1. Introduction
In many computations treating application problems, a major part of the
computer time is spent on the solution of systems of linear equations.
This applies to, e.g. electrical fields, temperature distributions,
resservoir simulation, stress  and stiffness computation, optimization, linear

and nonlinear programming. Thus it is important that we have efficient methods
for linear equations, and one of the means of achieving this is parallel
programming.
The method chosen is the GaussJordan elimination method for full, general
matrices. Row operations below and above the diagonal position in the matrix
transform the system into one with a diagonal matrix. From this, we can easily
find the solution of the system. In the parallel implementation we send a block
of complete rows to each of the transputers of the system, and thus the method
is based on block row operations.
It is charateristic of the method that during the computations each processor
produces a block of intermediate results which must be broadcast to all the othe
r
processors. Thus it is important that the distance from any processor to any oth
er
processor is minimal. A cube structured transputer network is appropriate for
this situation and we have chosen to use a cube with 8 transputers.
The automatic communication harness for the transputer cube is described.
It is based on the prototype harness presented at the NTUG'93 meeting.
It has been organised so that it is easy to reuse the harness for
an other computational problem. The programning language is occam 2, running
under the occam 2 toolset.