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Abstract

A conditional parametric ARX-model is an ARX-model in which
the parameters are replaced by smooth functions of an, possibly mul-
tivariate, external input signal. These functions are called coe�cient-
functions. A method, which estimates these functions adaptively and
recursively, and hence allows for on-line tracking of the coe�cient-
functions is suggested. Essentially, in its most simple form, this
method is a combination of recursive least squares with exponential
forgetting and local polynomial regression. However, it is argued,
that it is appropriate to let the forgetting factor vary with the value
of the external signal which is argument of the coe�cient-functions.

The properties of the modi�ed method are studied by simulation.
A particular feature is the this e�ective forgetting factor will adapt
to the bandwidth used so that the e�ective number of observations
behind the estimates will be almost independent of the actual band-
width or of the type of bandwidth selection used (�xed or nearest
neighbour). The choice of optimal bandwidth and forgetting is brie
y
discussed. Furthermore, a method for adaptive and recursive esti-
mation in additive or varying-coe�cient models is suggested. This
method is a semi-parametric equivalent to the recursive prediction
error method.
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1 Introduction

The conditional parametric ARX-model is the linear ARX-model in which
the parameters are replaced by smooth, but otherwise unknown, functions
of one or more explanatory variables. These functions are called coe�cient-
functions. This class of models are used by Nielsen, Nielsen and Madsen
(1997) to model a varying time delay. For on-line applications it is ad-
vantageous to allow the function estimates to be modi�ed as data become
available. Furthermore, because the system may change slowly over time,
observations should be down-weighted as they become older. For this rea-
son we propose an time-adaptive and recursive procedure, which is a com-
bination of the adaptive recursive least squares method (Ljung, 1987) and
locally weighted polynomial regression (Cleveland and Devlin, 1988). In the
paper adaptive is used to denote that old observations are down-weighted,
i.e. in the sense of adaptive in time.

Non-adaptive recursive estimation of a regression function is a related prob-
lem, which has been studied recently by Thuvesholmen (1997) using kernel
methods and by Vilar-Fern�andez and Vilar-Fern�andez (1998) using local
polynomial regression. Since these methods are non-adaptive one of the
aspects considered in these papers is how to decrease the bandwidth as
new observations become available. This problem do not arise for adap-
tive estimation since old observations are down-weighted and eventually
disregarded as part of the algorithm.

Hastie and Tibshirani (1993) considered varying-coe�cient models which
are similar in structure to conditional parametric models and have close
resemblance to additive models (Hastie and Tibshirani, 1990) with re-
spect to estimation. However, varying-coe�cient models include addi-
tional assumptions on the structure. Some speci�c time-series counter-
parts of these models are the functional-coe�cient autoregressive models
(Chen and Tsay, 1993a) and the nonlinear additive ARX-models (Chen and
Tsay, 1993b).

In Section 2 a method for adaptive estimation in conditional parametric
ARX-models is proposed and it is shown that the method is a natural
extension of the adaptive recursive least squares method. A recursive for-
mulation of the proposed method is derived in Section 3. Section 4 de-
scribes a modi�cation of the method suitable e.g. for the case when the
argument(s) of the functions exhibit cyclic behaviour. For non-adaptive
and non-recursive non-parametric regression nearest neighbour techniques
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are well known; in Section 5 this subject is considered in the adaptive and
recursive context. The method is summarized in Section 6. In Section 7
the suggested method combining recursive least squares and local polyno-
mial regression is studied by simulation. Some further topics, such as long
term 
uctuations, optimal bandwidths, and optimal forgetting factors, are
considered in Section 8. Finally, we conclude on the paper in Section 9.

2 Proposed Method

For simplicity the method is outlined as a generalization of exponential
forgetting. However, the more general forgetting methods described by
Ljung (1987) could also serve as a basis.

Using exponential forgetting and assuming observations at time s = 1; : : : ; t
are available, the adaptive least squares estimate of the parameters � relat-
ing the explanatory variables xs to the response ys using the linear model
Eys = xTs � is found as

�̂t = argmin
�

tX
s=1

�t�s(ys � xTs �)
2;

where 0 < � < 1 is called the forgetting factor, see also (Ljung, 1987). The
estimate can be written explicitly in matrix notation

�̂t =
�
XT

t �tXt

��1
XT

t �tyt; (1)

where yt = [y1 : : : yt]
T is a vector of observations up to time t, �t =

diag(�t�1; �t�2; : : : ; �; 1) is a diagonal weighting matrix, and �nally

Xt =

2
64
xT1
...
xTt

3
75

is a (design) matrix in which row s is xs. When the estimator is written as
the local (time) weighted least squares solution (1) this suggests that the
estimator may also be de�ned locally with respect to some other explana-
tory variables ut. If the estimates are de�ned locally to some �xed point u,
called the �tting point, the adaptive estimate corresponding to this point
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can be expressed as

�̂t(u) =
�
XT

t �tWu;tXt

��1
XT

t �tWu;tyt; (2)

where Wu;t = diag(wu(u1); : : : ; wu(ut)) is a diagonal weighting matrix in
which the weights depend on the �tting point u and on the observations
us; s = 1; : : : ; t, see Appendix A. It is clear that (2) also may be written
as

�̂t(u) = argmin
�

tX
s=1

�t�swu(us)(ys � xTs �)
2: (3)

Estimators like this can be applied in parallel to a number of �tting points
(u) whereby the coe�cient-functions �(�) in the model Eys = xTs �(us) are
estimated adaptively at a �nite number of possible values of the argument.
Interpolation can be used if the estimated function values are needed for
other values of the argument.

In Section 3 it will be shown how the estimator (2) can be formulated
recursively, but here we will brie
y comment on the estimator and its rela-
tions to non-parametric regression. From (3) it is seen that locally to u the
functions �(u) are approximated by constants. A special case is obtained
if X is a column of ones, then simple calculations show that

�̂t(u) =

Pt

s=1 �
t�swu(us)ysPt

s=1 �
t�swu(us)

; (4)

If � = 1 this is a kernel estimator of �(�) in Eys = �(us), cf. (H�ardle, 1990,
p. 30). For this reason (4) is called an adaptive kernel estimator of �(�)
and the general estimator (2) may be called an adaptive local constant or
kernel estimator of the coe�cient-functions �(�) in the conditional para-
metric model Eys = xTs �(us). If lagged values of the dependent variable
are included in xs the model will be a conditional parametric ARX-model
(CPARX-model), see also (Nielsen et al., 1997).

The local constant approximation is in general not very appropriate and
local polynomial approximations will often be more suitable, see (Nielsen
et al., 1997). In Appendix A it is shown how non-adaptive estimation
in Eys = xTs �(us) can be performed using local polynomial approxima-
tions of the coef�cient-functions and that the method corresponds to local
constant estimation after rede�ning Xt in (2). For this reason the adap-
tive local constant estimator described above can be used to implement
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a general adaptive local polynomial estimator of the coe�cient-functions
�(�). Therefore, methods aiming at adaptive kernel estimation and adap-
tive local polynomial estimation of a single regression function or of a set
of coe�cient-functions can all be described as (2).

3 Recursive formulation

Following Ljung (1987) the adaptive estimates (2) can be found recursively
as

�̂t(u) = �̂t�1(u) + wu(ut)R
�1
u;txt

h
yt � xTt �̂t�1(u)

i
(5)

and

Ru;t = �Ru;t�1 + wu(ut)xtx
T
t : (6)

It is seen that existing numerical procedures can be applied in parallel to
a number of �tting points u, by replacing xt and yt with xt

p
wu(ut) and

yt
p
wu(ut), respectively. Note that x

T
t �̂t�1(u) is a predictor of yt locally

with respect to u and for this reason it is used in (5). To predict yt a

predictor like xTt �̂t�1(ut) is appropriate.

4 Modi�ed updating formula

When ut is far from the particular �tting point u it is clear from (5) and (6)

that �̂t(u) � �̂t�1(u) and Ru;t � �Ru;t�1, i.e. old observations are down-
weighted without new information becoming available. This may result in
abruptly changing estimates if u is not visited regularly, since the matrix
R is decreasing exponentially in this case. Since we regard this as a serious
practical problem it is proposed to modify (6) to ensure that the past is
weighted down only when new information becomes available, i.e.

Ru;t = �v(wu(ut);�)Ru;t�1 + wu(ut)xtx
T
t ; (7)

where v(� ;�) is a nowhere increasing function on [0; 1] ful�lling v(0;�) =
1=� and v(1;�) = 1. Note that this requires that the weights span the
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interval ranging from zero to one. In this paper we consider only the linear
function

v(w;�) = 1=�� (1=�� 1)w;

for which (7) becomes

Ru;t = (1� (1� �)wu(ut))Ru;t�1 + wu(ut)xtx
T
t :

It is natural to denote 1� (1� �)wu(ut) the e�ective forgetting factor for
point u at time t, �ueff (t).

5 Nearest neighbour bandwidth

A bandwidth speci�ed according to the nearest neighbour principle is often
used as a tool to vary the actual bandwidth used with the local density of
the data. Assume in the following discussion that ut is a stochastic variable
and that the pdf f(�) of ut is known and constant over t. Based on a
nearest neighbour bandwidth the actual bandwidth can then be calculated
for a number of �tting points u placed within the domain of f(�) and
used to generate the weights wu(ut) used in the previous sections, see also
Appendix A. The actual bandwidth }(u) corresponding to the point u will
be related to the nearest neighbour bandwidth � by

� =

Z
Du

f(z)dz; (8)

where D u = fz 2 R
d j jjz � ujj � }(u)g is the neighbour-hood, d is the

dimension of u, and jj � jj is the Euclidean norm. In applications the density
f(�) is often unknown. However, the selected model is based on an anal-
ysis which in turn is based on a set of observations. Hence, f(�) can be
estimated, e.g. by the empirical pdf.

In order to select an appropriate value for � the e�ective number of obser-
vations used for estimation must be considered. In Appendix B it is shown
that under certain conditions

~�u =
1

1�E[�ueff (t)]
=

1

(1� �)E[wu(ut)]
(9)
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is a lower bound on the e�ective number of observations (in the direction
of time) corresponding to a point u. When selecting � it is then natural
to require that the number of observations within the bandwidth, i.e. �~�u,
is su�ciently large to justify the complexity of the model and the order
of the local polynomial approximations. Of course � could also be based
on a non-adaptive analysis of the data. In this case �~�u should be used
to verify that the average forgetting factor is large enough. By assuming
a stochastic process for futg the e�ective number of observations in the
direction of time, as described by the process f�u(t)g in Appendix B, can
be simulated whereby the validity of ~�u can be addressed.

For ut � N(0; 1), � = 0:99, and when using the tricube weight-function (cf.
Appendix A) the e�ective number of observations within the bandwidth,
�~�u, is displayed in Figure 1. It is seen that �~�u depends strongly on the
�tting point u but only moderately on �. Figure 2 shows �~�u for � ranging
from 0.90 to 0.99 for u = 0 and u = 2, when ut � N(0; 1). From this �gure
it is seen that, given the �tting point, �~�u is almost solely determined
by �. In conclusion, for the example considered, the e�ective forgetting
factor �ueff (t) will be a�ected by the nearest neighbour bandwidth, so that
the e�ective number of observations within the bandwidth will be strongly
dependent on �, but only weakly dependent on the bandwidth (�). The
ratio between the rate at which the weights on observations goes to zero in
the direction of time and the corresponding rate in the direction of ut will
be determined by �.

Fitting point (u)

-3 -2 -1 0 1 2 3

15
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35
0 0.1

0.3
0.5
0.7
0.9

Figure 1: E�ective number of observations within the bandwidth (�~�u(u))
for � = 0:1; : : : ; 0:9 and � = 0:99.
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Figure 2: E�ective number of observations within the bandwidth (�~�u(u))
for u = 0 (top) and u = 2 (bottom), and for � = 0:1; : : : ; 0:9.

From Figure 1 it is tempting to infer that the adaptive estimates will have
larger variance near the center of the distribution of ut than in the tails
of the distribution. However, although nearest neighbour bandwidths are
used, local polynomial estimates have increased variance in border regions
and this variance depend on the degree of the local approximation used.
Therefore, some local approximations may result in increased variance near
the center of the distribution, whereas other local approximations may
result in increased variance in border regions.

These aspects are exempli�ed by simulations using the ARX-model

yt = 0:9yt�1 + xt�1 + et; (10)
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where, t = 1; : : : ; 2500, fxtg is the input process, fytg is the output pro-
cess, and fetg is a white noise error process. In the simulations fetg is iid
N(0; 1 � 0:92) and fxtg is standard Gaussian white noise. Furthermore,
the futg process is simulated as standard Gaussian white noise. Hereafter,
estimation is performed using the modi�ed method (4), assuming the model

yt = a(ut�1)yt�1 + b(ut�1)xt�1 + et; (11)

where a(�) and b(�) are the coe�cient-functions. A nearest neighbour band-
width (�) of 0.7 is used, and � = 0:99.

Using the tricube weight function (cf. Appendix A) and local quadratic
approximations, the traces of the estimates of a(u) and b(u) are displayed
in Figure 3. The traces indicate that the variance increases as the �tting
point moves away from the center of the distribution, although Figure 1
shows that the e�ective number of observations within the bandwidth in-
creases with the distance from the center of the distribution. Figure 4
shows the empirical standard deviation of the last 500 values of the esti-
mates of b(�) for �tting points between -4 and 4 when local constant, linear,
and quadratic approximations are used. The local constant approximation
result in increased variance near the center of the distribution as compared
to the border regions, the local linear approximation seems to have ap-
proximately constant variance over �tting points, and the local quadratic
approximation clearly shows increased variance in border regions. Note
that, although from the �gure the local constant approximation seems su-
perior, it may result in excess bias when the true function is not a constant,
see also (Nielsen et al., 1997).

0.
0

1.
0

0.
0

1.
5

0 500 1000 1500 2000 2500

Time

Figure 3: Traces of local quadratic adaptive estimates (� = 0:7 and � =
0:99) of a(�) (top) and b(�) (bottom) for u = �4 (dotted) and u = 0 (solid).
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Figure 4: Empirical standard deviation of the last 500 adaptive estimates
of b(�), for the local quadratic approximation with � = 0:7 and � = 0:99.

6 Summary of the method

To clarify the method described above the actual algorithm is brie
y de-
scribed in this section. As opposed to the previous part of the paper the
distinction between the local constant and the local polynomial estimates,
as described in Appendix A.2, will be made explicit. Thus, in this section
we assume that at each time step measurements of the output y and the
two sets of inputs x and u are received. The aim is to obtain adaptive
estimates of the coe�cient-functions in the model Eyt = xTt �(ut). This is
accomplished by applying the method described in the previous part of the
paper to the model Eyt = zTt �(ut), where zt is de�ned by xt and ut, see
(16).

Besides � in (4), prior to the application of the algorithm a number of
�tting points u(j); j = 1; : : : ; nfp in which the coe�cient-functions are
to be estimated have to be selected. Furthermore the bandwidth associ-
ated with each of the �tting points }(j); j = 1; : : : ; nfp and the degrees of
the approximating polynomials d(1); : : : ; d(p) have to be selected, where
p denotes the number of coe�cient-functions. Here the degree of the ap-
proximating polynomial for a particular coe�cient-function will be �xed
across �tting points. Finally, initial estimates of the coe�cient-functions
in the model corresponding to local constant estimates, i.e. �̂0(u

(j)) below,
must be chosen. Also, the matrices Ru(j);0 must be chosen. One possibil-
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ity is diag(�; : : : ; �), where � is a small positive number, see also the �rst
paragraph in Section 8.

The selection of the degrees of each of the approximating polynomials and
of �tting points and bandwidths associated with each of these requires some
prior knowledge about the process futg and about the smoothness of the
coe�cient-functions. The following considerations should be addressed:

� The placement of the extreme �tting points should be related to the
range (region) spanned by futg, a 95% con�dence region of ut will
often be appropriate.

� The distance between the �tting points should be related to the
smoothness of the coe�cient functions { the interpolation method
used between �tting points should not in
uence the result to any
signi�cant degree.

� The degree of the approximating polynomials together with band-
width should be related to the smoothness of the coe�cient functions
{ the approximation must be appropriate within the bandwidth.

For simplicity, in the following description of the algorithm it will be as-
sumed that a tricube weight function and a spherical kernel is used, cf.
Appendix A. Furthermore it will be assumed that Ru;t can be inverted for
all �tting points. Under these assumptions the algorithm can be described
as:

For each time t: Loop over the �tting points u(j); j = 1; : : : ; nfp and for
each �tting point:

� Calculate the weight:
wu(j) (ut) = (1� (jjut � u(j)jj=}(j))3)3, if jjut � u(j)jj < }

(j) and zero
otherwise.

� Find the e�ective forgetting factor:

�
(j)
eff (t) = 1� (1� �)wu(j) (ut).

� Construct the explanatory variables corresponding to local constant
estimates as in (16) of Appendix A.2:
zTt = [xt1p

T
d(1)(ut) : : : xtpp

T
d(p)(ut)].

� Update Ru(j);t�1 using (4):

Ru(j);t = �
(j)
eff (t)Ru(j) ;t�1 + wu(j) (ut)ztz

T
t .
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� Update �̂t�1(u
(j)) using (5):

�̂t(u
(j)) = �̂t�1(u

(j)) + wu(j) (ut)R
�1
u(j);t

zt

h
yt � zTt �̂t�1(u

(j))
i
.

� Calculate the local polynomial estimates of the coe�cient-functions
as in (17) of Appendix A.2:

�̂
T
(u(j)) = [pT

d(1)(u
(j))�̂1(u

(j)) : : :pT
d(p)(u

(j))�̂p(u
(j))].

The algorithm could also be implemented using the matrix inversion lemma
as in (Ljung and S�oderstr�om, 1983).

7 Simulations

The methods of updatingR, cf. (6) and (4), are studied by simulation using
the model

yt = a(t; ut�1)yt�1 + b(t; ut�1)xt + et; (12)

where fxtg is the input process, futg is the process controlling the co-
e�cients, fytg is the output process, and fetg is a white noise standard
Gaussian process. The coe�cient-functions are simulated as

a(t; u) = 0:3 + (0:6�
1:5

N
t) exp

�
�

(u� 0:8
N
t)2

2(0:6� 0:1
N
t)2

�

and

b(t; u) = 2� exp

�
�
(u+ 1� 2

N
t)2

0:32
;

�

where t = 1; : : : ; N and N = 5000, i.e. a(t; u) ranges from -0.6 to 0.9 and
b(t; u) ranges from 1 to 2. The functions are displayed in Figure 5. As
indicated by the �gure both coe�cient functions are based on a Gaussian
density in which the mean and variance varies linearly with time.

Adaptive estimates of the functions a() and b() are then found using the
proposed procedure with the model

yt = a(ut�1)yt�1 + b(ut�1)xt + et: (13)

For the adaptive estimation �tting points ranging from -2 to 2 in steps
of 0.2 are considered. Initial estimates of the coe�cient-functions are set

12



a(t,u)
-0.5 0 0.5

0500

1000

1500

2000

2500

3000

3500

4000

4500

5000

b(t,u)
1.0 1.4 1.8

0
1000

2000
3000

4000
5000

-2
-1

0
1

2
u

F
ig
u
re

5
:
T
h
e
tim

e-va
ry
in
g
co
e�

cien
t-fu

n
ctio

n
s
p
lo
tted

fo
r
eq
u
id
ista

n
t

p
o
in
ts

in
tim

e.

to
zero

a
n
d
d
u
rin

g
in
itia

liza
tio

n
th
e
estim

a
tes

a
re

n
o
t
u
p
d
a
ted

,
fo
r
th
e

�
ttin

g
p
o
in
t
co
n
sid

ered
,
u
n
til

ten
o
b
serva

tio
n
s
h
av
e
receiv

ed
a
w
eig

h
t
o
f

0
.5

o
r
la
rg
er.

F
u
rth

erm
o
re,

in
a
ll
ca
ses,

lo
ca
l
lin

ea
r
a
p
p
rox

im
a
tio

n
s
a
re

u
sed

to
g
eth

er
w
ith

th
e
tricu

b
e
w
eig

h
t
fu
n
ctio

n
,
cf.

A
p
p
en
d
ix

A
.

7
.1

V
a
r
y
in
g
th
e
b
a
n
d
w
id
th

T
h
e
d
a
ta

u
sed

in
th
is
sectio

n
a
re

g
en
era

ted
u
sin

g
(1
2
)
w
h
ere

f
x
t g

a
n
d
f
u
t g

n
ow

a
re

zero
m
ea
n
A
R
(1
)-p

ro
cesses

w
ith

p
o
les

in
0
.9

a
n
d
0
.9
8
,
resp

ec-
tiv

ely.
T
h
e
va
ria

n
ces

in
b
o
th

th
e
series

a
re

o
n
e
a
n
d
th
e
series

a
re

m
u
tu
a
lly

1
3



-2
0

2
-2

0
2

-1
0

0
10

0 1000 2000 3000 4000 5000
Time

Figure 6: Simulated output (bottom) when xt (top) and ut (middle) are
AR(1)-processes.

independent. In Figure 6 the data are displayed. Based on these data adap-
tive estimation in (13) are performed using nearest neighbour bandwidths,
calculated assuming a standard Gaussian distribution for ut.

The results obtained using the modi�ed updating formula (4) are displayed
for �tting points u = �2;�1; 0; 1; 2 in Figures 7 and 8. For the �rst 2/3 of

the period the estimates at u = �2, i.e. â(�2) and b̂(�2), only gets updated
occasionally. This is due to the correlation structure of futg as illustrated
by the realization displayed in Figure 6. For less correlated series a better
performance at �tting points placed in the tails of the pdf of ut is found.

For both estimates the bias is most pronounced during periods in which
the true coe�cient-function changes quickly for values of ut near the �tting
point considered. This is further illustrated by Figure 5 and it is, for
instance clear that adaption to a(t; 1) is di�cult for t > 3000. In general,
the low bandwidth (� = 0:3)) seems to result in large bias, presumably
because the e�ective forgetting factor is increased on average, cf. Section 5.
Similarly, the high bandwidth (� = 0:7) result in large bias for u = 2 and
t > 4000. A nearest neighbour bandwidth of 0.7 corresponds to an actual
bandwidth of approximately 2.5 at u = 2 and since most values of ut are
below one, it is clear that the estimates at u = 2 will be highly in
uenced
by the actual function values for u near one. From Figure 5 it is seen that
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Figure 7: Adaptive estimates of a(u) using local linear approximations and
nearest neighbour bandwidths 0.3 (dashed), 0.5 (dotted), and 0.7 (full).
True values are indicated by smooth dashed lines.

for t > 4000 the true values at u = 1 is markedly lower that the true values
at u = 2. This explains the observed bias at u = 2, see Figure 9.

When the modi�ed updating formula (4) is used the e�ective forgetting
factor for a particular �tting point is increased when the bandwidth for
that �tting point decreases. For this reason a �xed bandwidth across �tting
points might be almost as appropriate as a nearest neighbour bandwidth.
As mentioned in Section 5 a nearest neighbour bandwidth will often have
to be based on an estimate of the pdf of ut. This estimate might be rather
uncertain in the tail of the distribution, especially when the series is highly
autocorrelated. For this reason the ability to use a �xed bandwidth has
important practical implications. One approach would be to calculate a
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Figure 8: Adaptive estimates of b(u) using local linear approximations and
nearest neighbour bandwidths 0.3 (dashed), 0.5 (dotted), and 0.7 (full).
True values are indicated by smooth dashed lines.

nearest neighbour bandwidth for the �tting point Ê[ut] =
PN

t=1 ut=N and
used this as a �xed bandwidth for all �tting points.

The approach is tested using � = 0:5 and still assuming the pdf of ut to be
known. The results are not shown, but they are very similar to the results
obtained for a nearest neighbour bandwidth.

A similar comparison is performed for the normal updating formula (6) and
for u = �2 jumps in the estimates are observed when a �xed bandwidth
is used. This is most likely due to the constant forgetting factor and the
relatively low bandwidth at u = �2. This aspect is further illustrated in
the following section.
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Figure 10: ~�(u) for a nearest neighbour bandwidth of 0.5 and � = 0:99.

To illustrate this aspect 5000 observations are simulated using the model
(12). The sequence fxtg is simulated as a standard Gaussian AR(1)-process
with a pole in 0.9. Furthermore, futg is simulated as an iid process where

ut �

8<
:

N(0; 1); t = 1; : : : ; 1000
N(3=2; 1=62); t = 1001; : : : ; 4000
N(�3=2; 1=62); t = 4001; : : : ; 5000

To compare the two methods of updating, i.e. (6) and (4), a �xed � is
used in (4) across the �tting points and the e�ective forgetting factors are
designed to be equal. If ~� is the forgetting factor corresponding to (6) it
can be varied with u as

~�(u) = E[�ueff (t)] = 1� (1� �)E[wu(ut)];

where E[wu(ut)] is calculated assuming that ut is standard Gaussian, i.e.
corresponding to 1 � t � 1000. Using a nearest neighbour bandwidth of
0.5 and � = 0:99 the resulting ~�(u) is shown in Figure 10.

The corresponding adaptive estimates obtained for �tting point u = �1
are shown in Figure 11. The �gure illustrates that for both methods the
updating of the estimates stops as futg leaves the �tting point u = �1.
Using the normal updating (6) of Rt its value is multiplied by ~�(�1)3000 �
0:00015 as futg returns to the vicinity of the �tting point. This results in
large 
uctuations of the estimates, starting at t = 4001. As opposed to this
our modi�ed updating (4) does not lead to such 
uctuations after t = 4000.
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Figure 11: Realization of futg (top) and adaptive estimates of a(�1) (mid-
dle) and b(�1) (bottom), using the normal updating formula (solid) and the
modi�ed updating formula (dotted). True values are indicated by dashed
lines.

8 Further topics

Long-term 
uctuations: If futg exhibits long-term 
uctuations, e.g.
annual 
uctuations, the method can still be applied. However, if the usual
approach of setting the initial estimates to zero is applied the time-span
until the estimates are appropriate for all u will be long, maybe one year.
Therefore, in case of long-term 
uctuations in futg it is crucial to use infor-
mation from the analysis leading to the considered model. This information
should be provided both in terms of �̂0(u) and Ru;0.

Non-compact domain: If the domain of the pdf of ut is non-compact
we propose for on-line applications that �tting points u are selected within
a reasonable range of the center of the distribution. If function estimates
are needed outside this range we may use the estimates corresponding to
the nearest point u used for estimation.

E�ective number of observations: In Figure 1 it is shown how the
e�ective number of observations within the bandwidth �~�u varies with

19



the �tting point u when ut � N(0; 1). To make �~�u independent of the
�tting point the weights wu(ut) may be multiplied by a strictly positive
factor, since this will not a�ect the estimates in the non-adaptive case.
Alternatively, � can be varied with the �tting point. If the weights are
replaced by wu(ut)=E[wu(ut)] then �~�u = �=(1��) and it is seen that ~�u =
1=(1��) can be interpreted as the memory time constant T0. If � is varied
with the �tting point as �(u) = 1�1=(T0E[wu(ut)]) then ~�u = T0. In both
cases the e�ective forgetting factor at time t is 1� wu(ut)=(T0E[wu(ut)])
and consequently the approaches are equivalent. For practical applications
E[wu(ut)] must be estimated. Direct estimation by averaging observed
weights will result in highly variable estimates, especially for �tting points
placed in the tails of the distribution of ut. Since also the expression
used for calculation of ~�u (9) is an approximation (see Appendix B) it is
proposed to estimate the pdf of ut based on a parametric family which �ts
the data reasonably well. Consequently, in many cases the Gaussian family
of distributions is appropriate.

Optimal bandwidth and forgetting factor: So far in this paper it
has been assumed that the bandwidths used over the range of ut is derived
from the nearest neighbour bandwidth � and it has been indicated how it
can be ensured that the average forgetting factor is large enough.

However, the adaptive and recursive method is well suited for forward val-
idation (Hjorth, 1994) and hence tuning parameters can be selected by
minimizing, e.g. the root mean square of the one-step prediction error (us-
ing observed ut and xt to predict yt, together with interpolation between
�tting points to obtain �̂t�1(ut)).

There are numerous ways to de�ne the tuning parameters. A simple ap-
proach is to use (�; �), cf. (4) and (8). A more ambiguous approach is to
use both � and } for each �tting point u. Furthermore, tuning parameters
controlling scaling and rotation of us may also be considered.

If n �tting points are used this amounts to 2n, or more, tuning parameters.
To make the dimension of the (global) optimization problem independent
of n and to have �(u) and }(u) vary smoothly with u we may choose to
restrict �(u) and }(u), or appropriate transformations of these (logit for
� and log for }), to follow a spline basis (de Boor, 1978; Lancaster and
Salkauskas, 1986). This is similar to the smoothing of spans described by
Friedman (1984).
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Local time-polynomials: In this paper local polynomial approxima-
tions in the direction of time is not considered. Such a method is proposed
for usual ARX-models by Joensen, Nielsen, Nielsen and Madsen (1999).
This method can be combined with the method described here and will
result in local polynomial approximations where cross-products between
time and the conditioning variables (ut) are excluded. It is, however, still
an open question if the outlined extension are applicable from a practical
point of view. Since the method described in this paper down weights ob-
servations both in the direction of time and ut it requires a relatively large
average forgetting factor. Hence a simultaneous local polynomial approx-
imation of the development over time will require the forgetting factor to
be increased further, possibly resulting in a method which is non-adaptive
for practical purposes. However, if the initial values of the recursions are
carefully selected the approach may prove valuable.

Adaptive estimation in additive models: Consider the additive model
(Hastie and Tibshirani, 1990)

Eys = �+
X
i

fi(ui;s); (14)

where, in principle, each summand may be a conditional parametric model.
Consequently, the varying-coe�cient models of Hastie and Tibshirani (1993)
are also included in (14).

Below a method for adaptive and recursive estimation in models like (14)
is proposed. The method is inspired by the back�tting algorithm (Hastie
and Tibshirani, 1990). At time step t the following steps are performed:

1. �̂t is obtained through adaptive and recursive updating of (the con-

stant) �̂t�1 using yt �
P

i f̂i;t�1(ui;t) as the dependent variable.

2. f̂j;t is obtained equivalently, i.e. as described in this paper, but using

yt� �̂t�1�
P

i6=j f̂i;t�1(ui;t) as the dependent variable. Alternatively
�̂t could be used instead of �̂t�1.

3. f̂j;t is adjusted by subtractingRmaxfujg

minfujg
f̂j;t(z)dz=(maxfujg�minfujg), and similarly for multivari-

ate u.
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In step 3 the minimum and maximum refers to the minimum and maximum
of the �tting points. The range of integration is not very important but
step 3 is important to ensure that the level of yt can only be handled by
� in the model. Furthermore, step 3 is not required for varying-coe�cient
models. Considering step 2 it is natural to use the most recent estimates at
every instant of the algorithm. In this case the order in which we consider
the functions to be estimated may be important.

The algorithm amounts to performing the iterations in the back�tting algo-
rithm distributed over time steps resembling the recursive prediction error
method (Ljung, 1987) in which a single Newton-Raphson iteration is per-
formed at each time step.

9 Conclusion and Discussion

The conditionally parametric ARX-model (CPARX-model) is a conven-
tional ARX-model in which the parameters are replaced by smooth func-
tions of a (low-dimensional) input process. One possible application of these
models is the modelling of varying time delays, cf. (Nielsen et al., 1997).
For on-line applications the function estimates should be allowed to adapt
to slow changes in the true, but unknown, functions. Although, other
practical solutions may exist, the recursive approach is particularly use-
ful in that a fairly small computational e�ort is required each time an
observation becomes available. In this paper a method for adaptive and
recursive estimation in CPARX-models are proposed. The method can be
seen as a generalization or a combination of adaptive recursive least squares
(Ljung, 1987), local polynomial regression (Cleveland and Devlin, 1988),
and conditional parametric �ts (Anderson, Fang and Olkin, 1994).

For some applications it may be possible to specify global polynomial ap-
proximations to the coe�cient-functions of a CPARX-model. In this situa-
tion the adaptive recursive least squares method can be applied for tracking
the parameters from which the estimates of the coe�cient-functions can be
calculated. However, if the argument(s) of the coe�cient-functions only
stays in parts of the space corresponding to the possible values of the argu-
ment(s) for longer periods this may seriously a�ect the coe�cient-functions
for other values of the argument(s), in that it corresponds to extrapolation
using a �tted polynomial. This problem is e�ectively solved using the
non-parametric model in combination with the modi�ed updating formula
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suggested in this paper.

Adaptive and recursive estimation in CPARX-models will require a rela-
tively large forgetting factor as compared to ARX-models. Furthermore,
during part of the time, the function estimates may be updated for some
values of their argument(s) while the estimates are left unchanged for other
values. Therefore, for some practical applications, it will be crucial to ini-
tialize the recursions both in terms of the estimates and the precision hereof.

The modi�ed updating formula bear resemblance selective forgetting (Ljung,
1987). Instead of using a forgetting factor of one for observations with zero
weight a number slightly lower than one may be chosen. For applications
where the functions to be estimated change substantially at some values
of their argument, while these values are not visited for longer periods,
this may be applicable since it will allow for faster adaption at the cost of
increased variance of the estimates in these situations.

A Local polynomial estimation

In this appendix non-adaptive estimation in conditional parametric models
is described. The model is of the form

ys = xTs �(us) + es; s = 1; : : : ; N; (15)

where the response ys is a stochastic variable, us and xs are explanatory
variables, es is i.i.d. N(0; �2), �(�) is a vector of unknown but smooth func-
tions with values in R, and s = 1; : : : ; N are observation numbers. When
us is constant across the observations the model reduces to an ordinary
parametric linear model.

A.1 Local constant estimates

Estimation in (15) aims at estimating the functions �(�) within the space
spanned by the observations of us; s = 1; : : : ; N . The functions are only
estimated for distinct values of the argument u. Below u denotes one
of these �tting points and �̂(u) denotes the estimates of the coe�cient-
functions, when the functions are evaluated at u.

One solution to the estimation problem is to replace �(us) in (15) with a
constant vector �u and �t the resulting model locally to u, using weighted
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least squares. Below two similar methods of allocating weights to the obser-
vations are described, for both methods the weight function W : R0 ! R0

is a nowhere increasing function, R0 denotes the non-negative real numbers.
In this paper the tricube weight function

W (u) =

�
(1� u3)3; u 2 [0; 1)
0; u 2 [1;1)

is used. Hence, W : R0 ! [0; 1].

In the case of a spherical kernel the weight on observation s is determined
by the Euclidean distance jjus � ujj between us and u, i.e.

wu(us) =W

�
jjus � ujj

}(u)

�
:

A product kernel is characterized by distances being calculated for one
dimension at a time, i.e.

wu(us) =
Y
j

W

�
juj;s � uj j

}(u)

�
;

where the multiplication is over the dimensions of u. The scalar }(u) > 0
is called the bandwidth. If }(u) is constant for all values of u it is denoted
a �xed bandwidth. If }(u) is chosen so that a certain fraction (�) of the
observations ful�ll jjus � ujj � }(u) it is denoted a nearest neighbour
bandwidth. If u has dimension of two or larger, scaling of the individual
elements of us before applying the method should be considered, see e.g.
(Cleveland and Devlin, 1988). Rotating the coordinate system in which us

is measured may also be relevant.

A.2 Local polynomial estimates

If the bandwidth }(u) is su�ciently small the approximation of �(�) as a
constant vector near u is good. This implies that a relatively low number
of observations is used to estimate �(u), resulting in a noisy estimate or
large bias if the bandwidth is increased. See also the comments on kernel
estimates in (Anderson et al., 1994).

It is, however, well known that locally to u the elements of �(�) may be
approximated by polynomials, and in many cases these will be good ap-
proximations for larger bandwidths than those corresponding to local con-
stants. Local polynomial approximations are easily included in the method
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described. Let �j(�) be the j'th element of �(�) and let pd(j)(u) be a column
vector of terms in the corresponding d-order polynomial evaluated at u, if
for instance u = [u1 u2]

T then p2(u) = [1 u1 u2 u
2
1 u1u2 u

2
2]
T . Furthermore,

let xs = [x1s : : : xps]
T . With

zTs =
h
x1sp

T
d(1)(us) : : : xjsp

T
d(j)(us) : : : xpsp

T
d(p)(us)

i
(16)

and

�̂
T
(u) = [�̂

T

1 (u) : : : �̂
T

j (u) : : : �̂
T

p (u)];

where �̂j(u) is a column vector of local constant estimates at u correspond-
ing to xjspd(j)(us), estimation is handled as described in Section A.1, but
�tting the linear model

ys = zTs �u + es; i = 1; : : : ; N;

locally to u, indicated by the subscript parameter-vector.. Hereafter the
elements of �(u) are estimated by

�̂j(u) = pT
d(j)(u) �̂j(u); j = 1; : : : p: (17)

When xs = 1 for all s, i.e. p = 1, this method is identical to the method
by Cleveland and Devlin (1988), with the exception that they center the
elements of us used in pd(j)(us) around u and so pd(j)(us) must be recal-
culated for each value of u considered.

B E�ective number of observations

Using the modi�ed updating formula, as described in Section 4, the esti-
mates at time t can be written as

�̂t(u) = Argmin
�

tX
s=1

�(t; s)wu(us)(ys � xTs �)
2;

where

�(t; t) = 1;
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and, for s < t

�(t; s) =

tY
j=s+1

�ueff (j) = �ueff (t)�(t � 1; s):

It is then natural to de�ne the e�ective number of observations (in the
direction of time) as

�u(t) =
1X
i=0

�(t; t� i) (18)

= 1 + �ueff (t) + �ueff (t)�
u
eff (t� 1) + : : :

Suppose that the �tting point u is chosen so that E[�u(t)] exists. Con-
sequently, when f�ueff (t)g is i.i.d. and when ��u denotes E[�ueff (t)], the
average e�ective number of observations is

��u = 1 + ��u + ��2u + : : : =
1

1� ��u
:

When f�ueff (t)g is not i.i.d., it is noted that since the expectation operator
is linear, E[�u(t)] is the sum of the expected values of each summand in
(18). Hence, E[�u(t)] is independent of t if f�

u
eff (t)g is strongly stationary,

i.e. if futg is strongly stationary. From (18)

�u(t) = 1 + �ueff (t)�u(t� 1)

is obtained, and from the de�nition of covariance it then follows that

��u =
1 + Cov[�ueff (t); �u(t� 1)]

1� ��u
�

1

1� ��u
; (19)

since 0 < � < 1 and assuming that the covariance between �ueff (t) and
�u(t � 1) is positive. Note that if the process futg behaves such that if it
has been near u for a longer period up to time t� 1 it will tend to be near
u at time t also a positive covariance is obtained. It is the experience of the
authors that such a behaviour of a stochastic process is often encountered
in practice.

As an alternative to the calculations above �ueff (t)�u(t � 1) may be lin-

earized around ��u and ��u. From this it follows that when the variance of
�ueff (t) and �u(t� 1) is small then

��u �
1

1� ��u
:
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Therefore we may use 1=(1 � ��u) as an approximation to the e�ective
number of observations and we suppose that in many practical applications
it will be an lower bound, c.f. (19).
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