UCMINF – AN ALGORITHM FOR UNCONSTRAINED, NONLINEAR OPTIMIZATION

Hans Bruun Nielsen

TECHNICAL REPORT
IMM-REP-2000-19
UCMINF – AN ALGORITHM
FOR UNCONSTRAINED, NONLINEAR OPTIMIZATION

Hans Bruun Nielsen

Contents

1. Introduction ... 4
2. Algorithmic Details .. 5
 2.1. BFGS Updating .. 5
 2.2. Line Search ... 7
 2.3. Updating Δ .. 9
3. Experiments .. 10
4. Comparisons .. 12

References .. 24

1. Introduction

This report documents the implementation in MATLAB and Fortran77 of an algorithm for unconstrained, non-linear optimization. More specifically, for finding a (local) minimizer

\[x^* = \arg \min_{x \in \mathcal{D}} \{ F(x) \} , \]

(1.1)

where \(F : \mathbb{R}^n \mapsto \mathbb{R} \) is a given, continuously differentiable function, and \(\mathcal{D} \) is some region around \(x^* \). For reference we introduce the gradient

\[
g(x) = F'(x) = \left[\begin{array}{c} \frac{\partial F}{\partial x_1}(x) \\ \vdots \\ \frac{\partial F}{\partial x_n}(x) \end{array} \right] \]

(1.2)

and the Hessian

\[H(x) = F''(x) \quad \text{with} \quad (H)_{ij} = \frac{\partial^2 F}{\partial x_i \partial x_j} . \]

(1.3)

The algorithm is of quasi-Newton type with BFGS updating of the inverse Hessian and soft line search with a trust region type monitoring of the input to the line search algorithm, see e.g. Chapters 3, 4 and 8 in [7]. The algorithm is outlined below. \(\varepsilon_1, \varepsilon_2 \) and \(\nu_{\text{max}} \) are given by the user.

\[
x := x_0; \quad D := D_0; \quad \Delta := \Delta_0; \quad \nu := 0
\]

repeat

\[
h := D * (-F'(x));
\]

\[\text{if} \ |h| > \Delta \text{ then } h := (\Delta/|h|) * h \]

\[[\alpha, \nu] := \text{linesearch}(x, h, \nu) \]

\[x_p := x; \quad x := x + \alpha h \]

Update \(\Delta \) and \(D \)

until \(|F'(x)|_\infty \leq \varepsilon_1 \)

\[\text{or} \ |x - x_p|_2 \leq \varepsilon_2 (|x|_2 + \varepsilon_2) \]

\[\text{or} \ \nu \geq \nu_{\text{max}} \]
2. Algorithmic Details

Any robust algorithm for nonlinear optimization involves a number of heuristic parameters, involved e.g. in updating certain parameters. In the development of uminf we experimented with nine parameters, and in the presentation we name them \(p = [p_1, \ldots, p_9] \).

2.1. BFGS Updating

Let \(x \) and \(\tilde{x} \) denote two consecutive iterates, and \(D \simeq [H(x)]^{-1} \). Further, let
\[
 h = \tilde{x} - x, \quad y = F'(\tilde{x}) - F'(x), \quad \rho = \frac{1}{h^T y} .
\]
(21)
The BFGS update can be written in the form [7, (8.16)]
\[
 \tilde{D} = (I - \rho y y^T) D (I - \rho y y^T) + \rho h h^T .
\]
(22)
This formulation shows that if \(D \) is symmetric, then also \(\tilde{D} \) is symmetric, and for any \(z \in \mathbb{R}^n \) it holds that
\[
 z^T \tilde{D} z = w^T D w + \rho \alpha^2 ,
\]
where \(\alpha = h^T z \) and \(w = z - \rho \alpha y \). Therefore, if \(D \) is positive definite, \(\rho > 0 \) and \(z \neq 0 \), then both terms in the above right-hand side are nonnegative and at least one of them is strictly positive. This shows that also \(\tilde{D} \) is positive definite. Therefore, if \(D_0 \) is symmetric and positive definite, and the update is performed only if the curvature condition \(h^T y > 0 \) is satisfied, then these properties are preserved throughout the iteration, implying that
\[
 h^T F' = -F' \dagger D F' < 0 .
\]
(23)
In other words, the direction given by \(h \) is downhill, cf. [7, Section 2.2].

It is possible to give the algorithm an initial approximation \(D_0 \), which must be symmetric and positive definite. The first of these conditions is straightforward to check and the second is checked by performing a symmetric LU-factorization of \(D_0 \) and controlling that all diagonal elements in \(U \) are significantly positive.

In the case where \(D_0 \) is not given explicitly, a simple starting guess is found by letting
\[
 D_0 = I .
\]
(24a)
A more sophisticated initialization [7, pp 200 – 201] is obtained by letting
\[
 D_0 = \frac{h^T y}{y^T y} I ,
\]
(24b)
This scaling \(\tilde{W} \) should be performed between the first line search and the first BFGS updating. In the experiments of Section 3 the parameter \(p_1 \) decides the choice between these two initializations.

The formulation (2.2) is not suited for direct implementation, since it requires two matrix-matrix multiplications. We introduce
\[
 u = D y , \quad v = \frac{1}{\rho} (1 + \rho u^T y) h - u ,
\]
(2.5a)
and (exploiting that \(D \) is symmetric) we see that (2.2) can be rearranged as follows,
2.2. Line Search

A consequence of (2.3) is that there exists an \(\tau \) such that

\[
\varphi(\alpha) \equiv F(x + \alpha h) < F(x) \quad \text{for} \quad 0 < \alpha < \tau.
\]

We want to find an \(\alpha \in [0, \tau] \) so that \(F(x + \alpha h) \) is “sufficiently” smaller than \(F(x) \). To do that we use soft line search [7, Chapter 3]. We have experimented with two definitions (picked by the parameter \(p_2 \)) of “sufficiently smaller”, viz. the Wolfe conditions,

\[
F(x + \alpha h) \leq F(x) + p_4 \varphi'(0) \cdot \alpha
\]

combined with

\[
\varphi'(\alpha) \geq p_4 \varphi'(0),
\]

and the strong Wolfe conditions, where (2.6a) is combined with

\[
|\varphi'(\alpha)| \leq |p_4 \varphi'(0)|.
\]

The line search algorithm is formulated below. The variable \(\nu \) counts the number of function evaluations with an upper bound given in \(p_5 \) and \(\sigma = \varphi'(\alpha)/\varphi'(0) \) is used in the algorithm for updating the “trust region” radius, see Section 2.3.

\[\begin{align*}
[\alpha, F_n, \mathbf{g}_n, \nu, \sigma] &= SLS(x, h, F, \mathbf{g}, \mathbf{p}) \\
&\begin{cases}
\text{begin} \\
\alpha := 0; \quad F_n := F; \quad \nu := 0; \quad \sigma := 1; \quad \varphi_0 := \mathbf{h}^\top \mathbf{g} \\
\text{if } \varphi_0 \geq 0 \text{ then return} \\
\text{stop := false; ok := false; } \varphi_0 := F; \quad \beta := 1 \\
\text{while not stop do} \\
\quad F_\beta := F(x + \beta \mathbf{h}); \quad \mathbf{g}_\beta := F'(x + \beta \mathbf{h}); \quad \nu := \nu + 1 \\
\quad \varphi'_\beta := \mathbf{h}^\top \mathbf{g}_\beta \\
\quad \text{if } F_\beta \leq \varphi_0 + p_3 \varphi'_0 \cdot \beta \text{ then} \\
\quad \quad \text{if } p_2 \text{ and } \varphi'_\beta > |p_4 \varphi'_0| \text{ then stop := true} \\
\quad \quad \quad \text{else} \\
\quad \quad \quad \quad \alpha := \beta; \quad F_n := F_\beta; \quad \mathbf{g}_n := \mathbf{g}_\beta; \\
\quad \quad \quad \quad \text{ok := true; } \sigma := \varphi'_\beta/\varphi'_0 \\
\quad \quad \quad \quad \text{if } \nu < p_5 \text{ and } \beta < p_0 \\
\quad \quad \quad \quad \quad \text{and } \varphi'_\beta < p_4 \varphi'_0 \text{ then } \beta := 2 * \beta \\
\quad \quad \quad \quad \text{else stop := true} \\
\quad \quad \quad \text{else stop := true} \\
\quad \quad \text{end} \\
\quad \text{end} \\
\quad \text{end} \\
\text{end} \\
\text{end} \\
\text{end} \\
\end{align*}\]
In the refinement part of the algorithm (the second while loop) we approximate the variation of \(\varphi \) by a parabola,

\[
\varphi(\alpha + \tau) \simeq \psi(\tau) \equiv F_\alpha + \varphi'_\alpha \tau + A \left(\frac{\tau}{\beta - \alpha} \right)^2
\]

with \(A \) determined so that \(\psi(\beta - \alpha) = F_{\beta} \). The algorithm can be expressed in the form

\[
\gamma := \text{INTP}(\alpha, \beta, F_\alpha, \varphi'_\alpha, F_{\beta})
\]

\[
\begin{align*}
\delta & := \beta - \alpha; \quad A := F_{\beta} - F_\alpha - \delta \varphi'_\alpha \\
\text{if} & \ A \geq 5n \varepsilon_M \beta \text{ then} \\
& c := \alpha - \frac{\delta \varphi'_\alpha}{A} \\
& \gamma := \min\{\max\{\alpha + 0.1 \delta, c\}, \beta - 0.1 \delta\} \\
\text{else} & \\
& \gamma := (\alpha + \beta) / 2
\end{align*}
\]

end

If \(A \) is strictly positive (\(\varepsilon_M \) is the unit roundoff on the computer), then a minimizer for \(\psi \) exists, and if this is in the mid-80% of the interval, this value is returned. For a non positive value of \(A \) we use bisection. The restriction to the middle 80% is made to ensure that the interval \([\alpha, \beta]\) is shortened.

2.3. Updating \(\Delta \)

If \(\mathbf{h} \) has the right length, then one evaluation of \(F \) and \(F' \) is sufficient to satisfy the stopping criteria in the line search algorithm. Normally, this is no problem in the final stage of the algorithm, where \(\mathbf{h} \) is small and close to a Newton step. In the start of the process, however, where we are far from \(\mathbf{x}^* \) and where \(\mathbf{D} \) may be a poor approximation to \(\mathbf{H}^{-1} \), a “helping hand” may be useful. If \(\mathbf{h} \) is too small, we need a number of expansion steps (first while loop in (2.7a) before the slope condition (2.6b) or (2.6c) is satisfied. On the other hand, if \(\mathbf{h} \) is too large, we need some refinement steps before (2.6a) is satisfied.

3. Experiments

We use a special version of a trust-region approach, see (1.4),

\[
\mathbf{h} := \mathbf{D} * (-F')
\]

\[
\text{if} \ ||\mathbf{h}|| > \Delta \text{ then } \mathbf{h} := (\Delta/||\mathbf{h}||) * \mathbf{h}; \quad \text{redu} := \text{true}
\]

\[
\text{else } \text{redu} := \text{false}
\]

The radius \(\Delta \) is updated according to the success of the line search, as reported by the values \(\alpha \) and \(\sigma = \varphi'(\alpha)/\varphi'(0) \). There are the following cases to consider,

\(\alpha < 1 \) : \(||\mathbf{h}|| \) was too large; reduce \(\Delta \)

\(\alpha = 1 \), \(\varphi'(\alpha) < 0 \) (\(\sigma > 0 \)): The step was accepted, but maybe \(\Delta \) should be increased.

\(\alpha = 1 \), \(\varphi'(\alpha) > 0 \) (\(\sigma < 0 \)): The step was accepted, but maybe \(\Delta \) should be reduced.

\(\alpha > 1 \) : \(||\mathbf{h}|| \) was too small; increase \(\Delta \).

After a number of exploratory experiments we settled for the following strategy,

\[
\text{if } \alpha < 1 \text{ then } \Delta := \max\{p_7, \alpha\} * \Delta
\]

\[
\text{else if redu and } \sigma < p_8 \text{ then } \Delta := p_9 * \Delta
\]

Note that when \(\alpha \geq 1 \), we update \(\Delta \) only if the constraint on \(||\mathbf{h}|| \) was active before the line search producing \((\alpha, \sigma) \).

3. Experiments

We used the test set given in [6]. It consists of 22 different functions. The first 21 functions are basically least squares problems, i.e.

\[
F(\mathbf{x}) = \frac{1}{2} \mathbf{f}(\mathbf{x})^\top \mathbf{f}(\mathbf{x}),
\]

where \(\mathbf{f} : \mathbb{R}^n \mapsto \mathbb{R}^m \). For some of these the size (the values of \(n \) and/or \(m \) can be varied, and our test set consisted of 34 problems, see Tables 1 and 2 in the next section.
We performed a large number of tests, varying the values of the 9 parameters. With each choice we solved all 34 problems with the stopping criteria in algorithm (1.4) given by
\[\varepsilon_1 = 10^{-6}, \quad \varepsilon_2 = 10^{-12}, \quad \nu_{\max} = 1000. \]
The objective was defined as
\[\Psi(p) = \sum_{k=1}^{34} \psi_k(p) \quad \text{with} \quad \psi_k(p) \equiv \frac{\nu_k(p)}{\min_{q \in \hat{P}} \nu_k(q)}. \quad (3.2) \]
Here, \(\nu_k(p) \) is the number of iteration steps needed to solve problem no. \(k \) with the parameter choice \(p \), and \(\hat{P} \) is the union of all the parameter sets tried.

There is no point in finding the minimizer of \(\Psi \) with great accuracy, and we settled for the values given by
\[p = (1, 2, 0.05, 0.995, 5, 2, 0.35, 0.7, 3). \quad (3.3) \]
Parameters \(p_{2\alpha} \) show that for the line search we use the strong Wolfe conditions (2.6) in the form
\[F(x+\alpha h) \leq F(x) + 0.05\varphi'(0) \cdot \alpha \quad \text{and} \quad |\varphi'(\alpha)| \leq 0.995|\varphi'(0)|. \]
Further, we allow only one doubling of \(\beta \) in (2.7) and at most 5 function evaluations in each line search. For the \(\Delta \)-updating (2.8) takes the form
\[\text{if } \alpha < 1 \quad \text{then} \quad \Delta := \max\{0.35, \alpha \} \cdot \Delta \\
\text{elseif} \quad \text{reduce and } \sigma < 0.7 \quad \text{then} \quad \Delta := 3 \cdot \Delta \]
The experiments indicated that the scaling (2.4b) should not be used. This result came as a surprise, and with starting points closer to the respective solutions we would probably have arrived at a different optimal set of parameters. Below we give results for the behaviour on Rosenbrock’s problem (given by \(k = 7 \) in Table 1 below). The parameters are given by (3.3) and \(p = (2, 2, 0.01, 0.990, 5, 2, 0.35, 0.7, 3). \)

![Figure 1. Performance on Rosenbrock’s function](image1)

With \(p_1 = 2 \) the second step almost brings us down to the local bottom of the valley, and a number of steps is wasted on getting us started again. In the next figure we give the relative errors \(\|D(x) - H(x)^{-1}\|_2/\|H(x)^{-1}\|_2 \).

![Figure 2. Relative errors in D](image2)

The scaling is seen to improve the accuracy of \(D \) (second and third set of values in Figure 2), but this does not help in the long run.

4. Comparisons

We have compared the performances of \texttt{uminf} and two other implementations of the BFGS method with line search. We used the stopping criteria in algorithm (1.4) given by
\(\varepsilon_1 = 10^{-8}, \quad \varepsilon_2 = 10^{-10}, \quad \nu_{\text{max}} = 1000 \)

and the initial \(\Delta \) as given in [6].

The first competitor is the Fortran subroutine \texttt{MN}F from the package in [3], which is based on the Harwell [2] subroutine \texttt{VA13CD}. We ran this with \texttt{MAXFUN} = 1000 and \texttt{EPS} = 1D-10. The other is the MATLAB function \texttt{fminunc} from the optimization toolbox, Version 2.0 (R11) 09-Oct-1998. We used the standard options except for the values defined by the MATLAB command

\[
\texttt{opts} \texttt{fmin}= \texttt{optimset('Display','off', 'GradObj','on', ...}
\texttt{ 'LargeScale','off', 'MaxFunEvals',900, 'MaxIter',900, ...}
\texttt{ 'TolFun',1e-10, 'TolX',1e-10)}
\]

In Table 1 below we give \(\nu \) for the first two programs. This is the number of evaluations of \(F \) and \(F' \) needed to meet the stopping criteria. The third program uses \(F \)-values only in the line search and here we give both \(\nu_F \) and \(\nu_{F'} \). For all three programs we also give \(\eta \equiv F(x) - F(x^*) \), where \(x \) is the computed solution and \(x^* \) is the exact minimizer. In some cases \(\eta \) comes out negative because \(x^* \) is stored with 6 decimal digits only.

It is seen that \texttt{ucminf} compares favorably with the other two programs. This might be because it was tuned on this problem set, and as a further check we have performed another comparison on a subset of the 34 problems with other starting points. In Table 2a - 2b we present the new test set and the results are given in Table 3.

Again, in most cases \texttt{ucminf} comes out as the fastest, and it is the only one of the three programs that finds the solution to desired accuracy in all test cases. In the cases \(k = 13 \) and \(k = 39 \) \texttt{fminunc} fails miserably: it is stopped by \(\nu_F > \nu_{\text{max}} \), and a closer inspection shows that it got stuck at \(x_0 \). Case \(k = 41 \) is not much better (except that it gives up after far fewer iterations). Finally, \(k = 42 \) shows that when \(x_0 \) agrees on 2 digits with the solution to the modified Meyer problems, then \texttt{fminunc} does solve the problems - but it needs about 3 times as many function evaluations as the other two programs.

\begin{table}[h]
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline
\textbf{k} & \textbf{m} & \textbf{n} & \textbf{\nu} & \textbf{\eta} & \textbf{\nu} & \textbf{\eta} & \textbf{\nu_F} & \textbf{\eta_F} \\
\hline
1 & 1 & 8 & 8 & 4.6e-31 & 4.6e-31 & 3.6e-15 & 3.6e-15 \texttt{ucminf} \\
2 & 32 & 16 & 8 & 3.6e-15 & 3.6e-15 & 3.6e-15 & 3.6e-15 \texttt{MN}F \\
3 & 2 & 8 & 8 & 1.1e-16 & 1.1e-16 & 4.4e-16 & 4.4e-16 \texttt{fminunc} \\
4 & 32 & 16 & 8 & 4.6e-31 & 4.6e-31 & 3.6e-15 & 3.6e-15 \texttt{ucminf} \\
5 & 3 & 8 & 8 & 0.0e+00 & 0.0e+00 & 3.6e-15 & 3.6e-15 \texttt{MN}F \\
6 & 32 & 16 & 8 & 1.1e-16 & 1.1e-16 & 4.4e-16 & 4.4e-16 \texttt{fminunc} \\
7 & 4 & 2 & 2 & 8.4e-21 & 8.4e-21 & 3.6e-15 & 3.6e-15 \texttt{ucminf} \\
8 & 5 & 3 & 3 & 2.2e-21 & 2.2e-21 & 4.4e-16 & 4.4e-16 \texttt{MN}F \\
9 & 6 & 4 & 4 & 6.4e-13 & 6.4e-13 & 3.6e-15 & 3.6e-15 \texttt{fminunc} \\
10 & 7 & 2 & 2 & 12.1e-14 & 12.1e-14 & 3.6e-15 & 3.6e-15 \texttt{ucminf} \\
13 & 10 & 16 & 3 & 373.1e-06 & 373.1e-06 & 3.6e-15 & 3.6e-15 \texttt{ucminf} \\
14 & 11 & 31 & 6 & 48.1e-10 & 48.1e-10 & 3.6e-15 & 3.6e-15 \texttt{MN}F \\
15 & 31 & 9 & 80.1e-10 & 80.1e-10 & 3.6e-15 & 3.6e-15 \texttt{fminunc} \\
16 & 31 & 12 & 87.1e-10 & 87.1e-10 & 3.6e-15 & 3.6e-15 \texttt{ucminf} \\
17 & 12 & 5 & 5 & 43.1e-16 & 43.1e-16 & 3.6e-15 & 3.6e-15 \texttt{MN}F \\
18 & 10 & 3 & 41 & 6.4e-20 & 6.4e-20 & 3.6e-15 & 3.6e-15 \texttt{fminunc} \\
19 & 13 & 10 & 2 & 20 & 3.1e-09 & 3.1e-09 & 3.6e-15 & 3.6e-15 \texttt{ucminf} \\
20 & 14 & 20 & 4 & 28 & 1.1e-14 & 1.1e-14 & 3.6e-15 & 3.6e-15 \texttt{MN}F \\
21 & 15 & 8 & 8 & 26.1e-12 & 26.1e-12 & 3.6e-15 & 3.6e-15 \texttt{fminunc} \\
22 & 15 & 8 & 8 & 26.1e-12 & 26.1e-12 & 3.6e-15 & 3.6e-15 \texttt{ucminf} \\
23 & 7 & 9 & 9 & 32.1e-12 & 32.1e-12 & 3.6e-15 & 3.6e-15 \texttt{MN}F \\
24 & 18 & 9 & 9 & 24.1e-11 & 24.1e-11 & 3.6e-15 & 3.6e-15 \texttt{fminunc} \\
25 & 15 & 5 & 5 & 14 & 6.1e-18 & 6.1e-18 & 3.6e-15 & 3.6e-15 \texttt{ucminf} \\
26 & 10 & 10 & 13 & 1.1e-19 & 1.1e-19 & 3.6e-15 & 3.6e-15 \texttt{MN}F \\
27 & 17 & 33 & 5 & 67 & 6.2e-11 & 6.2e-11 & 3.6e-15 & 3.6e-15 \texttt{fminunc} \\
28 & 18 & 45 & 4 & 163 & 6.2e-11 & 6.2e-11 & 3.6e-15 & 3.6e-15 \texttt{ucminf} \\
29 & 19 & 45 & 2 & 262 & 2.7e-14 & 2.7e-14 & 3.6e-15 & 3.6e-15 \texttt{MN}F \\
30 & 20 & 16 & 3 & 257 & 3.2e-08 & 3.2e-08 & 3.6e-15 & 3.6e-15 \texttt{fminunc} \\
32 & 22 & 1 & 2 & 9 & 0.0e+00 & 0.0e+00 & 3.6e-15 & 3.6e-15 \texttt{MN}F \\
33 & 1 & 5 & 13 & 1.1e-16 & 1.1e-16 & 3.6e-15 & 3.6e-15 \texttt{fminunc} \\
34 & 1 & 10 & 20 & 0.0e+00 & 0.0e+00 & 3.6e-15 & 3.6e-15 \texttt{ucminf} \\
\hline
\end{tabular}
\end{table}
4. Comparisons

Table 2a. Problems

<table>
<thead>
<tr>
<th>Name</th>
<th>p</th>
<th>n</th>
<th>m</th>
<th>x*</th>
<th>F(x*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rosenbrock</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>(1, 1)</td>
<td>0</td>
</tr>
<tr>
<td>Powell'singular</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Meyer</td>
<td>10</td>
<td>16</td>
<td>3</td>
<td>(0.005610, 6181, 345.2)</td>
<td>43.97</td>
</tr>
<tr>
<td>Multiexp. fit</td>
<td>18</td>
<td>45</td>
<td>4</td>
<td>(-4, -5, 4, -4)</td>
<td>0.0050</td>
</tr>
<tr>
<td>ModifiedMeyer</td>
<td>20</td>
<td>16</td>
<td>3</td>
<td>(2.482, 6181, 3452)</td>
<td>4.397 × 10^-5</td>
</tr>
</tbody>
</table>

Table 2b. Tests

<table>
<thead>
<tr>
<th>k</th>
<th>p</th>
<th>n</th>
<th>m</th>
<th>x0</th>
<th>F(x0)</th>
<th>Δ₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>(-1, 2, 1)</td>
<td>1.21e+1</td>
<td>1</td>
</tr>
<tr>
<td>35</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>(1, 5, 0, 6)</td>
<td>1.36e+2</td>
<td>1</td>
</tr>
<tr>
<td>36</td>
<td>9</td>
<td>6</td>
<td>4</td>
<td>(3, -1, 0, 1)</td>
<td>1.08e+2</td>
<td>1</td>
</tr>
<tr>
<td>37</td>
<td>37</td>
<td>16</td>
<td>3</td>
<td>(1, 1, 1, 1)</td>
<td>6.10e+1</td>
<td>1</td>
</tr>
<tr>
<td>38</td>
<td>13</td>
<td>10</td>
<td>3</td>
<td>(5, -5, 5, -5)</td>
<td>7.66e+4</td>
<td>1</td>
</tr>
<tr>
<td>39</td>
<td>28</td>
<td>18</td>
<td>4</td>
<td>(0.001, 4000, 250)</td>
<td>8.47e+8</td>
<td>10</td>
</tr>
<tr>
<td>39</td>
<td>39</td>
<td>18</td>
<td>4</td>
<td>(0.0056, 6200, 350)</td>
<td>3.04e+7</td>
<td>10</td>
</tr>
<tr>
<td>40</td>
<td>28</td>
<td>18</td>
<td>4</td>
<td>(-1, -2, 1, -1)</td>
<td>3.64e+1</td>
<td>1</td>
</tr>
<tr>
<td>40</td>
<td>40</td>
<td>18</td>
<td>4</td>
<td>(-3, -6, 3, -3)</td>
<td>2.04e+0</td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>20</td>
<td>3</td>
<td>(8.85, 4.00, 2.50)</td>
<td>8.47e+2</td>
<td>1</td>
</tr>
<tr>
<td>41</td>
<td>41</td>
<td>20</td>
<td>3</td>
<td>(2, 6, 3)</td>
<td>1.06e+4</td>
<td>1</td>
</tr>
<tr>
<td>42</td>
<td>42</td>
<td>20</td>
<td>3</td>
<td>(2.5, 6.2, 3.5)</td>
<td>2.67e+1</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 3. uminf, MINF, fminunc

<table>
<thead>
<tr>
<th>k</th>
<th>p</th>
<th>n</th>
<th>m</th>
<th>ν</th>
<th>η</th>
<th>ν</th>
<th>η</th>
<th>νp</th>
<th>ηp</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>28</td>
<td>1.8e-19</td>
<td>35</td>
<td>0.0e+00</td>
<td>9</td>
<td>34</td>
</tr>
<tr>
<td>36</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>43</td>
<td>1.3e-12</td>
<td>118</td>
<td>4.5e-36</td>
<td>20</td>
<td>85</td>
</tr>
<tr>
<td>37</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>43</td>
<td>1.3e-12</td>
<td>118</td>
<td>4.5e-36</td>
<td>20</td>
<td>85</td>
</tr>
<tr>
<td>38</td>
<td>10</td>
<td>16</td>
<td>3</td>
<td>114</td>
<td>-1.8e-06</td>
<td>85</td>
<td>3.2e-02</td>
<td>28</td>
<td>121</td>
</tr>
<tr>
<td>39</td>
<td>10</td>
<td>16</td>
<td>3</td>
<td>114</td>
<td>-1.8e-06</td>
<td>85</td>
<td>3.2e-02</td>
<td>28</td>
<td>121</td>
</tr>
<tr>
<td>40</td>
<td>18</td>
<td>45</td>
<td>4</td>
<td>121</td>
<td>-5.4e-11</td>
<td>136</td>
<td>-2.4e-13</td>
<td>9</td>
<td>33</td>
</tr>
<tr>
<td>41</td>
<td>20</td>
<td>16</td>
<td>3</td>
<td>462</td>
<td>-3.2e-08</td>
<td>116</td>
<td>-3.2e-08</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>42</td>
<td>42</td>
<td>20</td>
<td>3</td>
<td>49</td>
<td>-3.2e-08</td>
<td>45</td>
<td>-3.2e-08</td>
<td>33</td>
<td>133</td>
</tr>
</tbody>
</table>

Except for the case k = 39 MINF finds the solution, and in some cases (k = 12, 15, 17, 36, 41) it is at least 25% faster than uminf. On the other hand, uminf is at least 25% faster than MINF in 21 out of the total of 42 cases.

5. Matlab User’s Guide

Input Parameters

- **fun** String with the name of the function. Must have the declaration

  ```matlab
  function [F, g] = fun(x, par)
  ```
 and should return F = F(x) and (when called with two output arguments) the vector g = F'(x).

- **par** Parameters of the function. Is transferred to **fun**. May be dummy.

- **x0** Starting vector.

- **opts** Vector with 4 elements:

 opts(1) = Δ₀. Default 1.

 opts(2) = ϵ₁ in (1.4). Default 10^-4||F'(x₀)||₁.

 opts(3) = ϵ₂ in (1.4). Default 10^-8.

 opts(4) = ϵ₃ in (1.4). Default 100.

 Any non positive value is replaced by its default.

- **D₀** Optional. If present, then approximate inverse Hessian at at x₀ must be symmetric and positive definite.

 Otherwise, D₀ = I

Output Parameters

- **X** If **perf** is present, then array, holding the iterates columnwise. Otherwise, computed solution vector.

- **info** Performance information, vector with 6 elements

 info(1:3): Final values of F(x), ||F'(x)||₁, ||x - x₀||₂.

 info(4:5): No. of iteration steps and evaluations of (F, F').

 opts(6) = 1: Stopped by small gradient.

 2: Stopped by small x - x₀.

 3: Too many function evaluations.

 4: Stopped by zero step.

Thus, the minimizer was found after 9 iteration steps involving a total of 11 function evaluations, and iterations were stopped by the gradient becoming sufficiently small. For comparison, the Hessian is

$$H(x) = \begin{bmatrix} E + 2p_1 & E & E \\ E & E + 2p_2 & E \\ E & E & E + 2p_3 \end{bmatrix}$$

and this leads to

$$[H(x^*)]^{-1} = \begin{bmatrix} 0.7012 & -0.0747 & -0.0332 \\ -0.0747 & 0.2313 & -0.0083 \\ -0.0332 & -0.0083 & 0.1074 \end{bmatrix}.$$

Thus, the computed D is a very good approximation to the inverse Hessian at the solution.

Next, we change p_3 from 4.5 to 4.8. We expect this to give a small change in x^* and take $\Delta_0 = 0.1$ and the computed x and D to initialize the new minimization. To ensure that D is symmetric to working accuracy we use $D := \frac{1}{2}(D + D^\top)$.

$$\text{par(3)} = 4.8; \quad \text{opts(1)} = .1; \quad [\text{xp infp}] = \text{ucminf('fun',par,x,opts,(D+D')/2)}$$

We get the results

$$xp = 0.5048029$$
$$0.1262007$$
$$0.0525836$$

$$\text{infp} = [0.6773413, 4.16\cdot10^{-11}, 4.25\cdot10^{-8}, 3, 4, 1]$$

With the command $\text{ucminf('fun',par,x,opts)}$ (corresponding to the starting value $D_0 = I$) it takes 9 function evaluations to find the new minimizer.
6. Fortran User’s Guide

The functionality is slightly different from the MATLAB function. Partly because of differences between the two languages, partly because the Fortran version was developed to replace MINF of [3]. A typical call is

```
CALL UCINF (PDF, N, X, DX, EPS,MAXFUN,W, IW, ICONTR)
```

The parameters are

- **PDF** SUBROUTINE written by the user with the following declaration

  ```
  SUBROUTINE PDF(N,X,G,F)
  REAL*8 X(N),G(N),F
  
  It must calculate the values of the function and its gradient
  at the point \( x = [x(1), \ldots, x(N)] \) and store these numbers as follows,
  \[
  F = F(x), \quad G(j) = \frac{\partial F}{\partial x_j}(x), \quad j = 1, \ldots N
  \]
  
  The name of this subroutine (which can be chosen freely by the user) must appear in an **EXTERNAL** statement in the calling program.

- **N** INTEGER. Number of unknowns, \( n \). Must be positive. Is not changed.

- **X** REAL*8 ARRAY with \( n \) elements. The use depends on the entry value of **ICONTR**.
  - **ICONTR > 0**: On entry: Initial approximation to \( x^* \).
    - On exit: Computed solution.
  - **ICONTR ≤ 0**: Point at which the Jacobian should be checked.
    - Not changed.

- **DX** REAL*8. The use depends on the entry value of **ICONTR**.
  - **ICONTR > 0**: On entry: \( \Delta_0 \)
    - On exit: Final value of \( \Delta \).

- **EPS** REAL*8 ARRAY with 2 elements. Used only when **ICONTR** entry > 0. Desired accuracy. The algorithm stops when \( ||F'(x)||_\infty \leq EPS(1) \) or \( ||x - x_p||_2 \leq EPS(2)(EPS(2) + ||x||_2) \).
  - Must be positive. Is not changed.

- **MAXFUN** INTEGER. Used only if **ICONTR** entry > 0.
  - On entry: Upper bound on the number of calls of **PDF**.
    - Must be positive.
  - On exit: Number of calls of **PDF**.

- **W** REAL*8 ARRAY with \( 3N \) elements. Work space.
  - On entry: If **ICONTR** entry > 2 then \( w(4N+1, \ldots, 4N+\frac{3}{2}N) \) should hold (an approximation to) the lower triangle of the inverse of \( H(x) \), stored columnwise.
    - Otherwise entry values of \( w \) are not used.
  - On exit with **ICONTR** entry ≤ 0: Results of the gradient check are returned in the first 7 elements of \( w \) as follows, cf. [5]
    - \( w(1) \): Maximum element in \( |F'(x)| \).
    - \( w(2), w(5) \): \( \delta E \) and \( j^E \).
    - \( w(3), w(6) \): \( \delta H \) and \( j^H \).
    - \( w(4), w(7) \): \( \delta E \) and \( j^E \).
  - In case of an error the indices \( w(5,6,7) \) point out the erroneous gradient component.
  - On exit with **ICONTR** entry > 0:
    - \( w(1) \): Computed objective value at the computed minimizer, \( w(2) = ||F'(x)||_\infty \), the largest element in the absolute value of the gradient at \( x \).
    - \( w(3) \): Length of the last step.
    - \( w(4N+1, \ldots, 4N+\frac{3}{2}N) \): The lower triangle of the final approximation to the inverse Hessian.
Example 6.1. The following program treats the problem from Example 6.1.

```
C
F = 0.0
Y = 0.0
DG 10 J = 1, N
 Y = Y - X(J)
 F = F + P(J)*X(J)**2
10 CONTINUE
E = EXP(Y)
F = F + E
DG 20 J = 1, N
20 G(J) = 250.0 + P(J)*X(J) - E
RETURN
END
```

```
INTEGER NMAX, N, J, MAXFUN, N, DNO
EXTERNAL FUN
INTRINSIC EXP
COMM /PRHD/ P
DATA IV, N, P, EPS, X + /21, 3, 5.00, 2.00, 4.500, 1D-8, 1D-10, 3D00 / C
ICNTR = 1
MAXFUN = 100
DX = .100
CALL CMINF(FUN,N,X,DX,EPS,MAXFUN,W,IV,ICNTR)
WRITE(6,'(2(A,I3,2X))') 'ICNTR = ',ICNTR, 'NEVAL = ',MAXFUN
WRITE(6,'(A,3F12.7)') 'x = ', (X(J), J=1,3)
WRITE(6,'(A,F10.7,3(2X,A,1P10D9.2))') 'F(x) = ',W(1).
+ ' = max|g|',W(2), 'last dx = ',W(3)
DNO = 4+N
WRITE(6,'(A,1P3D12.3/3X,1P3D12.3)') 'D = ',(W(DNO+J), J=1,6)
P(3) = 4.8D0
DX = .100
ICNTR = 3
CALL CMINF(FUN,N,X,DX,EPS,MAXFUN,W,IV,ICNTR)
WRITE(6,'(2(A,I3,2X))') 'ICNTR = ',ICNTR, 'NEVAL = ',MAXFUN
WRITE(6,'(A,3F12.7)') 'x = ', (X(J), J=1,3)
WRITE(6,'(A,F10.7,3(2X,A,1P10D9.2))') 'F(x) = ',W(1),
+ ' = max|g|',W(2), 'last dx = ',W(3)
```

6. FORTRAN USER'S GUIDE

```
Example 6.1. The following program treats the problem from Example 3.1.

```
```
```
From the first call of UCMINF we get

\[
\begin{align*}
\text{ICONTR} &= 1 \quad \text{NEVAL} = 11 \\
x &= \begin{bmatrix} 0.5037546 & 0.1259387 & 0.0559727 \end{bmatrix} \\
F(x) &= 0.6764583 \quad \text{max} |g| = 5.06E-11 \quad \text{last} \ dx = 7.94E-09 \\
D &= \begin{bmatrix} 7.009E-01 & -7.472E-02 & -3.326E-02 \\
2.313E-01 & -8.308E-03 & 1.074E-01 \end{bmatrix}
\end{align*}
\]

By comparison with Example 5.1 we see how the elements in the lower triangle of \( D \) are stored columnwise. Also with the second call the results agree with the MATLAB version.

\[
\begin{align*}
\text{ICONTR} &= 1 \quad \text{NEVAL} = 4 \\
x &= \begin{bmatrix} 0.5046029 & 0.1262007 & 0.0525836 \end{bmatrix} \\
F(x) &= 0.6773413 \quad \text{max} |g| = 4.16E-11 \quad \text{last} \ dx = 4.26E-08
\end{align*}
\]

References


