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Model checking
• Automated model-based verification and debugging technique

– model of system = Kripke structure ≈ labeled transition system
– properties expressed in temporal logic like LTL or CTL
– provides counterexamples in case of property refutation

• Various striking examples

– Needham-Schroeder protocol, cache coherence, storm surge barrier, C code

• 2008: Pioneers awarded prestigious ACM Turing Award

• Today: model checking of probabilistic models
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Probabilities help

• When analysing system performance and dependability

– to quantify arrivals, waiting times, time between failure, QoS, ...

• When modelling uncertainty in the environment

– to quantify imprecisions in system inputs
– to quantify unpredictable delays, express soft deadlines, ...

• When building protocols for networked embedded systems

– randomized algorithms

• When problems are undecidable deterministically

– reachability of channel systems, ...
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Probabilistic models

Nondeterminism Nondeterminism
no yes

Discrete time discrete-time Markov decision
Markov chain (DTMC) process (MDP)

Continuous time CTMC CTMDP
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Discrete-time Markov chain
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a DTMC is a triple (S, P, L) with state space S and state-labelling L

and P a stochastic matrix with P(s, s′) = one-step probability to jump from s to s′
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Markov decision process
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an MDP is a DTMC if in each state there is only one color to choose
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Exponential pdf and cdf
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0
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Exponential distributions

• Are adequate for many real-life phenomena

– inter-arrival times of jobs, telephone calls, and so on

• Are memoryless: Pr{X > t + d | X > t} = Pr{X > d}

• Elementary properties:

– min(X, Y ) is exponentially distributed with rate λ+µ

– Pr{X = min(X, Y )} = λ
λ+µ

• Can approximate general distributions arbitrarily closely

• Maximal entropy if only the mean is known
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Continuous-time MDP

a CTMDP is an MDP plus an exit-rate function r : S × Act → R�0
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note: when removing exit rates, an embedded MDP is obtained
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Continuous-time Markov chain

a CTMC (S, P, r, L) is a DTMC plus an exit-rate function r : S → R�0

s

25

t

4

u

2
1
2

v

100

1
2

1
2

1
2

1

1

the average residence time in state s is
1

r(s)
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An alternative perspective

a CTMC is a triple (S, R, L) with R(s, s′) = P(s, s′)·r(s)
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Modeling techniques for CTMCs

• Stochastic Petri nets (Molloy 1977)

• Markovian queueing networks (Kleinrock 1975)

• Stochastic activity networks (Meyer & Sanders 1985)

• Stochastic process algebra (Herzog et al., Hillston 1993)

• Probabilistic input/output automata (Smolka et al. 1994)

• Calculi for biological systems (Priami et al., Cardelli 2002)

CTMCs are one of the most prominent models in performance analysis
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Uniform CTMCs

• A CTMC is uniform if r(s) = r for all s for some r ∈ R>0

• Any CTMC can be changed into a weak bisimilar uniform CTMC

• Let r ∈ R>0 such that r � maxs∈S r(s)

– 1
r is at most the shortest mean residence time in CTMC C

• Then ur(C) = (S,P, r, L) with r(s) = r for any s, and:

P(s, s′) =
r(s)
r

·P(s, s′) if s′ �= s and P(s, s) =
r(s)
r

·P(s, s′)+1−r(s)
r
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Uniformization
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all state transitions in ur(C) occur at an average pace of r per time unit
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Timed reachability (Baier, Katoen & Hermanns, 1999)

• [[ PJ(��t Ψ) ]](s) = � if and only if Pr {s |= ��t Ψ} ∈ J

• Pr(s |= ��t Ψ) is the least solution of:

– 1 if s |= Ψ

– otherwise:

∫ t

0

∑
s′∈S

P(s, s′, x) · Pr(s′ |= ��t−x Ψ) dx

• Reduction to well-studied problem allows efficient, stable computation
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Reachability probabilities

Nondeterminism Nondeterminism
no yes

Reachability linear equation system linear programming
DTMC MDP

Timed reachability transient analysis greedy backward
(+ uniformization) reachability

CTMC uniform CTMDP
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Probabilistic bisimulation

• . . . coincides with CSL equivalence

– s ∼ s′ ⇔ `∀Φ ∈ CSL : s |= Φ if and only if s′ |= Φ
´

• . . . its coarsest quotient can be obtained in O(|P|· log |S|)

• . . . may be tailored to property of interest

⇒ . . . offers fully automated and efficient abstraction

• . . . but for LTL/CTL minimization effort >> verification time
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Probabilistic bisimulation (Kemeny & Snell, 1962), (Larsen & Skou, 1989)

• Let C = (S,P, r, L) be a CTMC and R an equivalence on S

• R is a strong bisimulation on S if for any (s, s′) ∈ R:

L(s) = L(s′) and r(s) = r(s′) and

P(s, C) = P(s′, C) for all C ∈ S/R

where P(s, C) =
∑

u∈C P(s, u)

• s ∼ s′ iff ∃ a strong bisimulation R on S with (s, s′) ∈ R

c© JPK 17



IEEE 802.11 group communication protocol

original CTMC lumped CTMC red. factor

OD states transitions ver. time blocks lump + ver. time states time
4 1125 5369 121.9 71 13.5 15.9 9.00

12 37349 236313 7180 1821 642 20.5 11.2

20 231525 1590329 50133 10627 5431 21.8 9.2

28 804837 5750873 195086 35961 24716 22.4 7.9

36 2076773 15187833 5103900 91391 77694 22.7 6.6

40 3101445 22871849 7725041 135752 127489 22.9 6.1
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BitTorrent-like P2P protocol

symmetry reduction
original CTMC reduced CTMC red. factor

N states ver. time states red. time ver. time states time
2 1024 5.6 528 12 2.9 1.93 0.38
3 32768 410 5984 100 59 5.48 2.58
4 1048576 22000 52360 360 820 20.0 18.3

bisimulation minimisation
original CTMC lumped CTMC red. factor

N states ver. time blocks lump time ver. time states time
2 1024 5.6 56 1.4 0.3 18.3 3.3
3 32768 410 252 170 1.3 130 2.4
4 1048576 22000 792 10200 4.8 1324 2.2

bisimulation may reduce a factor 66 after (manual) symmetry reduction
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Can we abstract more?

• Partition the state space into groups of concrete states

– allow any partitioning, not just grouping of bisimilar states

• Use a three-valued semantics

– abstraction is conservative for both negative and positive verification results
– if verification yields don’t know, validity in concrete model is unknown

• Challenges:

– what are abstract probabilistic models?
– how to interpret PCTL/CSL on these abstract models?
– how to verify abstractions?
– how accurate are abstractions in practice?
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The discrete-time setting

An abstract MC (AMC) is a quintuple D = (S,Pl,Pu, L) with:

• Pl,Pu : S × S �→ [0, 1], transition probability bounds where

Pl(s, S) � 1 � Pu(s, S) < ∞ for all s ∈ S

• L : S × AP �→ {�,⊥, ? }, the labeling function

This is also known as interval Markov chains (Kozine & Utkin, 2002)
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Abstraction

For A = {A1, . . . , An } let AMC α(A,D) := (A, P̃l, P̃u, L̃) with:

P̃l
(Ai, Aj) = inf

s∈Ai
Pl

(s, Aj) and P̃u
(Ai, Aj) = min{ 1, sup

s∈Ai

Pu
(s, Aj) }

and L̃(Ai, a) =

8<
:

� if L(s, a) = � for all s ∈ Ai

⊥ if L(s, a) = ⊥ for all s ∈ Ai

? otherwise
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Normalization

removes illegal probability combinations
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an AMC is normalized if for each pair (s, s′) and p ∈ [Pl(s, s′), Pu(s, s′)]
there exists a distribution µ with µ(s′) = p
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The continuous-time setting
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F

; but sup F and inf F are unequal p · (1 − e−k·t)
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Uniformize before abstraction!

• For uniform CTMCs all exit rates are equal to r (say), and thus:

infs∈A P(s, B, t) = (1 − e−r·t)· infs∈A P(s, B) = (1 − e−r·t)·pl

� (1 − e−r·t)· sups∈A P(s,B) = (1 − e−r·t)·pu

= sups∈A P(s,B, t)

– pl, pu are lower and upper bounds of time-independent transition probabilities

• Recall that any CTMC C can be turned into a uniform CTMC ur(C)

– in linear time while preserving CSL (no next) formulas as C ≈ ur(C)
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Correctness: simulation relation

• Let C = (S,P, r, L) be a CTMC and R a binary relation on S

• R is a simulation relation on S if for all (s, s′) ∈ R:

L(s) = L(s′) and P(s, ·) 
R P(s′, ·) and r(s) � r(s′)

• s′ simulates s, denoted s � s′, if

there exists a simulation relation R on S such that (s, s′) ∈ R

it remains to show how 
R between distributions is defined
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Weight function (Jones & Plotkin, 1990)

• Let S be a countable set, R ⊆ S × S, and µ, µ′ ∈ Dist(S)

• ∆ ∈ Dist(S × S) is a weight function for µ and µ′ wrt. R if:

– ∆(s, s′) > 0 implies (s, s′) ∈ R

– µ(s) =
P

s′∈S ∆(s, s′) for any s ∈ S

– µ′(s′) =
P

s∈S ∆(s, s′) for any s′ ∈ S

• µ �R µ′ iff there exists a weight function for (µ, µ′) wrt. R

– or, equivalently, the maximal flow in a flow network equals one


R is the lifting of R (on states) to distributions
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Simulation as maximal flow
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Correctness (Katoen et al., 2007)

For AMC C with state space S, and partitioning A of S:

C 
 α(A, C)

For states s and s′ of AMC C with s 
 s′:

∀Φ ∈ CSL : [[ Φ ]](s′) �= ? implies [[ Φ ]](s) = [[ Φ ]](s′)
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Policies

• A policy resolves the nondeterminism as given by the intervals

– consider time-abstract, history-dependent deterministic policies
– there are infinitely many of such policies
– on an AMC, such policies induce an (infinite-state) continuous-time Markov

chain

• Extreme policies only select bounds of intervals

– there are finitely many (possibly exponentially many) of such policies

For any measurable event E (in the σ-algebra on infinite paths):

inf
extreme S

S

Pr(E) = inf
any S

S

Pr(E) and sup
extreme S

S

Pr(E) = sup
any S

S

Pr(E)
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Reachability probabilities

For C ⊆ C′ and compatible sets G ⊆ S, G′ ⊆ S′

there exists for any policy S on C a policy S′ on C′ such that:

S

Pr(��k G) =
S′
Pr(��k G′) for any k ∈ N

S

Pr(��t G) =
S′
Pr(��t G′) for any t ∈ R�0

computing (time-)bounded probabilities is as in (CT)MDPs
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Application 1

Systems biology: substrate conversion
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Enzyme-catalysed substrate conversion
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A Markov chain model
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init goal
States: enzymes 2 2

substrate molecules 4 0
complex molecules 0 0
product molecules 0 4

Transitions: E + S
1�
1

C 0.001−−−−→E + P

e.g., (xE, xS, xC, xP )
0.001·xC−−−−−−−→ (xE + 1, xS, xC − 1, xP + 1) for xC > 0
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Abstraction
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Verification times (200 substrates, 20 enzymes)
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exploiting a generalized abstraction collapsing k transitions
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Results

• Abstraction of enzyme-catalyzed substrate conversion

– bisimulation does not yield any reduction
– three-valued abstraction: reduction of state space of factor 20
– reduction of verification time with an order of magnitude

• Difficult analysis due to stiffness of Markov chain

– standard approach needs about 6·107 iterations

• Approximation is rather close to exact results

– but approximation error cannot be estimated a priori
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Application 2

Queuing networks: tree-based QBDs
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Tree-based QBDs: M/PH2/1 queue
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A grid-like abstraction
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Experiments
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Comparing different partitioning schemes
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Experiments with a M/PH5/1 queue
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Compositional abstraction

• Interactive Markov chains (IMCs)

– mixture of labeled transition systems and CTMCs
– allow for compositional modeling and minimisation

• Abstract IMCs = AMC + MTS

– use interval abstraction (AMC)
– and modal transition systems (MTS)

• Aim: abstract component-wise

– replace Mi by α(Mi)

– then M1|| . . . ||Mn by α(M1)|| . . . ||α(Mn)
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Compositional abstraction
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Compositional abstraction
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Compositional abstraction
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Compositional abstraction
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Compositional abstraction
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Compositional abstraction
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Parallel composition
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Parallel composition
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Parallel composition
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Parallel composition
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Symmetric composition
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Theoretical results

• Symmetric composition and parallel composition are bisimilar

|||nA M ∼ M||A . . . ||A M| {z }
n times

• Simulation is a pre-congruence wrt. || and symmetric composition

M1 
 N1 and M2 
 N2 implies M1 ||A M2 
 N1 ||A N2

• Bisimulation is a congruence wrt. || and symmetric composition

• Abstracting many parallel “similar” components:

for all i Mi 
 N implies M1 ||A . . . ||A Mn 
 |||nA N
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A production example
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Some related work

• Modal transition systems (Larsen and Thomsen LICS 1988)

• MDP abstraction for reachability (Larsen et al. PAPM 2002)

• Game-based abstraction (Kwiatkowska et al. QEST 2007)

• Magnifying lens abstraction (De Alfaro & Roy CAV 2007)

• Optimal abstraction of DTMCs (Huth et al. QEST 2008)

• Probabilistic CEGAR (Hermanns et al. CAV 2008)

• Sliding-window abstraction (Henzinger et al. CAV 2009)

but mostly discrete-time setting only and not compositional
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Abstraction

• . . . . . . has a well-founded theory

• . . . . . . allows for analyzing huge models

• . . . . . . applicable to discrete- and continuous models

• . . . . . . can be applied compositionally

• . . . . . . extendible with costs

• . . . . . . offers many interesting challenges!

more information: moves.rwth-aachen.de/˜katoen

c© JPK 59



Principles of Model Checking

CHRISTEL BAIER

TU Dresden, Germany

JOOST-PIETER KATOEN

RWTH Aachen University, Germany, and

University of Twente, the Netherlands

“This book offers one of the most comprehensive introductions to logic model checking techniques

available today. The authors have found a way to explain both basic concepts and foundational theory

thoroughly and in crystal clear prose. Highly recommended for anyone who wants to learn about this

important new field, or brush up on their knowledge of the current state of the art.”

(Gerard J. Holzmann, NASA JPL, Pasadena)

c© JPK 60



Literature

• Bisimulation minimization during model checking

– [Katoen, Kemna, Zapreev & Jansen, TACAS 2007]

• Theory of interval abstraction

– [Katoen, Klink, Leucker & Wolf, CAV 2007]

• Improvement by Erlang abstraction

– [Katoen, Klink, Leucker & Wolf, CONCUR 2008]

• Abstraction of M/PH/k queues

– [Klink, Remke, Haverkort & Katoen, QEST 2009]

• Compositional abstraction

– [Katoen, Klink & Neuhäusser, FORMATS 2009]
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