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Abstract. Tumor is an abnormal tissue type, therefore it is hard to be
identified by some classical classification methods. It was tried to find
a non-linear decision boundary to classify tumor and edema by a joint
approach of hybrid clustering and logistic regression.
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1 Introduction

Classifying tumor is challenging as it represents a collection of some abnormal
tissue types which results in not enough labeled training dataset to “learn”
about the different characteristics of an unseen tumor. In this situation, cluster-
ing would be a viable approach, as it divides a given dataset into a number of
sub-groups without requiring the labeled training dataset. While the more clas-
sical clustering methods such as k-means and Expectation Maximization (EM)
produce good clustering result, they just divide a given dataset into a number
of sub-groups, such that there is no “learning” process involved that a learned
knowledge can be applied to an unseen dataset.

Sparse dictionary learning [1, 2] has been applied to a number of wide range
of disciplines such as signal reconstruction for medical image acquisition [3],
image denoising [4], object recognition [5], and medical image segmentation [6].
By representing a given dataset by a combination of some learned dictionary’s
basis vector sets, the dataset can be clustered. This approach, often referred as
sparse coding, was applied for object recognition [7, 8] and multi-modal medical
image segmentation [9].

It was noticed that edema is already quite well classified by this method,
whereas tumor is not. There are different types of tumor in the dataset, therefore
there is no clear pattern in the images of different modalities for tumor. Logistic
regression was applied to find a non-linear decision boundary to classify these
different types of tumors from a more normal tissues.This is combined with
volume-wise k-means clustering method to segment a cluster of tumor-like region.
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2 Methods

2.1 Segmentation of Edema by Sparse Coding
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Fig. 1. Sparse coding of a slice in a volume with its multi-modal MR images by a 4×4
size sparse dictionary.

A sparse dictionary for the behavior of the image intensities in the given
multiple image modalities (Flair, T1, T1C, and T2) is learned by a sparse au-
toencoder [10, 11]. The 4×4 sparse basis dictionary is shown in Fig. 1, where each
column represents a dictionary entry. The image intensities in a pixel position of
different image modalities are convolved with each of the dictionary entry, where
the values become a binary digit after being applied a logistic sigmoid function.

Different combinations of dictionary entries represent the characteristics of
different tissue types, which results in different binary digit numbers. 15(= 24�1)
different types of tissue characteristics can be captured by sparse coding with
a dictionary of 4 × 4 size. The hyper-parameters in sparse dictionary learning,
such as the size of the dictionary and the sparsity constraints, are chosen by
cross-validation.

The visualization of the 15 different tissue types identified by the sparse cod-
ing is shown in Fig. 2 with the ground truth of edema and tumor for the slice. It
is noticeable that edema is already quite well classified by the bright blue region
where it contains a region of a tumor as well. The segmentation performance for
edema by sparse coding in F1-score (2 · (precision · recall)/(precision + recall))
on 10 cross-validation set was 0.54, which outperformed the other methods tried
for edema segmentation (logistic regression: 0.246, neural network1: 0.14).

1 neural network classification on image intensities of each voxel in the
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Fig. 2. Tissue type clustering result of an image slice by sparse coding with 4 × 4 size
dictionary.

2.2 Segmentation of Tumor by Logistic Regression and K-means
Clustering

Whereas edema was well classified by the sparse coding, tumor was not, probably
because tumor is a highly heterogeneous tissue type or just an abnormal region.
In the training dataset, tumor in some volumes were well observed by Flair
images, whereas in some other volume it was better observed by T1-Contrast
images, but no obvious pattern could be found unlike the other tissue types or
edema. Therefore, it was tried to find a non-linear decision boundary to separate
these “abnormal” tumor from a more “normal” tissue types with logistic regres-
sion. Logistic regression models the conditional probability of given feature x
belonging to a class y ∈ {0, 1} as the logistic sigmoid function (1/(1 + ex)). Sec-
ond order polynomial feature with two combination of the four image modalities
were used
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, where x1, x2, x3, x4 represent the image intensities of each image modality. The
F1-score for tumor classification with this method was 0.246 on a cross-validation
dataset with 10 volumes, outperforming the other classification methods for tu-
mor classification (sparse coding: 0.0031, neural network: 0.0001).

Another insight for the tumor segmentation was, that a tumor is usually sur-
rounded by an edema. Consequently, if the region found by the logistic regression
is inside the already segmented edema region, it is regarded as well classified.
When the region segmented by logistic regression is outside of the edema region,
and then it is regarded as segmentation failure. In this case, a multi-modal k-
means clustering was applied to capture a cluster of a region within edema but
has a different characteristic than edema.
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3 Results

The average segmentation performance evaluated are shown in Table 1. No hu-
man input is required during the segmentation process, and the average segmen-
tation time for a single patient volume was about 1.8 minutes.

Table 1. Performance evaluation results

Av.Dist.1 Av.Dist.2 Dice.1 Dice.2 Haus.1 Haus.2 Cohen’s Sens.1 Sens.2 Spec.1 Spec.2

6.526 15.478 0.391 0.3 37.883 94.282 0.144 0.511 0.416 0.992 0.995
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