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ABSTRACT
Rank reduction is a common noise-reduction technique in signal processing.
We analyze a class of rank-reduction algorithms based on orthogonal projection
on certain subspaces, and show that the properties of these algorithms can be
compared by means of FIR filters defined by the canonical vectors associated
with the projections. We use our new analysis to demonstrate that ULV decom-
positions work well in connection with speech signals, also in the absence of a

gap in the singular values (which is usually assumed to be present).
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I. INTRODUCTION

Rank reduction algorithms have proved themselves useful for noise-reduction and signal
identification in a number of applications. The central idea is to approximate a matrix,
derived from the data, with another matrix of lower rank from which the reconstructed

signal is derived. As stated in [8],

Rank reduction is a general principle for finding the right trade-off between model

bias and model variance when reconstructing signals from noisy data.

The classical way to implement rank reduction is via the singular value decomposition
(SVD) [4], which is the most reliable method for computing the numerical rank of a matrix.
In the last decade, alternatives to the SVD have emerged, most notably the rank-revealing
QR decomposition and the URV and ULV decompositions; see [5] for a survey and [1],
[9], [10] for updating issues. The latter two decompositions are collectively known as UTV
decompositions, and their main advantage to the SVD is that they can be computed and
updated more efficiently.

In order to guarantee that the subspaces computed by the UTV decompositions are close
to those defined in terms of the SVD it is necessary to assume a distinct gap in the singular
values [2]. In practise such a gap rarely exists, and yet the noise reduction achieved by
the UTV algorithms is comparable to the SVD-based noise reduction. Clearly, the noise-
reduction performance of the algorithms is controlled by other quantities than the singular
value spectrum.

The purpose of this paper is to provide a general scheme for analysis of rank-reduction

algorithms, by means of which we can compare the methods and their noise-reducing capa-



bilities. Our main tool is the notion of canonical angles and vectors, defined in terms of the
signal subspaces computed by the rank-revealing algorithms. We show that the canonical
vectors define FIR filter arrays similar to the filter-array representation introduced in [6],
and we demonstrate that these canonical filters provide a natural framework for compari-
son of the algorithms. We also illustrate by numerical examples that the similarity of two
rank-reduction algorithms is equivalent to their canonical FIR filters being similar in the
frequency domain.

This work can be viewed as a continuation of [6], in the sense that we continue to explore
the filter array interpretation of rank-reduction algorithms. The main contribution in this
paper is to show how canonical angles and vectors along with the filter-array provide a
natural framework for comparing the performance of rank-reduction algorithms.

Our paper is organized as follows. In Section IT we introduce a wide class of rank-revealing
decompositions now used in signal processing, and in Section III we discuss the filter array
interpretation of these algorithms. The canonical filters are defined in Section IV, and we

conclude with numerical examples in Section V.



II. RANK REDUCTION BY TRUNCATED DECOMPOSITIONS

Our point of departure is the m x n Hankel matrix A defined in terms of the real signal

vector & = (o1, ..., Tmin_1)! as
a’;l a’/’2 e a’/’n
Tg T3 T Tnt1
A= H('aj) = I3 Ty tee Tnt2 ) (]->
a’;m ajm+1 te ajm+n71

where we use the notation H(x) from [6]. It is natural to consider x as the input signal to
the noise-reduction algorithm. The next step is to compute a rank-revealing decomposition

of A, and we assume that the resulting rank-k matrix A; can be written as
A=AV VI + A (2)

where k is the rank that we have chosen, Vj is a matrix with orthonormal columns (such that
VI'V,, = I, the identity matrix of order k) coming from the rank-revealing decomposition,
and A is a residual matrix with small norm (possibly zero) also determined by the decom-
position. Note that Ay is not a Hankel matrix. The output from the algorithm is the vector
s computed by averaging along all the m — n + 1 full-length antidiagonals of Ay, which we
write in the short form

s = A(Ay) (3)
where s is a vector of length m —n + 1, and the symbol A denotes the averaging operation.
The details behind this result are derived in [6], but the notation here is slightly different
because our output vector s has length m — n + 1 to avoid dealing with end effects.
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To substantiate Eq. (2) we consider some specific rank-revealing decompositions. The

SVD takes the form

S 0 VT
A= < U, U > (4)

0 > 173
and the truncated SVD matrix is given by A; = UkEkaT = AVkaT which is clearly of the
form (2) with A = 0. The URV decomposition is given by
o R, E Ve
A= < U, Uy > N (5)
0 F 173
and the truncated URV matrix is by definition Zk =U kRk‘N/kT =A ‘N/,JN/RT, again of the form

(2) with A = 0. Similarly, the ULV decomposition is

=T

A=<Uk U0> T (6)

G H|\V,
and the truncated ULV matrix is by definition A; = Uy, LkVZ = AVka U, G VZ Hence,
Ay is of the general form (2) with A = —Uy G VZ Finally, the VSV decomposition (recently

introduced in [7]) of a symmetric matrix A takes the form

] ] S KT ‘“/kT
A= < Vi Vo > ] ) (7)
K M VOT

The corresponding truncated VSV matrix is Ak = ‘u/kSk‘u/kT =A ‘ufk‘u/kT — ‘70 K ‘u/kT, which also
fits into the form (2) with A = —‘70 K‘U/RT.

Due to the way that the ULV and VSV decompositions are defined, the submatrices
G and K have small norm. The actual size of the norm depends on the singular vector

estimation used in the particular implementation, and the norm can be made as small as



desired by refining the singular vector estimates, at the cost of more work. Hence the norm

of the residual matrix A can be assumed to be small compared to the norm of A, and Ak

III. FIR FiLTER REPRESENTATIONS

We shall now consider a general FIR filter interpretation of the expression for the output
signal

s = A(AViV) + A(A)

which is obtained by combining (2) and (3). The FIR filter representation of the truncated
SVD approach was derived in [6], and using the same approach it is straightforward to show
that if

%:<U1,...,Uk)

then
k

AAV V) =7t Z H(Av;) Jv;
i=1
where H(Av;) is the Hankel matrix defined from the vector Av;, cf. (1), and J is the n x n

exchange matrix consisting of the columns of the identity matrix in reverse order. Thus the

output signal s consists of a sum of k signals n~!'s; plus a residual signal r = A(A),
s=n (s 4 sg)+
where the signal vectors s; are given by
s; = H(Av;) Ju;, i=1,... k. (8)

This shows that s; is obtained by passing the input signal x through a pair of FIR filters

with filter coefficients v; and Jv;.



The filter pair v; and Ju; in (8) corresponds to a single FIR filter with 2n — 1 coefficients

given by the vector

C; = Uy * JUZ‘ = H(UZ) Vs, (9>
where * denotes convolution. Since v; is real, the frequency response of this filter is given by
&) = Bif) conj (T(f)) = [B:(f)? (10)

where ~ denotes Fourier transform, showing that ¢; defines a zero-phase filter.
The individual contributions to the output signal s can now be judged by means of the

following result.
Theorem 1 The 2-norm of each vector s; in (8) is bounded above by

Isilla < n'/2 | A, (11)
while the 2-norm of r is bounded above by

[7]l2 < m!? | Al (12)

Proof. Since H(Av;) = || Avi||oH(2:) with 2z; = Awv;||Aw]|; ! it follows from (R) that
Isill2 < || Awilla [ H(z) |2 | Jvill2
where || Jv;||2 = 1. Moreover,
IH )2 < 1Hz) e = 0! 2] = 272,

and we obtain the upper bound in (11). Now let A = {§;;}. Due to the averaging, each

element r; of r = A(A) satisfies |r;| < max;; |6;;] and therefore
Irll2 < m'/? max [6;;] < m'? || Al
ij
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which is (12). U
Unfortunately we have not been able to derive a rigorous lower bound for ||s;||2, but we
can obtain some insight via the power of the two signals Av; and s;. If T'y(f) denotes the

power density spectrum of z then it follows from (8) and (10) that

A w2 = / B Tl ) df

o0

and

J5:]2 = / B0 Tulf) df.

o0

This shows that the combined filter ¢; in (9) represents a filter similar to v;, only sharper, and
it is therefore reasonable to assume that ||s;|5 is of the same order of magnitude as || Av;|s.
In particular, for the truncated SVD algorithm we have || Av;||s = 04, and the UTV and VSV
algorithms are designed such that || Av;||s approximates o; while the norm of the nonzero
off-diagonal block is small.

When A is nonzero, its 2-norm is equal to that of the off-diagonal block G in (6) or K in
(7), and therefore the residual signal  makes only a minor contribution to the output signal

s. In the following we will therefore neglect the residual vector r in our analysis.

IV. CANONICAL VECTORS AND FILTERS

Although the rank-k matrices in the above algorithms are defined in terms of the submatrices
of the particular decompositions, the matrix AV,V,! in (2) is independent of the choice of
the columns vy, ..., v of the matrix Vj, as long as they are orthonormal and span the same

subspace. To see this, let the columns of the matrix
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be a second set of vectors, where @ is k X k and orthogonal, and we see that Wy W' =
ViQQTVI = V, Vi, Another way to state this is to observe that V;V,I" is an orthogonal
projection matrix.

This fact allows us — for each rank-reduction algorithm — to choose a new set of vectors
wy, . .., wy that may better describe the output signal s than the vectors vy, ..., vx, knowing
that s stays the same. And since these vectors define FIR filter coefficients in a filter array
interpretation, this means that we are free to choose the filters as long as (13) is satisfied.

In particular, if we want to compare the output of two rank-reduction algorithms, then
we can try to choose the vectors wy,...,wy for the two algorithms such that they are as
similar as possible.

The solution to this problem of choosing the vectors comes in the form of the canonical
vectors associated with the subspaces spanned by the columns of the Vi-matrices for the two
algorithms. To illustrate this, let us compare the truncated SVD and ULV algorithms, in
which we work with the two matrices V; and Vi (and ignore the ULV residual vector r), and

we let V, and V;, denote the subspaces spanned by the columns of these two matrices.

Definition 2 Given two n X k matrices Vi, and Vi with orthonormal columns. If

ViVi=Y0z" (14)

s the SVD of the cross-product matriz, then the canonical vectors are the columns of

The singular values appearing in © are termed the canonical correlations, and they are equal



to the cosines of the canonical angles 04, ...,0y. Le.,

© = diag (cos(61),...,cos(0x)) (16)

We emphasize the following geometric interpretation of the canonical angles and vectors.
The smallest canonical angle 8, is the smallest angle between any two vectors v and T in Vg
and Vy, respectively, and it is attained for v = wy and ¥ = w;. Then the second canonical
angle 05 is the smallest angle between any two vectors v and ¥ orthogonal to w; and w; in
V. and Vy, and it is attained for v = wy and T = w,, etc.

Hence, canonical vectors associated with small canonical angles define subspaces of V;, and
V. that are very similar, and zero canonical angles define canonical vectors in the intersection
of the subspaces V; and Vy. Zero canonical angles are always present when k is greater than

n/2, for geometric reasons.

Theorem 3 If 2k > n then

81 — = 82]{27’!7, — 0 (17>

Proof. Both V, and Vy are k-dimensional subspaces of an n-dimensional space. Hence,
if 2k > n then V;, and V,, must have a nontrivial intersection of dimension 2k — n. O
We can now compare the truncated SVD and ULV algorithms by comparing the canonical
FIR filters determined by the canonical vectors wy, ..., wy and @y, ..., Wy. If k > n/2 then
we are sure that 2k — n of these filters are identical, and if some of the nonzero canonical

angles are small then the associated filters are also guaranteed to be similar.
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Thus, small (and zero) canonical angles define FIR filters for the two algorithms that
extract very similar (and identical) signal components.

Of course, there is more to this analysis than merely the canonical angles. FEven if 6,
is quite large, meaning that the vectors w; and w; are quite different in the 2-norm, the
associated filters may have similar properties in the frequency domain. For example, w; and
w; may both represent band-pass filters with approximately the same center frequency and
bandwidth.

Hence, it is the size of the canonical angles #; together with the frequency responses
of the canonical FIR filters represented by w; and w; that provides a convenient tool for
comparison of the similarities and differences in the output signals from the two algorithms
characterized by Vi and Vi.

The comparison technique can be brought even further. We can use the same approach

to compare a noisy, filtered signal with a clean reference signal, such as

1. the output from applying the truncated ULV algorithm — or any other rank-reduction

algorithm — to a noisy signal, and

2. a reference signal, obtained by applying truncated SVD to the noise-free signal, and

thus providing approximations to the signal’s eigenfilters.

We 1illustrate these issues in the next section.

V. NUMERICAL EXAMPLE

We conclude with a numerical example where we compare the output from the truncated
SVD and ULV algorithms. All computations were done in Matlab using the UTV T0OLS
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Singular valuesoi of noise-free and noisy Hankel matrices

10" T T T T T T ]
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Figure 1: Singular values o; of the Hankel matrix A = H(z) corresponding to a pure and a

noisy signal vector x.

package [3]. The signal x consists of 500 samples of a voiced speech signal sampled at 8 kHz,
the number of columns in the Hankel matrix is n = 20, and the truncation parameter is
k=09.

The signal-to-noise ratio is 3 dB, and the norm of the input signal is ||z|s = 1.27. The
singular values of the two Hankel matrices corresponding to the pure and noisy signals are
shown in Fig. 1, and we see that apart from the transition from ¢y to g4 there is no particular
gap. The influence of the noise is clearly visible as a plateau in the singular values for the
noisy signal.

First we used the lulv implementation of the ULV decomposition, which seeks to yield
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SVD and ULV filters

4 4 4
i=1 i=2 i=3
3 3 3
2 2 2
1 1 1
0 0 0
0 2000 4000 0 2000 4000 0 2000 400C
4 4 4
i=4 i=5 i=6
3 3 3
2 2 2
1 1 1
0 0 0
0 2000 4000 0 2000 4000 0 2000 400C
4 4 4
i=7 i=8 i=9
3 3 3
2 2 2
1 1
0 0 0
0 2000 4000 0 2000 4000 0 2000 400C

Figure 2: Frequency responses |0;(f)| and ]%Z( f)] of the FIR filters for the truncated SVD

algorithm (thick lines) and the truncated ULV algorithm (thin lines), defined via the vectors

v;and U; fori =1,...,9.
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Canonical anglesei
10 P T T T

107 ¢ -

107 1 -

Figure 3: The canonical angles 01, . . . 0y for the two 9-dimensional subspaces V; and V;, from

the truncated SVD and ULV algorithms.

good approximations to the principal singular vectors. The FIR filters for the SVD and ULV
algorithms, defined respectively by the vectors v; and T;, i = 1,...,9, are shown in Fig. 2.
The first three filters correspond to the three singular values lying above the noise level, and
as expected these filters are very similar. The remaining six filters appear to be different.
From Fig. 2 we might therefore immediately think that only a signal component lying in a
three-dimensional subspace is recovered similarly by the two algorithms.

However, the analysis using canonical angles and vectors gives a different and more
precise picture. Figure 3 shows the the 9 canonical angles, i.e., #1,...,60y. Three canonical

angles, corresponding to the above-mentioned subspace, are less than 1072, But there are
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SVD and ULV canonical filters

4 4 4
i=1 i=2 i=3
3 3 3
2 2 2
1 1 1
0 0 = 0
0 2000 4000 0 2000 4000 0 2000 400C
4 4 4
i=4 i=5 i=6
3 3 3
2 2 2
1 1 1
0 0 0
0 2000 4000 0 2000 4000 0 2000 400C
4 4 4
i=7 i=8 i=9
3 3 3
2 2 2
1 1 1
0 0 0
0 2000 4000 0 2000 4000 0 2000 400C

Figure 4: Frequency responses |w;(f)| and ]@Z( f)] of the canonical FIR filters for the trun-

cated SVD and ULV algorithms. Thick lines: SVD filters; thin lines: ULV filters.

also several canonical angles of the order 107!, and we would expect that the corresponding
canonical filters are quite similar.

This is confirmed by the plots of the SVD-ULV canonical FIR filters shown in Fig. 4,
where we see that actually the first seven canonical filters are very similar. The eights and
ninth pair of filters have peaks abound 1.8 kHz and 2.6 kHz, respectively, but their sidelobes
are different.

We conclude that for this particular noisy signal, the SVD and ULV algorithms produce
filtered signals that have very similar signal components lying in a 7-dimensional subspace

of the 9-dimensional output signal subspace. This is in spite of the fact that there is no gap
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SVD and ULV filters, hulv algorithm

4 4 4
i=1 i=2 i=3
3 3 3
2 2 2
1 1 1
0 0 0
0 2000 4000 0 2000 4000 0 2000 400C
4 4 4
i=4 i=5 i=6
3 3 3
2 2 2
1 1 1
0 0 0
0 2000 4000 0 2000 4000 0 2000 400C
4 4 4
i=7 i=8 i=9
3 3 3
2 2 2
1 1 1
0 0 0
0 2000 4000 0 2000 4000 0 2000 400C

Figure 5: Frequency responses |0;(f)| and ]%Z( f)] of the FIR filters for the SVD algorithm

(thick lines) and the hulv-version of the ULV algorithm (thin lines).

whatsoever in the singular values around 7 = 7.

To elaborate on this point, we also used the hulv implementation of the ULV decomposi-
tion from [3]. This algorithm seeks to compute good approximations to the singular vectors
corresponding to the smallest singular values, and we cannot expect that the principal sin-
gular vectors are approximated so well. This is confirmed by the SVD and ULV filters shown
in Fig. 5: none of these filters are similar.

But still the SVD and ULV algorithms produce signals that sound qualitatively the same,
and the canonical FIR filters shown in Fig. 6 support this. We see that the first five canonical

filters are very similar, the next two filters are qualitatively similar, and the last two filters
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SVD and ULV canonical filters, hulv algorithm

i=1 i=2 i=3
3 3 3
2 2 2
1 1 1
0 0 0
0 2000 4000 0 2000 4000 0 2000 400C
4 4 4
i=4 i=5 i=6
3 3 3
2 2 2
1 1 1
0 0 0
0 2000 4000 0 2000 4000 0 2000 400C
4 4 4
i=7 i=8 i=9
3 3 3
2 2 2
1 1 1
0 0 0
0 2000 4000 0 2000 4000 0 2000 400C

Figure 6: Frequency responses |w;(f)| and ]@Z( f)] of the canonical filters for the SVD algo-

rithm (thick lines) and the hulv-version of the ULV algorithm (thin lines).

17



are different. Thus, the two signals have similar signal components lying in a 5-dimensional

(or perhaps a 7-dimensional) subspace.

VI. CONCLUSION

We have introduced the canonical angles and the canonical filters associated with the sub-
spaces from two rank-reduction algorithms, and demonstrated their use in the analysis and
comparison of the two algorithms. In particular we have demonstrated by a numerical ex-
ample that these quantities provide additional insight beyond inspection of the FIR filter

arrays that characterize the algorithms.
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