This dissertation is submitted to Informatics and Mathematical Modelling at the
Technical University of Denmark in partial fulfillment of the requirements for the
degree of Doctor of Philosophy.

The work has been supervised by Professor Hans True.

Kgs. Lyngby, July, 2002

Fujie Xia






Abstract

The present thesis is concerned with the modelling of the motion of the Three-
Piece-Freight-Truck. Although the Three-Piece-Freight-Truck is very simple in its
construction, the mathematical model is not simple at all. The model is definitely
nonlinear resulting from the nonlinear kinematic and dynamical contact relations
between wheels and rails, the nonlinear suspensions and the nonlinear dry friction
damping. For low speeds of the truck the kinematic and dynamical nonlinearities
might be linearized, but the very strongly nonlinear suspensions and the dry friction
damping can not be linearized at all. The motion of the bolsters are at least two
dimensional in the lateral and the vertical directions, so the friction on the surfaces
of a wedge should be treated as two-dimensional dry friction, and the same is true for
the dry friction on the surfaces of an adapter. For the motion with dry friction there
exist two motion states: stick motion and slip motion, which leads to a discontinuity
in the behaviour of the dynamical system and leads to a collapse of the state space,
and consequently, change the degrees of freedom of the system repeatedly.

Due to the design clearances between the car body and the side supports on the
bolsters the side supports must be modelled as nonlinear dead-band springs. The
clearances in the assembly in the wedge damper systems give rise to a relative yaw
motion of the bolster with respect to the side frame and a rotation around the truck
center line and cause a warping. In addition the assembly clearances between the side
frame and the adapter both in longitudinal and lateral directions produce another
dead-band spring force.

The tractive effort on the car body in the longitudinal direction may be left out
of consideration in the modelling of the passenger car, but the normal forces caused
by it on the surfaces of the wedges will consequently produce friction forces in the
Three-Piece-Freight Truck and should be considered. Therefore, the friction forces
on the surfaces of wedges are asymmetrical for one pair of wedges as they should be.

The thesis is divided into 10 chapters. In the chapter 1, the research state-of-the
art of the dynamics of the Three-Piece-Freight-Truck is reviewed. The framework of
the model is introduced. Chapter 2 describes the concept of the friction direction
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angle with which the stick-slip motion with two-dimensional dry friction can be
numerically simulated. Its applications are illustrated in two simple systems. One is
an oscillator with a Coulomb dry friction damper in chapter 2 and the other one is
the wedge damper in chapter 3.

In the mechanical system it is possible that the degrees of freedom will vary with
the different friction states. We give a detailed discussion of this type of structure
varying systems in chapter 4.

For the performances of the vehicle on the track, the contact between a wheel and
a rail plays a key role, where there are two types of contacts: One is kinematic and the
other is dynamical. For the kinematic contact relation we trace the contact point of
the wheel on its possible trajectory and the on-line evaluation of the kinematic contact
parameters is introduced. The elastic contact assumption is used to determine the
normal loads in the contact patch and then a fully nonlinear contact theory is used
to obtain the creep forces. They are discussed in chapter 5.

The configuration of the Three-Piece-Freight-Truck and the corresponding posi-
tions of the elements, the velocities and some relations among the elements of the
system will be described in chapter 6.

In chapter 7 the dynamic equations of the system are derived. Chapter 8 provides
the numerical methods for the simulation of the system, the discussion focuses on
the differential algebraic equations(DAEs) with discontinuous characteristics caused
by the two-dimensional friction. In chapter 9 the numerical investigation is provided.
The four general irregularities in tangent track are usually described in the form of a
power spectrum density(PSD). We transform the PSD into the corresponding series
in the time domain and then use the time series as excitations for the dynamical
performances of the system. The linear critical speed and nonlinear critical speed
and even the chaotic motion of the Three-Piece-Freight-Truck are discussed. Finally
in chapter 10 certain conclusions are drawn, and some projects for further research
are indicated.
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CHAPTER 1

Introduction

The three-piece-freight-truck has been running for about sixty years on the tracks of
North America, South Africa, Australia, China and other countries. Without doubt,
the significant advantages of the trucks are due to the very simple construction, safe
and reliable operation, low price and maintenance costs, long service life and low
energy consumption. Although a new radial truck has been developed for the freight
vehicles and other types used in Europe, the family of three-piece-freight trucks still
shares larger market in the world. That is not to say this type of railway vehicles
has no disadvantages, on the contrary, its lower critical speed of the empty car on
straight track, the high dynamic track loads, the performance depends on the weather
condition and their state of contamination(dirt, oil) and the last but not the least
the state of wear influences its dynamical performances.

The one obvious structural characteristic is that almost all contacting surfaces
among the elements are direct contacts shown in Figure 1.1, in other words, the
interconnections between the components are realized through motion pairs such as
sphere joints and slide pairs. Comparing with the counterpart of a passenger car,
the motion pairs are replaced by suspension elements and hydraulic or air dampers,
such that the stability of the passenger car is improved greatly.

Additionally, while negotiating a curved track, the three-piece-freight-truck is
loose enough to warp. The reason is that on the ends of the bolster simply sandwich
the side frames via a pair of wedges with the unavoidable dimensional tolerance
coming from manufacturing and the clearance in the assembly.

And more, if the vertical response of a bolster is large enough to separate the
wedges then the friction damping will lose its function. In contrast if the relative
velocity between the bolster and wedges goes toward zero then the stick motion will
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consequently take place, which will cause unusual track loads.

Unfortunately, up to now, the dynamic performances of the three-piece-freight-
truck have not been thoroughly understood by the dynamical experts. The main
reason is that the simple construction leads to a not so simple mathematical model!

The model is definitely nonlinear resulting from the nonlinear kinematic and
dynamical constraints between the wheels and the rails, the nonlinear suspensions
and the nonlinear dry friction damping. For low running speed of the truck the
nonlinearities of the kinematic and dynamical constraints could be linearized, but the
very strong nonlinear suspensions and the dry friction damping can not be linearized
at all. The motion of the bolsters are at least two dimensional in the lateral and the
vertical directions, so the friction on the surfaces of a wedge should be treated as
two-dimensional dry friction, and the same holds for the dry friction on the surfaces
of an adapter. For the motion with dry friction there exist two motion states: Stick
motion and slip motion, which lead to a discontinuity in the dynamical system and
cause the collapse of state space. Consequently, it changes the degrees of freedom
of the system. Because the design clearances between the car body and the side
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Figure 1.1: The construction of the three-piece-freight-truck.

supports on the bolsters are necessary such that leads to the side supports acting
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as dead-band springs. The clearance in the assembly of the wedge damper systems
cause the relative yaw motion of the bolster with respect to the side frame to rotate
about the truck center line and to assume a state of warping. Also the assembly
clearances between the side frame and the adapter both in longitudinal and lateral
directions produce another dead-band spring force.

The tractive effort on the car body in the longitudinal direction may be left out of
consideration in the modelling of the passenger train, but the normal forces caused by
it on the surfaces of the wedges will consequently produce friction forces in the three-
piece-freight truck and the normal forces should therefore be considered. Therefore,
the friction forces on the surfaces of wedges are asymmetrical for one pair of wedges
as they should be.

1.1 The review of the state of the arts of research

1.1.1 Two-dimensional dry friction

The story of the friction has a long history as it has been a topic of technological
attention for a long time, and it is still a hot topic in scientific and engineering
research today. Friction can easily been found in our daily life as well as in various
engineering applications. In railway engineering nothing can be done without friction,
because the friction between the wheels and the rails provides the traction force, and
the friction on the wedge dampers provides the damping force to damp out the
vibrations. It poses great challenges to researchers in the dynamic performance of
the three-piece-freight-truck. First of all, friction is difficult to model, because the
underlying mechanism is not entirely understood. Additionally, friction models are
usually discontinuous, especially for the two or higher dimensional relative motion
with friction. The theory used in most of the dynamical systems for smooth systems
is not directly suitable to the systems with friction. Thus, the topic of the wedge
dampers with friction is the current focus of several researchers in the world today.

In order to simulate the motion of a friction oscillator with a two-dimensional dry
friction constraint, there are two unavoidable matters we must deal with. One is the
hysteresis induced by the dry friction coefficients of static and kinetic friction and
the other is the discontinuity induced by the stick-slip motion. It is not difficult to
determine the components of the kinetic friction force vector and the static friction
force vector individually, but no widely accepted way to treat the stick-slip motion
exists, especially not for complicated mechanical systems. C-H Meng et al.[Meng,
1991] use a massless friction damper with two linear springs of finite stiffness to obtain
the components of the friction force vector. However, when the stick-slip motion takes
place the formulation was not provided rigorously. The method provided in their
paper is not convenient for handling the two-dimensional dry friction in complicated
mechanical systems.

For some special cases, the excitations are sinusoidal with the same frequency and
with different amplitudes or phases and the orbits of responses will be reduced to
straight line segments or to circular or elliptic shapes. In these cases the harmonic-
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balance method is widely used to give an analytical approximate solution[Meng,
1991][Saw,1986][Sanlitark,1996][Yang,1998,2000]. However, for complicated excita-
tions, e.g. sinusoidal excitations with different frequencies in two orthogonal di-
rections or even time series, the orbit of the response will become a complex self-
intersecting planar curve, and in this case the harmonic-balance method fails.

For dynamic systems with dry friction, Den Hartog[Den Hartog, 1931] presented
a closed-form solution as early as in 1931 for the steady state zero-stop response of
a harmonically excited oscillator with Coulomb friction. Since then one-stop, two-
stops and multiple-stops per cycle have been reported[Hong,2000]. Responses with
bifurcations and chaos have also been found in many fields[Feen,1992,1996], but most
of the research efforts have focused on one-dimensional dry friction models, which
means that the motion is along a straight line.

Recently, W. Sextro[Sextro,2002] provided a three-dimensional point contact ele-
ment to treat the elastic contact with dry friction. The theory and methods can be
used to the sliding contact and as well as the rolling contact. But it can not treat
the stick-slip motion.

1.1.2 The stick-slip motion

The stick-slip motion is a phenomenon occurring in the systems with dry friction. It
is important for us to understand the complete motion of the mechanical systems.
Examples of the stick-slip motion of frictional systems include robot joints, brak-
ing systems, automotive squeak, rail-wheel contacts, micromechanics, machine-tool
processes, earth-quake faults, space structures, turbine blades and wedge dampers.
Please refer to a detailed description in the paper by Ibrahim [Ibrahim,1992]. From
the point of view of vehicle systems dynamics, stick-slip motion may be one reason
that causes unusual track loads. During a stick, there is a collapse in the dimension of
the state space[Shaw,1986][Eich-Soellner,1998], which can be visualized in the state
space by imaging that one of the states, the velocity, is directly constrained during
stick. For a one forced one-degree-of-freedom oscillation, this produces an underlying
one-map[Shaw, 1986][Feeny, 1992][Popp, 1992]. The slip state is the one where the
relative velocity is different from zero.

The description of the stick-slip motion of the system with two-dimensional fric-
tion will be more difficult. For one, both the input forces on the system are needed to
be known statically and kinematically and the components of the friction force vector
in the orthogonal directions must be completely determined. Only then the stick or
slip state can be distinguished. Additionally, the switch conditions for the collapse of
the state space become complicated, especially, if one body has more than one surface
in contact with others. The dynamics of railway vehicles with two-dimensional dry
friction and stick-slip action at the surface elements in contact has not been reported
before.
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1.1.3 The friction coefficient

The friction coefficient plays a significant role for the motion of a system with fric-
tion. According to the characteristics of its application here we distinguish between
four types.

e Coulomb law:
The static and kinematic friction coefficients are the same constant, i.e.

w(V,) = p (1.1)

where V,. denotes the relative velocity. This simplest model has been used by many
investigators for providing a variety of steady-state responses, including periodic,
quasi-periodic, and even chaotic responses [Feen, 1992, 1993,1994]| [Saw, 1986].

e Static-dynamic friction model:
The static and kinetic friction coefficients are different constants, but the static
friction coefficient is always larger than that of the kinetic friction coefficient, i.e.

o, Vi #£0Q,
vy = { e 70 (12)

where ps denotes the static friction coeflicient and pj stands for the kinetic friction
coefficient[Popp, 1992, 1996].

e Relative velocity-dependent friction model:

The friction coefficient varies with the relative velocity. There are two ways to
describe the friction model. One is to let the static friction coefficient be constant and
only the kinetic friction coefficient changes with the relative velocity[Popp,1992,1996]

Hs 2
V)=t v 1.
w(V:) 1+01‘Vr‘+02+63 s (1.3)

where ¢1, co, c3 are constant parameters. The values of them provided by Pop [Pop,
1996] are 1.42, 0.1 and 0.01 respectively. The kinetic friction coefficient will be larger
than the static friction coefficient for a certain large relative velocity.

The formula provided by Poiré and Bochet is [Kragelski,1971]|[Periard,1998]

1

V,) = prg————. 14
Vo) = e G 03] (1.4)
and by Galton reads
1+ 0.018|V,
w(Vy) = 1+0.018)V;| (1.5)

T 0.007V, |

where the static friction coefficient is always larger than the kinetic friction coefficient.



6 Introduction

In order to use one formula to replace all the laws above in this thesis[True 1999-
2002| [Xia, 2001a] we provide an approximate relation using the hyperbolic secant
function to describe the velocity-dependent friction coeflicient as

u(V;) = posech(al Vi) + (1 — sech(alV; ). (L6)

By the selection of different values of the parameter a the formula yields different
steepness of the continuous curve that describes the change from the static to the
kinematic friction coefficient.

o Anisotropic friction model:

The above three types of friction models are all isotropic friction models since
the value of the friction coefficient is the same in any motion direction. In other
words, the friction force vector is always opposite the relative velocity. For the
anisotropic friction model the friction coeflicient can be represented by a friction
coefficient tensor[Zmitrowicz, 1981a,b] and the friction force vector is along the line
that deflects a certain angle from the line of the relative velocity.

1.1.4 The wedge dampers

In 1935, Standard Car Truck Company introduced friction damping to the freight car
truck. Since then the freight trucks of the 1940’s generally had the column friction
wedge similar to designs popular today. The friction wedge is used in all three-piece-
freight-trucks such as the conventional three-piece-freight-truck, the three-piece self-
steering truck and the Y25 truck, to provide vertical and lateral damping in the
secondary suspension, as well as lozenging stiffness between the side frame and the
bolster[Frohling, 1996, 1997, 1998].

The friction surfaces of the wedge are able to move relatively to one another in
two orthogonal directions, that is laterally and vertically. Therefore the dynamic
behaviors in both directions have to be taken into account when modelling the stick-
slip motion. Some measurements and theoretical investigations were done by R.D.
Frohling [Frohling, 1996, 1997, 2000], C. Cole[Colin,2001] and N. Bosso[Bosso et al.,
2000]. The hysteresis-loops of the forces vs the deflections were provided. But the
dynamical results for simultaneously excitations in both vertical and lateral directions
are not provided. Furthermore the effect of the friction between the side frame and
adapter was neglected in their models.

Up to now, few reports on the response of wedge dampers with two-dimensional
dry friction have been published [Fréhling, 1996, 1997, 2000][True,1999]. In order to
understand the dynamical performances of the wedge dampers, we should first under-
stand the responses of a two-dimensional dry friction oscillator and implement a basic
numerical method. The non-linear discontinuous dynamic system with complicate
excitations along orthogonal directions, is so complicated that analytical solutions to
the problem can not be found, so we must use a numerical method.
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1.1.5 Variable degrees of freedom system

We know that the stick-slip motion will cause a collapse of the state space, in other
words, the degrees of the freedom of the system will vary with time. That brings
at least two troubles for the modelling of the system. One is the discontinuity that
will violate the continuous assumption of the existing numerical integral algorithms.
The other is that if you neglect the fact of the discontinuity caused by the stick
motion the time steps in the integration procedure will become very small and the
problem behaves like a stiff one. For treating this problem there is no simple way
except finding all the switch conditions[Eich-Soellner, 1998]and the corresponding
acting friction forces and making the system piece-wise differentiable.

1.1.6 The dynamics of railway vehicles

The dynamics of the railway vehicle systems are closely related to the topic of stabil-
ity. Stability of running of vehicles is one of the important design criteria of railway
vehicles. As early as 1883 Klingel[Klingel,1883] analyzed the hunting motion of a
single wheelset on a straight track by a purely kinematical method. The wavelength
L of the hunting motion of a single wheelset was determined by

L= 271'\/7;\7) (1.7)

where 7 denotes the rolling radius, b is half the wheel distance and A is the conicity.

For a loaded wheelset a purely kinematic motion is no longer possible. The theory
of rolling contact mechanics in needed to investigate the stability. Carter[Carter,
1915] provided a model of a two-axled bogie including the tangential forces with a
qualitatively correct linear law to calculate the creep forces. The wavelength of the
hunting motion of the bogie is

rb a2,

where a,, denotes half the axle distance in the bogie.

The main result of Carter is that a two-axled bogie with rigid suspension in
longitudinal and horizontal directions and with a rigid frame never runs stably.

The main contribution of Matsudaira[Matsu, 1952] in this field was his distinc-
tion between forced vibrations and self-excited vibrations a first in railway vehicle
dynamics; and he also introduced the concept of the primary hunting motion and
the secondary hunting motion. The primary hunting motion occurred at lower vehi-
cle speeds and was connected with large lateral car body motions. The secondary
hunting motion occurred for high vehicle speeds and the wheelset motion was more
dominating.

Wickens[Wickens,1965] derived a refined model of a two-axled bogie including the
effect of the gravitational stiffness, which is important for worn profiles, and damping.
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The results showed that it is possible to choose parameters in such a way that car
body instability can be avoided.

However, the above stability is a linear stability. The linear stability theory of
railway vehicles is more often than not yields a too high critical speed of the vehicle
bogie. From the beginning of the 1960’s much research effort has been invested in the
nonlinear stability of the vehicles. De Pater[De Pater,1961] was probably the first
one who introduced the method of Krylow and Bogoljubov into the investigation of
nonlinear hunting motions. The quasi-linearization technique with sinusoidal input
introduced by Cooperider, Hedrick, Law and Malstrom[Cooperrider,1975] is roughly
the same as the harmonic balance method or the method of Krylow and Bogoljubov.
Their results can not explain the existence of the nonlinear periodic limit cycle.

Still the nonlinear periodic limit cycle analysis is not sufficient to describe the
behaviors of railway vehicles and bogies. One reason is that it cannot be proved that
the periodic oscillation always exists. The first bifurcation analysis of the free running
wheelset was performed by Huilgol [Huilgol,1978] and revealed a Hopf bifurcation
from the steady state. The first observation of chaotic oscillations in models of
railway vehicles was by Hans True and Kaas Petersen[Hans True,1983|[Kaas,1986].
Further work demonstrating chaotic motion of railway wheelsets and vehicles include
Hans True[True, 1993,1999,2001] and his colleagues, Meijaard and De Pater[Meijaard
and De Pater 1989]. For further references the reader is refered to the paper presented
by Knothe[Knothe, 1999].

The nonlinear stability of the motions of railway wagons was investigated by
Pascal[Pascal,1993]. The effect of the rolling contact between the wheels and the
rails was emphasized, but the effect of the friction damping in the model is not
described. It is true that the forces between the wheels and the rails play a significant
role for the motion of the vehicle systems. However, in the complete and strongly
nonlinear system, the response of the vehicle is not a simple sum of the effects of
the subsystems. It is therefore very difficult to relate a special kind of behavior to a
special subsystem.

Hans True[True, 2002] has derived a strongly simplified model to investigate the
dynamic performance of a freight bogie with dry friction and found that chaotic
motion occurs in that model. The model considers only one dimensional dry friction
but the stick motion is included.

1.2 The problem to be investigated in the present
thesis

The main objective of the thesis is focussed on the understanding of the dynamical
performance of the three-piece-freight-truck including the following features:

e The mass of the wedges is included.
e Both the lateral and the vertical motions of the bolster are included.
e The two-dimensional friction on the surfaces of the wedges and the surfaces of the
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adapters is included.

e The effect of the tractive effort on the action of the wedge dampers is included.

e A velocity-dependent friction function is introduced.

o The three-dimensional kinematic constraint between a wheel and a rail is used.

e The full nonlinear dynamical constraints between the wheel and the rail are used.
e The structure varying systems caused by stick-slip motion are discussed in detail.
e The linear critical speeds and the nonlinear critical speed are calculated and even
chaotic motion are investigated.

o A description of how the Power Spectral Density(PSD) is transformed into a time
series.

e The dynamical responses of the three-piece-freight-truck to an irregular track are
simulated.

We start with the fundamental topics such as the two-dimensional dry friction,
stick-slip motion, structure varying systems, separated-coupled motion and the con-
tact between a wheel and a rail. Through the investigation of these basic models
we can better relate the dynamical phenomena to the corresponding problems in
the three-piece-freight-truck. Finally we combine the basic models into the complete
three-piece-freight-truck model with the kinematic and dynamical contact relations
between the wheels and the rails.

In the thesis, a refined model of the three-piece-freight-truck is provided. It
incorporates the mass of the wedges, the two-dimensional dry friction, the velocity-
dependent friction coefficient, the stick-slip motion, the dead-band springs, the anti-
warp stiffness, the effect of the tractive effort, the on-line evaluation of the kinematic
contact parameters and the elastic dynamical contact relations between the wheelsets
and the rails. Moreover, the applied numerical methods are discussed.

1.2.1 Two-dimensional dry friction

To describe a friction force vector on a plane, the modulus and the argument of
the force should be known. Instead of the harmonic balance method used by most
investigators[Cheng,1995][Saw,1986], we provide a numerical approach to describe
the system with two-dimensional dry friction. The concept of the friction direction
angle is introduced to determine the orthogonal components of the static and kinetic
friction force vector. The friction direction angle is determined by either relative
velocities or input forces. With this method the switch conditions for stick state, slip
state and stick-slip state can be easily derived.

In the case of anisotropic friction the friction direction angle can be used to deter-
mine the equivalent friction coefficient and the deflection friction angle[Zmitrowcz,
1981a,b].
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1.2.2 The coupling-separation motion of the wedge damper
system

When the three-piece-freight-truck runs on the track, the excitations on the bolster
in vertical direction may be so large, that the bolster will separate from the wedge
and perform a free vibration only restrained by the coil springs in the suspension.
When separation takes place and if the displacement of the bolster in the vertical
direction is smaller than its initial value, then a friction force exists on the surface of
the wedge contacting the side frame because the displacement along the longitudinal
direction differs from zero. During the separated motion if the displacement of the
wedge in the vertical direction is larger than its initial value, then a free vibration of
the wedge will occur. The bolster will perform a forced vibration without any friction
damping. The detailed discussion will be focussed on the wedge dampers model.

1.2.3 The discontinuity with stick-slip motion

If the dynamic systems include the dry friction, structure varying systems, impact
phenomena and hysteresis then the right-hand sides of the differential equations
express the discontinuities of the forces, the jumps in the velocities and the number
of the changing degrees of freedom. The discontinuity of the system might cause
wrong error estimates and erroneous choice of step sizes in the numerical integration
algorithm. In the model of the three-piece-freight-truck the discontinuities of the dry
friction, impact and the hysteresis will appear.

Standard integration methods for treating the discontinuity may lead to an ineffi-
cient behavior or even to a failure of the integration caused by an order reduction of
the method and wrong error estimates[Eich, 1998]. The way to handle the problem is
to extend integration methods to be able to localize the roots of the so-called switch-
ing functions in order to permit a re-initialization at the points of discontinuity. Since
the complete three-piece-freight-truck is a very complex system we will first discuss
the dynamics of sub-systems of the three-piece-freight-truck and then combine them
into the complete system.

1.2.4 The variable degrees of freedom system

The structure varying systems in the three-piece-freight-truck can be found in the
sub-systems of the bolster-wedge-frames and the bolster-frame-wheelsets. In this the-
sis we will discuss the switch conditions and the corresponding acting friction forces
and the transformation of the discontinuous system into a piece-wise differentiable
system.

In Figure 1.2 we show the system of the bolster-wedges-frames. When the relative
velocities Vi1 = Vo — Vi1 = 0 and Vippo = Vi — Vo = 0 at same time with V3, # 0
then the bolster and the two side frames will have the same lateral velocity and move
as one body. It means that the degrees of freedom of the system is reduced by 1. How
about the friction forces on the surfaces between the bolster and side frames in the
lateral and vertical directions? They are definitely not zero unless all the input forces
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are zero. The other structure varying system is shown in Figure 1.3 which is the

Bolster Wedge Frame

Figure 1.2: The structure varying system of the bolster-wedge-frames.

Frame Bolster Wheelset axle

Figure 1.3: The structure varying system of the bolster-frame-wheelsels.

sub-system of the bolster-frame-wheelsets. The problem is: How can we determine
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the friction forces on the contact surfaces between the frame and the wheelsets both
in the longitudinal and lateral directions in the stick motion with non-zero input
forces? In this thesis we will answer these questions.

1.2.5 The interaction between a wheel and a rail

For the kinematic constraints between a wheelset and rails a two dimensional model
to calculate the kinematical constraint parameters is widely used. In that way the
kinematic constraint parameters only depend on the lateral displacement and the
effect of the yaw of the wheelset is neglected. In the present thesis we use a three
dimensional contact model to determine the kinematic constraint parameters in two
ways: One way is the geometrical method by means of the trajectory of the wheel
tread and the other one is the analytical method through solving of a set of nonlinear
algebraic equations. We furthermore extend the evaluation of the three dimensional
contact parameters to include the determination of the dimension of the contact
patch and the penetration between the wheel and rail.

For the dynamical constraints we use the quasi-elastic method to determine the
normal loads and the full nonlinear formulations to calculate the tangential contact
forces including table-looking[Xia, 1996|[Kalker, 1996], SHE theory[Shen, 1983] and
Polach’s method[Polach, 1999].

1.2.6 Stability of the three-piece-freight truck

The only limitation of the model to perform the nonlinear analysis is the computation
efficiency. Especially for the investigation of the critical speed, the verification of the
chaotic motion by checking up the Poincare map or the first return map, or the
calculation of Lyapunov exponents is very time consuming.

1.2.7 The responses of the three-piece-freight-truck to the ir-
regular tracks

An interesting objective is to find the responses of the complete freight vehicle under
various excitations. We calculate the hysteresis loops of the normal forces on the
surfaces of the wedges, and the friction forces on the surfaces of the wedges in lateral
and vertical direction.

We use the power spectral density(PSD) provided by FRA (Federal Railroad Ad-
ministration) to describe the irregularities of the track (class 1 to 6). Because of the
strong nonlinearity of the system, the PSD can not be directly used as an excitation.
We use the inverse Fourier transformation to transform the PSD into a corresponding
time series and then use them as the excitations to obtain the final responses.
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1.3 The outline of the thesis

The thesis is divided into 10 chapters. In the chapter 1, the state-of-the art of
the research of the dynamics of the Three-Piece-Freight-Truck is reviewed. The
framework of the model is introduced. Chapter 2 describes the concept of the friction
direction angle with which the stick-slip motion with two-dimensional dry friction
can be numerically simulated. Its applications are illustrated in two simple systems.
One is an oscillator with a Coulomb dry friction damper in chapter 2 and the other
one is the wedge damper in chapter 3.

In the mechanical system it is possible that the degrees of freedom will vary with
the different friction states. We give a detailed discussion of this type of systems in
chapter 4.

For the performances of the vehicle on the track, the contact between a wheel
and a rail play a key role, where there are two types of contacts: One is kinematic
and the other is dynamical. For the kinematic contact relation we trace the contact
point of the wheel on its possible contact trajectory and the on-line evaluation of
the kinematic contact parameters is introduced. The elastic contact assumption is
used to determine the normal loads in the contact patch and then a fully nonlinear
contact theory is used to obtain the creep forces. They are discussed in chapter 5.

The configuration of the Three-Piece-Freight-Truck and the corresponding posi-
tions of the elements, the velocities and some relations among the elements of the
system will be described in chapter 6.

In chapter 7 the dynamic equations of the system are derived. Chapter 8 provides
the numerical methods for the simulation of the system, the discussion focuses on
the differential algebraic equations(DAEs) with discontinuous characteristics caused
by the two-dimensional friction. In chapter 9 the numerical investigation is provided.
The four general irregularities in a tangent track are usually described in the form of a
power spectrum density(PSD). We transform the PSD into the corresponding series
in the time domain and then use the time series as excitations for the dynamical
performances of the system. The linear critical speed and mnonlinear critical speed
and even the chaotic motion of the Three-Piece-Freight-Truck are discussed. Finally
in chapter 10 certain conclusions are drawn, and some projects for further research
are indicated.
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CHAPTER 2

Mechanical systems with
two-dimensional dry friction

In this chapter we provide a mechanical model for investigating the stick-slip mo-
tion of a two-dimensional oscillator with dry friction exposed to excitations of any
arbitrary shape. In contrast to the harmonic balance method used by most investi-
gators[Meng, 1991][Sanliturk, 1996], we provide a numerical approach to investigate
the system. The concept of a friction direction angle[Xia,2002] is introduced to deter-
mine the components of the static and kinetic friction force vectors and the hyperbolic
secant function is introduced to deal with the transition of the friction force from
static to kinetic state. The friction direction angle is determined by either relative
velocities or input forces. With this method the switch conditions for stick state, slip
state and stick-slip state can be easily derived. The orbits of the responses, which
are straight line segments, circular or elliptic are obtained. In the general case, the
orbit of the response is a complex planar curve. Zero-stop, two-stops and more than
two-stops per cycle are also found.

One can also find other ways, a way is described in chapter 10 for example, to
deal with the one oscillator with dry friction with one and two-dimensions. But as
we will see in the next chapter and chapter 4 the friction direction angle will play
a decisive role in a complex structure varying system. The concept is also useful in
anisotropic friction.
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2.1 Introduction

In order to simulate the motion of a friction oscillator with two-dimensional dry
friction constraint, there are two unavoidable matters we must deal with. One is the
hysteresis induced by the dry friction coefficients of static and kinetic friction and
the other is the discontinuity induced by the stick-slip motion. It is not difficult to
determine the components of the kinetic friction force vector and the static friction
force vector individually, but no widely accepted way to treat the stick-slip motion
exists, especially not for complicated mechanical systems. C-H Meng et al.[Meng,
1991] use a massless friction damper with two linear springs of finite stiflness to obtain
the components of the friction force vector. However, when the stick-slip motion takes
place the formulation was not provided rigorously. The method provided in their
paper is not convenient for handling the two-dimensional dry friction in complicated
mechanical systermns.

For some special cases, the excitations are sinusoidal with the same frequency
and with different amplitudes or phases and the orbits of responses will be reduced
to straight line segments or to circular or elliptic shaps. In these cases the harmonic-
balance method is widely used to give an analytical approximate solution[Meng,
1991][Sanliturk, 1996][Yang, 1998a,b,2000]. However, for complicated excitations,
e.g. sinusoidal excitations with different frequencies in two orthogonal directions or
even time series, the orbit of the response will become a complex self-intersecting
planar curve, and in this case the harmonic-balance method fails.

For dynamic systems with dry friction, Den Hartog[Den Hartog, 1931] presented
a closed-form solution as early as in 1931 for the steady state zero-stop response
of a harmonically excited oscillator with Coulomb friction. Since then one-stop,
two-stops and multiple-stops per cycle have been reported[Hong, 2000]. Responses
with bifurcations and chaos have also been found in many fields[Saw, 1986][Feen,
1992][Popp, 1996][True, 1999], but most of the research efforts have focused on one-
dimensional dry friction models, which means that the motion is along a straight
line.

The two-dimensional Coulomb friction oscillator has wide applications in the
fields of the freight-bogies on railways, turbo-machinery, earth quake theory and
robot-walking mechanisms. Here we mainly shall turn our attention towards applica-
tions to the so-called wedge dampers in the three-piece-freight-bogie and dry friction
dampers in the bogie Y25. In both cases they are used to dissipate the vibration en-
ergy produced by the interaction between wheels and rails|Gardner, 1997|[Frohling,
1998][Evans, 1998]. Up to now, only a few reports on the response of wedge dampers
with two-dimensional dry friction have been published. In order to understand the
dynamical performances of the wedge damper, which basically is a two-dimensional
dry friction oscillator, we should first understand the responses of a two-dimensional
dry friction oscillator and implement a basic numerical method. For the non-linear
discontinuous dynamic systems with complex excitations in orthogonal directions, an
analytical solution cannot be found, so we must use numerical methods.
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Figure 2.1: A two-dimensional friction oscillator

2.2 Description of a two dimensional friction oscil-
lator

Consider the two-dimensional friction oscillator shown in Figure 1. The mass m is in
contact with a plane surface and it is connected to fixed walls by two linear springs
and two linear viscous dampers along the x and y directions respectively. Newton’s
second law applies, and the equations of motion of the system can easily be written
as

m& + cp& + kyx + Fpy = Fy (2.1)
my + cyy + kyy + Fyp = Fy; (2.2)

where the components of the friction forces F,, and F,, must satisfy the relation

Fli = \/ F’I‘?/L + FI?,U. S H’N (23)

N is the normal force on the mass, which in general is a state-dependent variable,
for the sake of simplicity we assume that it is constant. pu is the friction coefficient,
which has two states: A static coefficient of friction us, and a kinetic coefficient of
friction p1,. We can therefore write the friction force as F,, = —N f(V), where f(V)
is determined by the relation[Feen, 1992]

Lk if V>0
FOV) =8 —pe < F(V) < py iV =0 (2.4)
— if V<0

The velocity V of the mass has the components & and ¢, which determine the direction
of the kinematic friction force. We have

V= Vy?+ 2. (2.5)
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The derivatives of x and y are with respect to the time 7. The friction direction
angle between & and ¢ is defined by

tan~'(%), (&>0, §#0)
f=1¢ m—tan~'(L), (£<0, §>0) (2.6)
T+ tan~' (%), (<0, y<0)

Hence the components of the friction forces can be expressed in the following way:
F,, = F,cosf, Fy,=F,sinf (2.7)

The driving forces F, and F), are arbitrary but in the present paper we assume that
they are simple harmonic functions with driving (angular) frequencies wgq and wyq
respectively:

Fy = fz0cos(WeaT + ¢2), Fy = fyo Cos(wydT + ¢y) (2.8)

where fzo and fyo are the amplitudes and ¢, and ¢, are the phases.
In the case of k; = k;, = k and ¢, = ¢y = ¢, we may rescale the time and the
displacements:

xsz%, ysz%, t=1Vk/m, wgq=Qv/m/k, wyszy\/rT/k.(ZQ)

The equations (2.1) and (2.2) can then be written on dimensionless form:

T+ Exs + x5 + f(u) cos = By cos(Qut + dz) (2.10)

Us + €Ys + ys + f (1) sin = B, cos(Qyt + @) (2.11)
where

Bo = fao/N, By = fyo/N, &=c/Vim (2.12)

and the friction direction angle 6 remains on the same form as (2.6) except that &
and ¢ are replaced by &5 and ys.

2.3 The friction direction angle and the friction force
components

In order to define a friction force vector on a plane, its modulus and argument must
be known. The modulus of the friction force vector is determined by (2.3) and (2.4),
and its argument is given by the angle # shown in Figure 2.2. Then the z and y
components of the friction force can be determined. We call the angle 6 the friction
direction angle. The dry friction is assumed to be isotropic.
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Figure 2.2: The friction direction angle in a two-dimensional friction oscillator

If the velocity components V, = & and V,, = y of the mass are different from(0,0)
then the friction direction angle is determined by the angle between the velocity V,
and the resultant velocity v. The modulus of the friction force vector is then equal to
the normal force times the kinetic friction coeflicient, viz. F,, = Nuy. The direction
of the friction force is opposite to the resultant velocity V' as shown in Figure 2.2(a)
due to the isotropy. The friction direction angle is given by the velocities V,, = & and
Vy = ¢ in equations (2.6), and then the components of the friction force vector are
given by equation (2.7).

If (Vz, Vi) equals (0, 0) then the maximum value of the friction force is equal
to the normal force times the static friction coefficient, viz. F), = Npu,, and the
corresponding components of the friction force are equal to the corresponding input
forces, viz. Fy, = Fing, Fyu = Finy. Although the mass is in rest, the friction force
is not zero. We call this state a nonzero static friction force equilibrium state, and
the friction force vector is equal and opposite to the input force, which is shown in
Figure 2.2(b). The effect of the torque caused by the input force and friction force
is neglected in the present paper. In other words, we can use the input forces Fj,,
and Fjy,y to determine the friction direction angle alternatively, viz.

tan_l(%% (anr 2 07 Finy 7é 0)
0= ™= ta‘nil(%)v (Fi’n,a: < 07 Finy > 0) (213)
mtan  (F2),  (Fine <0, Finy <0)

When both the velocities and the input forces of the mass are equal to zero, then
the friction force is zero and the system is also in equilibrium. We call this state
a zero friction force equilibrium state. In this case the friction direction angle is
undetermined.

We now extend the definition of the friction direction angle, 6 to include the two
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cases in (2.6) and (2.13). It is determined in the following way

X(afsay.s)a (xSvyS#O)
0= w(sz,me), (st /\ys = O,me\/any 7’é 0) (2-14)
®7 (Ts /\ ys /\ Fi’n,a: /\ Finy = 0)

where x(s,ys) denotes the representation of 6 by (2.6); ¢¥(Finz, Finy) stands for the
representation of 6 by (2.13) and § is the empty set of §. The symbol \/ means
disjunction and the A denotes conjunction. As a consequence, the components of
the friction force vector in the two orthogonal directions can be determined by the
following formulae:

Fppup = Fj cos0 . ) ) .
FyZZ:FZSiDH }’ (s Vys #0) | (&5 Ags =0,

|anz‘ Z ‘FI;LS‘7 ‘any| Z |Fyus|) (215)

Frut = Fing

F = F } ) ('Ta A j/s = Oa |Fm:c| < |F;cus|a |Finy‘ < ‘Fyus‘) (216)
yut — Liny

Note that the components of the maximum friction force vector in the x and y
directions, Fy,s, Fy.s that are used in the conditions are determined by

Fyps = R(O)Nps cos } (2.17)

EJ/J,S = %(G)Nﬂs sin 6.
where the function R(0) is defined as

R(6) = { (1) ’ ; o (2.18)

in which the symbol © stands for a non-empty set of 6. (2.18) is used to determine
the stick-slip switch conditions as we shall see in the coming sections.

It should be pointed out that if the stick motion takes place between two moving
bodies then the (2.16) can not be directly used to determine the acting friction force
components. In that case the switch conditions are needed to determine both the
acting friction force components and the stick-slip states, which will be discussed in
the following chapters.

In the case of a one-dimensional friction oscillator, the friction direction angle
reduces to 0 or 7 (motion in a-direction) or 7/2 or 37/2 (motion in y-direction).
Therefore the friction direction angle can be used to instead of the sign function.

If the dry friction depends on the friction direction angle as a result of rough-
ness anisotropy of the contact surfaces then the dry friction is called anisotropic
friction[Zmitrowcz,1981a,b]. In that case the friction direction angle can be used to
determine the deflection angle, 8 as shown in Figure 2.3. In that case the friction
coefficient is then determined by

Lo = \/(ull cos 0 + 12 8in 0)2 + (g1 cos 8 + pos sin )2 (2.19)
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Figure 2.3: Components of anisotropic friction forces

and the deflection angle is determined by

_ (o2 — p11)sin @ — pio sin? 6 + a1 cos? 0
p11 €082 0 + pog sin? 0 + (p12 + pro1 sinf cos )

(2.20)

The friction coefficients u;; may be found by sliding the mass along the axes of the
orthogonal reference system (zoy). In any isotropic friction case p;; = p for i = j
and Hij = 0 for ¢ 7£j

The components of the friction forces in the z and y directions are then determined
by

IFinw| > |Fm;t5‘> ‘qu| > |Fy;t8|) (2~21)

Frp
Fy, =

and

(2.22)

Fyps = R(O)N ps cos(0 + )
Fyus = R(O)Npssin(0 + 3)

In the same way the friction forces in other motion states can also be written out.

2.3.1 The external force and input force

When the resultant velocity of the mass is equal to zero, we say that the system is
in the stick-phase. In this case the friction coefficient attains its maximum value pg
and the associated friction force may reach its maximum value, which is the same as
the definition of the maximum static friction force. If the acting force (input force)
is less than the static friction force there is no motion occurring, because the static
friction force will balance the input force. If the input force is larger than the static
friction force, the balance will break and the mass will move under the action of
the input force and the friction force with the kinetic friction coeflicient pg. The
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resulting motion is a consequence of the stick-slip action of the friction force. In
order to deal with the stick-slip motion, we can use the friction direction angle and
the determination of the related components of the friction force vector, which have
just been discussed in the previous section.

In the case of a moving mass, which is called the slip-phase, we have the resultant
forces:

th = an;ﬂ - quk (223)
Fyh = Finy - Fy,uk (224)

and if the mass comes to rest, which is called the stick-phase, the resultant forces
are:

Fy = Fipg — F:cp, (225)
EJI = F‘iny - Fyu (226)
where Fy,, Iy, denote the acting friction forces. They are equal to Fik, Fyur for

the slip-phase and Fj ¢, Fyy,+ for the stick-phase respectively. The friction forces
Fopk, Fyuks Fopt, Fyu are determined by (2.15) and (2.16). The input forces are
defined by.

Fipy = Fyp — o — ky, Finy = Fy - ny - kyyv (227)

which may be used to find the friction direction angle.

The dependence of the friction coefficient on the relative velocity, was determined
in three ways in[Popp, 1996]. Here we use a fourth approximate description[True,
2002|[Xia, 2001a] that seems more appropriate for dry friction between two plane
surfaces of steel or cast iron.

In order to obtain a continuous transition of the friction forces from zero to non-
zero speeds we introduce as a weight function, the hyperbolic secant function

2
h(n) = ——— 2.2
sech(n) P (2.28)
To this end, we define the resulting forces acting on the mass at arbitrary speeds as
Frp = Fysech(dsa) + Fpp(1 — sech(2sa)) (2.29)
F,, = Fysech(ysa) + Fyp(1 — sech(ysa)) (2.30)

where a is a parameter that is related to the gradient of the change between
and pg. A specified value of « provides the corresponding approximate friction
characteristics. This model is well suited for the numerical implementation since the
user remains in control of the numerical process during the switch from stick to slip.
Figure 2.4 shows the curves of friction force as a function of the speed for various
values of the parameter a.
Finally, the dynamical equation reads:

5] lE ][] .
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Figure 2.4: The friction force with unit normal force as a function of the velocity for
different parameter values a.

2.3.2 Conditions for stick-slip motions

If the input forces satisfy the condition
| Fina| > ‘Fm#S‘ \/ |Fm1/| > |Fyu5| (2.32)

or(valid only for the isotropic friction)

then the mass will change from the stick phase, to the slip phase.

When the system is in the slip phase, if it changes to the stick phase the input
forces must satisfy the following conditions

|Fing| < |NpscosBsech(azs) + Nug cos0(1 — sech(axs))|, (2.34)
|Finy| < |NpssinOsech(ays) + Npy sin0(1 — sech(ays))|. (2.35)

During the slip-phase changing to stick-phase the velocity will change continuously.
When the motion into the stick phase the components of the friction force vector are
determined by the equation(2.16).
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2.4 Characteristics of the two-dimensional friction
oscillator

2.4.1 Special cases of the system

If the external force in equations (2.10) and (2.11) along the y(or x) direction is
zero, it means that the mass only moves along the x(or y) direction. In this case the
problem reduces to a one-dimensional friction oscillator, which has been investigated
by many researchers[Meng, 1991][Den Hartog, 1931][Hong, 2000][Saw, 1986][Feen,
1992][Popp, 1996]. With the method introduced above, the friction direction angle
0 then is either 0 or m, so the sign function can be replaced by the friction direction
angle.
If two excitation forces share the relations €}, = €2, and ¢, = ¢, then

Be cos(Qpt + @)
By cos(Qyt + @)

Then there is a linear relation between the two friction force components, and the
equations (2.10)(2.11) can be reduced to a one dimensional dynamic system:

= Constant. (2.36)

Z4ci+ z+ pby = B, cos(Qut + ¢) (2.37)

where the 6, takes the values of 0 or 7 and the orbit of the response is a straight line
segment.

In order to show this, we choose the parameter values: ps=pr = 0.4, 6, = 0.4,
By =02and Q, =Q, =07, &, =& = 0.5, ¢, = ¢, = 0. The simulation results
are shown in Figure 2.5, in which the four left plots show the displacements and the
phase diagram; and the right four plots show the friction force(in the figure the limit
friction force overlaps the acting friction force) and the friction direction angle.

For ¢, = ¢y, ks = ky, i.e., a symmetric system, the response will have a circular
orbit when the mass is excited by a sinusoidal excitation where the x and y compo-
nents differ in phase by 7/2[Meng, 1991]. The results are shown in Figure 2.6 for
comparison with the results in[Meng,1991]. In the figure, the left four plots show
the displacements, the phase diagram, the velocities and the exciting forces. If the
amplitudes of the exciting forces are large enough then the acting friction force is
identical to the limiting locus of the friction force. In the case where the amplitudes
of the exciting forces are small as shown in the right four plots of Figure 2.6, then the
acting friction force is less than the limiting locus of the friction force and obviously
the system is in rest. In the figure, the dotted circle denotes the limiting locus of the
friction force and the solid circle shows the acting friction force.

The orbit of the response will be elliptic under the excitations

Q, = an (bz ?é ﬁby (2'38)

and the difference in phase differs from 7/2. Letting the parameters 8, = 3, = 0.5,
Qe =Qy =02k, =ky=1,6( =6, =1, ¢, =0, ¢y =7/4 and pup = ps = 0.4.
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Figure 2.5: The straight line segment orbit of the response to different amplitudes
and the same frequencies of excitations. Left fours: responses and phase diagrams;
Right fours: friction forces and friction direction angles
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trajectory, the friction forces and the friction direction angle with the parameters are
same as the left except B, = B3, = 0.3
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Figure 2.7: Responses of the stick-slip state in which the orbit is elliptic: B, = B, =
05, Q=Q,=02,k;=ky=1,& =8 =1, 0, =0, ¢, =7/4.

The displacements, the phase diagram, the orbit of the response, the friction forces
and the friction direction angles are shown in Figure 2.7. It is easy to see that there
exist two stops per cycle. Correspondingly, in the plot of the acting friction force
F,, versus F,; the circle is seen to be divided into two segments with a gap around
F,, = 0. Therefore the acting friction force is inside or on the limiting locus of the
friction force. This means that there are two stick states per cycle. When the static
coeflicient of friction equals the kinematic coeflicient of friction that is the case here,
then the curve of the limiting locus of the friction force on the two-dimensional plane

is a circle.

2.4.2 Multiple stops per cycle

In the case of one-dimensional friction, there are many types of steady-state be-
haviour: permanent sticking, zero stop per cycle(i.e., non-sticking oscillation), one-
stop, two-stops, four-stops, six-stops per cycle, and so on[Hong, 2000]. As an exam-
ple, only two stops and four stops per cycle are shown here. However, the three stops
per cycle are also found for the two-dimensional friction case. The results are shown
in Figure 2.8.

2.4.3 General responses of the system

In general case, the orbit of the response to arbitrary amplitudes and frequencies
both in x and y directions is a plane curve. As an example, let the initial phases be
zero. Figure 2.9 shows the steady state of the displacements and the phase diagram
in the left four plots of the figure. The orbit of the response and the corresponding
friction direction angle are shown in the right four plots of the figure. The figure
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Figure 2.8: Left: two and three-stops per cycle: 8, = 0.4, B, = 0.3, Q, = 0.3 and
Qy =0.2, ¢, = ¢y = 0.5; Right: two and four-stops per cycle along z and y directions
respectively: the parameters are same as the left except for the 0y = 0.15

clearly shows that the orbit of the response is not a simple circle or an ellipse but a
rather complex planar curve.
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Figure 2.9: Response to sinusoidal excitations with different amplitudes and frequen-
cies: g =04, up, =03, cz =cy =1, B, =0.5, B, =0.3, Q, = 0.5, Q, = 0.7; Left
fours: responses and phase diagrams; Right fours: the orbit of the response and the
friction direction angle

In this chapter, we have provided a method to simulate the stick-slip motion
of a two-dimensional dry friction oscillator under complex excitations. The friction
direction angle has been defined and successfully used to replace the sign function that
is widely used in the one-dimensional friction oscillator. With the friction direction
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angle both the module and the argument of the friction force vector can be determined
for the stick state as well as for the slip state. By the switch-condition we can simulate
the stick-slip motion numerically under various excitations.

The two-dimensional coupled oscillator can be uncoupled under certain condi-
tions. The orbit of the responses of a two-dimensional friction oscillator will be a
straight line segment, a circle or an ellipse depending on the details of the sinusoidal
excitations. In the general case, the response is a complex planar curve. For various
levels of excitations, the zero-stop, one-stop, two-stops and multiple stops per cycle
will appear.

The cases involving a velocity-dependent friction coefficient, a collapse of the
state space of the system caused by stick-slip motion and a variable normal force,
especially, if the normal force is a state-dependent variable, the problem will be
discussed in connection with our investigation of the model of wedge dampers in the
three-piece-freight-bogie on railways in the next chapter.



CHAPTER 3

Modelling of wedge dampers
with two-dimensional dry
friction

A model of the wedge dampers of the Three-Piece-Freight-Truck in the presence of
two-dimensional dry friction will be discussed in detail in this chapter. The model
presented involves the three-dimensional motion of wedge dampers under external
excitations both in the lateral and vertical directions, with the velocity-dependent
friction coefficients. The lateral and vertical components of the dry friction force
vectors on the surfaces of a wedge can be exactly calculated using the concept of
friction direction angles introduced in chapter 2 and the switch conditions for the
system in the cases of stick state and slip state. The responses of a wedge and a
bolster to exciting forces on the bolster along the lateral, vertical or inclined directions
are obtained. The results show that the vertical and lateral dynamic performances of
the wedge dampers are coupled through the friction direction angles. One interesting
phenomenon is that if the exciting force on the bolster is purely lateral then it will
anyway cause both lateral as well as vertical vibrations of the wedge and the bolster.
A switch condition for a coupling-separating motion between a wedge and a bolster is
provided, and the coupling-separating motion is simulated with a numerical method.
The structure of the natural frequency of the wedge dampers with two-dimensional
dry friction is discussed in detail and some numerical results are provided.
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Figure 3.1: Secondary suspension configurations for (a) constant and (b) variable
damping

3.1 Description of the wedge damper system

For the current three-piece-freight-truck, two main types of friction wedge suspen-
sions are widely used. They differ by the method in which the wedges are spring
loaded. The constant-damping suspension incorporates preloaded control springs
that hold the wedges in place through a constant force which is shown in Figure
3.1(a), it is called constant damping or ride control. The variable-damping suspen-
sions are characterized by a set of independent support springs that supply the wedge
compression forces as a function of the displacement between the bolster and side
frame is shown in Figure 3.1(b), which is often called variable damping or ride master.
In the present thesis, we mainly focus the research efforts on the variable-damping
suspensions. The methods can also be used to the constant-damping suspensions
because it is simple from a mathematical point of view. As Figure 3.2 shows the
wedges are spring-loaded into an approximately conformal space between the bol-
ster and the side frames. Usually a friction plate is added between the surfaces of
a wedge and the side frame, which easily can be changed with a new one when it
is worn. In this chapter we consider the case that the wedge, the bolster and the
side frame can move relatively to each other in the longitudinal, lateral and vertical
directions. In order to study the performances of a wedge and a bolster relative
to a side frame, the side frames are considered fixed. In this way the longitudinal
motion of a bolster can be neglected since the symmetry of the action of the two
wedges is preserved. Many investigators have focused on this problem in different
ways. However, up to now, as to our knowledge, few models or theories considered



3.1 Description of the wedge damper system 31

Sideframe Wedge Bolster

b=t

Bolster spring Wedge spring

Figure 3.2: Schematic cross-section of wedge dampers in Three-Piece-Freight- Truck

the problem of wedge dampers with two-dimensional dry friction. The present ex-
isting models of the Three-Piece-Freight-Truck have at least one of five shortcomings:

e The mass of the wedge is neglected;

e Only the static or the kinetic dry friction coefficient is considered;

e Only one-dimensional dry friction is included;

e The determination of the lateral and vertical components of friction force vectors
on the surfaces of a wedge are made with a constant normal force times the friction
coefficient, Nppu.

e The stick-slip motion is neglected.

In this chapter we restrict the investigation to three directions of motion of the
wedge and the bolster, i.e. in longitudinal, lateral and vertical direction. The mass
of the bolster in the model includes also the mass of the loaded or empty car body.
Using the symmetries in the construction only one eighth of the total enters the
equations.

The normal stresses are replaced by single normal forces on both surfaces of the
friction wedge. In order to understand the effects of dry friction on the responses of
the wedge dampers, only dry friction damping without the effects of possible viscous
damping is considered. The free bodies in the simple model are one of the friction
wedges, one-fourth bolster, one-eighth of the car body and half of a spring group
on either side of the truck, in addition the lumped masses of a bolster and a wedge
are used. Figure 3.3 shows the free bodies and the forces on them. Letting the dry
friction coefficients on the two surfaces of a wedge be g, pp which have static and
kinetic states and are defined by the friction function in chapter 1. With Eq. (2.3)
we have

fur =\ i1 + fia < paSa (3.1)
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and

fuz =/ Frp + Fre < 1o (3.2)

where fuy1,2, fuz-1,2 stand for the components of the friction forces on the two surfaces
of a wedge in the lateral and vertical directions respectively, and the index 1 denotes
the surface of the wedge contacting on the side frame and the index 2 the surface
of the wedge contacting the bolster; f,1 and f,2 denote the resultant Coulomb dry
friction forces, which can be determined by eqns.(2.3) and (2.4). The notations on
Figure 3.3 are used.

Figure 3.3: The free bodies of a wedge and a bolster and the reaction forces on them

Furthermore, due to the fact that #; 2=0 on the contacting surfaces, the veloc-
ities of a wedge and a bolster Vi and V5 , which determine the directions of the
corresponding friction forces, are given by

Vig =y 2%2 + U%z (3.3)

in which the derivatives of z1 2 and ¥ 2 are respect with to time.

We use the fact that in eqns. (3.1)-(3.3) all terms correspond to the surface-fixed
coordinates of the wedge, so that the relations between the surface-fixed coordinates
and the general coordinates can be found as:

1 cosy 0 sinvy ZTd
v |= 0o 1 o0 Y (3.4)
21 —siny 0 cosvy 2d
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and
To cos¢p 0 —sing Tdp
Y2 = 0 1 0 Yd.b (35)
29 sing 0 cos¢ Zd,b

where + is the angle between the left side surface of a wedge and its vertical surface
and ¢ is the angle between the right side surface of a wedge and its vertical surface.
By Newton’s second law the equations of motion of the system are:

Zq SdCOS’Y—NbCOS¢—dew+fuz1$in’y+fuz2sm¢
mgq y(i = f/l,y2 - fp,yl - Fk,dy (36)
Z4 Nysing + Sgsiny — Fra, + fuz2c08¢ — fu.1cosv7 + Gg
and
Ty Nycos¢ — fuzesing — Spo — Fpe
mp j/.b = _flty2 - Fkby + Sy2 (37)
Zp Sz — Npsing — Fip, — fuz2cosd + Gy
where
Fraz = kazva, Fray = kayya, Fraz = kazza, (3.8)
Frpe = kvaTy,  Froy = koyyp,  Froz = k220 (3.9)

mgq is the mass of a wedge and my the mass of a fourth of a bolster; S; denotes the
normal force between a wedge and a side frame and N, the normal force between
a wedge and a bolster; Fy. denotes the spring force of a wedge or a bolster spring
with indices dx, dy, dz, bx, by, bz that denote the spring forces of the wedge and
the bolster in the longitudinal, lateral or vertical direction respectively; So is the
internal force coming from the symmetry in the problem; S,2 and S, are external
exciting forces on the bolster along the lateral and vertical directions; Gg4, Gy the
weights of the wedge and the bolster respectively.

We use the definition of the friction direction angle in chapter 2 to calculate the
components of the friction forces on the surfaces of the wedge along the lateral and
vertical directions. The friction direction angles read

X1 (91, 21), (11 V21 #0)
6 = ¢ V1(Finy1, Finz1), (11 N1 =0, Finy1 \ Finz1 #0), (3.10)
0, (01 A\ 21 A\ Fing1i \ Finz1 =0)
X2 (P21, Z21), (721 V 221 #0)
Oy = V2(F pas Finz2), (Y21 N 221 =0, F}, 1q V Finz2 # 0) (3.11)
0, (F21 A\ 221 A Eyypq N\ Finze = 0)

where 6, is the friction direction angle of the friction force on the surface of the wedge
contacting with side frame and 65 the friction direction angle of the friction force on
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the surface of the wedge contacting with the bolster; the symbol V means disjunction
and the A denotes conjunction. Relative velocities 921, 221 are defined by

Yo1 = U — Yd, 221 = (% — Za)/ cos ¢ (3.12)

and Y4, Up, 24, 2p are the velocities of the wedge and the bolster along lateral and
vertical directions respectively; Finy1, Finybds, Finz1, Finz2 denote the input forces,
which will be discussed in detail in section 3.2. The input forces described in the

surface-fixed coordinate and in the general coordinate systems have the relations
Finyl = Finyda Finzl = Finzd/ Ccos 7y, Finy2 = F;;zybdv Fian = Finzb/ COSs d)
(3.13)

By use of the friction direction angles 6; », the components of the kinetic fric-
tion forces along lateral and vertical directions can be determined by the following
formulae.

= fu1cosf . . ) _
f“yil,i:];;ismai }7(91V21#0) | (1A =0,

‘mel‘ > |fydu5| v |Finzd| > |fzdu3|) (3-14)

= Fin . .
ﬁyiuz = F yi } 7(?!1 Nz = 07 ‘Finyl‘ < ‘fydusl A |Finzd| < |fzdus|)a (315)
zlpt = Linz

pr— 0 . A . )
o~ haconlo b Gy i £0) | G =0,

|Fi>:zybd| Z |fybus| \% |Finzb| Z |fzb/LsD7 (3.16)

ot = F¥ . . N

Tyour _imbd S (g1 A dar = 0, [Finypal < [ fuybs| A Finzo| < [ fpp2l)- (3.17)
fz2ut - Finz?

For the analysis of the stick motion between the wedge and the bolster and the wedge

and the frame the components of the static friction force vector must be determined.

They are used to set up the switch conditions.

fydus = §R(01 )Sd,usd COS 01; (318)
fzd,u,s = %<91)Sdusd sin 01 Ccos 7, (319)
Fybus = R(02) Nppsp, cos 0o, (3.20)
faops = R(62) Nppusp sin b2 cos ¢ (3.21)

where the function $(6) is defined by (2.18). We suppose that no separation between
a wedge and a bolster and the wedge and a side frame take place. With £; = 0 and
then calculating of the relative velocities between the surfaces of the wedge and the
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bolster by equation (3.5) and letting the relative velocity along local xs-axis be zero
we can derive the following kinematic constraints of the system
sinysing . cosysing .

Gg=— 5 Gy= Ty =0 3.29
¢ sin(y +¢) 0 "4 sin(y+ o) " (3:22)

Thus we have three independent variables yq4, y» and z; in our system.

Note that in eqns. (3.11), (3.16) and (3.17) we use F}; ,; to represent the input
force in the lateral direction. The reason is that the stick motion will take place
between the two moving components of the wedge and bolster. When the wedge and
the bolster are locked in the lateral direction we can write the acting friction force

fybut as

1
mq + myp

*

F‘inybd = (Finybmd - Finydmb), fybut = F‘;zybd (323)

and the switch conditions are

fybut < fybu,sa 921 A Z91 = 0. (324)

The acting friction forces on the surfaces of wedges for the stick state in the
vertical direction, f.1,+ and f.2.: can be determined by the equations (3.15) and
(3.17) in a simple way.

3.2 The stick-slip motion of the wedge dampers

When the relative velocity between a wedge and a bolster is zero, we say that the
wedge, the bolster or the system is in the stick-mode. When the relative speed of
the wedge and the bolster is different from zero, we call the state the slip-motion.
According to chapter 2 in the slip state the resultant external forces can be written
as

Fa;dresh = Finwdh - Fua;dha (325)
Fydresh = Finydh - Fp,ydha (326)
Fraresh = Finzan — F,uzdlu (327)
EJbTESh = Finybh - ELyI)h7 (328)
Faoresh = Finzon — Fuzbh- (329)
Here the input forces and the friction forces are

Finzdn = Sqcosy — Npcos ¢ — Figy + Npjirqsin 0z sin ¢, (3.30)
Fzan = —Sqpirq sin 0 siny, (3.31)

Finyan = Nppigp cos bz — Fray, (3.32)
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Flyan = Sapira cos by,

Finzan = Npsing + Sgsiny — Fyq. + Nypigy sin 3 cos ¢ + Gg, —Fray,

Flzan = Saptrasin 0y cosy,

Finyon = Sy2 — Frpy,

Fyypn = Ny cos 0,

Finzon = Sa2 — Npsing — Fyp, + Gy,

Flzon = Nppigp sin 03 cos ¢

where kg, prp denote the kinetic friction coefficients on the two surfaces of a wedge

respectively.

In the stick-mode, the resultant external forces read

Frdresl = Finmdl - F‘urdlv

Fydresl = Finydl - Fuydla

Foarest = Finzar — Fyzdl
and

Fybresl = Finybl - F,u,ybla

Foprest =  Finzbol — F,uzbl

(3.40)
(3.41)
(3.42)

(3.43)
(3.44)

where the input forces and the friction forces in the longitudinal, lateral and vertical

directions are defined by:
Finzar = Sacosy — Ny cos ¢ — Faz,

Fyzdl = fz2;¢ Sil’l(ﬁ - le,u, sin -y,

Fiyat = —Fray

ELydl = Finyl + ;ybda

Finzar = Nysing + Sgsiny — Frq; + Ga,
Foaq = faucosd+ fii,cos7,

Finyot = Sy2 — Frpy,

Fuybl = :ybdv

Fipzee = S — Frpz — Npsing + Gy,
Fp,zbl = sz/_L Cos ¢

where f.1,, f22, denote the acting friction forces on the two surfaces of a wedge

respectively, they are determined by

f 1y = le,ukv Finza > fzd,us
i lep,ty Finzd < fzdp,s ’

(3.55)
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fZQ[}.t7 Finzb < fzb,us

The acting friction forces between the wedge and the bolster in the lateral direction
for the stick-mode can be determined by (3.23) and the switch conditions can be
written as

; >
fz2u — { f22/1,k7 Enzb = fzbus (356)

nyMt = F;Lybd < fyb;tsa le =0 (357)

with (3.24).

Here we use the same method discussed in chapter 2. Thus the friction force
characteristics depending on the relative velocity are approximately described by the
hyperbolic secant function(2.27). We define the resulting forces acting on the wedge
and the bolster at arbitrary speeds as[Xia, 2001a][True, 2002]

Frra = Fraresisech(iqa) + Frgresn (1 — sech(iq4a)), (3.58)
Fryd — ydreslseCh(yda) + F‘ydresh( 5€Ch(yda)) (359)
Fr.q = Foaresisech(240) + Fogresn(1 — sech(Zqa)), (3.60)
Fryp = Fypresisech(gpa) + Fypresn (1 — sech(gpar)), (3.61)
Frob = Fapresisech(2pa) + Fopresn(1 — sech(Zpa)) (3.62)

where « is a parameter that determines the shape of the curve. Its value is chosen
and depends on the magnitude of the relative velocity. For a higher speed a lower
value is selected, and vice versa.

Finally, the equations of motion of our system are

Zq Frp ..
0 F.
ma | Ga | = | Frpn |, mb< Zb > = < Fyz > . (3.63)
Zd Frzl b rz2

3.3 Numerical analysis

In the system the normal contact forces Sy and N, usually are state-dependent quan-
tities. For the simple system they can be expressed explicit but generally it may be
impossible. They must be calculated numerically in dependence on time as all the
other state variables.

In the system (3.63) there are three independent variables yq, y» and zp; and
we calculate reaction forces Sy and N, explicitly in the equations. In this way we
can reduce the system to five equations in the lateral accelerations of a wedge and a
bolster, the vertical acceleration of the bolster, the side frame normal force and the
bolster normal force. Taking matrix form, the equations read

AJY, =F,, (3.64)
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where
Yo=[Sa No §a i 5] (3.65)

—Fraz
—Fra. + G . . . .
o (s V 20 # 0)l(o A 2 =0,
Sy2 _yFkby ’ |Fitzybd| 2 |fybus| A |Finzb| > |fzbus‘)
Sz2+ Gy — Fp
*dem + lept Sin’Y + fZQ/,l,t Sin¢)
_dez + Gd + sz;Lt COS(b - le,u,t Cos 7y (yb A Zb = O)/\

Fs = —dey - F;;Lybd ) (|Enzb| < |fzb/zs‘)/\ (366)
Sy2 = Fiy _Fitzybd ([Fingbal™ < [fypusl):
Sz2+ Gy — Fipz — frout cos @
Sdold
Nyotd
0 , R(0) =0,%R(02) =0
0
0

where Sgo1d, Npora denote the values of Sy and Ny in the previous integral step.

sin ¢ sin y

a11 Q12 0 0 mq

sin(¢+) o\ 3
e 00 omgey | v E 70
azy1 asz —Mg 0 0 ’ |F:;zybd‘ > |fybus‘/\
0 42 0 —Mp 0 |Finzb‘ Z ‘fzb,usD
0 aso 0 0 —my
Cy —C¢ O 0 ais
5’7 Sgb 0 0 ass (yb A zZp = 0)/\

AS = asi 0 —mq 0 0 ; (|Finzb| < |fzbus|)/\ s (367)

0 0 0 -my 0 ([ Foypal < [fybus!)
0 —-So¢ 0 0 —my
1 0 0 0 O
01 0 0 O
001 0 O , R(H) =0,%(02) =0
00 0 1 0
0 0 0 0 1

in which the ay5, ass are defined by

sin ¢ sin y sin ¢ cos y

m, = dm. (3.68)

ais = Mgy a25 = —MmM

The other elements of Ag can be found in appendix A.
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Letting 94 = q1, U» = q2, b = q3, Yd = G4, Yo = (5, 2b = g6, We can rewrite the
second order differential equations in the form of a system of Differential-Algebraic
Equation (DAE) [Hairer, 1991][Brenan, 1989]

q=1£(q,2), (3.69)
0 =g(q,2) (3.70)
where
T
f=[2z 2 23 @ @ @], (3.71)
g(q,z) = Fs — Asn, (3.72)

n:[Sd Ny, 21 29 23 ]T (3.73)

The system described by eqns. (3.69) and (3.70) is a piece-wise differentiable
system so numerical integral method can be used to simulate the system[Hairer,
1991].

3.4 The motion of the wedge dampers under sinu-
soidal excitations when they are in contact with
the bolster

As an example, consider the typical parameters of the wedge dampers in [Yan, 1993]
[Cheng, 2000] as shown in Table 3.1.

Table 3.1: Parameters of the system

v 2.50 kaz(N/m) | 0.8e6 | kpy(N/m) | 1.9e6 | psp | 0.45
) 45° kay(N/m) | 0.8e6 | kp.(N/m) | 2.69¢6 | uxp | 0.35
mq(Kg) 8 kq:(N/m) | 1.0e6 Ihsd 0.4
my,(Kg) | 1906/10000 | kpy(N/m) | 1.5e7 [kd 0.3

Figure 3.4 shows the response of the wedge and the bolster along lateral and
vertical directions on only lateral exciting force on the bolster. The amplitude of
the exciting force is 5000N with the frequency 8=. In all figures in this section, the
dotted line denotes the lateral excitation and the solid line the vertical excitation.

In this case the lateral vibrations of the wedge and the bolster look like bounded
periodic responses and the amplitude of the vibration of the wedge is always less
or equal to that of the response of the bolster. If the exciting force is less than
the minimum of static friction forces on the surfaces of a wedge, the system will be
motionless. The stick state can be found when the displacement reach its maximum
values corresponding to the zero relative velocities[Hong, 2000]. Because the friction
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Figure 3.4: Lateral responses of a wedge and a bolster to lateral exciting force on the
bolster for an empty.

damping, the vibration will reach its steady state with the same frequency as that of
the exciting force.

The results show that although only a lateral exciting force acts on the bolster, it
also induces the vertical movements of the bolster and the wedge. The reason can be
explained as follows: Before the exciting force acts, the friction force on the surface
between the wedge and the bolster acts only along vertical direction, that means that
the friction direction angle equals to 7/2, and the lateral component of the friction
force is equal to zero. When the lateral exciting force acts, the friction direction
angle changes from 7/2, which means that the lateral component of the friction force
increases from zero and subsequently the resultant input force may be bigger than
the total static friction force and slip occurs. Immediately the vertical component of
the friction force will drop to its kinematic value and the bolster will move vertically
as well as laterally. The characteristics of the vibration are controlled by the levels
of the excitations and the system parameters.

Figure 3.5 shows the responses of a wedge and a bolster under combined lateral
and vertical exciting forces on the bolster. The amplitude of the lateral exciting force
is 20000N and the frequency is 27 rad/s; the amplitude of the vertical exciting force
is 10000N and the frequency is 47 rad/s. In this case the phase trajectory in its
steady state is not circular, but a plan closed curve. The motions of the wedge and
the bolster are complicated because they influence each other. The results show that
the vertical motion of the bolster also effects the lateral responses of the wedge and
the bolster. The responses of the wedge and the bolster are characterized by both the
amplitudes and frequencies of the excitations. If the exciting force on the bolster is
purely vertical, the amplitude of the vertical vibration of the bolster is smaller than
that of the vibration under combination of the vertical and the lateral excitation.

Note that if the maximum amplitude of the vertical excitation in the case of an
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empty car exceeds the weight of the car body, when the force direction is upward,
then the friction force will be zero because the normal forces on the contacting surface
become zero. Then the wedge and the bolster will separate and the present dynamical
system can not deal with it, because the kinetic constraint relations are broken. That
problem will be discussed in the next section.

If only a vertical exciting force acts on the bolster of either an empty or a loaded
car, a steady motion of the system with intermediate stops per cycle will appear. In
other words, a stick-phase develops, in which the input forces are less or equal to the
maximal static friction force. In a large range of vertical exciting forces, the stick-slip
motion will arise for both the empty and the loaded car far away from resonance,
this is different from the case where only a lateral exciting force or both the lateral
and vertical act on the bolster. These results can be found in Figure 3.6. Figure 3.6
shows the normal forces on the surfaces of the wedge. We can find an interesting
phenomenon: The changing trends of the normal force are completely different when
under the small levels of the excitation from the large ones. When the amplitude
of the exciting force is large enough, the normal forces are larger for the downward
motion of the bolster than for the upward motion. The result is the same as the
static results reported by Frohling [Frohling, 1998].

Under the combination of the lateral and vertical excitations the trajectories of
the wedge and the bolster are characterized by the frequency combinations of the
excitations, which are shown in the right four curves of Figure 3.7. It can give an
explanation of the observed shapes of wear on the surfaces of a wedge and a side
frame from a three-piece-freight-truck.
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3.5 The motion of the system under separation

When the three-piece-freight-truck runs on the track, the exciting force on the bolster
in the vertical direction may be so large, that the bolster will separate from the wedge
and perform a vibration without any contact with the wedge.

When separation takes place, and if the displacement of the wedge in the vertical
direction is smaller than its initial value, then a friction force exists on the surface
of the wedge contacting the side frame because the displacement in the longitudinal
direction differs from zero. If the displacement of the wedge along the vertical direc-
tion is larger than its initial value, then a free vibration of the wedge will take place.
The bolster will perform a forced vibration without any friction damping. Hence for
the bolster, we have the following dynamic equation:

Ty —S22 — Fipa
mp b = _Fk:by + Syg . (3.74)
% S22 — Frpz

In this case the motion of the bolster in the longitudinal direction can not be ne-
glected. The system(3.7) can be rewritten as
kbm S:L’Z kby Sy2 .. kbz o 522

Ty + —xp = , Up + —yp = —, Zp +
mp mp my mp my my

(3.75)

where Sy2, Sy2 and S, are simply selected as harmonic excitations of the forms

Spo = Afggb Sin(wfwbt + ¢zb0), (3.76)
Sy2 = Apypsin(wpypt + dyro), (3.77)
S, = Afzb sin(wfzbt + ¢zb0) (3.78)

where Az, Ay and Ay, stand for the amplitudes of the excitations, wyap, Wryp
and wy for the frequencies; and ¢g10, ypo and ¢.po are the phases.

With the initial conditions at the time ¢ = 0 when the separation of the wedge
and bolster begins, the initial phases are not zeros in the general case, so the exact
solutions of above equations are[Timoshenko, 1974]

w:l) T . wl‘ T .
zp = Cla cos(wmbt+ﬂ)+02m sm(wxbt—kﬂ)—i—Cgm sin(w pzpt+dz00), (3.79)
Wrxb Wexb
- wyb¢yb0 . Wyb¢yb0 .
Yy = Chy cos(wypt+——"—)+Coy sin(wypt + ——"—) +C3y sin(w ypt+dyp0), (3.80)
Wryb Wryb
wz z . o‘)Z z .
2p = C1, cos(wpt+ M) +Cy, sin(w pt+ M) +C5, sin(wpzpt+Pzpo) (3.81)
Wb Wszb
where
- D b Do
Cla = D1a COS(WibembO _ 2z sin Wb Pab0 (382)

Wb Wexb Wezh
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D xT T 0! . xr xT
Oy = —2= cos(w"b¢' Y 4 Dy, Sm(m ) (3.83)
Wexb Wexb Wexb
Agzp
Cio = ———— oo (3.84)
Feap[1 — (F£22)?]
D
Ciy = Dy cos( 22ty _ Doy g, @uvdyo (3.85)
Wryb Wryb Wryb
D
Coy = 2 cos(LuPu0) L by gin(PbPuboy (3.86)
fyb Wryb Wryb
Afyp
Cay = —— L=, (3.87)
Y ol — (277
z z D z z z
1. = Dy, cos(220020) _ D2z ) WebPabo (3.88)
Wizb Wizb Wrzb
D z z . z
Gy, = 22 cos(w b¢zbo) DL Sm(wzb¢ b0 (3.89)
Wezb Wizb Wrzb
Az
Cs: = —— o (3.90)
ke[l — ()2
Afep sin dapo ) Apzp COS rpo
Dig = %00 — 7———wrg D2 =Th0 — 7 wrooig (3.91)
kap[L — (5£22)?] kap[l — (522)?]
Afpyp sin dypo ) Afyp COS Dypo
D1y =y — — - —mrgrs Doy = Yo — — 1 —orasts 3.92
W - (e DT T (2 592
Ajzpsin gy ) Aj.p cos @y
Dy, = zp0 — TRV Dy, = 20 — TR (393)
ke[l — ()2 ke[l — (TF)?]
and
kb Kyp K.y
2 _ Fab 2 _ Fyb 2 _ Fe
Wep = s 5 wyb Mo 3 Wy Mo , (394)

and wWygp, Wiy and wy,y are frequencies of excited forces. Obviously, the motions
of the bolster are forced vibrations. For arbitrary exciting forces on the bolster in
the lateral and vertical directions, the solutions can be obtained in the way shown
in[Timoshenko, 1974], where the initial displacements and the velocities as well as
the initial phases are not zero.

For the wedge, two cases should be considered: One is that the displacement of
the wedge in the vertical direction is smaller than its initial value. In this case the
friction force on the surface of the wedge in contact with the side frame should be

included and the equations of motion(3.6) become

mq

—Zgtany
Yd =

Sy cos v - Frar + Sdﬂkd sin 64 Sin'y
—Saptkd cos 0 — Fray

Za Sasiny — Frq, — Sqjtrq sin 01 cosy

(3.95)
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The solutions of the above equation are

Yd = Gya cos(wyat — Bya), (3.96)
Zd = Gzq €OS(wzqt — B2a), 3.97)
Tq = —2,qtan-y (3.98)
where
5 . ko
g = 1|y + (Y402, = tan~}(—2L 2, = Twd 3.99
yd Yao + ( Wyd ) Bya (ydo Wy ) v g ( )
Ayg = 2(210 + (Z'dO )2, /gzd = tan_l( ZdO ), wgds = Pap (3100)
Wad 2d0Wzd
and
Pap = [ka> — siny(kaq. — kaz)(siny — prasin 0y cosy)]/mq. (3.101)

The other case happens when the displacement of the wedge along the vertical direc-
tion is larger than its initial value. In this case the wedge performs free vibrations
and the equations of motion can be written as

Zq —Frdy
ma | Yo | = | —Fray (3.102)
Zq —Frd-

The corresponding solutions read

Tq = Qgpd COS(wmdt — 6md)7 Yd = Ayd cos(wydt - ﬂyd)a Zd = Qyd COS(det - ﬂzd) (3103)

where

2 «i’dO 9 -1 l.’dO 2 k:pd

Apd = \[ X5 + ,  Bza = tan , Wig=—, 3.104

z do 1 ( de) o ( P = ( )
], Ydo o .1, Ydo o kya

Ayd = Yy + B ﬁ d — tan B - 3.105

= [vho+ (C22 8, i (3.10)

aza =4[22, + (Zdo )2, B.a = tan"( “do w?, = Fza (3.106)

= Tyl Zaowza' 0 ma '

For a certain large amplitude or a frequency near the resonant frequency of the

excitation along the vertical direction, the response will change from a coupled into a
separated motion. Figure 3.8 shows the vertical response of the bolster to a vertically
exciting force. The filled area on the external force denotes that in that area the
separation motion appear.
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Figure 3.8: Vertical responses of a bolster to a large exciting force on the bolster. The
amplitude of the force is 23000N and the frequency is w(rad/s). The shades on the
curve denote the force corresponding to the separated motion

3.6 The contact switch-condition for the coupling-
separating motion of the system

For the two motion states of the system, the motions are governed by two different sets
of equations. The switch condition necessary to connect the two different movements
must be set up so that a complete response of the system can be simulated. The
separation begins when either of the normal forces on the surfaces of the wedge is
equal to or smaller than zero. After then, the responses of the system belong to
the separating state. If the surfaces of the bolster and the wedge meet, the coupled
motion start. If the following condition

‘ 2p — 2d ‘S 0 (3.107)

is true, then the coupled motion will start. The contact forces(impact forces) can be
simply evaluated by the impulse law
mb‘/bn - md‘/um, _ Nb COS (rb

Ny = —————, Sy

At “ cosy (3.108)

where V4, and V,,,, stand for the approaching speeds along the normal directions of
the surfaces of the wedge and At is the impact time.

In these cases there are two states of responses to certain large vertically exciting
forces on the bolster: A coupled state and a separated state. In the first case,
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Figure 3.9: The flow chart for the algorithm of the coupled-separated motion analysis

the analytical solution is very difficult or impossible to find, so that a numerical
method should be developed. In the second case the exact solution can be obtained.
Combining the two cases a complete response of the wedge dampers to any levels
of excitations can be simulated. The flow chart for the algorithm of the coupled-
separated motion analysis is shown in Figure 3.9.

Figure 3.10 shows the complete response of the system with coupled-separated
motion to a large exciting force. In the coupled state, the trends of the two curves
are identical because there the kinematical constraints between the wedge and the
bolster exist. In the case of the separated state, the wedge undergoes a free vibration
with a higher frequency, and the response of the bolster is a forced vibration with
a lower frequency. The motion of the system has two different frequencies. One of
them is the same as that of the exciting force and the other is the free vibration
frequency, so the trajectories of the two motions are different. When the contact
switch-condition is fulfilled, a coupling takes place again.

3.7 The frequency response of the system

To understand the effect of dry friction damping on the response of the system, we
calculate its frequency response. First, the natural frequencies of the wedge and the
bolster are analyzed as following.

From the equations (3.6) and (3.7), we know that the motions of the wedge and
the bolster are inertially coupled. Because of the effect of the dry friction, it is
difficult to evaluate the frequency. However, we can analyze some special cases to
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Figure 3.10: The coupled-separated motions of the system to a vertical periodically
varying force on the bolster: Amplitude: -20000N; frequency: 0.2 (rad/s). Left: Re-
sponse. Right: Exciting force. The shades on the curve denote the force corresponding
to the separated motion. The heavy color line denotes the motion of the bolster and
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check the range of the frequencies of the system and the discussion in this section is
limited in the range of slip motion of the system.
From equations (3.6), (3.7) and (3.10)-(3.17), we have

mygy = —Nppigy cos Oz — kpyyp + Sy2, (3.109)
mpZp, = —Npsin ¢ — Nppigp sin 05 cos ¢ — ky,zp + S,o, (3.110)
MaEq = Sqcosy+ Sqpigd sin Oy siny — Ny cos ¢+ Ny pugp sin 05 sin ¢ — kg x4, (3.111)
malia = Nyt cos 0z — Sapira cos 01 — kayYa, (3.112)

MmaZq = Npsin ¢+ Nppgpsinbs cos ¢+ Sqsiny — Sqpika sin 01 cosy — kgzzq. (3.113)

For the separating motions, the frequencies of the wedge and the bolster can be easily
found from (3.94) and (3.104) as

kdy kby kzb
s — ) s — 3 zbs — — 3114
Wyd \/ " Wyb \/ e Wzb \/ e ( )

and w45 is given by (3.106). In the case of a coupling motion, the normal forces
on the surfaces of the wedge depend on the state variables and the friction direction
angle.
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From(3.110) the normal force N, can be found and with (3.113) the normal force
Sq can be determined too. Substituting them into (3.109), (3.111) and (3.112), yield

Malia + kdyYd =

. My b COS B [k cos B
B
Zb[sin ¢+ prpsinbfocos ¢ siny — g sin 6y cosy (mo + Brma)]
kp i 0 0
) bz kb COS U2 HEd COS U1 (ks + Bkay)]

Sin ¢ + ppp sinfs cos @ siny — kg sin 61 cosy
kg cOs 601

. . S.o, (3.115)
Sin~y — kg sin 0y cos -y

. Hkd €OS O .
m k = mpZp + 2ok Sy2, 3.116
vib + Koy Yo sin¢+ukbsin92005q§( vZp + 2oknz) + Sy2 ( )
. cosy + sin #1 sin cos ¢ — sin 05 sin
Zb[(mdB+mb) : v Hkd : 1 Y My — QS HEb - 2 ¢ *Amd]
sin~y — kg sin 01 cos -y sin ¢ + pyp sin 6 cos ¢
COS Y + kg sin B sin COS ¢ — [igp Sin @
+2p[(kpz + Bkas)— T Mhd 142 K b — Bkg.]
Siny — prgsinfy cosy  sin @ + ugp cos ¢
cosy + sin @ si cos ¢ — sin 05 si
_ (008 F pgasinbisiny - c ¢ — lkp in 6 IH¢)822 (3.117)
siny — pggsinfy cosy  sin ¢ + pgp sin b cos ¢
where
sin vy sin cos 1y sin
A:_.’V7¢7 B:.’yiqb (3.118)
sin(y + ¢) sin(y + @)
Letting

COS7Y + Urgsinfy siny cos ¢ — gy sin O sin ¢
siny — pggsinfy cosy  sin ¢ + pgp sin 65 cos ¢

kazp = (kb.+Bkaz) ky.—Bkg,, (3.119)

COS Y + fiq Sin B sin~y cOoS ¢ — igp sin B sin @
- - b :
Siny — g sin #y cosy Sin ¢ + g sin O cos ¢
we get the following cases.
Case 1. Without consideration of the friction.
In this case, the system is kinematically coupled, so that we have

ka, Ky kazu

Yy Yy 2b0

Wyw0 = , Wybd =\ —>» Wepo =\ —— (3.121)
mq my Mdzb0

where

Mzt = (MaB+mp) —Amyg (3.120)

cos cos
Razno = (ke + Bhy) ) 4 S50
siny  sin¢

ky. — Bk, (3.122)

and

cos 7y cos ¢
mp

Mazbo = (MaB + mp) siny sng Amyg. (3.123)
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Case 2. The friction angles 0; = 6, = 7/2 or 37/2.
In this case, the motions of the system reduce to a one dimensional vibration
along the vertical direction. From (3.115), we can get

kdzp1,2

Wzb1,2 = (3.124)
Mdzb1,2
where, for 6, = /2
cosy + sin cos ¢ — sin
haot = (kyo + Bhg,) S50 T kSN COSO = o SING, gy 3195
siny — prqg cos~y  sin @ + gy cos @
and
cosy + sin COS ¢ — [ip Sin
Mt = (maB 4 my) ST T RSN COSOZ i SIG g 06
sin~y — fgq COS 7y sin ¢ + pgp cos ¢
for 6 = 37/2
cosy — sin cos ¢ + sin
Kazv2 = (kbz + Bkaz)— T PeaTRY | 2 O Lp ¢kbz — Bkq,  (3.127)
siny 4+ prgcosy  sin¢g — pgp cos ¢
and
Mgos = (B +my) S RSB COSOF oSG g g 0gy

siny + fgq coOSy bsinqb — kb COS P

Case 3. The friction angles 6, =6, =0 or .

In this case, the frequencies of the wedge and the bolster are determined by the
formula (3.121).

Case 4. The friction angles are in the ranges (0, 7/2), (7/2, 7), (7, 37/2),
(37/2, 2m).

This is a general case, where the three equations of motion are dynamically cou-
pled. The frequencies of the responses of the system will be distributed in a certain
range. For the vertical response of the bolster, the frequency w,; is in the range
Wabs < Wzh < Wbl

According to the above analysis, the natural frequencies of the wedge and the
bolster are influenced by the friction direction angles and friction coefficients. In some
special cases, they can be calculated and the results are shown in Table 3.2. Figure
3.11 shows the response to an external force only in the vertical direction. Figure 3.12
shows the response to external forces both in the lateral and vertical directions. We
find that the frequency response of the bolster is chaotic in nature[True, 1999-2002].

If the amplitude of the exciting force on the bolster in the vertical direction is
smaller than 1800N, then there is no resonant response because the dry friction will
damp out the vibration. The model shows that the dynamical system is a system of
nonlinear Differential-Algebraic Equations characterized by discontinuous and multi-
valued factors. The simulation results provide some information for us to understand
the dynamical performances of wedge dampers.
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Table 3.2: Frequencies of the system

mal(kg) | mu(kg) | tea | ey | 012 | wya(Hz) | wyp(Hz) | wap(Hz)
1906 0 0 —_— 50.33 5.03 6.87
1906 0.3 0.35 w/2 50.33 5.03 7.32
1906 0.3 0.35 3r/2 50.33 5.03 6.57

The use of the concept of the friction direction angle makes it possible to calculate
the components of the friction force vector in the cases of one-dimensional dry friction
and two-dimensional dry friction as well for the stick state as for the slip state. The
model also provides a successful application of the concept of friction direction angle.

From the numerical results we find that if the bolster is only forced to move along
the lateral direction, not only lateral but also vertical vibrations of a wedge will arise;
and more it will induce a vertical vibration of the bolster without any excitation in
the vertical direction but the amplitude of the vertical response is small compared
with the lateral one.

The stick-slip motion will appear in the motions of both a wedge and a bolster
exposed to the lateral and the vertical excitations. The dry friction damping of a
bolster is proportional to the normal forces on the wedge and the friction coefficients.
The normal forces mainly depend on the mass of the car body including loads and
exciting forces. In the case of an empty car, the normal forces on the surfaces of a
wedge will become zero when the excitation amplitudes are large or frequency are
near or equal to the vertical resonance frequency and the separated motions of the
wedge and the bolster will appear.

In this chapter we consider the exciting forces Sy and 5.2 to be sinusoidal func-
tions. It is not difficult to extend the model to deal with any other form of excitation.
With the method in this chapter as a basic start, three-dimensional dry friction vi-
bration in mechanical systems could be studied. Without doubt, how to introduce
the model into the complete three-piece-freight-car remains a great challenge. We
will discuss it in the following chapters.

The dynamical performance of the wedge dampers exposed to large and small
excitations have been analyzed. For small amplitude excitations the motions of the
wedge and the bolster are coupled. For certain large amplitudes of the exciting force
or for excitation frequency in the range of the resonant frequency of the system the
motions of the wedge and the bolster are separated.

In the case of coupled motion, the friction damping plays an important role to
prevent resonant vibration of the bolster in vertical direction when it is exposed to
a small amplitude exciting force with arbitrary frequency. If the amplitude of the
exciting force becomes sufficiently large the dry friction can damp the level of the
response of the system but can not damp out the resonant vibration of the system.
The frequency response of the bolster in vertical direction is chaotic in nature.



CHAPTER 4

Variable degrees of freedom
systems with two-dimensional
dry friction

In the previous chapter we have found that it is complicated to model the system of
the wedge dampers into a mathematical piece-wise continuous system because of the
action of dry friction. We will further discuss this phenomenon in this chapter.

Among mechanical systems there exist systems in which the degrees of freedom
vary with the different motion states of stick or slip caused by dry friction. It is
very important to analyze this kind of system because it is widely used in the three-
piece-freight-truck on railroads. Some investigators [Eich, 1998] have focussed on
this problem only considering one-dimensional dry friction and alternatively refer
it to structural variant system[Reithmeier, 1991] or structure varying system[Eich,
1998]. In this chapter we will extend the structural variant systems caused by stick-
slip motion to two-dimensional dry friction. And more multi-point contact on the
same body with two-dimensional dry friction are considered. The concept of friction
direction angle is used to determine the friction force components both in the stick
and slip motion states. The velocity-dependent dry friction coeflicient is used. The
switch conditions to control the motion states of systems and the corresponding acting
friction forces are discussed in detail. The algorithm for the Differential-Algebraic-
Equations (DAEs) of this kind system will be discussed.
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4.1 Introduction

Among mechanical systems there exist some systems of which the degrees of the
freedom will vary with the change of the acting dry friction force vector. In some
literatures it is referred to as structure varying system|[Eich,1998] or structural variant
system [Reithmerier, 1991] where only one-dimensional friction and one contact point
are included. In this chapter we will focus our effort on the multi-point contact on
one body with two-dimensional dry friction. A typical application can be found in
the railway vehicle with three-piece-freight-trucks.

In the investigation on the dynamics of the three-piece-freight-truck the two di-
mensional dry friction must be taken into account. First on the surfaces of the wedge
contacting the side frame and the bolster in the lateral and vertical directions, and
second is on the surfaces of the side frame contacting the top surfaces of the two
adapters in the longitudinal and lateral directions. The former has been investigated
without considering the movement of the side frame in chapter 3. The later differs
from the former in that the motions between the frames and adapters are limited
in longitudinal and lateral directions without any vertical relative motion. Since the
relative velocity between a frame and a wheelset is equal to zero then they will share
the same motion both in longitudinal and lateral directions. These structure varying
systems caused by stick-slip motion can also be found in many fields of mechanical
engineering.

4.2 The motion of a system with one-dimensional
dry friction

First let us start with a rather simple varying degrees of freedom system as shown
in Figure 4.1. A body on a plate, which is subjected to excitation force Fy. We here
only consider the one dimensional dry friction on the contact surface between the
bodies m; and mo.

The equations of motion of the system can be written as

miiy = Fy — F, (4.1)

mgfi‘g = FN — F2. (42)
If we use the following notation

F,, = uNsign(iq — 2) (4.3)

to define the acting friction force. Here p is defined by the one of eqns.(1.1)-(1.6).
If we then solve the eqns. (4.1) and (4.2) we find that in the stick motion state the
friction force will equal zero. That is not true because the acting friction force in that
case of the stick motion state is not zero unless F; = F5 = 0! As a consequence, the
numerical integral error will increase with the increase of |u| and the steps increase
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Xy N
_ m,
F, .
F m, %

Figure 4.1: A body on a plate which is subjected to excitation

very much[Eich, 1998]. This behaviour is characteristic for stiff problems because of
the high frequency vibration of the velocity. This way is not suitable for problems of
this kind. Let us therefore consider the following method.

In the stick state the condition

5 — 2= 0 (4.4)

holds. The derivative of equation (4.4) with respect to time to first and second second
orders yields

iy — iy = 0, (4.5)
Gy — iy = 0. 4.6

When substitute the eqns. (4.1) and (4.2) into the Eq. (4.6) the switch condition for
stick motion is yielded
A B _ K

F,.

us

_|_ L
ma mao mi mo

(4.7)

together with condition (4.5). Here F),s denotes the static friction force. In this stick
motion state the equation of motion of the system becomes

(m1 —|—m2)i‘=F1 —Fy, 3 =1, =1, (48)

which means that the degrees of freedom of the system reduces to one.

In which way can the two degrees of freedom of the system described by eqns.(4.1)
and (4.2) automatically change into the one degree of freedom described by Eq.(4.8)?
It can be easily verified that if the acting friction force for the stick-slip motion is



56 Variable degrees of freedom systems with two-dimensional dry friction

N
=3
S

|
i
5]
=]

Ve Ve, (mm/s)
o §
—

displ. x1-x2(mm)
g &

)
SR

[

wafM,
[KN]

200 =
w X
~ —“_( =5 600 N
£ 100 =05 o N & 200!
= L E 4001/ €
‘_;V 0 2 0 £ 200 E of
x S st o
I> = A © 200
100 8 -05 B -200 3 \
> - ] S & -400 | S—
200 > 1 @ -400 ©
0 50 100 150 200 "o 5 10 e ———— o -600; — o
displ. x1-x2 [mm] t[s] t[s] t[s]
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correctly determined then the system will vary its degrees of freedom from one to
two. That can be done in the way below. From (4.7) set
B P _Fu Fu

— e T (4.9)
mi mo miq mo

then the acting friction force to the stick motion state can be determined by

[m2F1 + mng]. (410)

ut =
mq +m2

One can substitute the acting friction force obtained by (4.10) into the equations
(4.1) and (4.2) and will find that the two eqns.(4.1) and (4.2) will become identical
to Eq.(4.8).

If any one of the conditions (4.5) and (4.7) is not fulfilled then the acting friction
force is determined by the kinematic friction coefficient multiplied by the normal
force with Eq. (4.3). In this case the system returns to a two degrees of freedom
system.

The numerical results are shown in Figure 4.2 where the same notation are used
as [Eich,1998], and the Eq.(1.1) is used to determine the friction coefficient. The
responses are completely identical with the results in[Eich, 1998] and in addition the
friction force is also provided. If we use the different values of the static and kinetic
friction coefficients of pus = 0.4 and pur = 0.2, we obtain the results shown in Figure
4.3. The figures show that the acting friction forces for the stick motion are not zero.

The example shows that systems like the above one can be successfully modelled
using our definition of the variable degrees of freedom system. Next a more complex
structural variant system with two-dimensional dry friction which can be used in the
system as shown in Figure 1.3 will be discussed in detail.
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Figure 4.3: Left: the relative velocity and displacement of the system Right: acting
and limit friction forces on the system. The keys are same as Figure 4.2 except L
= 0.4 and p =0.2 with friction function (1.2)

4.3 The motion of a frame contacting two plates
with two-dimensional dry friction

Figure 4.4 shows a mechanical system in which a frame on two plates which are
subjected to excitations in both the x and y directions, where the friction forces
act on the surfaces of the frame contacting two plates. The contacts between the
plates and the ground are assumed completely smooth without any friction and the

distance a as shown in Figure 4.4 is assumed as a constant without any change with
the motion of the system.

mlfi'l = Fa:l - Fk:pl - le;m (411)
mij1 = Fy1 — Fry1 — Fyu, (4.12)
Mmoo = Fyo — Flao — Frop, (4.13)
m2j}2 - Fy2 - Fky2 - FyQ;L; (414)
mals = Fxl,u + FzQu — Fre3 — Fr37 (415)
mgls = Fyiu+ Fyop — Fryst — Fryse — Fys1 — Fyaz, (4.16)
L) = a(Fy1u — Fyap) — a(Fys1 — Fysa) — a(Fryst — Fiys2) (4.17)
where

Froi = kzimy,  Frys = kyiys, 1=1,2, (4.18)

Frys1 = kys31(yz + av)),  Fryse = kysa(ysz — a)). (4.19)
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Figure 4.4: A frame on two plates with two dimensional dry friction. a = 1 m.

and a denotes the distance from the mass center of the frame to the frame/plate
contact point.

4.3.1 The slip motion of the system

In the phase of the slip motion of the system the friction forces on the two contact
surfaces can be determined by the method described in chapter 2 and [Xia, 2002].

Fiiy = Nijpcosb; , 4 , o
Fyip« — Ni,u sin 91 ) (VmB \ ‘/yz3 7é 0) | (Vm1,3 A VyzS - 07

‘FLI’L.LL| Z ‘Fa:ius|7 |Finyi‘ 2 |Fyi,us|)a (420)

inu = mei

F. =F. . } 3 (Va:i3 A szS = 07 |Fln:m| < |Fwius|a |anyz| < |Fyius‘) (421)
o inyi

where ¢ = 1,2; N; stands for the normal force on the contact surfaces between frame
and plate 1, 2 respectively; the friction direction angle 6; is defined by

X(Viiz, Vyis)s (Vaiz V Viyiz # 0)
Hi = w(anm» anyz)v (VmS A Vyi3 = 0; Finzi V Finyi 7£ 0) (422)
0, (Vaiz A Vyis A Fingi N Finyi = 0)
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where Fjy,z4, Finy: stands for the input forces and () is the empty set of 6;. The relative
velocities Vi3, Vyyis will be determined in the next section 4.3.2.

Obviously the independent degrees of freedom of the system are seven for the slip
motion state.

The static friction forces in the two orthogonal directions in the above formulae
(4.20)-(4.21) can be determined by

Frips = R(0;)Nips cos 0; o
Fyins = R(0;)N;pssin; |7 i=12 (4.23)

where R(0;) is defined by (2.18).

4.3.2 The stick motion of the system

First the switch conditions for the stick motion of the system will be derived and
then corresponding acting friction forces be determined. It is known that in the stick
motion state between the frame and the two plates the kinematic constraints

T =1T3, To=7T3, Y1 =Y3+ay, Y2 =y3—ay (4.24)

hold at same time. If any one of the constraints is broken then the slip motion on
the corresponding contact surface will immediately start.

It is also known that in the case of two-dimensional friction if the motion in one
direction is slip motion then the state in the orthogonal direction must be a slip
state because slip in any direction means that the corresponding relative velocity is
different from zero. Similarly if the motion in the z direction is stick then the motion
is stick too in the y direction, and vice versa.

Taking the second derivative of the constraints (4.24) with respect to time and
combining the result with the equs. (4.11)-(4.19) the switch conditions for the stick
motion can be derived as following

From #; = 23 and 22 = Z3 we get

Fw Fkx Fw Fkx Fx s
o ™ e e T e S IFx1Ms<f+f)+il (4.25)
mq mq mg ms3 m3
F, F. F, F - 1 1 Foius
| =2 = 222 28 BB < | Fage (= + =) + | (4.26)
meo meo m3 ms mo ms3 ms3
and from §j; = ij3 + atb and §» = §j3 — av) other two relations are produced
1 1
|— (Fy1 — Fiy1) + — (Frys1 + Frys2 + Fys1 + Fys2) +
mi ms3
a2
T(Fyiﬂ — Fyzo + Frys1 — Frys2)| < (4.27)
|Fy1#5 1 a2

— + mig(Fylus + Fyous) + Z(Fylus — Fyaus)|
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and
1 1
| — (Fy2 — Fiy2) + — (Fry31 + Frys2 + Fys1 + Fys2) —
mao ms
a2
Z(FySI — Fy30 + Frys1 — Fiys2)| < (4.28)
FyQp,s 1 a2
_— E— F s F s) — 7 F s F s
| Mo + mg( ylus T Ly2u ) Iz( ylp Yy2p )|

with the kinematic conditions

Vs =@1 —d3 =0, Vyz=11— 03— ah =0, (4.29)
Vios = do —d3 =0, Vyos =2 — i3+ ap = 0. (4.30)

The above conditions (4.25)-(4.30) are called the switch conditions. If all the
conditions are fulfilled at same time, then the degrees of freedom of the system
become three. If any one condition of the four conditions (4.25)-(4.28) or any one
of the kinematic constraint (4.29) or (4.30) is broken then the motion between the
frame and the plate 1 or 2 is slip motion. In that case the independent degrees of
freedom of the system becomes five.

In the above switch conditions, Frius, Frops, Fyius, Fy2us denote the components
of the static friction force vectors on contact the surfaces of the frame and the two
plates in the = and y directions. They are determined by the normal force, static
friction coefficient and friction direction angles.

We now consider three cases:

Case 1, stick everywhere. From eqns.(4.25)-(4.28) the acting friction forces, Fy1,,
Fiop, Fyip, Fyou for the stick motion of the system, can be determined by solving
the following equations

e e 0 0 F, F;
611 612 0 0 Fﬂ” F%m‘,l V13 A Vy13 A Vigaz A Viyas = 0,
21 22 T2 _ inx2 , (le < le s)/\
0 0 €33 €34 Fylu Finyl (F 4“ < F ‘u{ ) (Z -1 2)
0 0 e43 ey Fyoy Finy2 Yer = T ys ’
(4.31)
where
1 1 1
€11 =—+—, enp=—,
mq ms ms
1 1 1
€21 = —, €= —+—,
ms3 ma ms3
1 1 a? 1 a?
€33 = —+ —+ —, e3=—
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1 a? 1 " 1 + a?
€ = — - — e [ J— - P
43 ms L 44 e
F, Fi. F, F.
Fin11:717£+73+ﬁ7
mi ma ms ms
Fyo  Frwo Fus  Fia
mezzi_ﬁ+7z)’+ﬁ7
mo mo ms ms
Fongt = Fyi — Frp n Flyz1 + Fryso + Fya1 + Fy3o n
mq ms3
a®(Fy31 — Fyso + Frys1 + Fiy32)
I, ’
Fyo — Fryo | Firys1 + Fryza + Fyz1 + Fya2
F‘iny2 = + -
mo ms3
a*(Fys1 — Fyso + Frys1 — Frys2)
I, '
Case 2: Stick between the frame and the plate 1
- (Va1z = 0) A (Vs = 0)A
€11 0 Fxl,u _ F”Ml - mg} ( x23 7é 0) ( y23 7& 0)1
0 ess Fyp Finy1 — Fy?“ + 2 ?ﬂ“ T zl# < F:rlus)/\
( ylp < 1u8>
(4.32)
with
Fpop = Nopu(Va) cos by, Fya, = Nop(Vz)sin 6y (4.33)
and case 3: Stick between the frame and the plate 2
- (Va1z # 0) V (Vy13 # 0)A
ear 0 Faop | _ Finaa — m; (Vaaz = 0) A (V23 = 0),
0 €43 EJQ,u FinyQ — %13“ + % ’ ( 24 < Fx2p,€)/\
( y2p = < Fy?us)
(4.34)
with
le# = Nlu(Vl) COS 91, Fyly = NLU,(Vl) sin 01 (435)
where
Vi = ,/V113+V13, 1=1,2. (4.36)
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In the above two cases the degrees of freedom are five. In order to calculate the friction
direction angles, the input forces, Finzi, Finy: in the stick motion state are required.
Actually they are equal to the acting friction forces but in opposite directions. With
known input forces and known relative velocities the friction direction angles can now
be determined both in the stick and slip motion states.

After the determination of the acting friction forces both for the stick and slip
motion states the discontinuous system can be transformed into a piece-wise differ-
entiable system. From a mathematical point of view general numerical integration
schemes can be used for the dynamical system.

4.4 Numerical simulation

4.4.1 Numerical method

For the slip motion of the system the equation of motion of the system can be written
in the first order ordinary differential equation in the general form as

q=1f(q,2), (4.:37)

z = Const. (4.38)
where

g=lr1 yi w2 Yy % @1 i d2 Yo Y] (4.39)

and z is related to the kinematic friction forces. When the motion of the system
goes into stick motion, the independent degrees of freedom of the system is less than
the degrees of freedom of the system with slip motion. In this case some kinematic
constraints must be added. From a mathematical point of view, the ODEs system
now becomes a DAEs system. In general form the DAEs can be written as

q=1(q,2) (4.40)

0 =g(q,2) (4.41)

where z is now a variable vector and is related to the acting friction forces.
In our system the constraint equation (4.24) is actually related only to the position
variables

0=g(q) (4.42)

The system is called a DAE system with index-3 [Hairer, 1991][Brenan, 1989][Bendt-
sen, 1999]. In order to change the problem into an index-1 problem, we need to
differentiate the algebraic equation(4.24) twice with respect to time as we have done
in the section 4.3.1. Then the variable vector z can be found from

Az=F (4.43)
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where the entries of the matrix A and the elements of the vector F are determined by
the eqns. (4.31)-(4.35). The DAEs with index-1 problem can be numerically solved
with Runge-Kutta scheme but other solvers apply as well[Bendtsen, 1999]. The flow
of the algorithm is shown in Figure 4.5.

|

‘ Relative welocities: V, ‘

]

‘ Stick mode assumption ‘

!

‘ Calculate acting friction forces ‘

i

‘ Input forces = acting friction forces ‘

Friction direction angles
Components of friction force vectors

Y ) - N
Switch conditions

Acting friction forces ‘ Acting friction forces
System equations F—‘

Integrator

Figure 4.5: The flow of the algorithm for the variable degrees of freedom system

At the start of the algorithm it is recommendable to assume the motion of the
system to be a stick motion.

4.4.2 Numerical studies

For the numerical studies the harmonic excitations are used as

Fygi = Aygisin(qygit), 1= 1, 2 (445)

where A, denotes the amplitude of the excitation and g, stands for the frequency
of the excitation. The gravity acceleration in the numerical studies here is set to be
1m/s?. The parameters of the system for the case studies are shown in Table 4.1.
Case 1

The left four curves of the Figure 4.6 show the relative motions between the plate 1
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Table 4.1: The parameters of the system for the case studies

Parameter | Unit | Case 1 Case 2 Case 3 | Case 4 | Case 5 | Case 6
A N 0.4 0.4 04 0.4-0.5 0.6 0.3
A N 0 0 0.4 0.4-0.5 0.45 0.3
Ao N 0 0.2 0 0.4-0.5 0.45 0.2
Ayo N 0 0 0 0.4-0.5 0.45 -0.2
Ags N 0 0 0 0 0 0.5
Aot N 0 0 0 0 0 0.2
Ay N 0 0 0 0 0 -0.2
Q1 rad/s 1 1 1 1 1 2
Qy1 rad/s 0 0 1 1 1 2
qx2 rad/s 0 1 0 1 1 2
Qy2 rad/s 0 0 0 1 1 2
Qa3 rad/s 0 0 0 0 0 1
Qy31 rad/s 0 0 0 0 0 1
Qy32 rad/s 0 0 0 0 0 1
Ny N 0.5 0.5 0.5 0.5 0.5 0.5
Ny N 0.5 0.5 0.5 0.5 0.5 0.5
ko1 rad/s 0 0 0 0 0 1
Ky rad/s 0 0 0 0 0 1
kuo rad/s 0 0 0 0 0 1
kyo rad/s 0 0 0 0 0 1
kz3 rad/s 0 0 0 0 0 1
kys1 rad/s 0 0 0 0 0 1
ky32 rad/s 0 0 0 0 0 1
m Kg 1 1 1 1 1 1
. Kg 1 1 1 1 1 1
ms Kg 1 1 1 1 1 1
Lk 0.3 0.3 0.3 0.3 0.3 0.3
s 04 04 04 04 04 04
Friction

function (11) | (1) 13) | @3) | @3 | @3 | @13
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and the frame under the external force only in the z direction, where the difference
of the displacements is equal to constant when the stick motions take place. The
right four curves of the Figure 4.6 show the relative motions between the plate 2
and the frame in the z-direction. The motion between the plate 2 and the frame are
a stick motion because the acting friction force components on the contact surface
between the plate 2 and frame are always less than the corresponding static friction
force components. Left four curves of Figure 7 show the motion of the plate 2. Right
four curves of Figure 4.7 show the friction forces on the two contact surfaces. The
modulus of the friction force on the surface between the plate 2 and frame is always
equal to the half that of the friction force on the surface between the plate 1 and the
frame when the motion between the plate 1 and the frame is in the slip motion state.
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Figure 4.6: Left: the relative velocity and the relative displacement between the plate
1 and the frame with friction function(1.2). Right: the response of the plate 2.

Case 2

An interesting phenomenon is that if an external force acts on the plate 1 and only
in the z-direction with an amplitude of 0.4 N and a frequency of 1rad/s and another
external force acts on the plate 2-also in the z-direction-with an amplitude of 0.2N
and a frequency of 1rad/s then all the relative motions are zero. In this case the
motion of the system is complete stick motion and the acting friction forces on the
surface between the plate 2 and the frame are zero.

Case 3

Next the two-dimensional motions of the system are considered. The parameters of
the system for this case are shown in Table 4.1. The results are shown in Figure 4.8.
In this case the yaw of the frame is different from zero as shown in Figure 4.9 and
the motion between the plate 2 and the frame in the y direction is always stick with
the frame because the acting friction force on the contact surface between the frame
and plate 2 is always less than the corresponding static friction force. The friction
forces are shown in the right four curves of the Figure 4.9.
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Figure 4.9: Left: the yaw of the frame with friction function (1.3). Right: the friction
forces.

Case 4
As another example we start with the amplitudes of the external force being 0.4 N as
shown in Table 1 on both the plate 1 and plate 2 both in  and y directions. In this
case the motion of the system is definitely a stick motion. If the amplitudes of all
the external forces are increased at same time then it is found that if the amplitudes
are less than 0.42 N then all motions of the system are stick. Figure 4.10 shows the
results when the amplitudes of the external forces are 0.5N. In this case the yaw of
the frame is zero as it should be.
Case 5
If the different amplitudes of the excitations on the two plates in the x or y directions
are used then the yaw of the frame is obviously different from zero. As an example,
we may use the the values of the excitations as shown in Table 1. This example shows
that the difference amplitude of the excitations on the plate 1 and plate 2 is only in
x direction. But we can find that the yaw of the frame still takes place. The results
are shown in Figures 4.11-4.14. The reason that the yaw of the frame is different
from zero is caused by the different components of the friction force vectors in the
y direction on the two contact surfaces in the stick motion state although they are
identical in the slip state.
Case 6
Finally we set the parameters of the system as shown in Table 1, then the resulting
motions are shown in Figure 4.15 and Figure 4.16. We find that the distribution
of the friction forces on the contact surfaces are complicated in the stick motion of
the system. In the slip motion they are not on a circular orbit because the kinetic
friction coefficient depends on the relative velocity.

From the above discussion it is known that the system of multi-point contacts on
one body with two-dimensional dry friction can be modelled as a structural variant
system characterized by the stick and slip motion.
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Figure 4.16: Left: the yaw of the frame with friction function (1.3). Right: the
friction forces with friction function (1.8).

The independent degrees of freedom of the structure varying systems will vary
according to the combinations of the stick-slip motions on the two surfaces in contact.
The stick-slip motions are determined by the switch conditions and the corresponding
acting friction forces.

If the acting friction forces are correctly evaluated with the corresponding switch
conditions for the stick-slip motion then the degrees of freedom of the system will vary
automatically. In other words, the discontinuous system will automatically becomes
a piecewise differentiable system.



72 Variable degrees of freedom systems with two-dimensional dry friction




CHAPTER 5

Rolling contact between the
wheels and the rails

The wheel and rail meet at a wheel/rail interface where the interaction between the
steel wheel and the steel rail generates the necessary conditions for a railway vehicle
to run stably on the track but it may also damage the rails and the wheels because
of the high contact stresses. The stability of a moving railway vehicle depends on
the linear or nonlinear critical operating speed, the lateral dynamic behavior, the
adequate guidance and the ability of negotiating a curved track. The damage of the
rails and the wheels involves wear of the rails and the wheels, corrugation, fatigue
etc. An optimized railway system is one that satisfies high stability requirements
and a low damage rate of the rails and the wheels. These aspects must be taken into
account in the design of a bogie or a complete railway vehicle.

The contact is often described by as well the kinematical constraints(geometrical
contacts) as dynamical constraints(physical contacts). For the kinematical con-
straints the rigid assumption of the wheelset and rails is usually used[De Pater,
1999, Kik, 1994]. The dynamical constraints based on the rigid assumption is used
in the traditional method[De Pater, 1999]. In recent years based on the elastic con-
tact is used[Pascal,1991]. Many investigators precalculate the kinematical constraint
parameters and collect them in a table and then the dynamical calculation will use
interpolated contact values based on the tabulated ones. We do it differently: The
kinematical constraint parameters are evaluated on-line.



74 Rolling contact between the wheels and the rails

5.1 The kinematic constraints between the wheels
and the rails

The effect of the kinematic constraints between a wheelset and a track goes back to
Stephenson and later Klingel[Klingel,1883] who assumed a conical wheelset, which is
roll on knife edge rails. Realistic wheel and rail profiles are often defined by segments
of arcs of circles and polynomials. Wickens [Wickens,1965] improved the accuracy
of Klingel’s analysis for the case where the rail and wheel profiles are assumed to be
circular arcs. The solution for the circular arc profiles is normally only valid for small
lateral wheelset displacements. In the general case the wheel and rail profiles have
other shapes due to wear and may be derived from profile measurements. It is not
possible to obtain an analytic solution for the kinematic constraints with arbitrary
wheel and rail profiles, so numerical methods are needed.

In the early numerical methods, the geometric contact between the track and
the wheelset is considered to be two-dimensional[Cooperrider and Law, 1976], so
that the effect of the yaw angle is ignored. More accurate theories for determin-
ing the geometric contact in three dimensions have been developed by Heumann
[Heumann,1950-1953], De Pater[De Pater,1979, 1988, 1999]|, Duffek[Duffek,1982] and
K. Wang[Wang,1984]. The effect of the track curves of the track in the horizontal
and vertical directions has been analyzed and it was shown that the effect can be
neglected by F. Xia[Xia, 2000].

The coordinate systems for the description of the wheelset, the rails and the
contact geometry are shown in Figure 5.1.

It is necessary to know the geometrical relations between the profiles of the wheel
and the rail for the central position of the wheelset, because they are the basic for
the determination of the contact parameters. The contact parameters are strongly
influenced by the combination of the profiles of the wheel and rail and the dimensions
of the wheelset and track. Figure 5.2 shows the relation between the right hand side
wheel and rail for the central position of the wheelset.

We can find from Figure 5.2 that the initial contact point (the wheelset in its
central position) is characterized by the side gauge of the wheelset, the profiles and
the inclination of the rail. In the general case the rolling radius on the initial contact
point is not equal to the rolling radius that is measured at the vertical line 70 mm
away from the inside gauge. In Europe the side gauge is usually 1360 mm but in
China the value is 1353 mm.

The geometrical method first determines the same minimal distances between
the two surfaces of the left hand and right hand side wheels and the corresponding
rail profiles through adjusting the rolling angle of the wheelset for the given lateral
displacement and yaw of the wheelset. After finding the contact point the corre-
sponding geometrical contact parameters can be determined. This method for the
two-dimensional contact problem has been used and implemented into a code RS-
GEO by Kik[Kik, 1994]. For the three-dimensional geometric contact problem, the
two dimensional search on the surface of the wheel in the longitudinal and lateral di-
rections are needed, so the computational time is high. This method is impossible to
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apply for the on-line evaluation of the kinematic constraint parameters. In practice
the pre-calculated parameter data are collected in a table once and for all. Another
method replaces the surface of the wheel by the so-called trajectory on the tread
of the wheel. The minimal distance comparison is processed between the trajectory
and the profile of a rail[K. Wang, 1984], so the spatial curve surface is simplified to a
spatial line. In this way the higher calculation efficiency makes it possible to perform
the on-line evaluation of the kinematic constraint parameters.

The mathematical method is on a derivation of a set of algebraic equations. The
set describes the contact relations for the contact between a wheel and a rail. Then
it is solved numerically to get the contact parameters[De Pater, 1995, Xia 2000].

The kinematic constraint parameters enter the simulation of the vehicle dynamics
on the track in two different ways. Either a table of the kinematic constraints for
the entries of the lateral and yaw is made and then the parameters can be obtained
by interpolation for the given lateral and yaw values of the wheelset. It is fast but
the accuracy is not high. Another way is the so-called on-line evaluation. With this
method the kinematic constraint parameters are calculated implicitly in the dynami-
cal calculation. In this way the results are more accurate and easier to combine with
the physical contact calculation.

5.1.1 The profiles of a wheel and a rail

The simplest contact model of rail/wheel contact is to assume the wheel to be cone
and the rail to be a knife edge or an arc of a circle. This model can be used to calculate
the linear critical speed[Wickens,1965]. The realistic profiles are often defined by
segments of arcs of circles and cones. The new wheel and rail profiles are called
theoretical profiles. The worn profiles can only bee defined by the measured data.

As well measured as theoretical profiles are used for the purpose of the simulation
of the motion of the railway vehicles. For the theoretical profiles, it is easy to get the
discrete data. However, for the measured profiles a little care has to be exercised in
using a curve fitting method since not only are the smooth profiles needed but also
their derivatives up to at least the second.

In general, the profiles of a wheel and a rail can be described by the functions

G = f(m)s Cw = f(Nw) (5.1)

where we introduce two new frames, one is (C,, &, n, (). The origin C,. is located
on the wheel /rail contact point on the rail for the central position of the wheelset;
another is (Cy, &w, Nw, Cw) Which the origin C,, is on the wheel. The derivatives of
the ¢, and (, with respect to the 7, and 7, respectively are associated with the
contact angles v, and 7, which are defined as the angle between the contact plane
at the wheel/rail contact point and the horizontal. They are expressed by:

tan-y, = = f’(77r)7 tan v, = = f'(m;)- (5-2)
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The radii of curvatures of the profiles in the contact point are

d?&,
dn?,

1

cos® 1)t ryw = (30 cos® ) T (5.3)

TyT = ( d’l’]2

The wheel tread profile we use in this thesis is called LM. It is widely used in the
three-piece-freight-trucks on the Chinese railways. The profile of the rail is called 60
kg/m which is also the standard one used in China. Figures 5.3 and 5.4 show the
theoretical profiles of LM and 60 kg/m. From the measured data of the profiles data-
fitting methods are used to obtain the fitted profiles and the corresponding first and
second derivatives as well. As formulae (5.2) and (5.3) shows, the first and secondary
derivatives are used for the calculation of the contact angles and the curvatures at
the contact points.

The B-spline curve fitting method applied by Kik[1994] in the code RSPROF,
however the approximations must be done very carefully, especially if a profile is
given by measured data[Slivsgaad, 1995].

The piece-wise curve fitting method was suggested by De Pater and implemented
by Xia[Xia, 1998] where several polynomial segments which have smooth derivatives
up to the fourth are used. The result is sensitive to the numbers of the segments
and the flange curvature as well. Anyhow, for the simulation of the dynamics of the
vehicles only part of the profiles are needed. From Figures 5.3 and 5.4 we know that
the points on the profile of the wheel can be neglected for points less than 30 mm and
larger than 120 mm in the lateral coordinate; For the rail profile, the points larger
than 20 mm in the vertical coordinate can be neglected. In that way the piece-wise
curve fitting method works well.

The measured data of the profile of LM and 60 kg/m were obtained by the tool
MiniProfT™™  The fitted profiles with piece-wise curve fitting are shown in Figures
5.5 and 5.6. We use 8 polynomial segments to fit the profile of the wheel tread. For
the profile of the left rail 19 polynomial segments are used.

Figure 5.3 shows the theoretical profile of the wheel LM and its first, secondary
derivatives and the curvature. Figure 5.4 shows the theoretical profile of rail 60k, /m.

The theoretical profiles are used to investigate the nonlinear characteristics on
perfect tangent track. The measured profiles are used to simulate the dynamical
responses of the vehicle on tangent track with irregularities.

5.1.2 On-line evaluation of the kinematic constraint parame-
ters

A wheelset has six degrees of freedom, three displacements ., vy, Wy, and three ro-
tations ¢y, 0, and 1,,. When it runs on two rigid rails two constraints are produced.
Hence, the position of the wheelset can be described by four of the six coordinates
Uy Vayy Way, Puy, Oy and 1, and we shall choose w,, and ¢,, as dependent coordinates,
which can be found as functions of v,, and %, but other two independent variables
Uy, and 60, have no effect on the dependent variables w,, and ¢,,.
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De Pater developed the mathematical method to determine the kinematic con-
straint parameters[De Pater 1995-1999]. His first order theory was introduced to get
a simple method. By the first order theory, the kinematic constraint parameters of
the contact angle, roll angle and the vertical displacement of a wheelset only depend
on the lateral displacement of the wheelset, in other words, the effect of the yaw
of the wheelset is neglected. G. Yang[Yang, 1993] extended the method to the case
where the yaw of the wheelset is considered. F. Xia[Xia, 2000] analyzed a general
case where not only the lateral and yaw of the wheelset are included but also the
effects of the curvatures of the track in horizontal and vertical directions are consid-
ered. The results show that if the yaw is small and the vertical curvature is small
then the difference between the exact theory and the first order theory is negligible.

In the case the contacting bodies are assumed to be rigid we use the two contact
conditions: (1) the positions of the contact points of the wheel and rail should be
identical in space; (2) at the contact point the unit normal vector of the surface
coincides with the one of the corresponding wheel surface. Then the first order
theory yields simplified kinematic constraint equations[Xia, 2000]:

T(ZS + (nrj - 77wj) =V — Urj,
wib(b_ (CTj _ij) = Wrj, (] = 172)5 (54)
:l:¢ + Yri — Ywj = :l:(brj

and

&rj = uF bjrh, (5.5)
gwj = :l:’r’(/) tan Yrj (56)

where r denotes the rolling radius; ¢, 1 are the roll and yaw angles of the wheelset
respectively; u, v, w denote the longitudinal, lateral and vertical displacements of the
wheelset respectively; b is the half gauge; b; denotes the distance from the mass center
of the wheelset to the wheel/rail contact points. v,,w,, ¢, are the parameters that
describe the irregularities of the track. &,, &, denote the longitudinal displacements
of the contact point on the wheel tread and the rail. The index j = 1 denotes the
right rail and j = 2 denotes the left rail; for j = 1 we use the upper sign of the F or
4 and for j = 2 we use the lower sign.

To solve the above nonlinear algebraic equations the Newton-Raphson’s method
is used but special attention should given to the points where double-point contact
occur. In that case the prediction-correction method may provide a way to overcome
the numerical problem[Seydel, 1988, Xia,1996].

Now we introduce another widely accepted geometrical method to determine the
kinematical constraint parameters. For the reason of simplicity, the origin o of the
reference coordinate system (o, x,y, z) is selected on the mass center of the wheelset.
The lateral displacement and the yaw and roll rotations of the wheelset are v, ¥,
and ¢, respectively.

C' denotes the contact point, Cy is the lowest point of the rolling circle and
010, denotes the common normal line through the point C(see Figure 5.7). For
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Figure 5.7: The three-dimensional relation between a wheel and rail

the known lateral displacement, the known yaw of the wheelset and the known track
irregularities, the contact trajectory on the tread of the right wheel can be determined
by the following formulae[Wang, 1984]

T = Toy + lxrwtg’Y7
T

x
Tw

1-12

x

2= Zow — (Pl tgy — lym)

where v = 7, — ¢, denotes the contact angle and

ly = —COSQy,STNY,y,,
ly = cosgy,costy, (5.8)
I, = —singy (5.9)

denote the direction of the center line of the wheelset, and

Tow = bwrlm;
Yow = bwrly7 (510)
Zow = burls (5.11)

denote the coordinates of the center of the rolling circle in the reference coordinates
(0,z,y,z) and by, is the distance between the mass center of the wheelset and the
contact point. The parameter m is

m=+/1—1,(1+tg>y). (5.12)
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Figure 5.8: The possible contact points between the theoretical wheel and rail profiles
LM/60kg/m with inclination 1/40

The trajectory for the left wheel/rail contact can be derived in the same way. After
obtaining the trajectory then the contact points are determined by comparing the
minimal distances between the contact trajectory and the profiles of two rails.

The effect of the four general irregularities in tangent track: The variation of the
track gauge and the cross-level are incorporated in the determination of the contact
position, and the lateral and vertical alignments are incorporated in the motion of
the track reference frames.

5.1.3 Some results and a discussion of the contact point cal-
culations

The computer program WREKIN has been developed to perform the calculations
according to the theory outlined in section 5.1.2. The program is used to calculate the
kinematic constraint parameters for the three dimensional wheel/rail contact and the
dimensions of the contact area and the penetration between the wheel and the rail for
the 1 N normal load. For the investigation of the kinematical constraints the profile
of the LM wheel used in the three-piece-freight-truck in China and the profile of the
rail 60kg/m also used in China are taken. The inclination is 1/20(40). The possible
contact points between the wheel and the rail in dependence on the displacement
of the wheelset indicate the domain of wear on the wheel and rail profiles. The
distribution of the contact points not only depends on the combinations of the profiles
of the wheel and the rail but also depends on the side gauge of the wheelset and the
inclination of the rail. Figures 5.8 and 5.9 show the possible contact points for the
combinations of the theoretical profiles of the wheel LM and the rail 60 kg/m and the
combinations of the theoretical profiles of the wheel DSB97(Danish profile) and the
rail UIC60, respectively. We have found that the contact interval of the combinations
of the LM/60kg/m is less than the combinations of the DSB97/UIC60 for the rail
inclination 1/40. Figure 5.10 shows the penetration of the wheel LM into the rail
60kg/m under 1N normal load. Figure 5.8 shows the possible contact points between
the wheel and the rail in dependence on the lateral displacement of the wheelset. In
order to display the effect of both the lateral displacement and the yaw of the wheelset
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Figure 5.9: The possible contact points between the theoretical profiles of the wheel
DSB97 and the rail UIC60 with inclination 1/40

penetration g(1) (m)

lateral displacement y (mm)

Figure 5.10: The penetration q(1) under the 1N normal force. The solid line de-
notes the right wheel/rail penetration and the solid line with "o’ on it denotes the left
wheel /rail penetration.
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Figure 5.11: The contact angle on the left side hand wheel

on the kinematical constraint parameters the contact angles on the contact points,
the roll angle of the wheelset and the vertical displacement of the wheelset are shown
in the Figures 5.11, 5.12, 5.13 and 5.14.

Figures 5.15 and 5.16 show the effect of both the lateral displacement and the yaw
of the wheelset on the semiaxes, a and b of the contact ellipse according to Hertz’s
theory and Figure 5.17 then shows the penetration influenced by both the lateral
displacement and the yaw of the wheelset.

5.2 Dynamical constraints between a wheel and a
rail

5.2.1 Determination of the normal loads

The normal loads in the contact area make the wheel /rail penetrate each other to form
the contact patch. The dimension of the patch is used to determine the tangential
forces between the wheel and the rail. The determination of the normal loads is not
difficult if the dynamical contribution of the wheelset be left out of consideration.
In that case, the solution for a static equilibrium of the wheelset on the two rails is
needed. The problem will become more complicated for the case that the dynamical
effect on the wheelset in the vertical direction and the roll rotation is included.
The normal loads are the combination of the static and dynamical acting forces. A
wheelset has six degrees of freedom in its free state. When it is put on the two rails
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Figure 5.14: The vertical displacement of the wheelset

(mm)

r

semiaxle a
o
=
N
!

: 10
0.12 4

0

y (mm)

Figure 5.15: The effect of both the lateral displacement and the yaw of the wheelset
on the semi-azle a on the right-hand side contact point
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Figure 5.16: The effect of both the lateral displacement and the yow of the wheelset
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Figure 5.17: The effect of both the lateral displacement and the yaw of the wheelset
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the two kinematic constraints are produced. If we assume that both the wheelset and
the rails are rigid then we may derive four independent equations of motion of the
wheelset together with two kinematic constraint equations. The normal forces can
be found from the two kinematic constraint equations[Sauvage, 1990]. If the elastic
assumption is used then the two kinematic constraint equations are free, in that case
the Hertzian springs must be introduced as force connecting elements between the
wheels and rails in order to keep the wheelset in contact with the track in the normal
case.

Two methods are widely used to determine the normal force between a wheel and
a rail[Sauvage, 1990]. One is called the rigid model. Tt considers the wheel and the
rail as rigid bodies, where the two kinematical constraints exist among the six degrees
of freedom of a wheelset on two rails. Then we can use the two dynamical equations of
the vertical and the roll movements of the wheelset and the two kinematic constraints
to determine the normal contact forces both on the left and right wheel/rail contact
patches. A shortcoming of this method is that it can not yield the correct normal
force when the wheel lifts the rail.

Another method to determine the normal force considers the elastic contact be-
tween the wheel and the rail. The key point in this method is to consider the
penetration of the wheel into the rail[Slivsgaard, 1995]|[Sauvage, 1990]. In that case
the six degrees of freedom of the wheelset are all independent. Pascal [Pascal, 1991]
proposed a method where the penetration for the 1N normal forces are calculated
first and collected into a table. When the penetration under the acting forces on the
wheelset is determined from the dynamical simulation then the normal load is found
from the relation

)2 (5.13)

where the penetration ¢(1) will be discussed next.

The penetration ¢(NV,,) may be determined by the way shown in the paper
[Sauvage,1990]. Anyhow the Hertzian stiffness is very high, about 10°N/m, this
method requires very small calculation steps—about one microsecond|[Sauvage,1990].
The calculations of the strong nonlinear dynamic system will then be restricted by
the calculational efficiency.

Here we shall use the static-dynamical method to calculate the normal force
between a wheel and a rail. First the static normal loads are determined with the
specified lateral displacement and the yaw rotation of the wheelset by means of
the static equilibrium equations with an iteration algorithm. Then the penetration
caused by the dynamical forces along the normal to the tangent contact plane is
determined in the following way.

According to Kalker[Kalker,1990], the penetration g, for the given semiaxes a
and b of the contact patch is given by

K(k)

qn = (Dx + Dy)bzm (514)
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where D, and D, are the averaged radii of curvature in the directions(x,y). They
are given by
1 1 1.1 1

1
- D, = - .
2 ® TR P 2(Ry,. +Ryw)

(5.15)

K(k) and E(k) denote elliptical integrals. k depends on the ratio between the axes
a and b which are given by[Garg, 1982]

a=m[3n Ny (K, + Ky)/4K3]'/3, (5.16)

b= n[31N, (K + Ko)/AK3]"? (5.17)

where N, is the total normal force and

1—v2
. K3 =D, + D, (5.18)

1—12
K = w K =
1 7TGw ) 2

G, G, denote the shear modulus of elasticity of the wheel and rail materials, respec-
tively; vy, v, stand for the Poisson’s ratio for the wheel and rail materials, respec-
tively.

By combination of the formulae (5.14), (5.16) and (5.17) we can find

2
qn X N (5.19)

Under the assumption of elastic contact between the wheel and rail the Hertzian
stiffness can be introduced to describe the elastic contact force. In this way, the
normal load is determined by the Hertzian nonlinear theory from|[Jenkins,1974]

a?

3/2
hertz

Gn = Ghert2 N2> < N, = (5.20)

where the constant Gpert, depends on the elastic moduli and radii of curvature of
the wheel and rail. For conical wheel profiles

Ghertz = 4.57r7 %149 5 1078 (m/N?/3), (5.21)
and for worn profiles:

Ghertz = 3.86r~ %115 % 1078 (m/N?/3). (5.22)

Here r denotes the rolling radius of the wheel. However by comparing the results
between the traditional method and the new one we find that the value is small .
The suitable value of the Gpere» for the profiles used in this thesis is about 1076, In
fact, if we roughly evaluate the Hertzian stiffness with (5.20) by

K, =1/GY? (5.23)

hertz
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we can find that the Hertzian stiffness is about 10*! for the Gept» in (5.21). Therefore
the large Gpert. should be selected.

The dynamical penetration caused by the dynamical forces on the wheelset can
be considered as a fluctuation around the static penetration. It may be described by

qqa = f(wa, ¢a, v, v, w;) (5.24)
with
Wg =W — Ws, (bd = ¢_¢s (525)

where w and ¢ denote the vertical displacement and roll rotation of the wheelset
respectively; wy and ¢4 denote the dynamical displacements and roll rotation of the
wheelset respectively, and w, and ¢ denote the static displacements and roll rotation
of the wheelset respectively. The static displacement and roll rotation, ws and ¢,
are determined by the evaluation of the kinematic constraints between the wheel and
rail.

After determination of the dynamic penetration the total normal force is evaluated
by

Nw = Ghertz(Qns + qd)1-5~ (526)

With (5.20) the above relation can also be written as

Ny = Nyo(1+ 2Ly15 (5.27)

qTLS

where ¢,s denotes the penetration under the static normal load.
The comparison of the normal loads by the traditional method and the method
in this thesis is shown in Figure 5.18.

5.2.2 Determination of the shape and the dimensions of the
contact area

If the normal load N, is determined then the formulae (5.16) and (5.17) can be used
to determine the semiaxes a, b by looking up the values of the parameters of m,n in
the precalculated table given by Hertz[Garg, 1982]. We also can use a direct way to
determine the dimensions of the contact patch. Let ¢ be the geometric mean of a
and b:

c=Vab (5.28)
the effective radius of curvature of the contacting surface is defined as
p=2/(Dy+ Dy) (5.29)

In order to determine
|Dw -D y|

DD ) (5.30)

7 =cos *(
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Figure 5.18: The comparison of the normal forces. The solid line denotes the normal
loads with the new method and the solid line with the o on it stands for the traditional
method

in such way that
0<7<7/2 (5.31)

and according to Hertzian theories from Kalker [Kalker,1967,1990] we can derive an
equation for the quantity e? which determines the ratio between the semi-axes of the
contact ellipse:

1- 21 ;26 K(el)a(—e)E(e) =CoST (5.32)

where K(e) and E(e) are the following elliptic integrals,

(5.33)

/2 d¢
Kle) = /0 V1 —e2sin2¢

and

w/2
E(e) = /0 V(1 — e%sin?¢)de (5.34)
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By the Taylor’s expansion the elliptic integrals can be written as[De Pater, 1997]
[Kreyszig, 1979]

_ T - 2k _ T = 2k

K7§[1+Zake ], Ef§[1+Zbke ] (5.35)
k=1 k=1
where
1 2k —1
01:?7 ar = ( o )2ak_1 for k=2,3,---
1 2k — 32k —1

bl = ?, bk = wak—l fOT k = 2,3 N (536)

so we have

o0 2(k-1)
1— 2y 2ok=1 CkE - 2(1— :
(1—e )1 S 2( COST) (5.37)

where

1 (2k — 3)(2k — 1)

= — CL = . If:23"‘ .
c1 5 Cr. k= 2%k Ch-1 for ,3, (5.38)

2

Thus for a given value of cost from (5.30), e* can be found numerically from

(5.37)[Xia, 1996].
The parameter e is connected with the ratio a/b

a/b=1+/1—¢2 for a<b, A>B,

a/b= for a>b, A<B (5.39)
1—e?

which is independent of the value of the normal force in the contact point.
For the normal force in the contact point c is determined by the relation

L3N, (1 —v)pE
c= W (5.40)

where

g=+1-—¢2 (5.41)

Thus the semiaxes a and b can be determined from(5.28) and (5.39). With the value
b, the penetration ¢, can also be determined by the relations (5.14) and (5.32)

e2

_ 2
qn = (Dz + Dy)b [1 + 2(1 — 62)

(1 — cosT)]. (5.42)
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5.2.3 Calculation of the creep forces

The first important contribution to the theory of rolling contact was due to Carter(1926),
who was the first to propose the concept of creepage. Extensions of Carter’s theory
to the three-dimensional rolling contact was studied throughout the 60’s. Vermeulen
and Johnson(1964) generalized Carter’s theory to three dimensions and established
an approximate creep-force law. Since the middle of the 1960’s, Kalker’s theories on
rolling contact mechanics have been the most widely used theories both in the simu-
lation of railway vehicle dynamics and in the analysis of damage of the profiles of rails
and wheels. For use in practical applications Shen, Hedrick and Elkins(1983) pro-
posed an alternative creep-force law based on Kalker’s creep coefficients and Johnson-
Vermeulen’s method.

The contact region between the wheel and the rail generally consists of a slip and
an adhesion region. The slow sliding will take place in the contact region between
the two bodies in rolling contact. The sliding phenomenon(or slip) is called the creep
or the creepage.

There exist three different forms of creep: longitudinal, lateral and spin creep.
The longitudinal creep, v, and the lateral creep, v, are the relative velocities between
the wheel and the rail in the contact plane. The spin creep, ¢, is the relative angular
velocity between the wheel and the rail about an axis normal to the contact plane.

According to Carter’s definition, the creepages and the spin are

‘/wx - ‘/7"1 — Wf1 Vu;y - ‘/m/ Wty _ Qws - Qrs _ &

v v wTE Ty Ty Ty %

where V,,; , denote the longitudinal and lateral velocities of the wheel; V,. , denote
the longitudinal and lateral velocities of the rail; 2,5 and Q.5 denote the angular
velocity of the wheel and the rail about the vertical axis respectively. V is the actual
velocity of the wheelset. The velocity differences Wy, Wy, and Q,, will be discussed
in chapter 6.

Now the creepages are defined as:

(5.43)

Vgp =

Voij = Weaij [Vs - Uyi; = Wyii [V ¢sij = Qi /V (5.44)

where V is the longitudinal speed of the vehicle. In the case of small creepages, the
relation between creep and creep forces is approximately linear. The linear rolling
contact theory has been derived by Kalker and expressed as

Ta: 011 O O U:l:
T, | =G| 0 O cCo3 v (5.45)
M, 0  —cCoy *Cs s

where C11, Caa, Ca3 and Cs3 denote the creep coefficients[Kalker,1967].

For large values of creepages, the nonlinear dependence of the creep force on
the creep becomes important. Kalker has developed the exact rolling contact the-
ory[Kalker, 1990] and implemented it in the program CONTACT. Unfortunately, it
is virtually impossible to use the exact theory in the practical simulations of the
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dynamics of a railway system due to the high computational time. For that reason,
Kalker has developed another program FASTSIM. FASTSIM is much faster than
CONTACT but the difference between the results of CONTACT and FASTSIM
never exceed values of 10%-15%|De Pater, 1997|.

For practical application, Shen-Hetrick-Elkins improved Kalker’s linear theory on
the basis of the Vermeulen-Johnson formulae [Shen, 1983]. Shen et al assume that
the resultant tangential force T is determined by

T T T *
T = 3 PNl = 5GRE)? + 27 G S°L for T < 3uly, (5.46)
UNy, for Tg > 3uN,

with

T = /T2 + T2 (5.47)

where T, and T, are calculated according to Kalker’s linear theory. Introducing the
reduction coefficient

e=1Tgr/Tg (5.48)
the creep forces are
fm = 5Tma fy = 5EJ (549)

In order to improve the computation efficiency of FASTSIM, another practical
method for finding the tangential forces consists in a collecting a sufficiently large
number of values of the reduced creep forces, f, f, in a table, each with four entries
and to interpolate linearly in these tables[De Pater, 1997, Xia, 1996, Kalker, 1997]. Tt
should be pointed out that because of the limited data in the look-up table, differences
from the exact theory will be found. Large tables are more exact, but the searching
in such large tables consumes calculation time.

Recently, O. Polach has provided another way to determine the creep forces and
he argued that it has a short calculation time and a smaller difference between the
calculated values and the exact theory[Polach,1999], and is more correct than the
theory of Shen, Hedrick and Elkins.

In the theory of Polach, as shown in Figure 5.19, the tangential stress is pro-
portional to the total creepage v and the distance from the leading edge with a
proportionality constant C, which is a value characterizing the contact elasticity of
the bodies(tangential contact stiffness). The tangential contact stiffneff can be ob-
tained from Kalker’s constants [Kalker, 1967]. The gradient of the tangential stress
in the area of adhesion (see Figure 5.19) is

2 Cra?b
e=3 N . (5.50)
The tangential force is then
4dab, € 1
F = _7_()?(1_'_762 + tan 5) (551)
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Figure 5.19: A simplified distribution of normal and tangential stresses in the wheel-
rail contact area

According to the theory of Hertz

3 Nypt
_3 52
0= b (5:52)
which by substitution into (5.51) yields
2Ny, € 1

F=- t .
- (1+€2 +tan” " €), (5.53)
F, = F% (i = z,y). (5.54)

According to Kalker’s theory, we obtain the tangential contact stiffness C' and the

Eq. (5.50) then becomes
_ 1 Gmabey;

and

Vg v
Cjj = \/(011)2 + (Co2—4)2. (5.56)
v v
If we take the spin ¢, into account, the lateral tangential force can be written as

Fye=F, + F,, (5.57)



96 Rolling contact between the wheels and the rails

where I, is the increase of the tangential force caused by the spin, which is

9 a s
Fys = ——aN,uK,, (1 +6.3(1 — 673))3 (5.58)

10 Ve

where
M2 1. 1
Ky, = \55|(§ —§+g)—§v(1—52)37 (5.59)
e?2 -1

B §G7Tb\/ab Ca3vy.c (5.61)

Es = a~
3 Nyp 1+63(1—e7)
Ve = /U2 + V2. (5.62)
Here vy, is given as

Vyc = Uy +¢sa  for |Uy +¢Sa‘ > |Uy|;
Vye = Uy for vy + ¢sal < uyl. (5.63)

For the sake of comparison the theory of Shen, Hetrick and Elkins, the table
looking method and the theory of Polach are all implemented in our model.



CHAPTER 6

The configuration and
kinematics of the
Three-Piece-Freight-Truck

In the previous chapters we have introduced some basic concepts of the friction
direction angle, stick-slip motion, structure varying system, and kinematic constraints
and dynamical constraints between wheels and rails. All of them will be combined
into the modelling of the dynamics of the three-piece-freight-truck hereafter.

In order to derive the more realistic mathematical model the construction of the
three-piece-freight-truck should first be understood thoroughly. The interconnections
and the motion transfer mechanisms between the components need also to be known
clearly. With the principle of the multibody system dynamics we must to find a
suitable connection element to describe the interconnections correctly. In this chapter
the coordinate systems which are used to describe the motions are introduced. The
construction and the description of the model are then discussed. The kinematic
constraints and the creepages between the wheels and the rails are analyzed.

6.1 Introduction of the three-piece-freight-truck

A hopper wagon and the three-piece-freight-truck are shown in Figure 6.1 and Figure
1.1. A car body is supported by two three-piece-freight-trucks(bogies) through two
center plates on the two bolsters. A strong pivot through the center plate is used to
prevent the separation of the car body from the bolsters during the motion. In order
to obtain a good curve negotiation two side supports on either bolster are designed
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Figure 6.1: A hopper three-piece-freight-wagon

to provide an additional support on the car body in the case of large roll rotations
between the car body and the bolsters. A conventional three-piece-freight-truck, as
shown in Figure 1.1, consists of two wheelsets, one side frame on each side of the
wheelsets supported by the adapters. For one truck a bolster is supported by two
groups of springs one on each side of the frame and four wedges are used to provide
dry friction on the surfaces of the wedges contacting both the side frame and the
bolster.

Because of the configuration characteristics of the three-piece-freight-truck they
differ from the passenger truck in that there is no longitudinal motion between the
bolster and the side frame at least for a truck during normal running, and the relative
yaw motion of the bolster with respect to the side frames causes the side frames to ro-
tate about the vertical truck center line and to assume a parallelogram configuration.
This type of deformation, referred to as warping, is restricted by friction between the
bolster and side frames and is limited by the contact of the bolster ends against the
side frames. In truck assemblies there are clearances between the adapters and the
side frames both in the longitudinal and lateral directions such that the wheelset can
move longitudinally and laterally until the wheelset hits the stops.
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Figure 6.2: The coordinate systems

6.2 The coordinate systems and the degrees of free-
dom of the system

The description of the configuration and orientation of the railway vehicles on the
track are related to the definition of coordinate systems. In order to describe the
absolute motion of the three-piece-freight-truck on an arbitrary form of track three
coordinate systems are needed: the inertial, transfer and relative coordinate systems.
The absolute motion of the components of the three-piece-freight-truck is the vector
sum of the transfer and the relative motions. However we are only interested in the
parasitic motion for the dynamical performance analysis of the three-piece-freight-
truck, i.e. the parasitic motions of the wheelsets and other components of the system
are required. For the investigation of the behavior of the vehicle on a curved track,
the motion of the transfer coordinate system will cause an additional force called the
Gyroscopic force. Additionally spring forces caused by the bodies on the different
position of the curve are needed to included. However, if we only consider the motion
of the vehicle on the tangential track, then the coordinate systems and the relations
among them will become rather simple. If the motion of the vehicle is at a constant
speed along a straight track then we can choose the transfer coordinate system to be
the inertial coordinate system. The coordinate systems are shown in Figure 6.2.

Figure 6.2 only shows the two sets of reference coordinate systems. One is used to
describe the parasitic motion of the wheelset number 1 and the other is used to de-
scribe the wheelset number 2. The motion of the wheelsets are described with respect
to the inertial reference coordinate systems. Other reference coordinate systems can
be defined in a similar way.

The origin o, of the wheelset frame (0wi, Twi, Ywi, 2wi) 18 located in the mass
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Table 6.1: Degrees of freedom of the wagon with two three-piece-freight trucks

Components Long. | Lat. | Vert. | Roll | Pitch | Yaw
Front truck leading wheelset Uy U1 wy b1 X1 (0
Front truck trailing wheelset Ug Vg (1) b2 X2 (>
Rear truck leading wheelset Uus V3 w3 o3 X3 P3
Rear truck trailing wheelset Uy N wy N X4 o
Front truck left side frame upr | vp | wp | — | x| YA
Front truck right side frame Ufo Vpa | wyo — X f2 Yr2
Rear truck left side frame U3 vz | wys — Xf3 (s
Rear truck right side frame Ufy Vg | Wyg — X f4 Ya
Front truck left wedges Ud1 Vd1 W41 — — —

Ud2 Va2 W42 - - -
Front truck right wedges Ug3 V43 | W43 — — —

Ud4 V4 Wd4 — — —
Rear truck left wedges Ugs V5 Wys — — —

Ud6 Ude | Wde — — —
Rear truck right wedges Ud7 Udr | Wqr — — -

Uds Vds Wds - - -
Front truck bolster Up1 Wh1 o1 - b1
Rear truck bolster Up2 W2 b1 — Yo1
Car bOdy Vo Wo ¢0 Xo 7/}0

center of the wheelset ¢ with the positive direction to the right rail. The coordinate
system(0wi, Twi, Ywi, 2wi) 18 not completely fixed to the wheelset because the wheelset
can rotate about the axis 0u;ywi- The position of the origin o, is (0, 0, -r) with
respect to the inertial reference frame(o;, x;, yi, 2:).

We see that the distance between the origins of the two inertial frames (01,02) is
constant. The irregularities of the track can be described as displacements of the ori-
gins, (0r11,0r1,) of the local frames of (0,11, Zr11, Yr11, 2r11) and (0p1r, Trirs Yrirs Zrir)
in the lateral and vertical directions.

6.2.1 The degrees of freedom of the system

As Figure 6.3 shows, our model of the four-axle three-piece-freight-wagon has nine-
teen principal components. These are the car body, two truck bolsters, eight wedges,
four side frames, and four wheelsets. The degrees of freedom of the system are given
in Table 1, where the total degrees of freedom is 81. But we will see that not all the
degrees of freedom are independent and there exist some relations due to the joint
connections between the car body and the bolsters, the sliding contact between the
bolsters and the wedges, and the side frames and the adapters(wheelsets).
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Figure 6.3: The description of the model of the Three-Piece-Freight- Truck
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6.3 The interconnections between the components

The relations between the coordinate systems of the components of the three-piece-
freight-car are shown in Figure 6.4.

Figure 6.4: The relations between the coordinate systems of the components of the
three-piece-freight-car

6.3.1 The relations between the car body and the bolsters

The vehicle body has six degrees of freedom. If we neglect parasitic motion along
the longitudinal direction we choose the 2 displacements of the center of mass v,, w,
in the lateral and vertical directions and the three rotations ¢,, xo, %, with respect
to the reference coordinates(0,, o, Yo, 20) around the axes 0,,, 0oy, and 0,2, as the
five degrees of freedom. The center plates which are used to connect the car body
and the bolsters can be modelled as sphere joints as shown in Figure 6.5 where all the
translations between the car body and the two bolsters are blocked but all the relative
rotations are free. The clearances between the car body and the side supports are
modelled to be dead-band stop springs with the spring forces acting in the vertical
direction and the friction on the surfaces of the side supports are integrated into the
yaw friction moment on the car body and bolsters. The parasitic motions of the car
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Bolster

Side support Center plate

Figure 6.5: The modelling of the center plate

body can be described by the roll rotation ¢, and the relations below

lateral displacement,

Vo = W (6.1)
vertical displacement,
+
W, = Wp1 T Wh2 (6.2)
2
pitch,
Wp2 — Wp1
,= 6.3
X 20 (6.3)
yaw,
Up1 — Up2
= ———= 6.4
v = 2 (6.9

where 2a}. denotes the distance between the mass centers of the two bolsters. The
positions of the secondary suspensions on the bolsters with respect to the reference
coordinate system (0p;, Zpi, Ybi, 2bi) are determined by

Ths2k (_l)kb;52¢b’i
Yos2k | = vy + (—1)5 b5, (6.5)
Zps2k wpi + (=115 o dpi — (1 + hy)

where for ¢ = 1,k = 1,2; for i = 2,k = 3,4. b}, denotes the distance between the
mass center of the bolster and the secondary suspension. r denotes the radius of the
wheel for the central position of the wheelset. hj is the distance from the wheel axle
to the center of the bolster in vertical direction.

6.3.2 The relations between the wedges and the bolsters

In the case of no separating motion between the wedge and the bolster it is required
that a pair of wedges on either the left side or the right side of a bogie must be
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used to retain the symmetrical construction of the bogie. For one pair of wedges, the
relations

Ugi = —Udk, Wgi =Wak, (i=1,3,5,T; k=2,4,6,8). (6.6)

hold. In the case of a coupled motion with the bolster, the displacements of the
wedges with respect to the reference coordinates (0pi, Toi, Ybi, 2b;) are controlled by
the relations(See chapter 3)

* i ; sinysin ¢ .
Udi = Fbpsotpj + (—1)'apg + (—1) m(ww + bygoPbj — Wek) (6.7)
cos 1y sin ¢ .
- — . j: L |
Sin(’y + ¢) (wbﬂ bb32¢b] wfk) (6 8)

where for j = 1, ¢ = 1,2,3,4, k = 1,2; for j = 2, i = 5,6,7,8, k = 3,4. For
1 =1,2,5,6 we use the upper sign of £+ or F and for ¢ = 3,4,7,8 we use the lower
sign of + or F. But in the case of the separated state the relations described in (6.6),
(6.7) and (6.8) are broken and w,;, wy; become independent quantities(See chapter
3). apq denotes the distance from the mass center of the wedge to the axis op;yp; of
the reference coordinates (0pi, Ti, Ybis 2bi)-

6.3.3 The relations between the side frames and the other
components

The side frame is connected to the bolster through the wedges, and to the wheelsets
through adapters, where the adapter mass can be neglected. There is no relative
translation between the ends of the bolster and the corresponding side frames in the
longitudinal direction. The yaw of the bolster will cause a translation motion of the
side frame in the longitudinal direction. The vertical motions of the wheelsets will
force a corresponding vertical motion and a pitch rotation of the side frames because
the interconnections between the side frames and the wheelsets(via adapters) can be
modelled as slide pairs which are shown in Figure 6.6. The relations between the

Side frame Adapter Side frame

Figure 6.6: The contact between the end of a frame and an adapter

side frames and the bolsters and the wheelsets can be written as

Ui = (_1)11);‘;&21/}1)_)7 (7’ = 17 277 = 112 = 3747j = 2)3 (69)
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W12 = 0~5(ww1 + W2 + bws(‘fowl + SOwQ))a (610)
wf3 4 = 0~5(ww3 + Wyy £ bws($0w3 + ¢w4))7 (6-11)
Xf1,2 = _0'5(ww1 + b'wsspwl — Wyw2 + bws@uﬂ)/awby (612)
Xf34 = _0-5(ww3 + bws@wB — Wya F bws(pwél)/awb (613)

where b,,s denotes the distance between the mass center of a wheelset and the contact
point with the adapter in lateral direction. a.; denotes the distance from the wheel
axle to the mass center of the side frame in longitudinal direction. For the index 1,
3 takes the upper sign of the + or F and for the index 2, 4 then takes the lower sign
of the £ or F.

6.3.4 The positions of the points on the wheelsets

In order to determine the relative motions between the ends of the side frames and
the wheelsets in the longitudinal and lateral directions we need to know the position
of the adapter on the wheelset. For any point on wheelsets we have the relations

*

Lawi Ui Los
Ywi = Vwi + Gwi y:;;l (Z =1,2,3, 4) (614)
Zwi Wy — T Z;i

* *

where (z},;,y" ., z&,) denote the point measured with respect to the wheelset coordi-
nate system and

1 _¢wi 0
Gwi - me 1 _gbwi . (615)
0 ¢wi 1

So the position of the surfaces of the adapters contact with the wheelset with respect
to the reference coordinate frame of the wheelset (0;, x;,¥:, 2;) are then

Twslk Ui (_1)kbwsi¢wi
Ywslk = Vwi + (_1)k+1bwsi 5 (k: 1a 78ai: 17 74)
Zwslk Wi — T (*1)k+1bwsi¢wi

(6.16)

6.3.5 The extensions of the suspensions

The relative distances between the wheelsets and the side frames are determined by

Uslax Ul — Uws T (_1)i+%br052wwj i=1 o 4,i=1,2k=1,2
usty | = | vpk = vwi+ ()T | 5.8, =3.4,k=34)
’1le2 O ) ) ) ) ) b
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where the values can be used to determine the values of the dead-band stop spring
forces between the wheelsets and the frames in the longitudinal and lateral directions.

The relative extensions of the secondary suspensions between the bolsters and
side frames are

Us2zi 0 ) 0
Usayi | = | v —vp |+ (DT | O |, (=1, ,4,k=1,2).
Us2zi Whk — Wy Dok

(6.18)

The extensions of the springs between wedges and side frames can be written as

Us3zi (=1 Satsrar (W £ U — wyr)
Us3yi - ) Vdi — Vfk ,
Us3zi %(ww £ by 0P — wfk) (6.19)

(i=1,2j=1,k=13i=34,j=1k=2
i=56j=2k=3i=7,8,j=2k=4)

where for ¢ = 1,2,5,6 we use the upper sign of the ” +£” and for ¢ = 3,4,7,8 we use
the lower sign of the ” £7.

With the above eqns.(6.17), (6.18) and (6.19) the corresponding spring forces can
be completely determined when the relative displacements are known.

6.4 Determination of the creeps between the wheels
and the rails

The relative velocities in the wheel/rail contact points are used to determine the
creepages between the wheels and rails. The creep contact forces depend on the
creepages. When the relative motion of the wheelset is determined then the motion
of the contact points on the wheel can be determined. The relative velocity and the
angular velocity of the mass center of the wheelset are

Vwreli = [uwz Vwi wwi]Tv (620)

Wureli = Wwsi T Gwiwz”; (6-21)
where w,,s; is the angular velocity caused by the parasitic motion of the wheelset with

respect to the reference system (0w, Twi, Yuwi, 2wi) and w,; is the angular velocity of

the wheelset ¢ about its axis of revolution with respect to the coordinate system
(Owis Twis Ywis Zwi). Thus we have

Wwsi = [(Z‘S’wi 0 1/')'w7?]T7 W* = [0 - V/T O}T (622)

wi

80 together with (6.15) we have

Wwreli = [d)wz + V'l/]wi/r sz - V/T Zz}wi - V¢wi/r]T~ (623)
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The transfer velocity of the wheelset is constant V' and the transfer angular velocity
is zero such that the total velocity of the wheelset and the total angular velocity of
the wheelset ¢ are

[V o+

Vuwi = i)wi 5 (624)
wwi

and

[ (ﬁwi + wai/"'
Wi = . ).(wi - V/T . (625)

L wwi - V¢wi/r

For the investigation of the dynamical contact we must know the value of the
wheelset velocity ve;; in the wheel/rail contact points, Cyi;. We suppose the track
to be rigid so the rail velocity is zero in the wheel/rail contact points. Then the
velocities in the wheel /rail contact points are

~ *
Veij = Vawij + wrelircij (626)

where the screw symmetrical matrix wy.q; is

. O _(¢wi - V(z)wz/r) sz - V/T
a}'reli = ’¢m - V¢wi/r . 0 _(¢w1 + waz/r) ) (627)
~(Xwi =V/7)  Gwi + Vipui/r 0
and
Ewij F bwi
rzz’j = i(b - nwij) - T¢wi . (628)

ib¢u7i +r+ Cwij

The term to the second order in the displacement coordinates can be neglected and
we find the resulting velocity vector

uwi + eri :F b1r/)w1 - VC’wij/r
Veig = Owi - T¢wi - waz (629)
Wi £ 0Puwi + VEwij /T £ OV Wy /7

where &,;; is defined by (5.6). The components of the v.;; projected onto the contact
plane are

Wt:cynij = thvcija Qnij = Hipwuwi (630)
where Wi;yn;; and Hy, are defined by

Wizynij = Wiazi;  Wiyij Wnij]T; (6.31)
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1 0 0
Hy,=| 0 cosvy; Fsinvy; | . (6.32)
0 =£sinvy;;  cosvygy
By the definition of the Eq.(5.44) the creep components are determined by

Vgij = (Tws + "Xwi F b¢wi)/V — Cwij/T, (6.33)
inj == *1/%,“‘ COS?I ’Yij + (r[)wi - rd)wi)/v Ccos ’Yij (634)

and the spin is
Dsij = :FT_l siny;; + '(/.)wi Ccos ’m/V. (6.35)

Here in this section the index ¢ =1,--- ,4; j = 1,2 and j =1 stands for the right rail
and j =2 denotes the left rail seen in the direction of motion of the wagon. For j =1
take the upper sign of &+ or F and for j =2 take the lower sign of £+ or F.

It should be pointed out that to obtain the relation (6.34) from (6.30) and (5.44)
we use the fact that the relative velocity between the wheel and the rail in their
common normal direction is equal to zero (W,;; = 0), i.e.

sin Yij
COS ;5

U:)wi + bq.swi, + ngij /T + bVi/Jm/T’ =+ (r[}wi - Té)wi - Vq/)wi,)- (636)




CHAPTER 7

Dynamical equations of the
Three-Piece-Freight-Truck

In this chapter a multibody-based method is applied to derive the dynamic equations
of each component of the three-piece-freight-truck and then combine them with the
kinematic constraints into the final dynamic system.

The model of a railway system can be divided into three parts: The vehicle sub-
system, the rolling contact between the wheels and the rails and the substructure of
the rails. The track can be modelled as a rigid or elastic body in different models. For
the high speed passenger car the rigid or elastic assumption of the track yield clearly
different results for the dynamic performance of the railway vehicle[W.Zhai,1996]. In
the present thesis the track is assumed to be rigid because the speed of the three-
piece-freight-truck is usually lower than 100K M /h so the elastic effect of the track
may be neglected.

7.1 Introduction

Multibody system models have been used to investigate theoretically the dynamics
of mechanical systems like vehicles, linkages and robots in an effective way. A short
list of representative works, in which the reader can find a detailed presentation
of the matter, is given by Haug[Haug, 1989], Sciehlen[Schiehlen,1986,1990] or Eich-
Soellner[Eich-Soellner,1998].

Once the equations of motion have been set up and the inputs prepared the
vehicle response can be simulated. Although various powerful computer softwares,
such as ADAMAS/Rail, Simpack, NUCARS and MEDYNA, are now available to
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Figure 7.1: The description of a moving body with respect to an non-inertial transfer
coordinate reference system

carry out these simulation, there still are some problems which can hardly be solved
with these softwares. The stick-slip motion of the three-piece-freight-truck with two-
dimensional dry friction for example and the nonlinear dynamical performances are
two great challenges. The dynamics of the railway vehicles with dry friction damping
have been investigated by many researchers. The dynamical performance of the
three-piece-freight-truck with one dimensional dry friction was investigated by Harder
[Harder, 2000], with ADAMS/Rail. The dynamic simulations of rail vehicles with
friction damped Y25 bogies was provided by Evans and Rogers [Evans, 1998] using
VAMPIRE and Bosso at el. [Bosso, 2000] with ADAMS /Rail. Detailed introduction
of the development of the dynamics of the railway vehicle systems are given by Garg
and Dukkipatti [Garg, 1982], Kalker [Kalker, 1990], Knothe [Knothe, 1999, 2001] and
True [True, 1999].

The Newton-Euler equations of motion for the moving body ¢ (the frame at-
tached on the body be (of,z},y, z}) with respect to a transfer coordinate system
(0i, x4, Yi, 2;) and the inertial reference frame (0., Zo, Yo, 20), which are shown in Fig-
ure 7.1 are [De Pater,1999] [Schiehlen,1986]

M [Vitr f + Qitr f Vitrf + @mf + @?trf)rirel + 2Bty fVirer + Virer] = fi (7.1)

Livitr f + Witr tLiwitr p + Qi pwitr f (Tgi + Lyi + 125) +
20ireiLiwitr f + Liwirel + WiretLiwirer = my. (7.2)
Here f; is the total force which is applied at the body ¢ and m; is the moment of the

forces applied at the body ¢, taken with respect to the mass center of that body.
The inertial tensor I; is a variable quantity, which satisfies the relation

I, = GI;GT (7.3)
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Figure 7.2: The free body diagram of the car body

where G; stands for the rotation matrix of the coordinates attached to the body.

If the transfer reference coordinate system moves with a constant velocity along a
straight line then the Newton-Fuler equations of the motion reduce to a very simple
form

MiVirel = i, (7.4)

Iiwir(zl + a}ir(zlliwir(zl =1m;. (75)

When we apply equations (7.4) and (7.5) in our system to each component then the
corresponding dynamic equations can be derived.

7.2 The dynamical equations of each component of
the system

7.2.1 The car body

The car body is connected to the bolster via the center plates which can be modelled
as a spherical joint. Because the radius of the spherical joint is small compared
with the other dimensions of the car body, the effect of the friction produced by the
spherical joint on the roll rotation of the car body and the bolster is neglected. But
the effect of the friction torque on the yaw rotation is still considered. In other words,
only one-dimensional friction is included for the friction on the surfaces of the center
plates. And more the friction torque is small except on the side supports in contact
with the car body through curved track, so we simply treat it as a Coulomb friction
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function (1.1) with zero friction force for the strick motion state. The equations of
motion of the car body can be written as

Modo = Isfo + fwo + fcto (76)

where the mass matrix M, and the variable vector q, are respectively

m, O 0 0 0 Vo
0 me, O 0 0 Wo
My=| 0 0 I 0 0 |, q=| ¢ |. (7.7)
0 0 0 I 0 Xo
0 0 0 0 I Yo
The force vector f,r, becomes
fsfo = [0 fsfob - Msd)obl - Ms¢ob2 0 - Mfwobl - Mle)obl]T (78)
where
fsfob - fsoblwl + fsoblw'r‘ + fsob2wl + fsonwr (79)
with

f R { kosbos(d)o - d)bi)v ((rbo - sti, < 0) A (|bos(¢o - ¢b7)| > Aob))a
sobiwl 07 |bos(¢o - ¢bz)| < Aob)a 1= 1a 2

_ _kosbos((bo - ¢bi); (Qbo - d)bi > O) A (‘bos(ﬁﬁo - ¢bz)‘ > Aob))v
EWW‘{ 0, Ibos (o — 640)| < Ap), 0= 1,2 (7.11)

and the roll moments Mgop1 and Msgop2 Which are caused by the contact between
the car body and the side supports are determined by

, (7.10)

_ kosbgs(¢o - ¢b1)7 |bos(¢o - d)bl)l Z Aob)a

”%M—{ 0, [Bos(6o — @11)| < Aup) ’ (7.12)
_ kosbgs(gbo - ¢b2)7 |bos(¢o - ¢b2)| Z Aob)a

MSd)ObQ B { 07 |bos(¢o - ¢b2)| < Aob) (713)

Here b, is the distance from the center plate to the side support. k., denotes the
stiffness of the side support in the vertical direction. A, denotes the display between
the car body and the side support on the bolster. The yaw moments Myyop1 and
M ¢yop2 caused by friction on the surfaces of the center plates and possibly on the
surfaces of the side supports are

Nobwipo + kosbos(¢o ._ (bbi)),uo*%.gn('lbo - ¢bi)7 bos‘gbo - ¢bz| Z Aob
Nobwipoﬂt)Sign(¢o - wbi)a bos|¢o - sti‘ < Aoln 1=1,2.
(7.14)

M ¢yobi = { (
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Here p, denotes the friction coefficient on the surfaces of the center plates and the
side supports. p, denotes the radius of the center plate. For the reason of simplicity
we only consider the slip motion for the relative motions between the car body and
the bolsters.

The weight of the car body is given by the vector £,

fuo=[0 G, 0 0 0T (7.15)

and the contact force vector f., is determined by

fcto = - [Nobvl +Nobv2 Nobwl +Nobw2 0 (Nobw2_Nobw1)aZc (Nobvl _NobUQ)G/ZC]T
(7.16)

Figure 7.3: The free body diagram of the bolsters and applied forces on them

7.2.2 The bolsters

The equations of motion of the bolster ¢ can be written as
MyQpi = fspi + fuwpi + fetvi + i, 1=1,2 (7.17)
where the variable vector and the mass matrix are respectively

oi = [V Wi dbi Uil (7.18)
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my, 0 0 0
0 my 0 O o
My=| o "L o | =12 (7.19)

0 0 0 I
The spring forces and the contact forces on the bolster number 1 are determined
respectively by

(ky2 + 2ky3)(ver — vp1) + (Ky2 + 2ky3) (vb1 — vy2)
kz2(wb1 - wfl) + kz2(wb1 - U}fg) + fsoblwl + fsoblwr

£ = — ! , 7.20
o1 2035 ko00b1 — Mspobt (7.20)
Eybr (V1 — ¥ p1) + kyoy (Vo1 — Yy2)

0 Nobvl

—(Np1 4+ Np2 + Np3 + Npg) sin ¢ Nobw1
f, = ( . 21
ctbl (—=Np1 — Noz + Nog + Nea) sin @by, + Novoihj, (7.21)

Metpar 0

where the hj, denotes the distance from the center plate to the line through the mass
center of the bolster.
The spring forces and the contact forces on the bolster number 2 are

(ky2 + 2kys) (vb2 — vg3) + (kyz2 + 2ky3) (b2 — vr4)
kz2 (wa - wa) + kz2 (wb2 - wf4) + fsob2wl + fsob2wr

fopp = — ! 7 7.9
b2 2bb§2k22¢b2 - Ms¢ob2 ( )
kyvr (v — Vp3) + kyig (Vo2 — P 5a)
0 Nova
—(Nps + Nig + Ny7 + Npg) sin ¢ Nobw2
foipo = ( . 2
2= | (_Nys — Ny + Nog + Nog) sin by | T | Nopuohi, (7.23)
Mtpao 0

in which kyps denotes the anti-warp stiffness (effective warp stiffness). The anti-
warp stiffness is a state-dependent variable. For the sake of simplicity here we take
it as a constant. M.y denotes the torque produced by the contact force on the
contact surface of the wedges in the longitudinal direction. We will see that it can
be eliminated from the final dynamical system in the next section.

The friction forces on the bolster number 1 are determined by

—11q(Sq1 cosOg1 + Saz cosOaz + Saz cos 043 + Saa cos 4q)
— Uy COS gf)(Nbl sin 01 + Npo sin Opa + Np3 sin O3 + Npy sin 9(;4)
b oo 1tp €08 O(— Np1 sin 8p1 — Npo sin Oy + Npz sin O3 + Npa sin bpa)
Mpob1 + Myypar

fro1 = (7.24)

and on the bolster number 2 are calculated by

—1a(Sa5 €os 045 + Sap cos 046 + Saz cos 047 + Sag cos O4s)
— Uy COS ¢(Nb5 sin Bps + Npg sin Oy + Ny7 sin 7 + Npg sin 01)8)
b oo 1tp €08 O(— Nps sin 5 — Npg sin Oy + Npz sin Oy7 + Nipg sin brg)
Myypov2 + Myybaz

fro0 = (7.25)
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where f1q, 1ty stand for the friction coefficients on the surfaces of the wedge contacting
the frame and bolster respectively. Mjypa1,2 denotes the torque produced by the
longitudinal friction force on the contact surface between the bolsters and wedges
and it can be eliminated in the final dynamic system. In the present thesis the effect
of the friction torque produced by the lateral friction force component on the surfaces
of the wedges contacting the frames are neglected.

Finally the components of the weight of the bolsters are

0
cos(2g, i)
fwbi = Gb COS(Zg, Zbi) y (Z =1, 2) (726)
0
0

where G, denotes the weight of the bolster and z, stands for the vertical line.

7.2.3 The wedges

In the analysis of the motions of the wedge the effect of the torque acting on it can
be neglected. We consider here the motions in the longitudinal, lateral and vertical
directions. The equations of motion for the wedge i is (see Figure 7.4)

Uy
ma | Vai | = feai + Frai + ferai + fpas, (0=1,---,8) (7.27)
W
where the spring force vector related to the bolster number 1 is determined by
[ (1) kg S8 (wpy + b1 — W)
foqi = — k:y3(vdi — Ufl) , (1=1,2), (7.28)

b St ray (Wor + bl adh1 — wp1)

[ (1) ks SRR (10— b 1 — w2)
fsdj = — . kyg(’vdj — 'Uf2) ) (.7 = 334) (729)
kas Sty (Wer + U pdun — wy2)

and to the bolster number 2 is determined by

(= 1)k Sty (wo2 + bigadp2 — wys)
foar = — kys(var — vys) , (k=5,6), (7.30)
o St (w + b gpdvo — wya)

(,1)7”]{;13 lerrllgy’yb—:;)? (wb2 - bZSQQSbQ - wf4)
fogm = — ky3(vdm - Uf4) ) (m =1, 8) (731)

k23%(wb2 — b} b2 — Wya)
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f sfiwlu
=

| —
f ffiwlu
F e
= f
f ffiwiv
Fitawau sfwiv
f fs! w2v
ffwav

N fiwl

N fiw2

Figure 7.4: The free body diagram of the wedges 1, 2 and the frame 1 and the reacting
forces on them

The components of the weight of the wedge are
foai=1[0 0 Gg", (1=12,---,8) (7.32)

where G4 denotes the weight of the wedge.
The contact force vector f.;4; is determined by

(—1)"*1S 4 cosy + (—1)"Ny; cos ¢
ferai = 0 , (i=1,...,8). (7.33)
Sgi siny + Np; sin ¢

Finally, the friction forces are given by

(—1)H 1S gipa sin Og; siny + (—1)"F1 Ny, g, sin Oy, sin ¢
ffdi = Ndiﬂb COS Hbi - Sdiﬂd COS Qdi 3 (Z = 1, s ,8)
Ny pp sin Oy; cos ¢ — Sg; g sin Og; cos y

(7.34)

where the friction direction angles 64 and 6; on the surfaces of the wedge can be
determined in the way introduced in chapter 2 and 3.

7.2.4 The side frames

There are no primary suspensions between the side frames and the wheelsets so there
exist only the state-dependent normal forces and the nonsmooth tangent dry friction
forces on the contact surfaces between the side frames and the wheelsets. More if
the clearances between the side frames and the wheelsets both in longitudinal and
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lateral directions are taken up then a soft impact will take place. It means that the
kinematic constraints between the side frames and the wheelsets are provided only
by dry friction when the clearances are free. We use the dead-band stops to describe
the clearances and the soft impacts. The dynamical equations for the side frame i
can be written as

Mg =fspi +fupi +Eppi +ferpi + Erpwis, (6=1,2,3,4) (7.35)

where the mass matrix and the variable vector are defined by

m; 0O 0 0 0 rs
0 mf 0 0 0 ’Ufi
My;=| 0 0 my 0 0 |, dp=/|wp |. (7.36)
0 0 0 Ip O X i
0 0 0 0 Iy Vi

The spring forces on the side frames are determined by

fsflwlu + fsf1w2u
fsflwlv + fsf1w2'u + (ky2 + 2ky3)(vbl - Ufl)
for1 = | kaa(wer + bl 0001 — wy1) + kaz(wpr + bfgodp1 — wp1)CySe |, (7.37)
0
(fsflwlv - fsflev)awb + kwaWm - wfl)

fsf2w1u + fsf2w2u
fsf2wlv + fsf2w2'u + (kyQ + 2ky3)(vb1 - Uf2)
fopo = | kaa(wer + bl 0061 — wy2) + koz(wpr + bfgotp1 — wy2)CySe |, (7.38)
0
(fszwlv - fsf2w2v)awb + kwa(wbl - wa)

fsfSwSu + fsf3w4u
fsf3w3v + fsf3w4v + (kyQ + 2ky3)(vb2 - UfS)
fopzs = | Eao(we + by atv2 — wy3) + kos(wya + b e — wy3)CySe |, (7.39)
0
(fsf3w3v - fsf3w4v)awb + kwa("/)bQ - ¢f3)

fsf4w3u + fsf4w4u
fsf4w3'u + fsf4w4'u + (kyQ + 2ky3)(vb2 - Uf4)
fora = | Kao(wpz + biodv2 — wia) + kog(Wee + b ap2 — wra)Cy S (7.40)

0
L (fsfawsv — [fsfawa)@uws + k(p2 — 5a) ]
in which CvS¢ is the short expression of Sfj(vji"qj; The spring forces(impact forces)

between the wheelsets and the side frames in longitudinal direction are determined
by

0, |AUfwz| S Al’f

Fstiuwku = { ko1 (At fui — sign(Atpwi) Az s),  |Awpwi] > Axy (7.41)
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where (i =1,---,8; j,k=1,---,4) and

Atpyy = =byeo¥pt + hexr1 — (U1 — buwstwi), (7.42)
Atfpo = =byopt — hex 1 — (Uw2 — buwstuw2), (7.43)
Augpus = bygotor + hpX 2 — (Uw1 — buwsPuwl), (7.44)
AUsypa = bigotpr — hrx 1 — (Uw2 — buwsPuw2), (7.45)
Augys = —bpaPb2 + hex s — (Uws — buwstus), (7.46)
Atgie = —bpeaPb2 — hpx s — (Uwa — buwstua), (7.47)
Augyr = biotpe + hpxra — (Uws — buwsthws), (7.48)
Augyg = bjotpe — hpXpa — (Uws — buwstuwa) (7.49)

where h; denotes the distance from the mass center of the frame to the contact
surface between the frame and the adapter in the vertical direction; Az stands for
the clearance between the frame and the adapter in the longitudinal direction. The
spring forces (impact forces) between the wheelsets and the side frames in lateral
direction are determined by

Totsok = { ko1 (Avpuwi — Si(;;l(A'Ufwi)Ayf)a Iﬁzﬁj § 23; (7.50)
where
Avpp1 = Vf1 + PF10uwb — Vwl, (7.51)
Avpyr = v — Yf1auwb — Vw2, (7.52)
Avpysz = V2 + P20uwb — Vwl, (7.53)
AVppa = Vy2 — Yy20uwh — Vw2, (7.54)
Avpys = Vf3 + P30uwb — Vw3, (7.55)
Avpywe = Vf3 — Vy3auwb — Vwi, (7.56)
Avpyr = Vpg + Vpaup — Vwd, (7.57)
Avfys = V4 — P atup — Vwa (7.58)

where Ayy stands for the clearance between the frame and the adapter in the lateral
direction.
The components of the weight of the side frames read
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The contact forces and the friction forces on the surfaces of the wedges contacting
the side frames are determined by

Netvd
0

Saisiny + Nyjw1 + Nyjwo
awb(Nfin - Nfiwl)
0

forpi = — (7.60)

Netbds
0

Sdi SiH’Y + Nfin + Nf1'w4 5 (Z = 37 4)7
@wb(Nfiwa — Npiws)
0

forfi = — (7.61)

Nbdj
pha(Sai cos O4; + Sax cos Oar)
tea cos Y(Sgi sin Og; + Sap sin i) |
0
ad,ud(Sd,- COS Gdi - Sdk COS Qdk)

where i = 1,3,5,7; k =i+ 1 and f;;; = f;fh frro = f;fSa frrs = f?f5, frra = f;f7-
aq denotes the distance from the mass center of the wedge to the mass center of the
bolster in the longitudinal direction. We will see that the contact force Nggpg; and
the friction force Nypq; can be eliminated in the final dynamic system.

And finally the friction on the top surfaces of the adapters are determined by

frpw =

fffw2 =

£rpws =

ff’wul
ffwvl
ffwwl
ffwxl
L frwp

ffwu2
ffwv2
ffww2
ffwx2
L ffwa

ffwu?)
.ff’w'u?)
ffwwS
ffwa

L ffwa

pf(Nf1w1COp1 4+ N1w2C0y2)
pr(Np1w1 8051 + Np1w2S0y2)
0

0

pf(Ny2w1COp3 4+ NpawaC0ys)
pf(Ny2w1S0f3 + Nyaw2S0gs)
0

0

pr(Np3w3COps + Np3yaClre)
pr(Np3w3SOrs + NiygwaS0ye)
0

0

| Gubtty(Nf1w1 5051 — Np1w2S0y2) |

| @uwbity(N2uw1S0r3 — Ny2uw2S0sa) |

| @uwbfty(Nf3w3S0ps — NyzwaStye) |

(7.63)

(7.64)

(7.65)
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Figure 7.5: The free body diagram of the wheelset number 1 and the reacting forces
on it

and
ffwu4 1253 (Nf4w3cof7 + Nf4w409f8)
ffuw4 Nf(Nfélu)Ssof’? +Nf4w450f8)
fffw4 = ffww4 == 0 (766)
ffwx4 0
frwpa Qb (Nfaw3SO057 — NyawaSbys)

where the friction direction angle 0¢; is determined in the way introduced in chapter
2 and 3. S0 and C0 are the short expressions of the sinf and cosf respectively.

7.2.5 The wheelsets

The wheelsets provide the supports for the entire vehicle and supply the contact forces
that keep the vehicle system on the track. The interconnection between the wheelsets
and the side frames are through the adapters. The adapters can be considered as
bearings with very small mass therefore their effect on the motion of the system can
be neglected. Furthermore the friction between the adapters and the wheelsets are
neglected in our investigation. The inertial tensor of a wheelset with respect to its
axle is

I'=1| 0 I, 0 |. (7.67)
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where I,,, = I, due to the rotational symmetry. By means of the rotation matrix
G; the inertial tensor can be transformed to[De Pater, 1997]

0 wwi 0
Ly =T, 4+ (Twa — Twy) | Ywi 0 —Pwi | - (7.68)
0 _¢wz’ 0

The dynamical equations of the wheelset i reads
dewi = lgws + fswi + fnfwi + fwwi + ffwi + ftwi + fctwi (769)
where the mass matrix and the components of the variable vector are defined by

myE 0 . . ) . - ) .
Mw = |: 0 I* :l s Qui = [uwh Vwiy,  Wwis ¢wia Xwiy ’l/lwi]T. (770)
w

Here E is the 3 x 3 unit matrix and from (6.27) and (7.5) the gyroscopic force fy,,; is

0
0
g _dwV |0
qwi r wwi )
0
_d)wi
i are the dead-band stop spring force vectors (see (7.41) and (7.50)) applied at
the wheelset i. They read

(i=1,2,3,4). (7.71)

fsflwlu + fsf2w1u 1 i fsfl'wQu + fsf2w2u
fsflwlv + .fsf2wlu fsflev + fsf2w2v
0 0
fswl - 0 afs’wZ - 0 (a772)
0 0
L (fsf?wlu - fsflwlu)bws | L (fsz'wQu - fsfleu)bws |
fsf3w3u + fsf4w3u 1 I fsf3w4u + fsf4w4u 1
fsfSva + fsf4w3'u fsf3w4'u + fsf4w4v
0 0
fows = — 0 s fswa = — 0 (7.73)
0 0
L (.fsf4w3u - fsfSwSu)bws | L (.fsf4w4u - fsf3w4u)bws |

frwi are the kinetic friction force vectors applied at the wheelset 7. They are

pf(Np1w1COp1 + Nyoy1COy3)
pf(Np1w1S0s1 + Ny2y15053)
0
fro1=— 0 , (7.74)
0
busttr(Np2w1 503 — Nf1w1.5041)
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pf(Np1w2COr2 + NyouwaC0ys)
pf(Np1w2S052 + Nyow2S0r4)

0
fwa - - 0 5 (775)
0
| Dwstiy(Ny2w2S0rs — Ny1w2S0s2) |
pr(Ny3w3COps + NyawsClyr)
f(Nf3wsSOrs + NpawsS0s7)
£rus = — X (7.76)

0
L bws,uf(Nf4u;359f7 - Nf3w350f5) i

and

1§ (N 3400 16 + NyaaCys)
15 (Nf3waSOps + NpawaS0ys)
frws = - 8 (7.77)
0
buwstif(NfawaS0ps — Ny3waSOye)

and the contact forces on the surfaces between the frames and the wheelsets are

0 0
0 0
N + N N + N
fn wl = flwl f2wl fn ws = flw2 f2w2 778
ful bws(Nflwl - Nf2w1) ’ fw2 bws(Nfle - Nf2w2) ’ ( )
0 0
- 0 - - 0 -
- 0 - - 0 -
0 0
Nysws + N N +N
fn w3 = f3w3 f4w3 fn wd = f3w4d f4wd (779
fw3 bws(NfSwS - Nf4w3) ’ fwd bws(Nf3w4 - Nf4w4) ( )
0 0
L 0 - L 0 .
The weights of the wheelsets are
fowi = [0 Guweos(zg, Ywi) Guwcos(zg, zwi) 0 0 O]T. (7.80)

The normal load of the wheelset on the rail, f.;,; has already been determined in
chapter 5. We can use the creepage between the wheels and rails to determine the
tangent contact forces as we have done in chapter 5. The tangential contact forces
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and the normal forces of the four wheelsets can be written in the matrix form

Txil
frwi = —Hy; ;W; ) forwi = —Hp; |: NwZ; :| , t=1,--- 4 (781)
ﬂﬂ2

in which the coefficient matrices Hy; and H,,; are defined by

1 0 1 0
0 coSYi1 0 COS87Y;2
P i=1, 4, (7.82)
0 —rj1co8v;i1 0 —riacosvs
i1 0 T2 0
—bi1 0 bio 0
0 0
=Sy SN2
H,, = | 1 cosi2 L i=1,--- 4. (7.83)
biicosyin  —biacosya
0 0
0 0

Here r; denotes the rolling radius and b; is the distance from the mass center to the
wheel/rail contact point. The index 1 denotes the right-hand side rail and 2 stands
for the left-hand side rail seen in the direction of motion of the vehicle.

7.2.6 The effect of the tractive effort on the contact forces on
the surfaces of the wedges

Finally, we treat the tractive effort on the car body. We assume that the force is
applied at the point on the line through the mass center of the car body. If it is not
the case a torque should be added. As Figure 7.6 shows, the equations for the free
body of half the bolster are

Ny sin ¢ + Nqpp cos ¢ + Nosin g + Nopp cos @ = Nopi, (7.84)
Nscos ¢ + Noppsing = Nycosg + Nippsin g + Loy (7.85)
where
Loyt = Fffwlu + stw1u~ (786)
The solutions for N7 and N, are
Nobl Lobl
Ny = — 7.87
' 2(sin g + pp cos @) 2(cos ¢ + pp sin @)’ (7.87)
Nobl Labl

Ny = (7.88)

2(sin @ + pup cos @) + 2(cos ¢ + ppsin @)
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—-— -

ffwlu Fswiu

Figure 7.6: The free body diagram of the bolster, the wedge and the frame. The Loy
denotes the tractive effort on the bolster

If the condition

COoS ¢ + iy Sin @

Lopyn = N,
ovt P sin g + pp cos d

(7.89)
is fulfilled then the normal contact force N7 will be zero. In consequence, for the
motion of the bolster in the upwards vertical direction and if its displacement is less
than its initial displacement then the normal forces on the surfaces of the wedge will

also be zero and the numerical results will be provided in chapter 9. For the case of
the N1 = 0, then from eqns. (7.84) and (7.85)

Nobl Lobl
Ny = . 7.90
2 sin¢+,ubcos¢+cosq5+ubsin¢ (7.90)

By the equations

Nj cos ¢ — Nijupsing = Sy cosy + Sypgsin-y, (7.91)
N} cosd — Nopysin ¢ = Sg cosy + Sapigsiny (7.92)

and note S = S1, S5 = S2, N{ = Ny and N} = Ny we have the solutions for the S
and Sp

coS ¢ — Ly sin ¢ Sy = Ny COS ¢ — upsin ¢

S1=N; —, -
COS 7Y + [g Sy COS 7Y + [ig SIn-y

(7.93)

The above results show that the normal contact forces on the surfaces of the wedges
are asymmetrical, and so are the corresponding friction forces. For the case of the
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force Lop1 in the opposite direction then in the same way we get

Nobl Lobl
Ny = 7.94
! 2(sin ¢ + pyp cos @) + 2(cos ¢ + pp sin @)’ (7.94)
Nobl Lobl
Ny — _ , 7.95
> 7 2sing + ppcosd)  2(cosd + gy sin @) (7.95)
If the condition
cos ¢ + pp, sin ¢
Loyy = Nopp ———— 7.96
o1 "L sin ¢ + pp cos @ ( )
is fulfilled then
N, L,
= o o Ny =0. (7.97)

 sin¢ + py cos é + cos ¢ + ppsin ¢’

Finally, the friction forces on the surfaces of wedges are included into the model
for the complete system.

7.3 The kinematic constraints and the dynamical
system

In the previous sections the dynamical equations of the each component of the three-
piece-freight-truck have been described with the non-generalized coordinates. To
form the complete three-piece-freight-truck model certain interconnections between
the components are needed. The interconnections produce some kinematic con-
straints which include translations and rotations. For that reason the non-generalized
coordinates used to describe the motions of the components are not all independent.

7.3.1 The independent and the dependent variables of the sys-
tem

In chapter 6 we have shown that the number of the total degrees of the freedom of our
system is 81. Because they are not all independent we need to select the independent
variables and to obtain the dependent ones from the kinematic constraints.

The interconnections exist between the car body and the two bolsters via two
center plates; the bolsters and the wedges, the wedges and the side frames and
the side frames and the adapters through sliding contacts. The contacts between
wheelsets and rails are considered as elastic rolling contacts so that the kinematic
constraints can be replaced by dynamic relations. For the kinematic constraint of
the center plate which is modelled as a sphere joint, the translation motions of the
bolster and car body is identical in the longitudinal, lateral, vertical directions. In
the pitch and yaw rotations they are controlled by kinematic constraints. For the
wedge and the bolster, the relations (6.6), (6.7) and (6.8) hold, and the yaw of the
bolster and the longitudinal translation of the side frame are not independent of each
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other. The vertical displacement and the pitch of the frame are related to the motion
of corresponding wheelsets.

There is no general way to select the optimal generalized coordinates for a com-
plicated multibody system. We select the 41 independent variables as

X; = [P0 Ub1 wWe1 Gp1 Ve wWp2 ez Ye1 U1 g1 Uf2
¢f2 Uwl Vwl wwl Uw2 Vw2 wa wa Vf3 wfﬁ’) (798)
Vfa 17/}]“4 Uw3 Vw3 ww?) Uws Vw4 ww4 Ww1 ¢w1

T
W2 ¢w2 W3 ¢w3 Wwd ¢w4 Xwl Xw2 Xw3 Xw4]
and the 40 dependent variables are

Xa= [Uo Wo Xo Yo Udql Va1 Wql Ud2 Va2 W2
Urr Wf1  Xf1 Ud3 Vg3 Wg3 Uda Vdgse Was Uf2
Wpa  Xf2 Uds Vds Wds Ude Vde Wde Uf3 W3 (7.99)

T
Xf3 Udr Vg7 Wdr Uds Udg Wqs Ufse Wr4 Xf4] .

7.3.2 The kinematic constraints between the components of
the system

The geometrical relations we have described in chapter 6 can be differentiated twice
with respect to the time in order to obtain the kinematical constraints between the
independent and dependent variables. The effects of the pitch and yaw rotations of
the side frames on the vertical and lateral motions of the wedges are small and can
be neglected.

The relations connecting the car body motions to the motions of the bolster are

i, = ;”w, (7.100)
i, = Lot T W2 ‘g“’b‘z, (7.101)
. Xb2 — Xb1

= 7 7.102
X 20 (7.102)
. Up1 — Up2

= UL T e 7.103
Y 5o (7.103)

oc

The lateral motion of a wedge has been treated as an independent motion but then
the full vehicle model will become too large for the numerical integration. We found
that the lateral motion of the wedges are limited by the rimmed bolsters so it can be
considered the same as the lateral motion of the bolsters. Therefore the kinematic
relations between the bolster and the wedge are

Bai = Up1, (i=1,---,4), b4 =is2, (Gj=5,,8) (7.104)
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and in the longitudinal and vertical direction we obtain

tigi = —SySp(ip + bjopp), (i=1,---,4)

= COySp(tpy £ bj o), (+for i=1,2, '—'for i=3,4), (7.105)
gy = —SYSp(Wpe £ bjoPr2), (J=5,---,8) (7,100
Waj = CySp(Wpe £ bfoPr2), (+for j=5,6, '—'for j=7,8) .
where SvS¢ denotes the short expression of the term z:g(”;j;;‘?

The kinematic constraints between the side frames and the bolsters and the
wheelsets are

dipi = (—1)%b} 0tnj, (j=1,i=1,2;5=2,i=3,4), (7.107)
Wi = 0.5(tw1 + w2 + (1) bws (Pur + Guz)), (1= 1,2), (7.108)
Vpi = =051 + (= 1) bus Bt — Wwa + (—1) busPuz) /aws, (i =1,2), (7.109)
Wi = 0.5tz + Wws + (=1 bus (Pus + ua)), (1= 3,4), (7.110)
Vi = —0.5(Wis 4+ (—1) T bys Gz — Wwa + (—1) busPuwa) faws, (i = 3,4). (7.111)

7.3.3 The dynamical system

The are two types of kinematic constraints caused by the interconnections, one is no
friction and it is called smooth constraints. The other one is related to the friction and
is called non-smooth constraint. For the smooth constraints the contact forces on the
contacting surfaces can be eliminated by the method provided by Haug[Haug,1989].
For the non-smooth constraints the contact forces can not be eliminated because the
friction forces need to be included and they are of course related to the contact forces.

For the complete system with all variables and all applied forces on the compo-
nents of the system the variational equation of motion of the system is formulated in
a matrix form in the formulation of d’Alembert[Haug,1989] as

ox'[Mx+F, -F] =0 (7.112)

where F denotes the spring force and F stands for the other applied forces including
the normal contact forces on the contact surfaces between the two bodies.

The elements in dx? usually are not independent, therefore the kinematic con-
straints must be introduced. Generally, the kinematic constraints can be expressed
as

g(x,x;) =0 (7.113)

where x; denotes the vector of independent variables. In general the equation defines
the relations between the independent and dependent variables implicitly, so Newton-
Raphson method can be used to obtain a numerical solution.
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In some cases the kinematic constraints can be expressed explicitly as
x = J(t)x; + G(t) (7.114)

where J(t) denotes the coefficient matrix which usually is time-dependent and G(t)
stands for the other time-dependent terms.

In our system, as we have discussed in chapter 6 all entries of the matrix J(¢) and
G(t) are constant, such that we have

J=J=0, G=G=o0. (7.115)
Then we have the relation

X =J%,;. (7.116)
Thus equation(7.112) with the independent variables can be rewritten as

JT6xI' MI%; + F, — F] = 0. (7.117)

Because the variation of x; now is the independent variable vector, we finally get the
dynamical equation

J'TMJI%; = JT(F - F,). (7.118)

It should be pointed out that the spring force vector F, also depends on the de-
pendent variables, however we have already determined the spring extensions of the
suspensions in chapter 6, therefore the spring extensions are known quantities and
so are the spring forces.

The force vector F includes the contact force vector F.;, the friction force vector
F, the weight F,, and the gyroscopic force F and tangential wheel/rail contacting
forces F .t and Fiyp.

We rearrange the terms of the above equation as

J'MI%; —IT(F; +Fy) = I (Fy + F, — Fy — Fopy — Frop). (7.119)

There are 41 independent variables to be solved for in the system. And the contact
forces F.; which have 28 components are also wanted. The 28 contact forces are: 4
contact forces, Ny, on the center plates; 8 contact forces, S; on the surfaces of the
wedges contacting the side frames; 8 contact forces, Ny on the surfaces of the wedges
contacting the bolsters and 8 contact forces, Ny, on the surfaces of the adapters.
Hence we need in total 69 equations to determine the 69 unknown quantities. We
have used 81 equations to describe the motion of each component in the system. For
the relation(6.6) the number of the equations reduce to 73. In the following way the
number of the equations can be further reduced to 69.
In equations (7.17) and (7.35) we have the following 6 equations

Tpothor = —kynr (Vo1 — P p1) — kg (Vo1 — P p2) + Mepr + Mpgpopt + Mpgpar, (7.120)
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Tnothve = —kyn (Vo2 —Vy3) — Ky (Vo2 — U pa) + Mez + Mppobz + Mygpaz, (7.121)

mfilfi = sfi(]-) + Newai + Nfbdi + fffwi(]-)a 1= 1, s ,4‘ (7.122)

Using the relations (7.107) and by multiplying the sides of the above equation (7.122)
by (—=1)*b},,, (i =1,---,4) and then add them to the equations (7.120) and (7.121)
respectively, and next by means of the relations

byso(Netbaz — Netvar) = Metpar,  bpga(Netvas — Netvaz) = Merpaz (7.123)

and
bps2(Ngvaz — Nyvar) = Myypar,  bheo(Nyvda — Nyvaz) = Mypypbaz- (7.124)

we can reduce the above 6 equations to the following 2 equations

(Il?z + 2m/fbl?§2)¢b1 = bz.s2[(ffwu3 + ffwu4)01/)f2 - (ffwul + ffwu2)0wfl]
+Mypyor1 + Mspwiz — Msypos1 — Msypra, (7.125)
(I, + 2mpb2) e = bhol(Fruwur + Fruous)Cra — (frwus + frous)Ctbys]
My o + Mspwza — Meyppz — Mgy ra (7.126)
where
Miyogi = kv (Vo —pi), i=1,2, j=1; i=34, j=2, (7.127)

Msfw12 = bZSQ[(fsf2w1u + fsf2w2u>cwf2 - (fsflwlu + fsf1w2u)cwfl}7 (7128)
Msfw34 = bZSQ[(fs.f4w3u + fsf4w4u)cwf4 - (fsf3w3u + fsf3w4u)c'(/}f3} (7129)

and C¥ denotes the short expression of cosiy.

The relative motions between the bolster and the frame are motions in the lateral
and vertical direction and the yaw rotation. Therefore we use the anti-warp stiffness
and the corresponding spring torque to describe the restoring force against the warp
motion.

Besides the contact forces Sg; on the surfaces of the wedges contacting the side
frames, we must also consider the additional contact forces on these surfaces applied
by the side frame by the friction forces on the surfaces of the tops of the adapters.
The magnitude of the force vector is equal to the value of the sum of the friction forces
on the two top surfaces of the adapters contacting one side frame in the longitudinal
direction. If the force vector is positive then the force vector acts only on the wedges
numbered 1, 3, 5 and 7(see Figure 7.6); otherwise, it acts on the wedges numbered 2,
4, 6 and 8. Obviously, the additional contact force leads to the asymmetric friction
forces on a pair of two wedges.

The contact forces on the center plates are

Ny, = [Nobvl Novwi  Nopw2 Nowa]T' (7130)
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The contact forces related to the friction on the surfaces of the wedges which contact
the bolsters and side frames are

Nig=[Sa1 N1 Saz Np2 Saz Nes Sas Nua
Sas Nes Sae Nes Sar Nor Sas Nes]” (7.131)
and the contact forces on the surfaces of the adapters are
Niwp = [Npiwi Nriwz Ny2wi Nyowz Npsws Npsws Npsws  Npawa]”
(7.132)

The contact force on the central plates Nopy1, Nobw1, Nobuz, Nobw2 are also needed
because they act as a part of the input force on the bolster to determine the friction
direction angle on the surfaces of the wedges.

Hence there are totally 28 unknown contact forces in the system needed to be
determine in dependence on the 41 independent variables. Let

Fo, = [Nop Npg Npypl" (7.133)

then the system can be written as

Aa MdepJ Fev _ Fdep
[ Ay, Mg ] [ X } B [ Fina (7.134)

where Mg, is the mass matrix related to the dependent variables, and the M;y,q
denotes the mass matrix related to the independent variables. The entries of the
matrix J in (7.134) are different from these of the matrix J in (7.114)-(7.119).

The matrices A, and Ay, where their entries are a function of the friction direction
angles, friction coefficients and the construction parameters, can be written as

Aoy =[O, o, pa, s, D) (7.135)

where p denotes the construction parameters.

If the purpose of the simulation is only focussed on the slip motion then the friction
direction angle is uniquely determined by the corresponding relative velocities alone.
In that case the entries of the matrices A, and A, are determined by the state
space variables. However, if the stick-slip motion of the system is included then the
matrices A, and A, become discontinuous. That problem will be discussed in detail
in the next chapter.



CHAPTER 8

The numerical method

The normal integration methods such as Runge-Kutta explicit or implicit schemes
or other formula can not be directly applied to the system (7.134) in the previous
chapter. There are two reasons: One is that the entries of the matrices, A, and
A, are discontinuous due to the stick-slip motion of the system; the other is that
the independent variables of the system will change from stick-state to slip-state,
i.e. a collapse of the space-state will occur as we have discussed in chapters 3 and
4. In this chapter the numerical method is discussed for the complete vehicle with
three-piece-freight-trucks.

8.1 The slip state motion of the system

We have shown that there are 41 independent variables in our dynamical system
and the 28 normal contact forces on the surfaces of the wedges and the adapters are
needed to be determined together with the dependent variables.

In any case the perturbation motions of the wheelsets around their axes can be
uncoupled because the applied torque on the wheelset around its axle is only provided
by the tangential forces in the longitudinal direction. This is also true for the roll
motion of the car body because the applied torque around the (0,z,) is only provided
by the side support forces when the clearances between the car body and the side
supports are taken up.

Anyhow the independent variables can be divided into four groups that are un-
coupled from each other(approximately), so the numerical algorithm becomes easier.
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That means that the Eq.(7.134) can be further written as

Aol M01J01 0 0 0 0 0 ~ _
Ay Mgy 0 0 0 0 0 Nova
Abvwr Mbverbvwr 0 0 0 0 0 5&odb
0 0 Apr Mprwap 0 0 0 wap
0 0 Awwr Mwwr 0 0 0 5&fwwr
0 0 Afvu 0 Moy 0 0 5ifvywuvy
0 0 Avuvy 0 Mywwy O O K
0 0 0 0 0 My, O i Do
.o 0 0 0 0 0 Iy |
_ Fol .
Fy
Fbvwr
Frup
= F'ww7' (81)
Ffu?;y
quvy
Fup
For
where
Xodb = [Ub1 We1 Bp1 V2 whz  Pp2]”, (8.2)
X fwwr = [wwl ¢wl W2 ¢w2 W3 ¢w3 W4 ¢w4}T7 (83)
X foywuvy = Xfwf  Xfwr] (84)
with

_ T
wf = R .
Xfwf [wbl Vf1 '(/]fl Vf2 ¢f2 Uwl Vwil wwl U2 Vw2 ¢w2] (8 5)

Xfwr = [wa Vg3 d]fd Vf4 /(/)f4 Uw3 Vw3 quS Uws Vw4 ¢w4]T7 (86)

and

Xwp = [’(/}wl ’(/)wQ '(/)wB '(/)w4]T (87)

The force vectors on the right hand side of the equation (8.1) are related to the
external forces in the corresponding directions and have been determined in the
chapter 7.

For the slip motion of all components of the system the above system is continuous
and can be directly integrated numerically. The equation (8.1) can be written in the
first order form in the following way (see chapters 2, 3 and 4). Let

%=n ¢ - qul, (8.8)
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X, =[qu2 qu - gs2) (8.9)

then the equation can be written as

q/ = f(Q; z, ftwv fCt'u))a (810)
0 =gu(q,n), (8.11)
0= g’w(qa ft’w; fctw) (812)
where
f=[n 2 ... 25 @ ¢ qu, fw, fwl’, (8.13)
o ((L Il) =An, — Fem (814)
Sw ((L ftwa fctw) = 07 (815)
n=[N; Ny -+ Nog 2z 2z - 2] (8.16)

Eq.(8.15) is actually the compact form of the Eq. (7.81). The term A.n, stands for
the left-hand side of the Eq. (7.134) and F., denotes the right-hand side of the Eq.
(7.134). So the dynamic system of the three-piece-freight-truck is a DAEs system
with the index 1.

In general some features of the system should be known before the numerical
integration. If the system is discontinuous or non-smooth then the system must first
be transformed to a piece-wise smooth system. It is very important but not easy
to do for a complicated system like the three-piece-freight-truck with dry friction.
Next if the system is stiff then a suitable integral algorithm should be selected. In
practical, the fast explicit integral formula are first selected if they fail then we try
other implicit methods.

There are many numerical integral methods that can be used for the solution of
the DAEs with index 1. We use Runge-Kutta’s method for our problem because it
is effective and zero-stable.

From the theoretical point of view, the continuous Differential-Algebraic-Equations
(DAES) can be solved without great difficulty. We use the following algorithm to solve
the system.

8.1.1 Numerical algorithm for solving the DAEs for the slip
state

step 1

From the velocities and displacements obtained in the previous step, the kinematic
constraint parameters between wheels and rails can be determined.

Step 2

Calculation of the normal loads and creep forces between wheels and rails.

Step 3
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The uncoupled motions of the perturbation rotations of the wheelsets, (Yuwi, i =
1,---,4) can be determined.

Step 4

Determination of the spring forces of the secondary suspensions, the dead-band stop
forces, the anti-warp forces and others.

Step 5

With the friction forces on the surfaces of the wedges contacting the side frames that
are obtained in the previous step the normal forces on the surfaces of the adapters
can be determined.

Step 6

Determination of the friction direction angles for the friction on the surfaces of the
wedges and the adapters.

Step 7

Solution of the Eq.(8.15).

Step 8

Calculation of the state space variables and repeat step 1 to step 7.

8.2 The stick-slip motion of the system

From the equation(8.1) we know that when some relative velocities equal zero the
corresponding friction forces can not be directly calculated by the equations (2.16)
or (3.15) and (3.17). In some cases they are evaluated by the equations (2.16) or
(3.15) and (3.17) and in some cases they are determined by the way described in
the chapter 4. That means that the stick-slip motion causes not only a discontinuity
but also a collapse of the state space because the degrees of freedom of the system
change. So the Eq.(8.1) can not be directly used to evaluate the integrated function
in the stick motion.

8.2.1 The switch conditions for the sub-system of the wagon-
bolster-wedges

From Eq. (8.1) the sub-system of the wagon-bolster-wedges can be written as fol-
lowing

Ay M,Jg F, (8.17)

Xodb
Abvwr Mbvwr']bvwr Fb

Aol Mol']ol l: Nobd :| _ Fol

where X,qp is defined by(8.2) and the other terms can be found in the appendix B.
In chapter 3 the improved model of the wedge dampers have been derived and
their dynamical performances have been analyzed. In chapter 7 we have combined
this model into the complete three-piece-freight-truck system. Thereby some new
problems arise. One is that the side frame is fixed in the wedge dampers model, such
that the friction force is equal to the input force on the wedge for the stick motion
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between the wedge and the side frame. The second is that the motion of the wedge
dampers are not influenced by the motion state of the other end of the bolster. Last,
but not least, the effect of the roll rotation of the bolster should be included.

Here we will discuss these new problems and find a way to describe the stick-
slip motion between the wedges, bolsters and side frames in the lateral and vertical
directions.

Figure 1.2 shows the complete wedge damper system for one three-piece truck. It
is made up of one bolster, four wedges and two side frames.

For the relative motions between the bolsters/wedges and side frames in the lateral
direction the following relations are true while the stick motions take place

Vorsr = 0p1 — 051 =0, Virpa =0p1 —0p2 =0 (8.18)
and
Viars = b2 — U3 =0, Viopa = Uy — 054 =0 (8.19)

where vy 71 denotes the relative velocity between the bolster 1 and frame 1 and so
on.
The different possible stick motions are expressed by the following conditions:

o Vi1 =0,Veip2 =0, Vizgs = 0, Viapa = 0;
o Vi1 =0,Vyip2 #0, Viarz = 0, Vs # 0;
o  Vyp1 #0, Vo2 =0, Viarz # 0, Viapa = 0.

In the same way we have used in chapter 4, the switch conditions and the corre-
sponding friction forces can be derived as

fufray = |mn:':mﬁlb FZZ)IU - F;Z";ly) < | fusriayl, (Vorp1 = 0, Vor 2 # 0)(8.20)

Jugady = |W::':m§1b FZZ;U - F;Z";zy) < | fusp2ayl, Vorr2 # 0, Vo2 = 0)(8.21)

furady = | m?im;% FZ;TU - FZ;];S”) < | fusraayl, (Vozps = 0, Viays # 0)(8.22)

fuady = | n:imr;b lefy - F:L]ry) < |fusraayl, (Voaga # 0, Vozpa = 0)(8.23)
1

fupray + fueay = | [2Finprymy — mp(Fingiy + fingy)ll

2mf + myp
<\ fusfidy + fusfayl; (Vo1r1 =0,Viapo =0)  (8.24)
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and
1
Jugsdy + fupaay = ImPmeymf = mb(Fingsy + fingay)l|
< | fuspady + fuspayls (Vbags = 0,Viopa = 0).  (8.25)

where f, 14y denotes the acting friction force in the lateral direction and similarly
for the others. f,sr14y and so on stands for the corresponding static friction force.
Finp1y, Finy1y and so on are the input forces on the bolsters and frames in the lateral
direction.

We know from chapter 2, 3 and 4 that in the simple system the input forces do not
include the friction forces but for the multi-point contacts between one bolster and
two side frames the kinematical friction forces must be included. That means if the
relative motion on any one contact surface is different from zero then the kinematical
friction force on that surface should be included in the corresponding input force.

After getting the acting friction forces in the stick states, the corresponding input
forces which are used to calculate the corresponding friction direction angle on that
contact surface are set to be equal to the corresponding acting friction forces. The
friction direction angle is used to determine the static friction force components that
are necessary in the switch conditions. The acting friction forces on the surfaces of
the wedges in the vertical direction are determined in the following way:

We take the truck 1 to be an example. The stick motions will take place if the
following conditions

Vodi2: = 1 + Gp1bjeg — a1 = 0, (8.26)
Vbasaz = Wp1 — Pp1bpso — Waz =0 (8.27)

are fulfilled. Here we assume wg; = wge and g3 = Wya.
For any possible stick motion we have the conditions below

WVodr2: = 0, Voazaz = 0, (8.28)
Vbai2: = 0, Voazaz # 0, (8.29)
Vhdar2: # 0, Vodzar = 0. (8.30)

Here we use a simple way to describe the acting friction forces on the surfaces
of the wedges in the vertical direction. The basic idea is that the input force on
the bolster in the vertical direction is directly used to determine the acting friction
forces. To the end we have

Jubd12zt=Finpz — fuvazaz,  (Vbaize = 0, Viazaz # 0), (| fuvdrzz¢| < | fubaizzs])), (8.31)

Subd1z¢=0.5 fupar2z¢,  fubd2zt = 0.5 fupdi2z (8.32)
fubd34zt:Finbz *fubd1223 (‘/bd12z 7é 07 ‘/bd34z = 0)7 (|f/l,bd34zt‘ S |f/tbd34zs|))7 (833)

Jubd3zt=0.5fupazazt,  fubdazt = 0.5 fubdsazt (8.34)
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and

Finbz
2 )

%dl?z = 07 %d34z = O> ‘Finbz‘ < ‘fubdezs + fubd34zs‘
(8.35)

Jod12zt = fubdzazt =

We know that the motions of the wedges in the longitudinal and vertical directions
depend on the vertical motion of the bolster so for the stick motions the friction
force on the surface of the wedge contacting the frame is determined by the following
relations

fufdizt:_f;tbdizh 1=1,---,4 (836)

.fufdia:t:(_l)iJrlfubdizt(tan7 + tan d’)v 1= 1a T 74 (837)

In the same way we can derive the similar formulae for the truck 2 (see Figure 6.2).
We use the acting friction force to replace the corresponding friction forces which
are calculated by the normal force timing the friction coefficient.

8.2.2 Determination of the normal forces on the surfaces of
the adapters

The normal forces on the surfaces of the adapters are related to the motions of the
side frames in the vertical and pitch directions and wheelsets in the vertical and roll
directions. They are determined by the equation below

Ay Mypuwpd pup ] [ N fuwp ] — { Fup } (8.38)

A-UJU)’I" M’LU?JJ’I’ Xfwwr wwr

where the entries of the matrix can be found in the appendix C.

8.2.3 The switch conditions for the stick-slip motion between
frames and wheelsets

From (8.1) we can isolate the sub-system of the bolster-frame wheelsets as
A foy My, N fuwp F fuvy
o T . = (R I 8.39
|: Awu’uy Mwuvy X foywuvy qu’uy ( )

For the sake of convenience the switch conditions and the corresponding acting fric-
tion forces on the surfaces of the adapters, we treat the equations of the front truck
and rear truck individually.

For the front truck

Agoyr Myuys } { Njups ] { F fuvys ]
. = . 8.40
[Awuvyf Muuvyf Xfuwf Fuuvyf (8.40)
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and for the rear truck

Afvyr MnyT :| |: wapr :| — |: Ffuvy'r‘ :| . (841)

Awuvyr Mwuvyr X fwr quvyr

The normal contact forces Nty 5, N fuvyr have been determined by the (8.38). For
the slip motion the entries of the matrices Afyyr, A foyr, Awuvys and Ayyuyr are
only related to the kinetic friction coefficient and the system can be integrated di-
rectly. Trouble will arise while the stick motions appear between the frames and
the wheelsets. In that case the friction force on that surface of the adapter neither
equals the static friction force nor equals zero unless the corresponding input forces
are zero. In fact the friction forces (acting friction forces) can be determined with
the switch conditions.

It is strenuous work to find the all switch conditions and to calculate of the
corresponding friction forces for the stick-slip motion of the sub-system of the bolster-
frame wheelsets although the method is the same as that we have used in chapter
4. First we rewrite the related equations of the sub-system from chapter 7 and
the kinematic constraints among the bolsters, side frames and the wheelsets in the
longitudinal and lateral directions and the yaw rotation of the bolsters. Then we find
all possible combinations of the stick-slip motion to get the switch conditions. The
detailed description is provided in appendix D.

As a result when the stick motion of all the contact surfaces between side frame
and adapters take place then the acting friction forces can be determined by the
following equation.

AR, =F (8.42)
where

Fllun = [ffw:z:l ffwyl ffw:r2 ffwa ffwm3 ffw'qd ffwa:4 ffwy4]T (843)

and

air 0 aiz 0 ais 0 a7 0
a1 0 azs 0 ass 0 az7 0
azg1 0 azz 0 ags 0 agy 0

1 ag1 0 asz 0O asgs 0O ag7 0O

Abl - 0 as52 0 as54 0 ase 0 0 (844)
0 ag2 0 a64 0 0 0 ags
0 aro 0 0 0 are 0 ars
L 0 0 0 ag4 0 ase 0 ass ]
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Then the switch condition can be expressed as a combination of (D.31)-(D.38) and

|ffw9:1| < ‘ffw:v18|v |ffwy1| < |ffwy18|v ‘ffww2| < |ffww28|a
| frwyel < |frwyasl,  [frwes| < | frwessl, [ froysl < [frwysss
| frwal < | frwsasl, | frwyal <[ frwyasl

(8.46)
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where the static friction force components fruwz1s,- -
forces, the friction coefficient and the corresponding friction direction angles.

are determined by the normal

In the same way the switch conditions for the other bogie can be obtained as

ALF,, =F},
where
Fim = [ffw:rS ffwy5 ffw:r6 ffwyﬁ ffwx? ffwy7 ffwa:S
[ 611 0 b3 O b5 O by O ]
bor 0 bag 0 bas O bayr O
bsi 0 bss O  b3s O b3y O
AZ bar 0 by3 O bgs O by O
b2 0 bsa 0O bsa O bsg O 0
0 bga 0 bes O 0 0 bes
0 b72 0 0 0 b76 0 b78
10 0 0 bsa O bgg O  bss |
where
1 b2 b*2 b*2
bii = — + was + 22 Ctpps,  big = 22 Cihys,
Moy wz bmf bmf
1 b2 b*? b*Q
bre = — — Zws _ “bs2 by = — 052
5= Tomys Vs, bir Toms V4,
b*2 1 b2 b*2
boy = bs2 ; bon = —— & ws 4 bs2 C ,
2t Ibmf 2 My Iwz Ibmf ¢f3
b*2 1 b2 b*2
bas = *Ibbiﬂfcﬁ’f% bor = o st Cipga — Ibb82f Cya,
1 b2 b*2 b*2
hay = — — —ws + bs2 C , ban = bs2 C ,
o Moy Iwz Ib’mf ¢f3 5 Ibmf ql)fi’)
1 b2 b*Z b*2
b‘5:7 ws bs2C , bar = — bs2C ,
K Moy Iy, Ibmf wf4 o7 Ibmf ¢f4
b*2 1 b2 b*2
by = bs2 ; bga = —— — ~ws 4 bs2 C ,
o Ibmf 2 My Iwz Ibmf wf?)

b*2
bys = ——22Cvpy, bar=— +
mf Moy

I

b2

Iu)z

ws bZSQQ
Cippa — Cia

Ibmf

(8.47)

T (8.48)

(8.49)
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Moy TTLf ]fz mf Ifz
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bse = —, b62:7*%7b7
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So that the switch condition is a combination of (D.47)-(D.54) and

|ffw;c5| S ‘ffww53|a |ffwy5| S |ffwy5s|a ‘ff'w;c6| S |ffwwﬁs|a
|ffwy6| < ‘ffwy68|’ |ffww7| < If.fwﬂc78|a |ffwy7| < |ffwy78|7 (8~51)
|frwasl < [frwassl, | frwysl < |frwyss!-

As we have shown in chapter 4, if the acting friction forces are correctly determined
for any stick motion of the system then the degrees of freedom of the system can
automatically vary from one state space to another one with a different dimension.
From a mathematical point of view the corresponding numerical integration method
can be used without violation of the assumption of continuity.

Based on the theory we have discussed from chapter 2 to chapter 8 the program
named TruCars has been developed for the purpose of the simulation of the motion
of the three-piece-freight-truck. With the program the numerical studies can be done.
We will perform the numerical investigation in the next chapter.
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CHAPTER 9

The numerical investigation
and the results

In this chapter we use the model of the three-piece-freight-truck which we have de-
rived in previous chapters which is developed based on the model to investigate its
dynamic performances under various conditions. We will study the hysteresis loop
of the contact forces on the surfaces of the wedges under harmonic excitations from
the track. The critical speed of the system will be calculated and the chaotic motion
of the three-piece-freight-truck will be validated. The characteristics of the track
irregularity can be described by the Power Spectral Density(PSD) but the PSD can
not be used directly for the response analysis of the nonlinear dynamic system. We
will derive a way to transform the PSD into a time series and then use the time
series as the simulation of the rail irregularities in the lateral and vertical directions.
Then the responses of the system to the track irregularity will be simulated. The
comparison of the numerical results and the measured results is performed.

9.1 Discussion of the critical speed

There are two different critical speeds of vehicles on railways: The linear critical
speed and the nonlinear critical speed. The line critical speed means the velocity at
which the stationary solution loses its stability through a Hopf bifurcation. The linear
critical speed usually gives a higher critical speed than the measured one[True, 1983-
2000]. The nonlinear critical speed is the lowest speed for which a periodical motion
exists and it will be determined by the bifurcation analysis. Normally the critical
speed means the nonlinear critical speed in the railway vehicle system dynamics.
We know that the numerical investigation of nonlinear dynamical systems is time
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consuming even for rather simple dynamic systems. Because the dynamical system
of the three-piece-freight is very complicated due to the characteristics of the non-
smoothness and the discontinuities and the collapse of the state space caused by
the stick-slip motion originating from the two-dimensional dry friction, the time for
computation of the necessary data for the bifurcation and the first return map for
the purpose of a fine visualization is very long.

Figure 9.1 shows the bifurcation diagram for the determination of the critical
speed. From the figure we see that the motion of the wheelset 1 changes from a
stable steady motion to a periodic motion and then jumps into a chaotic motion
when the speed increases. Otherwise, when decreasing from high speed to low speed
then the motion changes from chaotic to steady without the periodic motion state.
The linear critical speed of the three-piece-freight-truck is about 28.1 m/s and the
nonlinear critical speed is about 20.5 m/s for the empty car.

In the speed range 20.5m/s to 26.2m/s we therefore find a steady as well as a
chaotic attractor. In the speed range 26.2 m/s to 28.5m/s there exist three attractors-
a steady, a periodic and a chaotic one and above 28.5m/s only a chaotic attractor
exists. It is important to note that these results only concern the existence of attrac-
tors. Other investigations of nonlinear mechanical systems[True, 1999] have shown
that the coexistence of chaotic attractors may lead to chaotic transients in the sys-
tem with dangerously high amplitudes. This calls for further investigations of the
dynamics of the three-piece-freight-truck model.

12 T T T T T 12
s . B
101 o b 10 .
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0 i i i i i 0 P i i i i i
20 22 24 26 28 30 32 16 18 20 22 24 26 28 30
speed [m/s] speed [m/s]

Figure 9.1: Left: The bifurcation diagram of the three-piece-freight-truck with speed
from 20 m/s to 30 m/s. Right: The bifurcation diagram of the three-piece-freight-
truck with speed from 28.5 m/s to 16 m/s.

It should be pointed out that the amplitudes of the motions of the wheelsets are
not zero even at a low vehicle speed because the dry friction produces a stick-slip
motion. The case is illustrated in Figure 9.2 and Figure 9.3. From the figures we
know that the longitudinal displacements, w1, U3 of the wheelsets 1 and 3 differ
from zero. The reason is that there exists a clearance between the whleeset and the
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Figure 9.2: The motions of the wheelset 1 at the vehicle speed 20 m/s

side frame in the longitudinal direction and friction on the contact surface of the
wheelset and the side frame is two-dimensional. The yaw of the wheelsets 1 and 3
differ from zero. They are not periodic motion because the motion is influenced by
the stick-slip motion between the wheelset and the side frame. In the one-dimensional
case, the stick-slip motion is chaotic with one-dimensional dry friction. We may say
the stick-slip motion of the wheelset is chaotic too with the two-dimensional dry
friction at a lower vehicle speed.

9.2 An investigation of the chaotic motion

In the study of dynamical systems the tools that are often used are: a phase space,
a Poincaré map(or Lorenz first return map), the power spectra and the Lyapunov
exponents. They provide information about the dynamics of the system for specific
values of the parameters, e.g. the speed V in railway vehicle systems. The dynamics
may also be viewed more globally over a range of parameter values, thereby allowing
simultaneous comparison of periodic and chaotic behavior. The bifurcation diagram
provides a summary of the essential dynamics and is therefore a useful method of
acquiring this overview.

The bifurcation window from speed 28.5 m/s to 29.42 m/s is shown in the Figure
9.4. Tt should be noted that because of the long computer time for the complicated
dynamical system the steps of the speed can not be too small. Therefore the figure
is not very detailed but anyhow it still can provide information about the chaotic
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Figure 9.3: The motions of the wheelset 3 at the vehicle speed 20 m/s

motion. For the speed 29m/s the lateral displacement of the four whelssets is shown
in Figure 9.5. The effects of the impacts between the side frames and the adapters
and as well as the friction forces on the surfaces of the wedge and the adapters may
be the main facts to make the chaotic motion special.

Here we compare the result obtained by the simulation using the present model
with that obtained by NUCARS. The result comes from China Academy of Railway
Sciences[Li, 2000] is shown in Figure 9.6. In that model a gondola three-piece-freight-
wagon is used and some parameters are little different from the one we used in the
present thesis but the model is very different. As we have seen in the previous chapters
in our model the characteristics of the two-dimensional friction, stick-slip motion and
the structure varying systems are included. That makes the obvious difference from
the model derived with NUCARS. From the numerical results shown in Figures 9.5
and 9.6 we can find the difference of the motion between the two models. With our
model, the lateral motion of the wheelset is not periodic because of the effect of the
impact force of the dead-band stop and the stick-slip motion between the wheelset
and the side frame with two-dimensional dry friction. The lateral motion of the
wheelset from the model with NUCARS looks like a periodic motion because in that
model the two-dimensional dry friction and the stick-slip motion are neglected.

The phase diagrams of the wheelsets 1 and 2 are shown in Figure 9.7.

The first return maps of the lateral displacements of wheelsets number 1 and 2
are shown in the Figure 9.8. And the first return maps of the yaw of the wheelsets
1 and 2 are shown in the Figures 9.9.
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Figure 9.7: The phase diagrams of the wheelsets 1 and 2 with the speed 29m/s.
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Figure 9.8: The first return maps of the lateral displacements of wheelsets number 1
(left) and 2 (right) with the speed 29 m/s for the empty car.
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Figure 9.9: The first return maps of the yaws of wheelsets number 1 (left) and 2
(right) with the speed 29 m/s for the empty car.
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We only have about 2000 points in the first return map. From the bifurcation
diagram, the lateral displacement curves of the wheelsets, the phase diagrams and the
first return maps we can definitely claim that the motion of the three-piece-freight-
truck is chaotic for the running speed 29 m/s. We can also find that the chaotic
motion of the three-piece-freight-truck is obviously different from the chaotic motion
of the Cooperrider’s passenger car model[True, 1999] since the chaotic motion is not
a small perturbation on a dominating periodic motion.

9.3 The hysteresis loops of the contact forces on the
surfaces of the wedges

We use the sinusoidal function as an excitation on the vertical alignment of the track.
The sinusoidal function is defined by

ir=An sin(iis) (9.1)

w

where A,, denotes the amplitude with the values 6 mm for both rails; L,, is the wave
length with a value of 10m. s stands for the running distance. The speed of the
vehicle is 20m/s(72km/h). The friction function (1.4) is used and an empty car is
considered because the possibility of the derailment of the empty car is much greater
than the loaded car for the same running speed.

Figure 9.10 shows the motion of one end of the bolster relative to the correspond-
ing side frame. Figure 9.11 shows the friction forces on the surfaces of the wedge.
The upper subplot is the friction force on the surface of the wedge contacting the bol-
ster in vertical direction; the middle and lower subplots denote the friction force on
the surface of the wedge contacting the side frame in lateral and vertical directions,
respectively. Because there is no lateral parasitic motion in the lateral direction of
the bolster the friction force in that direction is zero as it should be. Figure 9.12
shows the hysteresis loop of the normal forces on the surfaces of the wedge. Figure
9.13 shows the normal contact force on the surface of the adapter.

The phenomenon of the hysteresis of the normal forces on the surfaces of the
wedge is due to the friction forces on the surfaces of the wedge. If the friction
direction angle varies discontinuously then the direction of the friction force vector
changes discontinuously. Therefore the discontinuous friction forces finally cause the
jump of the normal contact forces. In other words, the jump of the friction direction
angle causes the jump of the normal contact forces. So the phenomenon of the
hysteresis of the normal contact forces on the surfaces of the wedge appears.

If the wavelength is changed to 4 m and other parameters are unchanged then the
friction forces and the normal forces on the surfaces of the wedge 1 change as shown
in Figures 9.14 and 9.15. We see from Figures 9.12 and 9.15 that the amplitude of
the response of the bolster in vertical direction is larger in the case of the longer
wavelength (10 m) than in the case of the short wavelength(4 m).
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Figure 9.10: The stick-slip motion of the front bolster in the vertical direction
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Figure 9.11: The friction force on the surface of the wedge when the wavelength of
the periodic disturbance is 10 m. The upper subplot shows the friction force between
the wedge and the bolster in the vertical direction; the middle and lower subplots
denote the friction force between the wedge and the frame in the lateral and vertical
directions respectively.
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Figure 9.12: The hysteresis loops of the normal forces on the surface of the wedges 1
and 2. The abscissa denotes the vertical displacement of the bolster and the vertical
coordinate denotes the normal force. The left subplot is the normal forces on the
surfaces of the wedges contacting the frame and the right subplot shows the normal
forces on the surfaces of the wedges contacting the bolster.
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Figure 9.13: The normal force on the surface of an adapter contacting the side frame
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Figure 9.14: The friction force on the surface of the wedge when the wavelength of the
periodic disturbance is 4 m. The upper subplot shows the friction force between the
wedge and the bolster in the vertical direction; the middle and lower subplots denote
the friction force between the wedge and the frame in the lateral and vertical direction
respectively.
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Figure 9.15: The hysteresis loops of the normal forces on the surface of the wedges 1
and 2. The abscissa ordinate denotes the vertical displacement of the bolster and the
vertical coordinate stands for the normal force. The left subplot is the normal forces
on the surfaces of the wedges contacting side frame and the right subplot denote the
normal forces on the surfaces of the wedges contacting the bolster.
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Figure 9.16: Definitions of track irreqularities

9.4 The responses of the system to an irregular track

9.4.1 A description of the tangent track with irregularities

The irregularities of the track geometry are defined in terms of four parameters as
shown in Figure 9.16. The deviations of the track gauge, the lateral alignment, the
cross level and the vertical alignment(Garg and Dukkipati, 1984) are

The gauge:

g= (v —v)/2 (9.2)
The cross level:

c = (w; —wy)/2. (9.3)
The lateral alignment:

al = (v +v,)/2 (9.4)
and the vertical alignment:

av = (w; + w,)/2. (9.5)

where vy, v, denotes the lateral variations of the left and right rails respectively;
wy, w, denotes the vertical variations of the left and right rails respectively.
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Table 9.1: The parameters of the determination of the PSD

Symbols Units 6 5 4 3 2 1
A, em?/rad/m | 0.0339 | 0.2095 | 0.5376 | 0.6816 | 1.0181 | 1.2107
Ag em?/rad/m | 0.0339 | 0.0762 | 0.3027 | 0.4128 | 1.2107 | 3.3634
Qs rad/m 0.4380 | 0.8209 | 1.1312 | 0.8520 | 0.9308 | 0.6046
Q. rad/m 0.8245 | 0.8245 | 0.8245 | 0.8245 | 0.8245 | 0.8245

Together with the half gauge b these quantities describe any type of tracks.

The power spectral density(PSD for short) of a random process provides the
frequency composition of the data in terms of the spectral density of their mean
square value.

The track geometry data base that represents a reasonable sample of track in
the Unites States have been established for the analytical characterization of track
geometry variations. There are various PSDs of the tracks provided by e.g. FRA(The
Federal Railroad Administration), and the German PSD. In the present thesis the
PSDs given by FRA are used and they can be modelled as following[Wang, 1994]
The vertical alignment

kA, Q2

V)= = 2 . .
The lateral alignment
kA.Q?
Sa(2) £ (em?/rad/m). (9.7)

T2+ 02)
and the track gauge and cross level

4k A, 02
(Q2 1 Q2)(02 + Q2)

Sga1 () = (em? Jrad/m) (9.8)
where S(£2) denotes the relative PSDs; Q stands for the spatial wave number (rad/m)
that is related to the time frequncy f; (Hertz) by the relation Q = 27 f,/V. Other
quantities are defined in the table 9.1.

9.4.2 Transformation of the Power Spectral Density(PSD) to
Time series

For the nonlinear system the PSD can not be directly used as the excitations to
obtain the responses because the principle of the superposition does not hold. The
usual way is first to transform the PSD into time series as the excitations for the
response analysis.

There may be different ways to transform the PSD into its corresponding time
series. Inspired by G. Cheng[Cheng, 2000] we use the following way to do this.
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We know that for a discrete time series z,,n = 1,..., N its frequency response
or spectrum can be obtained by means of the Finite Fourier Transform(FFT) [Ben-
dat,2000][Otnes, 1972][Robinson, 1979] at the discrete frequencies

N-1
2T
Xy, = At ; zjexp(—i(55)ik),  (k=0,2,--+ N —1) (9.9)

where i = /—1. The modulus of the frequency spectrum, X}, is of even symmetry
and the argument of the Xy is of odd symmetry about N/2, where N = 29 and ¢
is selected as an integer which depends on the sampling time, the vehicle speed and
the minimal wavelength.

The one-sided auto-power spectral density(PSD) is obtained from (9.9) as follow-
ing:

2At
Skl:W‘Xka (k=1,2,--- ,N/2 1) (9.10)

and the two-sided auto-power spectral density(PSD) is then
Sk = Skl/Q. (9.11)

Here the frequency interval (0, 1/2At) is broken into N/2 parts, so that the frequency
increment is
Af = ! (9.12)
~ NAt '

in which the At denotes the sample interval and is selected to produce an adequate
Nyquist frequency.
We can rewrite (9.10) as

1 2

So that if the one-sided PSD is known a priori then the modulus of the frequency
spectrum can be calculated by

X =%¢m, (k21,2 N/2—1) (0.14)

and if the PSD is given as a two-sided power spectral density then

| Xk| = N/ Sk(EAHAF, (k=1,2,--- ,N/2-1) (9.15)
Then the spectrum can be written as[Bendat, 2000]

Xk = | Xklexp(idr), (k=1,2,---,N/2-1) (9.16)

where ¢y, is assumed as uniformly distributed random numbers in the interval(0,27).
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Figure 9.17: The irregularity of the vertical alignment of a track transformed from
the PSD of class 6. The unit of the vertical axis is mm.

The numbers of the frequency spectrum X}, only contains the half integer data(k=
1,2,---, N/2 —1). The other half can be directly obtained using its symmetric
character.

To the end, we do the inverse finite Fourier transform(IFFT) on the frequency
spectrum X (k) by the formula

N—-1 .
2(n) = ,;) X(k)exp(me"), (n=0,1,2,--- ,N —1) (9.17)

then the time series z(n) can be obtained {rom the specified PSD.

The time series obtained in this way depends on the vehicle speed, V' and the
minimal and maximal wave length, L., and Ly,q,-

Figure 9.17 shows the vertical alignment of a track which is transformed from the
PSD of class 6 corresponding to the speed 20 m/s. We use this time series to calculate
its power spectral density (PSD) and compare it with the result by formula(9.6) and
we can find that the difference is acceptable. The results are shown in Figure 9.18.

With the relations (9.2)-(9.5) the four parameters of the gauge, cross level, lateral
alignment and vertical alignment can also be transformed to the geometric deviations
of the profiles of the rails in the lateral and vertical directions. Figure 9.19 shows the
vertical irregularities of the right rail with the PSD of class 1 to 6.
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Figure 9.18: The comparison of the theory and simulated PSD of class 6. The solid
line denotes the PSD calculated by formula(9.6) and the solid line with x on it is the
simulated PSD.
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Figure 9.19: The deviation of the profiles of the right rail in the vertical direction
transformed from the PSD of class 1 to 6.
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Figure 9.20: The responses of the car body to the irreqular track class 6 for the empty
car. Vo, Wo, Xo and Y, denote the lateral displacement, vertical displacement, roll,
pitch and yow rotations of the car body respectively.
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Figure 9.21: The derailment coefficients of the right wheel/rail and the left wheel /rail
of the wheelsets 1 under the excitation of the track PSD class 6 for the empty car.
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Figure 9.22: The lateral and vertical irreqularities of the rails. ryl,ryr denote the
lateral deviations of the left/right rails; rzl, rzr denotes the vertical deviations of the
left/right rails.
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9.4.3 The responses of the three-piece-freight-truck to the ir-
regular track

We use the time series that we have just obtained to be the deviations of the rails in
the lateral and vertical directions. The track of class 6 and the running speed 20 m/s
(72km/h) of the vehicle are selected. The parameters of the three-piece-freight-truck
are shown in appendix E.

Figure 9.20 shows the motions of the car body in the lateral, vertical displace-
ments; roll and yaw rotations. Figure 9.21 shows the derailment coefficients, Y/Q of
the right wheel/rail and the left wheel/rail of the wheelsets 1. The derailment coef-
ficent is defined by the ratio of the lateral contact force to the vertical contact force
between a wheel and a rail. An acceptable critical value of the derailment coefficient
is about 0.8.

The results show that the motion of the three-piece-freight-truck is safe when the
running speed is less than the nonlinear critical speed 20.5m/s (73.8 km/h).

In order to compare the numerical results with the measured results we next use
the geometric deviations of the profiles of the rails which is transformed from the
track geometry PSDs provided by the Academy of China Railway Sciences [Cheng,
2000]. Unfortunately there is no measured data of the irregular track corresponding
directly to the track where the wheel/rail contact forces of the three-piece-freight-
truck are measured. The lateral and vertical geometric deviations of the profiles of
the left and right rails are shown in Figure 9.22. The running speed used in our
simulation is 7T8km/h

The measured lateral and vertical wheel/rail contact forces on the right rail are
shown in Figure 9.23. The running speed of the vehicle is 78km/h.

The numerical results of the lateral and vertical forces between the right wheel /rail
are shown in Figure 9.24. We can find that the range of the lateral and vertical contact
forces between the numerical and the measured results are similar. The difference
between the numerical and measured results is probably due to the fact that the
new truck is used in the numerical simulation but the used truck is used in the
measurement.

Figure 9.25 shows the measured acceleration of the car body near the front center
plate in the lateral direction. The lateral acceleration of the car body at the center
plate from our simulation is shown in Figure 9.26.

In addition to the above results the other simulation results are shown in Figures
9.27-9.31. Figure 9.27 shows the tangential and normal forces on the front center
plate between the car body and the bolster.

From Figure 9.28 we can find that the distribution of the normal forces on the
surfaces of the wedges number 1 and 2 is asymmetrical due to the effect of the tractive
effort.

Figure 9.29 shows the friction forces on the surfaces of the wedge number 1 in the
lateral and vertical directions.

Figure 9.30 shows the displacements of the front wheelset. We can find that the
longitudinal displacement of the wheelset is about 2mm so it should not be neglected
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Figure 9.23: The measured lateral and vertical forces between the right wheel/rail.
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Figure 9.24: The simulated lateral and vertical forces between the right wheel/rail.
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Figure 9.25: The measured lateral acceleration of the car body near the front center
plate. Upper subplot: The speed V is 75 km/h. Lower subplot: The speed V is 80
km/h. g =9.81m/s? [Li, 2000]

Time [s]

Figure 9.26: The simulated lateral acceleration of the front center plate. g = 9.81m/s?
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Figure 9.27: The simulated lateral and vertical forces reacting on the front center
plate.
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Figure 9.28: The normal forces on the surfaces of the wedge number 1 and 2 (see
Figure 6.3)
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Figure 9.29: The friction force on the surface of the wedge when the wavelength of
the periodic disturbance is 4 m. The upper subplot shows the friction force on the
surface of the wedge contacting the bolster in the vertical direction; the middle and
lower subplots denote the friction force on the surface of the wedge contacting the
frame in the lateral and vertical direction respectively
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Figure 9.30: The parasitic motion of the front wheelset. u,v denotes the longitudinal
and lateral displacements; ¢, denotes the roll and yaw rotations of the wheelset.

for the modelling of the dynamics of the three-piece-freight-truck.

Figure 9.31 then shows the derailment coefficient of the right wheel/rail of the
front wheelset.
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Figure 9.31: The derailment coefficient of the right wheel/rail of the front wheelset.

The running speed 78km/h (21.67m/s) is higher than the nonlinear critical speed
73.8km/h(20.5m/s) so the motion of the three-piece-freight-truck is unsafe. The
strong hunting motion of the wheelsets is clearly seen (see Figure 9.30).



CHAPTER 10

Conclusion

In this final chapter we will review in 10.1 the results which we have achieved in this
thesis, and in 10.2 we will make some observations on further research.

10.1 Conclusion

The main results which have been achieved in this thesis are:

e The definition of the friction direction angle for the two-dimensional dry friction
is described and implemented into an algorithm. It can be efficiently used to de-
termine the components of the friction force vector in both stick and slip motion
modes especially in the complex systems. It replaces the sign function used in the
one-dimensional dry friction analysis.

e The stick-slip motion between two moving bodies caused by dry friction will cause
a collapse of the state space of the system. If the stick motion mode is neglected
then at least the number of integration steps will increase greatly because a vibra-
tion of the corresponding velocity with very high frequency will take place, which
means that the problem becomes somewhat like stiff phenomenon, which may lead
to incorrect numerical result. Therefore the stick mode should be included and the
switch conditions must be found to treat the structure varying systems and the cor-
responding acting friction forces must be evaluated with the switch conditions.

e The switch conditions are different for various mechanical systems. For the sub-
system of the bolster-wedge-frames we found two ways to treat the lateral and ver-
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tical stick-slip motions respectively. All switch conditions for the sub-system of the
bolster-frame-wheelsets are provided in detail.

e The degrees of freedom of the system will automatically change from one case to
another one if the acting friction forces are determined correctly for the stick mode.

e The method of on line evaluation of the three-dimensional kinematic constraint
parameters between wheels and rails are developed.

e The model of the three-piece-freight-truck includes the following characteristics.

% Two-dimensional dry friction on the surfaces of the wedges as well as on the sur-
faces of the adapters.

% There are 19 rigid bodies including the mass of the wedge in the railway vehicle
systems with the three-piece-freight-trucks and the degrees of freedom of the system
is 81.

% The stick-slip motions of the sub-systems of the bolster-wedge-frames and the
bolster-frame-wheelsets are considered.

% The effect of the tractive effort on the vehicle on the normal contact forces on
the surfaces of the wedges is included, which will cause an asymmetric distribution
of the normal contact forces and the friction forces on the one pair of the wedges on
the end of the bolster.

% The dead-band stops are introduced to describe the clearances between the side
frames and the adapters both in the longitudinal and lateral directions and the clear-
ances between the car body and the side supports.

% The anti-warp stiffness is incorporated into the description of the warping motion
of the three-piece-freight-truck.

% The elastic contact between a wheel and a rail is introduced to calculate the nor-
mal loads and the full nonlinear calculation of the creep forces.

In order to provide a fundamental method to treat the two-dimensional dry fric-
tion for the stick-slip motion analysis in chapter 2 we have introduced the conception
of the friction direction angle. With the friction direction angle it is convenient to
describe the stick-slip motion of the relative motion of two moving bodies in the two-
dimensional case. It can also be used to analyze anisotropic friction. The theoretical
and numerical studies have shown that the two-dimensional coupled oscillator can be
uncoupled under certain conditions. The orbit of the responses of a two-dimensional
friction oscillator will be a straight line segment, a circle or an ellipse depending on
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the details of the sinusoidal excitations. In the general case, the response is a complex
planar curve. For various levels of excitations, the zero-stop, one-stop, two-stops and
multiple stops per cycle will appear.

In chapter 3 we use the friction direction angle to model the wedge dampers in
detail. We have found that for the analysis of the relative motion of the two moving
bodies with dry friction the model which only considers the slip motion does not work
well because in the case of stick state the friction does not equal zero. In that case
the so-called switch conditions are needed to find the acting friction forces. Some
results have been obtained below.

If the bolster is only forced to move along the lateral direction, not only lateral
but also vertical vibrations of a wedge will arise; and more it will induce a verti-
cal vibration of the bolster without any excitation in the vertical direction but the
amplitude of the vertical response is small compared with the lateral one.

The dynamical performance of the wedge dampers exposed to large and small
excitations have been analyzed. For small amplitude excitations the motions of the
wedge and the bolster are coupled. For certain large amplitudes of the exciting force
or for excitation frequency in the range of the resonant frequency of the system the
motions of the wedge and the bolster are separated.

In the case of coupled motion, the friction damping plays an important role to
prevent, resonant vibration of the bolster in vertical direction when it is exposed to
a small amplitude exciting force with arbitrary frequency. If the amplitude of the
exciting force becomes sufficiently large the dry friction can damp the level of the
response of the system but can not damp out the resonant vibration of the system.
The frequency response of the bolster in vertical direction is chaotic in nature.

For the investigation of the stick-slip motion of the system with more than two
moving bodies in the presence of two-dimensional dry friction, the degrees of freedom
of the system will change according to different motion states of stick or slip. We have
provided a detailed description to treat the structure varying systems of this kind
in chapter 4. We found that, although without rigorous mathematical verification,
if the acting friction forces are correctly evaluated with the corresponding switch
conditions for the stick-slip motion then the degrees of freedom of the system will
vary automatically. In other words, the discontinuous system will be automatically
a piecewise differentiable system.

In chapter 5 the on-line evaluation of the kinematic constraint parameters between
the wheels and rails with three-dimensional contact have been developed. We have
found that the yaw of wheelset influences both the kinematic constraint parameters
and the penetration between the wheel and the rail. The effect can be neglected for
a small value of yaw rotation of the wheelsets.

From a mathematical point of view the multibody dynamical systems with dry
friction are discontinuous and a structure varying system. The three-piece-freight-
truck belongs to a system of this kind. In Chapter 6, chapter 7 and chapter 8 we
provide a way to model this complex system.

In chapter 9 we provided a method to transform the Power Spectral Density(PSD)
into a time series. We assume that the argument of the frequency spectra is uniformly
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distributed in the interval (0,27) and use the relation between the PSD and the
modulus of the frequency spectra to obtain the modulus. Then we use the inverse
finite Fourier transform to obtain the time series. The PSDs (class 1 to 6) of tracks
provided by by FRA(Federal Railroad Administration) have been transformed into
the lateral and vertical geometrical deviations of the profiles of the two rails in time
domain.

Through numerical investigation with the model of the three-piece-freight-truck
the results have been obtained as following:

Because of the effect of the two-dimensional dry friction on the surfaces of the
wedges and the surfaces of the adapters, and the effect of the impact between the
side frames and the wheelsets in the longitudinal and lateral directions the motion
of the wheelsets in the lateral direction is not periodic. The lateral displacements of
the wheelsets from our model differ from that with NUCARS|Li,2000].

The linear critical speed of the three-piece-freight-truck is about 28.5m/s and the
nonlinear critical speed is about 20.5m/s. The motion of the three-piece-freight-truck
is a chaotic motion for a certain speed range.

The normal loads on the wheelsets are not a periodic even though the periodic
excitation from the rails is periodic.

The normal forces and the corresponding friction forces on the two surfaces of the
wedge are asymmetric due to the tractive effort. It must be included in the simulation
of the dynamics of the three-piece-freight-truck. The friction forces on the surfaces
of the wedges can be used to evaluate the wear state of the wedge damper.

The parasitic motion of the wheelset along the longitudinal direction influences
as well the creep forces as the contact state between the frame and the wheelsets.
Therefore it should be included in the dynamics analysis of the three-piece-freight-
truck.

In the stable motion state at low speed, the motions of the wheelsets are different
from zero because of the effect of the stick-slip motion produced by the dry friction.
In the present investigation the clearances between the frame and the adapter are the
same for left /right sides. If they are asymmetrical then the amplitude of the lateral
displacement of the wheelset in the steady motion may increase more or less.

From the bifurcation diagram, the phase diagram and the first return map of the
lateral motions of the wheelsets we have concluded that the motion of the three-
piece-freight-truck is chaotic motion for a running speed, for example, 29m/s. And
more the chaotic motion of the three-piece-freight-truck is obviously different from
the chaotic motion of the Cooperrider’s passenger car model[True, 1999] in that the
chaotic motion is not a small perturbation on a periodic motion.

From a mathematical and multibody systems dynamics point of view the structure
varying systems caused by the two-dimensional dry friction in the motion of the
three-piece-freight-truck can not be correctly simulated with the softwares such as
ADAMS/Rail, MEDYNA and NUCARS at present.
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10.2 Further research

The further research should be focussed on the basic theory of stick-slip motion with
two-dimensional dry friction and its application in the three-piece-freight-truck as
well as in other mechanical systems.

It should be pointed out that in this thesis the stick-slip motions of the sub-
systems of the car body-bolster-wedges and the bolster-frame-wheelstes are treated
individually without considering the coupling effects between them for their stick slip
motions.

In this thesis we define the friction direction angle to describe the components
of the friction force vectors on the contact surface of the two contacting bodies with
two-dimensional dry friction. An alternative way may be described as following.

For the friction force force components on the contact surface of two bodies

qu = Nﬂk%'%gn(v?) }
. ;o (VevV, #0 10.1
Fy, = N,uk%szgn(vy) ( v 70) (10-1)
or
Fay = N gF sign(Finz) } (Ve AV, =0, (10.2)
Fop = N5 sign(Fo) J° (Fonal > 1Fype) V (1 Fyinl > | Fyps))
v . (VaVV, £0 10.3
or
Foo . (VuAV, =0 10.4
pr,s = NMS F},'Ly SZgn(anu) ( Y ) ( )
with

V=\/V2+V2, F=\/F +F2,. (10.5)

Note that if the conditions (Vz AV, = 0) and (|Fing| < [Fops| A |Fing|l < |Fyus|)
are fulfilled then the motion goes into the stick mode and the corresponding acting
friction force components, Fy,; and Fy,; should be determined by either of the input
forces in the x and y directions for the case of one moving body contacting a fixed
body or by the switch conditions for the contact of two-moving bodies.

It can be imagined that it is not an efficient way to describe the friction force
components for the complex system with two-dimensional dry friction. However, we
recommend that a model of the dynamics of three-piece-freight-truck be derived with
that method for the sake of comparison.

To find a smart friction element to treat the stick-slip motion for the one and
two-dimensional dry friction including the structure varying system is no doubt a
very interesting topic. It has a potential application in mechanical systems as well
as in other systems.
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Nonlinear dynamic performances are always interesting topics since they depend
on the parameter changes. For the time limitation and the computation efficiency
we have not investigated more cases of variation of the parameters. The possible
existence of dangerous chaotic transients in the speed range with coexisting attractors
is needed to be investigated further.

In our investigation the constant anti-warp stiffness is used. It is argued that
the stability of the three-piece-freight-truck on straight track is obviously influenced
by the anti-warp stiffness. The anti-warp stiffness is characterized by many factors,
such as the secondary suspension, the dimension of the wedge, the friction state of
the wedge surfaces, the assembly clearances between the bolster, the wedges and
the side frames and the running state of the wedge dampers. How to evaluate the
anti-warp stiffness is of a considerable importance for the studies of the dynamics of
the three-piece-freight-truck.

In addition to the experiment for the stick-slip motions of a pair of wedge damper
systems with two-dimensional dry friction, the corresponding measurements on a
roller rig or on the field track are urgently needed for the purpose of the comparison
with the numerical simulation results.

The present model can only be used for the motion simulations of the truck on a
straight track and a straight track with irregularities. The dynamic properties of the
truck on curved track is always significant for the safety of the railway vehicles. We
may forecast that the clearances between the car body and the side supports will be
taken up and the roll of the car body will take place when the vehicle negotiates a
curved track. Therefore, the extension of the present model to the case of the vehicle
negotiating curved track is wanted.



APPENDIX A

The matrix of the equation
(3.64)

Here, we give each element of the matrices Ag which are used in (3.64). For arbi-
trary relative velocities 7 of a wedge and a bolster, from formulae (3.58)-(3.62) the
resultant forces can be represented as:
Fres = Fysech(na) + F[1 — sech(na)] (A.1)
hence we have
Fra1 = Sq{S61Svsech(iqac)|pisa — pkal + Cv + p11aS0157} — Frdo
+Ny {56025 psech(iac)[psy — pirs] + pepS02S (Fac) — Co}, (A.2)

Fry1 = Sa{praCi[sech(jaar) — 1] — pusaClysech(jacr) p+
No{ prpcostz[1 — sech(jga)] + pspCasech(jga)} — Fray, (A.3)

Frz1 = Sa{ — psaS0:1Cvysech(zqa) — peaS61C[1 — sech(zq40)] + Sv}
+Nb{u5b592Cq§sech(2da) + 5S¢+ ppS02CP[1 — sech(éda)]}
+Ga — Fraz, (A.4)

Fryo = Ny {COasech (o) [prp — trsp) — pesCOa} + Sy2 — Fiay, (A.5)

Frzo = Np{S0:C¢sech(zpa) [pury — prsp] — S¢ — pipS02C0}
+Sz2 + Gb - Fkbz~ (AG)
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Further simplifying yields

Frz1 = Sqa11 + Nyaro — Figz, (A.7)
Fry1 = Sqaz1 + Nyaza — Fray, (A.8)
Frz1 = Sqaz1 + Nyaso + Gg — Fiasz, (A.9)
FryZ = Nba42 + SyZ - Fkby7 (AlO)
Fro = Nyasa + Sz0 + Gy — Frp: (A.11)

hence the elements of the matrices A, can be written as following.

a1y = SO01Sysech(iqa)[psa — pka) + Cv + pkaS0157, (A.12)
a1z = SO3Spsech(Lqor) sy — pry) + pxpSO25psech(iqa) — C, (A.13)
a1 = —psgS0Cysech(240) — ppaS01Cy[1 — sech(240)] + S, (A.14)
33 = 1155505 Cbsech(2aa) + S + 1y S0200[1 — sech(3qa)], (A.15)
a31 = paCOs [sech(jac) — 1] — saChsech(jac), (A.16)
azy = pgpcosta[1 — sech(yaa)] + pspChasech(gaar), (A.17)
a40 = COysech(Ypar) [1ky — psp) — prrnCHa, (A.18)
asy = SO2Cpsech(Zpa)[pry — prsv) — SO — 1 S2:CP. (A.19)

where S6,C0,Svy,C~,S¢,C¢o denote the short expressions of the sinf, cosf, sinvy,
cosvy, stng and coso.



APPENDIX B

The matrices for the relations
among the car body, bolsters
and wedges

For the determination of the sub-system of the car body-bolster-wedges in the lateral,
vertical and roll directions we have the following system from (8.1)

Aol MolJol N Fol
Ay Mgy, { iobd } =| Fy (B.1)
Abvwr Mbvwr odb Fbvwr
where
Aol = [Aoa Aob]7 Ad = [Ada Adb]; Abvwr = [Aba AbbL (B2)
Noab = [Nobyt  Novst Novyz  Nopsz Sai Npi -+ Sas Nis)” (B.3)
1 0 1 0
0 1 0 1
AO(l - 0 _Q:C 0 a:c 7A0b - O4><167 (B4)
azc ,Ufopo(wo - '@Z)bl) *afm ,Ufopo(wo - wb2)
EENEY
Jo1 = ? ? : B.5
o1 0 Lo o §o (B-5)
2a%, 0 0 2a%, 0 0
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Aga = 016x4
and

I C11 C12 0 0 0 0 0

Co1 C22 0 0 0 0 0

0 0 C33 C34 0 0 0

0 0 C43 Ca4 0 0 0

0 0 0 0 Cs5 Cs6 0

0 0 0 0 Ce5 Ce6 0

0 0 0 0 0 0 cr7

Ay = 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

| O 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
Co9 C910 0 0 0 0 0
ci09 cror0 0 0 0 0 0
0 0 ¢ ez O 0 0
0 0 cio11 ci212 O 0 0
0 0 0 0  ci313 ci314 0
0 0 0 0  cu13 cia1a 0

0 0 0 0 0 0 C1515

where the nonzero entries of the matrix are

C11 = C’Y -+ udSOdlS'y,
co1 = Sv — paS041C,
c33 = —Cvy — 1gS04257,
ca3 = Sy — 11aS042C,
cs5 = Oy + 1aS0a357,
ces = S — 1aS0a3C,
crr = —Cvy — 11gS64457,
cgr = S — 1aS044Cy,

c12 = —Co+ pS0,1S9,
c22 = 8¢ + S0 Co,
cz1 = Co — upS0,259,
cas = SO+ S0, Co,
cs6 = —Co+ upS3S9,
ce6 = SO + upSp3Ch,
crs = Cop — upS0p1 59,
cgs = 5S¢ + S0 Co,

Q

OO DD OO OO

[evien e e M e Mo Mool ol o o o N

o

OO OO oo

2]

C1516 |

(B.6)

(B.7)
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co9 = Cy + 114 S045 57,
c109 = Sy — 1aS045C,
cii1 = —Cvy — 1gS04657,
c1211 = Sv — 1aS046C,

c1313 = Cy + 1aS0a7 S,
c1a13 = Sv — 1aS047C,
c1515 = —Cv — paS0ag S,
ci615 = S — 1aS8asCy,

and

c109 = —Co + ppS0p559,
c1010 = 5S¢ + S0 C'P,
ci112 = Cop — upSOye S,
c1212 = S¢ + pStre Co,
c1314 = —Cd + 1pS0p7.S,
c1a14 = 5S¢ + ppS0p7CP,
c1516 = CP — ppStys S,
c1616 = SO + ppShs C,

0 5956 —bj,S756 0
0 SvS¢ bi0SYS¢ 0
0 —S5vS¢ —bj,,5vS¢ 0
0 SvS¢  bj,S5vSe 0
0 —8vS¢ —bj,,575¢ 0
0 SySo¢ by oS5vSe 0O
0 —S5vS¢ —bj,57S¢ 0
3. — 0 SvS¢ biSYS¢p 0
d 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
00 0 0
The Ay, and Ay, are
-1 0 0 0
0 -1 0 0
Aw=119 o _1 o |’
0 0 0o -1

OO DD OO OO

0
—SvS¢
SvS¢
—SvS¢
SvSeo
—SvS¢
SvyS¢
—SvS¢
SvS¢

SO OO OO OO

7623257‘5‘(25
by sSSP
—b} 257 S
by 057 SP
_sz2S’YS¢
bzs2578¢
—b} 257 S¢
by sSSP

(B.9)
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din 0 diz 0 dis 0 dir O
0 dao 0 dog 0 dog 0 dog
A — 0 dsa 0 dsa O dsg 0O dsg
bo 0o 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
B.10
dig 0 dyrn 0 dyz 0 dys O ( )
0 dsio 0 dsiz O dsia O dsie
0 deio 0 deiz 0 deia 0  deis
where the nonzero entries of the matrix are
di1 = paCoaqr, diz = paCoaz, dis = uaClas, dir = paClaa,
dos = S+ paS0a1Co, dos = S + 114S0432CP,
dog = S¢ + paS043Co, dog = S + 114503.C'P,
dza2 = SPbygy + 1 COn CPbysy,  dza = SPbygy + pClp2Cdby,y,
dze = SPbyso + 1COCPbLso,  dzg = SPbyeo + 11pCOC by o,
dar0 = paClas, darz = 1aClas, dara = 1aClar, dare = 1aClas,
dsi0 = S¢ + paS045Coy, dsiz = S + 114 S046C Py,
ds14 = S¢ + pgS047Cy, dsi6 = S + paS038C by,
de10 = Sobpeo + 16 CrsCdbpga,  dera = SObyeo + tpCOsCPby,s,
de1a = SPbyey + COyCdbygs,  ders = Sy + 11COsChby s,
And Jpywr 1s a 6 X 6 unit matrix. The mass matrices are
m, 0 0 0
0 m, O 0
Ma=| o 0 0] (B.11)
0 0 0 I,
Md = de (B.12)
where E is a 8 x 8 unit matrix.
my 0 0 0 0 0
0 mp O 0 0 0
0 0 Iy O 0 0
Movwr =g 0 0 m, 0 o0 (B.13)
0 0 0 0 mp O
0 0 0 0 0 Iy



APPENDIX C

The matrices for
determination of the forces on
the surfaces of the adapters

The normal forces on the surfaces of the adapters depend on the weights of the car
body, bolsters and frames; the spring forces of the secondary suspension and the
friction forces on the surfaces of the wedges, the inertia forces of the wheelsets in the
vertical direction and roll rotation. From (8.1) the sub-system can be written as

Agwp  Mypwpd fup Nywp | _ | Fruwp
Awwr Mwwr 5&fwwr o wwr (Cl)
where
-1 -1 0 0 0 0 0 0 ]
awy —awp 0 0 0 0 0 0
0 0 -1 -1 0 0 0 0
_ 0 0 Awp —Gyp 0 0 0 0
Apwp=1 09 0o 0 0 -1 -1 0 0o | (C2)
0 0 0 0 Qb  — Qb 0 0
0 0 0 0 0 0 -1 -1
0 0 0 0 0 0 Gwb —Guwb
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1
£ = 0 0 0 0
2 E 2 2
=1 —bys 1 bus
2 alu) b 2 %m b 2alw b 2awb 0 0 0 0
51 b2u/s % ws 0 O O O
- ws s 0 0 0 0
wap — 2!16,;1] 2l76ub 2adub 2adub 1 bus 1 b (CS)
T S S
0 0 0 0 2aw 2w 2am 24w
S R A A
L 0 0 0 0 5ewr Zaws  Taws  Zaws A
and
[ 1 0 1 0 0 0 0 0 ]
bws 0 —bys O 0 0 0 0
0 0 1 0 1 0 0 0
0 0 bus 0 —bys O 0 0
Awwr = 0 O 0 0 1 0 1 0 (C4)
0 0 0 0 bws 0 _bUJS 0
0 0 0 0 0 1 0 1
i 0 0 0 0 0 buws 0 —buys ]
and
Myuwp =E[my Iy, my Iy, my Iy, my Ip]", (C.5)
M ywr = E[mw Twe My Ty My Lwz My wa}T (06)

where E denotes a 8 X 8 unit matrix.



APPENDIX D

The switch conditions for the
bolster-frame-wheelset
subsystem

In this appendix we provide the formulations of the switch conditions for the stick-slip
motion of the sub-system of the bolster-frame-wheelsets in detail.

It is not a simple work to find the all switch conditions and the calculation of
the corresponding friction forces for the stick-slip motion of the sub-system of the
bolster-frame-wheelsets. Here we will spend more time to discuss it in detail. The
way is same as that we have used in chapter 4. First we rewrite the relative equations
of the sub-system from chapter 7 as

mefl = fff1(2) + féf1(2) + ffwvl + ff’w'u27 (D].)
Ifzwfl = awb(ffwvl - ffwv2) + fsf1(5) + ]\/[swah (D2)
mfl'}fg = fff2 (2) + fSf2 (2) + fwaS + ffw'u4> (D3)
IfqufZ = awb(ffva - ffwv4) + fsf2(5) + MswaZ» (D4)
mwuwl = fswl(l) + ftwl(l) - ffwul - ffwu37 (D5)
m,wi}m = fswl(2) + ftwl (2) =+ fctu,l(Z) — ff’w'ul — ff’wv?n (DG)
Iwz(ll;wl = bws(ffwul - ffqu) + fsw1(6) + fgw1(6) + ftwl(G)» (D7)
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mwuwQ = fst(]-) + ftw2(]—)7 _ffwu2 - ffwu47 (DS)
mwiij = sw2(2) + fth (2) + fctw2 (2) - ffwv2 - ffwv4> (Dg)
Iwz"l;uﬂ = bws (ffqu - ffwu4) + fsw? (6) + fng (6) + ftw2(6), (DlO)
(Ig(z =+ 2mfb232)¢b1 = szZ[(ffwu?) + .ffwu4)cwf2 - (ffwul + fwaQ)qu[}fl]
Myyob1 + Mspwiz — Msypbp1 — Msybga- (D.11)

The relative equations for the truck 2(rear truck) can be rewritten as

myips = frp3(2) + £553(2) + frwes + fruvs, (D.12)
Ifz"LfB = awb(ffva - ffwvﬁ) + fsf3(5) + Ms¢bf37 (D13)
’rnfijf4 = fff4(2) + f8f4(2) + ffwv? + ffwv& (D14)

Itobrs = auwb(Frawr — Fravs) + fspa(5) + Mapbra, ( )
My iiws = Fows(1) + frw3(1) = frous — frwur, ( )
Mz = Fsws(2) + Frws(2) + ferws(2) = frwvs — frwor, (D.17)
Tz Puws = bus(frous — Frour) + Faws(6) + Fgu3(6) + Frus(6), (D.18)
(D.19)
(D.20)
(D.21)

mwawél = fsw4(1) + ftw4(1) - ffqu - ffqua D.19
mw’bwél = fsw4<2) + ftw4(2) + fctw4(2) - ffwvﬁ - ffwv87 D.20
]wzzl}w4 - bws(ffwuﬁ - ffqu) + fsw4(6) + fgw4(6) + ftw4(6)7 D.21
(I, +2mebi) s = Bial(frwur + Fruus)C¥sa = (frwus + fruus)Ctys)
Myyovz + M puwsas — Maybgs — Maybga- (D.22)

In the slip state, the equations (D.1)-(D.22) are independent, so that the the sub-
system has 22 independent degrees of freedom. And all the friction forces assume
their kinetic values for the slip motion. And then the kinematic constraints are (see
chapter 6)

ur1 = —byater, (D-23)
ufy = byotn1, (D.24)
uf3 = _bZSwaQ) (D25)

ugs = byothpe. (D.26)
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For the points on the wheelsets at the contact surfaces between the wheelsets and
the side frames we have

Ulr = Uwl — bws¢w1;

U2r = Uyw?2 — bws¢w27
U1l = Uyl + bwsd)wlv

U2l = U2 + bwswuﬂ-

D.27)

(

(D.28)
(D.29)
(D.30)

From the above relations in the stick motion state of the wheelsets and the side
frames we can deduce the following relations

and

Gt — buwsWuwt = —bieaUp1,
U2 — bws"/.}wQ = _sz27/}blv
U1 + bwsd}wl = b?;sﬂ/.}blv
uw2 + bws"/.}wQ = b?;s2¢b17
Vw1 = Vg1 + awbz/.}fla

Uyl = i’fQ + awbd}an

w2 = V1 — Qupts1,

Vw2 = V2 — Qub¥fa.

uwl - bwsd;wl + bz(‘;ﬂl;bl - 0,

1 — U1 — a1 = 0,
s — buwsthws + bjsatn = 0,
Do — V1 + @ty = 0,
G + Dustur — bisotpr = 0,
Byt — Vp2 — Quptp2 = 0,
G2 + buswz — bigathpr = 0,
B — Vf2 + awptp2 = 0.

In the same way the kinematic constraints for the other bogie can be written as

uwS - bws"/.}w?: + bzs2’¢.}62 = 0;
Vw3 — Vp3 — awb¢f3 =0,

i’/u)4 - bwsd}w4 + b232¢b2 - Oa

(D.47)

(D.48)
(D.49)
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s — Vf3 — Quptdys = 0, (D.50)
s + busuws — bisather = 0, (D.51)
uz — Vs + Qupthpa = 0, (D.52)
ot + busthus = Btz = 0, (D.53)
B — Vs + Qupthra = 0. (D.54)
and
s — busthws + bisathee = 0, (D.55)
B3 — B3 — auwpthys =0, (D.56)
s = bustus + Ujathie = 0, (D.57)
s — D3 — uptpz = 0, (D.58)
i3 + buwsuws — bisate2 = 0, (D.59)
Bz — Bfa + Qupthrs =0, (D.60)
finpa + busUuwa — bigater = 0, (D.61)
Bpa — Vpa + aptpa = 0. (D.62)

From these kinematic constraints we can get the following conditions to form the
switch conditions and to determine the acting friction forces. Combining the con-
straints the dynamical equations(D.1)-(D.11) become

ml (_ffwul - ffwuB + fswl(]-) + ftwl(l))_

w

s (bws(ffwul - ffqu) + fswl(6) + fgw1(6> + ftwl (6))+

Y

bb; (b;sg[(ffwu3 + ff’wu4)c¢f2 — (ff,wul + ffqu)wal]

Tymy
+Mpyport + Mspwiz — Msypr1 — Msypr2) =0,

=

~

(D.63)

(= frwuz = frous + fsw2 (1) + Fw2(1))—
Z},u?(bws(ffwu2 - ffwu4) + fsw2(6) + fgw2(6) + ftw2(6))+
Ibb'?fff (Opsol(frwus + fruua)C¥s2 — (frwut + fruu2) CP ]
+Mpyport + Msfuwiz — Msypr1 — Msypp2) =0,

s €

(D.64)

(_ffwul - ffwu3 + fswl(l) + ftwl(l))+

Tas (Dws (frwut — frwus) + Fsw1(6) + £501(6) + f11(6))—
ff,fff (bpsal(fraus + frwua)C¥ra — (frwut + frou2)Cyp1]
+Mpyport + Msfuwiz — Msypri — Msypr2) =0,

I

=

o

(D.65)
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A (= frwuz = Frwus + fawz(1) + frua (1) +
?ws (b (ffwu? fjwu4) + fsw? (6) + fgw? (6) + ftw2 (6))

- (D.66)
B (o[ rus + S uut) Cobga = (Frut + ) Ciépal

+Mpport + Mspuwiz — Msyvr1 — Msypr2) =0,

#w( ffwvl - ffwv3 + fswl( ) + ftw1(2) + fctw1(2))_

mL(ffwvl +ffw'u2+fffl( )+fsfl(2))7 (D67)
(}fz (aws(frwor — fruve) + Msyp1 + £551(5)) =0,

#( ffwv2 ffwv4 + fsw2(2) + ftw2(2) + fctw2(2))_
mL(ffwvl +ffwv2+fjf1( )+fsf1(2)+ (D68)
G (awb(ffwvl ff'w'u2) + MS’Ll)bfl + fsfl (5)) =0,

#( ffwvl ffwv3 + fsw1(2) + ftw1(2) + fctwl(z))_
1 (ffwv3+ffwv4+fff2( )+fsf2(2)_ (D69)
I N (awb(ffwv?) ffw'u4) + MS’Ll)bf2 + fsf2(5)) - 07

( ffwul ffwv3 + féw2(2) + ftw2(2) + fctw2(2))_
(ffwv3+ffwv4+fff2( )+fsf2( ) (D70)
wb 2 (@b (f fwvs = Frova) + Maybraz + fsp2(5)) = 0.

S‘HS‘H

@

where the I, stands for
Tymg = Iy, + 2mpbi2,. (D.71)

From the above equations we can reach the conclusion: While the stick motion takes
place on the one contact plane then the equivalent input force must be less than or
equal the corresponding equivalent static friction force component such that we have

|fp,zsl| 2 |Fma:1|a |fum52| Z |Fm:v2|7 |fuw53‘ Z |Fm13‘7 |fuzs4| Z |me4|7 (D72)

|fuysl| > |me1‘7 |fuy52| > |me2|a |f;tys3| > |me3|a ‘fuyséll > ‘me4| (D'73)

where

LB b b,
s = wxls\ e 780 wr2s =C
fuzs1 fr L(mw + T.. + To Vr1) + fruwee Toms Y1+

1 B3, b*2 b2
Jws  Ibs2 O ) — ffwm]:—b?fcwfg, (D.74)

ffmeS(miw Bl Iwz Ibm

1 bws
ancl = 7(fsw1(1) + ftwl(l)) - 7(fswl(6) + fgwl(6) + ftwl(G)) +

w I’LUZ

b*
I;’i‘qi(Mwobl + M iz — Msypgt — Msyir2), (D.75)
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The switch conditions for the bolster-frame-wheelset subsystem

f,uysl

mel

f,umsZ

sz2

fuys2

me2

fua:s3

me3

1 1 afub
ffwyls(m—w + my + I ) +
1 a? b 1
o2 (—— — =2 wy3s(— ), D.76
fruwy2 (mf Ifz)Jrff y3 (mw) (D.76)
1 1
7(fsw1(2) + ftwl(z) + fctw1(2)) - mif(fffl(Q) + fsfl(Q)) -
Qo '

7., Masors +£01(5), (D.77)
f (bzs22 )CYp1 + f (i+bi’s +%C¢ )+ (D.78)
fwxls Ibmf f1 fwa2s My Iwz Ibmf f1 .

Fruess(—252.Cup) + fruman(—— — B2 0y, - Y2 0y )
fwax3s Ibmf f2 fwzds My Iwz f2 Ibmf f2)s
]. b’U}S
mi(fsuﬂ(l) + ftw?(l)) - T(fsw2<6) + fgw2(6) =+
b*

f1.2(6)) + Ibbszf (Myyob1 + Mpuwiz — Meybp1 — Msyiya2), (D.79)

1 afub
ffwyls(mif - Ifiz

1 1 a? b 1

s\—— - W wyds\ )y D

ffwyl(n,bwerfJr IfZ)Jrff y49(mw) ( 80)

1 1
7(£§w2(2) + fth(z) + fctw2(2)) - 7(fff1(2) + f9f1(2)) +
o mf
(¢27)
I,cb (Msyps1 + fs51(5)), (D.81)

fwzls M Iu)z Ibmf f1 fwz2s Ibmf f1
1 b2 b*2 b*2
f we3s(— + 2 — ﬁcw - f wxds bs2
Jwws (mw Iwz Ibmf f2) /

7 C?/Jfg, (D.82)
bmf

1 buws
7(fswl(1) + ftwl(l)) + T(fswl(G) + fgw1(6) + ftwl(G)) -
b
=22 (Mypop1 + M fuwiz — Msyps1 — Msybsa), (D.83)

Ibmf
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1 1 1 a?

f/Lys3 = ffwyls(miw) + ffwyBs(miw + mif + I;)Zb) +
1 a? b
fwyds\ —— — 2 5 D84
oo = 522) D81
1 1
Frygs = ——(fow1(2) + f101(2) + ferw1(2)) — Ff(ffo(?) +£542(2)) -
Gy
7., (Msvorz + £iga(5), (D.85)
by 1 b, bk
s = wxls = wr2s\ T s C
f# * ff ! (Ibmf) + ff 2 (mw I’wz * Ibmf wfl) +
Frusan (=22 Casgs) + fpman( =+ B2 - B2 0y ) (D.sg)
Jwwss Ibmf fl Juwds My Iwz Ibmf 125 .
1 buws
me4 - (fst(l) + ftw2(1)) + 7(fsw2<6) + fgw2<6) +
Moy Iwz
b,
fiu2(6)) — Ibbégf (Mppob1 + Mspuwia — Msyppr1 — Myppa), — (D.87)
1 1 afub
fuys4 = ffwy2s(m7w)+ffwy35(m7f - K)"_
1 1 d,

fruwyas(— + — + =22), (D.88)

Maw myg Ifz

1

me4 = m7<fsw2(2) + ftw2(2) + fctw2(2)) - Tif(ffo(Q) + f8f2(2)) -

(Msyop2 + £572(5)). (D.89)

Qb

Iy,

In the stick motion state the acting friction forces can be determined by the
equations below

A} FL  =F} (D.90)

mm m

where

F}Lm = [ffwxl ffwyl ffwz? ffwy2 ffwm3 ffwy3 ffwm4 ffwyédT (D91)
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ail 0 a3 0 a5 0 aiy 0 i
a1 0 azz 0 azs 0 azy 0
az1r 0  azz 0 a3z 0O azr O
1 | a1 O asz 0 ass 0 ag7 0
Abl - 0 aso 0 as4 0 as56 0 0 (D92)
0 ag2 0 aeq 0 0 0 ags
0 a2 0 0 0 are 0 ars
0 0 0 asg4 0 ase 0 ass 1
where
1 b, b b
— 52 () , — bs2 C ,
au Moy * Iwz * Ibmf ’djfl s Ibmf wfl
Lo, bid by
= _ Zws _ C)fa, = — 52 Cfg,
ais e Tue  Toms Y2, aiy Toms (FD)
by3 bis | Uisa
a1 = 7%, apz=—+ —— + =Cp,
Ibmf Moy Iwz bm f !
b2, LR b2,
ags = ——2=Cra, agr = — — =2Ctypo — —2=C)ya,
Ibmf ! Moy Iwz / Ibmf !
L0 bk by
- — _bs2 _ _bs2 C
asy ey . + - Vi1, ass Toms Vi1,
1 b%us bZ§2 b*2
ar — —— _ws _ _bs2 , — _ bSQC
ass mw | Tu. Toms Y2, asy Toms Y2,
bzt?z 1 b12vs ;2
41 = =%, a43 = - + —==Cy1,
Ibmf w Iwz Ibmf wf
bizs L b bz
ags = — =0y, ay7 = — + =2Crppg — == C)y,
Ibmf ’(/Jf Moy Iwz wf Ibmf !
1 1 a? 1 a?
ase = — + — + b a5 = — — 2k,
Moy my Ifz myg Ifz
1 1 2
as6 = —, 062:7*ma
My my Ay
1 1 a? 1
pg = —— 4+ — Lb’ Arg = ——
64 e my g 68 o
1 1 1 2
ary = —, Q76 = +7+awb;
Moy My mpg Ifz
1 a? 1
arg = — — b agg=—,
my Ifz w
1 2 1 1 2
agg = — — awb7 agg = — + — Su




189

and

Fl = [Fm:rl Fma:2 Fma:?) sz4 mel meQ me3 me4]T- (D93)

m

In the end the switch conditions can be expressed as the combination of the (D.31)-
(D.38) and

|ffw$1| < ‘ff'wgcls|7 |ffwy1| < |ffwyls|a ‘ff'wx2| < |ffwa:23|,
|ffwy2| < ‘ffwy2s|7 |ffwm3| < If,fwm3s|a |ffwy3| < |ffwy35|a (D94)
|frweal < |frwassls  [frwyal < |frwyas]

where the static friction force components ffuz1s,--- are determined by the normal
forces, the friction coefficient and the corresponding friction direction angles.

In the same way for the other bogie the switch conditions also can be obtained as

ALF?  =TF2 (D.95)

pum

where

Fim - [ffwr&') ffwy5 ffwx6 ffwyﬁ ffwr7 ffwy? ffwm8 ffwyS]T; (D96)

bin 0 bz 0 b5 O b7 O
bor O baz O bos O boy O
b1 0 bsz O b3z O b3y O
2 bsr 0 buz O bys O byr O
A=100 b, 0 by 0 by O 0 (D.97)
0 bga 0 bea O 0 0 bes
0 ba 0 0 0 bg 0O brg
(0 0 0 bg 0 b O bss |
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where
1 b2 b*2 b*2
b - ws bs2 C bya = bs2 C
n=- + T.. + Toms Yr3, b1z Toms V3,
1 b2 b*2 b*2
b — —ws b2 ey, by = — =052 iy,
o Moy Iu}z Ib’mf ¢f4 1 Ianf ¢f4
b*2 1 b2 b*2
b bs2 boq = —— “ws bs2 C
2 Ibmf’ 2 Moy + Ly * Ibmf Q/Jf&
b*2 1 b2 b*2
b _ bsQC bor = —— — WS ) _ bsQC
25 Toms Yra,  bar e L. Vg2 Toms Vra,
1 b2 b*2 b*2
b = Zws ﬂc b — ﬂc
e + T Y3, bss Toms s,
1 b2 b*2 b*2
b - ws _ “bs2 C bar — — bs2 C
85 = e + To. T)mf Vya, bar Tomys Va4,
b*2 1 b2 b*2
b bs2 , bioa = —— — ~ws + bs2 C’L)[J ,
41 Ibmf 2 Moy Iwz Ibmf 13
b*2 1 b2 b*2
b _ﬁc bar = —— ws _ 7bs2 C ,
45 Toms Yra,  bar p— + T, Yra Toms Yra
1 1 2 1 2
bso = — + — + M, 54 = — Gup
Mo mpg Ifz myg Ifz
1 1 a?
bsg = —, bep=— — 2
w my Ifz
1 1 a? 1
b4 —+ — + wb) bes = —,
My  my Iy, My
1 1 1 a?
bra = —, byg=—+—+ -,
w May myg Ifz
1 a? 1
brg = — — =0 bgy = —,
my . M
b 1 afub b 1 1 afub
6= T BT e w1
and
an = [szB szG sz7 Fm:vS me5 meG me7 me8}T (D98)
where from the Eqs.(D.12)-(D.22) with Eqgs.(D.47)-(D.54) we have
1 b’LUS
me5 7(fsw3(1) + fth(l)) - 7(fsw3(6) + fgw3(6) + ftw3(6)) +

w I’LUZ

b*
=252 (M pyob2 + M puwsa — Msynrs — Mspbra),

D.99
Toms (D.99)



191

me5

meG

meﬁ

sz7

me7

me8

meS

L(fsuz3(2) + ftw3(2) + fctu;3(2)) - ,rif(fffiﬁ(z) + f9f3(2)) -

w
Qb

?(Mswa?) +£.43(5)), (D.100)

L Bt (1) + B (1) — 2 (B (6) + £y (6) +

w IwZ
b*
frwa(6)) + IbbSQf (Myyoba + Mspuwzs — Msyprz — Msypra),  (D.101)
1 1
7(fsw4(2) + ftw4(2) + fctw4(2)) - mif(fffg(Q) + fsf3(2)) +
o
I ®(Mypp2 + for3(5)), (D.102)
1 b'LUS
(fst(l) + ftw3(1>) + T(fsw3(6) + fgw3(6) + ftwd(G)) -
w wz
b*
%(Mfwow + Mspwsza — Maypgs — Msypbra), (D.103)
1 1
7(fsw3(2) + ftw3(2) + fctw3(2)) - 7(fff4(2) + fo4(2)) -
Moy my
Qu
I ®(Maybra + fopa(5)), (D.104)
1 bws
m7<fsw4(2> + ftw4<2) + fctw4(2)) + T(fsw4(6) + fgw4(6) +
b*
f104(6)) — Ibb—szf(Mwa;,g + Mspwsa — Msyprs — Msypra),  (D.105)
m
L (Buua(1) + B (1)) = —— (67 72(2) + £o7a(2)) +
Mg swd tw4 my fra sf4(
Q
#’(szxm + f574(5)). (D.106)

So the switch condition is a combination of the (D.47)-(D.54) and

| frwzs| < | frwessl, | frwys| < |frwyssls | frweel < | frwessl,
|frwys| < |frwyesl,  frwerl < |frwersl, | frwyrl < | frwyrsls (D.107)

|ffw.r8| S |ffwx8s|a |ffwy8| S |ffwy8s|-
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The above switch conditions are only used for the case of all the stick motions taking
place on the all four contact surfaces. If some motions between the contact surfaces
are slip motions then the above switch conditions need to be modified. For example,
if the slip motion takes place on the contact surface between the side frame 1 and
the wheelset 1, then the acting friction forces are determined by

Al%laF;lunu = Fina (D]-OS)
where
F/llma = [ffw:zﬁ ffwa ffw:r& ffwyS ffwa:4 ffwy4]T7 (D].Og)
[ a3 0 ais 0 a7 0 1
a3 0 azs 0 azr 0
azz 0 azs 0 azr 0
1 | as3 O ass 0 as7 0O
Abl - 0 asqs 0 asg 0 0 ’ (D].].O)
0 g4 0 0 0 ags
0 0 0 a7e 0 ars
L 0 asg4 0 ase 0 ass i

F}na = [szl szQ meS me4 mel me2 me3 me4]T (D]-]-]-)

where the F} , read
bz 1, b
f,umsl = ffwrQs%wal + ffwas(miw - E - mcwa) -
biay
ffwx4s Ib fC/(/)fZa (D112)
1 bws
mel == mi(fswl(l) + ftwl(l)) - T(f@wl(G) + fgu;1(6) + ftwl(G)) +
b
Tos Miyon + Magurz = Moyogs = Maguyo) = (D.113)
1 b12us bZSQ
ffwa:l(miw + Iwz + Ibmfc"/)fl)v
1 afub 1
fuysl = ffwaS(mif - ?) + ffwy?)s(mi)a (D114)
1 1
Fryt = ——(fow1(2) + f101(2) + foru1 (2)) — —(£571(2) + £:51(2)) —
o mf
b 1 s 4 Ep1(5) + Fropn(—— + — o Zat) (D.115)
Ifz sybfl sfl fwyl My my Ifz ) -
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f/msQ

me2

f/Ly82

meQ

f;Lsz

meS

fuysS

meS

1 b12u9 b;7<§2 b2522
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Moy Iwz bm f Ibmf
fwxds My Iwz f2 Ibmf f2)s -

B0t (2) + Bt (2) + Fort (2)) — 222 (£yn(6) + £y02(6) +

w I’LUZ
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f1.02(6)) + Ib82 (Mgpob1 + Msfwiz — Msypri — Msypp2) + (D.117)

bmf
by3
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1 1 afvb 1
ffwy2s(m7w+m7f+§)+ffwy4s(mfw), (D.118)
1 1
mi(fsw2(2) + ftw2(2) + fctw2(2)) - mi(fff1(2) + fsf1(2)) +
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M; fs71(5 wyl(— — =), D.11
1. (Msyosr +£551(5) + fr yl(mf I ) (D.119)
b*2
+ffwszﬁcvwfl +
Tymy
1 bh, bk b2
wx3s\ e - wxds 7 B D12
ffwas (mw T Tom;s Cby2) = fruwaea Toms Cibya (D.120)
1 wa
7(fsw1(1) + ftwl(l)) + T(fswl (6) + fgwl(6) + ftwl(G)) -
b*
ﬁ(Mfapom + Mgpuwiz — Moypr1 — Msyig2) + (D.121)
1 b b2,
wxl\ ™ T = = C 3
ff 1(mw 7. T Toms V1)
1 1 a2b 1 a2b
wy3s(— + — + =2 wyas(— — =22, D.122
ff y3 (mw+mf+lfz)+ff y4 (mf Ifz) ( )
1 1
7<fsw1 (2) + ftw1(2) + fctwl(z)) - E(fff2(2) + f5f2(2)) -
(07701} 1
7(M5¢bf2+f5f2(5))+ffwy1(7)7 (D123)

Ifz May
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1 b2 b2,
s . o(— — ws S C
f,za:.4 ffua:Q (mw Iwz +Ibmf wf1)+
Framso— 20 1) 4 fruman(—— + 2o~ B2 0y (D120
fwz3s Ibmf f1 fwaxds T Iwz Ibmf f2) .
1 wa
Fm:r4 mi(fswl(Q) + ftw1(2) + fctw1(2)) + T(fst (6) + fgw2 (6) +
£1102(6)) — Myyopt + Mspuwiz — Msypp1 — Mgypypa) + (D.125)
bid
ffwa:l(Ibmf )a
1 1 afﬂ
fuys4 ffwy?s(miw)‘i‘ffwy?)s(mif - ?j)"’
1 1 a? b
J(— + — 4 —wby, D.12
Sross G+ o+ 322) (D.126)
1 1
Frya — (fsw2(2) + frw2(2) + forw2(2)) — — (£r72(2) + £572(2)) +
m mf
Gy
?b(Mwb 2+ fap2(5)). (D.127)

In this way we can determine the acting friction forces for all combinations of the
stick-slip modes. Then the switch conditions are also determined for the stick mode
by letting the acting friction forces are less than the corresponding static friction
force components.



APPENDIX E

The parameters of the
three-piece-freight-truck

Table E.1: Parameters of the Chinese Three-Piece-Freight-Truck Cgo

Symbols | Name Unit Values
Mo mass of car body Kg empty car 14600,
loaded car 77000
my mass of a bolster Kg 470
mq mass of a wedge Kyg 8
my mass of a side frame Kg 330
My mass of a wheelset Kg 1200
Iy inertia of car body around x axis | Kg¢g-m? | empty car 2.66 x 104,

loaded car 1 x 10°

Loy inertia of car body around y axis | Kg-m? | empty car 2.66 x 107,
loaded car 1.2 x 10°

I,. inertia of car body around z axis | Kg-m? | empty car 2.84 x 10°,
loaded car 1.07 x 106

Iy, inertia of a bolster around x axis | Kg-m? 190

Iy, inertia of a bolster around z axis | Kg-m? 190

Iy, inertia of a frame around x axis Kg-m? 100

Ip, inertia of a frame around z axis | Kg-m? 80
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Symbols | Name Unit Values
Loa inertia of a wheelset around z axis Kg-m? 740
Ly inertia of a wheelset around y axis Kg-m? 160
I, inertia of a wheelset around z axis Kg-m? 740
K1 stiffnes of the band-stop between a

frame and an adapter in the = direction | MN/M 55
K, stiffness of the band-stop between a

frame and an adapter in the y direction | MN/M 55
Ko stiffness of the springs of each end

of a bolster in the z direction MN/M 4.14
Ky stiffness of the springs of each end

of a bolster in the y direction MN/M 4.14
K.o stiffness of the springs of each end

of a bolster in the z direction MN/M 5.32
K3 stiffness of the springs of a wedge

in the x direction MN/M 0.6
Ky stiffness of the springs of a wedge

in the y direction MN/M 0.6
K3 stiffness of the springs of a wedge

in the z direction MN/M 0.769
Kop stiffness of the side support

in the z direction MN/M 10
Kyvs anti-warp stiffness MN/rad 1~2
s static friction coefficient between

a frame and an adapter 0.25-0.45
Lk f kinetic friction coeflicient between

a frame and an adapter 0.2-0.35
Lsd static friction coefficient between

a wedge and a side frame 0.25-0.45
Kkd kinetic friction coefficient between

a wedge and a side frame 0.2-0.35
Lhsh static friction coefficient between

a wedge and a bolster 0.25-0.45
b kinetic friction coefficient between

a wedge and a bolster 0.2-0.35
Lo friction coefficient on the surfac of

the center plate 0.4
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Symbols | Name Unit Values
buws distance between the mass center of
a wheelset to the contact point between m 0.97
a side frame and an adapter
by o distance between the mass center of
a bolster to the secondary suspension m 0.97
2ay distance between the two mass centers
of the bolsters m 8.7
20 wheelbase m 1.75
2a’, distance between two center plates m 8.7
bos distance between the center plate and
side support m 0.8
ho distance from the car body mass center m | empty car 0.68,
to the top of track m loaded car 1.3
hy distance from the bolster mass center
to the top of track m 0.55
h¢ distance from the frame mass center
to the top of track m 0.5
r roll radius of a wheel m 0.42
Po radius of a center plate m 0.15
2b gauge m 1.435
2by, inside gauge m 1.353
JAVRA clearance between car body and
a side support m 0.003-0.008
Axy longitudinal clearance between
a side frame and an adpater m 0.003-0.006
Ays lateral clearance between
a side frame and an adpater m 0.003-0.006
y angle of a wedge contacting a frame deg. 2.5
10 angle of a wedge contacting a bolster deg. 45
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