It will be possible to provide a demo application based on the

test bed, without making the demo unduly complex. A descrip-
tion of the demo can then be instructive for potential users of
the ACT.

◦ The test bed can be used as the basis of experiments with various
more or less complex agent-based systems.

128 Chapter 16. System Test Strategy

The demands on the test scenario stated above can should not be underes-
timated, though: with an increase in generality of the test bed, the problem
of makning a relevant demo becomes harder, since more possibilities must
be considered.

The choice and design of the test bed is the subject of the next chapter,
while its implementation is described in chapter 18 and appendix B respec-
tively. Chapter 19 describes the design and implementation of the demo.

16.1 Choosing a Test Bed

Diplomacy r© is a board game for up to 7 players, each of which controls
one of the Great Powers1 of pre-World War I Europe; the objective of the
game is to gain control of the map through diplomatic negotiations and
army movements. Negotiations play a central role in the game. To quote
[4],

“Diplomacy is a game of negotiations, alliances, promises kept,
and promises broken. In order to survive, a player needs help
from others. In order to win the game, a player must eventually
stand alone. Knowing whom to trust, when to trust them, what
to promise, and when to promise it is the heart of the game.”

The game was originally invented by Allan B. Calhamer around 1959, and is
presently published by Avalon Hill Games, Inc. [4], to which the trademark
is registered.

Diplomacy has been chosen as the basis of the test bed because:

• The key role of negotiation makes Diplomacy relevant in relation to
the ACT, since each player is easily conceptualised as an agent.

• The game concepts are generally speaking fairly simple, although the
game contains many details (the rules [4], with explanatory figures
and examples, take up 24 A4 sheets). In terms of state space, however,
the game is undoubtedly complex: the game contains 74 provinces
and anywhere between 2 and 34 units which each occupy a different
province. Two types of units exist, and each unit belongs to one out

1The Great Powers are: England, Germany, Russia, Turkey, Italy, France and
Austria-Hungary.

16.1 Choosing a Test Bed 129

of 7 players. Not every location allows every type of unit, though,
and no player can own more than 18 units.
Since units move simultaneously, the number of possible state tran-
sitions is equally large: depending on the game situation a unit can
have more than 30 possible moves, although 3–10 is more typical.

• Due to the use of negotiation and the large state space involved,
the application can indeed accommodate solutions of wildly varying
complexity.

In order to focus on the main issue — negotiation — the test bed is a
somewhat simplified version of Diplomacy; its design is described in the
next chapter.

130 Chapter 16. System Test Strategy

131

Chapter 17

The Game of Haplomacy

The game of Haplomacy is a simplified version of Diplomacy16.1, as the
name implies1. The current chapter describes the basic concepts of the
game, using the same terminology as used in [4].

17.1 Design Idea

Haplomacy mainly simplifies Diplomacy in two ways:

• Haplomacy uses only one kind of unit, where Diplomacy uses both
armies and fleets. The result is a large reduction in the complexity
necessary to adjudicate ordersB.3.1, but with a less significant reduc-
tion in the complexity and playability of the game.

• Haplomacy is an abstraction of Diplomacy. For example, the game
board is based on a general graph data structure, rather than a map
of Europe anno 1900 whose geographical characteristics make special
exceptions to the movement rules. The benefit is a simpler, cleaner
implementation which does not get bogged down by simulation details
which are irrelevant to the application.

1The word ‘diplomacy’ derives from the Greek ‘diploos’, meaning double or two-fold ;
analogously, ‘haploos’ means single or simple, hence the name Haplomacy.

132 Chapter 17. The Game of Haplomacy

17.2 Basic Game Concepts

The game of Haplomacy is played by 2–7 players, each of which are
identified by a number in the range 0–6.

Each player controls a number of units, which are placed in provinces on a
game board , such that each province is either vacant or occupied by exactly
one unit. A subset of the provinces are support centres, which can either
be owned by a player or be neutral. The support centres which have a
designated initial owner (i.e., the support centres which are not initially
neutral) make up the home country of their designated owner.

The game is played in turns, identified by an integer which is initially 0.
Each turn has two seasons, spring and fall — simply written ‘S’ or ‘F’.
Thus, the turns of a Haplomacy game are, in order, 0S, 0F, 1S, 1F, etc.

Each turn begins with a negotiation phase where each player has a chance to
detect and to influence the strategy of other players, and vice-versa. There
are no restrictions or requirements whatsoever on how this negotiation is
to be performed.

Once negotiations have come to an end, each player issues orders to their
own units, after which all orders are simultaneously revealed and their
combined results adjudicated according to a set of rules. As an effect of
this adjudication, it may be necessary for one or more units to retreat, which
is handled in a separate phase. In the fall, an additional adjustment phase
takes place; here, each player gains or loses units based on the number of
support centres they own.

The winner of the game is the first player to own more than half of the
support centres of the game board.

17.3 The Haplomacy Game Board

The Haplomacy game board is not a fixed design, but rather a general un-
weighted, undirected graph data structure, where each vertex corresponds
to a province (which is either an ordinary province, or a support centre; in
the latter case, the support centre may also has a designated initial owner),
and each edge identifies the borderlines between provinces2.

2A province is by definition not adjacent to itself.

17.4 Giving Orders 133

Nevertheless, in order to make a standardised scenario for the test bed,
a default game board has been defined. Since the default game board is
treated exclusively in the remains of the document, the shorter term game
board will be used with reference to default game board.

The default game board, which is shown in figure 17.1 below, is a 9×9 grid
of provinces. Each province is identified by a single letter indicating the
column (A, B, . . .) followed by a single digit indicating the row (starting
from 0). Provinces are adjacent to each other both vertically, horizontally
and diagonally. The game board is symmetrical, and is exclusively designed
for 4 players. Each home country consists of 3 support centres, and 9
additional support centres are neutral. The grand total of support centres
is thus 21, which makes 11 support centres required to win the game.

Figure 17.1: The default Haplomacy game board. Units are shown as
circles in the colour of their respective owner; support centres are framed
in the colour of their owner.

17.4 Giving Orders

The possible orders for a unit are:

134 Chapter 17. The Game of Haplomacy

• hold , meaning that the unit attempts to stay in the province it cur-
rently occupies.

• move, meaning that the unit attempts to enter a new province, which
must be adjacent to the province it currently occupies. This province
is said to be the destination of the move. If the destination is oc-
cupied, the move is said to be an attack, and the occupying unit is
being attacked by the moving unit.

• support , meaning that the unit will holds its current position, but will
combine its strength with another unit, which possibly could belong
to a different player. A support is valid only if
◦ The supported unit is ordered to hold and is occupying a province

which is adjacent to the location of the supporting unit.
or
◦ The supported unit is ordered to move into a province which is

adjacent to the location of the supporting unit3.

In contrast to Diplomacy, there is no requirement that the order given
will fail if the order does not mention the specific order of the supported
unit: in Haplomacy, a support order is expressed simply by specifying
the supported unit.

17.5 Resolving Orders

The order resolution phase is, even with the simplifications performed in
Haplomacy, rather complex. The general principles are the following:

• Only one unit can occupy a province at a time.
• All units have equal strength.
• A unit being supported by n units has a combined strength of n +

1. A unit and its supports are collectively denoted an army . The
supported unit in an army is denoted the army leader .

• If a unit giving support is attacked, support will be cut, i.e. the effect
of the support will be nullified.

• If two (or more) armies of equal sizes try to occupy a province the
result will be a standoff : all units involved will fail to move.

3The graph should prevent a province from being adjacent to itself to avoid a unit
from supporting an attack on itself.

17.6 Retreats 135

• If a unit is attacked by a larger army than its own, then the attacked
unit will be dislodged : the unit fails to move, is removed from its
current location and is forced to retreat.

Due to the large amount of material involved, the full adjudication proce-
dure is described in appendix B.

17.6 Retreats

The units which were dislodged as the result of the movement phase are
forced to retreat, that is, to move to a province which fulfils the following
criteria:

• The province must be adjacent to the province from which the unit
was dislodged.

• The province must be vacant.
• The province cannot have been left vacant as the result of a standoff.

If no such province exists the dislodged unit will be disbanded, i.e., it will
be removed from the game.

The units which are not disbanded are given a movement order to one of the
eligible provinces. Contrary to the case in Diplomacy, the choice of province
is performed automatically following a fixed procedure: the province which
minimises the sum of distances to the provinces of the unit’s home country
(using half the sum of distances in case the province is part of the home
country), making an arbitrary choice in case of a tie.

After all dislodged units have been given a movement order, the moves are
resolved as usual17.5. In case two or more retreating units are standing each
other off, they will all be disbanded.

17.7 Adjustments

After a fall turn has been executed, ownership of the support centres of the
board is established, using the following rules:

• A province which is vacant at the end of a fall turn retains its current
owner, regardless of events in the spring turn.

136 Chapter 17. The Game of Haplomacy

• Ownership of a province which is occupied by a unit at the end of a
fall term is transferred to the owner of the occupying unit.

Once ownership of the support centres has been established, the number of
units owned by each player will be adjusted to match the number of owned
support centres. Adjustments are carried out as follows:

• A player who has lost control of all support centres is eliminated from
the game.

• A player who has control of more than half of the support centres
will be declared the winner of the game.

• A player who owns more units than support centres will be forced
to disband the excess units. The units are disbanded by repeatedly
selecting the unit the farthest from its home country, that is, the unit
whose location maximises the sum of distances to the provinces of the
unit’s home country, making an arbitrary choice in case of a tie.

• A player who owns more support centres than units may place extra
units in the unoccupied support centres of its home country, but
nowhere else; it may therefore be the case that a player begins a
spring turn with more support centres than units, but not vice-versa.
Build locations are selected automatically, using an arbitrary choice
between the eligible support centres.

137

Chapter 18

The Haplomacy Test Bed

A simulator for the Haplomacy game which has been introduced in the
preceding and whose full set of rules are specified in appendix B, has been
implemented as part of the demo package in the ACT. The implementation,
which is denoted the test bed , makes a standardised test scenario which
fulfils the requirements stated in chapter 16.

The UML class diagram in figure 18.1 on the next page shows the overall
structure of the Haplomacy test bed implementation. The various classes
are briefly described in the following.

18.1 The HaplomacyBoard Class

The class demo.HaplomacyBoard represents the game board itself and its
state, that is, the location of units and their orders; this information is
contained in the NeighbourGraph instance. The class can be instantiated
with a custom-made game board if desired, but it defaults to using the
default game board shown in figure 17.1 on page 133.

In addition to the above, the HaplomacyBoard contains a pre-calculated dis-
tance matrix for the graph (which does not change during the course of
the game) in order to provide this information (which is used repeatedly
during the retreat and build phases) as quickly as possible. Apart from
the cached distance matrix, the HaplomacyBoard also provides functionality

138 Chapter 18. The Haplomacy Test Bed

HaplomacyGame

HaplomacyBoard

1
1

Display

1

1

Unit

DefaultProvince

Province

NeighbourGraph

1

1

1

*

1..2

0..1

1

0..1

1

1..*

1

1..*

Figure 18.1: Structure of the test bed implementation.

to visualise (and to customise the visualisation of) the game board itself,
using the Display class described below.

18.1.1 The Display Class

The class Display is an inner class in HaplomacyBoard. The class is itself
a specialization of javax.swing.JComponent, and it provides a visualisation
of the entire game board. Figure 17.1 on page 133 as well as the various
figures in appendix B have all been created from the output of the Display.

18.2 The NeighbourGraph Class

The class util.NeighbourGraph is a generic data structure representing an
arbitrary unweighted graph, using a standard neighbour-list representa-

18.3 The Province Class 139

tion internally. In addition to the representation-related methods the class
provides functionality to calculated shortest-path distances.

The NeighbourGraph allows any Object instance to represent a vertex; when
used in the test bed, however, the vertices are assumed to be Province

instances.

18.3 The Province Class

The abstract class demo.Province represents a single province in the game
board, and specifies the methods necessary to visually render the province,
and implements a set of methods to maintain its internal state — the unit
which optionally occupies it.

18.3.1 The DefaultProvince Class

The DefaultProvince is used in the default game board. It specialises
the Province class by providing the code necessary to visually render the
province as a single square (and optionally a row/column label) at a loca-
tion specified to its constructor.

18.4 The Unit Class

The Unit represents a single unit. Its internal state consists of its location
(a Province), its destination (the Province to which the unit optionally has
been ordered to move) and the Unit which it optionally has been ordered
to support.

In addition to the above, the Unit contains code to render itself and to
show its current orders, c.f. the diagrams in appendix B.1.

18.5 The HaplomacyGame Class

The class demo.HaplomacyGame represents an entire game of Haplomacy. It
internally uses a HaplomacyBoard to represent and visualise the game board,
but also maintains separate lists of the units and support centres.

140 Chapter 18. The Haplomacy Test Bed

The main idea of separating the HaplomacyGame from the HaplomacyBoard is
to separate the static and the dynamic behaviour of the game: HaplomacyBoard
is a data structure to represent the game state, while HaplomacyGame is re-
sponsible for the dynamic behaviour of the game, i.e. for executing a single
turn of the game1.

The method update in HaplomacyGame transforms the state of the game into
a new state corresponding to the advancement of a single turn in the game.
This transformation is carried out according to the general principles in
sections 17.2 and 17.5, and the specific rules in appendix B; hence the
HaplomacyGame implements an adjudicator which uses the algorithm speci-
fied in appendix B.3.1. The computational complexity of that algorithm,
as implemented in the HaplomacyGame, is briefly described in section 18.5.3.

In addition to adjudication of orders, the HaplomacyGame provides two differ-
ent simple strategies for giving orders; these are described in sections 18.5.1
and 18.5.2.

18.5.1 A Defensive Strategy

The method giveDefensiveOrders in HaplomacyGame gives orders to the units
of a player following the simple strategy described in the following.

In addition to the player ID the method takes two parameters: a set of
friendly players and a set of neutral provinces, which influence the orders
in certain situations. For each unit owned by the player its orders are given
according to the following rules:

• If the unit is occupying a support centre owned by the player, then
order that unit to hold it.

• Otherwise, if the unit is adjacent to a province which is not neutral
and which is part of the player’s home country then
◦ If the province is occupied by one of the player’s own units, then

support that unit.
◦ Otherwise, if the province is not occupied by a friendly player,

then order the unit to attack the province
• Otherwise, locate the support centre nearest to the unit under the

following restrictions:
1It is assumed that orders — which are represented in the Unit instances of the game

— have been specified at an earlier time.

18.5 The HaplomacyGame Class 141

◦ The support centre cannot be neutral.
◦ The support centre cannot be occupied by a friendly player.
◦ If the support centre is owned by the player it must be empty.
◦ If the support centre is not owned by the player it must be part

of the player’s home country
Then order the unit to the chosen support centre, if it is adjacent
to the unit, and otherwise to an adjacent province en route to that
support centre, such that the following criteria are fulfilled:
◦ The destination province cannot be neutral2.
◦ The destination province cannot be occupied by a friendly player.
◦ The destination province should preferably be empty. A province

which is occupied (either by the player itself or by a player which
is not considered friendly) should be selected only if no other
possibility exists3.

◦ In case no province fulfils the criteria the unit is ordered to hold.

18.5.2 An Offensive Strategy

The offensive strategy — which is executed by the giveOffensiveOrders

method shares many aspects of the defensive strategy18.5.1; the strategy
also uses a set of friendly players and neutral provinces, in addition to
a parameter defining the strength of the attack: if the player controls n
units, then an attack of strength σ will encompass bn · σc units, while the
remaining units will be ordered to hold.

The strategy is executed by first finding a target support centre, which the
attacking units will try to occupy. The target is subject to the following
restrictions:

1. The target support centre cannot be neutral.
2. The target support centre cannot be occupied or owned by a friendly

player.
3. The target support centre cannot be owned by the player itself.

Among the eligible support centres (if any) the target is found in the fol-
lowing way:

2Once a unit has been ordered to a certain province, that province is considered to
be neutral — otherwise the player’s own units would cause a standoff

3It is generally not sufficient to attack an occupied province without support — the
order will not have any effect unless the occupant moves by itself.

142 Chapter 18. The Haplomacy Test Bed

• If an eligible support centre is occupied by the player, then order the
occupying unit to hold and select that support centre as the target.

• Otherwise, choose the eligible support centre which minimises the
sum of distances to the player’s units. If at least one of the support
centres of the player’s home country was eligible, then the target is
selected only among these support centres4.

In case no target could be found, then the strategy fails, i.e., no orders will
be given; the return value of the giveOffensiveOrders method will indicate
whether this is the case.

If a target was found, then the specified number of units will be given orders
in the following way:

1. Sort the units by their distance to the target.
2. Select the units to participate from the sorted list of units, ignoring

the units for which it is impossible to participate due to the restric-
tions (friendly units and neutral provinces). Each participating unit
is given a movement order as described at the end of section 18.5.1;
if more than one unit were adjacent to the target, then only one will
attack the target while the others will support it.

18.5.3 Complexity of the Adjudication Algorithm

The adjudication algorithm implementation relies on fast access to certain
data5, which are maintained separately by the HaplomacyGame. Additionally,
the algorithm builds extra data structures6 during the validation of orders.
For a game containing n units, this initial phase can be executed in O(n)
time, with an additional memory consumption of O(n).

For each step in the algorithm, every unit not ordered to hold will have to
be examined at least once (but not more than a few times in total). Due to
the data structures which are maintained during the algorithm (of which
only operations of (amortised) constant time are used), the asymptotical
computational complexity is bounded by the number of times the algorithm

4It is generally better to try to regain control of the home country than to occupy a
new support centre, since that leaves more possible locations for new units to be built.

5The relevant data include various subsets of the units and provinces of the
HaplomacyBoard.

6The additional data structures — which are updated during each step of the algo-
rithm — map units to their supports, attackers etc.

18.5 The HaplomacyGame Class 143

is run, multiplied by the number of units examined in each run. Since every
step of the algorithm is guaranteed to change the orders of at least one
unit to a hold order, the worst case running time of the entire algorithm is
therefore

O(n) +
1∑

i=n

O(i)

which amounts to
O(n2)

Since the number of units is bounded by the number of support centres
in the game (which is 21 in the default game board), a computational
complexity of O(n2) should not present a problem in practice. Furthermore,
the algorithm generally provides a better performance than O(n) — it is
actually Ω(n).7

7The algorithm generally removes the largest possible number of units from consid-
eration at each step. Moreover, at the first step in the actual implementation, every
eligible unit (a unit ordered to move into an empty province which is not targeted by
any other unit) is found and moved in one step, requiring only O(n) total. In the best
case this bounds the running time of the entire algorithm.

144 Chapter 18. The Haplomacy Test Bed

145

Chapter 19

Playing Haplomacy With
AgentC

With the test bed18 being established, the subject of the demo is fairly
obvious: the demo should be simulated Haplomacy game played by agents
constructed by means of the ACT.

What is missing in order to reach the goal will then be the following:

1. A communicative constituent and a reactive constituent for the player
agents??.

2. A suitable set of extension modules which allow the agents to interact
with the game simulation??.

3. A component which controls the game simulation19.3.
4. Definition of the attitudes and facts to be used in the player programs19.4.
5. A protocol for agent communication19.5.
6. ACMEs which can control the agents, i.e., the players19.6

All classes relating to the demo have been collected in the demo.package of
the ACT.

146 Chapter 19. Playing Haplomacy With AgentC

19.1 The DemoAgent

The DemoAgent provides a simple agent implementation. The class extends
util.MessageController8.1.4, and it distributes messages to the appropri-
ate methods of the DemoAcme19.2, based on special control messages from
the game simulation19.3. The DemoAgent therefore serves as a combined
communicative and reactive constituent.

19.2 The DemoAcme

The DemoAcme is the implementation basis for the ACMEs which represent
the four players. The class overrides some of the methods of its superclass
afc.Acme5.1 such that its actions can be logged; this is useful when analysing
the behaviour of the ACMEs. Equally important, though, is that the
DemoAcme specifies a set of procedures13.4 whose signatures are inherited7.1.4

by the AgentC code.

The inherited code is described in sections 19.2.1 and 19.5. The DemoAcme

relies on the extension modules which are described in sections 8.1.3, 19.2.2
and 19.2.3. Appendix C lists the AgentC source code for the set of
ACMEs used in the system test; these all implicitly inherit from the
DemoAcme, which must be specified to the ACC as their superclass.

19.2.1 The DemoAcme Signature

By specifying DemoAcme as the superclass of the output class, the ACC will
implicitly7.1.4 produce the AgentC code

DEFS {
$RED = 0;
$BLUE = 1;
$GREEN = 2;
$YELLOW = 3;

}

PROCEDURE init();
PROCEDURE negotiate();
PROCEDURE giveOrders();

19.2 The DemoAcme 147

PROCEDURE updateStatus();

in addition to the code inherited from the DemoProtocol interface19.5 imple-
mented by the DemoAcme.

The four symbol definitions above correspond to the identity codes used by
the four different ACMEs, and to their player numbers in the game.

The initialisation procedure init is called once by the DemoAgent19.1 con-
structor, allowing the ACME to perform special initialisation code.

The procedure negotiate is the main procedure of the ACME; it is called
once for each message received during the simulation’s negotiation phase19.3,
and is also called with a certain timeout if no messages are received. The
AgentC code will therefore typically contain series of message rules match-
ing a distinctive message pattern, which respond appropriately to incoming
message based on the ACMEs beliefs about the player who sent the mes-
sage. Additionally, the procedure will most probably contain a single

WHEN NOTHING {
. . .

}

message rule where the ACME determines which new messages to be sent,
by investigating the knowledge base and using the queries provided by the
DemoInvestigator19.2.2. If this rule is the only part of the procedure which
sends new messages, the timeout period used by the DemoAcme effectively
limits how many new negotiations the ACME will start, and hence also
limits the processing time necessary to simulate the negotiation phase.

The procedure giveOrders is called once by the DemoAcme after negotiations
have ended. The procedure conveys the ACMEs intentions to the simula-
tion by issuing one or more of the actions defined in the DemoActuator19.2.3.

The procedure updateStatus is called by the DemoAcme once for every mes-
sage sent by the game simulation after orders have been adjudicated, and
an extra, final time with NOTHING as parameter. This allows the ACME
to adjust its beliefs about the other players by judging their actions, and
to pre-calculate its goals for the next negotiation phase.

148 Chapter 19. Playing Haplomacy With AgentC

19.2.2 The DemoInvestigator

The DemoInvestigator provides a series of queries which can be used to
make simple player strategies. The queries provided are:

add(x, y)
Calculates the sum of the two numeric or string operands.

sub(x, y)
Calculates the difference between the two numeric.

mul(x, y)
Calculates the product of the numeric operands.

div(x, y)
Calculates the quotient of the numeric operands.

random(x)
Yields a random number in the range [0, x).

random()
Yields a random number in the range [0, 1).

strongestPlayer()
Determines the number of the player currently having the most
units.

strongestOpponent()
Determines the number of the player currently having the most
units, without considering the player controlled by ACME itself.

weakestPlayer()
Determines the number of the player currently having the least
units.

weakestOpponent()
Determines the number of the player currently having the least
units, without considering the player controlled by ACME itself.

strengthOf(x)
Determines the strength of the specified player, relative to the
other players.

19.2.3 The DemoActuator

The DemoActuator is used by the ACMEs to place orders for their respective
units in the game simulation. The DemoActuator defines three actions:

print Prints the concatenation of the parameters, followed by a line-
break character, to System.out. In contrast to the other actions
provided, the print action behaves specially in the sense that no

19.3 The HaplomacyDemo 149

fixed number of parameters is required — any number of param-
eters is accepted.

registerFriend(x)
Registers that the player x is considered to be friendly.

unregisterFriend(x)
Removes the registration of player x being friendly.

resetFriends()
Resets the internal list of registered friendly players.

defend()
Gives the player’s units a set of defensive orders18.5.1; the pre-
viously registered friendly players influence how these orders are
given.

attack(x)
Gives the player’s units a set of offensive orders18.5.2, using x per-
cent of the player’s units in the attack. The previously registered
friendly players influence how the orders are given. In case no
suitable support centre could be chosen for the attack the action
will fail, i.e., no orders will be given, and the action statement
will, when evaluated as a condition, not be fulfilled.

19.3 The HaplomacyDemo

The HaplomacyDemo class implements a Haplomacy game simulation, using
the default game board; the only arguments to its constructor are the
four DemoAcme instances which should be used to control the four players
— the necessary PostOffice, DemoAgents, their extension modules and the
HaplomacyGame instance will then be created automatically.

The main purpose of the HaplomacyGame is to provide a centralised coordi-
nation of the agents, such that the negotiation and order writing phases
are clearly separated; in addition, the HaplomacyGame sends status messages
to the player agents after orders have been adjudicated.

The simulation has 6 internal states called phases; the simulation progresses
by switching from one phase to the next in a cyclic fashion. Three of the
phases are active in the sense that a number of agents are potentially
executing in parallel, while the remaining phases are passive, meaning that
none of the agents are executing. The simulation alternates between a
passive and an active phase; the purpose of the passive phases (which may
seem superfluous at a first glance) is to provide breakpoints where the

150 Chapter 19. Playing Haplomacy With AgentC

internal state of the simulation is stable, such that it can be examined.
The phases used by the simulation are the following:

1. Beginning of turn (passive)
2. Negotiation (active) — all agents execute in parallel1.
3. End of negotiation (passive)
4. Order writing (active) — each agent executes in parallel2.
5. End of order writing (passive)
6. Adjudication (active) — the HaplomacyDemo adjudicates the given or-

ders and sends status messages to the player agents3.

The HaplomacyDemo class both provides a method to advance the simula-
tion phase one step at a time, and a method to play one or more entire
game turns at once. It even defines a method to play one or more entire
game simulations; this method is the basis of the system test described in
chapter 20

19.4 Using the Knowledge Base

For the simple protocol19.5 and player strategies18.5.2 the attitudes specified
by

ATTITUDES {
#DID = 0;
#BELIEVE = 1;
#B = 1;
#INTEND = 2;
#I = 2;

}

are more than sufficient. Only two specific types of facts have been given
a fixed meaning common to all player ACMEs, as defined below; however,
some of the player ACMEs may also use the attitudes in their internal
implementation.

1The DemoAgents continuously call the respective negotiate procedures for each incom-
ing messages, or after a given timeout

2The DemoAgents call their respective ACMEs’ giveOrders procedures once.
3Each DemoAgent invokes their respective ACMEs’ updateStatus procedures once for

each status message sent, and a final time with NOTHING as parameter.

19.5 Communication Protocol 151

#B relation(?X, ?Y, ?r) represents the agent’s belief that the player
relation19.4.1 between ?X and ?Y has value ?r.
#I relation(?X, ?l, ?u) is used in communication to represent the
sender’s intention that the receiver’s player relation towards ?X should
be in the range [?l, u].

19.4.1 The Player Relation

The player relation #B relation(?X, ?Y, ?r) determines how player ?X
treats player ?Y. The value used in the player relation is a floating-point
value in the range [−1.0, 1.0]; 0.0 represents a neutral relation, a value larger
than 0.0 denotes a friendly relation, while a value less than 0.0 indicates a
hostile relation.

When giving orders the ACMEs use their beliefs about the player relation
to determine which players are eligible for an attack, and which should be
left alone.

The initial value of the player relation is determined by the specific ACME,
which also determines how negotiations and actions should influence the
value.

Although the form of the player relation generally allows beliefs about other
player’s beliefs to be represented, the demo ACMEs solely store beliefs
about their own relations, meaning that SELF will be stored in the first
term.

19.5 Communication Protocol

The choice of communication protocol in the demo defines how and about
what the agents can communicate. In order to keep the implementation as
simple as possible the communication protocol is itself rather rudimentary.

19.5.1 Message Structure

The demo uses a GMI message structure. The following fixed attribute
names are used4:

4The strings are defined by the DefaultMessenger8.1.3 class.

152 Chapter 19. Playing Haplomacy With AgentC

to Holds the ID of the ACME to which the message is addressed.
from Holds the ID of ACME which sent the message, or the spe-

cial constant simulation, if the message was sent from the game
simulation19.3.

type Holds a string constant which identifies the type of message5;
these constants are the sole contents of the DemoProtocol interface,
from which the DemoAcme inherits; hence the constants are directly
usable in the AgentC code7.1.4.

contents Holds an AgentC value whose interpretation depends on the
type of the message.

19.5.2 Message Contents

The message content language is the language of AgentC values14.

19.5.3 Message Semantics

The DemoProtocol interface defines a set of String constants which can used
as type specifications. The constants themselves, and their prescribed usage
which is defined in table 19.1 on the facing page, constitute the message
semantics.

19.5.4 Message Protocol

The message protocol defines when and how a message can legally be sent.

Simple as it is, the communication protocol allows only two kinds of mes-
sage exchanges:

1. A notification, meaning that a single message which cannot be an-
swered is sent.

2. A conversation, meaning that some message is sent, to which the
recipient is obliged to answer in a given way. The message initiating
the conversation is known as a request , while the message which ends
the conversation is known as a reply .

5The type is the equivalent of a performative in KQML. The word type is preferred
in the demo because it is easier to type in the AgentC program.

19.5 Communication Protocol 153

type contents Description
UNIT ATTACKED An agent ID Sent by the simulation to indi-

cate that the receiver was at-
tacked by the given player.

SUPPORT CENTRE ATTACKED An agent ID Sent by the simulation to in-
dicate that a support centre
owned by the receiver was at-
tacked by the given player.

SUPPORT CENTRE CONQUERED An agent ID Sent by the simulation to in-
dicate that a support centre
originally owned by the re-
ceiver overtaken by the given
player.

PLAYER ELIMINATED An agent ID Sent by the simulation to indi-
cate that the given player was
eliminated from the game.

REQUEST #I relation(?X, ?l, ?u) The sender requests that the
relation of the recipient to-
wards player ?X should be in
the range [?l, ?u].

ACCEPT . . . The sender accepts a pre-
vious request, retransmitting
the contents.

REJECT . . . The sender rejects a previ-
ous request, retransmitting
the contents.

Table 19.1: Semantics of the message types defined in the DemoProtocol

interface

154 Chapter 19. Playing Haplomacy With AgentC

The overall rules set by the message protocol are the following:

1. A request must be answered in the way prescribed in table 19.2 under
here

2. An agent should reply to a received request as soon as it is able to
do so.

The possible notifications are the following:

1. UNIT ATTACKED

2. SUPPORT CENTRE ATTACKED

3. SUPPORT CENTRE CONQUERED

4. PLAYER ELIMINATED

None of these may be sent by a player agent — the notifications are used
exclusively by the simulation to notify agents of results.

Table 19.2 lists the two possible conversations. No other conversations are
legal.

Request [from=?S,to=?R,type=REQUEST,contents=#I relation(?X,?l,?u)]

Reply [from=?R,to=?S,type=ACCEPT,contents=#I relation(?X,?l,?u)]

Request [from=?S,to=?R,type=REQUEST,contents=#I relation(?X,?l,?u)]

Reply [from=?R,to=?S,type=REJECT,contents=#I relation(?X,?l,?u)]

Table 19.2: Conversation protocol

19.6 Haplomacy Player ACMEs

Four different ACMEs have been defined; their full AgentC source code,
with rich comments, can be found in appendix C. This section provides
only a brief description of the differences in the way these players negotiate.
Common to all players is that they specify a different initial player relation,
that they reduce player relations towards an attacking player, and that they
give offensive orders18.5.2 with a fixed strength, subject to a minor random
modification.

19.6 Haplomacy Player ACMEs 155

19.6.1 Characteristics of the Ruthless Player

The ruthless player does not initiate new conversations. The only activity
which the ruthless player carries out on its own initiative during negotia-
tions is to make a slight random adjustment to its player relations.

The ruthless player is accepts requests from the players which are stronger
than the ruthless player itself.

When giving orders the ruthless player attacks any player towards whom
the player relation is below 0.0. In case a no such player exists, the player
with whom the ruthless player has the weakest player relation will be at-
tacked, regardless of how friendly the actual player relation is.

19.6.2 Characteristics of the Vindictive Player

The vindictive player never initiates an attack by itself. Once a player has
attacked a support centre owned by the vindictive player, that player will
risk an attack by the vindictive player 50% of the time if the player relation
is friendly, and every time otherwise.

During negotiations the vindictive player requests from every friendly player
to lower their player relation towards the enemies of the vindictive player.

The vindictive player accepts requests from other players, but cannot be
persuaded to raise the player relation above 0.0 for an enemy.

19.6.3 Characteristics of the Cautious Player

When attacked by a player the cautious player subsequently negotiates by
sending the attackers a requests to have friendly player relations towards
the friendly player. If the request is rejected the cautious player will reduce
the player relation towards that player.

The cautious player readily updates its player relation when requested,
although the player relation is not set lower than 0.0 as the result of a
request.

For each of the players which did not attack the cautious player, the player
relation will be increased slightly every turn.

156 Chapter 19. Playing Haplomacy With AgentC

19.6.4 Characteristics of the Cowardly Player

The cowardly player negotiates by requesting all players stronger than itself
to have friendly player relations towards it.

The cowardly player accepts requests from players stronger than itself,
unless the request is to reduce the player relation towards an even stronger
player.

If the cowardly player only has neutral or friendly relations with the other
players it will attack the weakest player.

For each turn the cowardly player slightly increases its relations towards
players stronger than itself.

157

Chapter 20

System Test Results

Apart from a thorough hand-inspection to verify that the HaplomacyDemo

and the player ACMEs (and hence the ACT) perform as expected, an
extensive, automated system test has been carried out; its results are pre-
sented here.

The extensive system test not only ensures that the implementation is
free of serious errors, but it also shows some interesting aspects of the
Haplomacy game and last but not least about the ACME players.

20.1 Test Scenario

The default game board was used, with the fixed player allocation defined
below:

Red (0) The ruthless player.
Blue (1) The vindictive player.
Green (2) The cautious player.
Yellow (3) The cowardly player.

One thousand (1000) Haplomacy games were simulated in this setup, us-
ing the playGames method in HaplomacyDemo, with the following parameters:

maxTurns The maximal number of turns simulated in each game was
250.

158 Chapter 20. System Test Results

negotiateDelay 30 milliseconds were used for the negotiation phase.
negotiateRate Negotiations were performed with an interval of 5 millisec-

onds.

20.2 Test Results

First of all, the test shows that the ACT in general and AgentC in par-
ticular can be used to develop an agent-based solution to an application of
small-to-medium size.

Second, the test shows that the ACT implementation was capable of suc-
cessfully simulating 1000 different Haplomacy games without serious er-
rors (exceptions); the total number of game turns (and hence negotiation
phases) were 141665.

Third, the test shows that the ACT implementation is reasonably effi-
cient: the total computer time used to simulate the 141665 game turns
was roughly 26 seconds1, or about 184 microseconds per simulated turn on
average2.

Fourth, the test yielded the results shown in table 20.1 on the facing page.
A discussion of the data is given in chapter 21.

1The timings were obtained on Java 1.4.0-b92 run on an AMD Athlon 1GHz CPU
2Due to the simplicity of the demo ACMEs, at most four facts which are similar to

each other will be present in the knowledge base at any time; in a full-scale application,
efficiency would diminish accordingly.

20.2 Test Results 159

Wona Lostb Undecidedc Eliminatedd

Red 142 330 171 357
Blue 273 351 358 18
Green 89 465 352 94
Yellow 135 413 353 99

aNumber of games the player won
bNumber of games the player played to the end without winning
cNumber of games where the player participated for 250 turns without

a winner being found. In total, 361 games were undecided.
dNumber of games where the player was eliminated before the game

ended

Table 20.1: System Test Results

160 Chapter 20. System Test Results

Part V

Conclusion

161

163

Chapter 21

Discussion

This chapter provides a summary of the contents of this thesis, gives a dis-
cussion of some key issues (including the fulfilment of system requirements2),
and gives a brief account of future work.

The reader should be advised that in this chapter the special references
to system requirements (e.g. a reference shown as#1) actually indicate that
the author claims that the system requirement in question bas been fulfilled
(or very nearly fulfilled). A reference to a system requirement without the
implicit claim of its fulfilment would be in the style of a normal textual
reference; in the above case the reference would be e.g. ‘See requirement 1’.

21.1 Design Objective

This thesis does indeed describe a toolkit (the ACT), and also provides a
Java#3 implementation of the toolkit, which can be found in both binary
and textual form in appendix D. The question of whether or not require-
ment 1 has been fulfilled hence reduces the question of whether or not the
ACT fulfils the design objective as stated in section 2.1. A more detailed
analysis is required to give an answer; however, it should be apparent from
the descriptions found in part II, IV and appendix D that the ACT indeed
provides many generic components which readily lend themselves to further
specialisations#2.

164 Chapter 21. Discussion

Does the ACT facilitate implementation of agents?

Assuming that the Haplomacy players described in chapter 19 indeed are
agents, then the answer is definitely affirmative — the ACT does actually
facilitate the construction of such agents to a very high degree: In order to
provide a new Haplomacy player agent all that is necessary is to provide
the relevant ACME, which can be constructed directly from a high-level
AgentC specification by means of the ACC.

Are the Haplomacy players [intelligent] agents?

The definition of an [intelligent] agent is given in chapter 1; with a slight
paraphrase of this definition the key question now is the following:

Q Are the players “computer systems that are capable of [flexible] au-
tonomous action in some environment in order to meet their design
objectives”?

A With omission of the word ‘flexible’ an affirmative answer is undeni-
able.

Q Are the players conceptualised and/or implemented in terms of men-
talistic notions such as beliefs, capabilities etc.?

A The players can to some degree be said to be conceptualised and
implemented in terms of mentalistic notions, since the contents of
their knowledge base which is the basis of their operation is specified
in such terms. However, it is questionable how deep the relationship
is, and what is gained by using the mentalistic notions in the given
case: it is quite obvious that the same behaviour could have been
obtained without the use of mentalistic terms, since their only effect
is to distinguish between different kinds of data.

The word ‘flexible’ induces the following questions:

Q Do the players honour the requirement that “intelligent agents are
able to perceive their environment, and respond in a timely fashion
to changes that occur in it in order to satisfy their design objectives”?

A Yes. When the player is attacked by another player the game simula-
tion produces a notification, to which the player will react at the first
given opportunity. The same applies to requests sent from another
player.

21.1 Design Objective 165

Q Do the players honour the requirement that “intelligent agents are
able to exhibit goal-directed behaviour by taking the initiative in
order to satisfy their design objectives”?

A Some of the players do indeed take initiative by engaging in new con-
versations during negotiations (the ruthless player does not, though).
But goal-directed? It is a ultimately matter of definition, although it
is unquestionable that the players are quite limited with regards to
their planning capabilities (please refer to the end of section 21.2 for
an explanation).

Q Do the players honour the requirement that “intelligent agents are
capable of interacting with other agents (and possibly humans) in
order to satisfy their design objectives”?

A The players certainly do interact with each other (and with the proper
interface they would be able to interact with humans, too).

Does the ACT aid the design of agent-based systems?

Hopefully so. The test bed18 is indeed a very general scenario which is well
suited for such experiments. The importance of providing such a scenario
can hardly be overestimated, because it frees the user from having to deal
with the details of building system infrastructure, allowing focus to be
placed on the agents themselves. In the words of [38]:

“One of the greatest obstacles in the way of the wider use
of agent technology is that there are no widely-used software
platforms for developing multi-agent systems. Such platforms
would provide all the basic infrastructure (for message han-
dling, tracing and monitoring, run-time management, and so
on) required to create a multi-agent system. . . . By the time
these libraries and tools have been implemented, there is fre-
quently little time, energy, or enthusiasm left to work either on
the agents themselves or on the cooperative/social aspects of
the system.”

The main motivation behind producing the ACT actually is to provide a
tool which in simpler cases helps to solve the problem mentioned above —
a problem which the author experienced all too well during his midterm
project. Ironically — but not surprisingly — the ACT has fallen prey to
the very problem it attempts to solve: The demo is not by any standards

166 Chapter 21. Discussion

particularly advanced. But implementation of the platform (in casu the test
bed and to a lesser extent the ACC and AFC) has required all available
time, despite the fact that a great deal of details have been removed from
the implementation at any given opportunity.

The question of whether the ACT fulfils system requirement 1 cannot be
easily answered, though, since the answer of whether the ACT is useful
or not is not easily answered due to fact that only very experiments were
carried out; no serious shortcomings were uncovered, but the system test
is indecisive on this point. All things considered, though, system require-
ment 1 is at least nearly fulfilled.(.

#1)

21.2 System Requirements

A few system requirements have already been discussed in the following.
All but one of the remaining requirements are easily validated:

• The ACT provides a set of Agent Foundation Classes (the AFC)
which allow virtually any kind of intra-agent architecture#4.

• The reactive constituent has maximal freedom to determine how it
will handle events and whether to modify or inspect the deliberative
constituent#5.

• The ACT allows an ACME to be built directly#6.
• The ACT defines a Generic Message Interface which can be used to

transfer arbitrary messages#7. Additionally, the ACT provides the
components necessary to build a communicative constituent based on
GMI messages directly#7.

• The ACT includes AgentC, an APL which can express the conduct
of an ACME#9

• The AgentC APL defined in this document allows the behaviour
of ACMEs to be specified, and for input programs to be directly
compiled into an ACME having the specified behaviour#11.

• The ACC which is part of the ACT can be used to directly compile
AgentC code into equivalent Java source code#12.

The only system requirement which has no been mentioned yet is system
requirement 10. While the requirement that AgentC is to be based on
some ideas of Agent-0 and should use a simple logical language certainly
are fulfilled, one problematic area remains: “AgentC should incorporate

21.3 Interpretation of System Test Results 167

as wide a range of the features of PLACA [32], [33] (most notably planning
capabilities) as possible.” Surprisingly, it has turned out that it is not
possible to use the features of PLACA because its definition [32] is not
available (c.f. the footnote to the entry of [32] in the list of references
for an explanation). Hence system requirement 10 is actually fulfilled#10,
although not in the way it originally was intended.

21.3 Interpretation of System Test Results

Some insteresting statistics have been gathered during the system test
described in chapter 20; these findings are summarised in table 20.1 on
page 159.

The results show certain subtle points about the Haplomacy game and
test bed, and about the player ACMEs. The points are not obvious from
the data, but the statistics do however fit nicely with the general trends
which were observed during a closer inspection of a series of simulated
games.

21.3.1 Undecided Games

As many as 36.1% of the simulated games did not have a winner after 250
turns. It is quite possible that some of these would have declared a winner
if they were allowed to run a bit longer, but it is not likely that a large
fraction of the prematurely terminated games would do so. The reason is
that stalemate situations occur, i.e. situations where no progress is made
because the players, due to their simple order giving strategies18.5.2

1 and
limited negotiation skills, fail to advance their positions due to standoffs.
It has been seen multiple times, however, that the game does not come to
a standstill, but that the game state will cycle with a period of 2–4.

21.3.2 Winning Strategies

What the statistics do not show is the strength (percentage of the units)
with which each player attacks. With the simple order giving scheme

1Actually the order giving routines use explicitly randomises the data from which an
arbitrary choice is made, in order to minimise the possibility of a stalemate situation,
there are times when the strategy will not have more than one possible outcome

168 Chapter 21. Discussion

used18.5.2, it generally pays to use a strong attack, since that will max-
imise the probability of gaining a new unit, for two reasons:

• The chance of succeeding in an attack is better when more units
participate in the attack. This increases chances that a new unit can
be gained, which can be used in a new attack, etc.

• The chance of gaining a new unit is higher if the support centres of
the player’s home country are left vacant — which is more likely if
more of the player’s units participate in the attack. It can be fatal,
however, to lose one of these support centre, since this will severely
reduce chances of gaining new units.

The attack strengths used by the four players are slightly randomised in
order to result in less predictable behaviour. Their individual values were
hand-tuned to provide a reasonable equal distribution of winners, among
the four players2, while still being consistent with the ‘personality’ of the
player. The possible ranges of values are defined below (the values are
drawn from a uniform distribution in the given range):

Red [0.50, 0.70)
Blue [0.60, 0.75)
Green [0.40, 0.60)
Yellow [0.50, 0.65)

Part of the explanation why the vindictive player (Blue) wins consistently
more games than the rest of the players is therefore that the player has the
highest average attack strength.

21.3.3 Analysis of the Ruthless Player

The ruthless player is eliminated far more often than any other player. This
is not surprising, since the player readily makes new enemies. In the cases
where the enemies are friendly towards each other the ruthless player will
quickly be eliminated. However, if the enemies of the ruthless player are
at war with each other, the ruthless player may actually benefit from the
situation because it will have the shortest distance to its next target.

2The statistics show that the distribution is somewhat skewed, but this was not
realised until after the system test was analysed.

21.3 Interpretation of System Test Results 169

21.3.4 Analysis of the Vindictive Player

The vindictive player clearly wins the most games, and is very seldomly
eliminated. Three factors count to the advantage of the vindictive player:

1. The player does not make enemies with anyone unless it has been
attacked. This reduces the number of enemies of the player, which
makes it all the more effective when striking back.

2. The player asks its friends to attack its enemies. While the ruthless
player ignores the request and the cowardly players only accepts it
when the vindictive player is the strongest, the cautious player will
accept it if relations are friendly; and they usually are, because the
cautious player is — well, cautious.

3. The customary friendly relations between the vindictive and cautions
players counts to the advantage of the vindictive player if the ruth-
less player is eliminated early in the game — the vindictive player
will then quite likely be on a crusade against the yellow player, even-
tually eliminating it because the cautious player does not attack any
player unprovoked, and because the vindictive player attacks with
more strength.

21.3.5 Analysis of the Cautious Player

The cautious player has the sad record of winning the fewest games; it is
simply too nice — it readily improves relations if an enemy requests it —
which the cowardly player does all the time. But the low attack strength
also plays a role here. The cautious player does not make new enemies on
its own, which may explain why it manages to avoid elimination in many
cases.

21.3.6 Analysis of the Cowardly Player

The cowardly player obtains fairly average results. The reasons are — as
already mentioned, that it can exploit the gullible cautious player. And
the cowardly player happily attacks the weakest player, which can pay off
in certain situations.

170 Chapter 21. Discussion

21.4 Future Work

Since the the ACT adheres to the ‘keep it simple, stupid¡ principle, an
abundancy of future work can readily be pointed out. It is worth noting,
however, that the demo16 application — which is applied to a quite complex
problem — did not uncover any serious shortcomings in the design. Below is
a list — in no particular order — over the areas where major improvements
can readily be made to the ACT:

1. A more expressive content language for the knowledge base5.3. Many
possibilities exist, but a careful choice need to be made.

2. Planning capabilities for the ACMEs. One might wonder how hard
a problem this will be21.2.

3. A more sophisticated message protocol, possibly based on standard-
ised protcols like the ones described in [14].

4. Code optimisations in the ACC. A few cases are downright obvious
(the present ACC always produces a for-loop when compiling an
IF-statement, for example), but countless possibilities exist.

5. A more sophisticated strategy finder18.5.2,18.5.1. This might be based
on the work carried out by the Diplomacy Programming Project [5].

171

Chapter 22

Conclusion

This thesis describes the the implementation of a new agent programming
language, AgentC, and a software toolkit (ACT) which complements the
AgentC language with a compiler (ACC) and components from which to
build agents. The ACT additionally provides a substantial standardised
test bed (the Haplomacy game), which provides a benchmark application
for agent-based systems.

Many APLs of various kinds have been suggested over the years; fewer
have actually been implemented, though, and even fewer have shown good
results in practical applications. The same is true of toolkits from which
to build agents.

AgentC belongs to the exclusive club of APLs which actually are com-
putable, which provide a working implementation and which are also rela-
tively efficient when it comes to computational complexity (the simplicity
of the langauge certainly helps in this regard). No part of the AgentC
can be said to be groundbreaking, though, since the ACC uses only very
traditional techniques.

The most controversial part of the ACT is arguably the design strategy,
although this strategy is not uncommon outside of agent-related areas:
The ACT is constructed bottom-up, seamlessly integrating a new layer of
agent-oriented functionality to traditional, tried-and-tested object-oriented
programs. The reader need but to consult a survery of APLs, such as

172 Chapter 22. Conclusion

e.g. [22], to be convinced that it is quite common to apply a top-down
agent-based approach to even complex problems, even though “. . . there is
no evidence that any system developed using agent technology could not
have been built just as easily using non-agent techniques” [38].

Like any other APL (or toolkit for that matter) the AgentC (or ACT)
reportedly20 have shown good results in a certain application. Whether
or not the AgentC (or ACT) is useful, however, is an entirely different
matter. However, the bottom-up approach, the use of (at places) simple but
also quite generic components, and the implementation of the Haplomacy
test bed application, makes the ACT quite well suited as the basis for
experiments with agent-based systems; the question of whether the ACT
is useful to conduct such experiments will hopefully be answered in the
future by a DTU student.

Part VI

Appendices

173

175

Appendix A

AgentC Grammar

A.1 Lexical Syntax

〈Identifier〉 ::= 〈IdentifierStart〉 (〈Letter〉 | 〈Digit〉)∗
〈IdentifierStart〉 ::= a ... z | $ 〈Letter〉
〈Letter〉 ::= A ... Z | a ... z |
〈Digit〉 ::= 0 | 〈NonZeroDigit〉
〈NonZeroDigit〉 ::= 1 ... 9
〈Variable〉 ::= ? 〈Letter〉 (〈Letter〉 | 〈Digit〉)∗ |
〈AttitudeToken〉 ::= # 〈Letter〉 (〈Letter〉 | 〈Digit〉)∗
〈Literal〉 ::= 〈IntegerLiteral〉 | 〈DoubleLiteral〉 | 〈StringLiteral〉
〈IntegerLiteral〉 ::= 0 | -? 〈NonZeroDigit〉 〈Digit〉∗
〈DoubleLiteral〉 ::= 〈Digit〉+ . 〈Digit〉∗ 〈Exponent〉?

| . 〈Digit〉+ 〈Exponent〉?
| 〈Digit〉+ 〈Exponent〉

〈Exponent〉 ::= (e | E) (+ | -)? 〈Digit〉+
〈StringLiteral〉 ::= Any Java string literal

176 Appendix A. AgentC Grammar

A.2 Program Structure

〈Program〉 ::= 〈CompilationModule〉∗
〈CompilationModule〉 ::= 〈Definitions〉 | 〈Attitudes〉 |

〈Facts〉 | 〈Procedure〉
〈Definitions〉 ::= DEFS { 〈Definition〉∗ }
〈Definition〉 ::= 〈Identifier〉 = 〈Literal〉 ;
〈Attitudes〉 ::= 〈AttitudeDecl〉∗
〈AttitudeDecl〉 ::= 〈AttitudeToken〉 = 〈IntegerLiteral〉 ;
〈Facts〉 ::= 〈InitialFact〉∗
〈InitialFact〉 ::= 〈Fact〉 ;
〈Procedure〉 ::= PROCEDURE 〈Identifier〉 〈ParameterList〉

(; | 〈ProcedureBody〉)
〈ParameterList〉 ::= ((〈Variable〉 (, 〈Variable〉)∗)?)
〈ProcedureBody〉 ::= { 〈Rule〉∗ }

A.3 Values

〈Value〉 ::= 〈Expression〉 | 〈Sentence〉
〈Expression〉 ::= 〈Literal〉 | 〈Variable〉 | 〈SymbolReference〉 |

〈SelfReference〉 | 〈ProcedureCall〉
〈SymbolReference〉 ::= 〈Identifier〉
〈SelfReference〉 ::= SELF
〈ProcedureCall〉 ::= CALL 〈identifier〉 〈TermList〉
〈Query〉 ::= Q 〈Identifier〉 〈TermList〉
〈TermList〉 ::= ((〈Expression〉 (, 〈Expression〉)∗)?)
〈Sentence〉 ::= 〈Fact〉
〈Fact〉 ::= 〈AttitudeToken〉 〈Identifier〉 〈TermList〉

A.4 Rules 177

A.4 Rules

〈Rule〉 ::= 〈Statement〉 | 〈MessageRule〉
〈Statement〉 ::= 〈Action〉 | 〈Assignment〉 | 〈IfStatement〉 |

〈LetStatement〉 | 〈LockedStatement〉 |
〈MentalUpdate〉 | 〈ReturnStatement〉 |
〈SayStatement〉

〈Block〉 ::= { 〈Statement〉∗ }
〈ActionStatement〉 ::= 〈DoStatement〉 | 〈XeqStatement〉
〈Assigmnent〉 ::= 〈Variable〉 = 〈Expression〉 ;
〈DoStatement〉 ::= DO 〈Identifier〉 〈TermList〉 ;
〈XeqStatement〉 ::= XEQ 〈Identifier〉 〈TermList〉 ;
〈ReturnStatement〉 ::= RETURN 〈Expression〉? ;
〈IfStatement〉 ::= IF 〈Guard〉 〈Block〉

(ELSIF 〈Guard〉 〈Block〉)∗
(ELSE 〈Block〉)?

〈Guard〉 ::= ((〈Condition〉 (, 〈Condition〉)∗)?)
〈Condition〉 ::= 〈Comparison〉 | 〈NegatedCondition〉 |

〈MentalCondition〉 | 〈Action〉 | (〈Condition〉)
〈Comparison〉 ::= 〈Expression〉 〈Relation〉 〈Expression〉
〈Relation〉 ::= < | <= | = | != | >= | >
〈NegatedCondition〉 ::= ! 〈Condition〉
〈MentalCondition〉 ::= 〈Fact〉 (AS 〈Variable〉)?

〈LetStatement〉 ::= LET 〈Variable〉 = 〈Expression〉 ;
〈LockedStatement〉 ::= LOCKED 〈Block〉
〈MentalUpdate〉 ::= 〈AdoptStatement〉 | 〈DropStatement〉
〈AdoptStatement〉 ::= ADOPT (〈Fact〉 | 〈Variable〉) ;
〈DropStatement〉 ::= DROP (〈Fact〉 | 〈Variable〉) ;
〈SayStatement〉 ::= SAY 〈MessagePattern〉 ;
〈MessagePattern〉 ::= [(〈Attribute〉 (, 〈Attribute〉)∗)?]
〈Attribute〉 ::= 〈Identifier〉 = 〈Value〉
〈MessageRule〉 ::= WHEN (NOTHING | 〈MessageGuard〉) 〈Block〉
〈MessageGuard〉 ::= [(〈xAttribute〉 (, 〈xAttribute〉)∗)?]
〈xAttribute〉 ::= 〈Identifier〉 = (〈Expression〉 |

〈Fact〉 (AS 〈Variable〉)?)

178 Appendix A. AgentC Grammar

179

Appendix B

Adjudicating Orders in
Haplomacy

Orders are adjudicated according to two general principles: a set of rules
which prescribe what will happen in a given case, and an adjudication
principle which prescribes how to apply the rules.

The rules are described in appendices B.2 and B.2.1, while the adjudication
principle is described in appendix B.3.

B.1 Example Diagrams

The diagrams shown in the following correspond to the relevant diagrams in
[4]. Each diagram consists of two parts, the first of which shows an example
scenario. Movement orders are shown as large arrows pointed towards the
destination of the move, while support orders are shown as small arrows
directed at the supported unit; the arrows bear the colour of the supported
unit.

The second part shows how the situation is to be resolved. The diagrams
are actual screenshots1 from the test bed application, and the results shown

1The sections correspond to the centre of the default game board (D3–F5), where
the indication of E4 as a support centre has been removed.

180 Appendix B. Adjudicating Orders in Haplomacy

have been obtained by applying the implemented adjudicator on the sce-
nario2.

In the diagram texts all references to provinces and units use the number
conventions shown in figure B.1 below; a single capital ‘P ’ is prefixed to
the number to indicate a province, while ‘U ’ is used as a prefix to indicate
a unit.

10 2

43 5

76 8

Figure B.1: Reference number conventions for the examples.

B.2 Haplomacy Rules

§1. All units have the same strength.
§2. There can be only one unit in a province at a time.
§3. Equal strength units trying to occupy the same province cause all

those units to remain in their original provinces.
See figure B.2 on page 181.

§4. A standoff does not dislodge a unit already in the province where the
standoff took place.
See figure B.2 on page 181.

§5. One unit not moving can stop a series of other units from moving.
See figure B.3 on page 181.

§6. Units cannot trade places [without the use of a convoy].
See figure B.4 on page 181.

§7a. Three or more units can not rotate provinces during a turn [provided
none directly trade places].
This rule has been altered for two reasons:

2In addition to being illustrative, therefore, the diagrams also serve to verify correct
operation of the implementation.

B.2 Haplomacy Rules 181

Figure B.2: U0 and U2 both try to enter P4, causing a
standoff (but without dislodging U4). Similarly, U6 and
U8 cause a standoff by simultaneously trying to enter
P7.

Figure B.3: Because U7 cannot move, neither can U3

Figure B.4: Units cannot trade places.

182 Appendix B. Adjudicating Orders in Haplomacy

• The implementation is simplified (no detection of cycles is nec-
essary).

• The rule in [4] is ambiguous3.
See figure B.5 on page 182.

Figure B.5: Units cannot trade places, even when three
or more units form a cycle.

§8a. If a holding unit is attacked by a larger army (a unit which has more
supports) the unit will be dislodged.
See figure B.6 on page 182.

Figure B.6: Because U0 has support (it is an army of
size 2), it dislodges U1, which is forced to retreat. Since
U4 and U6 are armies of equal size, U6 cannot dislodge
U4.

3For example, it is not specified whether the cycle should be allowed to move or not,
in case one or more of the provinces in the cycle are under attack by a single unit

B.2 Haplomacy Rules 183

§9a. If no single largest army is attacking or defending a province, the
result will be a standoff — even if a smaller army is present in that
province.
See figure B.7 on page 183.

Figure B.7: Even though U0 and U6 are larger armies
than U4, the resulting standoff will not cause U4 to be
dislodged.

§10. A dislodged unit can still cause a standoff in a province different from
the one that dislodged it.
See figure B.8 on page 183.

Figure B.8: Even though the supported attack from P7
dislodges U3 (forcing it to retreat to P0), the unit still
causes a standoff with U5 in P4.

§11. A dislodged unit, even with support, has no effect on the province
that dislodged it.
See figures B.9 on page 184 and B.10 on page 184.

184 Appendix B. Adjudicating Orders in Haplomacy

Figure B.9: Because U4 is dislodged by an attack from
P7, U4 cannot prevent U5 from moving into P7.

Figure B.10: Even though U4 is a larger army than U1
it cannot prevent U1 from occupying P0, because U4
was dislodged by an attack from that province.

§12. A country cannot dislodge or support the dislodgment of one of its
own units, even if that dislodgement is unexpected.
See figure B.11 on page 185, figure B.13 on page 186 and figure B.12
on page 185.

§13. Support is cut if the unit giving support is attacked from any province
except the one where support is being given.
See figures B.14 on page 186 and B.15 on page 187.

§14. Support is cut if the supporting unit is dislodged.
See figure B.16 on page 187.

§15. A unit being dislodged by one province can still cut support in an-
other.
See figure B.17 on page 187.

B.2 Haplomacy Rules 185

Figure B.11: The supported attack by U0 on U4 cannot
dislodge U4, because U0 and U4 belong to the same
player

Figure B.12: Because neither U7 nor U4 can move, U0
effectively attacks and dislodges U4 with the support
of U2. Since U0 and U4 belong to the same player,
however, the attack fails.

186 Appendix B. Adjudicating Orders in Haplomacy

Figure B.13: Even though U0 supports U2, which nor-
mally would cause U4 to be dislodged, the move fails
because U0 and U2 belong to the same player.

Figure B.14: Because U7 attacks U4 its support is cut.
Hence U0 must stand in its place because it cannot dis-
lodge U4 on its own.

B.2 Haplomacy Rules 187

Figure B.15: Because U3 is giving support into P4 the
attack by U4 does not cut support. Hence, U4 is dis-
lodged and forced to retreat.

Figure B.16: Because the supported attack by U4 dis-
lodges U7, its support is cut. The effect is a standoff by
U3 and U2 in P4.

Figure B.17: Although U4 is dislodged by the supported
attack by U8, it still manages to cut support from U5.
The result is that U2 cannot move into P1

188 Appendix B. Adjudicating Orders in Haplomacy

§16. An attack by a country on one of its own units does not cut support.
See figure B.18 on page 188.

Figure B.18: Because U0 and U3 are owned by the same
player the attack by U3 on U0 does not cut support.
This support allows U5 to enter P4, forcing U6 to stand
in its place.

B.2.1 About the Rules

The rules of Haplomacy have been modelled as closely as possible on the
rules of Diplomacy [4], with a few exceptions dictated by practical issuesB.3,
and a series of simplifications due to the generalised game board and the
absence of fleets.

The rules in the following are quoted verbatim from page 23 of [4], with
the only modification that amendments are shown in bold face. The rules
are numbered as the corresponding rules in [4]4

B.3 Adjudication Principles

The rules described in the precedingB.2 are generally not sufficient to resolve
an arbitrary set of orders: more than one of the rules may apply, and the

4Except for the replacement of rules 8 and 9 and the amendment to rule 7, the rules
of Haplomacy directly correspond to the first 16 of the 22 rules on page 23 of [4].
The remaining 6 rules all relate to the convoy order (for fleet units), and are hence not
relevant to Haplomacy

B.3 Adjudication Principles 189

outcome is dependent on which rule is applied first. Oddly enough, the
rules described in [4] — although they are numbered — do not constitute
an algorithm: there is no fixed way to determine how a complex situation
should be analysed in order to decompose it into the simple situations for
which rules have been defined. One general guideline is given:

“In complicated situations, it helps to first determine what sup-
port, if any, is cut. Once this is determined, it is easier to resolve
orders.”

While the guideline gives a helpful hint on how an adjudication algorithm
could be constructed, it does not suffice even in simple cases: consider
the example shown in figure B.16 on page 187. The outcome depends on
support being cut for a dislodged unit, but if support are to be cut first, it
may not yet have been determined whether a unit should be dislodged !

Because a Haplomacy adjudicator (a component which is responsible for
adjudicating the outcome of a set of orders) needs to be implemented in
software, it is paramount that a detailed algorithm exists. Not only will
such an algorithm be necessary to ensure that the outcome of any set of
orders is known5, the algorithm is essential when it comes to making the
program work: if the program does not take into account any possible
situation, then the program will fail once one of the unforeseen situations
occur6.

The conclusion of the above is that [4] does not define a usable adjudication
algorithm, hence one must be designed from scratch. The design must take
several demands into account:

• The algorithm must handle every possible situation in a reasonable
way.

• The algorithm should be reasonably efficient in terms of computation
complexity.

5In the Diplomacy rules [4], according to the tournament rules [6], “There are two
known Paradoxes which are rather rare and should they occur then the moving units
hold”. What these paradoxes should be taken to mean is not explained further, however.

The algorithm presented here is not entirely deterministic because an arbitrary choice
is made at some points. However, this choice is only made as a last resort.

6It may be so that the rules in [4] — with the aforementioned amendment in [6] —
are sufficient to adjudicate any Diplomacy game occurring in practice in a deterministic
way. However, because Haplomacy is a generic game the probability of a single legal
combination occurring can not be disregarded — and when it comes to writing a working
program, no probability larger than 0 can be disregarded.

190 Appendix B. Adjudicating Orders in Haplomacy

• The algorithm should preferably produce the same results as shown
in the examples of [4].

The two of the first demands can be relatively easily met: an efficient
algorithm which handles every possible situation can be obtained merely
by enforcing strict restrictions on which orders will succeed. However, it
is desirable that Haplomacy resembles Diplomacy to a high degree: The
popularity of Diplomacy has not declined with time; there is no question,
therefore, that the game itself strikes a good balance between complexity
and playability — properties which are equally desirable in Haplomacy.

The resulting algorithm has therefore been designed in such a way that
every applicable rule of Diplomacy should be included in Haplomacy, with
the only exception that rule 7 has been negated to forbid the movement
of units in circles — the added complexity of detecting that situation, the
relatively low probability at which it occurs, and the fact that [4] does not
elaborate on the situation makes it an obvious choice for omission.

Even though the applicable rules of Diplomacy also apply in Haplomacy,
there is generally no guarantee that the resulting adjudicator will act en-
tirely as would be expected by a seasoned Diplomacy player. In the ex-
ample cases used in [4] — which have led to the example cases shown in
appendix B.2 — the results happen to coincide, however. The algorithm
presented below therefore ensures that the two games are adjudicated sim-
ilarly, at least in the simple cases.

B.3.1 The Adjudication Algorithm

The algorithm depends on the data structure described in chapter 18, and
the terminology defined there will used in the following.

Let the target of an army (which consists of any number of units ordered to
support one single unit, plus that single unit itself) be defined as follows:

• If an army leader is ordered to move, then the target is the province
to which that unit is directed.

• Otherwise, the target is the location of the army leader (by definition,
then, this unit will be ordered to hold).

In either case the target is said to be targeted by the supported unit. A
province which is targeted by at least one army is said to be under attack.

B.3 Adjudication Principles 191

The conjunction of all armies targeting a single province is collectively
known as a dispute over that target.

The adjudication algorithm is designed to resolve orders iteratively rather
than all at once. The benefit is to reduce the complexity of each iteration
step. In order to reduce memory consumption, the algorithm allows the
game board state to be modified directly in each step. The overall structure
of the algorithm is therefore:

1. Cancel all invalid orders.
2. Cut support subject to rules 13 and 16, but not to rule 14.
3. As long as there are units not ordered to hold

(a) Identify the dispute to be dealt with next.
(b) Handle the selected dispute.
(c) Repeat.

In any step of the algorithm, the next dispute to be handled is found in
the following way:

• If a vacant province which is targeted by only one army exists, then
select that province7

• Otherwise, select the dispute involving the largest army on the game
board8.
◦ In case more than one dispute is eligible, prefer a dispute in

which the targeted province is occupied by a unit which is or-
dered to support9.

◦ In case more than one eligible dispute remains, and if the largest
army is a single unit, then prefer the dispute involving the largest
number of units10.

7The situation is resolved first because the dispute has no effect on the outcome of
any other disputes.

8Selecting the largest army will make that army succeed in its enterprise (move or
hold), which is generally what is intended. However, some instances where rule 14 would
apply are not detected: if one of its supports is dislodged by an army whose size is only
one less, then the army is not actually the largest army on the game board; but that
army may itself have one of its support dislodged by another army, etc.

By always choosing the largest army first in each step, however, it will be guaranteed
that the algorithm always terminates.

9This special case is responsible for ensuring that rule 14 is used in some situations,
such as figure B.16 on page 187 — but not that the rule is always applied

10Handling the most units in each step is generally a good way of ensuring algorithm
performance. If the largest army does not have support, no units on the game board are
giving support (since the largest army is eliminated in every step of the algorithm), and

192 Appendix B. Adjudicating Orders in Haplomacy

◦ Otherwise, make an arbitrary choice between the eligible dis-
putes11.

In the following, carrying out an order for a unit means that

1. If the unit is moving, then move the unit to its destination.
2. Cancel the unit’s orders

where cancelling an order means

1. Order the unit to hold.
2. Order every other unit which supports the unit to hold.

Finally, the occupant of a province which is under dispute is denoted the
defender of that dispute. With these definitions at hand, the meaning of
handle the selected dispute in the preceding algorithm description can be
specified as follows:

• If the dispute involves precisely one army which is larger than any
other army involved, and if the leader of that army is moving, then
the largest army is declared the winning army. The following possible
cases exist:

1. If the winning army leader is owned by the player to which
the defender (if any) belongs, or if the winning army leader is
supported by said player, then handle the dispute as a draw
(c.f. rule 12).

2. Otherwise, if a defender exists, dislodge that unit from the tar-
geted province, and add it onto a list of retreats to be resolved
later. Then there is a choice:

therefore it is safe to choose the dispute involving the largest number of units without
affecting the outcome of other disputes — at this time any remaining unit on the game
board will be part of a standoff (because vacant provinces under attack by only one
army already have been handled). But in order to detect these standoffs — which is
necessary in order to correctly resolve subsequent retreats, and which is carried out as
a side-effect of the adjudication — the algorithm must be allowed to run once for every
dispute; otherwise this case could have been more efficiently handled.

11Because Haplomacy is a generic game allowing any size of game board, there is
no fixed limit on the number of eligible disputes at this point. Therefore, there is
theoretically no limit to the number of criterions which necessary to one single dispute
in a deterministic way. The algorithm will therefore necessarily involve an arbitrary
choice at some point, although the probability of that choice occurring is smaller when
more criteria are being employed. Since the algorithm presented here is sufficient to
duplicate the examples of [4], it has been decided to make the arbitrary choice at this
point.

B.3 Adjudication Principles 193

◦ If the defender is moving into the location of the winning
army leader or is supporting a move into that province, then
cancel the defender’s orders (c.f. rule 11).

◦ Otherwise, leave the defender’s orders to be resolved later
(c.f. rule 10).

3. Move the winning army leader into the targeted province.
4. Cancel the orders of any other unit involved in the dispute.

• Otherwise, the result is a draw, which effectively is a standoff between
the involved armies (although it may come about as the result of the
defender being the strongest army). The following steps are then
necessary:

1. Record that the targeted province was the scene of a standoff
(this information is necessary to make the subsequent retreats).

2. If there exists a defender which bas been ordered to hold, then
cancel the orders of the defender (it is either in standoff or suc-
cessfully holding its location).

3. If there exists a defender which has been ordered to move into
the province from where the largest army came, then cancel the
orders of the defender (it is in standoff with the largest army).

4. Cancel the orders of any other unit involved in the dispute.

194 Appendix B. Adjudicating Orders in Haplomacy

195

Appendix C

Sample AgentC Code

This appendix lists the AgentC source code for four different ACMEs
which can have been used to play Haplomacy in the setup described in
chapter 19; each ACMEs exhibits a unique behaviour, or ‘personality’,
from which their respective names originate. The comments in the code
describe how this ‘personality’ manifests itself.

C.1 Common Code

The code below is shared by all the different ACMEs; it has been placed
in a separate file for the same reason.

196 Appendix C. Sample AgentC Code

// these attitudes are used by default
ATTITUDES {

#DID = 0;
#BELIEVE = 1;
#B = 1;
#INTEND = 2;
#I = 2;

}

// the initial relations to all players ($INITIAL_RELATION must
// be specified elsewhere)
FACTS {

#B relation(SELF, $RED, $INITIAL_RELATION);
#B relation(SELF, $BLUE, $INITIAL_RELATION);
#B relation(SELF, $GREEN, $INITIAL_RELATION);
#B relation(SELF, $YELLOW, $INITIAL_RELATION);

}

// Exclude beliefs about the agent’s relations with itself.
// The simplicity of the FACTS module prevents this case from being
// detected
PROCEDURE init() {

DROP #B relation(SELF, SELF, _);
}

// definitions for the utility procedures
DEFS {

$NEGONE = -1.0;
$NEGHALF = -0.5;
$NEGQUART = -0.25;
$ZERO = 0.0;
$QUART = 0.25;
$HALF = 0.5;
$ONE = 1.0;

}

// adjust the relation to a given player by a certain relative amount,
// bounded by $NEGONE and $ONE
PROCEDURE adjustRelation(?player, ?delta) {

LOCKED {
IF (#B relation(SELF, ?player, ?X) AS ?old) {

DROP ?old;
LET ?y = Q add(?X, ?delta);
IF (?y > $ONE) {

ADOPT #B relation(SELF, ?player, $ONE);
RETURN $ONE;

}
ELSIF (?y < $NEGONE) {

ADOPT #B relation(SELF, ?player, $NEGONE);
RETURN $NEGONE;

}
ELSE {

ADOPT #B relation(SELF, ?player, ?y);
RETURN ?y;

C.1 Common Code 197

}
}

}
}

// ensure that the given relation at least has the specified value
PROCEDURE ensureMinimumRelation(?player, ?value) {

LOCKED {
IF (#B relation(SELF, ?player, ?r) AS ?old) {

IF (?r < ?value) {
DROP ?old;
ADOPT #B relation(SELF, ?player, ?value);

}
}

}
}

// ensure that the given relation at most has the specified value
PROCEDURE ensureMaximumRelation(?player, ?value) {

LOCKED {
IF (#B relation(SELF, ?player, ?r) AS ?old) {

IF (?r > ?value) {
DROP ?old;
ADOPT #B relation(SELF, ?player, ?value);

}
}

}
}

// Handle negotiations in three separate procedures
PROCEDURE negotiate() {

WHEN NOTHING {
// make a new inquiry
RETURN CALL inquire();

}

WHEN [contents=$ACCEPT] {
// the message is a reply
RETURN CALL handleReply();

}
WHEN [contents=$REJECT] {

// the message is a reply
RETURN CALL handleReply();

}

// else the message is a notification or an inquiry
RETURN CALL handleNewMessage();

}

// the inquire() procedure produces new inquiries.
PROCEDURE inquire();

// the handleReply() procedure should handle a reply to the last inquiry

198 Appendix C. Sample AgentC Code

PROCEDURE handleReply();

// the handleNewMessage() should handle a new notification or inquiry
PROCEDURE handleNewMessage();

C.2 The Ruthless Player 199

C.2 The Ruthless Player

/**
* A ruthless player.
*/

DEFS {
// the initial relation to all players
$INITIAL_RELATION = 0.25;
$RANDOM_RANGE = 0.15;

}

PROCEDURE inquire() {
// the ruthless player doesn’t bother about making conversations.
// however, a slight randomization is added to the player’s relations
IF (#DID updateRelations()) {

RETURN;
}

IF (#B relation(SELF, ?P, ?r)) {
LET ?R = Q random($RANDOM_RANGE);

}

ADOPT #DID updateRelations();
}

PROCEDURE handleReply() {
// the replies are insignificant,

}

PROCEDURE handleNewMessage() {
// handle a request for switching alliance
WHEN [type=$REQUEST, from=?P, contents=#I relation(?p, ?l, ?u) AS ?c] {

IF (Q strengthOf(?P) > Q strengthOf(SELF)) {
IF (Q strengthOf(?p) < Q strengthOf(SELF)) {

// use the lowest value for a weaker player
CALL ensureMinimumRelation(?p, ?l);

}
ELSE {

// use the highest value, bounded by $HALF, for
// a stronger player
IF (?u > $HALF) {

CALL ensureMinimumRelation(?p, $HALF);
}
ELSE {

CALL adjustRelation(?p, ?u);
}

}
SAY [to=?P, type=$ACCEPT, contents=?c];

}
ELSE {

SAY [to=?P, type=$REJECT, contents=?c];
}

}
}

200 Appendix C. Sample AgentC Code

PROCEDURE giveOrders() {
// attack the player with the lowest relation, regardless of the absolute value.
// otherwise stick to the relations.
XEQ resetFriends();
LET ?minRelation = $ONE;
LET ?minPlayer = -1;

IF (#B relation(SELF, ?P, ?R)) {
IF (?R < ?minRelation) {

?minRelation = ?R;
?minPlayer = ?P;

}
IF (Q strengthOf(?P) > Q strengthOf(SELF), ?R > $ZERO) {

XEQ registerFriend(?P);
}

}

XEQ unregisterFriend(?minPlayer);

IF (!XEQ attack(Q add(0.50, Q random(0.2)))) {
XEQ defend();

}
}

PROCEDURE updateStatus() {
WHEN NOTHING {

// get ready for next turn
DROP #DID updateRelations();

}
WHEN [type=$PLAYER_ELIMINATED, contents=?X] {

DROP #B relation(?X, _);
RETURN;

}
WHEN [type=$UNIT_ATTACKED, contents=?X] {

CALL adjustRelation(?X, $NEGHALF);
RETURN;

}
WHEN [type=$SUPPORT_CENTRE_ATTACKED, contents=?X] {

CALL adjustRelation(?X, -0.75);
RETURN;

}
WHEN [type=$SUPPORT_CENTRE_CONQUERED, contents=?X] {

CALL adjustRelation(?X, $NEGONE);
RETURN;

}
}

C.3 The Vindictive Player 201

C.3 The Vindictive Player

/**
* The vindictive player.
*/

DEFS {
// the initial relation to all players
$INITIAL_RELATION = 0.75;

}

PROCEDURE inquire() {
// all inquiries have been sent for this turn - don’t make further conversations
IF (#DID sendMessages()) {

RETURN;
}

// Send a petition to all friendly players to attack the enemies
IF (#B relation(SELF, ?E, ?er), ?er < $ZERO,

#B relation(SELF, ?F, ?fr), ?fr > $ZERO) {
SAY [to = ?F, type = $REQUEST,

contents = #I relation(?E, $NEGONE, $ZERO)];
}

// don’t make further conversations
ADOPT #DID sendMessages();

}

PROCEDURE handleReply() {
// don’t care about replies - they don’t affect the behaviour.

}

PROCEDURE handleNewMessage() {
// handle a request for switching alliance
WHEN [type=$REQUEST, from=?P, contents=#I relation(?p, ?l, ?u) AS ?c] {

IF (#B relation(SELF, ?P, ?r), ?r >= $ZERO) {
// the sender is friendly: try to honour the request
IF (#B relation(SELF, ?p, ?pr) AS ?o) {

IF (?pr <= $ZERO) {
IF (?l > $ZERO) {

// can’t forgive enemy ?p : reject
SAY [type=$REJECT, to=?P, contents=?c];

}
ELSE {

// accept the lower bound for the
// relation (it is not larger than 0.0)
DROP ?o;
ADOPT #B relation(SELF, ?p, ?l);
SAY [type=$ACCEPT, to=?P, contents=?c];

}
}
ELSIF (?l > 0.0) {

// accept the lower bound if the player
// relation is friendly
CALL ensureMinimumRelation(?p, ?l);
SAY [type=$ACCEPT, to=?P, contents=?c];

}

202 Appendix C. Sample AgentC Code

ELSE {
// don’t make enemies just because it is
// suggested
SAY [type=$REJECT, to=?P, contents=?c];

}
}

}
ELSE {

// reject all enemies
SAY [type=$REJECT, to=?P, contents=?c];

}
RETURN;

}
}

PROCEDURE giveOrders() {
// calculate a new set of friendly players
XEQ resetFriends();
IF (#B relation(SELF, ?P, ?R), ?R >= $ZERO) {

IF (#DID attack(?R)) {
// ?P has previously attacked a support centre -
// this is not forgotten: consider the player
// friendly only half of the time, even if relations
// are good
IF (Q random() < $HALF) {

XEQ registerFriend(?P);
}

}
ELSE {

// ?P has never attacked support centres -
// consider ?P a loyal friend.
XEQ registerFriend(?P);

}
}
// else the player is an enemy

IF (!XEQ attack(Q add(0.60, Q random(0.15)))) {
XEQ defend();

}
}

PROCEDURE updateStatus() {
WHEN NOTHING {

// get ready for the next round
DROP #DID sendMessages();
RETURN;

}
WHEN [type=$PLAYER_ELIMINATED, contents=?X] {

DROP #B relation(?X, _);
RETURN;

}
WHEN [type=$UNIT_ATTACKED, contents=?X] {

CALL adjustRelation(?X, $NEGHALF);
RETURN;

}

C.3 The Vindictive Player 203

WHEN [type=$SUPPORT_CENTRE_ATTACKED, contents=?X] {
CALL adjustRelation(?X, -0.75);
ADOPT #DID attack(?X);
RETURN;

}
WHEN [type=$SUPPORT_CENTRE_CONQUERED, contents=?X] {

// subtract 2.0 from the relation: this means WAR!
CALL adjustRelation(?X, -2.0);
ADOPT #DID attack(?X);
RETURN;

}
}

204 Appendix C. Sample AgentC Code

C.4 The Cautious Player

/**
* The cautious player.
*/

DEFS {
// the initial relation to all players
$INITIAL_RELATION = 1.0;

$EIGHTH = 0.125;
}

PROCEDURE inquire() {
IF (#DID finishInquiries()) {

RETURN;
}

IF (#B relation(SELF, ?p, _)) {
IF (#DID attack(?p) AS ?a) {

// ask the offending player to cease its attacks
DROP ?a;
SAY [to=?p, type=$REQUEST, contents=#I relation(SELF, $ZERO, $ONE)];

}
ELSE {

// improve relations with players which did not attack in
// the last turn
CALL adjustRelation(?p, $EIGHTH);

}
}

ADOPT #DID finishInquiries();
}

PROCEDURE handleReply() {
WHEN [type=$REJECT, from=?X] {

// the player rejected the peace offer - reduce the relation
CALL adjustRelation(?X, $NEGQUART);
RETURN;

}

// don’t give any credit for accepting the request - the
// absence of attacks is the only way to improve relations

}

PROCEDURE handleNewMessage() {
WHEN [type=$REQUEST, from=?P, contents=#I relation(?p, ?l, ?u) AS ?c] {

// Accept only requests from friendly players
IF (#B relation(SELF, ?p, ?r), ?r >= $ZERO) {

IF (?r <= ?l) {
// always accept to improve relations
CALL ensureMinimumRelation(?p, ?l);
SAY [to=?P, type=$ACCEPT, contents=?c];

}
ELSE {

// adjust relations to be as close to the
// request as possible, but do not go below

C.4 The Cautious Player 205

// $ZERO (i.e., don’t engage in a new war)
CALL ensureMaximumRelation(?p, ?u);
CALL ensureMinimumRelation(?p, $ZERO);
SAY [to=?P, type=$ACCEPT, contents=?c];

}
}
ELSE {

SAY [to=?P, type=$REJECT, contents=?c];
}

}
}

PROCEDURE giveOrders() {
XEQ resetFriends();
IF (#B relation(SELF, ?P, ?R), ?R >= $NEGQUART) {

XEQ registerFriend(?P);
}

IF (!XEQ attack(Q add(0.40, Q random(0.2)))) {
XEQ defend();

}
}

PROCEDURE updateStatus() {
WHEN NOTHING {

// reset the finished inquiry state
DROP #DID finishInquiries();
RETURN;

}
WHEN [type=$PLAYER_ELIMINATED, contents=?X] {

DROP #B relation(?X, _);
RETURN;

}
WHEN [type=$UNIT_ATTACKED, contents=?X] {

CALL adjustRelation(?X, $NEGHALF);
ADOPT #DID attack(?X);
RETURN;

}
WHEN [type=$SUPPORT_CENTRE_ATTACKED, contents=?X] {

CALL adjustRelation(?X, -0.75);
ADOPT #DID attack(?X);
RETURN;

}
WHEN [type=$SUPPORT_CENTRE_CONQUERED, contents=?X] {

CALL adjustRelation(?X, -1.5);
ADOPT #DID attack(?X);
RETURN;

}
}

206 Appendix C. Sample AgentC Code

C.5 The Cowardly Player

/**
* The cowardly player.
*/

DEFS {
// the initial relation to all players
$INITIAL_RELATION = 0.75;

}

PROCEDURE inquire() {
IF (#B stronger(?P) AS ?x) {

// try to influence the stronger players to be friendly
// towards the player
DROP ?x;
SAY [to=?P, type=$REQUEST, contents=#I relation(SELF, $ZERO, $ONE)];

}
}

PROCEDURE handleReply() {
// the replies are insignificant,

}

PROCEDURE handleNewMessage() {
WHEN [type=$REQUEST, from=?P, contents=#I relation(?p, ?l, ?u) AS ?c] {

IF (Q strengthOf(?P) >= Q strengthOf(SELF)) {
IF (#B relation(SELF, ?p, ?r) AS ?y) {

// the sender is stronger: try to honour the request,
// but don’t reduce relations to an even stronger
// player
IF (Q strengthOf(?p) > Q strengthOf(?P)) {

IF (?u > ?r) {
DROP ?y;
ADOPT #B relation(SELF, ?p, ?u);

}
}
ELSE {

DROP ?y;
ADOPT #B relation(SELF, ?p, ?l);

}
}

}

// always pretend to accept the request
SAY [to=?P, type=$ACCEPT, contents=?c];

}
}

PROCEDURE giveOrders() {
// calculate a new set of friendly players
XEQ resetFriends();
ADOPT #I makeNewEnemy();

IF (#B relation(SELF, ?P, ?R)) {
IF (?R < $ZERO) {

C.5 The Cowardly Player 207

// don’t make new enemies unless all relations are friendly
DROP #I makeNewEnemy();

}
ELSE {

XEQ registerFriend(?P);
}

}

IF (#I makeNewEnemy()) {
// select the weakest player if no other enemies exist
XEQ unregisterFriend(Q weakestOpponent());

}

IF (!XEQ attack(Q add(0.50, Q random(0.15)))) {
XEQ defend();

}
}

PROCEDURE updateStatus() {
WHEN NOTHING {

// pre-calculate the set of players which are stronger
// than the current player, and adjust relations accordingly
DROP #B stronger(_);
IF (#B relation(SELF, ?P, ?R) AS ?x,

Q strengthOf(?P) >= Q strengthOf(SELF)) {
IF (?R < $ZERO) {

DROP ?x;
ADOPT #B relation(SELF, ?P, Q add(?R, $QUART));

}
ADOPT #B stronger(?P);

}
RETURN;

}
WHEN [type=$PLAYER_ELIMINATED, contents=?X] {

DROP #B relation(?X, _);
RETURN;

}
WHEN [type=$UNIT_ATTACKED, contents=?X] {

CALL adjustRelation(?X, $NEGHALF);
RETURN;

}
WHEN [type=$SUPPORT_CENTRE_ATTACKED, contents=?X] {

CALL adjustRelation(?X, -0.75);
RETURN;

}
WHEN [type=$SUPPORT_CENTRE_CONQUERED, contents=?X] {

CALL adjustRelation(?X, $NEGONE);
RETURN;

}
}

209

Acknowledgements

JavaTM is a trademark of Sun Microsystems, Inc. in the United States and
other countries.

Diplomacy r© is a registered trademark of Avalon Hill Games, Inc., a Hasbro
affiliate.

210 Appendix C. Sample AgentC Code

211

References

[1] R. S. Cost, T. Finin, Y. Labrou, X. Luan, Y. Peng, I. Soboroff, J. May-
field, and A. Boughanam. Jackal: A Java-based Tool for Agent De-
velopment. In AAAI-98, Workshop on Tools for Agent Development,
Madison, WI, USA, 1998.

[2] W. Davies and P. Edwards. Agent-K: An integration of AOP and
KQML. Technical Report AUCS/TR9406, University of Aberdeen,
Department of Computing Science, 1994.
http://www.csd.abdn.ac.uk/~pedwards/publs/agentk.html.

[3] Mark d’Inverno, David Kinny, Michael Luck, and Michael Wooldridge.
A formal specification of dMARS. In U. P. Singh, Anando S. Rao, and
Michael Wooldridge, editors, Lecture Notes in Artificial Intelligence,
volume 1365, pages 155–176. Springer-Verlag, 1997. Proceedings of
the Fourth International Workshop on Agent Theories, Architectures,
and Languages.
http://users.wmin.ac.uk/~dinverm/papers/dmars.pdf.

[4] The rules of Diplomacy r©, the game of international intrigue. 4th
edition, 2000.
http://www.hasbro.com/instruct/Diplomacy.PDF.

[5] The Diplomacy Programming Project. See
http://dept-info.labri.u-bordeaux.fr/~loeb/dpp/index.html.

[6] GENCON 2000 tournament rules. Tournament rules for Diplomacy.
http://www.avalonhill.com/tournamentrules.rtf.

[7] Jaques Ferber. Multi-Agent Systems. Addison-Wesley, Reading, MA,
USA, 1999.

[8] M. Fisher. A survey of concurrent MetateM – the language and its
applications. In D. M. Gabbay and H. J. Ohlbach, editors, Tempo-
ral Logic - Proceedings of the First Intemational Conference (LNAI
Volume 827), pages 480–505, Heidelberg, Germany, 1994. Springer-

http://www.csd.abdn.ac.uk/~pedwards/publs/agentk.html
http://users.wmin.ac.uk/~dinverm/papers/dmars.pdf
http://www.hasbro.com/instruct/Diplomacy.PDF
http://dept-info.labri.u-bordeaux.fr/~loeb/dpp/index.html
http://www.avalonhill.com/tournamentrules.rtf

212 REFERENCES

Verlag.
http://www.doc.mmu.ac.uk/STAFF/michael/mdf-pubs/ictl94-survey.ps.

[9] Michael Fisher and Michael Wooldridge. On the formal specification
and verification of multi-agent systems. International Journal of Co-
operative Information Systems, 6(1):37–65, 1997.
http://www.elec.qmw.ac.uk/dai/people/mikew/pubs/ijcis.ps.gz.

[10] Foundation for Intelligent Physical Agents. FIPA abstract architecture
specification, 2001.
http://www.fipa.org/specs/fipa00001/.

[11] Foundation for Intelligent Physical Agents. FIPA ACL message struc-
ture specification, 2001.
http://www.fipa.org/specs/fipa00061/.

[12] Foundation for Intelligent Physical Agents. FIPA communicative act
library specification, 2001.
http://www.fipa.org/specs/fipa00037/.

[13] Foundation for Intelligent Physical Agents. FIPA content language
library specification, 2001.
http://www.fipa.org/specs/fipa00007/.

[14] Foundation for Intelligent Physical Agents. FIPA interaction protocol
library specification, 2001.
http://www.fipa.org/specs/fipa00025/.

[15] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns. Elements of Reusable Object–Oriented Software.
Addison-Wesley, Reading, MA, USA, 1995.

[16] Michael R. Genesereth and Steven P. Ketchpel. Software agents. Com-
munications of the ACM, 37(7):48–53, July 1994.
http://logic.stanford.edu/papers/agents.dvi.

[17] James Gosling, Bill Joy, Guy L. Steele, Jr., and Gilad Bracha. The
JavaTM Language Specification, Second Edition. Addison-Wesley, June
2000.
http://java.sun.com/docs/books/jls/second edition/.

[18] The DARPA Knowledge Sharing Initiative External Interfaces Expert
Group. DRAFT specification of the KQML agent communication lanu-
gage, 1993.
http://www.cs.umbc.edu/kqml/kqmlspec.ps.

[19] Koen V. Hindriks, Frank S. De Boer, Wiebe Van der Hoek, and John-
Jules Ch. Meyer. Agent programming in 3APL. Autonomous Agents
and Multi-Agent Systems, 2(4):357–401, November 1999.
http://www.cs.uu.nl/people/koenh/autagent.ps.

http://www.doc.mmu.ac.uk/STAFF/michael/mdf-pubs/ictl94-survey.ps
http://www.elec.qmw.ac.uk/dai/people/mikew/pubs/ijcis.ps.gz
http://www.fipa.org/specs/fipa00001/
http://www.fipa.org/specs/fipa00061/
http://www.fipa.org/specs/fipa00037/
http://www.fipa.org/specs/fipa00007/
http://www.fipa.org/specs/fipa00025/
http://logic.stanford.edu/papers/agents.dvi
http://java.sun.com/docs/books/jls/second_edition/
http://www.cs.umbc.edu/kqml/kqmlspec.ps
http://www.cs.uu.nl/people/koenh/autagent.ps

REFERENCES 213

[20] Koenraad Viktor Hindriks. Agent Programming Languages: Program-
ming with Mental Models. PhD thesis, University of Utrecht, February
2001.
http://www.library.uu.nl/digiarchief/dip/diss/1953134/inhoud.htm.

[21] JavaCC - The Java Parser Generator.
http://www.webgain.com/products/java cc/.

[22] N. R. Jennings and M. J. Wooldridge. Applications of intelligent
agents. In N. R. Jennings and M. Wooldridge, editors, Agent Technol-
ogy: Foundations, Applications, and Markets, pages 3–28. Springer-
Verlag, 1998.
http://agents.umbc.edu/introduction/jennings98.pdf.

[23] Robert Kowalski and Fariba Sadri. An agent architecture that unifies
rationality with reactivity. Technical report, Imperial College, Depart-
ment of Computing, 1997.

[24] Yannis Labrou and Tim Finin. A proposal for a new KQML specifica-
tion. Technical Report TR CS-97-03, Computer Science and Electrical
Engineering Department, University of Maryland Baltimore County,
Baltimore, MD, USA, February 1997.
http://www.cs.umbc.edu/kqml/.

[25] John McCarthy. Elephant 2000: A programming language based on
speech acts. Unpublished draft, 1992.
http://www-formal.stanford.edu/jmc/elephant.pdf.

[26] John McCarthy. Ascribing mental qualities to machines. In V. Lif-
schitz, editor, Formalization of common sense, papers by John Mc-
Carthy. Ablex, 1990. First published in 1979.
http://www-formal.stanford.edu/jmc/ascribing.pdf.

[27] John McCarthy and Patrick J. Hayes. Some philosophical prob-
lems from the standpoint of artificial intelligence. In B. Meltzer and
D. Michie, editors, Machine Intelligence 4, pages 463–502. Edinburgh
University Press, 1969.
http://www-formal.stanford.edu/jmc/mcchay69.pdf.

[28] Anand S. Rao. AgentSpeak(L): BDI agents speak out in a logical
computable language. In Modelling Autonomous Agents in a Multi-
Agent World, pages 42–55, 1996.

[29] Jørgen Fischer Nilsson. Data Logic: A Gentle Introduction to Logi-
cal Languages, Logical Modeling, Formal Reasoning & Computational
Logic for Computer Science & Software Engineering Students. Lecture
notes in DTU course 49233/02280: Data Logic, 1999.

[30] Yoav Shoham. AGENT-0: A simple agent language and its interpreter.

http://www.library.uu.nl/digiarchief/dip/diss/1953134/inhoud.htm
http://www.webgain.com/products/java_cc/
http://agents.umbc.edu/introduction/jennings98.pdf
http://www.cs.umbc.edu/kqml/
http://www-formal.stanford.edu/jmc/elephant.pdf
http://www-formal.stanford.edu/jmc/ascribing.pdf
http://www-formal.stanford.edu/jmc/mcchay69.pdf

214 REFERENCES

In Proceedings of the Ninth National Conference on Artificial Intelli-
gence (AAAI-91), volume 2, pages 704–709, Anaheim, CA, USA, July
1991. AAAI Press/MIT Press.

[31] Yoav Shoham. Agent-oriented programming. Artificial Intelligence,
60:51–92, March 1993.

[32] S. Rebecca Thomas. PLACA, an Agent Oriented Programming Lan-
guage. Ph.D. dissertation, Stanford University, Computer Science De-
partment, 1993. Also available as technical report CS-STAN-93-14871

[33] S. Rebecca Thomas. The PLACA agent programming language. In
Michael J. Wooldridge and Nicholas R. Jennings, editors, Lecture
Notes in Artificial Intelligence, volume 890, pages 355–370. Springer-
Verlag, 1995. Proceedings of the ECAI-94 Workshop on Agent Theo-
ries, Architectures and Languages.

[34] Mark C. Torrance and Paul A. Viola. The AGENT-0 manual. Techni-
cal Report CS-TR-91-1389, Stanford University, Department of Com-
puter Science, Stanford, CA, USA, April 1991.
ftp://reports.stanford.edu/pub/cstr/reports/cs/tr/91/1389/CS-TR-91-1389.pdf.

[35] M. Wooldridge and N. R. Jennings. Intelligent agents: Theory and
practice. The Knowledge Engineering Review, 10(2):115–152, 1995.
http://www.csc.liv.ac.uk/~mjw/pubs/ker95.pdf.

[36] Michael Wooldridge. Intelligent agents. In Gerhard Weiß, editor, Mul-
tiagent Systems. A Modern Approach to Distributed Artificial Intelli-
gence, chapter 1. MIT Press, Cambridge, MA, USA, 1999.
http://www.csc.liv.ac.uk/~mjw/pubs/mas99.pdf.

[37] Michael Wooldridge and Paolo Ciancarini. Agent-oriented software en-
gineering: The state of the art. In Agent-Oriented Software Engineer-
ing. Lecture Notes in AI, volume 1957, pages 1–28. Springer-Verlag,
Heidelberg, Germany, January 2001.
http://www.csc.liv.ac.uk/~mjw/pubs/aose2000a.pdf.

1Despite the fact that Rebecca Thomas was contacted three times by email, two
times by the author (first, by an informal inquiry in February 2002, which resulted in
Thomas offering to send the document; a month later, an inquiry into the reasons for
the absence of the document, to which Thomas apologetically repeated her intentions
to send an electronic copy) and once by former IMM librarian Petra Dalgaard (who
forwarded the original mail with a formal request for the document in June 2002, but
did not get any answer) - and despite that the IMM library placed an urgent request
for a copy of [32] from the U.S. Library of Congress already in April 2002, none of these
efforts have resulted in a copy of the document. Therefore, any assertions about the
contents of [32] given in this document are based solely on the secondhand information
found in other references on this list, most notably [33].

ftp://reports.stanford.edu/pub/cstr/reports/cs/tr/91/1389/CS-TR-91-1389.pdf
http://www.csc.liv.ac.uk/~mjw/pubs/ker95.pdf
http://www.csc.liv.ac.uk/~mjw/pubs/mas99.pdf
http://www.csc.liv.ac.uk/~mjw/pubs/aose2000a.pdf

REFERENCES 215

[38] Michael Wooldridge and Nicholas R. Jennings. Pitfalls of agent-
oriented development. In Katia P. Sycara and Michael Wooldridge, ed-
itors, Proceedings of the 2nd International Conference on Autonomous
Agents (Agents’98), pages 385–391, New York, 1998. ACM Press.
http://www.ecs.soton.ac.uk/~nrj/download-files/aa98.ps.

http://www.ecs.soton.ac.uk/~nrj/download-files/aa98.ps

216 REFERENCES

217

List of Acronyms

ACC AgentC Compiler
ACL Agent Communication Language
ACME AgentC Mental Engine
ACT AgentC Toolkit
AFC Agent Foundation Classes
AI Artificial Intelligence
AOP Agent-Oriented Programming
API Application Program Interface
APL Agent Programming Language
ASCII American Standard Code for Information Interchange
BDI Belief, Desire, Intention
BNF Backus-Naur Form
DAI Distributed Artificial Intelligence
FIFO First In, First Out
FIPA Foundation for Intelligent Physical Agents
GMI Generic Message Interface
JLS Java Language Specification
KQML Knowledge Query and Manipulation Language
MAS Multi-Agent System
OOP Object-Oriented Programming
UML Unified Modelling Language

218 REFERENCES

Index

3APL, 29, 40

ACC, 41, 41, 42, 45, 49, 50, 55,
65–69, 77, 79, 85, 87, 90,
94, 102, 111, 113, 114,
116, 119, 146, 164, 166,
170, 171

argument, 66, 66–68
option, 66, 67, 68

ACL, 27, 30, 37–39, 42, 47, 53
FIPA, 30, 38, 47

ACME, 31, 35, 37, 37–42, 49–
53, 72, 73, 86, 90–93, 99,
101, 104, 105, 109, 111,
120, 145–148, 150–152,
154, 157, 158, 164, 166,
167, 170, 195

extension module, 32, 49, 50,
51, 51, 53, 73, 145, 146,
149

actuator, 51, 52, 52, 72,
104, 112

investigator, 51, 52, 52, 53,
72, 101, 111

messenger, 51, 52, 52, 120
knowledge base, 50, 51, 53,

53–59, 61, 63, 86, 91, 92,
104–106, 109, 112, 116–
118, 147, 158, 164, 170

ACT, 33, 33–39, 41, 42, 45, 47,
53, 54, 66, 71, 127, 128,

137, 145, 157, 158, 163–
166, 170–172

component, 34, 34, 35, 42
action, 51, 52, 63, 108, 147–149

communicative, 36, 37
external, 36, 37
internal, 36

actuator, see ACME, extension
module, actuator

AFC, 35, 35–39, 41, 42, 45, 49,
54, 56, 65, 77, 166, 166

agent, 25, 26, 26
constituent, 28, 28

communicative, 28, 28, 36–
39, 42, 47, 71, 72, 145,
146, 166

deliberative, 28, 28, 36, 37,
42, 166

reactive, 28, 28, 29, 35–38,
42, 50–52, 56, 72, 145,
146, 166

environment, 26, 26, 28, 29,
32, 51

physical, 26, 27, 28, 36, 52
social, 26, 27, 28, 36, 52

intelligent, 25, 26, 26–31, 33,
34, 36, 37, 39–42, 45, 52,
53, 61, 127, 128, 145, 146,
149–151, 153, 154, 158,
164, 165, 171, 172

219

220 INDEX

Agent-0, 29, 39, 40, 42, 53, 62, 63,
82, 166

Agent-K, 40, 63
AgentC, 11, 14, 19, 21, 37, 39,

39–42, 45, 51–55, 57, 58,
61–63, 65, 66, 68, 69, 73,
77, 79, 81–87, 89, 90, 92,
97, 99, 101, 102, 106, 111,
115, 145–147, 152, 154,
158, 164, 166, 171, 172,
195

attitude, 50, 54, 54, 57, 63,
83, 86, 90, 91, 102, 105,
145, 150

achievement, 50, 51, 104,
105, 105

block, 87, 103, 106, 116, 117,
120, 121

compilation module, 89, 89–
92, 99

attitude declaration, 90, 91,
102

initial facts, 92, 92
symbol definition, 89, 99

condition, 104, 106, 106–108,
110–113, 149

comparison, 79, 107, 107,
112

complex, 106, 109, 110, 112,
114, 115

inverse, 106, 106, 108, 110
mental, 62, 109, 109–111
negated, 108, 108, 112
simple, 106, 106–109, 112,

114
expression, 97, 100, 106, 107,

115, 116, 119, 121
CALL, 94, 100, 111, 112,

119

literal, 97
Q, 51, 73, 85, 101, 101, 111,

147, 148
SELF, 99
symbolic reference, 90, 99,

99
variable, 98, 98

fact, 54, 54, 56–59, 86, 91,
92, 101, 102, 109, 110,
117–119, 122, 123, 145,
150, 158

ground, 54, 109, 110, 119,
123

predicate symbol, 54, 54,
57–59

term, 54, 54, 55, 57–59,
151

identifier, 82, 82, 90, 93, 98,
120

keyword, 63, 82, 83, 83
lexer, 81, 81, 82
literal, 83, 85, 86, 90, 97

double, 84, 84, 86, 90, 97
integer, 84, 84, 86, 90, 97
string, 84, 84, 86, 98

procedure, 52, 62, 65, 69, 73,
89, 92, 92–94, 100, 103,
112, 119, 121, 146, 147,
150

requirement declaration, 69,
93, 93

signature, 93, 93, 100
temporary variable, 94, 94,

116
rule, 62, 94, 103, 103, 120,

147
WHEN, 121, 121, 147

scope, 87, 87, 88, 109–111,
115

INDEX 221

read-only, 87, 87, 88, 100,
101, 104, 105, 107, 108,
111, 115, 117–120

read-write, 87, 88, 93, 110,
111, 116, 118, 121

write-only, 87, 88, 115, 121
sentence, 83, 86, 91, 97, 101,

102, 117
statement, 103, 103, 104, 115,

117, 121
action, 51, 104, 104, 108,

111, 112, 149
ADOPT, 117, 117
assignment, 105, 105
DO, 63, 104, 104, 105
DROP, 118
IF, 106, 106, 110, 112, 170
LET, 115, 115
LOCKED, 116, 117, 120
mental update, 117, 117
RETURN, 114, 119, 119, 120,

122
SAY, 51, 120, 120
XEQ, 104

token, 79, 81, 82
attitude, 83, 83, 91, 102,

109
value, 97, 152

logical, 86, 86
simple, 54, 83, 85, 86

variable, 62, 65, 82, 83, 85,
87, 88, 92–94, 98, 105,
109–111, 115, 117, 118,
121

alias, 109, 109, 110, 114,
115, 121, 121, 123

assignable, 105, 115
def, 65, 87, 87, 88, 94, 98,

110, 111, 114, 116, 118,

119, 122, 123
use, 65, 87, 87, 88, 94, 98,

110
wildcard, 83, 88, 93, 105,

114, 115, 123
white space, 81, 81

AgentSpeak(L), 29, 40, 53
alias, see AgentC, variable, alias
API, 41, 45
APL, 39, 39, 40, 42, 90, 166, 171,

172
architecture

inter-agent, 30, 37
intra-agent, 28, 28, 29, 35,

37, 39, 42, 51, 92, 94,
166

ASCII, 81
attitude, see AgentC, attitude

BDI architecture, 53
BNF grammar, 77

class, 35, 35, 41, 42, 45, 49, 51,
54, 66–69, 71, 72, 85, 137–
139, 145, 146, 149–151

super-, 85
compilation module, see AgentC,

compilation module
Concurrent MetateM, 40
conversation, 152, 152, 154

reply, 152, 154
request, 152, 154–156, 164,

169

DATALOG, 54, 86, 102, 110
Diplomacy, 128, 128, 129, 131,

134, 135, 170, 188–190,
209

dMARS, 29, 53

222 INDEX

Elephant 2000, 63
event, 36, 36, 37, 42, 166

external, 36, 36, 37
internal, 36

extension module, see ACME, ex-
tension module

fact, see AgentC, fact
field, 35, 68, 69, 90, 99
FIFO, 71
FIPA, 30

GMI, 38, 38, 39, 42, 47, 51, 52,
71, 151, 166, 166

Haplomacy, 11, 20, 21, 131, 131–
134, 137, 139, 145, 149,
154, 157, 158, 164, 167,
171, 179, 188–190, 192,
195

adjudicator, 140, 180, 189,
190

army, 134, 134, 135, 182–184,
190–193

leader, 134, 190, 192, 193
demo, 127, 127, 128, 145,

145, 151, 152, 158, 165,
170

game board, 132, 132, 133,
137–139, 188, 191, 192

default, 133, 133, 137, 139,
143, 149, 157, 179

order, 131, 132, 133, 134, 137,
140–143, 149–151, 179,
188, 189, 191–193

hold, 134, 134, 140–143,
182, 190–192

move, 134, 134, 135, 139,
141–143, 179, 190–192

support, 134, 134, 139–142,
179, 189–191

player relation, 151, 151, 154–
156

province, 128, 132, 132–136,
139–143, 180, 182–184,
190–193

dispute, 191, 191–193
support centre, 132, 132,

133, 135, 136, 139–143,
149, 153, 155, 168

target, 190, 190, 191
rule, 132, 140, 179, 179, 180,

188–193
test bed, 127–129, 133, 137,

137–139, 145, 165–167,
171, 172

unit, 128, 129, 132, 132–137,
139–143, 148, 168, 179–
184, 189–193

interface, 35, 49, 51, 52, 56, 68,
69, 85, 147, 152, 153

investigator, see ACME, exten-
sion module, investiga-
tor

Java, 11, 35, 41, 42, 51, 52, 54,
62, 66, 68, 72, 73, 79,
82, 84–86, 90, 94, 98, 99,
102, 113, 116, 158, 163,
166, 175, 209

JavaCC, 65, 82

knowledge base, see ACME, knowl-
edge base

KQML, 30, 38, 47, 63, 152

literal, see AgentC, literal

INDEX 223

message, 30, 31, 36, 36–39, 42,
51, 52, 54, 72, 94, 100,
120, 121, 146, 147, 149,
150, 152, 153, 166

content language, 30, 47, 152
protocol, 31, 152, 154, 170
semantics, 31, 152
structure, 30, 38, 47, 151

message rule, see AgentC, rule,
WHEN

messenger, see ACME, extension
module, messenger

method, 35, 49–52, 55, 66, 69, 72,
73, 79, 91, 92, 94, 105,
119, 139–142, 146, 150

notification, 152, 154, 164

OOP, 35, 61

package, 35, 45, 67, 137, 145
performative, 31, 152
PLACA, 29, 40, 42, 53, 62, 63,

167
procedure call, see AgentC, ex-

pression, CALL

query, see AgentC, expression,
Q

reply, see conversation, reply
request, see conversation, request

scope, see AgentC, scope
self reference, see AgentC, ex-

pression, SELF
sentence, see AgentC, sentence
system

agent-based, 26, 26, 28, 31,
33–35, 39, 40, 47, 53, 127,
171, 172

multi-agent, 25, 26, 30, 165
system requirement

1, 34
2, 34
3, 35
4, 35
5, 37
6, 37
7, 38
8, 39
9, 39
10, 39
11, 40
12, 41
13, 41

token, see AgentC, token
toolkit, 33, 34, 35, 35, 42, 127,

163, 171, 172

UML, 49, 137
Unicode, 81

variable, see AgentC, variable

wildcard, see AgentC, variable,
wildcard

	Title Page
	Document Description
	Abstract
	Sammendrag
	Preface
	Typographical Conventions
	Normal Text
	Emphasised text
	Quoted Material
	Footnotes
	Cross-references
	References to Parts of the Document
	References to System Requirements

	Terms and Definitions
	Acronyms
	Special Notation

	Document Structure
	Part I: Problem Analysis
	Part II: System Design
	Part III: AgentC Language Reference
	Part IV: System Test
	Part V: Conclusion
	Part VI: Appendices

	Contents
	I Problem Analysis
	Introduction
	What is an [Intelligent] Agent?
	Why use Agents?
	What is Required to Build an Agent?
	The Deliberative Constituent
	The Reactive Constituent
	The Communicative Constituent

	How do Agents and Objects Correlate?

	Requirements Specification
	Design Objectives
	Design Considerations
	General Design Requirements
	The Agent Foundation Classes
	The Reactive Constituent
	The Deliberative Constituent
	The Communicative Constituent

	The AgentC
	The AgentC Compiler
	Summary of System Requirements

	II System Design
	Organisation of the ACT
	The Generic Message Interface
	Design of the AFC
	The Abstract ACME
	The ACME Extension Modules
	The Actuator
	The Messenger
	The Investigator

	The Knowledge Base
	Facts
	Terminology of Facts

	Knowledge Base Operations
	Implementation of the Knowledge Base
	Structure of the AcmeKnowledgeBase
	Complexity of Knowledge Base Operations

	Influential Factors in the Design of AgentC
	The Knowledge Base
	Fundamental Properties
	Lexical Syntax
	Variables

	Keywords

	Grammar
	Message Guards
	Memory of Past Actions

	Implementation of the ACC
	Using the ACC
	Running The ACC
	Choosing the Input
	Controlling the Output
	Choosing the Package Name
	Choosing the Class Name
	Specifying a Superclass
	Specifying Interfaces

	Inheritance in AgentC
	Fields
	Methods

	Generic Utilities
	Generic Communication Components
	The Mailbox
	The PostOffice
	The DefaultMessenger
	The MessageController

	Generic ACME Extension Modules

	III AgentC Language Reference
	Notation
	About Grammars
	Non-terminals
	Terminals
	Production Rules
	Parentheses
	Alternatives
	Optional Productions
	Repeated Productions

	Scope of Grammar Rules

	Semantics Specifications

	Lexical Structure
	Input Alphabet
	Lexical Translations
	White Space
	Comments
	Identifiers
	Variables
	Wildcards

	Attitude Tokens
	Keywords
	Literals
	Integer Literals
	Double Literals
	String Literals

	Types & Values
	Simple Values
	Integer Values
	Double Values
	String Values

	Logical Values

	Scope Rules
	Program Structure
	Symbol Definitions
	Attitude Declarations
	Initial Facts
	Procedures
	Calling Procedures
	Temporary Variables

	Values and Expressions
	Literal Expressions
	Variable Expressions
	Symbolic References
	The Self Reference
	Procedure Calls
	Queries
	Sentences
	Facts

	Rules and Statements
	Action Statements
	The Achievement Attitude

	Assignment Statements
	The IF Statement
	Conditions
	Comparison Conditions
	Negated Conditions
	Action Statements as Conditions
	Mental Conditions

	About the Order of Conditions
	Scope Rules in Conditions
	Conditions with Side-effects
	Efficient Condition Evaluation

	Semantics of the IF Statement

	The LET Statement
	The LOCKED Statement
	Mental Updates
	The ADOPT statement
	The DROP statement

	The RETURN statement
	The SAY statement
	Message Rules

	IV System Test
	System Test Strategy
	Choosing a Test Bed

	The Game of Haplomacy
	Design Idea
	Basic Game Concepts
	The Haplomacy Game Board
	Giving Orders
	Resolving Orders
	Retreats
	Adjustments

	The Haplomacy Test Bed
	The HaplomacyBoard Class
	The Display Class

	The NeighbourGraph Class
	The Province Class
	The DefaultProvince Class

	The Unit Class
	The HaplomacyGame Class
	A Defensive Strategy
	An Offensive Strategy
	Complexity of the Adjudication Algorithm

	Playing Haplomacy With AgentC
	The DemoAgent
	The DemoAcme
	The DemoAcme Signature
	The DemoInvestigator
	The DemoActuator

	The HaplomacyDemo
	Using the Knowledge Base
	The Player Relation

	Communication Protocol
	Message Structure
	Message Contents
	Message Semantics
	Message Protocol

	Haplomacy Player ACMEs
	Characteristics of the Ruthless Player
	Characteristics of the Vindictive Player
	Characteristics of the Cautious Player
	Characteristics of the Cowardly Player

	System Test Results
	Test Scenario
	Test Results

	V Conclusion
	Discussion
	Design Objective
	Does the ACT facilitate implementation of agents?
	Are the Haplomacy players [intelligent] agents?
	Does the ACT aid the design of agent-based systems?

	System Requirements
	Interpretation of System Test Results
	Undecided Games
	Winning Strategies
	Analysis of the Ruthless Player
	Analysis of the Vindictive Player
	Analysis of the Cautious Player
	Analysis of the Cowardly Player

	Future Work

	Conclusion

	VI Appendices
	AgentC Grammar
	Lexical Syntax
	Program Structure
	Values
	Rules

	Adjudicating Orders in Haplomacy
	Example Diagrams
	Haplomacy Rules
	About the Rules

	Adjudication Principles
	The Adjudication Algorithm

	Sample AgentC Code
	Common Code
	The Ruthless Player
	The Vindictive Player
	The Cautious Player
	The Cowardly Player

	Acknowledgements
	References
	List of Acronyms
	Index

