As you may read in the page about nonlinear science, the concern of nonlinear physics is often the unexpected appearance of chaos or order. Within this framework the soliton plays the role of order.
To explain the nature of solitons, we will consider the behaviour of water waves on shallow water. The scenario could be set e.g. in one of the canals, which was the 19'th century's analogue to nowaday's highways. Indeed, it was in such a location that a soliton was first noticed in 1849 by the Scottish engineer John Scott Russell. Imagine that a wave is somehow initiated in such a canal. One would expect that the wave then rolls along the canal while it spreads out and soon ends it's life as small wiggles on the surface. However, if certain conditions are fulfilled, the unexpected may happen; a soliton can be excited, and the wave will continue to roll along the canal without changing shape.
It turns out that a soliton is very robust against perturbations. The bottom of the canal may be uneven and bumpy; ducks and dogs may swim around in the canal; but the soliton will gently pass these obstacles.
The water wave soliton is a result of a dynamic balance between dispersion, i.e. the wave's tendency to spread out, and nonlinear effects. In order to substantiate this statement, we have to pass to some mathematics.
u=u(x,t) measures the elevation at time t and position x, i.e. the height of the water above the equilibrium level. The subscripts denote partial differentiation. The second and the third term in the equation is the dispersive and the nonlinear term, respectively.

Click the button on the left hand side and you will see how the water wave will act when the dynamics is governed by the nonlinear equation just above. Clearly, the title of this animation should be "Breaking the waves". The top of the wave moves faster than the low sides and this causes the wave to shock in the same way as the waves we see on the beach. 
with b=(a/12)^{1/2} and v=3a. The constant a is the only free parameter in the solution. It defines the amplitude and the width in such a way that a large (tall) soliton will be narrow, while a low soliton will be broad. The constant v defines the velocity of the soliton. Since v=3a a tall soliton will move faster than a low one.

Click the button to the left in order to see an example of a soliton with a=1. 
We give here just a single example of soliton dynamics.
This is of course not the complete story about solitons. There is more out there:
Back to home.