Technical University of Denmark pgt

IMM
INSTITUTE OF MATHEMATICAL MODELLING

1896-04-16

Lyngby — Denmark

CONVERGENCE AND
IMPLEMENTATION OF

IMPLICIT RUNGE-KUTTA
METHODS FOR DAEs

Gennady Yu. Kulikov
Per G. Thomsen

TECHNICAL REPORT
IMM-REP-1996-7

|

=

|




Convergence and implementation of implicit
Runge-Kutta methods for DAEs

G.Yu. Kulikov* P.G. Thomsent

Abstract

We consider three classes of numerical methods for solving the Cauchy
problem for systems of differential-algebraic equations of index 1. These
methods use implicit variable step size Runge-Kutta formulae and iter-
ative processes such as simple iteration, and full and modified Newton
iterations. For these methods we prove convergence theorems and give
error estimates. We obtain some limits which allow implementation of
variable step size methods more efficiently. We consider different step size
control procedures and illustrate their efficiency by applying the methods
to a given test problem.
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1 Introduction

This paper considers numerical methods for solving systems of differential-
algebraic equations (DAEs) in the form

(1.1a) 2'(t) = g(2(2), y(2), (1)),
(1.15) y(t) = f(=(2), (1), a(t)),

(1.1e) z(to) = 20,
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(1.1d) y(to) = o°,

where ¢ € [to, %0 + T], 2(t) € R™, y(t) € R", a(t) € R! is some known vector,
g:Dc R™H , gm . pc pRntl R", and where the initial
conditions are consistent: 3° = f(z°, y°, a(0)). The interest of problem (1.1) lies
in the fact that many mathematical models in medicine, chemistry, mechanics,
and technology can be described by such systems [1)-[5], [8], [9], (15}, [17). So
numerical methods for problem (1.1) are being studied intensively.

Theoretical results from papers [7], (8], [10]-[16] provide the basis for con-
structing numerical methods which have a high order and allow to solve prob-
lems from practical applications rather accurately even using large step sizes.
But from the practical point of view those algorithms are not effective enough
because they do not take into account specific features of the solution path and
thus require considerable expenditures of computing time.

Combined numerical methods using variable step size! are investigated in
Section 2. For these methods theorems on the convergence are proved and error
estimates of approximate solution depending on both gridsize and number of
iterations are obtained. Numerical variable step size methods? are presented
and substantiated in Section 3. In Section 4 the theoretical results of the paper
are compared with results of numerical experiments. Some recommendations on
practical implementation of the numerical variable step size methods allowing
to reduce the total number of arithmetical operations are given in Section 5.

2 Numerical methods using variable step size

Since any nonautonomous system (1.1) may be converted to an autonomous
system by introducing a new independent variable we will only consider au-
tonomous problem:

(2.1a) 2'(t) = g(=(t), u(t)),
(2.10) (1) = F(=(1), (1)),
(2.1¢) 2(0) = 2°,
(2.14) ¥(0) =4°,

'Here and later this term denotes numerical methods that use a nonuniform grid but says
nothing about a procedure for choosing such grid

2Here and later this term denotes numerical methods together with a procedure for choosing
a nonuniform grid




where t € [0,T], z(t) e R™, y(t) e R", g : DC R™" - R™, f: D C
R™" , R", and initial conditions (2.1¢c,d) are consistent, i.e., y* = f(z°,4°).
We introduce in the interval [0, T] 2 nonuniform grid
wr={tkpr =+, k=0,1,.. ., K-1,%=0, tg =T}
and define 7 as the diameter of grid w,
T= ogf}gai)((—l {me}.

Applying an implicit I-stage Runge-Kutta (RK) method using variable step size

¢l A
b

where A is a full real matrix of dimension ! x I, ¢ and b are real vectors of
dimension ! to problem (2.1), we obtain the following algebraic equations:

1

(2.2a) Thi =Tk + T Z ij (k) Yki)s
j=1
(2.26) Yri = f(:l:k,',yk.'), 1= 1,2, ...,1,
i
(2.2¢) Thpt = Tp + Tk Z big(z i, yei),
f=1
(2.2(1) Yegr = f(a:Hl,yH,), k= 0, 1,...,[&’ -1

We assume that initial conditions (2.1¢,d) are satisfied. Applying three iterative
processes, namely the simple iteration, and the full and modified Newton itera-
tions for solving problem (2.2) we obtain three classes of numerical methods for
solving DAEs (2.1) using variable step size.

Now we will define each class of the methods in detail. We will denote by z(t)
the vector formed by combining the vectors z(t) and y(t) (2(t) = (z(t), y(t))T €
R™*"), and by G the mapping obtained by combining the mappings g and f
(G = (9, /)T : D Cc R™" — R™"), Let z(1;) be the value of the exact
solution of problem (2.1) at the point ¢z, and let Z; be the value of the exact
solution of problem (2.2) at ¢y, and Z; = 7 (N) be the value of the approximate
solution of problem (2.2) at ¢ obtained after N iterations of some iterative
method.




In addition, we introduce the vector
Zigr = (261, ooy 20ty 2k 4r) T € ROTED(HY)
and define the mapping
Gi: D C RUMMUHD | glmin)(H41) } 01 K -1,
by the formula
! 1
GiZip = (-’i‘k + 7 Zaug(zkj), f(z1), oy Zk+ 7 Zaljg(zkj)x F(zm),
i=1 i=1

T

!
Er+ e E big(zxi), f(zk+l))

Using these notations we can write three classes of the numerical methods.
The Runge-Kulla-Simple Iteration (RKSI) method using variable step size

is

(2.30) Ziyy = GiZi31,

(2.3b) 2041 = (Bky ooy 5)T € RPN,
=z, k=0,1,.,K-1,i=1,2,..,N,

(2.3¢) Zo=2°= (..., 2%" e RO™HM0+D),

The equality 7, = zf’ means we take the last m 4+ n components of the vector
Z{Y obtained after N iterations of algorithm (2.3a) as the approximate solution
of problem (2.2) at the point ;.

The Runge-Kulta-Newton (RKN) method using variable step size is

(2.4a) Zi, =27 - aﬁ,:(z,';;i)—lﬁ,:z;;;},
(2.4b) 2001 = (Fky oo, 5)T € ROPEDIIHD),

=z, k=0,1,.K-1,i=1,..,N,
(2.4¢) Zy=2°= (..., 29T e R(m+m)(+1)

where F{ = Itmyn)is1) — G and OF[(2{}) is the Jacobian of the mapping
F at the point Z,':';ll (Itm+n)@+1) is the indentity matrix of dimension (m +
n)(1 + 1)).




The Runge-Kutta-modified Newton (RKmN) method using variable step size
is

(2.50) Zip = 25 - OF(Zy) T FL 2338,

(2.56) 20,1 = Gry ooy )T € ROPED(HD)

(2.5¢) Zo=2°= (..., %7 e R(mn)(+1),

Now we will prove the convergence of methods (2.3)~(2.5). We assume that
problem (2.1) satisfies the following conditions on the compact set D;.

I. The smoothness condition. The mapping G : D; C R™" — R™+" hag
continuous partial derivatives of orders 1,2, ...,5+ 2 on the set D, where s is
the order of the underlying RK formula.

Hence we have the estimate

10G(=") - 8G(" N < 7lle" = 2"I| ¥V #',2" € Dy,

where v is a constant,

II. The nonsingularity condition. The matrix I, — 8f,(z,y) is nonsingular for
any z € Dy,

HI. The inclusion condition 3. There exists a convex set Dy such that
e Dy C Dy.

If the conditions I-III hold then problem (2.1) has a unique solution z(t) C
Dg [12] and the following theorem on the convergence of the exact solution of
algebraic equations (2.2) to the exact solution of DAEs (2.1) is valid.

Theorem 1 Suppose problem (2.1) satisfies conditions I-IIl on the set D;.
Then there is a 79 > 0 such that for any grid w, with diameter r < 79 a unique
solution of problem (2.2) exists converging to the ezact solution of problem (2.1)
as T — 0. Further, the error estimate

(2.6) llz(te) - &l = O(*), k=0,1,.., K,

is valid, where s is the order of the underlying RK formula.

3The inclusion Dy € D, implies that Do is contained in D) together with some
neighbourhood




Using theorem 1 we obtain the following convergence results for the methods
(2.3)-(2.5). Further we introduce condition IV:

IV.The boundedness condition. The estimate
lofz)ll <d <1
holds for any z € D,.

Theorem 2 Suppose problem (2.1) satisfies conditions I, I1I, and IV on the set
Dy. Then there is a 79 > 0 and a function N : (0, 70) — N such that for any
grid w, with diameler r < 7 the approzimate solution Z(N)Lk=1,2,.,K,
obtained by RIKSI method (2.3) ezists and converges to the ezacl solution of
problem (2.1) as T — 0. Further, we have the following error estimate for the
RKSI method:

(2.7) llz(tx) = 2(te)]l = O@N +7°), k=0,1,..,K,
where s is the order of the underlying RK formula.

Theorem 3 Suppose problem (2.1) satisfies conditions I-III on the set D;.
Then there is a 9 > 0 and o function N : (0, 70) — N such that for any grid w,
with diameler T < 7o the approzimate solution Z(N)Lk = 1,2,..., K, oblained
by RKN method (2.4) ezists and converges 1o the ezact solution of problem (2.1)
as 7 — 0. Further, we have the following error estimate for the RKN method:

(2.8) llz(t) — ()| = O(*), k=0,1,..,K,
where s is the order of the underlying RK formula.

Theorem 4 Suppose problem (2.1) satisfies conditions I-III on the set D,.
Then there is a 79 > 0 and a function N : (0, 70) — N such that for any grid w,
with diameter v < 1 the approzimate solution Z(N)E =1,2,..,K, obtained
by RKmN method (2.5) exisls and converges to the eract solution of problem
(2.1) as T — 0. Further, we have the Jollowing error estimate for the RKmN
method:

(2.9) flz(t) — 2(te)l = O(r*), k=0,1,.., K,
where s is the order of the underlying RK formula.

Theorems 1-4 may be proved as well as convergence results for the Euler
method with the simple iteration and the implicit Adams method of order two
with both the full and modified Newton iterations were proved in [11}-[15).

Theorems 3 and 4 give the same error estimates for the both RKN and
RKmN rethods. But there are different limits for the minimal number of




iterations which allow to guarantee the convergence of order O(7*) for each
method. They are:

(2.10) No > logy (s +1) for the RKN method,

(2.11) No>s for the RKmN method.

Thus, we have constructed three classes of the combined numerical methods
using variable step size for solving DAEs (2.1) and proved their convergence.
However, from the practical point of view it gives us nothing because we cannot
build the optimal grid w, if we do not know the behavior of the solution path,
But variable step size methods allow to solve this problem. In this case some grid
close to the optimal one that reduces expenditures of computer time significantly
is built automatically,

3 Numerical variable step size methods

As for numerical solving ordinary differential equations (ODEs) by numerical
variable step size methods we will choose the next step 7% for any method from
Section 2 such that the local error does not exceed a given value ¢, which is
called the error tolerance [6]. Thus, we need to solve two problems in order to
construct the variable step size methods. First, we must find the local error.
Second, we must define step size which allows to guarantee that the local error
does not exceed e. ‘

We will now solve the first problem. We will define the local error of alge-
braic equations (2.2), i.e., we will analyse the difference 2(tk41) — Zx 41 provided
z(tk) = Z = z;. From conditions I-III and the Leibniz formula [6] we can
obtain the following representation for the z-component of the local error:

(3.1a) . 2(tes1) = Erar = P(ze, we)riH + O(771?),
where 1
V(zk, 9x) = G 1),( Y gz ) 2Py
 phg=s
—(s+1) Z & Gomy (zk, ue) - 2 'y;cq))'
p+(1=a

9k, ve) = o+ 7 Y big(ze, i),

[2-31

o (z,y) = o | g on o (z,)
Jer)y(a{Z,Y) = az’;' BzPrm aycl“ ay",.g WY

p and g are multi-indices such that 2(P) = a:gp‘) P LY ) ygq') g

and p1 +...4+pm =p, 1+ ...+ ¢1 = q. Thus, ¥(z,y) is a smooth function with
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Figure 1: The open covering of the interval [2(tet1), Be 1)

respect to the partial derivatives of the right part of problem (2.1) as arguments.
Then taking into account that we have used the partial derivatives up to the
order s only, from the smoothness condition (I) we obtain ¥(z,y) € C), and
¥(z,y) is a bounded mapping on the set D,.

Now we will prove that the similar formula

(3.13) Y(tes1) = Gerr = $(zr, we )i ¥l 4 O(73+2),

where ¢(z,y) is a bounded mapping, is valid for the y-components of the local
error as well as for the z-components. Repeating the proof of formula (2.68)
in [15, p.85] we construct a sequence of points z;, i = 1,2,...,1, in the interval
[£(tk41), #£41] and open balls Si = S(zi,r;) such that, first, 2,4, € Si, i =
1,2,..,I—1, and [z(tx4,), Zr41) C U,’;ll Si, and, second, the implicit function
theorem is valid in each ball S; (see fig. 1). Thus, we obtain the following chain
of equalities:

1-1 -1
Y(tear) = Gear = ) (i1 — ) = Y (hi(zigs) — hi(zi))
(32) i=1 i=1

~

-1
=) (ah;(xs)(z-'u = 2i) + O((zi41 - 1’:’)2)):

1

where y; is the solution of the system y = f(z;,y), and
Ohi(z:) = —(In — 8f,(2i, %)) ' 0fu (i, wi)-
The substitution (3.1a) into (3.2) gives

-1
Y(terr) = Gea1 = ) Ohi(i)(zipr — 2i) + O(r2*+2).

i=1
Then taking into account the smoothness of Oh;(x) we have

(3.3) Y(tke1) = Gesr = Ohi(2a) (2(tk ) — zrpt) + O(rf ).

8




Finally, using (3.1a) and (3.3) we obtain (3.1b), where ¢(zx,y) = Ohy(zy) -
P(zk, yr). Moreover, we have ¢(z, y) € Cf)l because of the smoothness of both
Ohy(z) and 9(z,y) on the set D,. Hence, ¢(z,y) is a bounded mapping on the
set Dl.

To estimate the local error we will take into account the principal error term
only. So for grids w, with sufficiently small diameter 7 we can neglect the terms
of order O('r,:“) in formulae (3.1) and consider that the following expressions
are valid:

(3.4a) £(thy1) — Teqr = P(zr, pe) it

(3.4b) Y(tesr) — Grgr = Pz, ye)re .

We will use two approaches to estimate the local error. The first is based on the
Richardson extrapolation. The second uses two RK formulae of different orders
[6].

We start with the first approach. We assume that the value of the exact
solution of problem (2.1) at the point t; is known, i.e., z(ty) = 5 = z, and
compute the value of the exact solution of problem (2.2) at the point t34, =
i + 7c. We denote this solution by Zp4,. Taking into account formulae (3.4)
we have that 74 is an approximate solution of problem (2.1) of order O(rf*1)
at the point #41. Now we return at the point #; and make two steps of the size
T/2 using system (2.2). After the first one we obtain an approximate solution
of problem (2.1) 241/ at the point 1172 = t + 7:/2. According to (3.4) the
method has the following local error on this step:

(3.5a) 2(tet1/2) = Exgry2 = P(zr, me)(n/2)° Y,

(3.5b) Y(tes12) — Grry2 = d(zr, i) (e /2)° 1.

After the second step we obtain an approximate solution of problem (2.1) at
the point Z4.4+1. In this case the local error is

(3.6a) E(tes1) — Ek41 = Y(Ers1/2, Tepry2)(e/2)° T,

(3.60) I(tes1) — Gear = S(Eeq1y2, Prry2)(me/2)°H,

where 2(2) is the exact solution of problem (2.1) under the initial conditions

(3.6¢) 2(te41/2) = Erg1/2,

(3.6d) Fteq1/2) = Grgrye.




Since the mappings ¥(z, y), ¢(z, y) € Ch, then using the Taylor expansion
of both ¥(z,y) and ¢(z,y), and taking into account the smallness of 7 (and
hence ;) we obtain

(3.7a) E(tk41) — Eppr Pz, yk)(Tk/z)H-l»

(3.76) G(te41) = Grpr = S(zr, ye) (72 /2)

We will now estimate the difference () — £(¢) at the point k41, where the z(2)
and #(t) are the 2-components of the exact solutions of DAEs (2.1) under initial
conditions (2.1c,d) and (3.6¢,d), respectively.

We rewrite equation (2.1a) in the integral form

(3.8) o) =2t + [ a(al€).(6)) de.

tkg1/2

Using (3.8) and the smoothness of problem (2.1) we have
2(tk+1) — 3(te41) = 2(tep1/2) — 8(teg1/2)
1

b [ (olote)ue) - 3et6), 5060 d

tet1/2

= z(tkg1/2) — E(trpry2) + O(Tk (z(tkg172) = f(tk+1/z)))-
The substitution of (3.5) and (3.6¢) into the last equality gives
(-9 2(tesr) = #(tes1) = 2(trgryz) — 2(tkrrs2) = 2(tepaja) — Begrge.
Then taking into account (3.5a), (3.7a), and (3.9) we obtain
2(tk+1) = Erp1 = 2(tkp1) = 2(tegr) + 2(tegr) — Erpt

3.10 N . . s
(3-10a) = 2(tgry2) = Ergagz + E(tegr) — Ergr = 202k, i) (7 /2)"H.

Now we will prove the same relation for the y-components

(3.106) Y(tkt1) = Grar = 28(z, yx) (1 /2)°H1.

We present the left part of formula (3.10b) as the sum of two differences

(3.11) Y(tear) = Getr = Yltesr) — 9(txs1) + F(tes1) — Grar.

Repeating the proof of formula (3.1b) for the first one we have

(3.12) Y1) = D(tes1) = dze, ye) (12 /2)°H.

10




 Formula (3.7b) is valid for the second difference. Then substituting both (3.7b)
and (3.12) into (3.11) we finally obtain (3.10b).
Using (3.4) and (3.11) we can estimate the principal terms of the local errors
for the approximate solutions of DAEs (2.1) at the point tht1

(@130) | Benme), e v) it = s — Bl 1~ 1/22),

B130) || (Wlor,ue), Bz, u) (/D 2 s = Bgall/(2 = 1),

Since (3.13b) gives a smaller local error than (3.13a) we choose Zx41 as the
approximate solution of problem (2.1) at the point t4;. Moreover, adding
the value of the principal term of the local error to %4; we can compute the
approximate solution more exactly. In the case of the local extrapolation we
obtain the following local error estimate:

(3.14) llz(te41) = Zrall = O(7*?).

The second way to define the local error is based on using two RK formulae
of different orders. Here we will apply the Hammer and Hollingsworth method
of order four

1_ V3 1 L _ 3
2 4 4

6 6
Ly v3j1,yv3 1
2+G 4+6 4
1 1
2 2

and the Kuntzmann and Butcher one of order six

1_ V1§ 5 2_Ji5 5 _ V1§
2 10 36 9 15 a6 30
1 5 4 V18 2 5 _ Vs
2 36 24 9 36 24
14 ¥18 _§_+115 g+115 5
2 10 36 30 9 15 36
5 4 5
18 9 18

(6]. Using the first method for solving DAEs (2.1) we obtain the following system
of algebraic equations:

(3.15a) k1 = Tk + Teg(Th1, Yr1)/4 4 (1/2 = V3/3)Teg(zi2, v2) /2,
(3.15b) ve1 = f(Ze1, Yr1),

11




(3.15¢) 2x2 = ok + (1/2+ V3/3) g (21, y61)/2 + 1 9(zh2, ve2) /4,
(3.15d) Y2 = f(2k2, Yr2),

(3.15¢) Te4r = Tk + Teg(Th1, Y61)/2 + TR 9(Th2, Yr2) /2,

(3.15f) Yrtt = f(Th41, Y1),

(3.159) 2 = 2(ts).

The second system of algebraic equations is got by K&B method:

Tpy = Tk + 5Tkg(12k1, ykl)/36 + (2/9 - \/f5/15)Tky($k2, yk2)

3.16

(3.164) +(5/36 — V/T5/30) meg (ks yea),

(3.160) ver = f(zk1, ¥51),

(3.160) zk2 = ok + (5/36 + V15/24)reg(zx1, yr1) + 272 9(zh2, Yra)/9
' +(5/36 - ‘/—13/24)77:9(1:):3) yk3)|

(3.16d) vk2 = f(zk2, Yr2),

(3.16¢) k3 = 2% + (5/36 + V15/30) kg (zx1, ye1) + (2/9 + v/15/15)
' Teg(Tk2, Ye2) + 5129(zxs, yr3)/36,

(3.16f) Ytz = f(Tk3, Yea),

(3.169) Teyyr = Tk + 57eg(Tr1, Yr1)/18 + drig(zra, Yr2)/9 =
) +67¢ g3, yrs)/18,

(3.16h) Yet1 = f(ZTe41, Yk 41), i

(3.167) 2 = z(t).

Initial conditions (3.15g) and (3.16i) assume that we know the exact solution of
problem (2.1) at the point t;.

12




We denote the solution and the local error of problem (3.15) at the point
tiy1 by Zyq and &ry,, respectively. Similarly, we use notations Zr41 and éxyy
for problem (3.16). The local errors of methods (3.15) and (3.16) have the forms

€1 = z(tey1) — Zrqr = O(7HHY),
€1 = 2(tes1) — Zkpr = O(5H).
From these equalities we obtain the estimate of the local error for method (3.15)
(3.17) €k41 = Erga — Zrgr + O(rgHY).
Leaving in (3.17) the principal term only we have
(3.18) Erpt = Bpt = Fppl.

Thus, we have obtained two different ways to estimate the principal term
of the local error of method (2.2). If we have known the solution of system
(2.2) then we can estimate the local error of this method by (3.13) or (3.18).
However, we cannot obtain the exact solution of problem (2.2) in practice since
in the general case (2.2) is a system of nonlinear algebraic equations. So we can
define some approximation to the exact solution only.

Let Zx11(N) be some iterative approximation to 74, found by any method
of Section 2 and 2;41(N) be an approximation to Zk41. Then the following
equalities take place:

(3.19a) 2(tk41) = Ze41(N) = 2(tesr) — Zrga + Zega — Zea(N),

(3-195) 2(te+1) = B41(N) = 2(tk41) — g1 + Zea — Zepa (V).

Using (3.1) we can estimate the first differences in formulae (3.19). Then for the
analysis made above to be valid for the approximations to the exact solution of
system (2.2) we can require

(3.20a) 241 — B (N) = O(r17),

(3.200) Beg1 = Bpa(N) = O(r0 1),

Theorem 3 and formula (2.10) give the following condition to guarantee
(3.20) for the RKN method:

(3.21) No 2 logy (s + 2),

where s is the order of the underlying RK formula. Theorem 4 and formula
(2.11) give the same condition for the RKmN method:

(3.22) No>s+1.

13




Unfortunately, estimate (3.20) has the quite complicated form for the RKSI
method (theorem 2):

(3.23) No 2 (s +2)In(r)/ In (d),

and it is useless practically because we cannot find the constant d exactly. More-
over, from (3.23) we have that N — oo as d — 1.

Hence, we can use the approximate solution found by the RKSI, RKN, or
RKmN method to estimate the local error if the number of iterations is suffi-
ciently large such that it satisfies (3.23), (3.21) or (3.22), respectively.

Thus, both relations (3.13) and (3.18) give us the practical way to estimate
the local error of the methods constructed above. The next important stage in
the numerical integration of DAEs (2.1) with step size control is choosing the
following step size depending on this local error. Some of such strategies for the
step size control are presented in [6]. We will use one of them that allows to
choose the maximum step size for a given error tolerance.

Let € be a given limit for the local error. From (3.13) for the local error g4,
we have T

erer = (Y(ze, yr), $(or, me)) 7 F

If |lex41]| > € then the numerical method has not reached the given precision
and the step has to be recomputed. Then we compute the new step size 75 by
the relation

(3.24) 7 = I,
where ¥ satisfies the equation
(3.25) | Wtz ve), dGon, )™ omy+ =
From (3.24) and (3.25) we obtain
9 = ¢/lexll
or

(3.26) 9= (/lewqall) 7.

And we compute the new approximation Zk41 at the point tgyy =t + 7.

Besides, if the norm of the local error does not exceed ¢ for the original step
size 73 then we consider that the approximate solution at the point ty4; = t;+7;
satisfies the given tolerance and we take te41 as the next point in the numerical
integration. After that we make the next step 7; from the point {4+, (see fig.
2).
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Figure 2: The procedure of choosing the next step size.
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Figure 3: The pictures of the exact solution of problem (4.1).
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4 Numerical experiments

We will test the methods constructed in Sections 2 and 3 on the following
problem:

(4.1a) ry(t) = 10t -exp(5(y2(t) - l)) - za(1),

(4.18) 23(t) = ~2t - In(y (1)),

(4.1¢) n(t) = z1(t)},

(4.1d) v2(t) = (22(t)* + 12(1)%) /2,

where t € [to, 2o + T} and where the initial conditions defined by the equalities:
(4.2a) z)(tg) = exp(5sin(t§)), za(to) = cos(t?),

(4.2b) yi(to) = exp(sin(tg)), yg(té) = sin(t3) + 1.

Problem (4.1) has the exact solution (see fig. 3):

(4.3a) z1(t) = exp(5sin(t?)), za(t) = cos(t?),

(4.3b) u1(t) = exp(sin(t?)), yo(t) = sin(t?) + 1,

From estimate (3.23) it follows that the simple iteration is not a good itera-
tive process for constructing the combined numerical variable step size methods
because we cannot really estimate the number of iterations needed for conver-
gence of the maximal order. So we will apply the variable step size RKN and
RKmN methods only. They are based on the equations (3.15) and (3.16).

Now we solve the problem (4.1) in the interval [1.0708712,1.4123836] by
these methods for various combinations of number of iterations (N) and error
tolerance (). For the given interval all of the assumptions of Section 2 are
satisfied, and hence the theoretical results of the paper are valid.

Tables 1 and 2 contain global errors of the RKN methods of orders four
and six, respectively. Tables 3 and 4 contain the similar data for the RKmN
methods of the same orders. We have used the extrapolation for estimating the
local error in these four cases, i.e., formulae (3.13).

Tables 1-4 confirm that the global errors of the numerical variable step size
methods are well consistent with the given tolerances. Thus, these methods
allow computation of the approximate solution of DAEs (1.1) to high precision.
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Table 1: Global errors of RKN method of order four using the extrapolation for
estimating the local error

N €

10~% 10°8 101 10-™ 10-17
23.646-107% ] 1.149.10-7 | 6.286-10-10 [ 1.196-10-'2 | 3.567. 10-1®
311.971.1077 | 5.932.10~11 | 1.861-10"* | 5.412.10-16 | 2.692.10~15
511.972-1077 | 5.929-10-11 | 1.878.10714 | 3.053 - 10~16 | 4.441.10-15
7] 1.972-10-7 | 592910~ | 1.878-10-14 | 3.053-10~16 | 4.441.10-15

Table 2: Global errors of RKN method of order six using the extrapolation for
estimating the local error

N €

10-°% 1078 10711 10~™ 1017
211.033.-10%] 5.096-10"7 | 2.178.107° | 7.955-10~12 [ 1.216- 10~
312476-1077 | 2.909-10-10 | 1.230-10-13 | 2.220.10-' | 3.192.10-16
5] 1.560-10-7 [ 1.745.1071° | 9.169-10~'* | 2.359.10~'¢ | 3.053. 1016
711.560-10"7 | 1.745.1071° | 9.165-10~14 | 2.082.10~'6 | 3.192.10~16

But tables 1-4 give no information about the efficiency of the variable step size
methods concerning expenditures of computing time. We will obtain such in-
formation building tables of average step sizes which are ratios of the length
of the interval of the numerical integration to numbers of steps needed to con-
struct the approximate solution of problem (4.1) with the given tolerance. The
information for the both RKN and RKmN methods of orders four and six is
presented in tables 5-8, respectively.

The results of the numerical experiments show that we can get the maximum
average step size for RKN method if the number of iterations N > 3 (see tables
5 and 6). Otherwise, the RKN methods are not effective. For example, if N = 2
then the average step sizes may be significantly smaller thereby increasing the
expenditures of computing time. Moreover, for N = 2 the average step sizes
are close values for both methods. It means that the use of RK formulae of

Table 3: Global errors of RKmN method of order four using the extrapolation
for estimating the local error

N €

10-° 10-% 10-17 10~ 10°17
2]6.279-10% | 2.486-10"% | 1.368-10~% | 5.290- 1017 | 1.584- 10T
314.292-107% | 2.119.1077 | 3.975.10~1° | 1.593-10"12 | 1.060. 1014
511.904-10-7 | 4.803-10-1! | 2.427-10~1% | 3.331-10~%6 | 4.441.10°15
7]1.972-1077 | 5.929-10~'1 | 1.862-10-* | 3.053-10~'6 | 3.900.10~1%

17




Table 4: Global errors of RKmN method of order six using the extrapolation
for estimating the local error

N €

10°° 1078 10~ 1074 10-17
211.575-1073 [ 8.588-10"° | 4.805-10-% | 2.043-10-1° | 5.180-10-13
311.220-107% | 4.970-10"7 | 2.038-10-° | 8.180-10~'2 | 3.311-10-14
511.018-10"% ] 1.569.10"% [ 3.933-10~ | 1.235.10-3 | 6.523-10~16
712285-1077 | 1.657-10-1° | 9.051-10-1 | 9.714.10-17 | 2.776 . 10-16

Table 5: Average step sizes of RKN method of order four using the extrapolation
for estimating the local error

N

€

10~°

1073

1011

10—14

10T

-~ W N

1.797-107?
2.439-1072
2.439.102
2.439-1072

5.336.10°3
8.330-10-3
8.330-10-3
8.330-10-3

1.472-1073
2.457.10°3
2.457-10°3
2.457.10~%

3.561.10°
6.593.10~4
6.593-10~*
6.593-10~*

6.486-10~°
1.684-10"4
1.685-10~4
1.685- 10~

Table 6: Average step sizes of RKN method of order six using the extrapolation

for estimating the local error

N

€

10~°

10-8

10-—]1

10

1017

-1 o L B

2.134-1072
3.415.1072
3.415.10°?
3.415.10-?

6.568 - 10~7
2.009-10-2
2.009-10-2
2.009 - 10~2

1.856-10—3
1.035.10-2
1.035-10-2
1.035- 102

4.659.10°7
4.949 . 103
4.949.10-3
4.949.102

8.786-10-%
2.009-10-3
1.997.10-3
1.997.10-3
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Table 7: Average step sizes of RKmN method of order four using the extrapo-
lation for estimating the local error

N €

10-° 10-% 10~11 10— 10°17
2177621077 | 1.447-10-3 | 2.613 107 | 3.754- 10-5 | 4.069. 10~
312009-107% ] 5.991-10~3 | 1.626- 103 | 4.206-10~* | 9.500- 10-5
512439-10-2 | 8.330-10~2 | 2.457-10-3 | 6.593-10~* | 1.686 - 104
712439-10-? | 8.330-10"3 | 2.457-10-3 | 6.593.10~* | 1.686. 10—4

Table 8: Average step sizes of RKmN method of order six using the extrapola-
tion for estimating the local error

N €

103 10~ 10-1T 10~ 10717
219.757-1073 ] 1.940-10~3 | 3.561- 107 | 5.435-10~° | 6.089 . 109
3]2.277-107% | 6.970.1073 | 2.009-10-3 | 5.278. 10~ | 1.236. 10~¢
5(3415-1072 | 1.797-1072 | 9.230-10~% | 4.269-10"23 | 1.691.10~3
7(3.415-1072 | 2.009-10-2 | 1.035-10-2 | 4.949.10-3 | 1.997.10-3

high orders for small N is useless because it does not allow to increase step sizes
in the numerical integration. So we can conclude that the numerical results
confirm formula (3.21).

Tables 7 and 8 give the same result for the RKmN methods. The maximum
precision and the optimal average step size take place if N > 5 for the method
of order four and N > 7 for the method of order six. If the number of iterations
is less then the average step size is decreased in many times. This is a good
illustration for formula (3.22). )

The last four tables give us the global errors and the average step sizes for the
both RKN and RKmN methods in case if the local error have been computed by
formula (3.18). We see that the the global errors are minimal if N > 3 for the
RKN method and N > 5 for the RKmN method (see tables 9 and 10). Tables
11 and 12 allow to do the similar conclusion for the average step sizes that also

Table 9: Global errors of RKN method of order four using two RK formulae of
different orders of convergence for estimating the local error

N €

105 10-8 10-1T 10~ 10-17
2(7.127-107° 1 2.203-10~7 | 8.751-10" | 3.500.10-'2 | 5.677-10-12
3]1318-1078 | 3.519.10~'2 | 1.416-1015 | 3.608- 10~ | 1.790. 10-15
5[1.485-1078 | 3.552.107'2 | 1.547.10-5 | 4.718 .10~ | 3.539. 10~15
7 11.485-1078 [ 3.552-10"12 | 1.547-10~15 | 4.718-10~6 { 3.567-10~15
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Table 10: Global errors of RKmN method of order four using two RK formulae
of different orders of convergence for estimating the local error

N

€

10-°

10~%

10—11

10—14

10—1/

- UV W O

2.524. 1073
3.870-10-%
2.074.10~7
1.492-1078

1.853-10~°
1.315-1077
828210~
3.553. 1012

1.136.10~7
5.496 . 1010
3.181-10~14
1.540.10-15

6.485-10-10
4.134-10"12
9.437-10716
47181016

3.699.10"12
1.707 . 1014
4.122-10~18
3.428 . 10"15

Table 11: Average step sizes of RKN method of order four using two RK for-
mulae of different orders of convergence for estimating the local error

N

€

10~°

10-%

101"

01

07

-1 U1 L

1.265.10~2
1.797-10-2
1.797. 1072
1.797-10-2

3557109
5.336 1072
5.336 - 10~3
5.336 - 1073

9.513.1077
1.472.10-3
1.472-1073

1.472-10-8

2.142-1071
3.842.107*
3.842.107*
3.842.10~1

7.418.107°
9.080- 103
9.158 . 103
9.148 - 10~3

Table 12: Average step sizes of RKmN method of order four using two RK

formulae of different orders of convergence for estimating the local error

N

€

10-°

10-%

10-1

10-7

10—17

- WD

7.589-10-3
1.265.10-2
1.797-10-2
1.797 -10-2

1.626 - 1077
3.557.1073
5.336- 1073
5.336- 102

3.125-1077
9.566 - 10~*
1.472.10-3

1.472-1073

5.650- 10~
2.219- 101
3.842.1071
3.842.1071

1.013-10°°F
7.318-10~8
9.144-10-5
9.134.10-5
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confirms the formulae (3.21) and (3.22).

5 Practical implementation of numerical
variable step size methods

Thus, in the paper we have obtained and substantiated three classes of the
stable numerical methods for solving problem (1.1) using variable step size and
examined two strategies for the step size control. The same methods as have
been used for DAEs may be applied to ODEs. In this case in formulae (2.3)-
(2.5) it is necessary for the dimension of the y-components to be equal to zero.
All results of the paper can be easily transfered on the case of ODEs.

The implicit numerical variable step size methods obtained in Section 3 for
solving DAEs (1.1) are also applicable to ODEs. Moreover, the estimates for the
optimal numbers of iterations which are analogous to (3.21)-(3.23) for ODEs
have the form:

No>s+1 for the RKSI method,

No 2 (logy (s +3))/2—1  for the RKN method,
No > s/2 for the RKmN method.

Thus, the constructed numerical methods allow us to solve both ODEs and
DAEs of the form (1.1) quite effectively. But the numerical integration by im-
plicit variable step size methods requires considerable expenditures of computing
time because the Richardson extrapolation implies that we must solve problem.
(2.2) at least three times per step and the way based on RK formulae of different
orders implies that we must solve (2.2) at least two times. We will give some
recommendations how to reduce the total number of arithmetical operations
and consequently to shorten computing time expenditures.

Since the main expenditures of computing time are used in the calculation
of the inverse matrices F](Z)~! we will try either to reduce the dimension
of inversed matrices or to modify methods of inversing of matrices in order to
reduce total number of arithmetical operations or to decrease the number of
inversions.

To solve problem (2.2) it is not necessary to apply the iterative process to
all equations at the same time. We can notice that equations (2.2a,b) do not
depend on equations (2.2¢,d). So we solve system (2.2a,b) consisting of (m+n)l
equations. Then we find the solution of system (2.2¢) being a known function
of the solution of system (2.2a,b). After that we solve the last system (2.2d)
depending on the solution of system (2.2¢) and consisting in the general case
of n equations. Thus, we have replaced each inversion of the square matrix
of dimension (m + n)({ + 1) by inversion of two matrices of dimensions (m +
n)l and n, respectively, that requires roughly (1 + %)3 times less operations
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Table 13: Expenditures of computing time for numerical methods using the
extrapolation for estimating the local error

Expenditures of computing time (sec. )
Method | Order Full Gauss Full Gauss Modified Gauss
for one system | for two systems | for two systems
RKN 4 1007 373 274
RKN 6 555 204 121
RKmN 4 9401 1059 901
RKmN 6 12487 1689 1234

of multiplication and division?. Hence, for equations (3.15) expenditures in
computing time can be reduced approximately 1.95 times and for equations
(3.16) 1.59 times. The numerical experiments on two methods (3.15) and (3.16)
confirm the strength of the above given estimates in reducing the expenditures
in computing time (see table 13).

Another way for reducing the number of arithmetical operations is obtained
by using the structure of the matrices 8FJ (Z). When carrying out the numerical
experiments in Section 4 we used the Gauss method and chose the pivot ele-
ment of the matrix. This method gives high precision and requires (m + n)33
operations of multiplication and division for inversing a matrix of dimension
(m + n)l x (m + n)l and approximately (m + n)3%/3 operations for solving a
system of linear algebraic equations with a matrix of the same dimension. We
will now consider a modification of the Gauss method allowing to keep the high
precision and to reduce the number of arithmetical operations for the matrices
of the form 877 (Z). For these purposes we will change the choice of the pivot
element of the matrix. We will choose the pivot element among some subset
of elements of the active submatrix only. This strategy of choosing the pivot
element will be more effective and it will permit keeping the same structure of
matrix dF](2).

We can see that the matrix 8F7(Z) has the following block structure:

OF7(Z),
G1) - oFy(z)= | 0T |

6Fk (Z),

where each block dF(Z);,i = 1,2,...,1, of dimension (m + n) x (m + n)! has
the block structure }
dF{(2); = (A,B,C,D),

4Here and later we will carry out all the calculations on the number of operations of
multiplication and division only because they require more time than operations of addition
and subtraction do
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and A is the matrix of dimension (m +n) x (m +n)(i — 1)
O(r) -+ O(r)

_| o - om

A= 0 .- 0 ’
0 ... 0

B is the matrix of dimension (m +n) x m

1+ 0(7) o(r) s O(n) o(r)
o(ry 140(r) -+ O(n) o(r)

o) o) 140(r)  O(r)
o(r) O(7) ces O(r) 1+0(r) |

T can z

. » ;)
C is the matrix of dimension (m +n) x n

o(r) --- O(r)

c| o - o

Fid e Fd

and D is the matrix of dimension (m + n) x (m + n)(I — i)

o) - Of)
| oom - o
D=1 "%" ... 7o
o o

Here 2 means in the general case a nontrivial element. According to the Gauss
method we will reduce the first block dF7(Z), to the upper triangular form
with the unitary diagonal.

Let us consider the first m rows of the block 8F(Z);: Since the square
matrix of dimension m at the upper left corner of 6[7‘,:(2)1 satisfies the condition
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of diagonal dominance so it is nonsingular if 7 is small enough. Thus, choosing
the pivot element we can limit ourselves by viewing the elements of this matrix
only in the first m steps of the elimination. Besides, taking into account the
diagonal dominance of the first m rows of the matrix OF7(Z)1 on the first m
steps of the Gauss method it is enough to make sure that the modulus of the
diagonal element is larger than some €. We choose the pivot element only if this
condition does not hold.

Making the first step of the Gauss elimination we can take into account that
n(l — 1) elements in the first column are already equal to zero. Thus, using the
structure of the matrix 877 (Z) we must make only ml + n — 1 subtractions of
rows. Then repeating the elimination m — 1 times we convert the first m rows
of the block 8F7(Z), to the triangular form and make m normalizations and
m(l — 1)+ n+ 3 ir,(m— i) subtractions of the rows multiplied by a coefficient.

Let us now consider the last n rows of the block dF{(Z)1. After m steps of
the Gauss method all elements of the first m columns are equal to zero and the
elements of the next n colurnns form a matrix of the dimension n x n of the form
I,—df,(z)+P(2). Since the nonsingularity condition (II) hold and P(z) = Oo(7)
then a T exists such that the matrix I,, — 8f,(z) + P(z) is nonsingular. Hence,
the Gauss elimination and the choice of the pivot element among the elements
of this matrix allow to obtain the upper triangular form for the last n rows of
the matrix OF] (Z);. It requires n normalizations and m(l— D+n+dy i, (n—i)
subtractions of the rows multiplied by a coefficient.

So, we have converted the first block of the matrix F} (Z) to the required
form. Repeating the given algorithm for the block 8F] (Z)2, and using the fact
that the first m + n columns of this block contain the zero elements only we
change the second block of the matrix 8F{(Z) to the triangular form. After
I — 2 repetitions of the algorithm the remaining blocks 857 (Z);,i =3, ..., 1, are
transformed to the upper triangular form. Thus, we obtain the LU-factorization
of the matrix dF] (Z).

It is not too difficult to verify that this algorithm requires the following
number of operations of multiplication and division with an accuracy up to the
members of lower order (see appendix A):

(m4n)’P  n(m+ n)%P3
3 3 '

Thus, from (5.2) it follows that taking into account the structure of the
matrix 8F] (Z) for solving a linear algebraic equations with this matrix we can
decrease the number of arithmetic operations approximately 1 + 7+ times. For
the RKN methods based on equations (3.15) and (3.16) it reduces the computing
time expenditures two times (see table 13). _

Taking into consideration that the structure of the matrix dF{(Z) does not
influence the back substitution with an accuracy up to the members of low order
in !, m and n we obtain the number of operations of multiplication and division

(5.2)
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needed for an inversion of this matrix [18, p.69):

n{m+ n)23
g

From (5.3) it follows that using the structure of the matrix 8F7(Z) for the
inversion we can decrease the number of operations of multiplication and division
approximately (3m + 3n)/(3m + 2n) times. For the RKmN methods based on
equations (3.15) and (3.16) it reduces the computing time expenditures 1.2 times
(see table 13).

The last recommendation allowing to decrease the total number of arithmeti-
cal operations is referred to the numerical variable step size methods, which use
RK formulae of different orders to estimate the local error. If these methods
were constructed using embedded RK formulae [6] then we have to solve system
(2.2a,b) one time and system (2.2¢,d) two times to define the local error. Thus,
it is possible to reduce the computing time by a factor of approximately two.

(5.3) {m+n)3P -
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division for modified Gauss method

In this Section we will now calculate the number of operations of multiplication
and division needed for transforming the matrix 8F] (Z) to the upper triangular
form with the unitary diagonal. In our case the number of operations of division
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can be calculated in the same way as that for the ordinary Gauss method [18,
p.53]. It is equal to

(m+n)l

> ((m+n)l~i)=(m+n)l((r;+n)l—l). (41)
i=1

It is simple to calculate that in order to convert the first block OF[(Z), to the
required form we need

m+4n

Z(m(l—-1)+m+n—i)((m+n)(1—1)+m+n-—z’)

i=1
multiplications. To factor the second block OF(2)2 we need

m+4n

Z(m(1—2)+m+n——i)((m+n)(1—2)+m+n—-—i)
i=1

multiplications. Thus, to transform the j-th block 6F‘,{(Z)j,j =3,...,1, we need
m+4n
Z(m(l——j)+m+n—i)((m+n)(l-—j)+m+n-—i) (A.2)
=1

operations of multiplication. So from (A.2) for the LU-factorization of the
matrix 8F](Z) we have the following number of multiplications:

I m+n

2 (=) +mtn—i)(m+n)i-f)+m+n—i).  (43)
ji=1 i=1
Let us calculate (A.3). We can notice that
{ m+n

> 2 (ml=5)+m+n—i)((m+n)l-3)+m+n-—i)

Jj=1 i=1
I m+n

=ZZ((m+n)(1—-j)+m+n—-z')2 (A.4)

j=t i=1
I m+n

=322 n=(m+ )~ )+ m+n—i).

j=1 i=1
For the first item of the right side of formula (A.4) it is known (18, p.53] that

I m+n
Yo ()i =)+ m+n—i)’
f=1 i=1
’ _ ((m + )l = 1)(m + n)I(2(m + n)l - 1) (45)

6
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Let us calculate the second item of the right side of (A.4). For any j = 1,2,...,1
from the formula for sum of an arithmetic progression we have

m-+4n

Y o nl =) ((m+n)I-j)+m+n—i)
=1
m+n

n(l=3) ) ((m+n)(I—j)+m+n-i) (A.6)

i=1

- i(_"litl)(g(m+n)(1 -+ (m+n-1)(1-7).

Substituting (A.6) into the second item of the right side of (A.4) we obtain

| .
E n(m + n) 2m+n)(I =)+ (m4+n - 1)1 - j))

2
j=1
= n(m + n)? Z(l j)? 4 Mm ")(’" tn-1) E(l (A7)
j=t
_n(m+ n)2(1 - 1)I(20 - 1) + n(m+ n)(m+n— l)l(l - l)_

6 4

The forward substitution requires (m + n)! operation of division and

I min

EZ(m(l—])+m+n-—:) Zm(m+n)(l—-])

j=1 i=1
+-2-.Z(m-i-n)(m+n—-l)=-T-g—brz—tgll—g—-:—l-2
(m+n)(m+n-—l)1 (m+n)l(m(l—1)+m+n—1)

2 2

operations of multiplication. Summing these numbers we obtain

(m4+n)(m(l—1)+m+n+1)
5 .

Thus, using (A.1), (A.4), (A.5), (A.7) and (A.8) we have the following to-
tal number of operations multiplication and division needed for both the LU-
factorization and the forward substitution taking into account the structure of

(4.8)
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the matrix 8F] (Z):

(m+ n)l((m +n)l - 1) 4 ((m +a)l = 1)(m + n)l(2(m + n)l — 1)

5 6
- Bm (o D@D atmanmin=D0-D
(m+n)i(m(l 1)+ m+n+1)
+ 2 '

With an accuracy up to the members of lower order from (A.9) we obtain (5.2)
and (5.3).
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