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Model checking
e Automated model-based verification and debugging technique

— model of system = Kripke structure =~ labeled transition system
— properties expressed in temporal logic like LTL or CTL
— provides counterexamples in case of property refutation

e Various striking examples
— Needham-Schroeder protocol, cache coherence, storm surge barrier, C code

e 2008: Pioneers awarded prestigious ACM Turing Award

e Today: model checking of probabilistic models
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L2224 Probabilities help

e When analysing system performance and dependability
— to quantify arrivals, waiting times, time between failure, QoS, ...
e When modelling uncertainty in the environment

— to quantify imprecisions in system inputs
— to quantify unpredictable delays, express soft deadlines, ...

e When building protocols for networked embedded systems
— randomized algorithms
e When problems are undecidable deterministically

— reachability of channel systems, ...
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Probabilistic models

Nondeterminism
no

Nondeterminism
yes

Discrete time

discrete-time
Markov chain (DTMC)

Markov decision
process (MDP)

Continuous time

CTMC

CTMDP
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Discrete-time Markov chain

a DTMC is a triple (S, P, L) with state space S and state-labelling L

and P a stochastic matrix with P (s, s") = one-step probability to jump from s to s’
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Markov decision process

an MDP is a DTMC if in each state there is only one color to choose
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Exponential pdf and cdf

Fx(d) = deA-e_A'x dr = [_e—%w]g _ ] _ e Nd
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Exponential distributions

e Are adequate for many real-life phenomena

— inter-arrival times of jobs, telephone calls, and so on

e Are memoryless: Pr{X >t+d| X >t} = Pr{X > d}

e Elementary properties:

— min(X, Y) is exponentially distributed with rate A+ p

- Pr{X = min(X,Y)} = 33,

e Can approximate general distributions arbitrarily closely

e Maximal entropy if only the mean is known
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Continuous-time MDP

a CTMDP is an MDP plus an exit-rate function r : S X Act — R+

note: when removing exit rates, an embedded MDP is obtained
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Continuous-time Markov chain

aCTMC (S,P, r, L) is a DTMC plus an exit-rate function r» : S — Ry

the average residence time in state s is

1
r(s)
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An alternative perspective

a CTMC is a triple (S, R, L) with R(s, s') = P(s, s")-r(s)

© JPK
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Modeling techniques for CTMCs

e Stochastic Petri nets (Molloy 1977)
e Markovian queueing networks (Kleinrock 1975)
e Stochastic activity networks (Meyer & Sanders 1985)
e Stochastic process algebra (Herzog et al., Hillston 1993)
e Probabilistic input/output automata (Smolka et al. 1994)
e Calculi for biological systems (Priami et al., Cardelli 2002)

CTMCs are one of the most prominent models in performance analysis
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Uniform CTMCs

e A CTMC is uniform if r(s) = r for all s for some r € R+

e Any CTMC can be changed into a weak bisimilar uniform CTMC

e Letr € Rygsuch that r > maxscgs r(s)

— % IS at most the shortest mean residence time in CTMC C

e Then u,(C) = (S,P,7, L) with 7(s) = r for any s, and:

P(s,s') = TT—S)-P(S, s)ifs'#s and P(s,s) = @-P(S,S’%L —@
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Uniformization

}—l
NIV
N
D=
NIV

— —

uniformization with k£ = 6

all state transitions in u,.(C) occur at an average pace of r per time unit
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T| m ed I’eaCh ab | I |ty (Baier, Katoen & Hermanns, 1999)

o [P;(OSTU)](s)=T ifandonlyif Pr{spE oS0} eJ

e Pr(s &= OS' ) is the least solution of:

—1ifsE=U

— otherwise:

t
/ Z P(s,s',z) - Pr(s' | OS"0) dx
0

s'eS

e Reduction to well-studied problem allows efficient, stable computation
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Reachability probabilities

Nondeterminism

Nondeterminism

no yes
Reachability || linear equation system | linear programming
DTMC MDP
Timed reachability transient analysis greedy backward
(+ uniformization) reachability

CTMC

uniform CTMDP
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Probabilistic bisimulation

coincides with CSL equivalence

- s~s & (VP e€CSL:s|=®ifandonlyif s’ = @)

. its coarsest quotient can be obtained in O(|P|-log|S|)
. may be tailored to property of interest
. offers fully automated and efficient abstraction

. but for LTL/CTL minimization effort >> verification time

© JPK
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Pl‘ObabI|IStIC b|S| m U|ati0n (Kemeny & Snell, 1962), (Larsen & Skou, 1989)

e LetC = (5,P,r, L) beaCTMC and R an equivalence on S
e R is a strong bisimulation on S if for any (s, s’) € R:

L(s) = L(s’) and r(s) = r(s’) and
P(s,C) = P(s,C) forall CeS/R
where P(s,C) = > ~P(s,u)

e s ~ s’ iff 4 a strong bisimulation R on S with (s,s’) € R
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IEEE 802.11 group communication protocol

original CTMC lumped CTMC red. factor

OD states transitions ver. time blocks | lump + ver. time | states | time
4 1125 5369 121.9 71 13.5 15.9 | 9.00
12 37349 236313 7180 1821 642 205 | 11.2
20 231525 1590329 50133 10627 5431 21.8 9.2
28 804837 5750873 195086 35961 24716 22.4 7.9
36 | 2076773 | 15187833 | 5103900 91391 77694 22.7 6.6
40 | 3101445 | 22871849 | 7725041 135752 127489 22.9 6.1
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BitTorrent-like P2P protocol

symmetry reduction

original CTMC reduced CTMC red. factor
N states ver. time | states | red.time | ver.time | states time
2 1024 5.6 528 12 2.9 1.93 0.38
3 32768 410 5984 100 59 5.48 2.58
4 1048576 22000 52360 360 820 20.0 18.3

bisimulation minimisation

original CTMC lumped CTMC red. factor
N states ver. time | blocks | lump time | ver. time states time
2 1024 5.6 56 1.4 0.3 18.3 3.3
3 32768 410 252 170 1.3 130 2.4
4 1048576 22000 792 10200 4.8 | 1324 2.2

bisimulation may reduce a factor 66 after (manual) symmetry reduction
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Can we abstract more?

e Partition the state space into groups of concrete states

— allow any partitioning, not just grouping of bisimilar states

e Use a three-valued semantics

— abstraction is conservative for both negative and positive verification results
— if verification yields don’t know, validity in concrete model is unknown

e Challenges:

— what are abstract probabilistic models?

— how to interpret PCTL/CSL on these abstract models?
— how to verify abstractions?

— how accurate are abstractions in practice?
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The discrete-time setting

An abstract MC (AMC) is a quintuple D = (S, P!, P%, L) with:
e P/ P%: 8 x S+ |0,1], transition probability bounds where

P'(5,9) <1< P%s,5) <00 forallse S

e L:SXxAP—{T, 1,7}, the labeling function

This is also known as interval Markov chains (kozine & Utkin, 2002)
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Abstraction

For A={A,...,A,} et AMC a(A, D) := (A, P', P, L) with:

P'(A;, Aj) = inf P'(s, A;) and P“(A;, A;) = min{1, sup P"(s, 4;) }
sE& i

SEAi

and L(A;, a)

1 ifL(s,a) =1 foralls € A;

T ifL(s,a) =T forall s € A,
?  otherwise
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Normalization

removes illegal probability combinations

an AMC is normalized if for each pair (s, s’) and p € [P'(s, s'), P%(s, )]
there exists a distribution p with u(s”) = p

© JPK
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8 — .
08 g’(t) =35 (1 —e 100 t)

_ 6100»t)§ /

P(Au, Ay) = {f,f,f"}; butsup F and inf F are unequal p - (1 — e *")

Ve
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Uniformize before abstraction!

e For uniform CTMCs all exit rates are equal to r (say), and thus:

infsea P(s, B, 1)

(1—e ") infeeaP(s,B) = (1 —e ") py
(1—e ") sup,e s P(s,B) = (1 —e ")py,
supgc 4 P(s, B, t)

/N

— py1, Py are lower and upper bounds of time-independent transition probabilities

e Recall that any CTMC C can be turned into a uniform CTMC u,.(C)

— in linear time while preserving CSL (no next) formulas as C = u,.(C)
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Correctness: simulation relation

e LetC = (5,P,r, L) be aCTMC and R a binary relation on S

e R is a simulation relation on S if for all (s, s’) € R:

L(s) =L(s") and P(s,-) Cg P(s',:) and r(s) < r(s’)

e s’ simulates s, denoted s C s/, if

there exists a simulation relation R on S such that (s, s’) € R

it remains to show how L i between distributions is defined
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We| g ht fu n Ct| on (Jones & Plotkin, 1990)

e Let S be acountable set, R C S x S, and u, i’ € Dist(S)

e A € Dist(S x 5) is a weight function for x4 and p’ wrt. R if:

— A(s,s’) > 0implies (s,s') € R
- p(s) =3 gcgA(s,s') forany s € S
— p'(s") =3, csA(s,s) forany s" € S

e 1 Ly iff there exists a weight function for (u, u') wrt. R

— or, equivalently, the maximal flow in a flow network equals one

[ g is the lifting of R (on states) to distributions

© JPK
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Simulation as maximal flow

wWIiN

Wl
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Correctness (atoen et al., 2007)

For AMC C with state space S, and partitioning .A of S

C Ca(A,/C

For states s and s’ of AMC C with s C s:

VO € CSL: [®](s') #? implies [®](s)=[®](s)

© JPK
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Policies

e A policy resolves the nondeterminism as given by the intervals

— consider time-abstract, history-dependent deterministic policies

— there are infinitely many of such policies

— on an AMC, such policies induce an (infinite-state) continuous-time Markov
chain

e Extreme policies only select bounds of intervals

— there are finitely many (possibly exponentially many) of such policies

For any measurable event E (in the o-algebra on infinite paths):

S S S S
inf Pr(FE) = inf Pr(EF) and sup Pr(E) = sup Pr(F)

extreme & any 6 extreme & any &
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Reachability probabilities

For C C C' and compatiblesets G C S, G' C S’

there exists for any policy G on C a policy &’ on C’ such that:

S &’
Pr(¢™ G) = Pr(¢8 @) forany k € N

S &'
Pr(¢N G) = Pr(ON G') forany t € R

computing (time-)bounded probabilities is as in (CT)MDPs

© JPK
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Application 1

Systems biology: substrate conversion

© JPK
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Eile History Bookmarks Tools Help |
& - |\‘¢' http:/ren.wikipedia.org/wiki/Enzyme il | '| Eb]
reaction, the reaction is effectively irreversible. Under these conditions the enzyme will, in fact, only stabilizes the transition state, reducing the energy nesded to -
catalyze the reaction in the thermodynamically allowed direction form this species and thus reducing the energy required to
form products.
Kinetics
Main arficle: Enzyme Kinetics
Catalyii Enzyme kinetics is the investigation of how enzymes bind substrates and turn them into products. The
alalytic step rate data used in kinetic analyses are obtained from enzyme assays.
1
In 1902 Victor Henri P proposed a quantitative theory of enzyme kinetics, but his experimental data
E+S<—=—ES ——E+P
+ ——— + were not useful because the significance of the hydrogen ion concentration was not yet appreciated.
- After Peter Lauriz Serensen had defined the logarithmic pH-scale and introduced the concept of
Substrate binding buffering in 1909 the German chemist Leonor Michaelis and his Ganadian postdoc Maud Leonora
Mechanism for a single substrate enzyme catal yzed fow| Menten repeated Henri's experiments and confirmed his equation which is referred to as J
reaction. The enzyme (E) binds a subetrate (S) and produces. Henri-Michaelis-Menten kinetics (semetimes also Michaelis-Menten kineﬂcs}.m Their work was further
ALLERER Y developed by G. E. Briggs and J. B. 5. Haldane, who derived kinetic equations that are still widely
used today. ¥
The major contribution of Henri was to think of enzyme reactions in two stages. In the first, the substrate binds reversibly to the enzyme, forming the
enzyme-substrate complex. This is sometimes called the Michaelis complex. The enzyme then catalyzes the chemical step in the reaction and releases the
product
Enzymes can catalyze up to several million reactions per second. For example, the reaction catalyzed
by orofidine 5'-phosphate decarboxylase will consume half of its substrate in 78 million years if no
enzyme is present. However, when the decarboxylase is added, the same process takes just 25
milliseconds Enzyme rates depend on solution conditions and subsirate concentration. Conditions [
that denature the protein abolish enzyme activity, such as high temperatures, extremes of pH or high =
5
salt concentrations, while raising substrate conceniration tends to increase activity. To find the §
maximum speed of an enzymatic reaction, the substrate concentration is increased until a constant rate 2
of product formation is seen. This is shown in the saturation curve on the right. Saturation happens .
because, as subsirate concentration increases, more and more of the free enzyme is converted into 0.05 e
the substrate-bound ES form. At the maximum velocity (V__ ) of the enzyme, all the enzyme active 0.00 . - . ,
max 0 1000 2000 3000 4000
sites are bound to substrate, and the amount of ES complex is the same as the total amount of Substrate concentration
enzyme. However, me‘ is only one kinetic constant of enzymes. The amount of substrate needed to Saturation curve for an enzyme reaction showing the &
achieve a given rate of reaction is also important. This is given by the Michaelis-Menten constant (K ), relation between the substrate concentration (8) and rate (v)
which is the substrate concentration required for an enzyme to reach one-half its maximum velogcity.
Each enzyme has a characteristic K_for a given substrate, and this can show how tight the binding of the substrate is to the enzyme. Another useful constant is hd
Done

© JPK
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A Markov chain model

init  goal

States:  enzymes 2 2

substrate molecules 4 0

complex molecules 0 0

2 )2 , 14 : product molecules 0 4

2 1
0022 1000 11013 }1999 (5004

" 1 0.001
Transitions: £ + S f C ——FE+ P

0.001-z ¢

€.g., (xE7xSJxCJxP) (CBE +1l,zg,zc—1,2p + 1) for rc >0
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Abstraction

2400 [0, ...]
1310 2301 [0,..]
States:
0220 1211 2202 [0,...]
0121 1112 2103
0022 1013 2004

" 1 0.001
Transitions: £ + S f C ——FE+ P

0.001-z ¢

e.g., (xE7 s, TC, CI?P)

enzymes

substrate molecules
complex molecules
product molecules

(xp+ l,zg,z¢c — 1, zp+ 1) forzc > 0

init

S O

goal

© JPK
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Verification times (200 substrates, 20 enzymes)
1 I S—I
0,8
k=1024, min A S| time
@ k=1024, max -
2 o6l k=1024, diff 50 861 Om bs
& I 300 | 6111 | 37m 36s
£ k=2048, dif 500 | 10311 | 70m 39s
S g4l — k=4096, min ) o )
3 ———— k=4096, max 1000 | 20811 | 144m 49s
o _ .
A, Al 1500 | 31311 | 214m 2s
0,2 2000 | 41811 | 322m 50s
10.00.0> 12.600 14.600 16.660 | 18600 ..... 20600
time bound

exploiting a generalized abstraction collapsing k transitions

© JPK
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Results

e Abstraction of enzyme-catalyzed substrate conversion

— bisimulation does not yield any reduction
— three-valued abstraction: reduction of state space of factor 20
— reduction of verification time with an order of magnitude

e Difficult analysis due to stiffness of Markov chain

— standard approach needs about 6-107 iterations

e Approximation is rather close to exact results

— but approximation error cannot be estimated a priori

© JPK
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Application 2

Queuing networks: tree-based QBDs

© JPK 38



M

Tree-based OBDs: M/PH-»/1 queue

%]
% X , .
L] R| l |
L ZI+R[ \II-I»RI

(1) == == (2) L -
b = & L
O N\ o —C
LI',./"/ \Q‘\‘R]‘ L]// '-\\R]‘ \_ —_— ]—W _—— - )
V2N Jeim\ |
(1,1) 5= (1,2) (2,1) 5= (2,2) LT\, /1l

Queueing station

preemptive LIFO scheduling

-
» arrival distribution: exponentially with rate L| +R|

» service distribution: phase-type distributed (see CTMC right)
B

one service station
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A grid-like abstraction

Group all states with the same number of jobs in each service phase

(in the first 2 queued jobs)

grid-like
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Experiments

Measure of interest
Given an initial queue, what is the probability to serve
all but £ jobs within ¢ time units?

Overview

1.

o & N

Precision w.r.t. partitioning schemes
Influence of the cut level goal level
Influence of the goal level
Refinement for the grid scheme Ut fevel

Phase-type 5 service distribution

© JPK
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Comparing different partitioning schemes
Parameters: L|=2, R|=3,L =4, R=5,L|=75,Rl=10 = p,=0.57

Initial state: (1,2,1,2,1,2,1,2) - Goal level: 0 - Cut level: 12

from now on:

focus on grid-scheme

0.1

%~ 20 40 60 80 100 120
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0.9}
0.8/
0.7
0.6/

Parameters: ...with p, = 0.77 p
2 0.5/
o

Initial state: (1,2.3.4,5,1.2,3) 0.4/
0.3}
Goal level: 0 0.2/

0.1

%" 50 100 150 200 250 300 350 400
!

grid abstraction uniformization

diff | grid 12 grid 16 gid 20 gid 24 grid 28 grid 32 grid 36 giid 40 || trunc | = states

50| 0.0224 0.001 107% 107° 10~° 10-° 10°° 1079 1058 | 10™°

t 150 0.3117 0.0580 0.0062 0.0004 10-° 10-% 10-¢ 10-% | 2909 | 102932

300 | 0.4054 0.1345 0.0376 0.0086 0.0015 0.0002 2-10~% 3.107%| 5607 | 10391

states 6188 20349 53130 118755 237336 435894 749398 1221759
distributions | 28666 96901 256796 579151 1164206 2146761 3701296 6047091
time (h:m:s) [ 0:00:26 0:01:33 0:04:15 0:09:50 0:20:14 0:38:13 1:07:57 2:06:04
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Compositional abstraction

e Interactive Markov chains (IMCs)

— mixture of labeled transition systems and CTMCs
— allow for compositional modeling and minimisation

e Abstract IMCs = AMC + MTS

— use interval abstraction (AMC)

— and modal transition systems (MTS)
e Aim: abstract component-wise

— replace M; by a(M,;)
— then M4||...||M, by a(M)]|]...||la(M,)

S0

© JPK
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Compositional abstraction
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may b
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Compositional abstraction

b
| may b
a
So
\ ! /// | \\
. - - 1 2 i
]_ /,’, -];' :3 1|§ S
-7 // ‘ N 7
S I S o /’ \ !
@ a ~ 7 -~ - \/.)
| » 1 1, 4] £, 2]
\\/; \‘\__-’/ 3" 2 2" 3
1 1
3
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b

a

Compositional abstraction

may b

a
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Compositional abstraction

b
may b

a

S0
" »
. .*° R
~N A = l—
1 R 2 /3
0" - //

S
i\// ~~~ "¢'
1 1

3
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Parallel composition
may b may b

—~—
S
H—/

© JPK
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Parallel composition

may b

may b
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Parallel composition

may b may b
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Parallel composition

may b

may b

54
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Symmetric composition

may b
O St
(v)
Loy 5l

Multisets representing tuples: {|s, u|} = {(s,u), (u, s)

5) }

© JPK
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Theoretical results

e Symmetric composition and parallel composition are bisimilar

A M o~ Mlla. .- llaM

Ve

n times

e Simulation is a pre-congruence wrt. || and symmetric composition

M1 E Nl and ./\/12 E N2 implies ./\/l1 HAMQ E N1 HANQ
e Bisimulation is a congruence wrt. || and symmetric composition

e Abstracting many parallel “similar” components:

forall i M; & N implies My ||a...||la M, C|||%s N
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A production example

» Workers M; (8 states)

» Counting process Q (44 states)

(M [|p Mz [[p M3) |[a Q

» Replace M, by abstract worker N/ (6 states)

o N) |la @

o N

WV

» Exploit symmetry by using multisets:
{|s, s,ul} instead of (s,s,u), (s,u,s), (u,s,s)
|la Q 2464 states

(I1a M)

57
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Some related work

e Modal transition systems

e MDP abstraction for reachability
e Game-based abstraction

e Magnifying lens abstraction

e Optimal abstraction of DTMCs
e Probabilistic CEGAR

¢ Sliding-window abstraction

(Larsen and Thomsen LICS 1988)

(Larsen et al. PAPM 2002)

(Kwiatkowska et al. QEST 2007)

(De Alfaro & Roy CAV 2007)

(Huth et al. QEST 2008)

(Hermanns et al. CAV 2008)

(Henzinger et al. CAV 2009)

but mostly discrete-time setting only and not compositional

© JPK
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Abstraction

has a well-founded theory

allows for analyzing huge models

applicable to discrete- and continuous models
can be applied compositionally

extendible with costs

offers many interesting challenges!

more information: noves. r vt h- aachen. de/ ~ kat oen
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Principles of Model Checking

CHRISTEL BAIER

TU Dresden, Germany

JOOST-PIETER KATOEN

RWTH Aachen University, Germany, and

Principles of Model Checking University of Twente, the Netherlands

Christel Baier and Joost-Pieter Katoen

“This book offers one of the most comprehensive introductions to logic model checking techniques
available today. The authors have found a way to explain both basic concepts and foundational theory
thoroughly and in crystal clear prose. Highly recommended for anyone who wants to learn about this
important new field, or brush up on their knowledge of the current state of the art.”

(Gerard J. Holzmann, NASA JPL, Pasadena)
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