
The LINPACK Benchmark in Co-Array Fortran

J. K. Reid
Atlas Centre, Rutherford Appleton Laboratory,

Chilton, Didcot, Oxon OX11 0QX, UK

J. M. Rasmussen and P. C. Hansen
Department of Mathematical Modelling,

Technical University of Denmark, DK-2800 Lyngby, Denmark

Abstract

Co-array Fortran, abbreviated to CAF, is an extension of Fortran
90/95 for parallel programming that has been designed to be easy
both for the compiler writer to implement and for the programmer
to write and understand. It o�ers the prospect of clear and eÆcient
parallel programming on homogeneous parallel systems.

A subset of Co-Array Fortran is available on the Cray T3E and
the aim of this talk is to explain how the LINPACK benchmark can
be written in this language and compare its performance with that of
ScaLAPACK. We pay particular attention to the solution of a single
set of equations since we have not found a clear description in the
literature of an algorithm that is asymptotically fully parallel.

1 Introduction

Co-array Fortran (Numrich and Reid 1998), abbreviated to CAF, is an ex-
tension of Fortran 90/95 for parallel programming that has been designed to
be easy both for the compiler writer to implement and for the programmer
to write and understand. It o�ers the prospect of clear and eÆcient parallel
programming on homogeneous parallel systems.

Each processor has an identical copy of the program and has its own data
objects.

Each co-array is evenly spread over all the processors with each processor
having a part of exactly the same shape. The language is carefully designed
so that implementations will usually use the same address on each processor
for the processor's part of the co-array. Subscripts in round brackets are used
in the usual way to address the local part and subscripts in square brackets
are used to address parts on other processors.

References without square brackets are to local data, so code that can run
independently is uncluttered. Only where there is are square brackets, or a

1

procedure call to code that involves square brackets, is there communication
between processors.

There are intrinsic procedures to synchronize processors, return the num-
ber of processors, and return the index of the current processor.

A subset of Co-Array Fortran is available on the T3E and the aim of
this talk is to explain how the LINPACK benchmark involving the solution
of a dense set of 1000 linear equations can be written in this language and
compare its performance with that of ScaLAPACK (Blackford et al. 1997).

2 LU Factorization of a Full Matrix

We have written a CAF code for LU factorization with partial pivoting by
rows of a large dense unsymmetric matrix of order N . To give good load
balance, we have followed ScaLAPACK and used a block cyclic distribution
by rows and columns. The matrix is treated as a block matrix with all
blocks of size r � r except those in the last block column, which may have
fewer columns, and the last block row, which may have fewer rows. The
processors are arranged in a P � Q rectangular array and the blocks are
stored cyclically in both directions, that is, block i; j is stored on processor
[1 + mod(i� 1; P); 1 + mod(j � 1; Q)].

We use a co-array of local shape (dN=P e; dN=Q)e and co-shape [P;Q].
This permits the local part of each block Schur-complement update to be
performed by a single call of the level-3 BLAS routine GEMM, with very
good cache usage. We obtained the following comparisons with ScaLAPACK
on the Linkoping T3E-600 and the Manchester T3E-1200, using block sizes
of 32 and 48.

LU factorization Co-shape
times in ms 1� 1 2� 1 1� 2 2� 2 3� 3 4� 4
T3E-600, block size 32
CAF 4.13 2.49 2.43 1.35 0.70 0.59
ScaLAPACK 3.79 2.21 2.36 1.38 0.95 0.80
T3E-600, block size 48
CAF 3.73 2.47 2.18 1.28 0.71 0.54
ScaLAPACK 3.19 2.19 2.03 1.42 1.03 0.84
T3E-1200, block size 32
CAF 2.69 1.80 1.54 1.00 0.52 0.47
ScaLAPACK 2.36 1.51 1.43 0.94 0.69 0.59
T3E-1200, block size 48
CAF 2.37 1.72 1.32 0.86 0.49 0.41
ScaLAPACK 1.97 1.47 1.20 0.95 0.74 0.63

2

It may be seen that the Co-Array Fortran code is slower for small numbers
of processors, but scales better and is faster for larger numbers of processors.
We do not see it as sensible to run a problem of this size on more than 16
processors. The di�ering block sizes can alter the speed by some 10%, but
do not alter the relative performance of CAF and ScaLAPACK much.

3 Using the Factorization to Solve a Set of

Equations

Given the LU factorization and a record of the permutation used, we can
solve a system of linear equations by applying the permutation to the right-
hand side vector, performing the forward substitution

Liiyi = bi �
i�1X

j=1

Lijyj; i = 1; 2; : : : ; m

followed by the back-substitution

Uiixi = yi �
mX

j=i+1

Uijxj; i = m;m� 1; : : : ; 1

Here, we assume that each bi, xi or yi is a block of order r (except perhaps
for the last ones) and m = dN=re. We assume that the matrix blocks are
as left after the LU factorization, that is, block i; j is stored on processor
[1 +mod(i� 1; P), 1 +mod(j � 1; Q)]. We also assume that the vectors are
similarly blocked, with each block on the same processor as the corresponding
block on the diagonal of the matrix.

There is a danger that applying the permutations may be as time con-
suming as a forward or backward substitution. Our original code applied
each interchange in turn. The speed was greatly improved by holding the
permutation explicitly and making each processor involved responsible for
calculating its part of the permuted vector. However, for the numbers of pro-
cessors that we have used here, our best speed was obtained by collecting the
data onto one processor, performing the permutation there, and distributing
the permuted vector.

How to best solve a single triangular system of linear equations in parallel
is not obvious and we have not found a clear description in the literature of an
algorithm that is asymptotically fully parallel. We developed our algorithm
independently, but believe that it is a generalization of that of Bisseling and
van de Vorst (1991). The main di�erences are that we work with blocks so
that Level-2 BLAS (Dongarra, Du Croz, Hammarling, and Hanson, 1988)

3

can be employed locally and we use a rectangular array of processors instead
of a square array.

We will describe the solution of a lower triangular system. It is straight-
forward to adapt the algorithm to an upper triangular system.

For an o�-diagonal block, the main task of its processor is the multipli-
cation

Lijyj

For a diagonal block, the main task of its processor is to perform a forward
substitution. These operations are performed by Level-2 BLAS.

Once a processor holding a diagonal block has computed its part of the
solution, this must be passed to the other processors involved in the block
column. We do this by passing it from neighbour to neighbour down the
block column until all processors have received it.

The products computed by the o�-diagonal blocks in a block row must be
accumulated and passed to the processor holding the diagonal block. This
accumulation is initially performed locally; for blocks whose distance to the
diagonal is less than Q, the partially accumulated sums are passed from
neighbour to neighbour along the block row, each further accumulating the
sum.

Each processor performs actions associated with its �rst diagonal block,
then the rest of that block column, then its second diagonal block, then the
rest of that block column, etc. For each block whose distance to the diagonal
is less than Q, the processor must wait for data from its neighbour to the
left; and for each o�-diagonal block whose distance to the diagonal is less
than P , the processor must wait for data from its neighbour above it. No
other synchronizations are needed. In particular, no other synchronizations
are needed for blocks whose distance to the diagonal is at least max(P;Q).

To see that the algorithm is fully parallel asymptotically, consider the
processing of the �rst Q block columns. All processors are involved, but each
works on a single block column. Processor [1,1] performs the �rst forward
substitution, places the solution on processor [2,1], and synchronizes with
it. Processor [2,1] performs its multiplication, places the result on processor
[2,2], and synchronizes with it. It also places the vector it received from
[1,1] on [3,1] and synchronizes with it. This continues until the processors
are working on all Q block columns and no further synchronizations are
needed. The critical path for this `start-up phase' involves the blocks [1,1],
[2,1], [2,2], [3,2], [3,3], ... involving a total of about r2(3Q=2� 1) sequential
operations and a small amount of communication. The rest of the calculation
is fully pararallel and involves about r2N=(Pr) = rN=P operations on each
processor. Applying similar arguments to the other block columns, we get a

4

critical path total of about 3Nr=2 operations and about N2=(PQ) operations
on each processor. The ratio of these counts is N=(3PQr=2), which tends
to in�nity with N for �xed P;Q and r. Note that each processor that has
critical path tasks in a block column attends to these before others for the
block column. An outline of the CAF program is as follows:

me = this_image()

m = ceiling(N/r) ! Number of blocks in a row or column

do j = 1, m

do i = j, m

prow = mod(i-1,P) + 1 ! Row co-index

pcol = mod(j-1,Q) + 1 ! Column co-index

! Perform work only if this block is owned by this processor

if (me /= procgrid(prow,pcol)) exit

right = procgrid(prow,mod(pcol,Q)+1)

left = procgrid(prow,mod(pcol-2,Q)+1)

above = procgrid(mod(prow-2,P)+1,pcol)

below = procgrid(mod(prow,P)+1,pcol)

s = min(r,N-r*(i-1)) ! Size of this block

i1 = (i-1)/P*r+1 ! First local index

i2 = i1+s-1 ! Last local index

if (i-j >= max(P,Q) then

call sgemv(..) ! Multiply the block by xj and add into asum

EXIT ! No synchronization needed

end if

if (i > j) then

if (i-j < P) then

call sync_images((/ me, above /))

xj = temp_xj ! receive part of x from image above

end if

call sgemv(..) ! Multiply the block by xj and add into asum

end if

if (j > 1 .AND. i-j < Q-1) then

! accumulate sum with data from image to the left in rvec

call sync_images((/ me, left /))

asum(i1:i2) = asum(i1:i2) + rvec(1:s)

end if

if (i == j) then

! perform local forward-substitution

b(i1:i2) = b(i1:i2) - asum(i1:i2)

5

call strsv(..) ! Solution in b(i1:i2)

xj(1:s) = b(i1:i2)

else if (i-j < Q) then

! send accumulated sum to image to the right

rvec(1:s)[prow,mod(pcol,Q)+1] = asum(i1:i2)

call sync_images((/ me, right /))

end if

! send part of x to image below

if (i < m .AND. i-j < P-1) then

temp_xj(:,:)[mod(prow,P)+1,pcol] = xj(:,:)

call sync_images((/ me, below /))

end if

end do

end do

Using our CAF code, we obtained the following comparisons with ScaLAPACK
on the LINPACK test involving a single right-hand side for a problem of order
N = 1000. For the CAF code, we include the time for applying the permutations
as well as performing the forward and back substitution. For the ScaLAPACK
code, we found that the permutation time was signi�cant, so we also show the time
excluding the permutation time, that is, the time for the forward and backward
substitution.

Solution Co-shape
times in ms 1� 1 2� 1 1� 2 2� 2 3� 3 4� 4

T3E-600, block size 32
CAF 67 41 61 25 15 13
ScaLAPACK 72 47 47 39 44 44
ScaLAPACK, no perm. 59 21 35 15 15 15

T3E-600, block size 48
CAF 70 41 63 25 15 15
ScaLAPACK 49 61 38 45 47 47
ScaLAPACK, no perm. 36 22 26 18 17 18

T3E-1200, block size 32
CAF 33 23 30 13 10 10
ScaLAPACK 30 29 22 26 31 32
ScaLAPACK, no perm. 23 13 16 10 11 11

T3E-1200, block size 48
CAF 40 24 35 14 10 10
ScaLAPACK 25 42 21 29 32 33
ScaLAPACK, no perm. 18 12 14 11 11 12

We note that, again, the Co-Array Fortran code is slower for small numbers of
processors, but scales better and is faster for larger numbers of processors.

6

4 Conclusions

We have demonstrated that Co-Array Fortran can be used to write codes for the
LINPACK benchmark that are clear and perform well. In particular, they scale
better with increasing numbers of processors than the ScaLAPACK codes. We
have also provided a straightforward description of a fully parallel algorithm for
solving a triangular set of equations.

Acknowledgements

We would like to express our thanks to the National Supercomputer Centre at
Linkoping University for making the Linkoping T3E available to us for the project
`Investigation of the e�ectiveness of Co-array Fortran' and to Bo Einarsson for the
substantial amount of help that he has given us.

We would also like thank EPSRC for making the University of Manchester
Computer Services for Academic Research (CSAR) T3E available to John Reid
under the project GR/M7850Z.

References

[1] Bisseling, R. H. and van de Vorst, J. G. G. (1991). Parallel triangular system

solving on a mesh network of transputers, SIAM J. Sci. Stat. Comput., 12,
787-799.

[2] Blackford, L. S., Choi, J., Cleary, A., D'Azevedo, E., Demmel, J., Dhillon, I.,
Dongarra, J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D.
and Whaley, R. C. (1997). ScaLAPACK users' guide. SIAM, Philadelphia.

[3] Dongarra, J. J., Du Croz, J., Hammarling, S., and Hanson, R. J. (1988). An

extended set of Fortran Basic Linear Algebra Subprograms. ACM Trans Math.
Software, 14, 1-17 and 18-32.

[4] Numrich, R. W. and Reid, J. K. (1998), Co-Array Fortran for parallel pro-

gramming, ACM Fortran Forum 17, 2, 1-31.

7

