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Abstract

Applications in biotechnology such as gene expression analysis and image processing
have led to a tremendous development of statistical methods with emphasis on reliable
solutions to severely underdetermined systems, and interpretation, solutions where the
surplus of inputs have been reduced to a concise model. At the core of this development
are methods which augments the standard linear models for regression, classification and
decomposition such that sparse solutions are obtained. This toolbox aims at making
public carefully implemented and well-tested variants of the most popular such methods
for the Matlab programming environment. The toolbox builds on code made public in
2005 and which has since been used in several studies.
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1. Introduction

The introduction of the Least Angle Regression method for regularized/sparse regression
(Efron, Hastie, Johnstone, and Tibshirani 2004) marked the starting point of a series of
important contributions to the statistical computing community with the following common
properties:

� Solutions are obtained sequentially along a path of gradually changing amounts of reg-
ularization. This paper focuses on methods where the method coefficients are piecewise
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linear functions of the regularization parameter, and where algorithms proceed by find-
ing the next piecewise linear breakpoint,

� For sufficient amounts of regularization, solutions are sparse, i.e., some of the coefficients
of the model are exactly zero, leading to more compact models which are easier to
interpret,

� Methods are efficient, meaning they perform on a par with competing statistical meth-
ods when performance is measured on a test data set.

Examples of contributions are (Zou and Hastie 2005), (Zou, Hastie, and Tibshirani 2006),
(Rosset and Zhu 2007), (Hastie, Rosset, Tibshirani, and Zhu 2004), (Park and Hastie 2007),
(Friedman, Hastie, and Tibshirani 2010), of which the first three are detailed in this paper.
The methods cover regression (the LASSO and the Elastic Net with ridge regression as a
special case), classification (sparse discriminant analysis with penalized linear discriminant
analysis as a special case), and unsupervised modeling (sparse principal component analysis).
The goal of this paper is to provide reference Matlab (The MathWorks Inc. 2010) imple-
mentations of these basic regularization-path oriented methods. We also present previously
unpublished developments of the algorithm for sparse principal component analysis and pro-
vide some evidence that performance is somewhat higher, while the computational complexity
is significantly lowered. The implementation strikes a balance between performance and read-
ability, making this toolbox a good starting point for learning the details of the methods. For
this reason, the code is written as pure Matlab scripts which closely follows the algorithms
provided here. All methods have been fully described and validated in their respective pub-
lications; despite this we provide terse but relatively complete derivations of each algorithm
such that the paper can be read and the algorithms understood without having all references
at hand.

2. In the toolbox

The toolbox consists of a series of Matlab (The MathWorks Inc. 2010) scripts to build and
apply various statistical models for both supervised and unsupervised analyses. Below are
listings of each method, file, subfunction and utility.

2.1. Methods

Forward Selection A variant of stepwise regression in which variables are included one-
by-one based on their correlation with the current residual vector. Provides a baseline
algorithm for other sparse methods for regression in this toolbox.

Least Angle Regression Provides a more gentle version of the classical approach of forward
selection regression. The algorithm is the basis for all other methods in the toolbox.
The method is also an interesting statistical method in its own right.

LASSO This method adds l1 (1-norm) regularization to ordinary least squares regression,
yielding solutions which are sparse in terms of the regression coefficients. This may lead
to efficient suppression of noise and aids in interpretation.
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Elastic Net Combining the algorithmic ideas of Least Angle Regression, the computational
benefits of ridge regression and the tendency towards sparse solutions of the LASSO,
this versatile method is applicable for many data sets, also when the number of predictor
variables far exceed the number of observations. The corresponding LARS-EN algorithm
is used in the implementation of the following two algorithms.

Sparse Principal Component Analysis Principal component analysis is a powerful tool
for compacting a data set and for recovering latent structures in data, but solutions are
difficult to interpret as they involve all the original predictor variables. Sparse principal
component analysis approximates the behavior of regular principal component analysis
but models each component as a linear combination of a subset of the original variables.

Sparse Linear Discriminant Analysis Linear discriminant analysis is a standard tool for
classification of observations into one of two or more groups. Further, the data can be
visualized along the obtained discriminative directions. As with principal component
analysis, these directions are combinations of all predictor variables. Sparse discriminant
analysis reduces this to a subset of variables which may improve performance as well
interpretability.

2.2. Files

forwardselection.m A baseline algorithm for variable selection. Based on the algorithm in
lar.m.

lar.m An implementation of the LARS algorithm for least angle regression described by
Efron et al. (2004)

lasso.m The LASSO method of Tibshirani (1996), implemented using a combination of the
algorithms of Efron et al. (2004) and Rosset and Zhu (2007)

elasticnet.m The Elastic Net algorithm of Zou and Hastie (2005), with elements from Rosset
and Zhu (2007)

spca.m The sparse principal component algorithm based on the work by Zou et al. (2006),
with modification described below

slda.m The sparse discriminant analysis of Clemmensen, Hastie, Witten, and Ersbøll (2011).

2.3. Sub-functions and utilities

larsen.m The actual implementation of the Elastic Net algorithm. The functions lasso.m,
elasticnet.m, spca.m and slda.m depend on this function; however it is not intended
for direct use

cholinsert.m Update of the Cholesky factorization of XTX + δI. Used in lar.m and
larsen.m.



4 SpaSM: Sparse Statistical Modeling

choldelete.m Downdate of the above Cholesky factorization. Used in larsen.m.

center.m Convenience function for centering (removing the mean observation) a data matrix
or response vector.

normalize.m Convenience function for centering and normalizing a data matrix or response
matrix such that variables have unit Euclidean length.

3. Methods and algorithms

This section presents the principles behind each method in the toolbox, and outlines their
algorithms. The basic building block is the LARS-EN algorithm (Zou and Hastie 2005)
which encompasses regression via ordinary least squares, ridge regression, the LASSO and
the Elastic Net. These are based on the linear model y = Xβ + ε where y (n × 1) is the
observed response variable, X (n × p) is the data matrix where the ith column represents
the ith predictor variable, β (p × 1) is the set of model coefficients which determines the
load on each predictor variable, and ε are the residual errors. Unless stated otherwise, y
is assumed centered and X is assumed centered and normalized such that each variable has
zero mean and unit Euclidean length. A sparse method for regression estimates a coefficient
vector β with many zero elements, giving an estimate ŷ of y which is a linear combination of
a subset of available variables in X. Sparse solutions may be preferred to full counterparts if
the latent linear model can be assumed to be sparse, or when interpretation of the results is
important. The set A denotes the indices in β corresponding to non-zero elements; we refer
to this as the active set. The set I is called the inactive set and denotes the complement of
A. We use these sets also to denote submatrices such as the (n× |A|) matrix XA, consisting
of the columns (variables) of X corresponding to the indices in A. All algorithms proceed in
iterations and we indicate iteration number by a parenthesized superscript number, e.g., β̂(k)

for the regression coefficients calculated in the kth iteration. It is further convenient to define
an operator min+(·) which finds the smallest strictly positive value of the (vector-valued)
input.

The methods for regression described below proceed in an iterative manner, adding or sub-
tracting variables in the model in each step. The methods start with the trivial constant
model, then move towards the full representation which corresponds to ordinary least squares
regression or ridge regression, depending on the type of regularization. To put the presenta-
tion of these algorithms into perspective, we begin with a quick review of one of the simplest
algorithms of this kind.

In forward selection, a variant of stepwise regression, variables are added one-by-one until
some goodness-of-fit criterion is fulfilled. The next variable to include in this scheme can
be chosen based on a number of criteria. The methods in this toolbox generally pick the
variable that has the highest absolute correlation with the current residual vector. To fix the
terminology and to give a simple baseline algorithm we state a forward selection algorithm in
Algorithm 1.

In this algorithm, we move to the least squares solution using all currently active variables
in each step. This approach may be overly greedy; there may be inactive variables that
are beneficial to include before the least squares solution is reached. The following sections
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Algorithm 1 Forward Selection

1: Initialize the active set A = ∅ and the inactive set I = {1 . . . p}
2: Initialize the coefficient vector β(0) = 0
3: for k ∈ {0 . . . p− 1} do
4: Find variable maximally correlated with the current residual i = arg maxi∈I x

T
i (y −

Xβ(k))
5: Move i from I to A.
6: Update the active set coefficients β

(k+1)
A = (XT

AXA)−1XT
Ay

7: end for
8: Output the series of coefficients B = [β(0) . . . β(p)].

cover less greedy variations on the forward selection scheme which result in algorithms with
generally better performance and which are able to handle more difficult data sets.

3.1. Least angle regression

Least Angle Regression (LAR) is a regression method that provides a more gentle version of
forward selection. Conceptually, LAR modifies Algorithm 1 on only one account. Instead of
choosing a step size which yields the (partial) least squares solution in each step, we shorten
the step length such that we stop when any inactive variable becomes equally important as
the active variable in terms of correlation with the residual vector. That variable is then
included in the active set and a new direction is calculated. Recall that all active variables
are uncorrelated with the residual vector at the least squares solution, the step length will
therefore always be as short or shorter at the point where we find the next active variable to
include than that of the least squares solution.

The algorithm starts with the empty set of active variables. The correlation between each
variable and the response is measured, and the variable with the highest correlation becomes
the first variable included into the model. The first direction is then towards the least squares
solution using this single active variable. Walking along this direction, the angles between
the variables and the residual vector are measured. Along this walk, the angles will change;
in particular, the correlation between the residual vector and the active variable will shrink
linearly towards 0. At some stage before this point, another variable will obtain the same
correlation with respect to the residual vector as the active variable. The walk stops and the
new variable is added to the active set. The new direction of the walk is towards the least
squares solution of the two active variables, and so on. After p steps, the full least squares
solution will be reached.

The LAR algorithm is efficient since there is a closed form solution for the step length at each
stage. Denoting the model estimate of y at iteration k by ŷ(k) and the least squares solution

including the newly added active variable ŷ
(k+1)
OLS , the walk from ŷ(k) towards ŷ

(k+1)
OLS can be

formulated (1 − γ)ŷ(k) + γŷ
(k+1)
OLS where 0 ≤ γ ≤ 1. Estimating ŷ(k+1), the position where

the next active variable is to be added, then amounts to estimating γ. We seek the smallest
positive γ where correlations become equal, that is

xTi∈I(y − (1− γ)ŷ(k) − γŷ(k+1)
OLS ) = xTj∈A(y − (1− γ)ŷ(k) − γŷ(k+1)

OLS ). (1)
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Solving this expression for γ, we get

γi∈I =
(xi − xj)

T (y − ŷ(k))

(xi − xj)T (ŷ
(k+1)
OLS − ŷ(k))

=
(xi − xj)

Tε

(xi − xj)Td
, (2)

where d = ŷ
(k+1)
OLS − ŷ(k) is the direction of the walk, and j ∈ A. Now, d is the orthogonal

projection of ε onto the plane spanned by the variables inA, therefore we have xTj ε = xTj d ≡ c,
representing the angle at the current breakpoint ŷ(k). Furthermore, the sign of the correlation
between variables is irrelevant. Therefore, we have

γ = min
i∈I

{
xTi ε− c
xTi d− c

,
xTi ε + c

xTi d + c

}
, 0 < γ ≤ 1, (3)

where the two terms are for correlations/angles of equal and opposite sign respectively. The
coefficients at this next step are given by

β(k+1) = (1− γ)β(k) + γβ
(k+1)
OLS . (4)

Given these key pieces of the LAR algorithm, we state the entire procedure in Algorithm 2.

Algorithm 2 Least Angle Regression

1: Initialize the coefficient vector β(0) = 0 and the fitted vector ŷ(0) = 0,
2: Initialize the active set A = ∅ and the inactive set I = {1 . . . p}
3: for k = 0 to p− 2 do
4: Update the residual ε = y − ŷ(k)

5: Find the maximal correlation c = maxi∈I |xTi ε|
6: Move variable corresponding to c from I to A.

7: Calculate the least squares solution β
(k+1)
OLS = (XT

AXA)−1XT
Ay

8: Calculate the current direction d = XAβ
(k+1)
OLS − ŷ(k)

9: Calculate the step length γ = min+
i∈I

{
xT
i ε−c

xT
i d−c ,

xT
i ε+c

xT
i d+c

}
, 0 < γ ≤ 1

10: Update regression coefficients β(k+1) = (1− γ)β(k) + γβ
(k+1)
OLS

11: Update the fitted vector ŷ(k+1) = ŷ(k) + γd
12: end for
13: Let β(p) be the full least squares solution β(p) = (XTX)−1XTy
14: Output the series of coefficients B = [β(0) . . . β(p)]

Each step of Algorithm 2 adds a covariate to the model until the full least squares solu-
tion is reached. It is natural to parameterize this process by the size of the coefficients at
each step as well as in between steps of the algorithm. The algorithm returns the following
parametrization,

s(β) = ‖β‖1 =

p∑
i=1

|βi|. (5)

Picking a suitable model for a particular analysis thus means selecting a suitable value of
s ∈ (0, ‖βOLS‖1). Cross-validation or an independent validation data set are obvious choices
for this purpose, however, the algorithm provides information which substitute or complement
this process.
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Degrees of freedom Efron et al. (2004) showed that the number of degrees of freedom at
each step of the LAR algorithm is well approximated by the number of non-zero elements
of β. The algorithm therefore returns the following sequence,

df
(k)
LAR = |A| = k, k = 0 . . . p. (6)

Mallow’s Cp Given the above measure of the number of degrees of freedom, we can calculate
a number of model selection criteria. Mallow’s Cp measure is defined as (Zou, Hastie,
and Tibshirani 2007)

C(k)
p =

1

σ2
ε

‖y −Xβ(k)‖2 − n+ 2df (k). (7)

Akaike’s Information Criterion Akaiket’s information criterion is similar to Mallow’s Cp
and is defined as

AIC(k) = ‖y −Xβ(k)‖2 + 2σ2
εdf

(k). (8)

Bayesian Information Criterion The Bayesian information criterion tends to choose a
more sparse model than both AIC and Cp and is defined as

BIC(k) = ‖y −Xβ(k)‖2 + log(n)σ2
εdf

(k). (9)

The latter three criteria can be used to pick a suitable model, typically indicated by the
smallest value of each criterion. Alternatively, one can choose the sparsest model for which
more complex models lead to scant improvements in the relevant model selection criterion.
The measure σ2

ε represents the residual variance of a low-bias model which is here defined as

σ2
ε =

1

n
‖y −X†y‖2, (10)

where X† is the Moore-Penrose pseudo-inverse of X, equivalent to a ridge regression solution
arg min ‖y−Xβ‖2 +λ‖β‖2 in the limit λ→ 0. Note that in cases where p > n, this measure of
the residual variance will be zero which in effect turns the information criteria defined above
into a measure of training error only. We therefore recommend using these criteria for model
selection only in cases where n is well above p.

The key computational burden of Algorithm 2 lies in Step 7 where the OLS solution involving
the variables in A is calculated. Two techniques are used to alleviate this. For problems
where n is at least ten times larger than p, we calculate the full Gram matrix XTX once and

use the submatrix XT
AXA to find β

(k+1)
OLS , thus avoiding an O(|A|2n) matrix multiplication.

When p > 1000, this method is not preferred since the memory footprint of the resulting p×p
Gram matrix may pose a problem. In cases where 10n < p, or when a pre-computed Gram
matrix is impractical, we maintain a matrix R of the Cholesky factorization of the current
Gram (sub)matrix XT

AXA such that RTR = XT
AXA. As variables join the active set, R can

be updated with low computational cost. The conditions chosen for selecting between the
two methods are not exact, but we have gathered evidence through simulation studies that
they work well on most standard computers.
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In practice one frequently has a notion of the sparsity of the desired solution when running
Algorithm 2. To avoid unnecessary computations, the algorithm can be stopped prematurely,
either when the active set reaches a certain size, or when the l1 norm of the coefficients in β(k)

exceeds a preset threshold. Optionally, the algorithm stores and returns the solution fulfilling
the specified sparsity criterion only in order to save computer resources.

3.2. The LASSO

The LASSO (Tibshirani 1996) represents the most basic augmentation of the ordinary least
squares solution which implements coefficient shrinkage and selection. The sum of squared
residuals loss function L(β̂(λ)) is combined with a penalty function J(β̂(λ)) based on the l1
norm as,

β̂(λ) = arg min
β
L(β̂(λ)) + λJ(β̂(λ)) = arg min

β
‖y −Xβ‖2 + λ‖β‖1. (11)

The l1 penalty will promote sparse solutions. This means that as λ is increased, elements of
β̂(λ) will become exactly zero. Due to the non-differentiability of the penalty function, there
are no closed-form solutions to Equation 11. A number of algorithms have been proposed
(e.g., (Fu 1998; Osborne, Presnell, and Turlach 2000; Friedman et al. 2010)) including the
quadratic programming approach on an expanded space of variables outlined in the original
LASSO paper of Tibshirani (1996). The algorithm presented here is due to Rosset and Zhu
(2007) who derived a sufficient condition for piecewise linear coefficient paths on which they
based several LASSO-type methods. The LASSO algorithm described here is a special case
of their work. Efron et al. (2004) arrived at an equivalent algorithm by showing that a small
modification to the Least Angle Algorithm yields LASSO solutions.

The goal of this section is to derive an expression for how the solutions of Equation 11 change
with λ. The solution set β̂(λ) will hit a non-differentiability point when coefficients either
go from non-zero to zero (join I), or the other way around (join A). Assume first that we
are in a region of values of λ where variables are neither joining nor leaving A. The normal
equations to Equation 11 around λ and around a nearby point λ+ ε are then

−2XT
A(y −XAβ̂A(λ)) + λ · sign(β̂A(λ)) = 0 (12)

−2XT
A(y −XAβ̂A(λ+ ε)) + (λ+ ε) · sign(β̂A(λ+ ε)) = 0. (13)

We now write Equation 13 as a first order Taylor expansion around β̂(λ). The general form
of a multivariate Taylor expansion of f(x) around a is

f(x) =
∞∑
k=0

∇(k)f(a)

k!
(x− a)k = f(a) +∇f(a)(x− a) +

1

2
∇2f(a)(x− a)2 + . . . . (14)

We have,

f(β̂(λ)) = −2XT
A(y −XAβ̂A(λ)) + (λ+ ε) · sign(β̂A(λ)) (15)

∇f(β̂(λ)) = 2XT
AXA (16)

∇(k)f(β̂(λ)) = 0 for k = 2 . . .∞. (17)
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The complete expansion of Equation 13 becomes

−2XT
A(y −XAβ̂A(λ)) + (λ+ ε) · sign(β̂A(λ)) + 2XT

AXA

(
β̂A(λ+ ε)− β̂A(λ)

)
= 0. (18)

Using Equation 12, we can rearrange this expression to

β̂A(λ+ ε)− β̂A(λ)

ε
= −(2XT

AXA)−1sign(β̂A(λ)), (19)

which approaches ∇β̂(λ) as ε → 0 (using ∇β̂I(λ) = 0). This is a constant function which
means that the coefficient paths between events (changes to A and I) are piecewise linear,
similarly to Least Angle Regression.

Now that an expression for the change in β̂(λ) between events has been established, we focus
on finding the values of λ for which changes to A and I take place. It is beneficial here to
consider Equation 11 on an expanded set of β-values, chosen such that βj = β+

j + β−j where

β+
j ≥ 0 and β−j ≥ 0, ∀j,

arg min
β+,β−

‖y −X(β+ − β−)‖2 + λ‖(β+ + β−)‖1 = L(β̂(λ)) + λ‖(β+ + β−)‖1 (20)

such that β+
j ≥ 0, β−j ≥ 0, ∀j.

This formulation of the LASSO is differentiable, at the price of having to deal with twice as
many variables. The Lagrange primal function is

L(β̂(λ)) + λ‖(β+ + β−)‖1 −
p∑
j=1

λ+
j β

+
j −

p∑
j=1

λ−j β
−
j , λ+

j ≥ 0, λ−j ≥ 0, ∀j,

where we have introduced the Lagrange multipliers λ+
j and λ−j . The Karush-Kuhn-Tucker

conditions are

(∇L(β))j + λ− λ+
j = 0 (21)

−(∇L(β))j + λ− λ−j = 0 (22)

λ+
j β

+
j = 0 (23)

λ−j β
−
j = 0. (24)

From these conditions, a number of useful properties arise. First, we note that setting λ = 0
indeed gives us (using Equation 21 and Equation 22) ∇L(β) = 0 as expected. For positive
values of λ we have,

β+
j > 0+⇒ +λ+

j = 0⇒ ∇L(β) = −λ⇒ λ−j > 0⇒ β−j = 0 (25)

β−j > 0+⇒ +λ−j = 0⇒ ∇L(β) = λ⇒ λ+
j > 0⇒ β+

j = 0. (26)

Elements in A have either β+
j > 0 or β−j > 0, but cannot both be non-zero. That is,

|(∇L(β))j | = λ, j ∈ A (27)

|(∇L(β))j | ≤ λ, j ∈ I.
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for j ∈ A, |(∇L(β))j | = λ while for elements j ∈ I, |(∇L(β))j | ≤ λ. We are seeking the value
of γ > 0 for which a variable in I joins A or vice versa. We have arrived at the following
conditions,

j ∈ A → I : β̂
(k)
j + γ∇β̂(k)

j = 0, j ∈ A (28)

j ∈ I → A : |(∇L(β̂(k) + γ∇β̂(k)))i| = |(∇L(β̂(k) + γ∇β̂(k)))j |, j ∈ A, i ∈ I. (29)

The first of these expressions defines the distances {γ} at which active variables hit zero and
join I. The second expression defines the distances at which inactive variables violate the
second condition in Equation 27 and thus must join A. Note that any element in A can be
chosen to calculate the RHS of Equation 29, they all equal λ. The smallest value γmin of the
distances {γ} is where the next event will happen. The coefficients can now be updated by

β̂(k+1) = β̂(k) + γmin∇β̂(k). (30)

We have arrived at Algorithm 3 for the LASSO.

Algorithm 3 LASSO (Rosset and Zhu 2007)

1: Initialize β(0) = 0, A = arg maxj |xTj y|, ∇β̂
(0)
A = −sign(xTAy), ∇β̂(0)

I = 0, k = 0
2: while I 6= ∅ do
3: γj = min+

j∈A −β
(k)
j /∇β̂(k)

j

4: γi = min+
i∈I {

(xi+xj)T (y−Xβ̂(k))

(xi+xj)T (X∇β̂(k))
,

(xi−xj)T (y−Xβ̂(k))

(xi−xj)T (X∇β̂(k))
} where j is any index in A

5: γ = min{γj , γi}
6: if γ = γj then
7: Move j from A to I
8: else
9: Move i from I to A

10: end if
11: β̂(k+1) = β̂(k) + γ∇β̂(k)

12: ∇β̂(k+1)
A = −(2XT

AXA)−1 · sign(β̂
(k+1)
A )

13: k = k + 1
14: end while
15: Output the series of coefficients B = [β(0) . . . β(k)]

One of the benefits with this particular algorithm is that the coefficient path can be parame-
terized either in terms of ‖β̂(k)‖1, the size of the penalty at iteration k, or the regularization
parameter λ. The latter is seldom explicitly specified in path-following algorithms but here,
the first identity in Equation 27 provides a way of directly calculating λ as a function of β̂,

λ = 2|xTj∈A(y −Xβ̂)|. (31)

Any element in A will do for this calculation. To minimize the risk of numerical problems,
we calculate this value for all elements in A and pick the median.

If asked for, the algorithm returns the same information as Algorithm 2. The LASSO solution
path can be parameterized either in terms of s(β) (cf., Equation 5), or in terms of λ which
also can be interpreted as a function of β, cf., Equation 31. Zou et al. (2007) show that an
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unbiased estimate of the degrees of freedom of a particular LASSO solution is given by |A|,
the number of non-zero components of β. Given this estimate, the various model selection
criteria can be calculated as outlined in Section 3.1.

We use the same Gram matrix or Cholesky updating scheme as described in Section 3.1. As
variables leave the active set, the Cholesky factorization RTR = XT

AXA is downdated by
removing the contribution to R which is due to the dropped variable.

3.3. The elastic net

Ridge regression (Hoerl and Kennard 1970) represents an effective way of shrinking the OLS
coefficients towards zero. The l1 penalty of the LASSO is replaced with an l2 penalty,

β̂(δ) = arg min
β
‖y −Xβ‖2 + δ‖β‖2, (32)

which leads to the closed form solution

β̂(δ) = (XTX + δI)−1XTy. (33)

Although similar in formulation, ridge regression and the LASSO have important differences.
The l2 penalty of ridge regression leads to a shrinkage of the regression coefficients, much like
the l1 penalty of the LASSO, but coefficients are not forced to exactly zero for finite values
of δ. However, a benefit of ridge regression is that a unique solution is available, also when
the data matrix X is rank deficient, e.g., when there are more predictors than observations
(p > n). This is seen in Equation 33; the addition of a sufficiently large constant value along
the diagonal of the Gram matrix XTX ensures full rank (Petersen and Pedersen 2008). The
LASSO algorithm (Algorithm 3) is terminated when the active set size |A| becomes larger
than p since the matrix XT

AXA in Step 12 is no longer invertible.

Elastic net regression (Zou and Hastie 2005) combines the virtues of ridge regression and the
LASSO by considering solutions penalized by both an l2 and an l1 term,

β̂(λ, δ) = arg min
β
‖y −Xβ‖2 + δ‖β‖2 + λ‖β‖1, (34)

thus bridging the gap between the LASSO (δ = 0) and ridge regression (λ = 0). The l2
penalty ensures a unique solution also when p > n and the l1 penalty offers variable selection
via a sparse vector of coefficients β̂. Moreover, the l2 leads to a grouping effect (Zou and
Hastie 2005), a term that alludes to the characteristic that highly correlated predictors tend
to have similar regression coefficients for nonzero δ. Note however that this does in general
not mean that highly correlated variables are included into the active set in groups along the
regularization path.

We can use the the LASSO algorithm to obtain the full regularization path of elastic net
solutions. To see this, we first note that ridge regression solutions can be obtained by solving
an ordinary least squares problem with an augmented set of observations,

X̃ =

[
X√
δIp

]
, ỹ =

[
y
0

]
. (35)

Expanding the equation β̂ = (X̃T X̃)−1X̃T ỹ gives the ridge solution in Equation 33. For a
fixed value of δ, Algorithm 3 offers solutions for all relevant values of λ. Selecting suitable
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values for the regularization parameters typically involves selecting the best value of λ for a
discrete set of values of δ. Thus, the algorithm must be run for each value of δ.

If p>n, the augmented data matrix in Equation 35 has size (n+ p)× p, implying a system of
equations that may be prohibitively large. Remarkably, it turns out that we can do without
explicitly forming these augmented matrices, mainly due to the fact that any multiplications
with ỹ effectively voids the contribution of the additional rows in X̃ since the corresponding
rows of ỹ are zero. Other computations are dot products between vectors with additional
elements in I and vectors with additional elements in A. Since these never coincide (I = Ac),
these additional elements do not contribute to the result. The partial OLS solution calculated
in Step 12 must however take into account the additional rows X. When this equation is solved
using a pre-computed Gram matrix, we simply supply the augmented Gram matrix XTX+δI.
When the Cholesky approach is used, it is straightforward to take an additional parameter
δ into account such that the Cholesky factorization of XTX + δI is obtained. Except for
these alterations to Step 12, the algorithm is run as usual. The LASSO and the Elastic Net
therefore use the same underlying function (larsen.m) which take the additional parameter
δ used in Step 12. For LASSO solutions δ is simply set to zero.

Zou and Hastie (2005) argue and provide some evidence that the double shrinkage introduced
by the l1 and l2 has an unfortunate effect on prediction accuracy. They propose to compensate
for this by multiplying the solutions B by a factor (1+δ), and refer to the unadjusted solutions
as the Näıve Elastic Net. In some cases, the näıve solution is preferred, which consequently
are obtained either by calling larsen.m directly or by dividing the Elastic Net solutions by
(1 + δ).

The Elastic Net algorithm outputs the same model selection criteria as the LAR and LASSO
algorithms. Computationally, the difference lies in the estimation of the number of degrees
of freedom and the residual variance σ2

ε . For non-zero δ, the corresponding ridge regression
solution is used as a low-bias model in the estimation of the latter. Zou (2005) shows that
an unbiased estimate of the number of degrees of freedom of Elastic Net solutions can be
obtained by

tr
(
XA(XT

AXA + δI)−1XT
A
)
, (36)

which we solve efficiently using a singular value decomposition of XA.

3.4. Sparse principal component analysis

Principal component analysis (PCA) is a linear transformation S = XL of a mean-zero
data matrix X where the loading vectors (columns) of L provide an orthonormal basis which
successively maximizes the variance of the projected data in S, where the principal components
(columns) of S are uncorrelated, see e.g., Hastie, Tibshirani, and Friedman (2009). PCA is
optimal in the sense that no linear transformation can produce a more compact representation
of data given K <p basis vectors. The successive maximization of variance means that the
few first principal components are usually sufficient to accurately describe the data. However,
each principal component is a linear combination of all variables in X and is therefore difficult
to interpret and assign a meaningful label. To alleviate this, sparse PCA (SPCA) aims
at upholding some or all of the properties of PCA — successive maximization of variance,
independence of the loading vectors and uncorrelated principal components — while enforcing
sparsity of the loading vectors such that each principal component is a linear combination of
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only a few of the original variables.

The algorithm for computing sparse loading vectors used in this toolbox is detailed in (Zou
et al. 2006), and uses the Elastic Net in a regression-like framework for PCA. In the spirit of
this paper, we start by formulating regular PCA as the solution to a regression problem, and
then add suitable constraints to obtain sparse solutions.

Viewing PCA from a compression standpoint, the objective is to find the rank-K subspace
projection AAT such that ATA = I (A is p×K) which reconstructs a data point x as well
as possible. This amounts to the following criterion,

arg min
A
‖X−XAAT ‖2F , such that ATA = I. (37)

The solution is readily available via a singular value decomposition; let X = UDVT , and set
A = V.

Zou et al. (2006) show that this criterion can be relaxed into the following l2-penalized for-
mulation,

arg min
A,B
‖X−XABT ‖2F + δ‖B‖2F , such that ATA = I, (38)

where B is p×K and ‖B‖2F =
∑K

k=1 ‖βk‖22. After normalization such that each column of B
has unit length, the optimal solution is A = B = V, the loading matrix of PCA, irrespective
of the choice of δ. The role of the ridge penalty on B is to provide unique solutions also when
p > n, in which case δ must be non-zero. Since the loading vectors in B are orthogonal, we
can estimate them sequentially by

arg min
αk,βk

‖X−Xβkα
T
k ‖2F + δ‖βk‖22, subject to AT

kAk = I, (39)

where Ak denotes the matrix [α1 . . . αk]. Aiming at an algorithm for computing a sparse ma-
trix of loadings, we will now state an alternating algorithm for optimizing the above criterion
for αk and βk. For this purpose, we have the following result.

Lemma 3.1 Assume αTk αk = 1 and fix αk, X and Y. Then, the problems

arg min
βk
‖Y −Xβkα

T
k ‖2F (40)

arg min
βk
‖Yαk −Xβk‖22 (41)

(42)

have the same minimizer β̂k = (XTX)−1XTYαk.

This result (with Y = X and adding the l2 penalty) shows that for fixed αk, the optimal βk
is given by β̂k = (XTX + δI)−1XTXαk. If we instead fix βk, the optimal αk is given by the
following result.

Lemma 3.2 Let A(k−1) with AT
(k−1)A(k−1) = I be the (p× k− 1) matrix containing the first

k − 1 columns of A. The ”fix βk, solve for αk”-problem can then be formulated as,

α̂k = arg min
αk

‖X−Xβkα
T
k ‖2F subject to αTk αk = 1, αTkA(k−1) = 0. (43)

Let s =
(
I−A(k−1)A

T
(k−1)

)
XTXβk. Then, α̂k = s/

√
sT s.
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Appendix B.1 and B.2 contain proofs of the above results. If applied alternately until conver-
gence for each principal component, we end up with the full PCA solution. This convergence
is assured since Criterion 39 is convex and each alternating step lead to a lower function value.

Turning to the problem of estimating sparse principal components (a sparse loading matrix),
an l1 penalty is added to the formulation in Equation 39.

{α̂k, β̂k} = arg min
αk,βk

‖X−Xβkα
T
k ‖2F + δ‖βk‖22 + λ‖βk‖1, subject to AT

kAk = I. (44)

Using the alternating approach defined above to optimize this criterion, we see that α̂k is esti-
mated as before, while β̂k is turned from a ridge regression problem into an elastic net problem.
As before the response vector is Xαk. We arrive at Algorithm 4 for computing sparse princi-
pal components. This algorithm also handles the case where the l2 regularization parameter
δ is set to infinity. The elastic net estimation of βk then turns into a soft-thresholding rule as
described in (Zou et al. 2006). This leads to a computational advantage, which is why this
option is popular for very high-dimensional data arising from e.g., image or gene expression
data. It is our experience that this option also provides better solutions (in terms of explained
variance for a fixed level of sparsity) in such cases.

Algorithm 4 SPCA (Zou et al. 2006)

1: Let K < p be the number of sparse principal loading vectors to estimate
2: Let A be the (p×K) matrix consisting of the K first ordinary principal loading vectors
3: for k = 1, . . . ,K do
4: while sparse loading vector βk has not converged do
5: if δ =∞ then
6: βk =

(
|XTXαk| − λ

)
+

sign(XTXαk) (Soft thresholding)
7: else
8: Solve the elastic net problem βk = arg minβ ‖Xαk −Xβ‖2 + δ‖β‖2 + λ‖β‖1
9: end if

10: βk = βk/
√
βTk βk (Normalize to unit length)

11: αk = (I−A(k−1)A
T
(k−1))X

TXβk (Update kth column of projection matrix A)

12: αk = αk/
√
αTk αk (Normalize to unit length)

13: end while
14: end for
15: Output the coefficients B = [β1 . . . βK ]

Note that this algorithm is no longer convex, and may converge to local minima.

Since this is the first account of this sequential SPCA algorithm we give preliminary results of
its performance and discuss advantages in relation to the previously proposed simultaneous
approach (Zou et al. 2006).

A clear advantage of sequential estimation of components comes from running the algorithm
once to estimate k components, and once to estimate k + l components. The sequential
approach will yield the exact same first k components in both cases whereas the simultaneous
algorithm gives different results for all components.

Both algorithms are initialized with a matrix A equal to the loading matrix of regular PCA.
The corresponding scores are ordered from high to low variance. The simultaneous approach
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often stray far from this initial solution and yields an arbitrary ordering in terms of variance
of its components. In (Sjöstrand, Stegmann, and Larsen 2006) we discuss several ways of
establishing a sensible ordering of oblique components. The sequential algorithm is more
likely to produce components of decreasing variance, and we have therefore chosen to return
the components as-is, in order of computation.

The sequential approach transforms one large non-convex optimization problem into several
small. Convergence rates for each such problem are typically orders of magnitude higher than
that of the simultaneous approach. To verify this, we conducted an experiment on a synthetic
data set of 600 observations, created from 200 observations each of three sparse components
with added Gaussian noise. The total number of variables in the data set ranged from 10 to
1500 with increments of 10, and we ran the sequential and simultaneous algorithms once for
each choice of p. We extracted three sparse principal components and compared computation
times and total adjusted variance. Figure 1 shows the results. The simultaneous algorithm
was forced to give up after 1000 iterations, which occurred in a large proportion of runs. This
is visible in the figure as a marked line of maximal computation times. Computation times for
the sequential algorithm were lower by a factor 15–100 and with no premature terminations.
The sequential algorithm is more restrictive than its sequential coouterpart since previous
components are fixed when estimating the next component. In our experience, one pays a
small price in terms of variance for this restriction; this is shown in the right plot in Figure 1.
We have not yet encountered a case were this reduction is significant.
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Figure 1: The left figure shows computation time for a data set with 600 observations and
increasing dimensionality; 25 non-zero loadings were extracted. The sequential SPCA algo-
rithm is faster by a factor 15–100. The right figure shows total adjusted variance for three
components for the same data set. The sequential algorithm pays a small penalty for the one
component at a time approach.

3.5. Sparse linear discriminant analysis

Linear Discriminant Analysis (LDA) estimates orthogonal directions βk in which observations
xi belonging to one of K classes are most separated. Separation is measured as the between-
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class variance σ2
b in relation to the within-class variance σ2

w of the projected data Xβk. Class-
belongings are dummy-encoded in a (n × K) matrix Y where element (i, j) is 1 if the ith
observation belongs to the jth class, else 0. Further, the matrix Dπ = 1

nY
TY is a diagonal

matrix of class prior probabilities based on their frequency in Y. Given these definitions,
the matrix of class centroids is given by M = 1

nD
−1
π YTX, the total covariance matrix is

Σ = 1
nX

TX, the between-class covariance matrix is Σb = MTDπM = 1
nX

TY(YTY)−1YTX,
and the within-class covariance matrix is Σw = Σ − Σb = 1

nX
T (I −Y(YTY)−1YT )X. The

cost function to optimize for the kth direction is,

arg max
βk

βTk Σbβk subject to βTk Σwβk = 1, βTk Σwβl = 0, ∀l < k. (45)

Standard differentiation leads to a an eigenvalue problem with respect to the matrix Σ−1
w Σb

which yields the full set of solutions B = {βk}. Classification of a new observation x is
performed by finding the closest centroid in the derived space defined by B.

LDA relies on the assumptions that (1) the data is normally distributed and (2) all classes
have equal covariances. Although these assumptions are seldom met exactly, LDA often has
as good or better performance compared to more flexible alternatives. This is in part due to
the robustness of a method with few parameters to estimate. As with ordinary least squares
in regression, there are situations where the inverse of the Gram matrix XTX — which turns
up in the estimation of regression coefficients as well as the estimation of Σ−1

w — has high
variance or is computationally infeasible. Similarly to ridge regression (cf., Section 3.3) the
covariance matrix (or equivalently, the Gram matrix) may be replaced by a regularized variant
Σ + δΩ. If Ω is a positive definite matrix, then there exists a large-enough positive value of
δ such that Σ + δΩ is positive definite (Petersen and Pedersen 2008). Application of this
approach to LDA leads to penalized (linear) discriminant analysis (PDA) (Hastie, Buja, and
Tibshirani 1995); the estimate of Σw is simply replaced by Σw +δΩ, otherwise the calculation
and application proceeds as before. In the remainder of this section, we will use Ω = I which
shrinks the solutions towards those obtained by assuming a spherical common covariance
matrix.

An alternative route to the solutions B of LDA/PDA is via optimal scoring (Hastie, Tibshi-
rani, and Buja 1994). The PDA optimal scoring criterion is

arg min
Θ,B
‖YΘ−XB‖2F + δ‖B‖2F subject to ΘTDπΘ = I. (46)

The matrix Θ is a scoring matrix, orthogonal in Dπ, which assigns a multiple to each column
(class) in Y. This transformation of the dummy encodings circumvents problematic situations
which otherwise make a regression approach to classification difficult (Hastie et al. 2009). As
shown in detail in (Hastie et al. 1995) and more succinctly in (Hastie et al. 1994), the optimal
B are equivalent, up to a diagonal scaling matrix, to those obtained by PDA using the
penalized within-class covariance matrix Σw + δ

nI. Differentiation, first with respect to B
and then with respect to Θ gives the standard solution; first compute a multivariate ridge
regression of X on Y yielding regression coefficients B̃ = (XTX + δI)−1XTY. Θ is then
obtained by an eigenanalysis of the matrix ŶY, where Ŷ = XB̃. The final directions B are
finally obtained by B = B̃Θ.

Similarly to the treatment of the PCA Criterion 39, we can estimate the directions βk se-
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quentially since they are orthogonal. The estimation of the kth direction involves solving

arg min
θk,βk

‖Yθk −Xβk‖22 + δ‖βk‖22 subject to ΘT
kDπΘk = I, (47)

where Θk contains the k first columns of Θ. We will now describe an alternating algorithm
which replaces the eigenanalysis-based recipe in the previous paragraph. This algorithm
then naturally extends to sparse discriminant analysis, where the ridge regression estimate
is replaced by an elastic net estimate. In line with Section 3.4, we first state the following
Lemma.

Lemma 3.3 Let Θ(k−1) with ΘT
(k−1)DπΘ(k−1) = I be the (p × k − 1) matrix containing the

first k − 1 columns of Θ. The ”fix βk, solve for θk”-problem can then be formulated as,

θ̂k = arg min
θk
‖Yθk −Xβk‖22 subject to θTkDπθk = 1, θTkDπΘ(k−1) = 0. (48)

Let s =
(
I−Θ(k−1)Θ

T
(k−1)Dπ

)
D−1
π YTXβk. Then, α̂k = s/

√
sTDπs.

Proof Appendix B.2 gives a proof for Lemma 3.2; the proof for this lemma is equivalent,
except the trivial addition of Dπ. The solution to this Lemma is also given — sans proof —
in (Clemmensen et al. 2011).

The ”fix θk, solve for βk” problem is solved by the ridge regression estimate βk = (XTX +
δI)−1XTYθk.

We initialize Θ to the size (K × K) identity matrix. The directions are then obtained se-
quentially by alternating the estimation of βk and θk until convergence. Convergence to a
global optimum for each direction is guaranteed by the convexity of the cost function and its
constraints and since each alteration is sure to lower the cost.

With this algorithm in place, it is now straight-forward to extend it to include an l1 penalty
which promotes directions βk which are sparse. This means that the space B in which the
classification is carried out, consists of a subset of the available variables. As with all sparse
methods, the possible benefits are ease of interpretation and (non-linear) suppression of noise.
The l1, l2-regularized criterion is,

{θ̂k, β̂k} = arg min
θk,βk

‖Yθk −Xβk‖22 + δ‖βk‖22 + δk‖βk‖1 subject to ΘT
kDπΘk = I, (49)

which turns the ridge regression estimation of βk from Criterion 47 into an Elastic Net es-
timate. The resulting algorithm for sparse discriminant analysis is stated in Algorithm 5.

The normalization in Step 7 helps to avoid multiplicative drift towards the trivial solution
where θk = 0 and βk = 0. To avoid additive drift we also require

∑
i(Dπθk)i = 0, i.e.,

that θk is zero-mean in Dπ. In previous treatments of optimal scoring (see e.g., Clem-
mensen et al. (2011)), the columns of Θ are explicitly forced to be orthogonal to a vector
of ones. However, it turns out that Step 6 implicitly guarantees this since Dπθk = YTXβk −
DπΘ(k−1)Θ

T
(k−1)DπD

−1
π YTXβk. The first term is clearly mean-zero since X is centered. The

second term is mean-zero if DπΘ(k−1)Θ
T
(k−1)DπD

−1
π is mean zero. DπΘ(k−1)Θ

T
(k−1)Dπ is the
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Algorithm 5 SLDA (Clemmensen et al. 2011)

1: Let Q be the number of classes and K < Q the number of discriminative directions
2: Initialize Y an n×Q matrix of indicator variables with Yi∈classjj = 1, Dπ = 1

nY
TY, and

Θ = I(Q×K)

3: for k = 1, . . . ,K do
4: while sparse discriminative direction βk has not converged do
5: Solve the elastic net problem βk = arg minβ ‖Yθk −Xβ‖2 + δ‖β‖2 + δ‖β‖1
6: θk = (I−Θ(k−1)Θ

T
(k−1)Dπ)D−1

π YTXβk (Update kth column of Θ)

7: θk = θk/
√
θTkDπθk (Normalize to unit length)

8: end while
9: end for

10: Output the coefficients B = [β1 . . . βK ]

outer product of two mean-zero matrices and results in a mean-zero matrix. Multiplying this
with the diagonal matrix D−1

π does not change this property.

To allow for a more flexible model of the density of each class one may model each class a
mixture of Gaussian distributions. Clemmensen et al. (2011) describe an extension of the
described algorithm which implements this.

4. Collaboration and verification

We use tools and principles from software engineering in the development of this toolbox.
A server-based repository (Apache Subversion (SVN) (Apache Software Foundation 2011))
allows toolbox authors to download (Update in SVN terms) the latest toolbox snapshot, apply
changes and then upload (Commit) to the server when finished. Simultaneous editing of files
is also possible where overlapping changes are merged in an intuitive way when committing
changes back to the repository.

In software engineering continuous integration (Wikipedia 2011a) refers to the practice of
committing small changes often to the repository, rather than scarce large updates. This
keeps the effort required to merge changes from different authors to a minimum. To further
improve the quality and effectiveness of the development, we employ unit testing (Wikipedia
2011b). In parallel with the development of each toolbox entity, we develop several test
scripts, each testing the one part (unit) of the code. As an example, one test file asserts
(using the Matlab assert command) that the elastic net with λ = δ = 0 equals the ordinary
least squares solution. Although we currently have no automated procedure, we aim to run
all such unit test files each time changes are uploaded to the repository. In this way, we get a
strong indication to whether the new code is working as expected, and that uploaded changes
did not break code that was working in an earlier version of the toolbox. Tables 1 and 2 list
all relevant unit tests.

Other means of verification we have used are code walkthrough, a line-by-line inspection of
finished code, and deployment of beta releases of the toolbox.
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A. Sparse regression with orthogonal predictors

Several methods have simple closed-form solutions in cases where the predictor variables are
orthogonal and have Euclidean length 1. Often, the estimation can be split into p separate
problems, one for each βi. We will quickly review how this works for the LASSO, the treatment
is similar for the Elastic Net and Least Angle Regression. We use this property for testing
purposes, cf., Table 1.

‖y −Xβ‖2 + λ‖β‖1 ⇐⇒ ‖y − xiβi‖2 + λ|βi|,∀i. (50)

Optimizing the expression for a single β̂i. involves taking first derivatives and setting to zero,

−2xTi (y − xiβi) + λ · sign(βi) = 0, i ∈ A. (51)

Using xTi y = βOLSi and xTi xi = 1 we have,

−2βOLSi + 2βi + λ · sign(βi) = 0, i ∈ A. (52)

For sufficiently large values of λ, βi will shrink to exactly zero. For any other value of λ, βi
will agree in sign with βOLSi . Therefore, we have,

βi = sign(βOLSi )

(
|βOLSi | − λ

2

)+

, ∀i, (53)

where (·)+ denotes the hinge function max(·, 0).

B. Proofs

B.1. Proof of Lemma 3.1

Using tr(AB) = tr(BA), tr(A + B) = tr(A) + tr(B) and αTk αk = 1 we have,

‖X−Xβkα
T
k ‖2F = (54)

tr
(
XTX + αkβ

T
k X

TXβkα
T
k − 2XTXβkα

T
k

)
= (55)

tr(XTX) + tr(Xβkα
T
k αkβ

T
k X

T )− 2αTkX
TXβk = (56)

tr(XTX) + tr(Xβkβ
T
k X

T )− 2αTkX
TXβk = (57)

tr(XTX) + βTk X
TXβk − 2αTkX

TXβk, (58)

which clearly has the same minimizing βk as

‖Xαk −Xβk‖22 = (59)

αTkX
TXαk + βTk X

TXβk − 2αTkX
TXβk. (60)

Differentiation of any of the expressions gives β̂k = (XTX)−1XT (Xαk). This proof is also
detailed in a slightly different context by Zou et al. (2006).

B.2. Proof of Lemma 3.2
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Incorporating the constraints into the cost function in Equation 43 using Lagrange multipliers
λ (length k − 1 vector) and γ (scalar) the problem becomes

arg min
αk

tr
[
αkβ

T
k X

TXβkα
T
k − 2αkβ

T
k X

TX + XTX
]

+ αTkA(k−1)λ+ γ(αTk αk − 1).

Differentiating and setting to zero, and solving for αk leads to

α̂k =
1

βTk X
TXβk + γ

[
XTXβk −

1

2
A(k−1)λ

]
, (61)

or equivalently,

α̂k =
1

β

[
XTXβk −A(k−1)α

]
. (62)

The orthogonality constraints give

AT
(k−1)α̂k = 0⇔ 1

β

[
AT

(k−1)X
TXβk − α

]
= 0⇔ (63)

α = AT
(k−1)X

TXβk.

Inserting this expression for α into Equation 62 and simplifying gives

α̂k =
1

β

(
I−A(k−1)A

T
(k−1)

)
XTXβk ≡

1

β
s. (64)

Finally, the constraint αTk αk = 1 gives β =
√
sT s such that α̂k = s/

√
sT s. In practice, we

first calculate s and then normalize this vector to unit length.
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Unit Test Acceptance Criterion

LAR Make sure the full LAR
model is equal to the ordi-
nary least squares model

Results are equal

LAR Make sure LAR and LASSO
are equal in cases where no
variables are dropped in the
LASSO

Results are equal

LAR Profile code on n >> p and
p >> n data sets.

Code has no apparent bot-
tlenecks

LASSO Make sure the full LASSO
model is equal to the ordi-
nary least squares model

Results are equal

LASSO Run with a data set with or-
thogonal predictor variables.
Compare to soft threshold-
ing. Cf., Appendix A

Results are equal

LASSO Profile code on n >> p and
p >> n data sets.

Code has no apparent bot-
tlenecks

Elastic Net Make sure the full Elastic
Net model is equal to the
corresponding Ridge Regres-
sion model.

Results are equal

Elastic Net Run with a data set with or-
thogonal predictor variables.
Compare to soft threshold-
ing.

Results are equal

Elastic Net Compare results with run-
ning LASSO with an Elastic
Net-style augmented data
matrix

Results are equal

Elastic Net Profile code on n >> p and
p >> n data sets.

Code has no apparent bot-
tlenecks

SPCA Compare the full SCPA
model with that of a regular
PCA. Try different values of
δ.

Results are equal regardless
of the value of δ

SPCA Profile code on n >> p and
p >> n data sets.

Code has no apparent bot-
tlenecks

SLDA Assert that the resulting op-
timal scores Z = Yθ are or-
thogonal

ZTZ/n = I

SLDA Compare the results of
SLDA with no l1 constraint
to ridge regression on the
matrix Yθ

Results are equal

Table 1: Toolbox unit tests (part 1)
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Unit Test Acceptance Criterion

SLDA Compare the results of
SLDA with no l1 constraint
to penalized discriminant
analysis (LDA using the
within-class covariance
matrix ΣW + δ

nI

Results are equal

SLDA Profile code on n >> p and
p >> n data sets.

Code has no apparent bot-
tlenecks

cholinsert Compare updates of the
Cholesky factorization to a
direct Cholesky factoriza-
tion of the corresponding
matrices

Results are equal

choldelete Compare downdates of the
Cholesky factorization to a
direct Cholesky factoriza-
tion of the corresponding
matrices

Results are equal

Table 2: Toolbox unit tests (part 2)
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