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Preface 
 

Because of their unpredictable appearance and shape, segmenting brain tumors 
from multi-modal imaging data is one of the most challenging tasks in medical 

image analysis. Although many different segmentation strategies have been 

proposed in the literature, it is hard to compare existing methods because the 
validation datasets that are used differ widely in terms of input data (structural 

MR contrasts; perfusion or diffusion data; ...), the type of lesion (primary or 

secondary tumors; solid or infiltratively growing), and the state of the disease 

(pre- or post-treatment).  
 

In order to gauge the current state-of-the-art in automated brain tumor 

segmentation and compare between different methods, we are organizing a 
Multimodal Brain Tumor Segmentation (BRATS) challenge that is held in 

conjunction with the 15th International Conference on Medical Image Computing 
and Computer Assisted Intervention (MICCAI 2012) on October 1st, 2012 in 
Nice, France.  

 
For this purpose, we are making available a large dataset of brain tumor MR 

scans in which the tumor and edema regions have been manually delineated. In 

addition, we also provide realistically generated synthetic brain tumor datasets 

for which the ground truth segmentation is known. All images show low- or high-
grade glioma cases.

 
Participating teams downloaded the training data for algorithmic tweaking and 

tuning. The teams then evaluated their segmentation performance on the 
training data, and submitted a short paper describing the results and the 
segmentation method that was used that were subsequently reviewed by the 

organizing committee. A total of 12 submissions were accepted for the final 
challenge. The corresponding short papers describing training results and the 

methodological approaches are summarized in this volume. 

 
On the day of the challenge itself, an independent set of test scans is made 

available and analyzed on the spot by each team, after which the methods are 

ranked according to their performance. The challenge concludes with a round-

table discussion of the obtained results as well as invited talks by clinical 
experts.  

 

In the weeks following the challenge participating teams will be invited to 
contribute to a joint paper describing and summarizing the challenge outcome, 

which we will then submit to a high-impact journal in the field.  

 

Bjoern Menze, Andras Jakab, Stefan Bauer,  

Mauricio Reyes, Marcel Prastawa, Koen Van Leemput 

 

August 2012 
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Abstract. We describe our submission to the Brain Tumor Segmenta-
tion Challenge (BraTS) at MICCAI 2012, which is based on our method
for tissue-specific segmentation of high-grade brain tumors [3].
The main idea is to cast the segmentation as a classification task, and
use the discriminative power of context information. We realize this idea
by equipping a classification forest (CF) with spatially non-local features
to represent the data, and by providing the CF with initial probability
estimates for the single tissue classes as additional input (along-side the
MRI channels). The initial probabilities are patient-specific, and com-
puted at test time based on a learned model of intensity. Through the
combination of the initial probabilities and the non-local features, our
approach is able to capture the context information for each data point.
Our method is fully automatic, with segmentation run times in the
range of 1-2 minutes per patient. We evaluate the submission by cross-
validation on the real and synthetic, high- and low-grade tumor BraTS
data sets.

1 Introduction

This BraTS submission is based on our work presented in [3]. We approach the
segmentation of the tumor tissues as a classification problem, where each point
in the brain is assigned a certain tissue class. The basic building block of our
approach is a standard classification forest (CF), which is a discriminative multi-
class classification method. Classification forests allow us to describe brain points
to be classified by very high-dimensional features, which are able to capture
information about the spatial context. These features are based on the multi-
channel intensities and are spatially non-local. Furthermore, we augment the
input data to the classification forest with initial tissue probabilities, which are
estimated as posterior probabilities resulting from a generative intensity-based
model, parametrized by Guassian Mixture models (GMM). Together with the
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2 D. Zikic et al.

(B) initial tissue probabilities (A) input data: MRI 

(C) segmentation 

Classification Forest 
• spatially non-local, context-sensitive features 
• simultaneous multi-label classification 

Estimation of initial probabilities: 
posteriors based on tissue-specific  
intensity-based models (GMM-based) 

Model-B Model-T Model-E pB pT pE T1-gad T1 T2 FLAIR 

Fig. 1: Schematic Method Overview: Based on the input data (A), we first
roughly estimate the initial probabilities for the single tissues (B), based on
the local intensity information alone. In a second step, we combine the initial
probabilities (B) with the input data from (A), resulting in a higher-dimensional
multi-channel input for the classification forest. The forest computes the segmen-
tation (C) by a simultaneous multi-label classification, based on non-local and
context-sensitive features.

context-sensitive features, the initial probabilities as additional input increase
the amount of context information and thus improve the classification results.

In this paper, we focus on describing our BraTS submission. For more details
on motivation for our approach and relation to previous work, please see [3].

2 Method: Context-sensitive Classification Forests

An overview of our approach is given in Figure 1. We use a standard classi-
fication forest [1], based on spatially non-local features, and combine it with
initial probability estimates for the individual tissue classes. The initial tissue
probabilities are based on local intensity information alone. They are estimated
with a parametric GMM-based model, as described in Section 2.1. The initial
probabilities are then used as additional input channels for the forest, together
with the MR image data I.

In Section 2.2 we give a brief description of classification forests. The types
of the context-sensitive features are described in Section 2.3.

We classify three classes C = {B,T,E} for background (B), tumor (T), and
edema (E). The MR input data is denoted by I = (IT1C, IT1, IT2, IFLAIR).

2.1 Estimating Initial Tissue Probabilities

As the first step of our approach, we estimate the initial class probabilities for a
given patient based on the intensity representation in the MRI input data.

The initial probabilities are computed as posterior probabilities based on the
likelihoods obtained by training a set of GMMs on the training data. For each
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Context-sensitive Classification Forests for Segmentation of Brain Tumors 3

class c ∈ C, we train a single GMM, which captures the likelihood plik(i|c) of the
multi-dimensional intensity i ∈ R4 for the class c. With the trained likelihood
plik, for a given test patient data set I, the GMM-based posterior probability
pGMM(c|p) for the class c is estimated for each point p∈R3 by

pGMM(c|p) =
plik(I(p)|c) p(c)∑
cj
plik(I(p)|cj) p(cj)

, (1)

with p(c) denoting the prior probability for the class c, computed as a normalized
empirical histogram. We can now use the posterior probabilities directly as input
for the classification forests, in addition to the multi-channel MR data I. So
now, with pGMM

c (p) :=pGMM(c|p), our data for one patient consists of the following
channels

C = (IT1-gad, IT1, IT2, IFLAIR, p
GMM

AC , p
GMM

NC , p
GMM

E , pGMM

B ) . (2)

For simplicity, we will denote single channels by Cj .

2.2 Classification Forests

We employ a classification forest (CF) to determine a class c∈C for a given spa-
tial input point p∈Ω from a spatial domain Ω of the patient. Our classification
forest operates on the representation of a spatial point p by a corresponding
feature vector x(p, C), which is based on spatially non-local information from
the channels C. CFs are ensembles of (binary) classification trees, indexed and
referred to by t ∈ [1, T ]. As a supervised method, CFs operate in two stages:
training and testing.

During training, each tree t learns a weak class predictor pt(c|x(p, C)). The
input training data set is {(x(p, C(k)), c(k)(p)) : p ∈Ω(k)}, that is, the feature
representations of all spatial points p∈Ω(k), in all training patient data sets k,
and the corresponding manual labels c(k)(p).

To simplify notation, we will refer to a data point at p by its feature repre-
sentation x. The set of all data points shall be X.

In a classification tree, each node i contains a set of training examples Xi,
and a class predictor pit(c|x), which is the probability corresponding to the frac-
tion of points with class c in Xi (normalized empirical histogram). Starting with
the complete training data set X at the root, the training is performed by suc-
cessively splitting the training examples at every node based on their feature
representation, and assigning the partitions XL and XR to the left and right
child node. At each node, a number of splits along randomly chosen dimensions
of the feature space is considered, and the one maximizing the Information Gain
is applied (i.e., an axis-aligned hyperplane is used in the split function). Tree
growing is stopped at a certain tree depth D.

At testing, a data point x to be classified is pushed through each tree t, by
applying the learned split functions. Upon arriving at a leaf node l, the leaf prob-
ability is used as the tree probability, i.e. pt(c|x)=plt(c|x). The overall probability
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4 D. Zikic et al.

is computed as the average of tree probabilities, i.e. p(c|x)= 1
T

∑T
t=1 pt(c|x). The

actual class estimate ĉ is chosen as the class with the highest probability, i.e.
ĉ = arg maxc p(c|x).

For more details on classification forests, see for example [1].

2.3 Context-sensitive Feature Types

We employ three features types, which are intensity-based and parametrized.
Features of these types describe a point to be labeled based on its non-local
neighborhood, such that they are context-sensitive. The first two of these fea-
ture types are quite generic, while the third one is designed with the intuition
of detecting structure changes. We denote the parametrized feature types by
xtypeparams. Each combination of type and parameter settings generates one dimen-

sion in the feature space, that is xi = x
typei
paramsi . Theoretically, the number of

possible combinations of type and parameter settings is infinite, and even with
exhaustive discrete sampling it remains substantial. In practice, a certain pre-
defined number d′ of combinations of feature types and parameter settings is
randomly drawn for training. In our experiments, we use d′ = 2000.

We use the following notation: Again, p is a spatial point, to be assigned a
class, and Cj is an input channel. Rsj(p) denotes an p-centered and axis aligned

3D cuboid region in Cj with edge lengths l = (lx, ly, lz), and u∈R3 is an offset
vector.

– Feature Type 1: measures the intensity difference between p in a channel
Cj1 and an offset point p + u in a channel Cj2

xt1j1,j2,u(p, C) = Cj1(p)− Cj2(p + u) . (3)

– Feature Type 2: measures the difference between intensity means of a
cuboid around p in Cj1 , and around an offset point p + u in Cj2

xt2j1,j2,l1,l2,u(p, C) = µ(Rl1
j1

(p))− µ(Rl2
j2

(p + u)) . (4)

– Feature Type 3: captures the intensity range along a 3D line between
p and p+u in one channel. This type is designed with the intuition that
structure changes can yield a large intensity change, e.g. NC being dark and
AC bright in T1-gad.

xt3j,u(p, C) = max
λ

(Cj(p + λu))−min
λ

(Cj(p + λu)) with λ ∈ [0, 1] . (5)

In the experiments, the types and parameters are drawn uniformly. The
offsets ui originate from the range [0, 20]mm, and the cuboid lengths li from
[0, 40]mm.
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Context-sensitive Classification Forests for Segmentation of Brain Tumors 5

Dice score High-grade (real) Low-grade (real) High-grade (synth) Low-grade (synth) 

  Edema Tumor Edema Tumor Edema Tumor Edema Tumor 

mean 0.70 0.71 0.44 0.62 0.65 0.90 0.55 0.71 

std. dev. 0.09 0.24 0.18 0.27 0.27 0.05 0.23 0.20 

median 0.70 0.78 0.44 0.74 0.76 0.92 0.65 0.78 

Table 1: Evaluation summary. The Dice scores are computed by the online eval-
uation tool provided by the organizers of the BraTS challenge.

3 Evaluation

We evaluate our approach on the real and synthetic data from the BraTS chal-
lenge. Both real and synthetic examples contain separate high-grade (HG) and
low-grade (LG) data sets. This results in 4 data sets (Real-HG, Real-LG, Synth-
HG, Synth-LG). For each of these data sets, we perform the evaluation inde-
pendently, i.e., we use only the data from one data set for the training and the
testing for this data set.

In terms of sizes, Real-HG contains 20 patients, Synth-LG has 10 patients,
and the two synthetic data sets contain 25 patients each. For the real data sets,
we test our approach on each patient by leave-one-out cross-validation, meaning
that for each patient, the training is performed on all other images from the
data set, excluding the tested image itself. For the synthetic images, we perform
a leave-5-out cross-validation.

Pre-processing. We apply bias-field normalization by the ITK N3 implementa-
tion from [2]. Then, we align the mean intensities of the images within each
channel by a global multiplicative factor. For speed reasons, we run the eval-
uation on a down-sampled version of the input images, with isotropic spatial
resolution of 2mm. The computed segmentations are up-sampled back to 1mm
for the evaluation.

Settings. In all tests, we employ forests with T =40 trees of depth D=20.

Runtime. Our segmentation method is fully automatic, with segmentation run
times in the range of 1-2 minutes per patient. The training of one tree takes
approximately 20 minutes on a single desktop PC.

Results. We evaluated our segmentations by the BraTS online evaluation tool,
and we summarize the results for the Dice score in Table 1.

Overall, the results indicate a higher segmentation quality for the high-grade
tumors than for the low-grade cases, and a better performance on the synthetic
data than the real data set.
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Fig. 2: Per patient evaluation for the four BraTS data sets (Real-HG, Real-
LG, Synth-HG, Synth-LG). We show the results for edema (blue) and tumor
tissue (red) per patient, and indicate the respective median results with the
horizontal lines. We report the following measures: Dice, Specificity, Precision,
Recall(=Sensitivity), Mean Surface Distance (SD), and Maximal SD.

Further Evaluation. Furthermore, we reproduce most of the BraTS measures
(except Kappa) by our own evaluation in Figure 2. It can be seen in Figure
2, that the Specificity is not a very discriminative measure in this application.
Therefore, we rather evaluate Precision, which is similar in nature, but does
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Context-sensitive Classification Forests for Segmentation of Brain Tumors 7

not take the background class into account (TN), and is thus more sensitive to
errors.

In order to obtain a better understanding of the data and the performance
of our method we perform three further measurements.

1. In Figure 3, we measure the volumes of the brain, and the edema and tumor
tissues for the individual patients. This is done in order to be able to evaluate
how target volumes influence the segmentation quality.

2. In Figure 4, we report the results for the basic types of classification out-
comes, i.e. true positives (TP), false positives (FP), and false negatives (FN).
It is interesting to note the correlation of the TP values with the tissue vol-
umes (cf. Fig. 3). Also, it seems that for edema, the error of our method
consists of more FP estimates (wrongly labeled as edema) than FN estimates
(wrongly not labeled as edema), i.e. it performs an over-segmentation.

3. In Figure 5, we report additional measures, which might have an application-
specific relevance. We compute the overall Error, i.e. the volume of all mis-
classified points FN + FP, and the corresponding relative version, which
relates the error to the target volume T, i.e. (FN + FP)/T. Also, we com-
pute the absolute and the relative Volume Error |T − (TP + FP)|, and
|T− (TP + FP)|/T, which indicate the potential performance for volumetric
measurements. The volume error is less sensitive than the error measure,
since it does not require an overlap of segmentations but only that the esti-
mated volume is correct (volume error can be expressed as |FN− FP|).
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Fig. 3: Volume statistics of the BraTS data sets. We compute the brain volumes
(top row), and the volumes of the edema (blue) and tumor (red) tissues per
patient.
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Fig. 4: We report the values of true positives (TP), false positives (FP), and
false negatives (FN), for edema (blue), and tumor (red) tissues. To make the
values comparable, we report them as percentage of the patient brain volume
(V). Again, horizontal lines represent median values. It is interesting to note the
correlation of the TP values with the tissue volumes (cf. Fig. 3). Also, it seems
that for edema, the error of our method consists of more FP estimates (wrongly
labeled as edema) than FN estimates (wrongly not labeled as edema), i.e. it
performs an over-segmentation.
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Fig. 5: We further evaluate additional measures which might have application-
specific relevance. Again, we have blue=edema, red=tumor, and horizontal
line=median. In the two top rows, we compute the Error, i.e. the volume of all
misclassified points FN + FP, and the relative version, which relates the error to
the target volume T, i.e. (FN+FP)/T. In the bottom two rows, we compute the
absolute and the relative Volume Error |T−(TP+FP)|, and |T−(TP+FP)|/T.
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Abstract. We propose a fully automatic method for brain tumor seg-
mentation, which integrates random forest classification with hierarchi-
cal conditional random field regularization in an energy minimization
scheme. It has been evaluated on the BRATS2012 dataset, which con-
tains low- and high-grade gliomas from simulated and real-patient im-
ages. The method achieved convincing results (average Dice coefficient:
0.73 and 0.59 for tumor and edema respectively) within a reasonably fast
computation time (approximately 4 to 12 minutes).

1 Introduction

Fast and accurate segmentation of brain tumor images is an important but
difficult task in many clinical applications. In recent years, a number of different
automatic approaches have been proposed [1], but despite significant intra- and
inter-rater variabilities and the large time consumption of manual segmentation,
none of the automatic approaches is in routine clinical use yet. However, with
the anticipated shift from diameter-based criteria to volume-based criteria in
neuroradiological brain tumor assessment, this is likely to change in the future.

We are presenting a fully automatic method for brain tumor segmentation,
which is based on classification with integrated hierarchical regularization. Not
only does it offer to separate healthy from pathologic tissues, but it also subcat-
egorizes the healthy tissues into CSF, WM, GM and the pathologic tissues into
necrotic, active and edema compartment.

2 Methods

The general idea is based on a previous approach presented in [2]. After prepro-
cessing (denoising, bias-field correction, rescaling and histogram matching) [6],
the segmentation task is modeled as an energy minimization problem in a condi-
tional random field (CRF) [8] formulation. The energy consists of the sum of the
singleton potentials in the first term and the pairwise potentials in the second
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term of equation (1). The expression is minimized using [7] in a hierarchical way
similar to [2].

E =
∑
i

V (yi,xi) +
∑
ij

W (yi, yj ,xi,xj) (1)

The singleton potentials V (yi,xi) are computed according to equation (2),
where yi is the label output from the classifier, xi is the feature vector and δ is
the Kronecker-δ function.

V (yi,xi) = p(yi|xi) · (1− δ(ỹi, yi)) (2)

In contrast to our previous approach, here we make use of random forests [4], [3]
as a classifier instead of support vector machines (SVM). Random forests are en-
sembles of decision trees, which are randomly different. Training on each decision
tree is performed by optimizing the parameters of a split function at every tree
node via maximizing the information gain when splitting the training data. For
testing, the feature vector is pushed through each tree, applying a test at each
split node until a leaf node is reached. The label posterior is calculated by averag-
ing the posteriors of the leave nodes from all trees p(yi|xi) = 1/T ·

∑T
t pt(yi|xi).

Compared to SVMs, random forests have the advantage of being able to natu-
rally handle multi-class problems and they provide a probabilistic output instead
of hard label separations [5]. We use the probabilistic output for the weighting
factor p(yi|xi) in equation (2), in order to control the degree of spatial regular-
ization based on the posterior probability of each voxel label. A 28-dimensional
feature vector is used for the classifier, which combines the intensities in each
modality with the first-order textures (mean, variance, skewness, kurtosis, en-
ergy, entropy) computed from local patches around every voxel in each modality.

We have also developed an improved way to compute the pairwise poten-
tials W (yi, yj ,xi,xj), which account for the spatial regularization. In equation
(3) ws(i, j) is a weighting function, which depends on the voxel spacing in each
dimension. The term (1− δ(yi, yj)) penalizes different labels of adjacent voxels,

while the intensity term exp
(

PCD(xi−xj)
2·x̄

)
regulates the degree of smoothing

based on the local intensity variation, where PCD is a pseudo-Chebyshev dis-
tance and x̄ is a generalized mean intensity. Dpq(yi, yj) allows us to incorporate
prior knowledge by penalizing different tissue adjancencies individually.

W (yi, yj ,xi,xj) = ws(i, j)·(1−δ(yi, yj))·exp

(
PCD(xi − xj)

2 · x̄

)
·Dpq(yi, yj) (3)

3 Results

The performance of the proposed method has been evaluated on the BRATS2012
dataset 3 using 5-fold cross-validation. The BRATS2012 dataset contains skull-

3
http://www2.imm.dtu.dk/projects/BRATS2012/
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stripped multimodal MR images (T1, T1contrast, T2, Flair) of 80 low- and high-
grade gliomas from simulations and real patient cases (1mm isotropic resolution).
In order to be compatible with the BRATS ground truth, our “necrotic” and
“active” labels were combined to form the “core” label, the “edema” label was
unmodified and all other labels were ignored.

Quantitative results for different overlap and surface distance metrics, which
were obtained using the BRATS2012 online evaluation tool, are detailed in table
1 and exemplary image results are shown in figure 1. Computation time for the
segmentation ranged from 4 to 12 minutes depending on the size of the dataset.

We also compared the proposed approach to our previous method [2] which
used SVMs as a classifier instead of random forests and which had a less sophis-
ticated regularization. With the new method, the computation time could be
reduced by more than a factor of two and the accuracy measured by the Dice
coefficient was also improved.

Fig. 1. Exemplary image results shown on one axial slice for a high-grade glioma
patient (first row), a low-grade glioma patient (second row), a simulated high-grade
glioma dataset (third row) and a simulated low-grade glioma dataset (last row). Each
row shows from left to right: T1, T1contrast, T2, Flair image and the label map obtained
from the automatic segmentation (color code: red=CSF, green=GM, blue=WM, yel-
low=necrotic, turquoise=active, pink=edema.)
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Table 1. Quantitative results from the BRATS2012 online evaluation tool. HG stands
for high-grade, LG for low-grade and Sim for the simulated glioma datasets. The metrics
in the table from left to right are: Dice, Jaccard, sensitivity, specificity, average distance,
Hausdorff distance, Cohen’s kappa.

Dice Jaccard Sens. Spec. AD [mm] HD [mm] Kappa

HG
edema 0.61±0.15 0.45±0.15 1.0±0.0 0.56±0.15 5.0±5.3 60±31

0.32±0.25
tumor 0.62±0.27 0.50±0.25 1.0±0.0 0.59±0.31 6.3±7.8 69±25

LG
edema 0.35±0.18 0.23±0.13 1.0±0.0 0.49±0.23 10.4±9.2 69±28

0.07±0.23
tumor 0.49±0.26 0.36±0.24 1.0±0.0 0.49±0.28 5.4±3.8 53±32

Sim-HG
edema 0.68±0.26 0.56±0.26 1.0±0.0 0.90±0.07 1.3±0.7 12±6

0.67±0.13
tumor 0.90±0.06 0.81±0.09 1.0±0.0 0.91±0.08 1.5±1.7 16±10

Sim-LG
edema 0.57±0.24 0.44±0.22 1.0±0.0 0.84±0.17 1.6±0.9 10±6

0.38±0.18
tumor 0.74±0.10 0.59±0.12 1.0±0.0 0.77±0.18 2.6±1.1 16±5

All
edema 0.59±0.24 0.45±0.23 1.0±0.0 0.75±0.22 3.5±5.1 30±31

0.42±0.27
tumor 0.73±0.22 0.61±0.23 1.0±0.0 0.73±0.26 3.6±4.6 34±29

4 Discussion and Conclusion

We have presented a method for fully automatic segmentation of brain tumors,
which achieves convincing results within a reasonable computation time on clini-
cal and simulated multimodal MR images. Thanks to the ability of the approach
to delineate subcompartments of healthy and pathologic tissues, it can have a
significant impact in clinical applications, especially tumor volumetry. To evalu-
ate this more thoroughly, a prototype of the method is currently being integrated
into the neuroradiology workflow at Inselspital, Bern University Hospital.
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Abstract. A fully automatic algorithm is presented for the automatic
segmentation of gliomas in 3D MR images. It builds on the discriminative
random decision forest framework to provide a voxel-wise probabilistic
classification of the volume. Our method uses multi-channel MR intensi-
ties (T1, T1C, T2, Flair), spatial prior and long-range comparisons with
3D regions to discriminate lesions. A symmetry feature is introduced ac-
counting for the fact that gliomas tend to develop in an asymmetric way.
Quantitative evaluation of the data is carried out on publicly available
labeled cases from the BRATS Segmentation Challenge 2012 dataset and
demonstrates improved results over the state of the art.

1 Materials and methods

This section describes our adaptation of the random decision forests to the seg-
mentation of gliomas and illustrates the visual features employed.

1.1 Dataset

To calculate the local image features – both during training and for predic-
tions – we performed an intensity normalization [1]. For each data group (i.e.
BRATS HG and BRATS LG), we fitted the intensity histogram of each sequence
(T1, T1C, T2 and FLAIR) to a reference case. Then image features are calcu-
lated for each voxel v. Features include local multi-channel intensity (T1, T1C,
T2, Flair) as well as long-range displaced box features such as in [2]. In ad-
dition we also incorporate symmetry features, calculated after estimating the
mid-sagittal plane [3]. In total, every voxel is associated with a 412−long vector
of feature responses.

We will adhere to the following notation: the data consists of a collection
of voxel samples v = (x,C), each characterized by a position x = (x, y, z)
and associated with a list of signal channels C. Signal channels C = (I,P)
include multi-sequence MR images I = (IT1, IT1C , IT2, IFlair) and spatial priors
P = (PWM , PGM , PCSF ). Anatomical images and spatial priors, although having
different semantics, can be treated under the unified term “signal channel”. We
account for noise in MR images by averaging values over a 33 voxels box centered
on x, such an average is noted Cc(x), e.g. Cc = IFlair or PGM .
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1.2 Context-rich decision forest

Our detection and segmentation problem can be formalized as a multi-class
classification of voxel samples into either background, edema or tumor core.
This classification problem is addressed by a supervised method: discriminative
random decision forest, an ensemble learner using decision trees as base learners.
Decision trees are discriminative classifiers which are known to suffer from over-
fitting. A random decision forest [4] achieves better generalization by growing
an ensemble of many independent decision trees on a random subset of the
training data and by randomizing the features made available to each node
during training [5].

Forest training. The forest has T components with t indexing each tree. The
training data consists in a set of labeled voxels T = {vk, Y (vk)} where the
label Y (vk) is given by an expert. When asked to classify a new image, the
classifier aims to assign every voxel v in the volume a label y(v). In our case,
y(v) ∈ {0, 1, 2}, 2 for the tumor core, 1 for edema and 0 for background.

During training, all observations vk are pushed through each of the trees.
Each internal node applies a binary test [6–9] as follows:

tτlow,τup,θ(vk) =
{
true, if τlow ≤ θ(vk) < τup
false, otherwise

where θ is a function identifying the visual feature extracted at position xk.
There are several ways of defining θ, either as a local intensity-based average,
local spatial prior or context-rich cue. These are investigated in more detail in the
next section. The value of the extracted visual feature is thresholded by τlow and
τup. The voxel vk is then sent to one of the two child nodes based on the outcome
of this test. Training the classifier means selecting the most discriminative binary
test for each node by optimizing over (τlow, τup, θ) in order to maximize the
information gain on the input data partition [10], noted Tp, defined as follows:
IGτlow,τup,θ(Tp) = H(Tp) −H(Tp|{tτlow,τup,θ(vk)}) where Tp ⊂ T , H stands for
the entropy.

Only a randomly sampled subset Θ of the feature space is available for inter-
nal node optimization, while the threshold space is uniformly discretized. The
optimal (τ∗low, τ

∗
up, θ

∗) is selected by exhaustive search jointly over the feature
and threshold space. Random sampling of the features leads to increased inter-
node and inter-tree variability which improves generalization. Nodes are grown
to a maximum depth D. Another stopping criterion is to stop growing a node
when too few training points reach it, i.e. when the information gain is below a
minimal value IGmin.

As a result of the training process, each leaf node l of every tree t receives a
partition Tlt of the training data. The following empirical posterior probability
is then stored at the leaf plt(Y (v) = b) = |{(v, Y (v)) ∈ Tlt |Y (v) = b}|/|Tlt |
where b ∈ {0, 1} denotes the background or lesion class, respectively.

Prediction. When applied to a new test data Ttest = {vk}, each voxel vk
is propagated through all the trees by successive application of the relevant
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Fig. 1. 2D view of context-
rich features. (a) A context-rich
feature depicting two regions R1

and R2 with constant offset rel-
atively to x. (b-d) Three exam-
ples of randomly sampled features
in an extended neighborhood. (e)
The symmetric feature with respect
to the mid-sagittal plane. (f) The
hard symmetric constraint. (g-i)
The soft symmetry feature consid-
ering neighboring voxels in a sphere
of increasing radius. See text for de-
tails.

binary tests. When reaching the leaf node lt in all trees t ∈ [1..T ], posteriors
plt(Y (v) = c) are gathered in order to compute the final posterior probability
defined as follows: p(y(v) = c) = 1

T

∑T
t=1 plt(Y (v) = c). The voxel vk is affected

the class c ∈ {0, 1, 2} which satisfies c = arg maxc p(y(v) = c). For each class,
the largest connected component is selected to be the final segmentation.

1.3 Visual features

In this section, two kinds of visual features are computed: 1) local features:
θlocc (v) = Cc(x) where c indexes an intensity or a prior channel; 2) context-rich
features comparing the voxel of interest with distant regions . The first context-
rich feature looks for relevant 3D regions R1 and R2 to compare within an ex-
tended neighborhood: θcontc1,c2,R1,R2

(v) = Cc1(x) − 1
vol(R1∪R2)

∑
x′∈R1∪R2

Cc2(x′)
where c1 and c2 are two signal channels. The regions R1 and R2 are sampled
randomly in a large neighborhood of the voxel v (cf. Fig. 1). The sum over
these regions is efficiently computed using integral volume processing [6]. The
second context-rich feature compares the voxel of interest at x with its symmet-
ric counterpart with respect to the mid-sagittal plane, noted S(x): θsymc (v) =
Cc(x)−Cc ◦S(x) where c is an intensity channel. Instead of comparing with the
exact symmetric S(x) of the voxel, we consider, respectively, its 6, 26 and 32
neighbors in a sphere S (cf. Fig. 1), centered on S(x). We obtain a softer version
of the symmetric feature which reads: θsymc,S (v) = minx′∈S{Cc(x)− Cc(x′)}.

2 Results

In our experiments, forest parameters are fixed to the following values: number of
random regions per node |Θ| ' 100, number of trees T = 30, tree depth D = 20,
lower bound for the information gain IGmin = 10−5. These values were chosen
based on prior parameter optimization on synthetic data (SimBRATS HG and
SimBRATS LG) and worked well for real data too.
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Table 1. Segmentation of high grade gliomas in the BRATS dataset. Dice,
TPR and PPV are reported for the segmentation of the edema only, the core only and
the whole tumor.

Edema Core Tumor

Patient Dice TPR PPV Dice TPR PPV Dice TPR PPV

HG01 0.46 0.72 0.34 0.74 0.77 0.71 0.65 0.84 0.53
HG02 0.58 0.97 0.41 0.65 0.51 0.89 0.61 0.93 0.46
HG03 0.70 0.88 0.58 0.79 0.99 0.65 0.76 0.95 0.63
HG04 0.43 0.69 0.31 0.45 0.36 0.59 0.78 0.91 0.69
HG05 0.49 0.60 0.41 0.39 0.25 0.92 0.54 0.49 0.61
HG06 0.61 0.77 0.51 0.75 0.69 0.82 0.75 0.84 0.68
HG07 0.63 0.68 0.58 0.76 0.63 0.96 0.70 0.70 0.70
HG08 0.73 0.78 0.69 0.63 0.65 0.62 0.84 0.89 0.80
HG09 0.80 0.81 0.77 0.69 0.55 0.93 0.84 0.79 0.90
HG10 0.00 0.00 0.00 0.80 0.69 0.96 0.09 0.20 0.05
HG11 0.69 0.78 0.61 0.81 0.87 0.76 0.83 0.92 0.75
HG12 0.67 0.88 0.54 0.00 0.00 0.00 0.86 0.91 0.81
HG13 0.49 0.85 0.35 0.92 0.98 0.87 0.66 0.96 0.51
HG14 0.33 0.81 0.20 0.47 0.31 0.92 0.84 0.84 0.84
HG15 0.67 0.83 0.57 0.83 0.76 0.91 0.78 0.86 0.71
HG22 0.63 0.90 0.49 0.51 0.36 0.86 0.69 0.77 0.62
HG24 0.52 0.83 0.37 0.67 0.53 0.91 0.57 0.74 0.47
HG25 0.51 0.57 0.46 0.05 0.02 0.95 0.55 0.48 0.64
HG26 0.66 0.57 0.80 0.03 0.02 0.07 0.57 0.45 0.77
HG27 0.57 0.93 0.41 0.57 0.41 0.98 0.74 0.85 0.65

mean 0.56 0.74 0.47 0.58 0.52 0.76 0.68 0.77 0.64

std 0.17 0.21 0.19 0.27 0.30 0.28 0.18 0.20 0.18

For quantitative evaluation, a three-fold cross-validation is carried out on
this dataset: the forest is trained on 2

3 of the cases and tested on the other 1
3 ,

this operation is repeated three times in order to collect test errors for each case.
Note that the random forest is trained on the preprocessed data. Prediction on
a single image lasts for approximately 10 minutes.

The binary classification is evaluated using two measures, true positive rate
(TPR) and positive predictive value (PPV), both equal 1 for perfect segmen-
tation. Formally, Dice = TP

FP+2·TP+FN , TPR = TP
TP+FN and PPV = TP

TP+FP
where TP counts the number of true positive voxels in the classification com-
pared to the ground truth, FP the false positives, FN the false negatives.
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Table 2. Segmentation of low grade gliomas in the BRATS dataset. Dice,
TPR and PPV are reported for the segmentation of the edema only, the core only and
the whole tumor.

Edema Core Tumor

Patient Dice TPR PPV Dice TPR PPV Dice TPR PPV

LG01 0.00 0.00 0.00 0.83 0.92 0.76 0.71 0.67 0.77
LG02 0.43 0.35 0.56 0.32 0.23 0.49 0.70 0.55 0.96
LG04 0.46 0.35 0.66 0.05 0.16 0.03 0.62 0.62 0.62
LG06 0.45 0.41 0.48 0.18 0.99 0.10 0.49 0.87 0.34
LG08 0.30 0.29 0.32 0.44 0.37 0.55 0.71 0.63 0.81
LG11 0.21 0.46 0.13 0.14 0.24 0.10 0.47 0.86 0.32
LG12 0.26 0.52 0.17 0.00 0.00 0.00 0.49 0.62 0.40
LG13 0.22 0.27 0.18 0.00 0.00 0.00 0.42 0.32 0.61
LG14 0.19 0.20 0.19 0.00 0.00 0.00 0.34 0.47 0.27
LG15 0.34 0.34 0.34 0.00 0.00 0.00 0.22 0.29 0.18

mean 0.29 0.32 0.30 0.20 0.29 0.20 0.52 0.59 0.53

std 0.14 0.15 0.21 0.27 0.37 0.28 0.17 0.19 0.26
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Abstract. In this paper, the tumor segmentation method used is described
and the experimental results obtained are reported for the “BraTS 2012 - Mul-
timodal Brain Tumor Segmentation Challenge” of MICCAI’12. “Tumor-cut”
method, presented in [1] is adapted to multi-modal data to include edema seg-
mentation. The method is semi-automatic, requiring the user to draw the max-
imum diameter of the tumor, which takes about a minute user-interaction time
per case. The typical run-time for each case is around 10-20 minutes depending
on the size of the tumor. Overall Dice overlap with the expert segmentation is
0.36 ± 0.25 for the edema/infiltration and 0.69 ± 0.20 for the tumor region.

1 Introduction

In our “Tumor-cut” paper, the semi-supervised tumor segmentation method is de-
scribed, in detail [1]. This method, specifically targets gross tumor volume (GTV) of
the brain tumors on the contrast enhanced T1-weighted MR images (T1C). Here, we
extend our method to multi-modal MRI (T1C + FLAIR) to include edema segmen-
tation, and also evaluated on low-grade non-enhanced tumors. Although, we segment
the necrotic areas of the high-grade tumors, quantitative necrotic segmentation results
are not reported in this paper due to the lack of the ground truth labels of necrotic
regions.

2 Methods

The main steps of the “Tumor-cut” method, presented in [1], is given in Fig. 1. The
weight of the regularizer of the level-set is set to 0.2, which is determined in [1] by
experiments on both real and synthetic data. The same algorithm is applied on FLAIR
volumes to segment the clinical tumor volume (CTV = GTV + Edema). This time,
the user is asked to draw the maximum diameter of the edema region visible on FLAIR
images. The main differences observed between GTV (on T1C) and CTV (on FLAIR)
is that the sphericity of the edema area is lower and there occurs more curvatures.
For the FLAIR segmentation, to allow results with more curvatures, a four times
lower regularizer weight is set arbitrarily, at 0.05. The user-input is gathered by two
different maximum diameter lines, drawn separately, one for FLAIR and one for T1C
volumes. The resulting maps are combined simply by assigning tumor labels using
T1C segmentation and assigning edema label to the difference area of the FLAIR
segmentation minus the T1C segmentation.

VEdema = {x ∈ VFLAIR|x /∈ VT1C}
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Fig. 1: Flow diagram, which shows the main steps of the ”Tumor-cut” algorithm [1].

Table 1: Overall results obtained on the BraTS dataset.
Dice Overlap Jaccard Score Specificity Sensitivity Cohen’s

Edema / Tumor Edema / Tumor Edema / Tumor Edema / Tumor Kappa

0.37 ± 0.25/0.69 ± 0.19 0.25 ± 0.20/0.56 ± 0.23 0.99 ± 0.01/1.00 ± 0.00 0.54 ± 0.33/0.86 ± 0.19 0.27 ± 0.23

3 Results

The method is implemented on Matlab environment, running on a windows 7 worksta-
tion, using mex files for core algorithms. For each case, user interaction takes about a
minute and typical run-time for each case is around 10-20 minutes, depending on the
size of the tumor. The dataset is downloaded from Kitware/Midas web site and the
online system provided by the “Virtual Skeleton Database” is used for the evaluation.
The Dice overlap results of the runs on each case of the BraTS data set is tabulated in
Table 2. For each subset, including high grade and low grade, simulated and patient
data, the Dice overlap scores obtained are given as bar charts in Figs 3-6. The overall
Dice overlap, Jaccard scores, Sensitivity/Specificity and Cohen’s Kappa results with
the standard deviations are reported in Table 1.

4 Discussion and Conclusions

Originally we limited the scope of the “Tumor-cut” algorithm to the contrast enhanced
gross tumor volumes, which corresponds to the active parts of the high grade tumors
in Table 2. For the high-grade cases, the results obtained on the patient dataset (0.73)
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Fig. 2: Table of the Dice overlap results obtained on each case.

Fig. 3: Dice overlap results obtained on each case of the low-grade patient subset.

and the simulated dataset (0.80) are consistent with the results reported in [1] (0.80
and 0.83). Because the edema region is calculated by substraction of the two maps,
the overlap scores for edema is not independent of the scores for the tumor. For the
low-grade simulated data, low performance in some cases is mostly due to the low
number of voxels labeled as edema -comparing to patient cases- in the ground truth
segmentation, which causes low overlap scores.

Acknowledgement. This work was partially supported by TUBA-GEBIP (Turkish
Academy of Sciences) and EU FP7 Grant No: PIRG03-GA-2008-231052.
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Fig. 4: Dice overlap results obtained on each case of the high-grade patient subset.

Fig. 5: Dice overlap results obtained on each case of the simulated low-grade subset.
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Fig. 6: Dice overlap results obtained on each case of the simulated high-grade subset.
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We present a method for automatic segmentation of heterogeneous brain tumors. 

Our method will take about 30 minutes to process one volume in Matlab. 

1 Theory background 

Our method combines the model of gray distribution of pixels (Gaussian Mixture 
Models, GMM) with the edge information between two difference classes of tissue in 
the brain.  High detection precision can be achieved.  The core of our method is based 
on the following three models. 

1.1 Gaussian Mixture Model(GMM) 

We model five classes of data in brain: brain white matter, brain gray matter, brain 
csf, tumor and edema. 

Denote the parameters of Gaussian component [1]  φi = {ϕi, µμi, Σi}, where µμ!is 
mean of vector and Σ! is the covariance matrix. The ϕ! parameter is called the mixing 
coefficient and describes the relative weight of component i in the complete model. 
The complete model can be written   ψ = {k,φ!,⋯ ,φ!}, where k is the number of 
component in the data. A mixture model on d-dimension data x is written: 

 P x;Ψ = ϕ!!
!!! p x; µμ!, Σ!  

                                                                                                                            = ϕ!
!"#  (!!! !!!!

T !! !! !!!! )

(!")
!
!|!!|

!
!

!
!!!  (1) 

The standard expectation-maximization algorithm is used to estimate the parame-
ters of each class mixture model in a maximum likelihood formulation. 
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1.2 Probability distance  model between two different tissues 

We define a likelihood function P( s! | mu )  for the probability of the observed 
statistics s!  conditioned on model variables m!  of pixels u . Denote b!= white 
matter, b!=gray matter,  b!=csf, b!=edema,  b5 =tumor, According to the characteristic 
brain MRI images , we assume 

           p = m! s!, s!− s1,m! = p(m!|s!− s!,m!)     (2) 
To characterize an edge between normal brain tissues and abnormal brain tissues 

(edema) we can deduce the following term (the edge between edema and tumor can 
be derived similarly). 

 P m! = normal  brain,m! = abnormal  brain s!, s!  

= p(
!

!!!

!

!!!

m! = b!,m! = b! s!, s!  

                                                                          = p(
!

!!!

!

!!!

m! = b! s!, s! − s!,m! = b!, p(m! = b! s!  

= ( p(
!

!!!

!

!!!

m! = b! s! − s!,m! = b!, )
p s! m! = b! p m! = b!
p(s!!

!!! m! = b! p m! = b!
 

=
p s! − s!|m! = b!,m! = b! p(m! = b!|m! = b!)!

!!!

p(s!!!
!!! s1|m! = b!,m! = b!)p(m! = b!)

!

!!!

p s! m! = b! p m! = b!
p(s!!

!!! m! = b! p m! = b!
 

  (3) 

1.3 Active contour model 

The traditional deformable active contour model [2] is a curve X(S) = [x(s),y(s)],s
∈[0,1], that move within the image to minimize an energy function. The curve dy-
namically changes the shape of an initial contour in response to internal and external 
forces. The internal forces provide the smoothness of the contour. While the external 
forces push the curve more toward the desired features, such as boundaries. The ob-
ject contour is extracted when the energy function is minimized. The energy is de-
fined as 

 E = !
!

!
! α x! s ! + β x" s

!
+ E!"#x s ds (4) 

where,  x′ s  and x" s  are first and second derivatives of x s with respect to s. The 
parameter α controls the tension of the curve and β  controls its rigidity.  Eext is the 
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external energy which is calculated from the image data. To minimize the energy 
function, the snake must satisfy the Euler equation: 

 αx!! s − βx!!!! s − ∇E!"#=0 (5) 

According gradient vector flow snake was proposed by Xu and Prince [3], we de-
fine a new static external force field called GVF field: 

 F!"# = v x, y = [u x, y , v x, y ] (6) 

where u and v are the grey changes on x-axis and y-axis of the image 
ly.  F!"#    can be computed by minimizing the following energy function: 

 E = µμ u!! + u!! + v!! + v!! + |∇f|! |v − ∇f|!dxdy 

where, u!, u!,v!, v!  are derivative of x-axis and y-axis respectively. f(x,y) is the edge 
map (using probability distance model between two different tissues). µ is a regulari-
zation parameter governing the tradeoff between the first term and the second term in 
the formula [4]. 

2 Algorithm implementation 

2.1 Acquiring rough localization information of tumor and edema 

On the training data, we run Expectation Maximization for the GMM on each class 
of data with free means, variances, and mixing proportions. These means are labeled 
and saved for the testing data. 

For the testing data, firstly, we use Graph-based Segmentation to get some super-
voxels in the volumes [5]. Secondly, every voxel can be classified by EM for GMM 
with fixed means, and labeled according to the labeled means. Thirdly, every super-
pixel can be classified by using maxing vote’s method. Finally, we chose some spe-
cial super-pixels whose 50% pixels are almost tumor or edema. 

2.2 Seeking edges of between different tissues based on probability distance  
model  

We compute the probability distance for every pixel according to  (3).  A model-
aware edge map can be got. The pixel-pair-class likelihoods, p s! − s!|m! =
b!,m! = b!  are computed against GMM. 

2.3 Acquiring high precision boundary based on snake method 

Based on the rough location information achieved in step (1), we can get an initial 
contour of the object. And combining with the edges from step (2), precise boundaries 
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between tumor and edema, and edema and normal brain tissues are located using 
active contour method. 

3 Experiment results 

We only process the true data, the whole result can be found on the web. We pick 
some data and list them as table 1.The figures are raw data, segmentation result with 
GMM with fixed means and segmentation result with model-aware Snake.  

Table 1. Segmentation performance on part of the training data  

Subjcet Average 

Dist 1 

Average 

Dist 2 

Dice 

1 

Dice 

2 

Hausdroff 

Dist 1 

Hausdroff 

Dist 2 

Cohen’s 

Kappa 

Sensitivity 

 1 

Sensitivity 

2 

Specificity 

1 

Specificity 

2 

averages 17.573 0 0.348 0.307 131.772 114.957 0.156 0.367 0.327 0.999 0.999 

BRATS_LG0008 0 0 0.199 0.83 193.891 180.73 0.16 0.281 0.935 0.998 0.999 

BRATS_LG0002 123.01 0 0.602 0.322 134.994 143.156 0.353 0.51 0.246 0.997 0.997 

BRATS_HG0015 0 0 0.716 0.875 0 141.032 0.623 0.572 0.81 1 1 

BRATS_HG0008 0 0 0.728 0.823 113.214 125.41 0.602 0.601 0.751 0.999 0.999 

BRATS_HG0006 0 0 0.329 0.786 176.529 0 0.348 0.208 0.81 0.999 0.998 

BRATS_HG0003 0 0 0.699 0.912 146.58 130.088 0.554 0.544 0.92 1 1 

BRATS_HG0002 0 0 0.834 0.537 157.197 84.94 0.341 0.93 0.756 0.998 0.998 
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Probabilistic Gabor and Markov Random Fields

Segmentation of Brain Tumours in MRI Volumes
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Abstract. In this paper, we present a fully automated technique two
stage technique for segmenting brain tumours from multispectral human
brain magnetic resonance images (MRIs). From the training volumes,
we model the brain tumour, oedema and the other healthy brain tissues
using their combined space characteristics. Our segmentation technique
works on a combination of Bayesian classification of the Gabor decom-
position of the brain MRI volumes to produce an initial classification
of brain tumours, along with the other classes. We follow our initial
classification with a Markov Random Field (MRF) classification of the
Bayesian output to resolve local inhomogeneities, and impose a smooth-
ing constraint. Our results show a Dice similarity coefficient of 0.668 for
the brain tumours and 0.56 for the oedema.

1 Introduction

Brain tumours are a serious health problem, and it is estimated that roughly
100,000 people are diagnosed with brain tumours every years. One of the pri-
mary diagnostic and treatment evaluation tools for brain tumours is the mag-
netic resonance image (MRI) of the brain. A reliable method for segmenting
brain tumours would be very useful. However, brain tumours, owing to their ex-
treme diversity of shape, size, type of tumour, etc., present a serious challenge to
segmentation techniques. Given the importance of the problem, over the years,
there have been a large number of techniques attempted to segment brain tu-
mours automatically. Some of the more important techniques include multilevel
segmentation by Bayesian weighted aggregation [1], knowledge based fuzzy tech-
niques [2], and atlas based classification [3]. Wavelet based decompositions are
attractive since they are good at capturing large textures of the kind found in
brain tumours effectively, and it is unsurprising that there are a few attempts
to employ wavelets. One of the more prominent is the wavelet decomposition
used in conjunction with support vector machines [4]. In this paper, however,
we build on this technique by constructing models not for just the tumours and
the oedema, but also for the healthy tissues. We, then, utilise the natural ability
of the combined space features to capture the existing patterns to train the ma-
chine to recognise the patterns of the tumours, and distinguish it from the other
healthy tissues, and provide us with an initial classification. From this initial
classification, we then use Markov Random Fields (MRFs) to capture the local
label homogeneities and also eliminate false positives that occur due to spurious
tumour textures that may arise in other parts of the brain.
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2 Gabor Bayesian Classification

2.1 Training

Our goal is to correctly identify the oedema and the active tumour. During the
initial training phase, we first register a tissue atlas to the training volumes ob-
tain the healthy tissues, Grey Matter (GM), White Matter (WM), and Cerebro-
Spinal fluid (CSF). We superimpose the tumour and oedema maps provided by
the experts to obtain all the classes in the training volumes.

We decompose the training volumes into their constituent Gabor filter bank
outputs. The input volumes are the MRI intensity volumes in the four modalities,
viz, T1, T2, T1c and FLAIR, so at each voxel, we have a four dimensional vector
Ii = (IT1

i , IT1c
i , IFLAIR

i , IT2

i ). Each image is decomposed to its filter bank output
using multiwindow Gabor transforms of the form suggested by [5]. The filter bank
outputs are obtained by convolving each modality volume with the Gabor filter
bank, which is obtained using the equation

h(x, y) =
1

2πσxσy

exp

(

−
1

2

[

x2

σx
2
+

y2

σy
2

])

cos(2πu0x) (1)

where σx and σy are the spreads in the x and y directions and u0 is the modu-
lating frequency. In our case, we choose 4 orientations between 0 and π radians
and 5 frequencies. Each chosen frequency is an octave of the previous to ensure
that the entire spectrum is covered. We model each class as a Gaussian mixture
model, and an 8 component Gaussian mixture suffices to model the different
classes in the combined space. We model the Gabor coefficients of all classes,
including the tumour and the oedema, using Gaussian mixture models.

2.2 Classification

Once the test volume is obtained, it is decomposed into its Gabor filter bank
outputs using eqn. (1). The class of each voxel is obtained using Bayesian clas-
sification, which is given by

P (Ci | I
G
i ) ∝ P (Igi | Ci)P (Ci), (2)

where C is a random variable that can take the value of the 5 classes, and
IGi = I0i , I

1

i , . . . , I
R−1

i is the set of R Gabor coefficients of the particular voxel
i. It is our experience that the active tumours are quite correctly determined
by the Gabor Bayesian technique, but there are often false positive oedema
segmentations in regions that mimic the presence of oedema.

3 Markov Random Field Classification

The first Bayesian classification results in tumour candidates. We refine this
classification by building an MRF based model. We focus on both the intensities
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of the voxels and the intensity differences as contrasts are much more consistent.
The MRF model is based on the intensity of the voxel, the spatial intensity
differences and the class of neighbouring voxels. This can be written as

P (Ci | Ii, INi
) = P (Ii | Ci)P (Ci)

M−1
∑

CNi
=0

P (∆INi
| Ci, CNi

)P (CNi
| Ci) (3)

where CNi
are the classes of the neighbours of i, ∆IN−I = INi

− Ii.

3.1 Training

Here, we build the intensity distributions of the classes and model them using
multivariate Gaussian models. For the neighbourhood, we consider an 8 neigh-
bourhood around the voxel in axial plane and the corresponding voxels in the
slices above and below, and build the distributions of each pair, triplet and
quadriplet of classes that have an edge or vertex in common in the defined
neighbourhood using multivariate Gaussian models. This allows us to model
all neighbourhood relations completely in both a mathematical and a practi-
cal sense. We use the initial Gabor classification as the prior with the oedema
probabilities falling sharply away from the tumour for the second phase.

3.2 MRF Classification

We need to compute P (C | I) where C is a configuration of the labels of all the
voxels in the volume and I is the set of intensities across all the modalities for
all the voxels in the configuration. A sound method of computing P (C | I) is
by considering the problem as an MRF, which suggests that all class labels are
dependent only on their local neighbourhood. Using eqn. (3), we can obtain the
energy funcion for the configuration of labels in the volume with

U(C) =

Z−1
∑

i=0

(Ii − µCi
)TΣ−1

Ci
(Ii − µCi

)

+
∑

Ni

(∆INi
− µCNi

,Ci
)TΣ−1

CNi
,Ci

(∆INi
− µCNi,Ci

) + αm(CNi
, Ci), (4)

where ∆INi
= INi

− Ii, m(CNi
, Ci) = 1 if CNi

= Ci, Z is the total number of
voxels, and 0 otherwise, and α is the weighting coefficient vector. To maximise
P (C), we use iterated conditional modes (ICM) [6] to minimise U(C), where
Cmin = argminC∈FU(C), and F is the set of all possible label configurations.

4 Results

In Fig. 1, we compare the results of the two slices where our results are compared
against those of the experts’ segmentation. In both cases, it can be seen that our
results are comparable to the experts’ comparison.
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Fig. 1. (a) (b) (c) (d)
(a) Expert labelling of slice 81 of the volume LG0015 and (b) its corresponding algo-
rithmic labelling. (c) Similarly, the expert labelling of slice 93 of the volume HG0015
and (d) its corresponding labelling by the algorithm. As may be seen, visually, our
algorithm’s performance is very close to the experts’ evaluation.

Quantitatively, we train our algorithm on 29 volumes given and test it on the
remaining one in a leave one out fashion. We get a Dice similarity coefficient of
0.561± 0.118 for the oedema and 0.668± 0.126 for the active tumour when we
compare our segmentation against those of experts.
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Abstract. Tumor is an abnormal tissue type, therefore it is hard to be
identified by some classical classification methods. It was tried to find
a non-linear decision boundary to classify tumor and edema by a joint
approach of hybrid clustering and logistic regression.

Keywords: Sparse dictionary learning, K-means clustering, Logistic Re-
gression

1 Introduction

Classifying tumor is challenging as it represents a collection of some abnormal
tissue types which results in not enough labeled training dataset to “learn”
about the different characteristics of an unseen tumor. In this situation, cluster-
ing would be a viable approach, as it divides a given dataset into a number of
sub-groups without requiring the labeled training dataset. While the more clas-
sical clustering methods such as k-means and Expectation Maximization (EM)
produce good clustering result, they just divide a given dataset into a number
of sub-groups, such that there is no “learning” process involved that a learned
knowledge can be applied to an unseen dataset.

Sparse dictionary learning [1, 2] has been applied to a number of wide range
of disciplines such as signal reconstruction for medical image acquisition [3],
image denoising [4], object recognition [5], and medical image segmentation [6].
By representing a given dataset by a combination of some learned dictionary’s
basis vector sets, the dataset can be clustered. This approach, often referred as
sparse coding, was applied for object recognition [7, 8] and multi-modal medical
image segmentation [9].

It was noticed that edema is already quite well classified by this method,
whereas tumor is not. There are different types of tumor in the dataset, therefore
there is no clear pattern in the images of different modalities for tumor. Logistic
regression was applied to find a non-linear decision boundary to classify these
different types of tumors from a more normal tissues.This is combined with
volume-wise k-means clustering method to segment a cluster of tumor-like region.
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2 Hoo-Chang Shin

2 Methods

2.1 Segmentation of Edema by Sparse Coding
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Fig. 1. Sparse coding of a slice in a volume with its multi-modal MR images by a 4×4
size sparse dictionary.

A sparse dictionary for the behavior of the image intensities in the given
multiple image modalities (Flair, T1, T1C, and T2) is learned by a sparse au-
toencoder [10, 11]. The 4×4 sparse basis dictionary is shown in Fig. 1, where each
column represents a dictionary entry. The image intensities in a pixel position of
different image modalities are convolved with each of the dictionary entry, where
the values become a binary digit after being applied a logistic sigmoid function.

Different combinations of dictionary entries represent the characteristics of
different tissue types, which results in different binary digit numbers. 15(= 24�1)
different types of tissue characteristics can be captured by sparse coding with
a dictionary of 4 × 4 size. The hyper-parameters in sparse dictionary learning,
such as the size of the dictionary and the sparsity constraints, are chosen by
cross-validation.

The visualization of the 15 different tissue types identified by the sparse cod-
ing is shown in Fig. 2 with the ground truth of edema and tumor for the slice. It
is noticeable that edema is already quite well classified by the bright blue region
where it contains a region of a tumor as well. The segmentation performance for
edema by sparse coding in F1-score (2 · (precision · recall)/(precision + recall))
on 10 cross-validation set was 0.54, which outperformed the other methods tried
for edema segmentation (logistic regression: 0.246, neural network1: 0.14).

1 neural network classification on image intensities of each voxel in the
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Fig. 2. Tissue type clustering result of an image slice by sparse coding with 4 × 4 size
dictionary.

2.2 Segmentation of Tumor by Logistic Regression and K-means
Clustering

Whereas edema was well classified by the sparse coding, tumor was not, probably
because tumor is a highly heterogeneous tissue type or just an abnormal region.
In the training dataset, tumor in some volumes were well observed by Flair
images, whereas in some other volume it was better observed by T1-Contrast
images, but no obvious pattern could be found unlike the other tissue types or
edema. Therefore, it was tried to find a non-linear decision boundary to separate
these “abnormal” tumor from a more “normal” tissue types with logistic regres-
sion. Logistic regression models the conditional probability of given feature x
belonging to a class y ∈ {0, 1} as the logistic sigmoid function (1/(1 + ex)). Sec-
ond order polynomial feature with two combination of the four image modalities
were used

x = {x1x2, x
2
1x2, x1x

2
2, x

2
1x

2
2, x1x3, · · · , x2

1x
2
4, x3x4, x

2
3x4, x3x

2
4, x

2
3x

2
4}

, where x1, x2, x3, x4 represent the image intensities of each image modality. The
F1-score for tumor classification with this method was 0.246 on a cross-validation
dataset with 10 volumes, outperforming the other classification methods for tu-
mor classification (sparse coding: 0.0031, neural network: 0.0001).

Another insight for the tumor segmentation was, that a tumor is usually sur-
rounded by an edema. Consequently, if the region found by the logistic regression
is inside the already segmented edema region, it is regarded as well classified.
When the region segmented by logistic regression is outside of the edema region,
and then it is regarded as segmentation failure. In this case, a multi-modal k-
means clustering was applied to capture a cluster of a region within edema but
has a different characteristic than edema.
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4 Hoo-Chang Shin

3 Results

The average segmentation performance evaluated are shown in Table 1. No hu-
man input is required during the segmentation process, and the average segmen-
tation time for a single patient volume was about 1.8 minutes.

Table 1. Performance evaluation results

Av.Dist.1 Av.Dist.2 Dice.1 Dice.2 Haus.1 Haus.2 Cohen’s Sens.1 Sens.2 Spec.1 Spec.2

6.526 15.478 0.391 0.3 37.883 94.282 0.144 0.511 0.416 0.992 0.995
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Abstract. In this text, a Random Walker (RW) based method is proposed for brain tumor 

MR images segmentation with interaction. Not only the method is designed to achieve a 

final segmentation result, but also it is a convenient tool for users to modify their results 

iteratively. To overcome the shortcoming of typical RW algorithm, we extend RW to fea-

ture space for soft clustering, and then carry out pixel-wise segmentation in image 

space. Proposed method is performed on multimodal brain MR images, including T2-

weighted, contrast enhanced T1-weighted, and FLAIR sequences. 

Keywords: image segmentation, brain tumor, Random Walker, interactive, hierarchical 

 

1 Introduction 

Segmentation of brain tumor image is very important. Because the inter-patient varia-

tion of tumor shape, position, texture, and size is large, a robust fully-automatic method 

is difficult to design. In addition, intervention is needed when automatic result is evalu-

ated and validated. Therefore, we focus on interactive algorithms. 

Since the Graph Cuts (GC) algorithm is brought to attention [1], a family of interactive 

segmentation methods are proposed and of interest for recent decade, such as Random 

Walker (RW) [2] and Shortest Path (SP) [3], which provide another chance to modify the 

segmentation results when automatic implementation is unavailable or incorrect, espe-

cially on medical images. In [4], these popular interactive algorithms are unified into a 

common optimization framework. However, RW is distinguished from others due to its 

particular soft segmentation. In next section, RW will be discussed, and our improve-

ment of typical algorithm and its application for multimodal brain tumor MR will be illus-

trated. 

 

2 Method 

2.1 Typical Random Walker 

The RW algorithm is formulated on a weighted graph and optimized by solving a Dirichlet 

problem. The objective function is given by 
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where x  is the target soft label, and w  is similarity measure between pixel i  and j , 

and the constraints are set by interaction. 

Furthermore, similarity measure w  is often defined as 

 2

, ,exp( ( ) ),
i j i j
w Iβ= − ∇  (2) 

where 
,i jI∇  denotes absolute distance in feature space between pixel i  and j , and β  

is a parameter given by designer. 

2.2 RW in feature space 

Similarly, the discrete feature space is defined as an edge-weighted graph, and the objec-

tive function of clustering is given by 
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where µ  represents clustering label, as well as s  is similarity measure of distribution 

density between sample i  and j  in feature space, which is defined by 

 2

, ,
exp( ( ) ),

i j i j
s Pα= − ∇  (4) 

where 
,i jP∇  is defined as variation of distribution density in feature space, and α  is a 

parameter given by designer. 

In typical RW, similarity measure is defined by its negative correlativity to absolute dis-

tance in feature space, which neglects prior label information provided by user. To mine 

the prior information from the seeds as much as possible, we extend RW to feature 

space as a soft semi-supervised clustering. When the clustering labels are obtained, we 

will re-define the similarity measure as in (2) by relative distance between labels as fol-

low, 

 2

, exp( ( ) ).
i j i j
w β µ µ= − −  (5) 

2.3 Proposed Method 

 

The whole workflow of proposed method is illustrated in Fig. 1. In the pre-processing 

step, T2, CET1, and FLAIR sequences are filtered by Gaussian kernel. To initialize the hier-

archical RW, the user has to select two groups of seeds which locate tumor and edema 

respectively, and the interface for interaction, where the user can input seeds in images 

of any modal, is shown in Fig. 2. 
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Fig. 1. Flow diagram of proposed method. 

 

 

Fig. 2. Interface for selecting seeds. 

 

After the initialization, the core algorithm of proposed method, which is hierarchical RW, 

is performed, and then results are displayed in the interface for user’s iterative modifica-

tion. 

RW is carried out in T2-FLAIR intensity space, as described in last sub-section, to identify 

the abnormal (tumor and edema), and in T2-T1C intensity space to identify the tumor 

respectively. In Fig. 3, the joint distribution density and results of clustering is shown. 

 

 

 

Fig. 3. From left to right: density in T2-FLAIR space; soft clustering labels; and images labeled by cluster-

ing result. 

The labels of clustering are utilized to calculate similarity measure of pixel-pair according 

to (5), and typical RW in image space is employed to obtain segmentation labels, as 

shown in Fig. 4.  If the segmentation is not accepted, the user could iteratively revise the 

result until satisfied. 
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Fig. 4. Illustration of segmentation results in some slice: edema (left) and tumor (right). 

3 Results 

The proposed method was applied to 80 sets of brain tumor MR images, of which 12 

groups failed due to high space complexity of RW.  With enough interaction, a user could 

gain any segmentation result by an interactive segmentation algorithm, so we evaluate 

the results acquired from single interaction without any modification. The performance 

of our method is illustrated in Table 1 and Table 2 where 7 segmentation performance 

metrics are introduced. 

Table 1. The mean of evaluation metrics. 

 

Table 2. The standard deviation of evaluation metrics.

 

4 Discussion and Conclusion 

We presented a hierarchical RW method which assists user to locate tumor and edema 

interactively in dozens of seconds.  The improved algorithm performed better than typi-

cal one, while the feature space is multi-dimensional. 

The RW is optimized by solving a large sparse equation, which needs adequate memory 

resource, and when the size of image is huge, a technique for linear equation is neces-

sary. 

  

Proc MICCAI-BRATS 2012

39



References: 

1. Boykov, Y.Y. and M.P. Jolly. Interactive graph cuts for optimal boundary & region segmentation of 

objects in N-D images. in Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE International 

Conference on. 2001. 

2. Grady, L., Random walks for image segmentation. IEEE transactions on pattern analysis and ma-

chine intelligence, 2006. 28(11): p. 1768-1783. 

3. Xue, B. and G. Sapiro. A Geodesic Framework for Fast Interactive Image and Video Segmentation 

and Matting. in Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference on. 2007. 

4. Couprie, C., et al., Power Watershed: A Unifying Graph-Based Optimization Framework. Pattern 

Analysis and Machine Intelligence, IEEE Transactions on, 2011. 33(7): p. 1384-1399. 
 

Proc MICCAI-BRATS 2012

40



Automatic Brain Tumor Segmentation based on
a Coupled Global-Local Intensity Bayesian

Model

Xavier Tomas-Fernandez1 and Simon K. Warfield1

Children’s Hospital Boston, Boston MA 02115 , USA,
Xavier.Tomas-Fernadez@childrens.harvard.edu,

http://crl.med.harvard.edu/

Abstract. Localizing and quantifying the volume of brain tumor from
magnetic resonance images is a key task for the analysis of brain cancer.
Based in the well established global gaussian mixture model of brain tis-
sue segmentation, we present a novel algorithm for brain tissue segmen-
tation and brain tumor detection. We propose a tissue model which com-
bines the patient global intensity model with a population local intensity
model derived from an aligned reference of healthy subjects. We used the
Expectation-Maximization algorithm to estimate the parameters which
maximize the tissue maximum a posteriory probabilities. Brain tumors
were modeled as outliers with respect to our coupled global/local inten-
sity model. Brain tumor segmentation was validated using the 30 glioma
patients scans from the training dataset from MICCAI BRATS 2012
challenge.

Keywords: Magnetic Resonance Imaging, Segmentation, Brain Tumor,
Bayesian, Outliers

1 Introduction

Quantifying the volume of a brain tumor is a key indicator of tumor progression.
The standard technique to obtain an accurate segmentation is through manual
labeling by experienced technicians. However, this manual process is not only
very time consuming, but prone to inherent inter- and intra-rater variability.
Therefore, there is a need for automated methods for brain tumor segmentation
that can analyse large amounts of data in a reproducible way and correlates well
with expert analyses.

Several approaches to brain tumor segmentation used intensity based statisti-
cal classification algorithms. Kaus et al [3] used the adaptive template-moderated
classification algorithm [9] to segment the MR image into four healthy tissue
classes and tumor. Their technique proceeded as an iterative sequence of spa-
tially varying classification and nonlinear registration. Prastawa et al. [7] detect
outliers based on refined intensity distributions for healthy brain tissue initially
derived from a registered probabilistic atlas.
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Intensity based classification relies on contrast between tissue types in feature
space and adequate signal compared to image noise. Statistical classification
identifies an optimal boundary, in feature space, between tissue types, and the
separability of two tissue classes is related to the overlap between classes in
feature space. Brain tumor MRI intensity feature space overlap with those of
brain healthy tissues making difficult to identify a decision boundary, resulting
in increased tissue misclassification.

In this paper, we present a novel algorithm for brain tissue segmentation
and brain tumor detection which extents the well established global Bayesian
model of brain tissue segmentation that has been proposed previously in several
works (i.e. [10]). We propose a novel tissue model which combines a patient
global intensity model with a population local intensity model derived from a
reference of healthy subjects. We reformulate the challenge of detecting brain
tumors by modeling them as outliers with respect to our coupled global/local
intensity model derived from the target subject and an aligned healthy reference
population.

2 Methods

In this section, we first introduce a local intensity prior probability estimated
from a reference healthy population. This local tissue intensity prior and a global
Bayesian model of brain tissue intensities will be the foundation of our coupled
local and global Bayesian tissue model which we introduce in Section 2.2. Fol-
lowing, the procedure to detect brain tumors, will be described in Section 2.3.

2.1 Local Reference Population Bayesian Intensity Tissue Model

Consider a reference population P formed by R healthy subjects aligned to
the subject of interest. Each reference subject is composed by a multispectral
grayscale MRI V (i.e. T1w, T2w and FLAIR) and the corresponding tissue seg-
mentation L (i.e. GM, WM and CSF), thus P = {V,L} = {V1, ...,VR;L1, ...,LR}.
Each reference grayscale MRI Vr = {Vr1, ...,VrN} is formed by a finite set of N
voxels with VriεRm. Also each reference tissue segmentation Lr = {Lr1, ...,LrN}
is formed by a finite set of N voxels with Lri = ek = {lri1, ..., lriK} is a K-
dimensional vector with each component lrik being 1 or 0 according whether vri
did or did not arise from the kth class.

At each voxel i, the reference population P intensity distribution will be
modeled as a Gaussian Mixture Model parametrized by ξi = {πPi;µPi,ΣPi}.
Where πPi, µPi and ΣPi are respectively the population tissue mixture vector,
the population mean intensity vector and the population intensity covariance
matrix at voxel i. Because {V,L} are observed variables, ξi can be derived
using the following expressions:

πPik =
1

R

R∑
j=1

p(Lij = ek) (1)
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µPik =

∑R
j=1 Vijp(Lij = ek)∑R
j=1 p(Lij = ek)

(2)

ΣPik =

∑R
j=1 (Vij − µPik)T (Vij − µPik) p(Lij = ek)∑R

j=1 p(Lij = ek)
(3)

where p(Lij = ek) is the probability of voxel i of the jth reference subject belong
to tissue k given by Lj .

2.2 Coupling Global and Local Models

Consider that the observed data Y and hidden labels Z are described by a
parametric conditional probability density function defined by {ψ, ξ}, where
ψ parametrize a within subject global GMM and ξ parametrize a local GMM
derived from an aligned reference of R healthy subjects P.

Segmenting the observed data Y implies the estimation of parameters {ψ, ξ}.

log LC(ψ, ξ) = log (f(Y,Z|ψ, ξ))

= log

(
N∏
i=1

K∑
k=1

f(Zi = ek|ψk, ξik)f(Yi|Zi = ek,ψk, ξik)

)
(4)

From Section 2.1, the local intensity model is just dependent on the aligned
reference population P = {V,L} which is observable. Thus, the parameter ξ
will be constant. We can rewrite the complete log-likelihood as:

log LC(ψ, ξ) = log (f(Y,Z|ψ, ξ)) = log (f(Y,Z|ψ)f(Y,Z|ξ))

=

N∑
i=1

log

(
K∑
k=1

f(Zi = ek|ψk)f(Yi|Zi = ek,ψk)

)

+

N∑
i=1

log

(
K∑
k=1

f(Zi = ek|ξik)f(Yi|Zi = ek, ξik)

)

where ek is a K-dimensional vector with each component being 1 or 0 according
whether Yi did or did not arise from the kth class. Thus:

log LC(ψ, ξ) =

N∑
i=1

K∑
k=1

zij (log (f(Zi = ek|ψk) + f(Yi|Zi = ek,ψk)))

+

N∑
i=1

K∑
k=1

zij (log (f(Zi = ekand|ξik) + f(Yi|Zi = ek, ξik))) (5)

Because the underlying tissue segmentation Z is unknown, the EM algorithm
will be used to find the parameters that maximize the complete log-likelihood.
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E-Step: Because ξ is constant, the E-step of the coupled model requires
the computation of the conditional expectation of log (LC(ψ, ξ)) given Y, using

ψ(m) for ψ.

Q(ψ, ξ;ψ(m), ξ(m)) ∼ Q(ψ;ψ(m)) = Eψ(m){log LC(ψ, ξ)|Y}

The complete log-likelihood is linear in the hidden labels zij . The E-step
requires the calculation of the current conditional expectation of Zi given the
observed data Y:

Eψ(m)(Zi = ek|Y, ξij) = f(Zi = ej |Yi, ξij ,ψ
(m)
j )

=
f(Yi|Zi = ej , ξij ,ψ

(m)
j )f(Zi = ej |ξij ,ψ

(m)
j )∑K

k=1 f(Yi|Zi = ek, ξik,ψ
(m)
k )f(Zi = ek|ξik,ψ

(m)
k )

(6)

Note that:

f(Yi|Zi = ej , ξij ,ψ
(m)
j ) ∼ f(Yi|Zi = ej ,ψ

(m)
j )f(Yi|Zi = ej , ξij)

f(Zi = ej |ξij ,ψ
(m)
j ) ∼ f(Zi = ej |ψ(m)

j )f(Zi = ej |ξij)

M-Step: Because the local reference population model parameter ξ is con-
stant, the Maximization step will consist in the maximization ofQ(ψ, ξ;ψ(m), ξ(m))
with respect to ψ, which results in the following update equations:

f(Zi = ek|ψ(m+1)
k ) =

1

N

N∑
i=1

f(Zi = ek|Yi,ψ
(m), ξik) (7)

µ
(m+1)
k =

∑N
i=1 Yi f(Zi = ek|Y,ψ(m))∑N
i=1 f(Zi = ek|Y,ψ(m))

(8)

Σ
(m+1)
k =

∑N
i=1 f(Zi = ek|Y,ψ(m))(Yi − µ(m)

k )T (Yi − µ(m)
k )∑N

i=1 f(Zi = ek|Y,ψ(m))
(9)

2.3 Brain Tumor Detection

Intuitively from (5), the local intensity model downweights the likelihood of
those voxels with an abnormal intensity given the reference population. Because
brain tumors show an abnormal intensity level compared to a healthy subject in
the same location, we assume that tumors correspond with brain areas with low
likelihood, making feasible brain tumor detection as outliers toward our coupled
global/local intensity model. To extract the voxel outliers and to estimate the
parameters of the different brain tissues in a robust way, we used the Trimmed
Likelihood Estimator (TLE).

The TLE was proposed by [6] as a modification of the Maximum Likelihood
Estimator in order to be robust to the presence of outliers. Using the TLE, the
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complete log-likelihood (5) can be expressed as:

logLC(ψ, ξ) = log

(
h∏
i=1

f(Yν(i), Zν(i)|ψ, ξi)

)
with ν = {ν(1), ..., ν(N)} being the corresponding permutation of indices sorted
by their probability f(Yν(i), Zν(i)|ψ, ξi), and h is the trimming parameter corre-
sponding to the percentage of values included in the parameter estimation.

The trimming proportion h will define a set of outlier voxels C which among
others will encompass the brain tumors. Because the set of outlier voxels C
contained no only brain tumor but also false positives, a Graph-Cuts algorithm
[2] was used to segment C into tumors or false positives.

3 Results

We validated our brain tumor segmentation algorithm using the clinical train-
ing data provided in the MICCAI 2012 brain tumor segmentation (BRATS)
challenge.

3.1 Reference Population

We collected data from 15 volunteers on a 3T clinical MR scanner from GE
Medical Systems (Waukesha, WI, USA) using an 8-channel receiver head coil
and three different pulse sequences: a T1-weighted MPRAGE (Magnetization
Prepared Rapid Acquisition Gradient Echo) sequence; a T2-weighted scan from
an FSE (Fast Spin Echo) sequence; and a FLAIR scan, also run with an FSE
sequence. We acquired the T1w sequence axially; the T2w and FLAIR sequences
were sagitally acquired. All sequences were acquired with a matrix size of 256x256
and a field of view of 28 cm. Slice thickness was 1.3 mm for the T1w-MPRAGE
sequence; 1 mm for the T2w-FSE sequence; and 2 mm for the FLAIR-FSE
sequence. The MPRAGE parameters were TR 10/TE 6 ms with a flip angle of
8. For the FSE, the paramenters were TR 3000/TE 140 ms with an echo train
length of 15.

After image acquisition, we aligned the T2w and FLAIR images to the T1w
scan. Next, we re-oriented these MR images to an axial orientation. Last, a
trained expert manually segmented the intra-cranial volume, CSF, GM and WM
tissues [5].

To achieve accurate alignment between healthy volunteers and a gliobas-
toma patient we used a nonlinear registration algorithm proposed by [1], which
although not intrinsic to our method, was selected because it is robust in the
presence of WM lesions [8]. We note, however that other non-linear registration
approaches are applicable with our technique [4].

Since the intensity levels of the subject of interest and the reference popula-
tion need to be in a comparable range, we used a linear transformation to find a
match between the median intensity of each modality (of each reference subject)
and those found in the scans of the subject of interest.
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3.2 MICCAI BRATS 2012 Training Data

MICCAI brain tumor segmentation challenge training data consists of multi-
contrast MR scans of 30 glioma patients (both low-grade and high-grade, and
both with and without resection) along with expert annotations for ”active tu-
mor” and ”edema”. For each patient, T1, T2, FLAIR, and post-Gadolinium
T1 MR images are available. All volumes were linearly co-registered to the T1
contrast image, skull stripped, and interpolated to 1mm isotropic resolution.

Each gliobastoma patient was segmented using the post-Gadolinium T1, T2
and FLAIR MR scans. Algorithm parameters were fixed to neighborhood ra-
dius R = 1 and trimming percentage h = 10%. The estimated global-local
outliers were classified as either tumor or edema using the graph-cuts algorithm
described in Section 2.3. An example of the resulting segmentation can be found
in Figure 1.

Fig. 1. Example of gliobastoma segmentation achieved by our combined global-local
model. Top, FLAIR coronal slices of High grade gliobastoma Case0003; Middle, tumor
manual segmentation provided by the challenge organizers; Bottom, automatic tumor
segmentation achieved by our combined global/local model.

The resulting gliobastoma segmentations were uploaded to the MICCAI
BRATS 2012 challenge1 for evaluation. The online evaluation tool computed
the dice score, jaccard score, specificity, sensitivity, average closest distance and
hausdorff distance for both edema and active tumor. Results achieved by our
combined global-local model can be found in Table 1.

1 https://vsd.bfh.ch/WebSite/BRATS2012
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Dice Jaccard Specificity Sensitivity Avg. Dist. Hausdorff Dist.

Tumor 0.43±0.29 0.32±0.25 1.00±0.01 0.47±0.32 6.10±12.24 26.82±18.26
Edema 0.55±0.28 0.43±0.27 1.00±0.00 0.58±0.31 6.83±12.83 32.49±22.58

Table 1. MICCAI BRATS 2012 training data results R = 0 and h = 20%.

4 Discussion

Preliminary results achieved on the clinical training data, show how our com-
bined model allows a highly specific tumor segmentation. However, in some sub-
jects, the heterogeneous intensity distribution of active tumors across all MRI
modalities provided in the database, our algorithms fails to classify accurately
outlier voxels into active tumor and edema.

Overall, we proposed a novel fully automatic algorithm for segmenting MR
images of gliobastoma patients. This algorithm uses an approach that combines
global and local tissue intensity models derived from an aligned set of healthy
reference subjects. Specifically, tumors are segmented as outliers within the com-
bined local/global intensity Gaussian Mixture Model (GMM). A graph-cuts al-
gorithm is used to classify the estimated coupled model outlier voxels into active
tumor and edema.
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1 Introduction

In this paper, we evaluate a fully automated method for channel-specific tumor
segmentation in multi-dimensional images proposed by us in [1]. The method
represents a tumor appearance model for multi-dimensional sequences that pro-
vides channel-specific segmentation of the tumor. Its generative model shares
information about the spatial location of the lesion among channels while mak-
ing full use of the highly specific multi-modal signal of the healthy tissue classes
for segmenting normal tissues in the brain. In addition to tissue types, the model
includes a latent variable for each voxel encoding the probability of observing
tumor at that voxel, based on the ideas from [2, 3]. This extends the general “EM
segmention” algorithm for situations when specific spatial structures cannot be
described sufficiently through population priors. Different from [1], we now use
a simplified EM algorithm for estimating the tissue state that also allows us to
enforce additional constraints for segmenting lesions that are either hyper- or
hypo-intense with respect to other tissues visible in the same image.

2 Generative Tumor Model

We use a generative modeling approach, in which we first build an explicit sta-
tistical model of image formation and subsequently use this model to derive a
fully automatic segmentation algorithm. We follow the description of the model
from [1].

Normal state We model the normal state of the healthy brain using a spatially
varying probabilistic prior πk for each of the K tissue classes. This population
prior (atlas) is estimated from prior examples and is assumed to be known. At
each voxel i, the atlas defines a multinomial distribution for the tissue label ki:

p(ki = k) = πki. (1)
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The normal state ki is shared among all C channels at voxel i. In our experiments
we assume K = 3, representing gray matter (GM), white matter (WM) and
cerebrospinal fluid (CSF).

Tumor state We model the tumor state using a spatially varying “latent” prob-
abilistic atlas α, similar to [2], that is specific to the given image data set or
patient. At each voxel i, this atlas provides a scalar parameter αi that defines
the probability of observing tumor at that voxel. Parameter αi is unknown and
is estimated as part of the segmentation process. We define a latent tumor state
tci ∈ {0, 1} that indicates the presence of tumor in channel c at voxel i and model
it as a Bernoulli random variable with parameter αi. We form a binary tumor
state vector ti = [t1i , . . . , t

C
i ]T indicating the tumor presence for all c observations

at voxel i, with probability

p(ti;αi) =
∏
c

p(tci ;αi) =
∏
c

α
tci
i · (1− αi)

1−tci . (2)

Observation model The image observations yci are generated by Gaussian inten-
sity distributions for each of the K tissue classes and the C channels, with mean
µc
k and variance vck, respectively. In tumor tissue (i.e., if tci = 1) the normal obser-

vations are replaced by intensities from another set of channel-specific Gaussian
distributions with mean µc

T and variance vcT , representing the tumor class. Let-
ting θ denote the set of all mean and variance parameters, and yi = [y1i , . . . , y

C
i ]T

denote the vector of the intensity observations at voxel i, we define the data like-
lihood:

p(yi|ti, ki;θ) =
∏
c

p(yci |tci , ki;θ)

=
∏
c

[
N (yci ; µc

ki
, vcki

)1−t
c
i · N (yci ; µc

T , v
c
T )t

c
i

]
, (3)

where N (· ; µ, v) is the Gaussian distribution with mean µ and variance v.

Joint model Finally, the joint probability of the atlas, the latent tissue class and
the observed variables

p(yi, ti, ki;θ, αi) = p(yi|ti, ki;θ) · p(ti;αi) · p(ki) (4)

is the product of the components defined in Eqs. (1-3).

3 Inference

Maximum Likelihood Parameter Estimation We seek Maximum Likelihood esti-
mates of the model parameters {θ,α}:

〈θ̂, α̂〉 = arg max
〈θ,α〉

p(y1, . . . ,yN ;θ,α) = arg max
〈θ,α〉

N∏
i=1

p(yi;θ,α),
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where N is the number of voxels in the volume and

p(yi;θ,α) =
∑
ti

∑
ki

p(yi, ti, ki;θ,α) =
∑
si

p(yi, si;θ,α).

For summing over values of ti and ki in Eq. (4), we follow the same approach
as in [1], but – rather than summing over the two parameters individually – we
now sum over tissue state vector si that is obtained by expanding ti and ki into
one state vector. This state vector s indicates tumor sci = T in all channels with
tci = 1, and normal tissue sci = ki for all other channels. As an example, with
ti = [0, 0, 1, 1] and ki = WM indicating tumor in channels 3 and 4 and a white
matter image intensity in all healthy channels, we obtain a tissue state vector
si = [WM,WM,T, T ]. Letting {θ̃, α̃} denote the current parameter estimates,
we can compute the posterior probability of any of the resulting K ∗ 2C tissue
state vectors si that may characterize the multimodal image intensity pattern
observed in voxel i. Writing out the components of Eq. (4) we obtain for si
(using the corresponding ti(si) and ki(si) for simplicity of the notation):

p(si|yi; θ̃, α̃) ∝ πki
∏
c

[
N (yci ; µ̃c

T , ṽ
c
T )t

c
iα

tci
i · N (yci ; µ̃c

k, ṽ
c
k)1−t

c
i (1− αi)

1−tci

]
(5)

As an additional constraint we only consider state vectors si that are biologically
reasonable. We rule out, for example, state vectors that indicate at the same time
CSF and tumor, or that correspond to observing tumor-specific changes in the
T1gad channel (that is characteristic for the tumor core), while T2 and FLAIR
do not show tumor specific changes in the same location. Choosing appropriate
constraints reduces the total number of states |S| to be summed over in Eq. 5
significantly. Similar to the double EM-type minorization from [1] – that updated
ti and ki iteratively – we arrive at closed-form update expressions that guarantee
increasingly better estimates of the model parameters. The updates are intuitive:
the latent tumor prior α̃i is an average of the corresponding posterior estimated
and the intensity parameters µ̃c

k and ṽck are updated with the weighted statistics
of the data for the healthy tissues and for the tumor class. We iterate the estima-
tion of the parameters {θ̃, α̃} and the computation of the posterior probabilities

p(si|ki,yi; θ̃, α̃) until convergence that is typically reached after 10-15 updates.
During the iterations we enforced that tumor voxels are hyper- or hypo-intense
with respect to the current average µc

k of the white matter tissue (hypo-intense
for T1, hyper-intense for T1gad, T2, FLAIR) by reducing the class weight for
observations that do not comply with this constraint, similar to [4].

Spatial regularization Little spatial context is used in the basic model, as we
assume the tumor state ti in each voxel to be independent from the state of
other voxels Eq. 3). It is only the atlas πk that encourages smooth classification
for the healthy tissue classes by imposing similar priors in neighboring voxels.
To encourage a similar smoothness of the tumor labels, we extend the latent
atlas α to include a Markov Random Field (MRF) prior, relaxing the MRF to
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a mean-field approximation with an efficient approximate algorithm. Different
from [1], we now use channel-specific regularization parameters βc that are all
in the range of .3 to 1.

Channel-specific tumor probabilities, and semantic interpretation Once we have
an estimate of the model parameters {θ̂, α̂}, we can evaluate the probability that
tumor is visible in channel c of voxel i by summing over all the configurations ti
for which sci = T or tci = 1, respectively:

p(tci = 1|yi; θ̂, α̂) = p(sci = T |yi; θ̂, α̂) =
∑
si

δ(sci , T ) p(si|yi; θ̂, α̂), (6)

where δ is the Kroneker delta that is 1 for sci = T and 0 otherwise.

We then assign channel c of voxel i to tumor if p(tci = 1|yi; θ̂, α̂) > 0.5.
For a semantic interpretation that is in line with the class definitions of the
segmentation challenge, we label voxels that show tumor specific changes in the
T2 channel as edema, and voxels that show hyper-intense tumor specific changes
as tumor core. All other image voxels are considered to be normal. Moreover, we
remove any isolated regions that is smaller than .5 cm3 in size.

4 Experiments

We evaluate our model on a the BRATS challenge data set of 25 patients with
glioma. The data set comprises T1, T2, FLAIR-, and post-Gadolinium T1 MR
images, all images are skull stripped and co-registered using an affine registra-
tion. We segment the volume into the three healthy and an outlier class using a
freely available implementation of the EM segmentation with bias correction [5,
4]. Outliers are defined as being more than three standard deviations away from
the centroid of any of the three normal tissue classes. We apply our algorithm to
the bias field corrected volumes and initialize intensity parameters with values
estimated in the initial segmentation. We initialize the latent atlas α to 0.7 time
the local prior for the presence of gray or white matter.

Channels-specific segmentations returned by our algorithm are transformed
to Edema and Core classes as detailed above. Exemplary segmentations are
shown in Figure 1 and quantitative results from a leave-one-out cross-validation
are shown in Table 1. Note that the definition of “core” labels differs between
ground truth (where it also includes the T1 hypo-intense center of the tumor) and
the algorithm tested (where it is only the T1gad hyper-intense area of the tumor)
leading to misleading evaluation scores for low-grade cases and, to some degree,
for high-grade core labels. Please note that another submission to the BRATS
challenge [6] deals with further processing the probability maps presented here.
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ID Dice1 Sens1 Spec1 Dice2 Sens2 Spec2
BRATS HG0027 0.633 0.649 0.995 0.728 0.619 0.999
BRATS HG0026 0.681 0.616 0.998 0.443 0.369 0.999
BRATS HG0025 0.643 0.704 0.996 0.154 0.087 1
BRATS HG0024 0.652 0.685 0.998 0.71 0.639 0.999
BRATS HG0022 0.689 0.683 0.998 0.463 0.311 1
BRATS HG0015 0.762 0.699 0.998 0.691 0.534 1
BRATS HG0014 0.217 0.453 0.989 0.457 0.303 1
BRATS HG0013 0.429 0.647 0.999 0.74 0.983 1
BRATS HG0012 0.373 0.58 0.997 0.068 0.043 1
BRATS HG0011 0.606 0.464 0.999 0.57 0.54 0.998
BRATS HG0010 0.381 0.792 0.996 0.724 0.77 1
BRATS HG0009 0.697 0.594 0.997 0.486 0.38 0.997
BRATS HG0008 0.652 0.56 0.996 0.697 0.556 1
BRATS HG0007 0.542 0.492 0.997 0.775 0.727 0.999
BRATS HG0006 0.649 0.621 0.997 0.65 0.505 1
mean 0.574 0.616 0.997 0.557 0.491 0.999
median 0.643 0.621 0.997 0.65 0.534 1

ID Dice1 Sens1 Spec1 Dice2 Sens2 Spec2
BRATS LG0015 0.373 0.523 0.998 0 0 1
BRATS LG0014 0.182 0.335 0.998 0 0 1
BRATS LG0013 0.185 0.324 0.995 0.17 0.099 1
BRATS LG0012 0.42 0.79 0.997 0.005 0.002 1
BRATS LG0011 0.344 0.777 0.996 0.001 0 1
BRATS LG0008 0.471 0.386 1 0.675 0.547 1
BRATS LG0006 0.625 0.809 0.998 0.591 0.507 1
BRATS LG0004 0.75 0.764 0.998 0.011 0.006 1
BRATS LG0002 0.584 0.622 0.991 0.109 0.059 1
BRATS LG0001 0.3 0.495 0.997 0.838 0.777 1
mean 0.423 0.582 0.997 0.24 0.2 1
median 0.396 0.572 0.998 0.06 0.0325 1

Table 1. Performance measures as returned by the online challenge tool
(challenge.kitware.com/midas/), indicating Dice score, sensitivity and speci-
ficity (top: high-grade cases; bottom: low-grade cases). Class “1”, with results
shown in the left column, refers to the “edema” labels. Class “2”, with results
shown in the right column, refers to the “tumor core” labels (for both low and
high grade cases). Note that this definition differs somewhat from the labels re-
turned by the algorithm that only indicates T1gad hyper-intense regions as class
2, irrespectively of the grading (low/high) of the disease.
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Fig. 1. Representative results of the channel-wise tumor segmentation. Shown
are the MR images together with the most likely tumor areas (outlined red).
The first four columns show T1, T1gad, T2 and FLAIR MRI, lesions are hyper-
intense with respect to the gray matter for T1gad, T2 and FLAIR, they are
hypo-intense in T1. The last two columns show the labels inferred from the
channel-specific tumor segmentation (column 5), and the ground truth (column
6). The examples show that expert annotation may be disputable in some cases
(e.g., rows 4, 5, 6).
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1 Introduction

In this paper, we evaluate a generative-discriminative approach for multi-modal
tumor segmentation that builds – in its generative part – on a generative sta-
tistical model for tumor appearance in multi-dimensional images [1] by using
a “latent” tumor class [2, 3], and – in its discriminative part – on a machine
learning approach based on a random forest using long-range features that is
capable of learning the local appearance of brain lesions in multi-dimensional
images [4, 5]. The approach combines advantageous properties from both types
of learning algorithms: First, it extracts tumor related image features in a robust
fashion that is invariant to relative intensity changes by relying on a generative
model encoding prior knowledge on expected physiology and pathophysiologi-
cal changes. Second, it transforms image features extracted from the generative
model – representing tumor probabilities in the different image channels – to
an arbitrary image representation desired by the human interpreter through an
efficient classification method that is capable of dealing with high-dimensional
input data and that returns the desired class probabilities. In the following, we
shortly describe the generative model from [1], and input features and additional
regularization methods used similar to our earlier discriminative model from [4].

2 Generative Tumor Model

We use a generative modeling approach, in which we first build an explicit sta-
tistical model of image formation and subsequently use this model to derive a
fully automatic segmentation algorithm. We follow closely our description of the
method from [1]. The structure of the generative probabilistic model provides
strong priors on the expected image patterns. For segmenting magnetic reso-
nance (MR) images, it has the advantage that model parameters describing the
observed image intensities serve as nuisance parameters. This makes it robust
against tissue specific changes of the image intensity, and the algorithm does
not depend on intensity calibration methods – often required for learning ap-
proaches that use image intensities as input – that may be prone to errors in
the presence of lesions that vary in size and image intensity. Moreover, gener-
ative image appearance model can be combined with other parametric models
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used, for example, for registration [6] or bias field correction [7], and even more
complex image modification that can be “regressed out” in the same way.

Tumor appearance model We model the normal state of the healthy brain us-
ing a spatially varying probabilistic prior πk, a standard population atlas, for
each of the K = 3 tissue classes that are visible from the given images (gray
matter, white matter, and cerebrospinal fluid). The normal state ki is shared
among all C channels at voxel i. We model the tumor state using a spatially
varying “latent” probabilistic atlas α, similar to [2]. At each voxel i, this atlas
provides a scalar parameter αi that defines the probability of observing a tumor
transition at that voxel. Parameter αi is unknown and is estimated as part of
the segmentation process. We further assume that image observations yci are
generated by Gaussian intensity distributions for each of the K tissue classes
and the C channels, with mean µck and variance vck, respectively. If the image in
channel c shows a transition from normal tissue to tumor in voxel i (i.e., if tissue
state sci = T ), the normal observations are replaced by intensities from another
set of channel-specific Gaussian distributions with mean µcT and variance vcT ,
representing the tumor class.

Biological constraints on the estimated parameters We seek Maximum Likeli-
hood estimates of the model parameters {θ,α} by estimating the tissue state
vector si of every voxel i that indicates the type of tissue visible in the dif-
ferent image modalities. The vector has sci = T in all channels that show tu-
mor, and has value sci = ki in all channels that appear normal. With K = 3
tissues types and C = 4 channels (for the given data), the cardinality of the
state vector is |s| = K ∗ 2C = 3 ∗ 24 = 48. However, plausibility constraints
on the expected tumor appearance in the different channels apply, for example
ruling out tumor-induced intensity changes in T1gad unless the same location
also shows tumor-induced changes in both T2 and FLAIR, and only gray and
white matter being able to show tumor transitions, the number of possible tis-
sue states reduces to |s| = 7. We estimate the most likely state vector si in a
standard expectation maximization procedure, similar to the “EM segmention”
algorithm, with iterative updates of the parameters {θ̃, α̃} and the posterior

probabilities p(si|ki,yi; θ̃, α̃). Updates can be performed using intuitive closed-
form expressions: the latent tumor prior α̃i is an average of the corresponding
posterior estimated, and the intensity parameters µ̃c and ṽc are updated with
the weighted statistics of the data for the healthy tissues and for the tumor
class. During the iteration we enforced that tumor voxels are hyper- or hypo-
intense with respect to the current average gray value of the white matter tissue
(hypo-intense for T1, hyper-intens for T1gad, T2, FLAIR) similar to [8]. Also
we encourage smoothness of the tumor labels by extending the latent atlas α to
include a Markov Random Field (MRF) prior, relaxing the MRF to a mean-field
approximation with an efficient approximate algorithm. Different from [1], we
now use channel-specific regularization parameters β that are all in the range of
.3 to 1. Typically convergence is reached after 10-15 updates.
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Channel-specific tumor and tissue probabilities Once we have an estimate of the
model parameters {θ̂, α̂}, we can evaluate the probability that tumor is visible in
channel c of voxel i by summing over all the configurations Si for which Sci = T :

p(sci = T |yi; θ̂, α̂) =
∑
ti

δ(sci , T ) p(ti|yi; θ̂, α̂), (1)

where δ is the Kroneker delta that is 1 for sci = T and 0 otherwise. The generative

model returns C tumor appearance map p(sci = T |yi; θ̂, α̂), one for each channel
of the input volume. It also returns the probability maps for the K healthy
tissues p(ki|yi; θ̂, α̂), with global estimates for each voxel i that are valid for all
C images.

3 Discriminative Lesion Model

The present generative model returns probability maps for the healthy tissues,
and probability maps for the presences of characteristic hypo- or hyper-intens
changes in each of the image volumes. While this provides highly specific infor-
mation about different pathophysiological processes induced by the tumor, the
analysis of the multimodal image sequence may still require to highlight specific
structures of the lesion – such as edema, the location of the active or necrotic
core of the tumor, “hot spots” of modified angiogenesis or metabolism – that
cannot directly be associated with any of these basic parameter maps returned.
As a consequence, we propose to use the probabilistic output of the generative
model, together with few structural features that are derived from the same
probabilistic maps, as input to a classifier modeling the posterior of the desired
pixel classes. In this we follow the approach proposed by [4] that prove useful for
identifying white matter lesion in multiple input volumes. The building blocks of
this discriminative approach are the input features, the parametrization of the
random forest classifier used, and the final post-processing routines.

Image features As input feature describing the image in voxel i we use the
probabilities p(ki) for the K = 3 tissue classes (xki ). We also use the tumor
probability p(sci = T ) for each channel C = 4 (xci ), and the C = 4 image
intensities after calibrating them with a global factor that has been estimated
from gray and white matter tissue (ximi ). From these data we derive two types
of features: the “long range features” that calculate differences of local image
intensities for all three types of input features (xki , xci ,x

im
i ), and a distance

feature that calculates the geodesic distance of each voxel i to characteristic
tumor areas.

The first type of features calculate the difference between the image intensity,
or scalar of any other map, at voxel j that is located at v and the image intensity
at another voxel k that is located at v + w (with v here being 3D spatial
coordinates). For every voxel j in our volume we calculate these differences

xdiffj = xj − xk for 20 different directions w around v with spatial offsets
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between 3mm to 3cm. To reduce noise the subtracted value at v+w is extracted
after smoothing the image intensities locally around voxel k (using a Gaussian
kernel with 3mm standard deviation).

The second type of features calculates the geodesic distance between the lo-
cation v of voxel j to specific image feature that are of particular interest in
the analysis. The path is constrained to areas that are most likely gray matter,
white matter or tumor as predicted by the generative model. More specifically,
we use the distance of xδtissuej of voxel j to the boundary of the the brain tissue

(the interface of white and gray matter with CSF), and the distance xδedemaj

to the boundary of the T2 lesion representing the approximate location of the
edema. The second distance xδedemaj is calculated independently for voxels out-

side xδedema+j and inside xδedema−j the edema. In total we have 269 image fea-

tures x for each voxel when concatenating the vectors of xk, xc, xim, xdiff , and
xδ.

Classifier and spatial regularization We use the image features x defined above
to model the probabilities p(L;x) of class labels L in the BRATS data set, and
the labels of the K normal tissue. For the normal classes (that are not available
from the manual annotation of the challenge data set) we infer the maximum a
posterior estimates of the generative model and use them as label during training.
We choose random forests as our discriminative model as it uses labeled samples
as input and returns class probabilities. Random forests learn many decision
trees from bootstrapped samples of the training data, and at each split in the
tree they only evaluate a random subspaces to find the best split. The split
that separates samples of one class best against the others (with respect to Gini
impurity) is chosen. Trees are grown until all nodes contain sample of a single
class only. In prediction new samples are pushed down all trees of the ensemble
and assigned, for each tree, to the class of the terminal node they end up in.
Votes are averaged over all trees of the ensemble. The resulting normalized votes
approximate the posterior for training samples that are independent of each other
[9]. To minimize correlation in the training data, and also to speed up training,
we draw no more 2000 samples from each of the ≈ 106 voxels in each of the 25
data set. We train an ensemble with 300 randomized decision trees, and choose
a subspace dimensionality of 10. We use the random forest implementation from
Breiman and Cutler. To improve segmentation, we use a Markov Random Field
(MRF) imposing a smoothness constraint on the class labels. We optimize the
function imposing costs when assigning different labels in a 6 neighbourhood on
the cross-validated predictions on the training data.

4 Experiments

We evaluate our model on the BRATS challenge data set of 25 patients with
glioma. The data set comprises T1, T2, FLAIR-, and post-Gadolinium T1 MR
images, all images are skull stripped and co-registered. We segment the volume
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into the three healthy and an outlier class using a freely available implemen-
tation of the EM segmentation with bias correction [7, 8]. Outliers are defined
as being more than three standard deviations away from the centroid of any of
the three normal tissue classes. We apply the generative model to the bias field
corrected volumes and initialize intensity parameters with values estimated in
the initial segmentation; we also use the the bias field and intensity corrected
images as input for the discriminative model. More details about these data is
given in another submission to the BRATS challenge that focuses on evaluating
the generative model [10].

Exemplary segmentations that are returned from the present approach are
shown in Figure 1 and quantitative results from a leave-one-out cross-validation
are shown in Table 1. Note that the definition of “core” labels differs between
ground truth (where it also includes the T1 hypo-intense center of the tumor)
and the algorithm tested (where it is only the T1gad hyper-intense area of the
tumor) which results in misleading evaluation scores for the “core” class in low-
grade cases.
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Fig. 1. Representative results of the tumor segmentation. Shown are the
maximum-a-posteriori (MAP) estimates as obtained from the random forest for
normal and tumor classe), the probabilities for core and edema (column 2,3),
the MAP estimates of the two tumor classes before and after spatial smoothing
(column 4,5), and the ground truth (column 6). The examples show that expert
annotation may be disputable in some cases.
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ID Dice1 Sens1 Spec1 Dice2 Sens2 Spec2
BRATS HG0027 0.735 0.823 0.995 0.822 0.898 0.997
BRATS HG0026 0.738 0.758 0.997 0.412 0.401 0.998
BRATS HG0025 0.641 0.934 0.992 0.06 0.031 1
BRATS HG0024 0.7 0.834 0.997 0.896 0.982 0.999
BRATS HG0022 0.779 0.806 0.998 0.821 0.729 1
BRATS HG0015 0.8 0.82 0.996 0.894 0.879 0.999
BRATS HG0014 0.327 0.476 0.994 0.761 0.696 0.998
BRATS HG0013 0.7 0.661 1 0.887 0.985 1
BRATS HG0012 0.629 0.704 0.999 0 0 1
BRATS HG0011 0.808 0.763 0.998 0.9 0.889 0.999
BRATS HG0010 0.664 0.788 0.999 0.836 0.879 1
BRATS HG0009 0.833 0.822 0.997 0.749 0.604 1
BRATS HG0008 0.784 0.679 0.999 0.917 0.979 0.998
BRATS HG0007 0.644 0.508 0.999 0.838 0.942 0.999
BRATS HG0006 0.7 0.795 0.994 0.793 0.731 0.999
mean 0.699 0.745 0.997 0.706 0.708 0.999
median 0.7 0.788 0.997 0.822 0.879 0.999

ID Dice1 Sens1 Spec1 Dice2 Sens2 Spec2
BRATS LG0015 0.402 0.751 0.997 0 0 1
BRATS LG0014 0.405 0.605 0.999 0 0 1
BRATS LG0013 0.29 0.492 0.996 0.164 0.089 1
BRATS LG0012 0.424 0.94 0.996 0 0 1
BRATS LG0011 0.3 0.908 0.994 0 0 1
BRATS LG0008 0.419 0.53 0.999 0.521 0.397 1
BRATS LG0006 0.767 0.992 0.998 0.788 0.74 1
BRATS LG0004 0.813 0.898 0.998 0 0 1
BRATS LG0002 0.652 0.767 0.989 0.017 0.009 1
BRATS LG0001 0.454 0.552 0.999 0.843 0.915 0.999
mean 0.493 0.744 0.996 0.233 0.215 1
median 0.422 0.759 0.998 0.009 0.005 1

Table 1. Performance measures as returned by the online challenge tool
(challenge.kitware.com/midas/)indicating Dice score, sensitivity and speci-
ficity (top: high-grade cases; bottom: low-grade cases). Class “1”, with results
shown in the left column, refers to the “edema” labels. Class “2”, with results
shown in the right column, refers to the “tumor core” labels (for both low and
high grade cases). Note that this definition differs somewhat from the labels re-
turned by the algorithm that only indicates T1gad hyper-intense regions as class
2, irrespectively of the grading (low/high) of the disease.
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Abstract. In this work, a generative approach for patient-specific seg-
mentation of brain tumors across different MR modalities is presented. It
is based on the latent atlas approach presented in [7, 8]. The individual
segmentation of each scan supports the segmentation of the ensemble by
sharing common information. This common information, in the form of
a spatial probability map of the tumor location is inferred concurrently
with the evolution of the segmentations. The joint segmentation problem
is solved via a statistically driven level-set framework. We illustrate the
method on an example application of multimodal and longitudinal brain
tumor segmentation, reporting promising segmentation results.

1 Introduction

Modeling patient-specific anatomy is essential in longitudinal studies and pathol-
ogy detection. We present a generative approach for joint segmentation of MR
scans of a specific subject, where the latent anatomy, in the form of spatial pa-
rameters is inferred concurrently with the segmentation. The work is based on
the latent atlas approach presented in [7, 8]. While the methodology can be
applied to a variety of applications, here we demonstrate our algorithm on a
problem of multimodal segmentation of brain tumors. Patient-specific datasets
acquired through different modalities at a particular time point are segmented
simultaneously, yet individually, based on the specific parameters of their in-
tensity distributions. The spatial parameters that are shared among the scans
facilitate the segmentation of the group.

The method we propose is almost fully automatic. No prior knowledge or
external information is required but a couple of mouse clicks at approximately
the center and the boundary of a single tumor slice used to generate a sphere
that initializes the segmentations. All model parameters, spatial and intensity,
are inferred from the patient scans alone. The output of the algorithm consist of
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individual segmentations for each modality. This is in contrast to many discrim-
inative methods, e.g., [9], that use multimodal datasets for multivariate feature
extraction, assuming spatial coherence of the tumor outlines in different image
modalities. Here we relax this assumption and search for systematic, structural
differences of the visible tumor volume acquired by different imaging protocols.

2 Problem definition and probabilistic model

This section summarizes the formulation of [6–8] for the joint segmentation of N
aligned MR images . The input consists of N scans of a specific patient acquired
via different imaging protocols. Our objective is to extract a brain tumor that
may appear slightly differently across the images. Let In:Ω → R+, be a gray
level image with V voxels, defined on Ω ⊂ R3 and let Γn:Ω → {0, 1} be the
unknown segmentation of the image In, n = 1, . . . , N . We assume that each
segmentation Γn is generated iid from a probability distribution p(Γ ; θΓ ) where
θΓ is the set of the unknown spatial parameters. We also assume that Γn gener-
ates the observed image In, independently of all other image-segmentation pairs,
with probability p(In|Γn; θI,n) where θI,n are the parameters corresponding to
image In. Since the images are acquired by different imaging protocols we assign
a different set of intensity parameters to each of them. Our goal is to estimate
the segmentations Γ . This, however, cannot be accomplished in a straightfor-
ward manner since the model parameters are also unknown. We therefore jointly
optimize Γ and Θ:

{Θ̂, Γ̂} = arg max
{Θ,Γ}

log p(I1 . . . IN , Γ1 . . . ΓN ;Θ) (1)

= arg max
{Θ,Γ}

N∑
n=1

[log p(In| Γn; θI,n) + log p(Γn; θΓ )] . (2)

We alternate between estimating the maximum a posteriori (MAP) segmenta-
tions and updating the model parameters. For a given setting of the model pa-
rameters Θ̂, Eq. (2) implies that the segmentations can be estimated by solving
N separate MAP problems:

Γ̂n = arg max
Γn

[log p(In| Γn; θI,n) + log p(Γn; θΓ )] . (3)

We then fix Γ̂ and estimate the model parameters Θ = {θΓ , θI,1, . . . θI,N} by
solving two ML problems:

θ̂I,n = arg max
θI,n

log p(In; Γn, θI,n), (4)

θ̂Γ = arg max
θΓ

N∑
n=1

log p(Γn; θΓ ). (5)
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3 Level-set framework

Now we draw the connection between the probabilistic model presented above
and a level-set framework for segmentation. Let φn:Ω → R be the level-set
function associated with image In. The zero level Cn = {x ∈ Ω| φn(x) = 0}
defines the interface that partitions the image space of In into two disjoint regions
ω and Ω\ω. Similar to [4, 5] we define the level-set function φn using the log-odds
formulation instead of the conventional signed distance function:

φn(x) , ε logit(p) = ε log
p(x ∈ w)

1− p(x ∈ ω)
= ε log

p(x ∈ ω)

p(x ∈ Ω \ ω)
, (6)

where p(x ∈ ω) can be viewed as the probability that the voxel in location x
belongs to the foreground region. The constant ε determines the scaling of the
level-set function φn with respect to the ratio of the probabilities. The inverse
of the logit function for ε = 1 is the logistic function:

Hε(φn) =
1

2

(
1 + tanh

(
φn
2ε

))
=

1

1 + e−φn/ε
. (7)

Note, that Hε(φn) is similar, though not identical, to the regularized Heaviside
function introduced by Chan and Vese [1]. We use this form of Heaviside function
and its derivative with respect to φ in the proposed level-set formulation. To
simplify the notation, we omit the subscript ε in the rest of the paper.

Cost functional for segmentation The joint estimation problem of the hidden
variables Γ and the unknown model parameters {θΓ , θnI } can be solved as an
energy minimization problem. As in [6–8], we establish the correspondence be-
tween the log probability and the level-set energy terms. We also look for the
fuzzy labeling functions H(φn) rather than the hard segmentations Γn.

Let us consider first the prior probability p(Γn; θΓ ) in Eq. (2) and its corre-
sponding energy terms. Specifically, we construct an MRF prior for segmenta-
tions:

log p(Γn; θΓ ) =
V∑
v=1

[Γ vn log(θvΓ ) + (1− Γ vn ) log(1− θvΓ )] (8)

−
V∑
v=1

f(Γ vn , Γ
N (v)
n )− logZ(θΓ ),

where Z(θΓ ) is the partition function and N (v) is the set of the closest neighbors
of voxel v. We define the spatial energy term ES based on the singleton term in
Eq. (8). Using the level-set formulation we obtain:

ES(φn, Θ) = −
∫
Ω

[log θΓ (x)H(φn(x)) + log(1− θΓ (x)) (1−H(φn(x)))] dx.

(9)
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The dynamically evolving latent atlas θΓ is obtained by optimizing the sum of
the energy terms that depend on θΓ :

θ̂Γ (x) =
1

N

N∑
n=1

H̃(φn(x)). (10)

The standard smoothness term used in level-set framework:

ELEN(φn) =

∫
Ω

|∇H(φn(x))|dx, (11)

can be obtained as an approximation of the pairwise term in Eq. (8).

The energy term EI(φn, θ
n
I ) corresponds to the image likelihood term in

Eq. (3):

EI(φn, Θ) = −
∫
Ω

[
log pin(In; θinI,n)H(φn(x)) (12)

+ log pout(In; θoutI,n) (1−H(φn(x)))
]
dx.

We assume that the intensities of the structure of interest are drawn from a
normal distribution such that the pair of scalars θinI,n = {µin

n , σ
in
n } are the mean

and standard deviation of the foreground intensities. We use a local-intensity
model for the background intensity distributions in the spirit of [3], where
θoutI,n(x) = {µout

n (x), σout
n (x)} are the local mean and standard deviation of a

small neighbourhood of x that exclusively belongs to the background.

We construct the cost functional for φ1 . . . φN and the mode parameters by
combing Eq. (12), (11) and (9):

E(φ1 . . . φN , Θ) = γELEN + βEI + αES (13)

where α, β and γ are positive scalars.

Gradient descent and parameter estimation. We optimize Eq. (13) by a
set of alternating steps. For fixed model parameters the update of each level-set
function φn in each iteration is determined by the following gradient descent
equation:

∂φn
∂t

= δ(φn)

{
γ div (

∇φn
|∇φn|

) + β [log pin(In(x); θI,n)− log pout(In(x); θI,n)]

+ α [log θΓ − log(1− θΓ )]} , (14)

where δ(φn) is the derivative of H(φn) with respect to φn. For fixed segmenta-
tions φn, the model parameters are recovered by differentiating the cost func-
tional in Eq. (13) with respect to each parameter.
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4 Experiments

We evaluate our model on the BRATS challenge data set of 25 patients with
glioma. The data set comprises T1, T2, FLAIR-, and post-Gadolinium T1 MR
images, all images are skull stripped and co-registered. The tumor is initialized
through a sphere of 1-3 cm diameter, that is placed in the center of the tumor.

Exemplary segmentations that are returned from the present approach are
shown in Figure 1 and quantitative results from a leave-one-out cross-validation
are shown in Table 3. Note that the definition of “core” labels differs between
ground truth (where it also includes the T1 hypo-intense center of the tumor)
and the algorithm tested (where it is only the T1gad hyper-intense area of the
tumor) which results in misleading evaluation scores for the “core” class in low-
grade cases.

5 Discussion and future directions

We presented a statistically driven level-set approach for joint segmentation of
subject-specific MR scans. The latent patient anatomy, which is represented
by a set of spatial parameters is inferred from the data simultaneously with
the segmentation through an alternating minimization procedure. Segmentation
of each of the channels or modalities is therefore supported by the common
information shared by the group. Promising segmentation results on scans of 25
patients with Glioma were demonstrated.
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Fig. 1. Representative results of the tumor segmentation. Shown are the seg-
mentations for the four different modalities (columns 1-4), the labels inferred
from the channel-wise segmentation (column 5), and the ground truth (column
6). The examples show that expert annotation may be disputable in some cases.
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ID Dice1 Sens1 Spec1 Dice2 Sens2 Spec2
BRATS HG0027 0.65 0.752 0.993 0.813 0.812 0.998
BRATS HG0026 0.678 0.602 0.998 0.413 0.293 0.999
BRATS HG0025 0.59 0.933 0.991 0.083 0.043 1
BRATS HG0024 0.659 0.873 0.996 0.825 0.779 1
BRATS HG0022 0.699 0.82 0.997 0.608 0.498 0.999
BRATS HG0015 0.756 0.908 0.991 0.831 0.731 1
BRATS HG0014 0.27 0.665 0.987 0.59 0.45 0.999
BRATS HG0013 0.684 0.713 1 0.894 0.996 1
BRATS HG0012 0.637 0.709 0.999 0.098 0.077 1
BRATS HG0011 0.798 0.742 0.998 0.882 0.971 0.998
BRATS HG0010 0.097 0.145 0.997 0.276 0.945 0.996
BRATS HG0009 0.795 0.8 0.995 0.548 0.377 1
BRATS HG0008 0.734 0.771 0.992 0.841 0.885 0.998
BRATS HG0007 0.407 0.361 0.996 0.278 0.298 0.996
BRATS HG0006 0.648 0.843 0.991 0.817 0.716 1
mean 0.607 0.709 0.995 0.586 0.591 0.999
median 0.659 0.752 0.996 0.608 0.716 0.999

ID Dice1 Sens1 Spec1 Dice2 Sens2 Spec2
BRATS LG0015 0.37 0.712 0.997 0.116 0.066 1
BRATS LG0014 0 0 1 0 0 1
BRATS LG0013 0.326 0.631 0.995 0.452 0.293 1
BRATS LG0012 0.563 0.721 0.999 0.822 0.762 1
BRATS LG0011 0.262 0.958 0.993 0 0 1
BRATS LG0008 0 0 1 0 0 1
BRATS LG0006 0.556 0.985 0.996 0.73 0.832 1
BRATS LG0004 0.513 0.492 0.997 0.022 0.072 0.997
BRATS LG0002 0.636 0.734 0.989 0.242 0.178 0.997
BRATS LG0001 0.345 0.648 0.997 0.843 0.774 1
mean 0.357 0.588 0.996 0.323 0.298 0.999
median 0.358 0.68 0.997 0.179 0.125 1

Table 1. Real data. Performance measures as returned by the online chal-
lenge tool (challenge.kitware.com/midas/)indicating Dice score, sensitivity
and specificity (top: high-grade cases; bottom: low-grade cases). Class “1”, with
results shown in the left column, refers to the “edema” labels. Class “2”, with
results shown in the right column, refers to the “tumor core” labels (for both
low and high grade cases). Note that this definition differs somewhat from the
labels returned by the algorithm that only indicates T1gad hyper-intense regions
as class 2, irrespectively of the grading (low/high) of the disease.
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ID Dice1 Sens1 Spec1 Dice2 Sens2 Spec2
SimBRATS HG0025 0.023 0.105 0.996 0.631 0.593 0.998
SimBRATS HG0024 0.217 0.993 0.999 0.968 0.948 1
SimBRATS HG0023 0.007 0.078 0.997 0.454 0.419 0.997
SimBRATS HG0022 0.689 0.682 0.996 0.002 0.001 0.999
SimBRATS HG0021 0.312 0.214 0.998 0.02 0.011 1
SimBRATS HG0020 0.138 0.127 0.996 0.315 0.249 0.998
SimBRATS HG0019 0.45 0.349 0.998 0 0 1
SimBRATS HG0018 0.01 0.047 0.996 0.579 0.552 0.997
SimBRATS HG0017 0.147 0.179 0.998 0.499 0.348 1
SimBRATS HG0016 0.033 0.091 0.995 0.681 0.667 0.997
SimBRATS HG0015 0.36 0.289 0.998 0.234 0.186 0.998
SimBRATS HG0014 0.362 0.3 0.998 0.451 0.406 0.998
SimBRATS HG0013 0.623 0.564 0.996 0.004 0.002 0.999
SimBRATS HG0012 0.44 0.36 0.999 0.035 0.022 1
SimBRATS HG0011 0.453 0.518 0.997 0.366 0.235 1
SimBRATS HG0010 0.528 0.867 0.999 0.974 0.978 1
SimBRATS HG0009 0.762 0.788 1 0.958 0.977 1
SimBRATS HG0008 0.381 0.352 0.996 0.454 0.386 0.999
SimBRATS HG0007 0.635 0.689 0.995 0.559 0.75 0.997
SimBRATS HG0006 0.011 0.037 0.998 0.373 0.274 0.999
SimBRATS HG0005 0.63 0.615 0.996 0.019 0.015 0.999
SimBRATS HG0004 0.33 0.311 0.996 0.485 0.475 0.998
SimBRATS HG0003 0.63 0.593 0.998 0.317 0.314 0.999
SimBRATS HG0002 0.405 0.819 0.999 0.924 0.875 1
SimBRATS HG0001 0.592 0.856 0.999 0.971 0.982 1
mean 0.367 0.433 0.997 0.451 0.427 0.999
median 0.381 0.352 0.998 0.454 0.386 0.999

Table 2. Simulated data (high grade). Performance measures as returned
by the online challenge tool (challenge.kitware.com/midas/)indicating Dice
score, sensitivity and specificity (top: high-grade cases; bottom: low-grade cases).
Class “1”, with results shown in the left column, refers to the “edema” labels.
Class “2”, with results shown in the right column, refers to the “tumor core”
labels (for both low and high grade cases). Note that this definition differs some-
what from the labels returned by the algorithm that only indicates T1gad hyper-
intense regions as class 2, irrespectively of the grading (low/high) of the disease.
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ID Dice1 Sens1 Spec1 Dice2 Sens2 Spec2
SimBRATS LG0025 0.042 0.528 0.993 0.05 0.026 1
SimBRATS LG0024 0.404 0.997 0.993 0.137 0.074 1
SimBRATS LG0023 0.662 0.74 0.997 0.008 0.004 1
SimBRATS LG0022 0.404 0.551 0.997 0.007 0.004 1
SimBRATS LG0021 0 0 1 0 0 1
SimBRATS LG0020 0.367 0.702 0.997 0.023 0.012 1
SimBRATS LG0019 0.378 0.367 0.998 0.015 0.008 1
SimBRATS LG0018 0 0 1 0 0 1
SimBRATS LG0017 0.632 0.678 0.998 0 0 1
SimBRATS LG0016 0.699 0.858 0.993 0.08 0.045 1
SimBRATS LG0015 0.46 0.578 0.997 0.01 0.005 1
SimBRATS LG0014 0.02 0.416 0.996 0.025 0.013 1
SimBRATS LG0013 0.402 0.447 0.997 0.014 0.007 1
SimBRATS LG0012 0 0 1 0 0 1
SimBRATS LG0011 0 0 1 0 0 1
SimBRATS LG0010 0.078 0.694 0.991 0.21 0.117 1
SimBRATS LG0009 0.394 0.507 0.997 0.035 0.018 1
SimBRATS LG0008 0.051 0.998 0.994 0.13 0.07 1
SimBRATS LG0007 0 0 1 0 0 1
SimBRATS LG0006 0.395 0.857 0.995 0.054 0.028 1
SimBRATS LG0005 0.483 0.994 0.993 0.089 0.047 1
SimBRATS LG0004 0.317 0.316 0.998 0.002 0.001 1
SimBRATS LG0003 0.359 0.546 0.997 0.007 0.004 1
SimBRATS LG0002 0 0 1 0 0 1
SimBRATS LG0001 0.489 0.39 0.998 0.001 0.001 1
mean 0.281 0.487 0.997 0.0359 0.0194 1
median 0.367 0.528 0.997 0.01 0.005 1

Table 3. Simulated data (low grade). Performance measures as returned
by the online challenge tool (challenge.kitware.com/midas/)indicating Dice
score, sensitivity and specificity (top: high-grade cases; bottom: low-grade cases).
Class “1”, with results shown in the left column, refers to the “edema” labels.
Class “2”, with results shown in the right column, refers to the “tumor core”
labels (for both low and high grade cases). Note that this definition differs some-
what from the labels returned by the algorithm that only indicates T1gad hyper-
intense regions as class 2, irrespectively of the grading (low/high) of the disease.
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