
IMM

DEPARTMENT OF MATHEMATICAL MODELLING

Technical University of Denmark
DK-2800 Lyngby – Denmark

May 6, 1999
CBE

Numerical Solution of
Differential Algebraic

Equations

Editors: Claus Bendtsen
Per Grove Thomsen

TECHNICAL REPORT

IMM-REP-1999-8

IMM

Contents

Preface v

Chapter 1. Introduction 1
1.1. Definitions 1
1.1.1. Semi explicit DAEs 2
1.1.2. Index 2
1.1.2.1. Singular algebraic constraint 2
1.1.2.2. Implicit algebraic variable 2
1.1.3. Index reduction 4
1.2. Singular Perturbations 5
1.2.1. An example 5
1.3. The Van der Pol equation 5

Part 1. Methods 7

Chapter 2. Runge-Kutta Methods for DAE problems 9
2.1. Introduction 9
2.1.1. Basic Runge-Kutta methods 9
2.1.2. Simplifying conditions 10
2.1.3. Order reduction, stage order, stiff accuracy 10
2.1.4. Collocation methods 11
2.2. Runge-Kutta Methods for Problems of Index 1 11
2.2.1. State Space Form Method 12
2.2.2. Theε-embedding method for problems of index 1 12
2.3. Runge-Kutta Methods for high-index problems 14
2.3.1. The semi-explicit index-2 system 14
2.3.2. Theε-embedding method 14
2.3.3. Collocation methods 15
2.3.4. Order-table for some methods in the index-2 case 16
2.4. Special Runge-Kutta methods 16
2.4.1. Explicit Runge-Kutta methods (ERK) 16

i

2.4.2. Fully implicit Runge-Kutta methods (FIRK) 17
2.4.3. Diagonally Implicit Runge-Kutta methods (DIRK) 17
2.4.4. Design Criteria for Runge-Kutta methods 18
2.5. ε-Expansion of the Smooth Solution 18

Chapter 3. Projection Methods 23
3.1. Introduction 23
3.1.1. Problem 23
3.1.2. Example case 23
3.2. Index reduction 24
3.2.1. Example on index reduction 24
3.2.2. Restriction to manifold 26
3.2.3. Implications of reduction 27
3.2.4. Drift-off phenomenon 27
3.2.5. Example of drift-off 27
3.3. Projection 29
3.3.1. Coordinate projection 29
3.3.2. Another projection method and the projected RK method 30
3.4. Special topics 31
3.4.1. Systems with invariants 31
3.4.2. Over determined systems 31

Chapter 4. BDF-methods 33
4.1. Multi Step-Methods in general and BDF-methods 33
4.1.1. BDF-methods 33
4.2. BDF-methods applied to DAEs 35
4.2.1. Semi-Explicit Index-1 Systems 36
4.2.2. Fully-Implicit Index-1 Systems 36
4.2.3. Semi-Explicit Index-2 Systems 37
4.2.4. Index-3 Systems of Hessenberg form 37
4.2.5. Summary 38
4.2.6. DAE-codes 38

Chapter 5. Stabilized Multi-step Methods Usingβ-Blocking 39
5.1. Adams methods 39
5.2. β-blocking 39
5.2.1. Whyβ-blocking 40
5.2.2. Difference correcting 40
5.3. Consequences ofβ-blocking 41
5.4. Discretization of the Euler-Lagrange DAE Formulation 41

ii

5.4.1. Commutative application of the DCBDF method 42
5.4.2. Example: The Trapezoidal Rule 43
5.5. Observed relative error 44

Part 2. Special Issues 45

Chapter 6. Algebraic Stability 47
6.1. General linear stability -AN-stability 47
6.2. Non-linear stability 50

Chapter 7. Singularities in DEs 53
7.1. Motivation 53
7.2. Description of the method 54
7.3. Detailed description of the method 55
7.3.1. Singularities in ODEs 55
7.3.2. Projection: A little more on charts 56
7.3.3. Singularities in DAEs 56
7.3.4. Augmention: Making the singular ODE a nonsingular ODE 57
7.4. Implementing the algorithm 59

Chapter 8. ODEs with invariants 63
8.1. Examples of systems with invariants 63
8.2. Solving ODEs with invariants 64
8.2.1. Methods preserving invariants 64
8.2.2. Reformulation as a DAE 64
8.2.3. Stabilization of the ODE system 64
8.3. Flying to the moon 65
8.3.1. Going nowhere 67
8.3.2. Round about the Earth 68
8.3.3. Lunar landing 69
8.3.4. What’s out there? 70
8.4. Comments on Improvement of the Solution 70

Part 3. Applications 73

Chapter 9. Multibody Systems 75
9.1. What is a Multibody System? 75
9.2. Why this interest in Multibody Systems? 76
9.3. A little bit of history repeating 76
9.4. The tasks in multibody system analysis 77
9.5. Example of a multibody system 79

iii

9.5.1. The multibody truck 79
9.5.2. The pendulum 81
9.5.3. Numerical solution 83
9.6. Problems 83
9.7. Multibody Software 84

Chapter 10. DAEs in Energy System Models 85
10.1. Models of Energy System Dynamics 85
10.2. Example Simulations with DNA 87
10.2.1. Numerical methods of DNA 87
10.2.2. Example 1: Air flowing through a pipe 90
10.2.3. Example 2: Steam temperature control 91

Bibliography 97

Index 99

iv

Preface

These lecture notes have been written as part of a Ph.D. course on the numer-
ical solution of Differential Algebraic Equations. The course was held at IMM
in the fall of 1998. The authors of the different chapters have all taken part in the
course and the chapters are written as part of their contribution to the course.

We hope that coming courses in the Numerical Solution of DAE’s will benefit
from the publication of these lecture notes.

The students participating is the course along with the chapters they have
written are as follows:
� Astrid Jørdis Kuijers, Chapter 4 and 5 and Section 1.2.1.
� Anton Antonov AntonovChapter 2 and 6.
� Brian ElmegaardChapter 8 and 10.
� Mikael Zebbelin PoulsenChapter 2 and 3.
� Falko Jens WagnerChapter 3 and 9.
� Erik Østergaard, Chapter 5 and 7.

v

vi PREFACE

CHAPTER 1

Introduction

The (modern) theory of numerical solution of ordinary differential equations
(ODEs) has been developed since the early part of this century – beginning with
Adams, Runge and Kutta. At the present time the theory is well understood
and the development of software has reached a state where robust methods are
available for a large variety of problems. The theory for Differential Algebraic
Equations (DAEs) has not been studied to the same extent – it appeared from
early attempts by Gear and Petzold in the early 1970’es that not only are the
problems harder to solve but the theory is also harder to understand.

The problems that lead to DAEs are found in many applications of which
some are mentioned in the following chapters of these lecture notes. The choice
of sources for problems have been influenced by the students following this first
time appearance of the course.

1.1. Definitions

The problems considered are in the most general form a fully implicit equa-
tion of the form

F(y0;y) = 0;(1.1)

whereF andy are of dimensionn andF is assumed to be sufficiently smooth.
This is the autonomous form, a non-autonomous case is defined by

F(x;y0;y) = 0:

Notice that the non-autonomous equation may be made autonomous by adding
the equationx0 = 1 and we do therefore not need to consider the non-autonomous
form seperately1.

A special case arises when we can solve for they0-variable since we (at least
formally) can make the equation explicit in this case and obtain a system of
ODEs. The condition to be fullfilled is that∂F

∂y0 is nonsingular. When this is not
the case the system is commonly known as being differential algebraic and this

1this may be subject to debate since the non-autonomous case can have special features

1

2 1. INTRODUCTION

will be the topic of these notes. In order to emphasize that the DAE has the
general form Eq. 1.1 it is normally called afully implicit DAE. If F in addition
is linear iny (andy0) (i.e. has the formA(x)y+B(x)y0 = 0) the DAE is called
linear and if the matricesA andB further more are constant we have aconstant
coefficient linear DAE.

1.1.1. Semi explicit DAEs.The simplest form of problem is the one where
we can write the system in the form

y0 = f(y;z)

0= g(y;z)
(1.2)

andgz (the partial derivative∂g=∂z) has a bounded inverse in a neighbourhood
of the solution.

Assuming we have a set of consistent initial values(y0;z0) it follows from
the inverse function theorem thatz can be found as a function ofy. Thus local ex-
istence, uniqueness and regularity of the solution follows from the conventional
theory of ODEs.

1.1.2. Index. Numerous examples exist where the conditions above do not
hold. These cases have general interest and below we give a couple of examples
from applications.

1.1.2.1. Singular algebraic constraint.We consider the problem defined by
the system of three equations

y01 = y3

0= y2(1�y2)

0= y1y2+y3(1�y2)�x;

wherex is a parameter of our choice. The second equation has two solutions
y2 = 0 andy2 = 1 and we may get different situations depending on the choice
of initial conditions:

1. if y2 = 0 we gety3 = x from the last equation and we can solve the first
equation fory1.

2. Settingy2 = 1 we gety1 = x from the last equation andy3 = 1 follows
from the first equation.

1.1.2.2. Implicit algebraic variable.

y0 = f (y;z)

0 = g(y)(1.3)

1.1. DEFINITIONS 3

In this case we have thatgz = 0 and the condition of boundedness of the inverse
does not hold. However ifgy fz has a bounded inverse we can do the trick of
differentiating the second equation leading to system

y0 = f (y;z)

0= gy(y) f (y;z)

and this can then be treated like the semi explicit case, Eq. 1.2. This motivates
the introduction ofindex.

DEFINITION 1.1 (Differential index). For general DAE-systems we define
the index along the solution path as the minimum number of differentiations
of the systems, Eq. 1.1 that is required to reduce the system to a set of ODEs for
the variabley.

The concept of index has been introduced in order to quantify the level of
difficulty that is involved in solving a given DAE. It must be stressed, as we in-
deed will see later, that numerical methods applicable (i.e. convergent) for DAEs
of a given index, might not be useful for DAEs of higher index.

Complementary to the differential index one can define thepertubation index
[HLR89].

DEFINITION 1.2 (Perturbation index). Eq. 1.1 is said to have perturbation
indexmalong a solutiony if m is the smallest integer such that, for all functions
ŷ having a defect

F(ŷ0; ŷ) = δ(x);

there exists an estimate

kŷ(x)�y(x)k �C(kŷ(0)�y(0)k+maxkδ(ξ)k+
: : : +maxkδ(m�1)(ξ)k)

whenever the expression on the right hand side is sufficiently small.C is a con-
stant that depends only on the functionF and the length of the interval.

If we consider the ODE-case Eq. 1.1, the lemma by Gronwall (see [HNW93,
page 62]) gives the bound

k ŷ(x)�y(x) k�C(k ŷ(0)�y(0) k+ max
0�ξ�x

k
Z ξ

0
δ(t)dt k):(1.4)

If we interpret this in order to find the perturbation index it is obviously zero.

4 1. INTRODUCTION

1.1.3. Index reduction. A process called index reduction may be applied to
a system for lowering the index from an initially high value down to e.g. index
one. This reduction is performed by successive differentiation and is often used
in theoretical contexts. Let us illustrate it by an example:

We look at example 1.1.2.2 and differentiate Eq. 1.3 once, thereby obtaining

y0 = f (y;z)

0= gy(y) f (y;z):

Differentiating Eq. 1.3 once more leads to

y0 = f (y;z)

0= gyy(y)(f (y;z))2+gy(y)(fy(y;z) f (y;z)+ fz(y;z)z
0);

which by rearranging terms can be expressed as

y0 = f (y;z)

z0 =�gyy(y)(f (y;z))2+gy(y) fy(y;z) f (y;z)

gy(y) fz(y;z)
:

The two differentiations have reduced the system to one of index zero and we
can solve the resulting ODE-system using well known methods.

If we want to find the perturbation index we may look at the equations for
the perturbed system

ŷ0 = f (ŷ; ẑ)+δ(x)
0= g(ŷ)+θ(x)

Using differentiation on the second equation leads to

0= gy(ŷ) f (ŷ; ẑ)+gy(ŷ)δ(x)+θ0(x)

From the estimates above we can now (by using Gronwalls lemma Eq. 1.4) ob-
tain

kŷ(x)�y(x)k �C(kŷ(0)�y(0)k+Z x

0
(kδ(ξ)k+kθ0(ξ)k)dξ

kẑ(x)�z(x)k �C(kŷ(0)�y(0)k+
maxkδ(ξ)k+maxkθ0(ξ)k)

All the max- values are to be taken over 0� ξ� x.

1.3. THE VAN DER POL EQUATION 5

1.2. Singular Perturbations

One important source for DAE-problems comes from using singular pertur-
bations [RO88] Here we look at systems of the form

y0 = f(y;z)

εz0 = g(y;z) where 0< ε� 1:
(1.5)

Letting ε go to zero (ε! 0) we obtain an index one problem in semi-explicit
form. This system may be proven to have anε-expansion where the expansion
coefficients are solution to the system of DAEs that we get in the limit of Eq. 1.5.

1.2.1. An example.In order to show the complex relationship between sin-
gular pertubation problems and higher index DAEs, we study the following prob-
lem:

y0 = f1(x;y;z;ε) y0 = ζ0

εz0 = f2(x;y;z;ε) z0 =
g(0;ζ0;ε)

ε
whereε� 1;

which can be related to the reduced problem (by lettingε! 0)

y0 = f1(x;y;z;0)

0= f2(x;y;z;0):

This is a DAE-system in semi-explicit form and we can differentiate the second
equation with respect tox and obtain

ȳ0 = f1(x; ȳ; z̄;0) ȳ0 = ζ0

0= gy(x; ȳ;0)f2(x; ȳ; z̄;0)+gx(x; ȳ;0):

This shows, that for indexes greater than one the DAE and the stiff problem can
not always be related easily.

Singular Pertubation Problems (SPP) are treated in more detail in Subsection
2.2.2.

1.3. The Van der Pol equation

A very famous test problem for systems of ODEs is the Van der Pol equation
defined by the second order differential equation

y00 = µ(1�y2)y0�y

6 1. INTRODUCTION

This equation may be treated in different ways, the most straigtforward is to
split the equation into two by introducing a new variable for the derivative (y1 =
y; y2 = y0) which leads to

y1
0 = y2

y2
0 = µ(1�y1

2)y2�y1

The system of two ODEs may be solved by any standard library solver but the
outcome will depend on the solver and on the parameterµ. If we divide the sec-
ond of the equations byµ we get an equation that has the character of a singular
perturbation problem. Lettingµ! ∞ we see that this corresponds toε! 0 in
Eq. 1.5.

Several other approaches may show other aspects of the nature of this prob-
lem for example [HW91] introduces the transformationt = x=µ after a scaling of
y2 by µ we get

y01 = y2

y02 = µ2((1�y1
2)y2�y1)

The introduction ofε = 1=µ2 finally results in a problem in singular perturbation
form

y01 = y2

εy02 = (1�y1
2)y2�y1

As explained previously this problem will approach a DAE ifε! 0 Using termi-
nology from ODEs the stiffness of the problem increases asε gets smaller giving
rise to stability problems for numerical ODE-solvers that are explicit while we
expect methods that are A- or L-stable to perform better.

Part 1

Methods

CHAPTER 2

Runge-Kutta Methods for DAE problems

Written by Anton Antonov Antonov & Mikael Zebbelin Poulsen

Keywords: Runge-Kutta methods, order reduction phenomenon,
stage order, stiff accuracy, singular perturbation problem, index-1
and index-2 systems,ε-embedding, state space method,ε-expan-
sion, FIRK and DIRK methods.

2.1. Introduction

Runge-Kutta methods have the advantage of being one-step methods, pos-
sibly having high order and good stability properties, and therefore they (and
related methods) are quite popular.

When solving DAE systems using Runge-Kutta methods, the problem of
incorporation of the algebraic equations into the method exists. This chapter
focuses on understanding algorithms and convergence results for Runge-Kutta
methods. The specific Runge-Kutta tables (i.e. coefficients) has to be looked up
elsewhere, eg. [HW96], [AP98] or [ESF98].

2.1.1. Basic Runge-Kutta methods.To settle notation we recapitulate the
form of thes-stage Runge-Kutta method.

For the autonomous explicit ODE system

y0 = f(y)

the method, for advancing the solution from a pointyn to the next, would look
like this:

Yn;i = yn+h
s

∑
j=1

ai j f(Yn; j) ; i = 1;2; : : : ;s(2.1a)

yn+1 = yn+h
s

∑
i=1

bif(Yn;i)(2.1b)

The method is a one-step method (i.e. it does not utilize information from pre-
vious steps) and it is specified by the matrixA with the elementsai j , and the

9

10 2. RUNGE-KUTTA METHODS FOR DAE PROBLEMS

vectorb having the elementsbi. We call theYn;i ’s the internal stages of the step.
In general these equations represents a non-linear system of equations.

The classical theory for determining the order of the local and global error is
found in a number of books on ODEs. Both the J. C. Butcher and P. Albrecht
approach are shortly described in [Lam91].

2.1.2. Simplifying conditions. The construction of implicit Runge-Kutta
methods is often done with respect to somesimplifying (order) conditions, see
[HW96, p.71]:

B(p) :
s

∑
i=1

bic
q�1
i =

1
q

q= 1; : : : ; p(2.2a)

C(η) :
s

∑
j=1

ai j c
q�1
j =

cq
i

q
i = 1; : : : ;s q= 1; : : : ;η(2.2b)

D(ζ) :
s

∑
i=1

bic
q�1
i ai j =

bj

q
(1�cq

j) j = 1; : : : ;s q= 1; : : : ;ζ(2.2c)

ConditionB(p) is the quadrature condition, andC(η) could be interpreted as the
quadrature condition for the internal stages. A theorem of Butcher now says

THEOREM 2.1. If the coefficients bi, ci and ai j of a Runge-Kutta method
satisfies B(p), C(η) and D(ζ) with p� η+ζ and p� 2η+2, then the method is
of order p.

Comment:You could say “at least orderp”, or - that to discover the properties
of the method, - try to find ap as high as possible.

2.1.3. Order reduction, stage order, stiff accuracy.When using an im-
plicit Runge-Kutta method for solving a stiff system, the order of the error can
be reduced compared to what the classical theory predicts. This phenomenon is
calledorder reduction.

The cause of the classical order “failing”, is that the step size is actually “cho-
sen” much to large compared to the time scale of the system. We know though,
and our error estimates often tells the same, that we get accurate solutions even
though choosing such big step-sizes. This has to do with the fact that in a stiff
system we are not following the solution curve, but we are actually following the
“stable manifold”

The order we observe is (at least) described by the concept ofstage order.
The stage order is the minimum ofp and q when the Runge-Kutta method

satisfiesB(p) andC(q) from Eq. 2.2.

2.2. RUNGE-KUTTA METHODS FOR PROBLEMS OF INDEX 1 11

A class of methods not suffering from order reduction are the methods which
arestiffly accurate. Stiff accuracy means that the final point is actually one of
the internal stages (typically the last stage), and therefore the method satisfies

bi = asi; i = 1; : : : ;s

2.1.4. Collocation methods.Collocation is a fundamental numerical met-
hod. It is about fitting a function to have some properties in some chosencollo-
cation points. Normally the collocation function would be a polynomialP(x) of
some degreer.

The collocation method for integrating a step (like Eq. 2.1a) would be to find
coefficients so that

P(xn) = yn

P0(xn+cih) = f(xn+cih;P(xn+cih)) ; i = 1;2; : : : ;s

yn+1 = P(xn+h)

Collocation methods are a relevant topic when discussing Runge-Kutta meth-
ods. It turns out that some special Runge-Kutta methods like Gauss, Radau IIA
and Lobatto IIIA, are in fact collocation methods.

In [Lam91, p. 194] it is shown why such a method is a Runge-Kutta method.
The principle is that theci in the collocation formula matches the ones from the
Runge-Kutta method, and the internal stages of the Runge-Kutta method match
the collocation method asY i = P(xn+cih). The “parameters” of the collocation
method are theci ’s and therefore define theA-matrix of the identical (implicit)
Runge-Kutta method.

2.2. Runge-Kutta Methods for Problems of Index 1

The traditional form of the index-one problem looks like this:

y0 = f(y;z)(2.3a)

0= g(y;z)(2.3b)

with the assumption that

gz(y;z) is invertible(2.3c)

for every point at the solution curve. Ifgz(y;z) were not invertible the system
would have index at least 2.

This implies that Eq. 2.3b has a unique solutionz = G(y) by the Implicit
Function Theorem. Inserted into Eq. 2.3a gives

y0 = f(y;G(y))(2.4)

12 2. RUNGE-KUTTA METHODS FOR DAE PROBLEMS

- the so calledstate space form. We see that, if algebraic manipulations could
lead to Eq. 2.4, then we could solve the problem as a normal explicit ODE prob-
lem. This is in general not possible.

We should at this time mention another form of the implicit ODE system:
The form

My 0 = f(y)

typically occurs when you can’t separate differential and algebraic equations like
in Eq. 2.3, and some of the equations contain more than one “entry” of the primes
y0i from y0, see eg. [HW96, p. 376 ff.].

If M is invertible/regular, this system is actually just a normal ODE system
(index-0), and traditional methods can be used. IfM is singular the system has
index at least one.

If the system is of index-1 then a linear transformation of the variables can
give the system a form like Eq. 2.3.

2.2.1. State Space Form Method.Because of the possibility of (at least
“implicitly”) rewriting the problem to the state space form Eq. 2.4, we could
imagine using the Runge-Kutta method, by solving Eq. 2.3b (forz) in each of
the internal stages and at the final solution point:

Yn;i = yn+h
s

∑
j=1

ai j f(Yn; j ;Zn; j)

0= g(Yn;i;Zn;i)

9>=
>; ; i = 1;2; : : : ;s

yn+1 = yn+h
s

∑
i=1

bif(Yn;i;Zn;i)

0= g(yn+1;zn+1)

These methods have the same order as the classical theory would predict for
Runge-Kutta methods with someA andb, and this holds for bothy andz.

Furthermore these methods do not have to be implicit. The explicit state
space form methods are treated in [ESF98, p. 182], here calledhalf-explicit
Runge-Kutta methods.

2.2.2. Theε-embedding method for problems of index 1.Discussions of
index-1 problems are often introduced by presenting thesingular perturbation
problem(SPP) already encountered in Section 1.2. A key idea (see eg. [HW96, p.
374]) is the following: Transform the DAE to a SPP, by introducingε. Deriving
the method for a SPP and then puttingε = 0. This will give a method for DAE
of index 1:

2.2. RUNGE-KUTTA METHODS FOR PROBLEMS OF INDEX 1 13

Yn;i = yn+h
s

∑
j=1

ai j f(Yn; j ;Zn; j) i = 1;2; : : : ;s(2.6a)

εZn;i = εzn+h
s

∑
j=1

ai j g(Yn; j ;Zn; j) i = 1;2; : : : ;s(2.6b)

yn+1 = yn+h
s

∑
i=1

bif(Yn;i;Zn;i)(2.6c)

εzn+1 = εzn+h
s

∑
i=1

big(Yn;i;Zn;i)(2.6d)

In order to eliminateε from (2.6) we have

hg(Yn;i;Zn;i) = ε
s

∑
j=1

wi j (Zn; j �zn)

from Eq. 2.6b, wherefωi; jg = fai; jg�1. This means thatA is invertible and
therefore the RK methods forε-embedding must at least be implicit. So lets at
last putε = 0

Yn;i = yn+
s

∑
j=1

ai j f(Yn; j ;Zn; j) i = 1;2; : : : ;s(2.7a)

0= g(Yn;i;Zn;i) i = 1;2; : : : ;s(2.7b)

yn+1 = yn+h
s

∑
i=1

bif(Yn;i;Zn;i)(2.7c)

zn+1 = (1�
s

∑
j=1

biωi; j)zn+
s

∑
i; j=1

biωi; jZn; j)(2.7d)

If we replace Eq. 2.7d with

0= g(yn+1;zn+1)(2.7e)

) Zn; j = G(Yn; j) andzn+1 = G(yn+1) In this case Eq. 2.7 is identical to the
solution of the state space form with the same RK method. The same would hold
if the method were stiffly accurate. In these cases the error is predicted by the
classical order theory referred to previously.

14 2. RUNGE-KUTTA METHODS FOR DAE PROBLEMS

Generally the convergence results are listed in [HW96, p.380]. We should
though mention the convergence result if the method is not stiffly accurate, but
linearly stable at infinity: Then the method has the minimum of the classical
order and the stage order + 1.

We have the following diagram:

ε 0

RK RK

ODE
z=G(y)

indirect approch
direct approach

Solution
Solution

SPP DAE

ε 0

FIGURE 2.1. The transformation of the index-1 problem

2.3. Runge-Kutta Methods for high-index problems

Not many convergence results exist for high-index DAEs.

2.3.1. The semi-explicit index-2 system.For problems of index 2, results
mainly exist for the semi-explicit index-2 problem. It looks as follows:

y0 = f(y;z)(2.8a)

0= g(y)(2.8b)

with

gy(y)f(y;z) being invertible.(2.8c)

2.3.2. Theε-embedding method.This method also applies to the semi-
explicit index-2 case, although in a slightly different form: (note that the new
variableln; j is introduced)

Yn;i = yn+h
s

∑
j=1

ai j f(Yn; j ;Zn; j) ; i = 1;2; : : : ;s(2.9a)

0= g(Yn;i) ; i = 1;2; : : : ;s(2.9b)

Zn;i = zn+h
s

∑
j=1

ai j ln; j ; i = 1;2; : : : ;s(2.9c)

2.3. RUNGE-KUTTA METHODS FOR HIGH-INDEX PROBLEMS 15

yn+1 = yn+h
s

∑
i=1

bif(Yn;i;Zn;i)(2.9d)

zn+1 = zn+h
s

∑
i=1

bi ln; j(2.9e)

Convergence results are described in [HW96, p. 495 ff.]. The main conver-
gence results are based on the simplifying conditions

B(p) andC(q);

see Eq. 2.2. An abstract of convergence results are that the local error then
behaves like

LE(y) = O(hq+1)

LE(z) = O(hq)

with p� q. The interesting result for the global error is then that

GE(y) =

(
O(hq+1) ; if p> q

O(hq) ; if p= q

GE(z) = O(hq)

Remember that these results deal with the method used for the semi-explicit
index-2 problem. The convergence results are, as presented, concentrated useful
implications of more general results found in [HW96].

2.3.3. Collocation methods.The collocation method, matching ans-stage
Runge-Kutta method could be applied to Eq. 2.8, as follows: Letu(x) andv(x)
be polynomials of degrees. At some pointxn the polynomial satisfies consistent
initial conditions

u(xn) = yn; v(xn) = zn(2.10a)

Then the collocation polynomials are found to satisfy

u0(xn+cih) = f(u(xn+cih);v(xn+cih))

0= g(u(xn+cih))

)
; i = 1;2; : : : ;s(2.10b)

and the step is finally determined from

yn+1 = u(xn+h)

zn+1 = v(xn+h)
(2.10c)

It can be shown that this method coincides with theε-method just mentioned,
if the coefficients are chosen correctly. The Gauss-, Radau IIA-, and Lobatto IIIA

16 2. RUNGE-KUTTA METHODS FOR DAE PROBLEMS

coefficients could therefore be used in both methods. These coefficients are quite
popular, when solving DAEs.

2.3.4. Order-table for some methods in the index-2 case.Here we present
a table with some of the order results from using the above methods.

Method stages local error global error
y z y z

Gauss s odd hs+1 hs hs+1 hs�1

Gauss s even hs+1 hs hs hs�2

projected Gauss s h2s+1 h2s

Radau IA s hs hs�1 hs hs�1

projected Radau IA s h2s�1 h2s�2

Radau IIA s h2s h2s�1 h2s�2 hs�1

Lobatto IIIA s odd h2s�1 hs h2s�2 hs�1

Lobatto IIIA s odd h2s�1 hs h2s�2 hs

Lobatto IIIC s odd h2s�1 hs�1 h2s�2 hs�1

For results on projection methods we refer to the chapter about Projection
methods, Chapter 3 or we refer to the text in [HW96, p.502].

2.4. Special Runge-Kutta methods

This section will give an overview of some special classes of methods. These
classes are defined by the structure of their coefficient matrixA. Figure 2.2 gives
an overview of these structures. The content is presented with inspiration from
[Kvæ92] and [KNO96].

2.4.1. Explicit Runge-Kutta methods (ERK). These methods have the
nice property that the internal stages one after one are expressed explicitly from
former stages. The typical structure of theA-matrix would the be

ai j = 0 j � i

These methods are very interesting in the explicit ODE case, but looses impor-
tance when we introduce implicit ODEs. In this case the computation of the
internal stages would in general imply solving a system of nonlinear equations
for each stage, and introduce iterations. Additionally the stability properties of
these methods are quite poor.

As a measure of the work load we could use the factorization of the Jacobian.
We have an implicitn-dimensional ODE system. Since the factorization should
be done for each stage the work load for the factorization is of the ordersn3.

2.4. SPECIAL RUNGE-KUTTA METHODS 17

2.4.2. Fully implicit Runge-Kutta methods (FIRK). These methods have
no restriction on the elements ofA. An s-stage FIRK method together with an
implicit ODE system, forms a fully implicit nonlinear equation system with a
number of equations in the order ofns. The work done in factorization of the
Jacobian would be of the order(sn)3 = s3n3.

2.4.3. Diagonally Implicit Runge-Kutta methods (DIRK). In order to
avoid the full Jacobian from the FIRK method, one could construct a semi ex-
plicit (close to explicit) method, by making the structure ofA triangular and
thereby the Jacobian of the complete nonlinear equation system block-triangu-
lar. The condition of theA being triangular is traditionally expressed as

ai j = 0 ; j > i(2.11)

The work load could again be related to the factorization of the Jacobian. In each
stage we haven equations and the factorization would cost in the order ofn3 per
stage. This means that the total workload would be of the ordersn3 just as for
the ERK methods, when used on the implicit ODE system.

But as a major advantage these methods have better stability properties than
ERK methods. On the other hand they can not match the order of the FIRK
methods with the same number of stages.

As a subclass of the DIRK methods one should notice the singly DIRK
method (SDIRK methods) which on top of Eq. 2.11 specifies that

aii = γ ; i = 1; : : : ;s

Yet another class of method is the ESDIRK methods which introduces the
start point as the first stage, and hereafter looks like the SDIRK method: the
method is defined by Eq. 2.11 and

a11 = 0

aii = γ ; i = 2; : : : ;s

γ
γ

0

ESDIRKSDIRKDIRK

γ

0
γ

γ
γ

γγ
γ

FIRK
������
������
������
������
������

������
������
������
������
������

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

ERK

000

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

FIGURE 2.2. Overview of the structure ofA for the different
classes of methods

18 2. RUNGE-KUTTA METHODS FOR DAE PROBLEMS

2.4.4. Design Criteria for Runge-Kutta methods.The DIRK methods are
investigated for solving stiff systems, index-1 and index-2 systems in [Kvæ92].
She uses theε-expansion shown in the next section to describe the error gener-
ated when solving a stiff system.

She summarizes a number of design criteria based on the properties found
of importance, before presenting the DIRK methods. These properties are listed
below:

� The advancing method should be stiffly accurate.
� The error estimating method should be stiffly accurate.
� The advancing method should be at leastL(0)-stable.
� The error estimating method should at least beA(0)-stable, if possible

A(0)-stable.
� The stageorder of the method should be as high as possible.

The conditions are presented in preferential order. We will only mention that
the fist two conditions are ment to ensure that the order of the method and the
error estimate is known also in the these stiff(-like) problems, where methods
otherwise can suffer from order reduction.

2.5. ε-Expansion of the Smooth Solution

Following [HW96, Chapter VI.2] let us consider the singular perturbation
problem Eq. 1.5 with the functionsf andg sufficiently smooth. The functionsf,
g and the initial valuesy(0), z(0) may depend smoothly onε. The corresponding
equation forε = 0 is the reduced problem 2.3a. Again in order to guarantee
solvability of Eq. 2.3a, we assume thatgz(y;z) is invertible.

Now it is natural to be interested in smooth solutions of Eq. 1.5 which are of
the form:

y(x) = y0(x)+ εy1(x)+ ε2y2(x)+ : : :(2.12)

z(x) = z0(x)+ εz1(x)+ ε2z2(x)+ : : :(2.13)

If we now insert Eq. 2.12 and Eq. 2.13 into Eq. 1.5 and collect the equal
powers ofε we will end up with couples of systems of equations first of which is
the system fory0(x), z0(x). Sincegz is invertible we can solve the other systems
for z1 , z2 and so forth. This leads to the following:
for ε0:

y00 = f(y0;z0)(2.14)

0= g(y0;z0)(2.15)

2.5.ε-EXPANSION OF THE SMOOTH SOLUTION 19

for ε1:

y01 = fy(y0;z0)y1+ fz(y0;z0)z1(2.16)

z00 = gy(y0;z0)y1+gz(y0;z0)z1(2.17)

: : :
for εν:

y0ν = fy(y0;z0)yν + fz(y0;z0)zν +φν(y0;z0; : : : ;yν�1;zν�1)(2.18)

z0ν�1 = gy(y0;z0)yν +gz(y0;z0)zν +(2.19)

ψν(y0;z0; : : : ;yν�1;zν�1)(2.20)

As expected, we see from Eq. 2.14 and Eq. 2.15 thaty0(x), z0(x) is a solution of
the reduced system. Sincegz is invertible, the equation Eq. 2.17 can be solved
for z1. By insertingz1 into the Eq. 2.15 we obtain a linear differential equation
for y1(x). Hence,y1(x) andz1(x) are determined. similarly, we gety2(x) and
z2(x) from Eq. 2.18 and Eq. 2.19, etc.

This construction of the coefficients of Eq. 2.12 and Eq. 2.13 shows that we
can choose the initial valuesy j(0) arbitrarily, but that there is no freedom in the
choice ofzj (0). Consequently not every solution of Eq. 1.5 could be written in
the form Eq. 2.12 and Eq. 2.13.

The same kind of analysis could be made for a Runge-Kutta method. We
consider the Runge-Kutta method�

yn+1
zn+1

�
=

�
yn
zn

�
+h

s

∑
i=1

bi

�
kni
lni

�
(2.21)

where �
kni
εlni

�
=

�
f (Yni;Zni)
g(Yni;Zni)

�
(2.22)

and the internal stages are given by�
Yni
Zni

�
=

�
yn
zn

�
+h

s

∑
j=1

ai j

�
kn j
ln j

�
; i = 1; : : : ;s(2.23)

We formally expand all occurring quantities into powers ofε with ε-
independent coefficients

yn = y0
n+ εy1

n+ ε2y2
n : : :(2.24)

Yni = Y0
ni+ εY1

ni+ ε2Y2
ni : : :(2.25)

kni = k0
ni+ εk1

ni+ ε2k2
ni : : :(2.26)

20 2. RUNGE-KUTTA METHODS FOR DAE PROBLEMS

and similarly forzn, Zni and lni. Since Eq. 2.22 has the same form as Eq. 1.5
we will end up with exactly the same systems of equations as those we had after
inserting theε-expansions ofy(x) andz(x) in Eq. 1.5. If we subtract Eq. 2.24
from Eq. 2.12 we will get formally

yn�y(xn) = ∑
ν�0

εν(yν
n�yν(xn))(2.27)

zn�z(xn) = ∑
ν�0

εν(zν
n�zν(xn))(2.28)

The next theorem gives rigorous estimate of the remainder in (2.27)-(2.28).

THEOREM 2.2. [HW96, page 428]Consider the stiff problem Eq. 1.5 for
which µ(gz(x))� �1 with the initial valuesy(0), z(0) admitting a smooth solu-
tion. Apply the Runge-Kutta method Eq. 2.21-Eq. 2.23 of classical order p and
stage order q (1� q� p). Assume that the method is A-stable. that the stability
function satisfiesj R(inf) j< 1, and that the eigenvalues of the coefficient matrix
A have positive real part. Then for any fixed constant c> 0 the global error
satisfies forε� ch and µ� q+1

yn�y(xn) = ∆y0
n+ ε∆y1

n+ � � �+ εν∆yν
n+O(εν+1)(2.29)

zn�z(xn) = ∆z0
n+ ε∆z1

n+ � � �+ εν∆zν
n+O(εν+1=h)(2.30)

Here∆y0
n = y0

n�y0(xn), ∆z0
n = z0

n�z0(xn); : : : are the global errors of the method
applied to the systems derived from Eq. 1.5 and Eq. 2.12,Eq. 2.13. The estimates
Eq. 2.29, Eq. 2.30 hold uniformly for h� h0. and nh�Const.

COROLLARY 2.1. Under the assumptions of Theorem 2.2 the global error of
Runge-Kutta method satisfies

yn�y(xn) = O(hp)+O(εhq+1); zn�z(xn) = O(hq+1):(2.31)

If in addition asi = bi for all i we have

zn�z(xn) = O(hp)+O(εhq)(2.32)

The conclusion is that the explained error when solving a stiff system using
a Runge-Kutta method, can be explained as a combination of errors from using
the same Runge-Kutta method on the derived DAEs.

The table below shows the theoretical error bounds of some methods.

2.5.ε-EXPANSION OF THE SMOOTH SOLUTION 21

Method asi = bi y-comp. z-comp.
Radau IA no h2s�1+ εhs hs

Radau IIA yes h2s�1+ ε2hs h2s�1+ εhs

Lobatto IIIC yes h2s�2+ εhs�1 h2s�2+ ε2hs�1

SDIRK IV(16) yes h4+ εh2 h4+ εh
SDIRK IV(18) yes h4+ εh2 h2

22 2. RUNGE-KUTTA METHODS FOR DAE PROBLEMS

CHAPTER 3

Projection Methods

Written by Mikael Zebbelin Poulsen & Falko Jens Wagner

Keywords: High index DAEs, index reduction, drift-off phenom-
enon, differential equations on manifolds, coordinate projection,
derivative projection, order preserving projection, invariant pro-
jection, over determined systems.

3.1. Introduction

When trying to solve a DAE problem of high index with more traditional
methods, it often causes instability in some of the variables, and finally leads to
breakdown of convergence and integration of the solution. This is nicely shown
in [ESF98, p. 152 ff.].

This chapter will introduce projection methods as a way of handling these
special problems. It is assumed that we have methods for solving normal ODE
systems and index-1 systems.

3.1.1. Problem. The general form of the DAE problem treated in this chap-
ter is

ẏ = f(y;z)(3.1a)

0= g(y)(3.1b)

wheref : Rn�Rm! Rn andg : Rn! Rm, which is seen to be a DAE system
of differentiation index at least 2 (see [HW96, p. 456]).

3.1.2. Example case.As an example case of this type of DAE system, a
model of the pendulum system will be used (see [ESF98, p. 150]):

23

24 3. PROJECTION METHODS

ṗx = vx

ṗy = vy

v̇x =�2pxλ=m

v̇y =�g=m�2pyλ=m

(3.2)

with the restriction

0= p2
x + p2

y� l2(3.3)

It is seen that this equation system, Eq. 3.2 and Eq. 3.3 is a specialized form
of Eq. 3.1. It is further in the form described in [HW96, p. 456 (1.15)], and
therefore has differentiation index 3.

3.2. Index reduction

A way of handling the problem of instability is to construct a new equation
system by performingindex reductionon the original DAE system.

To understand index reduction, it can be useful to notice the definition of the
differentiation index (see e.g. [HW96, p. 455]). This index gives the number of
timesm, that one will have to differentiate the equation system

di

dxi ẏ =
di

dxi f(y;z)

0=
di

dxi g(y)

; i = 0;1; : : : ;m(3.4)

with x being the independent variable, to be able to rearrange equations to what
is called the “underlying ODE” [HW96].

The principle of index reduction is then, thatonedifferentiation of the equa-
tion system will give a new set of equations, so that a new equation system, with
index one lower, can be set up using algebraic manipulations. This reduction
can the be continued in successive steps, lowering the index of the system, and
enable the use of methods for lower index problems.

3.2.1. Example on index reduction.In this example we will see that, in
the pendulum case, we can reduce the index by successive differentiation of the
algebraic restriction Eq. 3.3 alone.

We differentiate on both sides with respect to time, and substitute using Eq.
3.2 and get

3.2. INDEX REDUCTION 25

0= 2pxṗx+2pyṗy

= 2pxvx+2pyvy ,
0= pxvx+ pyvy(3.5)

Using Eq. 3.5 instead of Eq. 3.3 in the equation system changes the problem
into an index-2 problem. Further differentiation of Eq. 3.5 gives

0= pxv̇x+ ṗxvx+ pyv̇y+ ṗyvy

= px(�2pxλ=m)+v2
x + py(�g�2pyλ=m)+v2

y

= v2
x +v2

y�gpy�2l2λ=m(3.6)

Using this equation as the algebraic restriction, makes the problem index-1.
Note that, isolatingλ in this equation and reducingλ from the equations Eq. 3.2,
actually gives an explicit ODE system.

We want though to show how yet another differentiation can give a normal
ODE problem, reducing the index to 0.

0= 2vxv̇x+2vyv̇y�gṗy�2l2λ̇=m

= 2vx(�2pxλ=m)+2vy(�g�2pyλ=m)�gvy�2l2λ̇=m

=�4λ=m(vxpx+vypy)�3gvy�2l2λ̇=m

=�3gvy�2l2λ̇=m

which is reached by insertion of (Eq. 3.5). Isolatingλ̇ we get

λ̇ =�3mgvy=(2l2)(3.7)

We see that by using Eq. 3.7 instead of the algebraic equation Eq. 3.3 we
get an explicit ODE system. The high index problem is reduced to an index-0
problem.

Comment: As is, this is not a proof of the original system having index exactly
3, but it is though a proof that the system has index 3 or less. In other words,
just because we differentiated 3 times, and we end up with an index-0 problem, it
doesn’t mean, that the original systems was index-3. We could just as well have
been too bad at rearranging the variables.

26 3. PROJECTION METHODS

3.2.2. Restriction to manifold. The index reduction process just exempli-
fied, can be understood in another way.

Observe that the general problem can be seen as an ODE system Eq. 3.1a
restricted to a manifold Eq. 3.1b by varyingz. This right valuez� would be the
value ofz for which the solution curve would proceed on the manifold. Locally
this means thaṫy = f(y;z) should be in the tangent plane of the manifold (see
Figure 3.1). We can express this as

gy(y)f(y;z�) = 0

or just

gyf = 0:(3.8)

g (y)y
f(y,z)

0=g(y)

f(y,z*)

FIGURE 3.1. The manifold and tangent plane, showing how to
pick z= z� so that the solution will proceed on the manifold.

Note that Eq. 3.8 is in fact the differentiation Eq. 3.1b with respect to the
independent variable, and therefore corresponds to Eq. 3.5 in the previous exam-
ple.

If z� is uniquely determined from Eq. 3.8 i.e.gyfz is invertible, Eq. 3.8 to-
gether with Eq. 3.1a forms an index-1 system.

If gyf is only a function ofy, Eq. 3.8 specifies a manifold like Eq. 3.1b, and
the same scheme can be used once more:

(gyf)yf = (gyyf +gyfy)f = 0

3.2. INDEX REDUCTION 27

or in a more correct notation

gyy(f; f)+gyfyf = 0(3.9)

while gyy(�; �) is a Frechet derivative ([Lam91, p. 158]). Again this is just
similar to differentiation of the equation Eq. 3.8.

In generalgyf could be a function ofy, without the unique determination of
z� being possible from equation Eq. 3.8 i.e.(gyf)z is not invertible (not of full
rank). A way to handle this is described in [HW96, p. 456].

3.2.3. Implications of reduction. An exact solution (curve) for the index
reduced system is not necessarily a solution for the original system, though the
opposite is true.Comment: In this way, differentiation is only a single implica-
tion.

The index reduced system has more solutions than the original system. To get
the solutions to the original system from the reduced system, one has to choose
the right initial values/conditions.

Such initial conditions is a point on a solution curve for the original system.
It is not a trivial question to find such a point - eg. it is not necessarily sufficient
to satisfy the algebraic equations Eq. 3.1b form the original system alone. The
problem is called the problem of findingconsistent initial conditions, and is of
relevance even when solving the original system, because most algorithms need
such consistent initial conditions.

3.2.4. Drift-off phenomenon. Numerically there is another consequence of
index reduction, related to the problem just mentioned, but not solved by find-
ing consistent initial conditions. Lets say that the initial conditions are picked
according to the above:

When the computation of the numerical solution advances, a new point will
be found satisfying a local error condition. This error will be measured and
depend on the reduced system and its differentiated algebraic restrictions, eg.
Eq. 3.5.

The consequence is that when looking at the defect of the original algebraic
restriction, eg. Eq. 3.3, it will develop as the integral of this local error. In this
way the points on the computed solution will randomly move away from the
manifold specified by the original algebraic restriction.

3.2.5. Example of drift-off. Figure 3.2 illustrates how the solutions of the
pendulum model changes due to index reduction. In the pendulum case Eq. 3.2,
the original index-3 formulation had the algebraic equation Eq. 3.3

28 3. PROJECTION METHODS

0= p2
x + p2

y� l2

specifying the manifold drawn as the solid curve. The index-2 formulation
had the algebraic equation Eq. 3.5

0= pxvx+ pyvy:

This equation only specifies that the velocity(vx;vy) should be orthogonal to
the position vector(px; py). This is illustrated by the dashed curves in Figure 3.2.

m

l

FIGURE 3.2. Expanding set of solutions due to index reduction
and illustration of the drift-off phenomenon

We could say that by doing index reduction, we expanded the solution set of
the original system to include not only the solutions moving on the solid line, but
also all the solutions moving in “parallel” to the solid line.

Illustrated on Figure 3.2, as the piecewise linear curve, is also the drift-off
phenomenon. When numerically advancing the solution, the next point is found
with respect to the index-2 restriction. The index-2 restriction says, that we shall
move in “parallel” with the solid line (along the dashed lines), and not as the
index-3 restriction says, to moveon the solid line. Therefore the solution slowly
moves away from (drifts off) the solid line - although “trying” to move in parallel
with it.

Comment: When solving a system the consequence of drift of is not necessar-
ily “worse” than the normal global error. It is though obvious that at least from
a “cosmetic” point of view a solution to the pendulum system with shortening
length of the pendulum looks bad. But using the model for other purposes might
be indifferent to drift-off compared to the global error.

3.3. PROJECTION 29

3.3. Projection

The idea is to project the solution points back to the manifold defined by the
original system as the steps are computed. This will prevent drift-off, but can
also in special cases increase the order of the method.

Let’s say that(yn�1;zn�1) is a point consistent (or “almost consistent”) with
the original system. Then we take a step using some method on the reduced
equation system, and get the point(ỹn; z̃n). This point is then projected on to the
manifolds inherent in the original system, giving(yn;zn) as the next point on the
solution curve. This is the general idea, and is illustrated in Figure 3.3.

(y ,z)n n
~ ~

(y ,z)n n

n-1 n-1(y ,z)

FIGURE 3.3. The general projection method. The broken solid
arrow shows the step taken using the reduced system. The dashed
arrow shows the projection back to the manifold

Different information from the original and reduced system can be used for
various projection methods. As an example it is mentioned in [HW96, p.471]
that there is an advantage in determining the velocity constraints and project to
these instead of projecting to the position constraints. In general the various
methods need not give consistent values, and they don’t necessarily preserve the
order of the method.

3.3.1. Coordinate projection. Coordinate projection uses correction after
each step, indifferent of the ODE-part of the differential equation Eq. 3.1a, and
only concerned about the manifold Eq. 3.1b, and/or the manifolds specified by
the derivatives of this.

Generalizing the idea of [ESF98, p. 165] the method uses the index reduced
system to advance the solution from(yn�1;zn�1) to (ỹn; z̃n). Then the projection
is defined by

30 3. PROJECTION METHODS

kỹn�ynk2 = min
yn

g(yn) = 0
(3.10)

which is anonlinear constrained least squares problembecause of the norm
chosen. The projection gives the orthogonal projection to the manifold.

In [ESF98, p. 165] the idea is used on different sets of variables and equation
in successive steps. Especially equations from the index reduction are included,
and it is mentioned in [HW96, p. 471] that this can give better results than using
the original algebraic restrictions.

In [ESF98] there are some references to proofs of convergence for various of
these projection methods.

3.3.2. Another projection method and the projected RK method.This
method is explained in [HW96, p. 470]. The method has some nice convergence
properties, when applied to index-2 problems.

The ideas is again to use a method on the index-reduced system to advance
the solution one step, finding the value(ỹn; z̃n). The method uses projection
along the image offz(ỹn; z̃n), and is defined as

yn� ỹn = fz(ỹn; z̃n)µ

g(yn) = 0
(3.11a)

and after this solving forzn using

gy(yn)f(yn;zn) = 0(3.11b)

or some differentiated form of this.
The convergence of the method is shown in [HW96, p. 471] for the index-2

case, wheregy will have full rank. The proof uses the mean value theorem to
conclude that, if the error of̃yn = O(hp+1), then the error of the projected point
will also beyn = O(hp+1), and finally but important thatzn = O(hp+1).

This method is used in what is calledprojected Runge-Kutta methods. Such
a method is simply using a Runge-Kutta method for computation of(ỹn; z̃n), and
hence uses this projection method to correct the solution point. The method is
described in [HW96, p. 503].

These are not the only projection methods. There are i.e.simplectic Euler
andDerivative Projection[Eic92, p.57] along with other methods for stabilizing
the solution of a reduced system.

3.4. SPECIAL TOPICS 31

3.4. Special topics

3.4.1. Systems with invariants.Some systems can, along with the descrip-
tion of their dynamics, being some ODE system, have additional properties that
should be modeled.

The invariant property applies to a system for which some quantity is pre-
served or constant at every point on the solution curve. The well known example
of this, is the conservation of energy in different technical systems. Some meth-
ods using projection can use this extra information.

One of these methods is described in [ESF98, p. 173]. Let’s assume thaty0
is a (consistent) initial value for the system. For this value we can compute the
invariant

φ0 = φ(y0):(3.12)

Computing the next step, at some pointyn�1; φ(yn�1) = φ0, one uses some
ODE method. The computed pointỹn is then projected as

kỹn�ynk2 = min
yn

φ(yn) = φ0

(3.13)

to get the next pointyn on the solution curve. This is seen to be a nonlinear
least squares problem.

In [ESF98] there are references to proofs that this method doesn’t disturb
convergence, and it is described that such a method can minimize the global
error.

3.4.2. Over determined systems.In the case of systems with invariants, it
is obvious that the mentioned systems are actually overdetermined. This can also
be the case for the DAE system Eq. 3.2 if all the equations Eq. 3.3 - Eq. 3.6 are
included in the model.

In [HW96, p. 477] the case of overdetermined DAE systems is treated. There
are different ways of handling these. A simple suggestion is to solve for the least
square solution to the system, but one could also think of using some kind of
pseudo-inverse, in a Newton-like process.

32 3. PROJECTION METHODS

CHAPTER 4

BDF-methods

Written by Astrid Jørdis Kuijers

Keywords: BDF-methods, multi step-methods, stability proper-
ties, A-stability, DASSL, variable step-size.

In this chapter an introduction to BDF-methods along with a little in general
about multi-step-methods will be given. The second part will be about using the
BDF-methods on DAEs in different cases. It will go into order, stability and
convergence of the BDF-methods used on DAEs with different indexes.

4.1. Multi Step-Methods in general and BDF-methods

A general multi step-method may be written as,

1
h

k

∑
j=0

α jyn� j =
k

∑
j=0

β j f(xn� j ;yn� j);

whereh refers to the step-size used,α j andβ j are coefficients for respectively
the number of backward steps and the function value at the backward steps.k is
called the order of the method and denotes how many backward steps are used.
The method is an implicit method ifβ0 6= 0 and if so it will be necessary to
calculate the function value in the point that has to be estimated(iteratively). An
example of a multi step-method could be,

yn = yn�2+
h
3
(fn�2+4fn�1+ fn);

which is called the Milnes-method [NGT93].

4.1.1. BDF-methods.The BDF-methods are a group of multi step-methods
in which the function value only will be calculated in the point that is going to
be found. A variable number of points calculated in the steps before can be used.
This means that a BDF-method is an implicit multi-step method whereβ0 6= 0

33

34 4. BDF-METHODS

but β1;:::;k = 0. BDF stands for backward differentiating formulas. It is called
this because of the general formula, that can be written as:

hy0n =
k

∑
j=1

1
j
∇ j yn;

where∇ is the backward differens operator.
Another way to write it, is to write it the way it is written in the multi step-part

1
h

k

∑
j=0

α jyn� j = β0f(xn;yn):

The simplest BDF-method is theimplicit Euler method [NGT93],

yn = yn�1+hf(xn;yn)

which is of order 1.
For BDF-methods the stability for solving ODEs can be investigated by in-

vestigating the linear test equation:

y0 = λy

For the method to be stable it requires that the roots of the polynomial

ρ(y)�hλσ(y) = 0

are lying inside the unit circle see [ESF98] page 106.σ andρ are defined in 5.2.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

RE

Im

BDF − stability plot

K=2K=1

K=4 K=3K=5K=6

FIGURE 4.1. Stability regions for BDF-methods

In Figure 4.1 the regions of the complex plane, where hλ leads to a stable
discretization, are pictured. BDF-methods are stable for allλ with Reλ < 0 and
j arg(�λ) j< α whereα is given as the angle in Figure 4.1 for which Reλ < 0.
This is called A-stability or A(α)-stability.[ESF98] It is seen, that the region,

4.2. BDF-METHODS APPLIED TO DAES 35

where the method is stable becomes smaller and smaller for higher orders of the
method. A method can only be stable up till the order of 6 because for the order
of 7 there are no longer a region of A-stability.

Because of their stability-properties they are good candidates for solving
DAEs. In the early 70’th C.W. Gear started to write about using BDF-methods
in connection with such problems. Now BDF-methods are widely used in com-
puter codes that solves ODEs and DAEs, such as the DASSL and the LSODI
codes for solving DAEs. [AP98] Writes:’There has been much work on devel-
oping convergence results for general multi step methods. For solving DAEs the
coefficient of the multi step methods must satisfy a set of order conditions which
is in addition to the order conditions for ODEs. It turns out that these additional
order conditions are satisfied by BDF methods.’

4.2. BDF-methods applied to DAEs

Applying the BDF formula to the fully implicit DAE Eq. 1.1 leads to

F(xn;yn;
∑k

j=0α jyn� j

βh
) = 0:

This could be illustrated by the van der Pol equation given in the introduction
whereε! 0. The implicit Euler is used whereα = β = 1:

y2;n�y2;n�1

h
�y2;n = 0

µ2((1�y1
2)�y2�y1) = 0

In this case the following theorem holds true [BCP89]:

THEOREM 4.1. In general a BDF-method of order k� 7 with constant step-
size applied to a constant coefficient linear DAE of indexν is convergent of order
O(hk) after (ν�1)k+1 steps.

This will not be proved but an example will be shown. The index-3 system

y01 = y2

y02 = y3(4.1)

0 = y1�g(x)

36 4. BDF-METHODS

has the exact solution

y1(x) = g(x)

y2(x) = g(x)0

y3(x) = g(x)00

If the index-3 system is solved with the implicit Euler method, then the solution
will look like

y1;n = g(xn)

y2;n =
y1;n�y1;n�1

h

y3;n =
y2;n�y2;n�1

h
:

It is seen thaty1 will be determined exactly at every step, but in the first stepy2
andy3 will be determined incorrectly. After 2 stepsy2 will however be deter-
mined with an accuracy or orderO(h), as will y3 be after 3 steps[BCP89, page
43].

If a variable step size BDF-method is used, it is necessary to be much more
careful with the method used. The accuracy of a BDF-solution would then be of
the order [BCP89]

O(hq
max) where q =min(k;k�ν+2):

Hereν is the index of the system to be solved andk is the order of the method
used. This means for example that a numerical solution of an index-3 system
with a BDF-method of orderk = 1 would have an accuracy of orderO(1), and
thus be useless. Many computer codes for solving DAEs such as LSODI or
DASSL starts with a BDF-method of order 1 (as no previous steps are available
initially), and therefore will fail for systems of index-3 or higher.

4.2.1. Semi-Explicit Index-1 Systems.When applying linear multi step-
methods (and therefore also BDF-methods) to semi explicit index-1 DAEs (see
page 2) they are stable and convergent to the same order of accuracy for the DAE
as for the underlying ODE. These problems can therefore be solved with any
linear multi-step method, which is appropriate for the underlying ODE, assuming
that the constrains are satisfied in each step. [BCP89]

4.2.2. Fully-Implicit Index-1 Systems. For the fully implicit index-1 sys-
tem it can be shown that a constant-step size BDF-method with orderk< 7 with

4.2. BDF-METHODS APPLIED TO DAES 37

the initial values given correct to the order ofO(hk) converges with an accu-
racy of orderO(hk) if each Newton iteration is solved to an accuracy of order
O(hk+1).[BCP89]

If a variable step-size BDF-method is used (with step-size restrictions as for
the standard ODE case) then it will also be convergent for the fully implicit
index-1 system.[BCP89]

4.2.3. Semi-Explicit Index-2 Systems.A general Semi-Explicit Index-2
Systems can be written as,

y0 = f(x;y;z)

0 = g(x;y;z)

where(∂g
∂y0)

�1 exist and is bounded in a neighborhood of the solution. If a Semi-
Explicit Index-2 system is solved with a constant step-size BDF-method of order
k� 7 with the initial values given correct to the order ofO(hk) it converges with
an accuracy of orderO(hk) afterk+1 steps if each Newton iteration is solved to
an accuracy of orderO(hk+1).[BCP89]

If a variable step size BDF-method is used the same as in the index-1 case
will happen. It will be convergent if the method is implemented in a way so that
it is stable for standard ODEs.[BCP89]

4.2.4. Index-3 Systems of Hessenberg form.Such a system can be written
as:

y0 = f1(x;y;z;u)

z0 = f2(x;y;z)

0 = g(x;y)

Where the system will be of index-3 if the matrix∂g
∂z

∂f2
∂y

∂f1
∂u is non singular. If a

constant step size BDF-method is used with the starting values at an accuracy
of orderO(hk+1), and the algebraic equations are solved to an accuracy of order
O(hk+2) if k� 2 or to an accuracy of orderO(hk+3) if k= 1, the solution would
afterk+1 steps converge to an order ofO(hk).

If a variable step-size BDF-method is used the system might fail to converge.
This is shown by trying to solve the equations 4.1 with the implicit Euler method.
After three steps the solution would become,

38 4. BDF-METHODS

y1;n+1 = g(xn+1)

y2;n+1 =
1

hn+1
(g(xn+1)�g(xn))

y3;n+1 =
1

hn+1
((

g(xn+1)�g(xn)

hn+1
)� (

g(xn)�g(xn�1)

hn
)):(4.2)

Expressing Eq. 4.2 as

y3;n+1 = (
g(xn+1)�g(xn)

hn+1
2)� (

g(xn)�g(xn�1)

hnhn+1
)

it is seen that ifhn+1! 0 for hn fixed then only the denominator of the second
term is guaranteed to tend to zero.

4.2.5. Summary. From the above Table 4.1 is presented in order to summa-
rize the results for applying BDF-methods to various types of DAEs.

DAE Type Accuracy

Semi-Explicit Index-1 Systems The same as for the underlying ODE
Fully-Implicit Index-1 Systems O(hk) see 4.2.2
Semi-Explicit Index-2 Systems O(hk) after k+1 steps

Index-3 Systems of Hessenberg formdif. eq.O(hk), Alg. eq. depend on k

TABLE 4.1. Accuracy obtained when applying BDF-methods to DAEs.

Notice that when using variable step-size there are no guarantee of conver-
gence for DAEs of index higher than 2.

4.2.6. DAE-codes.As mentioned earlier there exist codes using BDF-
methods for solving DAEs. Most of these codes are designed for solving index-0
or index-1 DAEs. In [BCP89] some of these codes are described and tested. They
have focused on the DASSL-code. DASSL uses BDF-methods with variable step
size with orders up till 5. It is reported that the DASSL-code successfully has
solved a wide variety of scientific problems, and that there are probabilities of
testing out where it went wrong. They report that the finite difference calculation
of the Jacobian matrix is the weakest part of the code. It also have problems with
handling inconsistent initial conditions and discontinuities. A detailed descrip-
tion of DASSL and a little bit of the code LSODI can be found in [BCP89].

CHAPTER 5

Stabilized Multi-step Methods Usingβ-Blocking

Written by Astrid Jørdis Kuijers & Erik Østergaard

In this chapterβ-blocking of BDF-, Adams and general multi-step methods
in different ways will be described, and the consequences ofβ-blocking will
be discussed.β-blocking is used to make an otherwise non-convergent method
convergent for a given index-2 problem There will be given an example ofβ-
blocking a method for a Hamiltonian system.
For a description of BDF-methods for DAE see chapter 4.

5.1. Adams methods

Adams methods are a group of methods. The predictor is always of order one
higher than the corrector, to get the same order of convergence for the explicit
and the implicit method. For ODEs Adams methods are used up to order 12,
which gives a small order of the error. They are not convergent for index-2
DAEs, but withβ-blocking it is possible to make them convergent. For ODEs
there are a limit of order approximately 12, but it is only due to the precision of
computers. In Theory there could be used orders, that are much higher.

5.2. β-blocking

β-blocking implies that a normal multi-step method as in Chapter 4 is cor-
rected on itsβ-side with an extra term. If an index-2 problem is described by

y0 = f0(y)+ fλ(y)λ
0= g(y);

(5.1)

where f(y;λ) = f0(y) + fλ(y)λ depends linearly onλ, then aβ-blocked multi
step-method could look like

k

∑
j=0

α jyn+ j = h
k

∑
j=0

β j f(yn+ j ;λn+ j)�hfλ(yn+k)
k

∑
j=0

γ jλn+ j(5.2)

39

40 5. STABILIZED MULTI-STEP METHODS USINGβ-BLOCKING

It could be seen, that theβ term is modified by a term concerning the algebraic
variables. In general in connection with multi-step methods the following gener-
ating polynomials are defined:

ρ(ζ) =
k

∑
j=0

α j ζ j σ(ζ) =
k

∑
j=0

β jζ j(5.3)

With β-blocking there would be an extra generating polynomial.

τ(ζ) =
k

∑
j=0

γ jζ j

5.2.1. Whyβ-blocking. There could be problems using otherwise conver-
gent and good methods for index-2 DAEs. Instead of using another method, the
method could be changed a little byβ-blocking. The root condition states that
the roots in the generating polynomialσ(ζ) should be numerically less than 1.
By β-blocking it is the roots ofσ(ζ)-τ(ζ) that have to be numerically less than 1.
Therefore it is possible to change a method a little for a given problem to make it
convergent. It could also be used to optimizes a method by optimizingσ(ζ)-τ(ζ)
such that the roots become small. This is written in a theorem as in [HW91]:

THEOREM 5.1. Consider the index-2 problem Eq. 5.1 discretized by Eq. 5.2
with starting valuesx j �x(t j) = O(hp) andλ j �λ(t j) = O(hk) for j = 0:::k�1,
where p= k or p= k+1 is the order of the pair(ρ;σ). Furthermore, letτ be
chosen such thatσ�τ has roots only inside the unit circle andτ(x(tn)) = O(hk)
for any sufficient smooth function. Then the discretization Eq. 5.2 is convergent
[CA94], i.e. for nh= t constant,

xn�x(tn) = O(hp) λn�λ(tn) = O(hk):

By β-blocking it is seen, that it is only the algebraic variables, that are used
in the correction byτ, this implies a reduction in the order of the error for the
algebraic equations, but for the differential equations the error would be of the
same order as for the method withoutβ-blocking.

5.2.2. Difference correcting.Another way of usingβ-blocking is to min-
imize the order of the error of the method. This is simply done be using the
error of the method toβ-block it. A normal ODE could be discretized by a BDF-
method by

h�1
k

∑
j=1

∇ j

j
yn+1 = f(yn+1) which have an error of orderO(hk)

5.4. DISCRETIZATION OF THE EULER-LAGRANGE DAE FORMULATION 41

The error would in principal terms look like [CA94]

∇kf(y(tn+1))

k+1

Therefore the Difference Corrected BDF-method (DCBDF) would become

h�1
k

∑
j=1

∇ j

j
yn+1 = (1� ∇k

k+1
)f(yn+1)

The difference corrected BDF-method would then have an error of order
O(hk+1), which is one higher than the first BDF-method.

5.3. Consequences ofβ-blocking

Some of the advantages and disadvantages ofβ-blocking are listed below.

� It is possible to use otherwise non-convergent methods for Index-2 DAE
e.g. Adams-methods
� There is only a convergence order reduction on the algebraic variables
� It can improve an existing method
� It is only possible for k�3 to obtain a convergentβ-blocked Adams

method for index-2 DAEs

5.4. Discretization of the Euler-Lagrange DAE Formulation

Let us again consider the Lagrange system Eq. 5.1. We define a multi-step
method using theρ andσ polynomials as defined in Eq. 5.3. We introduce the
Forward Shift OperatorE, which shifts the solution one step forward,

yn+1 = E(yn;h):(5.4)

E is invertible, i.e.,yn = E�1(yn+1;h). With this operator we introduce the dif-
ference operatorsρ = E�kρ(E) andσ = E�kσ(E) for notational convenience,
i.e.

ρyn =
k

∑
i=0

αk�iyn�i; σyn =
k

∑
i=0

βk�iyn�i :(5.5)

With this notation, the usual multi-step discretization ofy0 = f(y) is found as

ρy0n = hσf(yn);

42 5. STABILIZED MULTI-STEP METHODS USINGβ-BLOCKING

and applied to Eq. 5.1 we get

1
h

ρy0n = σ(f0(yn)� fλ(yn)λ)

0= g(yn):
(5.6)

Now, since using the difference operators introduces instability, we add a sta-
bilizing term, namely theβ-blocker term consisting of aτ-difference operator
according to Section 5.2:

1
h

ρy0n = σ(f0(yn)� fλ(yn)λ)+ fλ(yn)τλn

0= g(yn):
(5.7)

Using the BDF method with Eq. 5.7 we apply the correction

τ =� ∇k

k+1
(5.8)

in order to obtain the Difference Corrected BDF method (DCBDF):

1
h

ρy0n = σ(f0(yn)� fλ(yn)λ)� fλ(yn)∇kλn=(k+1)

0= g(yn):
(5.9)

5.4.1. Commutative application of the DCBDF method.When applying
the DCBDF method to a Lagrange system can be done in two ways, each having
their start point in the dynamical variables,

y0 = f :

1. Apply the algebraic constraints by Lagrange’s principle to obtain

y0 = f0� fλλ
0= g;

and discretize by use of the DCBDF to obtain

1
h

ρy0 = σ(f0� fλλ)

0= g:
(5.10)

2. Discretize by use of the DCBDF to obtain

1
h

ρy0 = σf0

5.4. DISCRETIZATION OF THE EULER-LAGRANGE DAE FORMULATION 43

and apply the algebraic constraints by Lagrange’s principle to obtain

1
h

ρy0 = σf0� fλλ

0= g:
(5.11)

This seems to be commutative, but method 1 is unstable whereas method 2 is
stable . Also, note the difference between the output Eq. 5.10 and Eq. 5.11. In
the unstable case theσ operator takesf andλ as input, whereasσ only takesf as
input in the stable case.

5.4.2. Example: The Trapezoidal Rule.Let us look at the Trapezoidal in-
tegration

yn = yn�1+
h
2
(fn+ fn�1)(5.12)

which has the polynomials

ρ(ζ) = 1�ζ; σ(ζ) =
1
2

ζ+
1
2
:(5.13)

Here the strict root condition is not satisfied, sinceσ has a root on the unit circle;
σ(�1) = 0, hence the method is not stable. Using the notation of the difference
operators we get

ρTR= ∇; σTR= (1+E�1)=2:(5.14)

Application of the Trapezoidal Rule to the Lagrange system Eq. 5.1 gives

1
h

∇yn = σTR(f0(yn)� fλ(yn)λn)

0= g(yn);
(5.15)

and we introduce a correction term in agreement with Eq. 5.8�fλ(yn)∇λn=2
(sincek = 1), i.e.,τ = ∇=2, which gives (usingf0 � f0(yn) and fλ � fλ(yn) to

44 5. STABILIZED MULTI-STEP METHODS USINGβ-BLOCKING

simplify notation)
1
h

∇yn = σTR(f0� fλλn)� fλ∇λn=2

= σTRf0�σTRfλλn� fλ∇λn=2

= σTRf0� 1
2
(1+E�1)fλλn� fλ∇λn=2

= σTRf0� 1
2

fλλn� 1
2

E�1fλλn� fλ∇λn=2

= σTRf0� 1
2

fλλn� 1
2

fλ(yn�1)λn�1� fλ(λn�λn�1)=2

= σTRf0� fλλn+
1
2
[∇fλ]λn�1:

This formulation is implicit in all terms. The correction term is a normal differ-
ence approximation, which deviates the order byO(h) in agreement with Theo-
rem 5.1 hence the consistency of the discretization drops one order. This affects
primarily λ (the constraint variables), since the other variables already are low-
ered due to the discretization.

5.5. Observed relative error

Simulations show , that the properties expressed in the Theorem 5.1 do hold
empirically as well. Depicting the step-size vs. the relative error for the position
variable and for the algebraic variable shows a loglog connection in agreement
with the expectations. It is furthermore seen, that by application of the DCBDF,
one obtains an error reduction of the orderO(h) on the position variable, which
was to be expected according to Theorem 5.1.

Part 2

Special Issues

CHAPTER 6

Algebraic Stability

Written by Anton Antonov Antonov

Keywords: Algebraic stability, A-stability, B-stability, AN-
stability, BN-stability,B-consistency

Algebraic stability
This chapter presents the notion of algebraic stability. We will use the method

as demonstrated in [But87, Chap. 35].
Linear stability theory explores the equation

y0(x) = λy(x)

where this equation of course could be considered as system of equations.
From it we can make generalizations in two ways

y0(x) = q(x)y(x)(6.1)

y0(x) = f (y(x))(6.2)

which both are described by

y0(x) = f (x;y(x))(6.3)

Good stability properties of a method applied to the equation (6.1) are des-
ignated by the name “AN-stability”. Apparently the suffix “N” stands for “non-
autonomous”. If these properties are good according to (6.2) then they are said to
reveal “B-stability”. Last, general obedient behavior i.e. nice according (6.3) is
called “BN-stability” which affirmates the impression that the suffix “N” stands
for “non-autonomous”.

6.1. General linear stability -AN-stability

For a single step of a Runge-Kutta method fromxn�1 to xn�1 +h, let zi =
hq(xn�1+hci);(i = 1;2; :::;s) so that the stagesY1;Y2; :::;Ys and the final result
yn are computed from the given valueyn�1 by the equations

47

48 6. ALGEBRAIC STABILITY

Yi = yn�1+
s

∑
j=1

ai j ziYj ; i = 1;2; :::;s(6.4)

yn = yn�1+
s

∑
i=1

biziYi(6.5)

Let Z = diag(z1;z2; :::;zs) so Eq. 6.4 and Eq. 6.5 can be rewritten as

(I �AZ)Y = yn�1e(6.6)

yn = yn�1+bTZY(6.7)

whereY =Y1;Y2; :::;Ys
T . Assuming that the linear equations occurring in Eq. 6.6

have solution, which will be the case if det((I�AZ)Y) 6= 0, the value ofyn=yn�1
is found to be

yn=yn�1 = R(Z)

whereR(Z)is given by Eq. 6.10 below and generates the functionr given by

r(z) = 1+zbT(I �zA)�1e:

Note thatr(z) = R(zI).

DEFINITION 6.1. A Runge-Kutta method is said to beAN-stableif for all
z1;z2; :::;zs 2 C � such thatzi = zj if ci = cj ,

det(I �AZ) 6= 0;(6.8)

kR(Z)k � 1(6.9)

R(Z) = 1+bTZ(I �AZ)�1e(6.10)

It can be seen from Definition 6.1 thatAN-stability is not necessary a conse-
quence from A-stability1. AN-stability could be characterized in a fairly satisfac-
tory way. We will need to make use of the following definition which generalizes
positive definiteness for two non-symmetric matrices.

DEFINITION 6.2. Ans�smatrix A is positive definiteif there exists a diag-
onal matrixD = diag(d1;d2; :::;ds) with d1;d2; :::;ds > 0 such thatDA+ATD is
positive definite.

1A method is calledA-stable ifr(z) < 1;8z2 C
� wherer(z) is defined for the standard test

problemy0 = qyasyn = r(z)n;z= hq.

6.1. GENERAL LINEAR STABILITY - AN-STABILITY 49

It is easy to see that a symmetric matrix is positive definite in the sense of
this definition iff it is positive definite in the usual sense. It is also easy to see
that if A is positive definite then it cannot be singular because ifAv = 0 then
vT(DA+ATD)v= 0 and, furthermore, because of the congruence(A�1)T(DA+
ATD)A�1 = DA�1+A�1)TD the matrixA�1 is also positive definite.

For the characterization ofAN-stability defineB = diag(b1;b2; :::;bs) so that
bT = eTB and defineM by Eq. 6.11 below so thatM is a symmetric matrix
with the (i; j) element equal tobiai j + bjaji � bibj . Because of its importance
in a wider context,M is also known as thealgebraic stability matrixfor the
method. In the theorem which follows, from Burrage and Butcher (1979) we
restrict ourselves to non-confluent methods in the sense thatci 6= cj for i 6= j.

THEOREM 6.1. If non-confluent Runge-Kutta method is AN-stable then

M = MA +ATB�bbT(6.11)

andB = diag(b1;b2; :::;bs) are each positive semidefinite matrices.

The reading of the proof could be omitted. It is presented here in order to
explain the strange appearance of the matrixM. We will just refer to the last
formula in the proof.

Proof: If bi < 0 for somei 2 f1;2; :::;sg then chooseZ so thatzj = 0 if j 6= i and
zi =�ε for ε a positive real number. We see that

kR(Z)k= 1� εbi +O(ε2)

which exceeds 1 forε sufficiently small.
Having established thatb1;b2; :::;bs � 0, chooseZ = diag(iεy1; : : : ; iεys)

wherei =
p�1;y = [y1;y2; :::;ys]

T is an arbitrary real vector andε a non-zero
real number. Expand(I �AZ)�1 by the time series in Eq. 6.10 and we find

R(Z) = 1+ εibT� ε2yTBAy +O(ε3)

so that

R(Z) = R(Z)R(Z)

= 1+ εi(bTy�yTb)� ε2yT(BA +ATB�bbT)y+O(ε3)

= 1� ε2yTMy +O(ε3)

which is greater than 1 forε sufficiently small unlessyTMy � 0. �

Since the requirement of the matrixB = diag(b1;b2; :::;bs) to be positive def-
inite is quite natural, the condition for the matrixM to be positive semidefinite
is the important one. When the matrixB is positive definite the method is con-
sistent in the following sense.b1;b2; :::;bs are something like weights for taking

50 6. ALGEBRAIC STABILITY

an average of the representatives of the derivative in order for the point of the
next step to be calculated with this averaged slope. There is no sense for one or
more of these weights to be negative. The first of the next two rows of graphics
presents a consistent averaging. The second presents a non-consistent one2.

x

y

x

y

x

y

x

y

FIGURE 6.1. B-Consistent averaging of a Runge-Kutta method
for the equationy0 = f (x)

x

y

x

y

x

y

x

y

FIGURE 6.2. NonB-Consistent averaging

6.2. Non-linear stability

We consider the stability of methods with a non-linear test problemy0(x) =
f (y(x)) in which f fulfills the one-sided Lipschitz condition with one-sided Lip-
schitz constant 0.

DEFINITION 6.3. The functionf : X! X is said to satisfyone-sided Lips-
chitz conditionif there exists a numberλ, known asone-sided Lipschitz constant
for f , such that for allu;v2 X,

[f (u)� f (v)]T(u�v)� λku�vk2

From the definition above it can be seen thatf (x) is decreasing whenλ = 0.
If y1 andy2 are solutions of the problemy = f 0(y) with initial values atx0 then
for λ = 0 we have thatky(x)� z(x)k � ky(x0)� z(x0)k, for anyx� x0 i.e. the
primitive of f is a contractive mapping. We consider stability condition that
guarantees that computed solution-matrix have similar behavior.

2The notion consistency for a Runge-Kutta method is used when it satisfies the condition
∑s

i=1 bi = 1

6.2. NON-LINEAR STABILITY 51

DEFINITION 6.4. A Runge-Kutta method is said to beB-stableif for any
problemy0(x) = f (y(x)) where f is such that[f (u)� f (v)]T(u�v)� 0 for all u
andv, thenkyn�znk� kyn�1�zn�1k for two solution sequences: : : ;yn;yn�1; : : :
and: : : ;zn;zn�1; : : :

If the coefficients of the method are

c1 a11 a12 : : : a1s
c2 a21 a22 : : : a2s
...

...
... : : :

...
cs as1 as2 : : : ass

b1 b2 : : : bs

(6.12)

then the matrix defined in Eq. 6.11 has the individual element

mi j = biai j +bjaji �bibj ; i; j = 1;2; : : : ;s:(6.13)

DEFINITION 6.5. If for a method defined by Eq. 6.12 andM given by Eq.
6.13 is positive semidefinite and none ofb1;b2; : : : ;bs is negative, then the
method is said to bealgebraically stable.

The difference between algebraic stability andAN-stability is that the later
one is for non-confluent methods.

SinceM is symmetric, it can be written in the formM = NTGN whereG =
diag(g1;g2; : : : ;gs) andN is non-singular. If the method is algebraically stable
then

g1;g2; : : : ;gs� 0(6.14)

THEOREM 6.2. An algebraically stable Runge-Kutta method is B-stable.

We will skip the rigorous proof but we will explain why we could expect that.
In the proof of Theorem 6.1 we saw that the conditions for algebraic stability
imply contractive behavior ofR(Z) = yn=yn�1 and contractivity of course should
imply kyn� znk � kyn�1� zn�1k - the condition inB-stability definition. If the
definition ofB-stability were modified to use the test equation Eq. 6.3:

y0(x) = f (x;y(x))

where for allx;u;v; [f x;u� f (x;v)]T(u�v)� 0, then, as it stated in the theorem
Theorem 6.3 below, an algebraically stable method still enjoys the modifiedB-
stability property. Since the modified property has similar relationship toB-
stability asAN-stability has toA-stability it is known as ’BN-stability’.

52 6. ALGEBRAIC STABILITY

DEFINITION 6.6. A Runge-Kutta method is said to beB-stableif for any
problemy0(x) = f (x;y(x)) where f is such that[f (x;u)� f (x;v)]T(u� v) � 0
for all u and v, then kyn� znk � kyn�1� zn�1k for two solution sequences
: : : ;yn;yn�1; : : : and: : : ;zn;zn�1; : : :

THEOREM 6.3. An algebraically stable Runge-Kutta method is BN-stable.

CHAPTER 7

Singularities in DEs

Written by Erik Østergaard

Keywords: Singularity, impasse-point, projection, augmention

This section concerns singularities in DAEs and ODEs and how to handle
these. Definitions are given and a formalism for projecting the ODE part of the
DAE onto the algebraic manifold which handle local singularities correctly is
presented.

The method is presented in two ways: Firstly (as done in section 7.2) almost
without algebraic symbols in order to establish an overlook of the approach.
Secondly (as done in section 7.3) a detailed description of the method including
all the algebra is presented.

Finally a pseudo code (algorithm) for implementing the method is given.

7.1. Motivation

Consider the DAE initial value problem

ẋ2 = 1 differential (DE) part
x2

1+x2 = 0 algebraic (AE) part
x(0) = (1;�1) initial conditions (I.C.);

which has the unique solution

x(t) = (
p

1� t;t�1):

We see, thatx(1) = (0;0) and that limt!1� x(t) = x(1). Despite the existence of
the solution int = 1, a DAE solver cannot continue the integration beyondt = 1
since the derivative

ẋ(t) = (
�1

2
p

1� t
;1)

has as singularity att = 1, which makes the step size decrease until the process
is stopped. This type of singularities arises often in applications, especially in

53

54 7. SINGULARITIES IN DES

electrical engineering, where such points are calledimpasse points. The nomen-
clature is fairly descriptive since these pointsare impassable for numerical inte-
grators. It is now the goal to derive a method for obtaining the solution both at
and beyond the impasse point.

The approach is to project the DE part of the DAE into it’s own algebraic
equation, also named the manifold, in a neighborhood of the impasse point. This
results in an ODE with a singularity, and the second step is then to augment
the ODE system to an ODE without singularities. It is possible to integrate this
system e.g. using the RK method. The computed solution is then transformed
back through the two steps to the original DAE. See figure 7.1.

ODE with singularity

DAE with impasse point

ODE without singularity

augmention

projection

x(t)

s

y

x0

0

0

FIGURE 7.1. Visualization of the projection/augmention principle

7.2. Description of the method

Consider the autonomous DAE

A(x)ẋ = g(x);

wherex 2 I � Rn; g: I ! Rn; A : I ! Rn�n and8x 2 I : rankA(x) = r < n.
Let us now consider the DAE only on the manifold defined by the algebraic

constraint, i.e. we project the DE part of the DAE onto the manifold using a so
calledchartφ (see also paragraph 7.3.2). Since we now consider the DAE on the

7.3. DETAILED DESCRIPTION OF THE METHOD 55

manifold alone, we can handle the resulting expressions as being a pure ODE
(see paragraph 7.3.3). Thus we now consider the autonomous ODE

B(y)ẏ = h(y); y(0) = y0;

wherey 2 I � Rn; h : I ! Rn; B : I ! Rn�n.
Let us assume, that the mass matrixB for the ODE has non-full rank in the

point y0, i.e. rankB(y0) < n. The pointy0 is then called a singular point of the
ODE. The corresponding point belonging to the DAE-space isx0 = φ(y0), and it
is called an impasse point for the DAE.

In analogy with namingy0 a singularity for the ODE,x0 is called a singularity
for the DAE.

Now, by choosing suiting normalizations, transformations and orthonormal
basises (see paragraph 7.3.4) we are able to form an ODE

dη
ds

(s) = v(η(s));

which does not have a singularity in the points0 corresponding to the singu-
lar point y0, and which matches the solution of the ODE in an area around the
singular point. This process is called augmention .

It is now possible to integrate the nice non-singular ODE using standard
methods (a RK is satisfactory) in order to pass the singular point.

Finally, we augment the solution back into the ODE containing the singular
point and project the solution here into the manifold of the DAE using the chart.

7.3. Detailed description of the method

7.3.1. Singularities in ODEs.Consider the autonomous ODE

B(y)ẏ = h(y); y(0) = y0;(7.1)

wherey 2 I � Rn; h : I ! Rn; B : I ! Rn�n.

DEFINITION 7.1. The pointy0 is called a regular point if rankB(y0) = n.
The pointy0 is called a singular point if rankB(y0)< n and if y0 is a limit point
of regular points.

We introduce the operatorα(y) : Rn�Rn! R as

α(y)(u;v) = hh(y);vih(DB(y)u)u;vi;(7.2)

whereh�; �i is the well known natural inner product andD is the Jacobian op-
erator. u and v are arbitrarily chosen such thatu 2 kerB(y) n f0g and v 2
kerB(y)T nf0g. This function can be shown ([PR94a], [PR94b], and [Rhe84]) to
be nonzero. We will useα(y) as shorthand forα(y)(u;v).

56 7. SINGULARITIES IN DES

DEFINITION 7.2. The singular pointy0 is accessible ifα(y0) < 0. The sin-
gular pointy0 is inaccessible ifα(y0)> 0.

Accessibility is defined as the existence of a finalt = t� such that there exists
an intervalJ1 =]� t�;0] where the system has a solutiony1(t), y1(t)! y0 for
t! 0�.

Likewise, inaccessibility is defined as the existence of a finalt = t� such
that there exists an intervalJ2 = [0;t�[where the system has a solutiony2(t),
y2(t)! y0 for t! 0+.

At the singular point,kẏ(t)k!∞ for t! 0, thus the integrator fails since the
step length tends to zero.

7.3.2. Projection: A little more on charts. Consider the manifoldM =
fy 2 Rn j g(y) = 0g and the vector fieldv : M! Rn. We define the ODE onM
as

y0 = v(y); y 2M � R
n:

Consider also a lower dimensional manifoldE� Rn�r . We define the local chart
as

φi : Mi �M! Ei � E:(7.3)

A solution of (7.3.2) can then be found by the following method:

1. Projectv onto Ei via the chartφi by multiplying v(y) with Dφi(y) (see
7.11).

2. Apply standard methods to the projected field (e.g. a RK solver).
3. Pull the solution back on the manifoldMi usingφi

�1.

7.3.3. Singularities in DAEs. Again, consider the autonomous DAE

A(x)ẋ = g(x);(7.4)

wherex 2 I � Rn; g: I ! Rn; A : I ! Rn�n and8x 2 I : rankA(x) = r < n.
We introduce the so calledlocal chartφ�1 that defines a bijective projection

of the algebraic partW of the DAE onto a manifold with lower dimension. Set
W = fx 2 I : g(x) 2 rgeA(x)g. The chartφ(y) = x mapsy 2U � Rr into x 2
V �W.

DEFINITION 7.3. The pointx0 is an accessible or inaccessible impasse point
(i.e. singular point) of the DAE if and only if the pointy0 = φ�1(x0) is an
accessible or inaccessible singular point of the reducing projection of the DAE
to an ODE locally tox0.

7.3. DETAILED DESCRIPTION OF THE METHOD 57

We introduce the projection operatorPi. The operator is connected to the
local chartφi, andPi projects the vector field inRn onto the set rgeA(x0). This
defines the functions

y = φi
�1(x)

B(y) = Pi (A(φi(y)) �Dφi(y))(7.5)

h(y) = Pi (g(φi(y))) ;

which establishes the projected ODE

B(y)ẏ = H(y):(7.6)

It can be shown ([PR94a], [PR94b] and [Rhe84]), that the reduction (7.5) of the
DAE (7.2) to the ODE (7.6) on the manifold holds the same properties (existence,
uniqueness, smoothness etc.) as the original DAE.

LEMMA 7.1. An impasse point is a limit point of non-impasse points.

Since the projection is bijective (and even diffeomorfic), and since singular
points are limit points of regular points according to the definition 7.1, the lemma
is easily proved.

7.3.4. Augmention: Making the singular ODE a nonsingular ODE.
Given the ODE

B(y)ẏ = h(y)(7.7)

with a singular pointy0. Let y = y(t) be aC1 solution to (7.7). Letτ = τ(s) be
aC1 function withτ0(s)> 0 define a transformation of the independent variable
t ast = τ(s). Finally, letη(s) = y(t) = y(τ(s)). By application of the chain rule
and from (7.7) we see, thatη satisfies

B(η)
dη
ds

=
dτ
ds

h(η):(7.8)

Since dy
dt jy=y0= ∞ we chooseτ such thatdτ

ds jy=y0= 0 and dη
ds jy=y0< ∞. We

specifyτ implicitly by the normalizationcT(dη=ds) = 1, wherec2Rn is chosen
to suit the problem. We define the functionsv(s) andγ(y) by�

B(y) �h(y)
cT 0

��
v(y)
γ(y)

�
=

�
0
1

�
:(7.9)

c2 Rn is chosen such that the matrix in (7.9) evaluated at the singular pointy0 is
regular. We will demonstrate, that this augmention of the original ODE fulfills
our purpose.

58 7. SINGULARITIES IN DES

We define an orthonormal basis of the algebraic part namedg2(x) as
kerDg2(x),

U(x) : Rn! R
r�n;(7.10)

and setUc = U(xc) 2 Rr�n. This ensures existence of the chartφ�1. We note
that the Jacobian of the chart then can be found as

Dφ(y) = U(φ(y))[Uc
TU(φ(y))]�1:(7.11)

We form the matrix system2
4 Bc �hc e�

c1
T 0 0

c2
T 0 0

3
5
2
4 v1 v2

w1 w2
z1 z2

3
5=

2
4 0 0

1 0
0 1

3
5(7.12)

This system is build using the singular value decomposition (SVD) method. The
system is used in order to ensure that the DAE singularity is transformed to
the equilibrium pointxc of the augmented ODE system. Output is the vectors
e�;c1;c2 which form an orthonormal basis by

VT
L (Bc;�hc)VR= (∑;0) (from the SVD decomp.)

VL 2 Rr�r ;VR 2 Rr+1�r+1;∑ = diag(σ1; :::;σr);σ1� σ2� ::: � σr � 0:

(7.13)

Recall thatem
k ;k = 1; :::;m denotes the unit basis vectors ofRm. Let�

u1
ω1

�
= VRer+1

r+1;

�
u2
ω2

�
= VRer

r+1(7.14)

which gives us the augmention elementse;c1;c2:

e� = VLer
r ; c1 =

u1

ku1k ; c2 =
u2

ku2k :(7.15)

Finally v andγ is evaluated by solving (7.12) and using

v(y) = z2v1�z1v2(7.16)

γ(y) = z2w1�z1w2:(7.17)

From (7.9) it is seen thatv 6= 0 8y and thatγ 6= 0 8y 6= y0, thatγ is monotone
and thatγ(y0) = 0. Hence the problem

dt
ds

= γ(y(t)); t(0) = 0(7.18)

has a unique, monotonically increasing solutionτ in a neighborhood oft = t0.
Also, sinceγ changes sign when passing the singular point it can be used as an
indicator for whether we have passed the singular point.

7.4. IMPLEMENTING THE ALGORITHM 59

From (7.9) we have

B(y)v(y)�h(y)γ(y) = 0:(7.19)

The ODE (7.7) then gives us

B(y)v(y)�B(y)ẏγ(y) = 0 , v(y)� ẏγ(y) = 0:(7.20)

Applying the chain rule we find

dη
ds

(s) = γ(η(s))
dy
dt

(τ(s));(7.21)

which in (7.20) gives the nice nonsingular ODE

Bcẏ = hc
 �!
equiv.

dη
ds

(s) = v(η(s)):(7.22)

Now we can use a one step method e.g. a RK solver to integrate (7.22) in order
to find η and thereby findingy. The legacy of using a RK solver is shown in
[KN92].

7.4. Implementing the algorithm

We here present an algorithm (see figure 7.2) for integration beyond impasse
points. This method needs a few comments.

We assume, that we have an algorithm that performs normal DAE integration
until an impasse point is found. We then switch to using the functions in figure
7.2 in order to pass the impasse point, where after we can use the standard DAE
method again. Remember, that impasse points in this context are supposed to be
limit points of non-impasse points.

In the previous sections we established existence of the functions and defini-
tions that forms the projection and augmention . These formalismsonly exist as
symbols and not as accessible objects. This means, that every time we need an
evaluation ofη, we need all the previous evaluations as well. Since this among
other things consists of QR and SVD factorizations, the price for doing this is
rather high – and the factorizations cannot be ensured to be reused in the next
steps. Thus we need to perform the two steps illustrated in figure 7.1 for every
RK step we apply. In comparison to the projection/augmention calculations, the
RK step is a low price to pay.

Also, since the projection/augmention only exist locally, multi-step methods
are non applicable. Only one-step methods can be applied.

60 7. SINGULARITIES IN DES

Now to the implementation, figure 7.2. We rewrite the DAE as�
A(x)

0

�
ẋ =

�
g1(x)
g2(x)

�
(7.23)

and denotexc as the center of the local coordinate system belonging to the local
chart.xc is assumed close to the impasse pointx0.

Finally, for ease of notation we QR-factorize the Jacobian of the algebraic
part of the DAE as

Dg2(xc)
T = [Q1 Q2]

�
R
0

�
:(7.24)

7.4. IMPLEMENTING THE ALGORITHM 61

Implementation of the method
proc SingDAE(xk ; tol)

xc := xk
Compute QR factorization of (7.24). Output:R;Q1;Q2
Uc := Q2
Bc := A(xc)Uc
hc := g1(xc)
Compute augmentation vectors in (7.15)
(v;γ) := Eval_v
y1 := RK(y0)
if (signγ0 6= signγ1)

then
We have passed the singular point

else
Do it again

fi
xk+1 := Eval_φ(y1)
return(xk+1)

end

Evaluation of the chartφ (the tangential coordinate system)
proc Eval_φ(y;R;Q1)

x := xc+Ucy
while ok= FALSEdo

SolveRTz= g2(x) for z
x := x�Q1z

od
return(x)

end

Evaluation of the augmented system
proc Eval_v(Q1;R;e�;c1;c2)

x := Eval_φ(y)
ComputeDφ(y) by (7.11)
Bc := A(x)Dφ(y)
Solve the augmented system (7.12)
Computev(y) andγ(y) from(7.17)
return(v;γ)

end

FIGURE 7.2. Implementation of the projection/augmention method

62 7. SINGULARITIES IN DES

CHAPTER 8

ODEs with invariants

Written by Brian Elmegaard
Keywords: Invariants, Hamiltonian systems, symplectic systems,
symplectic methods, reformulation of ODEs with invariants, stabi-
lization of ODEs with invariants, restricted three-body system.

Given a fully determined system of ODEs

y0 = f(y;t)(8.1)

an invariant expression, i.e. a function,c = c(y;y0;t), which has a constant
value for given initial values of the variables, may be recognized. An algebraic
solution to the ODE system will be exact with the invariant having a constant
value.
This may not be the case for a numerical solution to the discretized system. For
some systems it may be more important to fulfill the invariant requirement than
the ODE.

8.1. Examples of systems with invariants

In many systems invariants arise from a requirement of having conservation
of energy. Some cases are the Hamiltonian systems occurring in molecular dy-
namics. The Hamiltonian system is given as:

q0i =
∂H
∂pi

p0i =
∂H
∂qi

; for i = 1; l(8.2)

whereq and p are position and momentum of thel particles, respectively.H
denotes the Hamiltonian which is the total energy of the system and must be
conserved.
In spacecraft dynamics it is also important to preserve the energy of the planet-
spaceship system. An example of such a system is given in section 8.3.
A very basic example of a system with an invariant is the simple pendulum ro-
tating about a fixed point at one end. The length of the rod of the pendulum has

63

64 8. ODES WITH INVARIANTS

to be constant, but different examples [AP98], [ESF98] show that this is not the
case with any applied method.

8.2. Solving ODEs with invariants

8.2.1. Methods preserving invariants.Some methods may inherently pre-
serve special invariants. For example Runge-Kutta methods will preserve linear
constraints. Methods preserving constraints of up to quadratic order exist.
If the divergence off (divf = ∑n

i=1∂f=∂xi) is zero for a system of ODEs the sys-
tem is termed as beingsymplectic. One example of a symplectic system is a
Hamiltonian system.Symplectic methodspreserve the divergence of the system
and may be applied in this case.

8.2.2. Reformulation as a DAE.The ODE system with an invariant

y0 = f(y;t)(8.3a)

c(y;y0;t) = 0(8.3b)

may be reformulated as a DAE

y0 = f(y;t)�D(y)z(8.4a)

0 = c(y;y0;t)(8.4b)

The functionD(y) is to be chosen soCD with C = ∂c
∂y is boundedly invertible.

The choice is often
�

∂C
∂y

�T
, which will define an orthogonal projection of the

solution onto the constraint manifold [AP98]. There may for a given system be
reasons for choosing other projections.
The DAE reformulation approach may, however, not be advantageous because

the DAE will be of index-2 or higher. To solve an index-2 DAE one should be
very careful when selecting the solution method.

8.2.3. Stabilization of the ODE system.To avoid the DAE one may apply
stabilization of the solution to the ODE system. Poststabilization of the solution
is what is done in projection methods (see chapter 3). One may also embed the
stabilization in the ODE system by formulating it as:

y0 = f(y;t)� γF(y)c(y)(8.5)

The solution to the system is stable, i.e. it is tending towards vanishing invariant
changes from any initial point, providedγ > γ0

λ0
andCF is positive definite.λ0 is

the smallest eigenvalue ofCF. γ0 is a constant suchkCf(y;t)k � γ0kc(y)k. The
matrix functionF may be chosen asF = D(CD)�1) λ0 = 1. In many casesγ0
is zero. In such cases the invariant is termedintegral.

8.3. FLYING TO THE MOON 65

8.3. Flying to the moon

In [DM70] a restricted three-body probleminvolving motion and interaction
of the earth, the moon and a space ship is presented. The trajectory of the space-

FIGURE 8.1. The restricted three-body problem for earth, moon
and spaceship

ship is formulated from Newton’s second law in a rotating coordinate system
(y1;y2) with origin in the center of mass of earth,m1 and moon,m2. The mass
ratio is m2

m1+m2
= 0:01215. The trajectory is defined by two ordinary differential

equations:

y001 = y1+2y02�
(1�µ)(y1+µ)

r3
1

� µ(y1�1+µ)

r3
2

(8.6)

y002 = y2�2y01�
(1�µ)y2

r3
1

� µy2

r3
2

(8.7)

where

r1 =
q

(y1+µ)2+y2
2(8.8)

r2 =
q

(y1�1+µ)2+y2
2(8.9)

There is an important invariant known as the Jacobi integral in this system:

J =
1
2
(y01

2
+y02

2�y2
1�y2

2)�
1�µ

r1
� µ

r2
(8.10)

66 8. ODES WITH INVARIANTS

Below some simulation results obtained with the ode45 method of matlab are
presented. The simulations are based on a proposed problem in [DM70]:Try to
make a spaceship positioned near the earth fly to the moon.
The graphs presented are initialized at the same position(�µ=2;0:1) and with
the same velocity in they2-direction y02 = 4. The y1-velocity is increased to
produce results where the spacecraft end at the Earth, goes around the Earth,
reaches a stable point between the to bodies, reaches the moon and goes to outer
space. The most interesting result from the modeling point-of-view is that the
Jacobi integral is not at all constant. This means that the applied method is not
applicable for this problem.

8.3. FLYING TO THE MOON 67

8.3.1. Going nowhere.Figure 8.2 show the trajectory of the spaceship at
low initial speed. The ship returns to the Earth, and the trajectory would in
reality end there. The value of the Jacobi Integral changes a lot over the path as
shown figure 8.3.

−0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

y1

y2

FIGURE 8.2. Trajectory of spaceship fory01 = 0:5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−5

0

5

10

t

J

FIGURE 8.3. Jacobi Integral fory01 = 0:5

68 8. ODES WITH INVARIANTS

8.3.2. Round about the Earth. In figure 8.4 the spacecraft goes around
the earth and is eventually getting back. Figure 8.5 showing the Jacobi Integral
values shows that changes in the integral value are distinct whenever the ship is
near the planet.

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

y1

y2

FIGURE 8.4. Trajectory of spaceship fory01 = 1:1

0 1 2 3 4 5 6 7 8 9 10
−50

0

50

100

150

200

250

300

t

J

FIGURE 8.5. Jacobi Integral fory01 = 1:1

8.3. FLYING TO THE MOON 69

8.3.3. Lunar landing. In figure 8.6 the spaceship reaches the moon. It is
however questionable if this also would be the case in a real three-body system,
due to the change of the integral over the path (figure 8.7).

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

y2

y1

FIGURE 8.6. Trajectory of spaceship fory01 = 1:4

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−1

0

1

2

3

4

5

6

7

8

9

J

t

FIGURE 8.7. Jacobi Integral fory01 = 1:4

70 8. ODES WITH INVARIANTS

8.3.4. What’s out there? In figure 8.8 the spaceship leaves the earth-moon
system and goes into outer space. The values of the integral are shown to be
non-constant also for this example in figure 8.9.

−8 −6 −4 −2 0 2 4 6
−8

−6

−4

−2

0

2

4

6

y1

y2

FIGURE 8.8. Trajectory of spaceship fory01 = 2:0

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

t

J

FIGURE 8.9. Jacobi Integral fory01 = 2:0

8.4. Comments on Improvement of the Solution

In section 8.2 ways to avoid the badness of the solutions presented above have
been described. These approaches may be introduced to overcome the problems

8.4. COMMENTS ON IMPROVEMENT OF THE SOLUTION 71

encountered in the three-body system. A few comments on how to apply the
improved methods may be in order here:

Methods preserving invariants: are not readily available for this system.
Reformulation as a DAE: will require a higher-index method for an im-

plicit DAE system. Such a method has not been available.
Poststabilization of the ODE system:is the recommended approach ac-

cording to [AP98]. One problem which has not been discussed in this
reference is how to deal with the system if it is implicit in the derivatives
and not only a function of the variables iny. This is the case for the system
examined and a way to overcome this complication has not been found in
the literature available.

72 8. ODES WITH INVARIANTS

Part 3

Applications

CHAPTER 9

Multibody Systems

Written by Falko Jens Wagner

a

Keywords: Multibody Systems, mechanical systems, Pendulum ex-
ample, truck model, rigid bodies, elastic bodies, joints, degrees of
freedom, multibody system analysis, suspension model

Multibody systems is one area, in which methods for solving DAEs are of
special interest. This chapter is about multibody systems, why they result in DAE
systems and what kind of problems, that can arise when dealing with multibody
systems and formulating their corresponding DAE system.

9.1. What is a Multibody System?

A multibody system is a mechanical system, that consists of one or more
bodies. (Strictly, a multibody system should consist of more than one body, but
essentially a system consisting of only one body is treated in the same way. So
this is a matter of generalization.)

The bodies can either be rigid or elastic. They can have a mass and/or a
torque. Somehow they are connected with each other (or they would not be
considered being in the same system). These mass-less connections can either
be force-elements, like springs, dampers or friction, or non-elastic joints, i.e.
translational or rotational joints.

Joints give a restriction in the movement and can transfer forces from one
body to another. Joints are reducing the degrees of freedom for the system
[Eic92, page 12].

While the force elements result in explicitly given forces, joints result in
implicit given forces (like before: they are only transferring forces from one
body to another).

The equations necessary for describing a multibody system are the equation
of motion (Newton’s 2. law)

75

76 9. MULTIBODY SYSTEMS

M(p)p00 = ∑ f(p;p0)(9.1)

whereM is the mass matrix,p denotes the position andf are the forces (both
internal and external) acting on the system.

These equations (Eq. 9.1) are the result of external forces acting on the sys-
tem or due to force-elements such as springs, dampers or friction. As it can
be seen in (Eq. 9.1), the forces can be a function of both position and velocity.
Friction forces are typically a function of velocity, whereas spring forces are a
function of the position (i.e. elongation) of the spring.

In addition to the equation of motion, there can be a restriction

g(p) = 0(9.2)

on the position, caused by the different joints.

9.2. Why this interest in Multibody Systems?

In general, computer simulations are used to investigate systems of the real
world, that would otherwise not have been possible to analyze, either because it
is too expensive, takes too long time or is too dangerous, etc..

When a physical systems has to be simulated, the way of seeing the system
as consisting of several bodies, that are interacting which each other in certain
ways, is one formalism, that is very easy to understand and to simulate. For
example, the bodies are typically represented only in one point, namely their
center of mass.

When modeling a physical system using the concept of multiple bodies con-
nected by force elements or joints, the resulting equation system (using Eq. 9.1
and Eq. 9.2) will end up being a differential algebraic equation system.

In addition to that, multibody systems are easy to understand and therefore
serve as good examples for the concept of differential algebraic equation sys-
tems.

9.3. A little bit of history repeating

Solving DAE systems is not a trivial task, and good and stable numerical
methods have only been implemented for a short period of time.

Up until the sixties the equations of motion for multibody systems where
solved by hand on the basis of the Euler-Lagrange formulation [Eic92, page 14]:

9.4. THE TASKS IN MULTIBODY SYSTEM ANALYSIS 77

d
dt

�
∂T(p;p0)

∂p0

�
� ∂T(p;p0)

∂p
= Q(p;p0)+GTp)λ

g(p) = 0
(9.3)

whereT is a function for the kinematic energy,p is the position,λ is the
Lagrange multiplier,Q represents the external forces acting on the system,G
are (here) gravitational forces andg are the algebraic constraints on the position.
An analytic solution was then looked for. But as the systems got bigger and
more complex, it was necessary to automate the process of stating the equations
of motion. Programs for this purpose where developed, that could analyze the
structure of the system, and automatically derive the equations of motion on the
basis of the description of the system-elements.

Differentiating (Eq. 9.3) and substituting withf = Q�Tp0pp0+Tp yields the
implicit-linear differential equation

M(p)p00 = fp;p0)+GT(p)λ(9.4)

which together with

g(p) = 0

forms a DAE system, that is in the form of (Eq. 9.1 and Eq. 9.2).
Then there are different formalisms to solve these systems, which basically

are the theme of these notes.

9.4. The tasks in multibody system analysis

The process of transforming a real world system into a multibody dynamics
model is not much unlike the process of general modeling and simulation, see
Figure 9.1 for process diagram.

First of all the mechanical system in question has to be analyzed with respect
to simulation purpose, i.e.“What function/behavior of the system do we want to
investigate?”.

According to [ESF98, page 13] the following 5 aspects of investigation can
be considered:

� Kinematic analysis
� Static equilibrium
� Dynamic simulation
� Linear system analysis

78 9. MULTIBODY SYSTEMS

FIGURE 9.1. Process of Multibody System Simulation.

� Design and optimal control

Depending of the kind of the analysis, the abstraction takes place accord-
ingly, and the system is split into individualbodies, that are connected by dif-
ferent joints. This job has to be done by the engineer, since it requires a lot of
experience and“feeling” for the system and the concept of multibody system
modeling.

After the multibody model has been established, the different formalisms can
be used in order to derive the equations of motion, using information about the
structure of the system and the individual system elements.

Once the equations of motion have been stated, the mathematical model has
to be transformed into something, that is solvable by an appropriate numerical
method, see section 9.6 about which problems that can arise, when formulating
a multibody system model.

When the mathematical model has been boiled down to something reason-
ably solvable, the numerics takes over and calculates the solution to the numeri-
cal model.

The results have then to be analyzed and the results have to be compared to
the simulation objectives. The question is whether the simulation results reflect
the problems that had to be investigated. If no, the model has to be adapted in

9.5. EXAMPLE OF A MULTIBODY SYSTEM 79

a way so that the simulation objectives can be fulfilled. This is often a highly
iterative process.

9.5. Example of a multibody system

The following examples of a multibody system are used to illustrate the struc-
ture of multibody systems.

FIGURE 9.2. Example of a multibody system

9.5.1. The multibody truck. This figure (Figure 9.2) shows, how a truck is
modeled using the multibody concept. A model is always a simplification of the
real world, and so is this truck.

The truck model consists of 5 bodies. Body 1 is the chassis of the truck,
body 2 is the load area, while body 3 is the cockpit. Bodies 4 and 5 represent the
wheels.

For analyzing the movement of the truck the ground has been included in the
system as body 6. The wheel suspension is represented by springs and dampers.
The same model is used for the contact between the wheels and the road.

The load area has a rotational joint at the back, which allows the loading area
to be tilted. The other end of the load area, as the cockpit, has a spring-damper
suspension.

This is the multibody model of the truck.

80 9. MULTIBODY SYSTEMS

After defining the bodies, the equations of motion are applied. These equa-
tions won’t be stated here, but can be found in [ESF98, page 20], from which
this example is taken.

Instead a part of the truck model is used as an example for analysis. Fig-
ure 9.3 shows the wheel suspension of the truck.

FIGURE 9.3. Wheel suspension

Herem1 is the mass of the truck (or the part of the truck, which load rests
on this wheel).m2 is the mass of the wheel,f is the damping coefficient taken
by the damper,k1 is the spring constant of the suspension andk2 is the spring
constant of the rubber wheel itself (since the tire is very elastic, the oscillation of
it should be taken into account).

The mathematical model for this system is given by Eq. 9.1 and becomes
(see also [MKZ92, p.45]):

m1y001 + f (y01�y02)+k1(y1�y2) = 0

m2y002 + f (y02�y01)+k1(y2�y1)+k2(y2�z) = 0
(9.5)

Solving these equations (Eq. 9.5) fory001 andy002 and substituting withv1 = y01
andv2 = y02 yields the equation system :

9.5. EXAMPLE OF A MULTIBODY SYSTEM 81

y01 = v1

y02 = v2

v01 =�
f

m1
(v1�v2)� k1

m1
(y1�y2)

v02 =�
f

m2
(v2�v1)� k1

m2
(y2�y1)� k2

m2
(y2�z) = 0

(9.6)

A simulation with the following parameters and initial values

m1 500
m2 50
k1 7500
k2 150000
f 2250
z 0

FIGURE 9.4. Parameters for wheel suspension model

y1 -0.05
y2 0
v1 0
v2 0

FIGURE 9.5. Initial values for wheel suspension model

gives the results printed in Figure 9.6.
The graph shows the elongation (deformation) of the two springs in the sys-

tem (Figure 9.3). Since the system is damped, the oscillations will vanish after a
few seconds.

9.5.2. The pendulum.Another multibody example, which is used through-
out these lecture notes, is the pendulum (Figure 9.7).

The equations of the pendulum are as follows (taken from [ESF98, page
150]):

82 9. MULTIBODY SYSTEMS

0 0.5 1 1.5 2 2.5 3
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

time

el
on

ga
tio

n

y
1

y
2

FIGURE 9.6. Simulation results for wheel suspension model

FIGURE 9.7. Pendulum

p01 = v1(9.7a)

p02 = v2(9.7b)

v01 =�λp1(9.7c)

v02 =�λp2(9.7d)

0= p1
2+ p2

2�1(9.7e)

0= p1v1+ p2v2(9.7f)

0= v1
2+v2

2�λ(p1
2+ p2

2)� p2g(9.7g)

The first 4 equations (Eq. 9.7a-Eq. 9.7d) represent the equation of motion for
the pendulum, written in(x;y)-coordinates (or(p1; p2)) and transformed to 1.
order differential equations.

Together with a restriction to the length of the pendulum (Eq. 9.7e) the cor-
responding DAE system becomes an index-3 formulation. Differentiating the

9.6. PROBLEMS 83

restriction (Eq. 9.7e) yields the restriction (Eq. 9.7f), which is equal to Eq. 3.5).
This is an index-2 formulation, while a further differentiation to the restriction
(Eq. 9.7g) will give the resulting DAE system index 1 (se also Eq. 3.6). Further
differentiation of the index-1 problem yields an ordinary differential equation
system, or simply index-0. This is also called the State-Space Form (Eq. 9.8). In
some literature ([Eic92,]) this form is also called the minimal-coordinates form.

φ01 = φ2

φ02 =�gφ1
(9.8)

As one can see from Eq. 9.8, this form is an ordinary differential equation
system.
See section 3.2.1 for the analytical results of index reduction.

9.5.3. Numerical solution. A simulation of the index-0 or State-Space
Form is shown in Figure 9.8.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

x

y

FIGURE 9.8. Solution for index-0 formulation.

A simulation of the index-1 formulation is shown in Figure 9.9.
For both simulations the Matlab function "ode23tb" (stiff systems) is used

for integration. In the latter example we see the effect of drift-off because of the
preceding index reduction (see section 3.2.1).

Different numerical methods are more or less efficient when it comes to solv-
ing the DAE form (Eq. 9.7a-Eq. 9.7g). In general it is harder to solve the index-3
formulation than the index-1 formulation.

9.6. Problems

One factor, that causes problems for many numerical methods, is algebraic
loops. When deriving the mathematical model from a model, the structure of the

84 9. MULTIBODY SYSTEMS

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

x

y

FIGURE 9.9. Solution for index-1 formulation.

model together with the formalism can result in algebraic loops in the mathemat-
ical model. This means, that certain variables are over-specified. This can cause
the numerical method to break down.

There are different algorithms, that can eliminate algebraic loops and make
the problem solvable.

9.7. Multibody Software

Dymola is a program package, that can be used to simulate multibody sys-
tems. It is developed by Dynasim in Lund, Sweden, and runs on both UNIX
and Windows machines. Its graphical user interface gives good support to the
multibody concept.

CHAPTER 10

DAEs in Energy System Models

Written by Brian Elmegaard
Keywords: Modeling energy systems, control volume, lumped
models, network analysis, Nordsieck form of BDF, step-size con-
trol, discontinuities in DAEs.

Energy systems are in this context technical installations in which fluids are
employed to transport energy between the mechanical devices and thereby de-
termine the work of the installation. Common examples of energy systems are
power plants, combustion engines, refrigerators, air conditioning, district heating
and many industrial production processes. The devices used in energy systems
are for instance heat exchangers, pumps, turbines, valves, compressors and fans.
Many models of these systems are used for optimization and steady state opera-
tion, but more and more often dynamic simulation becomes of interest.

10.1. Models of Energy System Dynamics

One assumption that distinguishes energy system models from models of
fluid mechanics is the lumpedness of devices in energy systems. In a lumped
model a whole device is enclosed in acontrol volume(see figure 10.1) which is
designated as acomponent. To form a whole system the components are con-
nected in anetworkby equalizing inlet to one and outlet from the preceding one.

The models are used to determine pressures, mass flows and temperatures
(enthalpies/energies) in the system. The system of equations will be stiff, be-
cause the time constants for pressure, mass and temperature changes are differ-
ent in orders of magnitude. Temperature changes are slow compared to mass
changes which in turn are slower than pressure changes. Pressure changes prop-
agate at the speed of sound, and may be assumed to be instantaneous.
The resulting system of equations will consist of

� mass, energy and momentum balances for all control volumes
� averages for inlet/outlet values as representative for internal component

values

85

86 10. DAES IN ENERGY SYSTEM MODELS

FIGURE 10.1. The control volume

� constitutive relations which correlates the working principle of each de-
vice

The constitutive relations are most often empirical relations for transfer of en-
ergy, pressure losses, chemical reactions: : :

Another characteristic property of energy systems is the thermodynamic state
relations which anywhere in a plant connect the state variables pressure, temper-
ature, enthalpy, entropy, density and so on. These relations are the reason why
only pressure and enthalpy are needed as global variables in a system. Enthalpy
is chosen because it is generally applicable whereas temperature does not sup-
ply sufficient information during phase transition which is of great importance
in many systems.
The mathematical formulation of the conservation laws are as follows:
Conservation of mass is applied for any separate fluid flow through a component.

∑
flows

ṁi =
dM
dt

(10.1)

ṁ is a mass flow. In formulation in- and outlet flows will have opposite signs.
M =Vρ̄ is the mass of a volume,V, of a fluid in a component.̄ρ is an average of
the density of the fluid in the component andt is time.

Conservation of energy only accounts for thermal energy of the fluid.
Changes in potential or kinetic energy may often be neglected.

∑
flows

ṁihi + Q̇+ Ṗ+Ẇ = ∑
masses

dUi

dt
+

dUS

dt
(10.2)

h is the enthalpy of a fluid,̇Q, Ṗ andẆ are heat flow, electrical power and
mechanical power respectively.Ui = Miui indicates internal energy of a fluid

10.2. EXAMPLE SIMULATIONS WITH DNA 87

mass with specific internal energyui. Us is likewise the internal energy of the
material of the device.

Conservation of momentum is due to the lumping assumption subject to a
constitutive description by frictional, gravitational and accelerational pressure
changes and power input/output.

∆p= f (ṁ;∆H;∆ρ; Ṗ;Ẇ)(10.3)

p is pressure,∆H is the height difference between inlet and outlet of the compo-
nent.

The resulting system of equations is a semi-explicit index-1 DAE. The equa-
tion system could naturally be written in the more familiar, general DAE form

My 0 = f(t;y;z)(10.4)

whereM is a constant matrix.
However, this formulation does not indicate the exact nature of the system.

Each equation may depend on more than one of the derivatives, but the system
may be formulated so each equation is explicit in one of the derivates. Such a
formulation is provided below:

y0 = F(t;y;z;y0?)
0 = G(t;y;z)(10.5)

y contains differential variables,y0 their time derivatives, andz the algebraic
variables.y0? on the right hand side of the differential equations indicates that
time derivatives of other variables may be present in the equations.

It is worth to mention that discontinuities are often present in energy systems.
One common example is the opening and closing of a valve.

10.2. Example Simulations with DNA

The following examples have been carried out with the program DNA which
is a general energy system simulator [Lor95]. DNA is an abbreviation for Dy-
namic Network Analysis, implying that the energy system is regarded as a net-
work of components, similar to the way electrical circuits are often modeled.

10.2.1. Numerical methods of DNA.This section describes the numerical
methods implemented in DNA. The methods have been carefully selected as the
most appropriate for application to the energy system models described above.

A BDF-method (Eq. 10.6) has been chosen as integration method because it
is most efficient for the semi-explicit index-1 case. In the scalar case the BDF of

88 10. DAES IN ENERGY SYSTEM MODELS

orderk for stepn is given as:

k

∑
i=0

αiyn�i = ĥβk f (tn;yn)(10.6)

with ĥ being the time step. For further details of BDF-methods consult chapter
4

The order of the method has been limited to four to have a large enough
stability region.

The method is implemented as a predictor-corrector method with truncation
error estimation and time step control. The error estimate may for multi-step
methods be determined by Milne’s Estimate, provided the methods are of the
same order:

ε =
CC

k+1

CC
k+1�CP

k+1

�
yC

n �yP
n

�
(10.7)

whereCC andCP are error constants of the corrector and the predictor respec-
tively. yC andyP are the values of corrector and predictor.

As BDF-methods are based on backward differences, time step changes re-
quire cumbersome interpolation. Due to this the Nordsieck formulation of the
BDF-method has been chosen. The Nordsieck formulation is based on a Taylor
expansion back in time of the solution to the equation system. For each differen-
tial variable in the system a Nordsieck vector is defined by:

Y(j) =
ĥj

j!
�yi

(j) for j = 0;k�1(10.8)

This simplifies step size control because each entry of the Nordsieck vector
only have to be multiplied by the ratio,α between a new time step and a rejected
time step.

Y(j) =
(α � ĥ) j

j!
�yi

(j) for j = 0;k�1(10.9)

Also Milne’s estimate may be calculated in an easy way due to the Nordsieck
formulation. Firstly, the predicted value should be observed to be given by the
corrected value of the previous time step.

YP
i;n+1 = P �YC

i;n forvariablei(10.10)

10.2. EXAMPLE SIMULATIONS WITH DNA 89

where theP is the Pascal Matrix with elements defined recursively by

P(r;s) =

8><
>:

P(r�1;s)+P(r�1;s�1); for r < s andr > 1

1; for r = s andr = 1

0; otherwise

A new variablew is introduced to the system aswi =Y(2)Ci �Y(2)P
i . Y(2) equals

hy0i . The difference in the error estimate may be expressed aswi l(1), with l being
a constant vector dependent on the order of the method.

The size of a new time step is calculated as

ĥn+1 = cĥn
k+1

r
εBDF

d
(10.11)

εBDF is the maximum allowed truncation error,d is a norm of the actual trunca-
tion error estimate,c is a constant that limits the step size change to avoid too
frequent changes of the sign of the step size ratio.

The equation system may be formulated on residual form including equations
for the corrector values and the differences in the error estimate. This forms a
non-linear equation system, which may be solved iteratively. In DNA a modified
Newton method has been implemented.

Discontinuities should be handled in a robust way. The way to do so, is to de-
termine the point in time where the discontinuity is situated, integrate up to this
point and restart the method at the discontinuity [ESF98]. Discontinuities may
be divided into time-dependent and variable-dependent ones. The first kind may
be explicitly specified in the system. The other kind is more difficult to handle,
because it may be defined in a complicated way by differential and/or algebraic
variables. To handle such a discontinuity switch variables have to be included in
the system. These variables are defined to change sign at the discontinuity. When
the integration method encounters a change of sign in a switch it should by it-
eration determine the exact location of the discontinuity and hereby efficiently
find the correct point to restart at. For efficiency reasons, it is important that the
method is restarted at a time instance where the switch has changed its sign. The
procedure of obtaining the exact location of the switch is based on knowledge
of the previously calculated values of the switch variable. As basis two points,
one before and one after the switch are calculated. From these two values of
the switch variable the value of a better approximation to the switch time may
be determined. This new value may then be applied in an iteration procedure
until a precise value of the sign change of the switch variable has been obtained.
The approximation may be determined by iteration in the switch variable until

90 10. DAES IN ENERGY SYSTEM MODELS

zs(t) = 0. However, a more efficient approach is to interpolate the inverse func-
tion D(zs) = z�1

s (t). The value of this function atzs= 0 will be an approximation
to the switch time.

10.2.2. Example 1: Air flowing through a pipe. This first example is
rather simple, but it gives an impression of the equations applied for heat transfer
calculations. The model describes the behavior of hot air flowing through a pipe
initially at a low temperature. Due to the temperature difference heat is trans-
ferred from the fluid to the wall of the pipe.
Mass balance

ṁi + ṁo =
dM
dt

(10.12a)

Energy balance

ṁi �hi + ṁo �ho� dU
dt

=
dUs

dt
(10.12b)

Internal energy of the air

U = M � ui +uo

2
(10.12c)

Total mass of fluid in the pipe

M =V �ρ(10.12d)

Heat transfer is governed by a heat transfer coefficient,k, and the transferring
area,A. The main problem of the model is this equation because of the log mean
temperature difference, which may easily end up trying to take logarithms to
negative numbers during Newton iterations.

ṁi �hi + ṁo �ho� dU
dt

= kA
(Ti�Ts)� (To�Ts)

ln Ti�Ts
To�Ts

(10.12e)

For air flows one could apply ideal gas laws for the fluid property calculations

T = f1(p;h)

ρ = f2(p;h)

Figure 10.2 shows the progress of mass of air in the pipe and temperatures of
fluid and pipe material. Considering DAEs and application of numerical methods
to them, figure 10.3 may be be of more interest. It shows the time step determined
as optimal for the fourth order BDF of DNA. The conclusion is that the time step
is generally increasing because the solution approaches a steady state. About

10.2. EXAMPLE SIMULATIONS WITH DNA 91

time step 80 the step is almost kept constant. The reason for this is that the
Newton method about this point only converges to a value near, but lower than,
the allowed maximum.

FIGURE 10.2. Temperature of air in pipe,T, air at outlet,To,
pipe wall,Ts and mass of air in pipeM.

FIGURE 10.3. Time step size for the air flow model

10.2.3. Example 2: Steam temperature control.In a power plant boiler
the temperature of steam to the turbine has to be controlled carefully, due to ma-
terial limitations. This is done by injecting water to the steam leaving the boiler

92 10. DAES IN ENERGY SYSTEM MODELS

and hereby lower the temperature. This process is named attemperation. The
following example shows such a temperature control. The purpose of the exam-
ple is to show the discontinuity handling of the integration routine. Therefore,
the temperature of the inlet steam is set to a value outside the proportional gain
of the PI-controller. This causes the controller to increase the control signal until
it is one and stay at that value. The model is shown in figure 10.4. In the model

FIGURE 10.4. Steam attemperation

mass and energy balances are of course applied. Furthermore the model involves
the following equations.
Attemperator error signal is the difference between the actual temperature and
the set point of the temperature.

e= To�TSP(10.13a)

PI-control:
The control signal is the sum of an integral and a proportional part. However it
is limited to be between zero and one.

zc = mp+mI ; for 0� zc� 1(10.13b)

Proportional control signal.

mp = Kp �e(10.13c)

Integral control signal.
mI

dt
= KI �e(10.13d)

Switch variable.

zs =

�
1� (mp+mI) ; mp+mI � 1
(mp+mI)�1 ; mp+mI > 1

(10.13e)

10.2. EXAMPLE SIMULATIONS WITH DNA 93

Control valve:
The opening of a valve determines the mass flow of water to have the correct
steam temperature.

ṁ=C �zc �
r

pi � po

v1
(10.13f)

FIGURE 10.5. Temperature at outlet of attemperator

Figure 10.5 shows the temperature of the steam leaving the attemperator. The
discontinuity is easily seen from this graph. In figure 10.6 the control signals are
shown. It is seen that the integrating signal is increasing after the discontinuity,
and so is the sum of proportional and integrating control. However, the con-
troller’s output signal cannot exceed one and remains so. The graph also shows
the switch variable value. It is seen that this variable reaches zero at the discon-
tinuity. After the discontinuity the sign of the switch variable is changed so it is
positive due to the implementation. It then increases as the sum of the control
signals.

The iterative procedure to determine the location of the discontinuity is dis-
played in table 10.1. The first entry is the step before the switch changes sign.
The second entry is the step the determines that a discontinuity is going to be
passed. The three following steps show how the approximation to the switch
point becomes more and more precise and eventually is of the order of the wanted
precision.

Figure 10.7 shows the step size chosen in DNA. It is seen that at the dis-
continuity the integration is restarted at order one with the initial step size. This

94 10. DAES IN ENERGY SYSTEM MODELS

FIGURE 10.6. Control signal,Zc, control signal value demanded
by the system,Za, integrating control signal,Zd, and switch vari-
able value,Zs.

FIGURE 10.7. Step size for attemperator model

choice of step after the restart may be optimized. For instance, could the opti-
mal value found at the first time step, which is first order, have been selected to
improve the speed of the method.

10.2. EXAMPLE SIMULATIONS WITH DNA 95

Time Switch variable value
211.55 0.19�10�2

264.50 -0.0176
216.9019 -2.0e-5
216.8363 5e-10
216.8363 -1e-15

TABLE 10.1. Iterating to locate the exact switching point.

96 10. DAES IN ENERGY SYSTEM MODELS

Bibliography

[AP98] Uri M. Ascher and Linda R. Petzold.Computer Methods for Ordinary Differential
Equations and Differential-Algebraic Equations. Society for Industrial and Applied
Mathematics, 1998.

[BCP89] K.E. Brenan, S.L. Campbell, and L.R. Petsold.Numerical Solutions of Initial-Value
Problems in Differential-Algebraic Equations. North-Holland, 1989.

[But87] J. C. Butcher.The Numerical Analysis of Ordinary Differential Equations. John Wiley
& Sons, 1987.

[CA94] G. Söderlind C. Arevalo, C. Führer. Stabilized Multistep Methods for Index 2 Euler-
Lagrange DAEs.BIT-Numerical Mathematics, December 1994.

[DM70] James W. Daniel and Ramon E. Moore.Computation and Theory in Ordinary Differ-
ential Equations. W.H. Freeman and Company, 1970.

[Eic92] Edda Eich.Projizierende Mehrschrittverfahren zur numerischen Lösung von Bewe-
gungsgleichungen rechnishcer Mehrkörpersysteme mit Zwangsbedingungen und Un-
stetigkeiten. VDI Verlag, 1992.

[ESF98] E. Eich-Soellner and C. Führer.Numerical Methods in Multibody Dynamics. B. G.
Teubner, 1998.

[HLR89] E. Hairer, C. Lubich, and M. Roche.The Numerical Solution of Differential-Algebraic
Systems by Runge-Kutta Methods. Lecture Notes in Mathematics. Springer-Verlag,
1989.

[HNW93] E. Hairer, S. P. Nørsett, and G. Wanner.Solving Ordinary Differential Equations I.
Nonstiff Problems. Springer-Verlag, second edition, 1993.

[HW91] E. Hairer and G. Wanner.Solving Ordinary Differential Equations II. Stiff and
Differential-Algebraic Problems. Springer-Verlag, 1991.

[HW96] E. Hairer and G. Wanner.Solving Ordinary Differential Equations II. Stiff and
Differential-Algebraic Problems. Springer-Verlag, second revised edition edition,
1996.

[KN92] D. Stoffer K. Nipp. Research Report No. 92-14: Invariant manifolds of numeri-
cal integration schemes applied to stiff systems of singular perturbation type – Part
I: RK-methods. Seminar für Angewandte Mathematik, Eidgenössische Technische
Hochschule, Switzerland., December 1992.

[KNO96] Anne Kværnø, Syvert Paul Nørsett, and Brynjulf Owren. Runge-kutta research in
trondheim. Technical report, Division of Mathematical Science, The Norwegian Uni-
versity of Science and Technology, 1996.

[Kvæ92] Anne Kværnø. More and, to be hoped, better DIRK methods for the solution of stiff
ODEs. Technical report, Division of Mathematical Science, The Norwegian Univer-
sity of Science and Technology, 1992.

97

98 BIBLIOGRAPHY

[Lam91] John Denholm Lambert.Numerical Methods for Ordinary Differential Equations.
John Wiley & Sons, 1991.

[Lor95] B. Lorentzen.Power Plant Simulation. PhD thesis, Laboratory for Energetics, Tech-
nical University of Denmark, 1995.

[MKZ92] D. Matko, R. Karba, and B. Zupancic.Simulation and Modelling of Continuous Sys-
tems. Prentice Hall, 1992.

[NGT93] H.B. Nielsen and P. Grove Thomsen.Numeriske metoder for sædvanlige differential-
ligninger, hæfte 66. Numerisk Institut, 1993.

[PR94a] W.C. Rheinboldt P.J. Rabier. On the Computation of Impasse Points of Quasi-Linear
Differential-Algebraic Equations.Math. Comp., 62(205):133–154, January 1994.

[PR94b] W.C. Rheinboldt P.J. Rabier. On the Computation of Impasse Points of Quasi-Linear
Differential-Algebraic Equations.Jour. Math. Anal. App., (181):429–454, 1994.

[Rhe84] W.C. Rheinboldt. Differential-Algebraic Systems as Differential Equations on Mani-
folds.Math. Comp., 43(168):473–482, October 1984.

[RO88] jr. R.E. O’Malley. On Nonlinear singularly perturbed initial value problems.SIAM
Review, 30:193–212, 1988.

Index

B-stable, 51
AN-stable, 48
algebraic stability matrix, 49
one-sided Lipschitz condition, 50
one-sided Lipschitz constant, 50
positive definite, 48

Semi-Explicit Index-1 Systems, 38

Adams methods, 39
algebraic constraints, 77
algebraic loops, 83
Algebraic stability, 47
algebraic stability, 51
augmention, 55, 57, 59
autonomous, 1

BDF-methods, 33, 87
β-blocking, 39

chart, 54, 56, 58
collocation, 11
component, 85
computer simulations, 76
conservation laws, 86
constant coefficient linear DAE, 2
constistent initial conditions, 27
constitutive relations, 86
control volume, 85
coordinate projection, 29
corrector, 88

dampers, 75
DASSL, 35, 38
DCBDF, 41, 42

commutative application of, 42
degrees of freedom, 75

difference correction, 41, 42
differential algebraic equation system, 76
differentiation index, 3, 24
DIRK methods, 17
discontinuity, 89
DNA, 87
drift-off, 27, 83
Dymola, 84
Dynamic Network Analysis, 87
Dynasim, 84

elastic bodies, 75
Energy System, 85
energy systems, 85
ε-embedding, 12
ε-expansion, 18
equation of motion, 75
ERK methods, 16
ESDIRK methods, 17
Euler-Lagrange formulation, 76

FIRK methods, 17
Forward Shift Operator, 41
friction, 75
Friction forces, 76
fully implicit DAE, 2
Fully-Implicit Index-1 Systems, 38

generating polynomials, 40
gravitational forces, 77

Hamiltonian systems, 63
heat transfer calculations, 90

impasse point, 54, 59
accessibility of, 56

index, 2

99

100 INDEX

differentiation index, 3, 24
pertubation index, 3

index reduction, 4, 24, 83
drift-off, 27
implications, 27
pendulum example, 24

Index-3 Systems of Hessenberg form, 38
invariant, 31, 63

Jacobi integral, 65

kinematic energy, 77

Lagrange multiplier, 77
Lagrange system, 41, 42
Lagrange’s principle, 42, 43
LSODI, 35, 38
lumped model, 85

manifold, 54, 56
ODE restricted to, 26
projection to, 29

mass-less connections, 75
matlab, 66
mechanical system, 75
Milne’s Estimate, 88
minimal-coordinates form, 83
model of pendulum, 81
modified Newton method, 89
molecular dynamics, 63
multi step-method, 33
multibody system analysis, 77
Multibody systems, 75
multibody truck, 79

network, 87
Newton’s 2. law, 75
non-autonomous, 1
non-elastic joints, 75
Nordsieck formulation, 88

order, 88
order reduction, 10
over determined systems, 31

pendulum example, 23, 81
pertubation index, 3

physical systems, 76
Poststabilization, 64
predictor, 88
predictor-corector methods, 88
predictor-corrector methods, 39
projection, 59

by use of a chart, 56
projection methods, 23, 29

coordinate projection, 29
drift-off, 27
index reduction, 24
manifolds, restriction to, 26
Runge-Kutta methods, 30

quadrature condition, 10

regular point
definition of, 55

restricted three-body problem, 65
restriction on position, 76
rigid bodies, 75
root condition, 40
rotational joints, 75
Runge-Kutta methods, 9

collocation, 11, 15
design criteria, 18
ε-embedding, 14
epsilon-embeddingε-embedding, 12
epsilon-expansionε-expansion, 18
index-1, 11
index-2, 14
internal stages, 10
order reduction, 10
projection, 30
quadrature condition, 10
simplifying (order) conditions, 10
special methods, 16
stage order, 10
state space form method, 12
stiffly accurate, 11

SDIRK methods, 17
semi-explicit index-2 problem, 14
Semi-Explicit Index-2 Systems, 38
singular perturbations, 5
singular point

INDEX 101

accessibility of, 56
definition of, 55

singularity, 53
spring forces, 76
springs, 75
stabilization, 64
stage order, 10
state space form, 12
step size control, 88
stiffly accurate methods, 11
switch variables, 89
Symplectic methods, 64
symplectic system, 64

thermodynamic state relations, 86
time step control, 88
torque, 75
translational joints, 75
trapezoidal rule, 43
truck model, 79
truncation error estimation, 88

Van der Pol equation, 5

wheel suspension, 80

