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Abstract

Decomposition of absorption spectra using linear regression has
been proposed for calculating concentrations of mixture compounds.
The method is based on projecting the observed mixture spectrum
onto the linear space generated by the reference spectra that corre-
spond to the individual components comprising the mixture. The
computed coefficients are then used as estimates for concentration of
the components that comprise the mixture. Existence of unknown
components in the mixture, however, introduces bias on the obtained
concentration estimates. We extend the usual linear regression model
to an additive semi-parametric model to take the unknown compo-
nent into account, estimate the absorption profile of the unknown
component, and obtain concentration estimates of the known com-
pounds. A standard back-fitting method as well as a mean weighted
least squares criterion are applied. The techniques are illustrated on
simulated absorption spectra.

Keywords: Parameter estimation, non-parametric methods, unbiased es-
timates, chemometry, absorption spectra, additive models, semi-parametric
models, mean weighted least squares, back-fitting.

1Department of Mathematical Modelling, Technical University of Denmark, DK-2800
Lyngby, Denmark

2E-mail: ps@imm.dtu.dk

1



1 Introduction

Chemometric spectroscopy is a simple way for examination of gases and
liquids. UV examination of wastewater for instance has been proposed
for quality control purposes (Thomas, Theraulaz & Suryani 1996). The
technique is based on the analysis of the absorption spectrum obtained
from the sample of interest. Depending on the concentrations of compris-
ing compounds, the spectral absorption of the mixtures vary at different
wavelengths. This information may in principle be used to encode the
concentration of an existing compound, given information about the ab-
sorption pattern of the compound of interest. The functional dependency
of absorption spectra upon concentrations and absorption spectra of com-
prising compounds is in general unknown. Several simple models have been
proposed, most notably, a linear regression model (Gallot & Thomas 1993).
In this model, it is assumed that the absorption spectrum of a mixture is
a linear combination of absorption spectra of the comprising compounds
where each coefficients determines the concentration of the corresponding
compound. Hence, if spectral absorption measurements are performed at
minimum p wavelengths, where p is the number of existing compounds, the
concentrations may be estimated by the least squares technique (Gallot &
Thomas 1993). The technique fails when unknown compounds are present.
Even though, it is not of interest to estimate the concentration of the un-
known components, the presence of such will introduce bias on the concen-
tration estimates for the known ones unless the spectrum of the unknown
component is orthogonal to the spectra of the known ones. Such a sit-
uation is unlikely to occur for most decomposition problems of interest
in chemometry. We propose a semi-parametric model to account for the
presence of unknown compounds. We apply both a standard back-fitting
method for estimation in additive models and a novel technique based on a
mean weighted least squares criterion (MWLS). MWLS provides a promis-
ing easy way to embed prior information into kernel estimation schemes.
While kernel estimation of a function at N data points may be regarded
as N independent weighted least squares problems, the MWLS combines
the N optimization problems into one. The advantage is that any global
information about the behavior of the process may be imposed as hard or
soft constraints in the resulting single optimization criterion.
The rest of the paper is organized as follows. In Section 2, we present the
semi-parametric formulation of spectral absorption decomposition problem,
we review techniques from the theory of general additive models, and in-
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troduce the MWLS technique. In Section 3, we present a simple numerical
study based on simulated data, and finally, Section 4 presents concluding
remarks.

2 Problem formulation

Consider the problem of decomposing the observed function f(t), t ∈ T ,
into known functions fi(t), i = 1, ..., p, by estimating the parameter θ =
[θ1, · · · , θp]> of the linear regression

f(t) =
p∑
i=1

θifi(t) + R(t) + e(t), (1)

where R(t) accounts for the superposition of all unknown components com-
prising f(t), and {e(t)} is a sequence of zero mean independently dis-
tributed random variables representing the measurement noise. Disregard-
ing R(t), the usual least squares estimate of θ is given by

arg min
θ

∑
t∈T

[f(t) −
p∑
i=1

θifi(t)]2. (2)

where T = {t1, · · · , tN} is the set of N sampled observations. Inserting
f(t) from (1) in the solution to (2) shows that the bias on the least squares
estimate is given by

(X>X)−1X>

 R(t1)
...

R(tN )


where

X =


f1(t1) . . . fp(t1)
f1(t2) . . . fp(t2)

...
...

...
f1(tN ) . . . fp(tN )

 .
Hence depending on R(t), the bias might be arbitrarily large.

For chemometric data, the function f(t) is the measured absorption spec-
trum at various wavelengths t and fi(t) is the known absorption spec-
trum for component i. The presence of unknown components introduces
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the remainder term R(t) which should be simultaneously with the coef-
ficients θi estimated from data. The back-fitting algorithm (Hastie &
Tibshirani 1990) can be applied under such circumstances. Back-fitting
is an iterative method for decomposition of a number of unknown func-
tions in an additive model. Starting from an initial guess, the algorithm
iteratively estimates each one of the functions, fixing all others to their cor-
responding latest updated values. The algorithm has an explicit solution
for problems of the type (1), see (Hastie & Tibshirani 1990), page 118. The
solution involves a smoother function for estimation of R(·) and a weighted
least squares criterion to estimate θ. Only in the case the smoother is a
spline smoother, the back-fitting can be explicitly related to an optimiza-
tion criterion (Hastie & Tibshirani 1990).
Another approach, which is novel to the best of our knowledge, is based on a
mean weighted least squares criterion. The approach is particularly appeal-
ing since its solution is explicitly related to an optimization criterion which
is a missing element for back-fitting using other smoothers than splines.
The MWLS approach is as follows. Consider the following optimization

min
θ,{φ(τ)}

∑
τ∈T

∑
t∈T

wh(|t− τ |)[f(t) −
p∑
i=1

θifi(t) − q (t− τ ;φ(τ))]2, (3)

where q (t− τ ;φ(τ)) and φ(τ) respectively denote a local approximation to
R(·) around τ and its corresponding (τ -dependent) parameter and {wh(|d|)}
is a weight sequence that falls monotonically with |d|. One typical choice
for q (t− τ ;φ(τ)) is a low order polynomial in t− τ . The weight sequence
is obtained from the kernel Kh(|d|) according to

wh(|d|) =
Kh(|d|)∑
d

Kh(|d|)
.

Some typical selections for the kernel Kh(|d|) are Gaussian kernel

Kh(|d|) =
1

h
√

2π
exp

(
− d2

2h2

)
,

and Epanechnikov kernel

Kh(|d|) =
3
4h

(
1− d2

h2

)
I(|d| ≤ h),

where I(|d| ≤ h) = 1 if |d| ≤ h and zero otherwise.
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The criterion (3) may be explained as follows. The optimization problem
obtained by considering the inner sum in (3) as the cost function, i.e.

min
θ,φ(τ)

∑
t∈T

wh(|t− τ |)[f(t) −
p∑
i=1

θifi(t) − q (t− τ ;φ(τ))]2, (4)

provides the usual weighted least squares problem for non-parametric es-
timation of R(τ), τ ∈ T , based on the local approximation R(t) ≈ q(t −
τ ;φ(τ)) around τ . Hence a non-parametric estimate for R(τ) is obtained
by inserting the optimal value of φ(τ) in q(0;φ(τ)). In connection with
estimating θ, on the other hand, (4) is of no immediate use since the ob-
tained estimates of θ vary with τ . This dependency is eliminated in (3)
by the outer summation over τ . This may be thought of as restricting the
solutions to the independent optimization problems (4) to yield a common
estimate for θ.

Now assume that the local approximation q(t − τ ;φ(τ)) is linear in φ(τ),
i.e.

q (t− τ ;φ(τ)) =
m∑
i=1

φi(τ)gi(t − τ) (5)

where φ(τ) = [φ1(τ), · · · , φm(τ)]>. Let Wτ denote a diagonalN×N matrix
with the (i, i) element being equal to wh(|ti − τ |). Further denote

Xτ =


g1(t1 − τ) . . . gm(t1 − τ)
g1(t2 − τ) . . . gm(t2 − τ)

...
...

...
g1(tN − τ) . . . gm(tN − τ)

 ,
and finally Y = [f(t1), · · · , f(tN )]>.

Proposition 1 Assume that the local approximation q(t−τ ;φ(τ)) is linear
in φ(τ) (see (5)). The optimal value of θ according to (3) is equivalent to
the solution to the weighted least squares problem

min
θ

(Y −Xθ)>W (Y −Xθ)

where
W =

∑
τ∈T

(
Wτ −WτXτ (X>τ WτXτ )−1X>τ Wτ

)
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Proof: Since φ(τ) varies with τ in (3), φ(τ) may be simply computed by
finding the optimal value of φ(τ) in (4) as a function of θ. Inserting the
optimal values for φ(τ) in (3) and collecting terms yields the desired result.

3 Numerical example

In this section, we apply the techniques discussed earlier to a spectral de-
composition problem. Consider two absorption spectra f1(t) and f2(t) as
given in Figure 1. These spectra contain COD, TOC, TSS, and BOD with
concentrations 63, 0, 15, and 15 for f1 and 36, 12.5, 0, 11.5 for f2. The
“unknown component” is assumed to consist of concentrations of nitrates
with spectrum R(t) as illustrated in Figure 2. The spectra of Figure 1 and
Figure 2 are taken experimentally from real samples.
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Figure 1: Reference absorption spectra.

We simulate the spectrum illustrated in Figure 3 by the linear combination:

f(t) = f1(t) + f2(t) +R(t).

The least squares solution yields coefficient estimates 1.35 and 1.81 for f1
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Figure 2: Spectrum for the unknown component. The solid curve, dashed,
and dotted curves respectively represent the true spectrum, the estimated
spectrum using a mean weighted least squares criterion, and the estimated
spectrum using regular least squares.

and f2, and an estimate for R(t) as illustrated in Figure 2. These results
clearly indicate the inappropriateness of the least squares solution.

We apply the result presented in Proposition 1 where the local approx-
imators are polynomials of second order and the weights are computed
according to a unit bandwidth Gaussian kernel. The coefficients of f1 and
f2 are respectively estimated to 0.91 and 0.93.

We further apply the back-fitting solution to the above estimation problem.
The best result is obtained by applying spline smoother with a large degree
of freedom, yielding estimates of 1.25 and 0.73 for the coefficients of f1

and f2 respectively. These estimates are noticeably more biased than the
MWLS solution.

Finally, we investigate the effect of measurement noise. We simulate 25
independent samples according to

f(t) = f1(t) + f2(t) +R(t) + e(t)
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Figure 3: Simulated sample.

where {e(t)} is a sequence of i.i.d. N(0, 0.0012) random variables, and em-
pirically compute mean and covariance of the concentration estimates θ̂.
These quantities are computed to

E{θ̂} =
[

0.9039
0.9306

]>
, COV {θ̂} =

[
0.0576 −0.0007
−0.0007 0.0030

]
where E{·} and COV {·} as usual denote mean value and covariance. Nu-
merical experimentation indicates that the estimation procedure fails for
noise variances above 0.012.

4 Discussion and conclusion

2 We have proposed a solution to decomposition of absorption spectra in
presence of correlated error (e.g. due to existence of unknown components).
The underlying assumption throughout the paper is a linear additive model.
We have applied both the back-fitting solution and a mean weighted least
squares criterion. Numerical experience with back-fitting iterations for typ-
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ical chemometric spectra fails due to high correlated among data. The
back-fitting method yields reasonable estimates only if the explicit end so-
lution of the iterations, which exists for a model linear in parameters, is
applied. Contrary to back-fitting, the mean weighted least squares solu-
tion is not tied to an iterative algorithm but to a well defined optimization
problem. The mean weighted least squares solution performs reasonably
well for decomposition of absorption spectra in the presence of unknown
components. The solution is rather sensitive to measurement noise which is
again due to high correlation among reference spectra on the one hand and
high correlation between the unmodelled error spectrum and the reference
spectra on the other.

To further elaborate on the discussion above, Figure 4 on page 10 shows
a scatter-plot matrix of the wavelength and five typical absorption spec-
tra fi, i = 1, · · · , 5. The actual spectra are shown in the left column and,
with the axes swapped, in the bottom row. From these it is seem that
f2(t) and f3(t) are very similar, correspondingly the plot of f2(t) against
f3(t) shows an almost linear relation. Consequently, concentrations of sub-
stances corresponding to these spectra will be difficult to distinguish, i.e.
the estimated concentrations will be highly correlated.

For data simulated according to some arbitrary linear combination of the
illustrated spectra and some typical spectrum for the unknown compo-
nent R(t) (simulated as a Guassian bell curve around some bandwidth),
the R-squared value is above 0.9999 when omitting R(t) from the model
and replacing it with a intercept term. This indicate that the simulated
spectrum f(t) lies almost entirely in the space spanned by the reference
spectra, making estimation of R(t) difficult if f(t) is measured with noise.
Consequently, to reduce bias on the estimates of concentrations R(t) must,
to some extend which is determined by the level of noise, lie in an other
space than the one spanned by the reference spectra.

The above considerations indicate that, if possible, reference spectra should
be chosen so that (1) all explain different aspects of the unknown spectra
(as opposed to f2(t) and f3(t) above), and (2) the unknown R(t) lies, to
some extend, in an other space than the one spanned by the reference
spectra. Furthermore, measurement noise should be reduced as much as
possible, e.g. by performing several measurements on the sample of interest
and averaging.

Finally, the mean weighted least squares criterion introduced in this pa-
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per has application potentials far beyond the scope of the present paper.
The approach provides a simple yet powerful tool to embed “global” infor-
mation about the process of interest in local estimation techniques, hence
combining the noise reduction and interpretability of global models with
the generality, minimal model reliance, and convenience of non-parametric
methods. Contrast this to usual ways of embedding prior information in
non-parametric methods which concern local or smoothness properties such
as selection of a suitable kernel, bandwidth, and degree of local approxima-
tors. This poses an interesting direction for future research and forthcoming
publications.

220 240 260

280 300 320

280

300

320

220

240

260t

.............................................................................................................................

.............................................................................................................................

.............................................................................................................................

.............................................................................................................................

........
....
....
.............................................................................................................

..................
.................

..................
..................

..................
.................

..................
.0.15 0.20

0.25 0.30

0.25

0.30

0.15

0.20
f1

..................................................................................................................

..............................................................................................................

.....................................................................................................

........
....

....
.......................................................................................

..................
.................

..................
..................
..................
.................
..................
.

..................................................................................................................

0.1 0.2 0.3

0.3 0.4 0.5

0.3

0.4

0.5

0.1

0.2

0.3f2

...............................................................................................

....................................................................................

........
....

....
.........................................................................

..................
.................

..................
..................
..................
.................
..................
.

..............................................................................................................

...............................................................................................

0.2 0.4

0.6 0.8

0.6

0.8

0.2

0.4f3

....................................................................

........
....

....
.............................................................

..................
.................

..................

..................

..................

.................

..................

.

.....................................................................................................

....................................................................................

....................................................................

0.0 0.5

1.0 1.5

1.0

1.5

0.0

0.5

f4

........
....

....
...................................

..................
.................

..................

..................
..................
.................
..................
.

.......................................................................................................

.........................................................................................

.............................................................................

...................................................

0.0 0.2 0.4

0.6 0.8 1.0

0.6

0.8

1.0

0.0

0.2

0.4
f5

Figure 4: Scatter-plot matrix of wavelength (t) and reference spectra
(f1(t), . . . , f5(t).
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