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Abstract

The prediction-based estimating functions proposed by (Sørensen, 1999) are generalized to fa-
cilitate parameter estimation in discretely observed stochastic differential equations, where the ob-
servations are corrupted by additive white noise. The new class of estimating functions has most
of the nice properties of martingale estimating functions. However, they may be applied when no
obvious or easily calculated martingales exist. Simple expressions are derived for the optimal esti-
mating functions when the classes of generalized prediction-based estimating functions are defined
by a finite-dimensional space of predictors. Only unconditional moments are needed for this class
of estimating functions, so a considerably smaller amount of simulation is needed compared to other
classes of estimating functions based on conditional moments. Particular attention is devoted to the
Cox-Ingersoll-Ross model and stochastic volatility models. Using Monte Carlo simulation the small-
sample properties are examined and the method is compared to other estimating functions.
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1 Introduction

Until recently the only feasible solution to the parameter estimation problem in discretely, partially ob-
served stochastic differential equations (SDEs), where the measurements are contaminated with additive
Gaussian white noise, has been to apply the Kalman-Bucy filter (Kalman and Bucy, 1961) for linear
(in the narrow-sense) systems to compute the likelihood function. The filter is based on the evolution
of the conditional moments of the underlying state variables, which is assumed to be given by SDEs.
For nonlinear systems, ordinary differential equations describing the evolution of the conditional mo-
ments are obtained by Taylor expansions of functions of the drift and diffusion functions. For nonlinear
systems, the extended Kalman filter (EKF) may be applied provided that the diffusion function does not
depend on the process. Otherwise higher order filters must be applied (Jazwinski, 1970; Maybeck, 1982),
see (Nielsen, Vestergaard and Madsen, 2000) for a recent application of second order filters. The EKF
is particularly well-suited for handling a nonlinear measurement equation that describes the functions of
the underlying state variables that are measured in noise. Nielsen, Madsen and Melgaard (2000) pro-
poses a multivariate generalization of a transformation due to (Baadsgaard, Nielsen, Spliid, Madsen and
Preisel, 1997) such that the EKF may be applied for a special class of SDEs, eventhough the diffusion
function depends on the process.

The explicit treatment of measurement noise makes it possible to distinguish between process noise, i.e.
the noise typically described by a Wiener process, that affects the future behavior of the process, and
the measurement noise, which in technical and physical applications is merely due to uncertainty in the
measurement device and in e.g. financial applications is due to rounding off prices, asynchronous trad-
ing, bid-ask spreads and other market imperfections. One-step ahead prediction errors are provided by
these filters such that quasi-likelihoodestimates may be obtained using a Prediction Error Decomposition
(PED) (Schweppe, 1965) under the assumption that the prediction errors are for instance Gaussian dis-
tributed. Ljung and Caines (1979) provides an analysis of the properties of the estimators. In the systems
and control literature this method is called a Prediction Error Method (PEM), see e.g. (Ljung, 1987). It
relies on QML theory for the parameter estimation problem. However, the nonlinear filters are based
on Taylor expansions in a way that makes explicit analysis of the validity of the approximations infeasi-
ble. The validity and the performance of the nonlinear filter may, to some extent, be tested using model
validation tools.

Recent developments of the theory of estimating functions for discretely, partially observed SDEs in
Sørensen (1999) makes explicit analysis of the properties of the estimators possible in the general case,
where only some of the states are discretely observed without measurement noise. The other classes
of EFs mentioned below cannot handle unobserved, latent processes. Although the Prediction-based
Estimating Functions (PEFs) attributable to (Sørensen, 1999) allow for estimating parameters in the
unobserved processes, if any, it does not explicitly treat the problem of estimating the states of the
(un)observed processes at the sampling times, because this approach, which is also adopted in this paper,
relies on unconditional moments as opposed to conditional moments. This constitutes a fundamental
difference between the PEFs and the filtering methods.

The general theory of Estimating Functions (EFs) dates back to (Godambe, 1960), see also (McLeish and
Small, 1988; Godambe, 1991; Heyde, 1997). However, the development of EFs for discretely observed
SDEs is of a more recent date. The Martingale Estimating Functions (MEFs) from the linear family for
discretely observed SDEs developed by (Bibby and Sørensen, 1995) are inspired by the properties of the
pseudo-score function, i.e. the score function obtained by discretizing the continuous-time likelihood
function (Liptser and Shiryayev, 1977) provided that the diffusion function does not depend on the pa-
rameter. Requiring that the EF be a martingale implies that the asymptotic properties may be obtained
without letting the time between measurements tend to zero. Unfortunately it also implies that the EFs in-
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volve conditional moments and that the optimal EFs involve derivatives of these moments with respect to
the parameters, which, most often, must be computed by simulation, see (Kloeden and Platen, 1995) for
some approximate methods. If the diffusion function depends on the unknown parameter other classes of
EFs should be used, e.g. the MEFs from the quadratic family attributable to Bibby and Sørensen (1996),
see also (Bibby and Sørensen, 1997), that also requires computing the third and fourth order conditional
moments. Kessler (2000) proposes a new class of simple EFs that provides explicit expressions for the
estimators of the parameters in univariate SDEs. These EFs can only be used to estimate parameters ap-
pearing in the stationary density, because it is based on unconditional moments. However, the martingale
property is lost and asymptotically efficient estimators are not available. Kessler and Sørensen (1999)
proposes another class of MEFs that are based on eigenfunctions of the generator associated with the
SDE, see also (Bibby and Sørensen, 1998), which utilizes a combination of the latter two methods. A
review is provided in (Sørensen, 1997).

The PEFs proposed by Sørensen (1999) and the new class of Prediction-based Estimating Functions with
Measurement noise (PEFMs) proposed in the present paper are based on predictors of functions of the
observed process. Particular attention is given to classes of PEFMs given by a finite-dimensional space
of predictors. For this class a simple expression for the optimal estimating functions (in the sense of
fixed sample optimality) is available. Yet the presence of measurement noise makes the computation of
the unconditional moments more involved. PEFMs only involve the unconditional moments as opposed
to MEFs, where the conditional moments and, in some cases, their derivatives are required.

Other available methods are the Generalized Method-of-Moments (Hansen, 1982; Chan, Karolyi, Longstaff
and Sanders, 1992), Simulated Method-of-Moments (Duffie and Singleton, 1993), Indirect Inference
(Gourieroux, Monfort and Renault, 1993) and Efficient Method-of-Moments (Gallant and Tauchen,
1996; Gallant and Long, 1997). Only EMM can handle unobserved states, see (Gallant, Hsieh and
Tauchen, 1997; Andersen and Lund, 1997) for applications to stochastic volatility models, but none of
these methods allow for measurement noise explicitly. This also holds for the nonparametric methods
proposed by (A¨ıt-Sahalia, 1996a; Aı̈t-Sahalia, 1996b; Stanton, 1997; Jiang and Knight, 1997; Bak, 1998)
and compared using Monte Carlo simulation by (Chapman and Pearson, 1998; Jiang and Knight, 1999).
Pritsker (1998) analyzes the power of the tests proposed by (A¨ıt-Sahalia, 1996b). An overview of param-
eter estimation methods for discretely observed SDEs is given in (Nielsen, Madsen and Young, 1999).

In Section 2 the modelling framework is put forth. The proposed PEFMs will be presented in Section 3,
where the particular problems involved in allowing for measurement noise will be discussed. A simple
expression for the optimal estimating functions in the sense of (Heyde, 1997, Theorem 2.1) is presented
in Section 4. Some applications will be given in Section 5, where particular attention is devoted to the
CIR model (Cox, Ingersoll and Ross, 1985) and stochastic volatilitymodels; a class of SDEs that are used
extensively in mathematical finance, where one of the processes is not directly observed. In Section 6
the properties of the proposed method, simple and explicit estimating functions and a nonlinear filter
used in combination with a QML method are studied using Monte Carlo simulation. Finally, Section 7
concludes.

2 The model

Consider a one-dimensional diffusionX = (Xt)t≥0 defined on the state spaceS ⊆ R satisfying the
stochastic differential equations

dXt = b(Xt; θ)dt + σ(Xt; θ)dWt; X0 = x, (1)

indexed byθ, whereθ belongs toΘ, an open subset ofRp; (W )t≥0 is the standard Wiener process;b and
σ are knownR-valued functions defined onS ×Θ, which are assumed to be smooth enough to ensure,
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for everyθ ∈ Θ, the uniqueness in law of the solution to (1).

Let s(x; θ) denote the density of the scale measure

s(x; θ) = exp
(
−
∫ x

0

2b(y; θ)
σ2(y; θ)

dy

)
. (2)

CONDITION 2.1.The following hold for allθ ∈ Θ∫ ∞
0

s(x; θ)dx =
∫ 0

−∞
s(x; θ)dx =∞ (3)

and ∫ ∞
−∞

[s(x; θ)σ2(x; θ)]−1dx = A(θ) <∞. (4)

Under these assumptionsX is ergodic, and with respect to the Lebesgue measure its stationary density
is x 7→ [A(θ)s(x; θ)σ2(x; θ)]−1.

The differential operatorL defined by

L = b(x; θ)
∂

∂x
+

1
2
σ2(x; θ)

∂2

∂x2
(5)

for all twice differentiable functions is called thegeneratorof the SDE (1). A twice continuously differ-
entiable functionϕ(x; θ) is called aneigenfunctionfor L with eigenvalueλ(θ) if it satisfies

Lϕ(x; θ) = −λ(θ)ϕ(x; θ) (6)

for all x in the state spaceS.

A discretized trajectory(Yti)0≤i≤n with ti = i∆ is assumed to be given by

Yti = h(Xti) + εti , (7)

where∆ is the sampling time,n the number of measurements,h a specified function and(εti)0≤i≤n is
the Gaussian white noise processN (0, σ2

ε) that accounts for the measurement noise.

For computational reasons the following is assumed to hold.

CONDITION 2.2.h is a polynomial inx, i.e.h(x) = xm + xm−1 + . . . + 1, m ∈ N.

3 Prediction-based Estimating Functions

LetFti = σ{Yt1, . . . , Yti} denote theσ-algebra generated by the firsti measurementsYti = (Yt1, . . . , Yti)
for i = 1, . . . , n, wheren denotes the number of measurements. Assume initially thatσ2

ε = 0 and
h(x) = x, i.e. Yti ≡ Xti , in order to introduce the Sørensen (1999) framework. Shortly, we will gen-
eralize to the more general framework obtained forσ2

ε > 0 and a measurement functionh satisfying
Condition 2.2. Letfj , j = 1, . . . , J, be one-dimensional functions defined on the state spaceS sat-
isfying Eθ[fj(Yti)

2] < ∞ for all θ ∈ Θ, whereEθ denotes the expectation operator whenθ is the

true parameter value. LetHθi denote theL2-space of square integrableFti-measurable one-dimensional

stochastic variables and letPθi,j, j = 1, . . . , J, be closed linear subspaces ofHθi . As in (Sørensen, 1999)
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a subspace can be interpreted as a set of predictors offj(Yti+1) given the previous measurementsYti.

Let Π(i−1)
j (θ) =

(
π

(i−1)
1,j (θ), . . . , π

(i−1)
p,j (θ)

)T
be ap-dimensional stochastic vector with coordinates

belonging toPθi−1,j. Sørensen (1999) introduces the following class of prediction-based estimating func-
tions

Gn(θ) =
n∑
i=1

J∑
j=1

Π(i−1)
j (θ)

[
fj(Yti)− π̂

(i−1)
j (θ)

]
, (8)

whereπ̂
(i−1)
j (θ) is the Minimum Mean Square Error (MMSE) linear predictor offj(Yti) onPθi−1,j and

Gn(θ) is ap-dimensional vector, i.e.fj(Yti) − π̂
(i−1)
j (θ) is thei’th prediction error. It is well-known

that π̂(i−1)
j (θ) is the orthogonal projection offj(Yti−1) on Pθi−1,j with respect to the inner product in

Hθi , and it is uniquely determined by the projection equations

Eθ[π(fj(Yti)− π̂
(i−1)
j (θ))] = 0 (9)

for all π ∈ Pθi−1,j. It follows from (9) that (8) provides an unbiased estimating function.

In the remainder of the paper we shall only be concerned with prediction-based estimating functions
where each of the setsPθi−1,j is finite-dimensional. Thus it is assumed thatPθi−1,j is spanned byZ(i−1)

j =(
Z

(i−1)
j1 , . . . , Z

(i−1)
jqij

)
, where the functionsZ(i−1)

jk = φ
(i)
jk (Yt1, . . . , Yti) for k = 1, . . . , qij are linearly

independent inHθi−1. It is assumed thatZ(i−1)
j0 ≡ 1 in order to ensure that the MMSE predictor of

fj(Yti) in Pθi−1,j is unbiased. From (9), it follows that the optimal linear predictor is given by

π̂
(i−1)
j (θ) = â

(i−1)
j0 (θ) + â(i−1)

j (θ)TZ(i−1)
j , (10)

where

â(i−1)
j (θ) = Ci−1,j(θ)−1b(i−1)

j (θ), (11)

and

â
(i−1)
j0 (θ) = Eθ[fj(Yti)]− â(i−1)

j (θ)T Eθ[Z(i−1)
j ]. (12)

HereCi−1,j(θ) denotes the covariance matrix ofZ(i−1)
j whenθ is the true parameter value, and

b(i−1)
j (θ) =

(
Covθ(Z(i−1)

j1 , fj(Yti)), . . . , Covθ(Z(i−1)
jqij

, fj(Yti))
)T

. (13)

It follows that the prediction-based estimating functions proposed by (Sørensen, 1999) can be computed

provided that the covariances inb(i−1)
j (θ) andCi−1,j(θ) can be computed. SincêΠ

(i−1)

j (θ) is com-
pletely characterized by a second order moment representation of the stochastic vector(

fj(Yti), Z
(i−1)
j1 , . . . , Z

(i−1)
jqij

)
,

only parameters appearing in these moments for at least onej can be estimated using (8). For computa-
tional tractability this imposes some restrictions on the choice of the functionsfj andφ

(i)
jk . Often simple

polynomials inYti will be sufficient. There is no available theory for the optimal choice of the functions
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fj andφ
(i)
jk due to the lack of a properly defined optimality criterion, but the choice must be guided by

the (subset of the) parameters that should be estimated.

Let us now turn to the general case, whereσ2
ε > 0 andh should only satisfy Condition 2.2. The projection

results described above still holds, but the computations will be more complicated due to the presence
of the noise term(εti)1≤i≤n. It is assumed in (7) that(εti)1≤i≤n is a Gaussian white noise process such
that a second order moment representation is still sufficient. As it will be illustrated in Section 5 a large
number of unconditional moments need be computed either explicitly or by simulation. Explicit expres-
sions are derived in Section 4. Simulation methods are not covered in this paper, although it is noted that
it is much easier to simulate unconditional moments than conditional moments, see e.g. (Kloeden and
Platen, 1995).

REMARK 3.1.Hansen and Scheinkman (1995) shows that the aliasing problem does not exist forir-
reversibleSDEs without measurement noise (σ2

ε = 0). We shall not go into the problem of uniquely
identifying models of the type (1) from the discretized trajectory(Yti)0≤i≤n in the general case where
σ2
ε > 0. H

4 Optimal estimating functions

In this section explicit expressions for the optimal prediction-based estimating functions with measure-
ment noise will be given. The notation is as in (Sørensen, 1999). The presentation in Section 4.1
follows (Sørensen, 1999) that also relies on optimality results from (Heyde, 1997). Section 4.2 contains
new results regarding explicit expressions for unconditional moments of both(Xt)t≥0 and(Yti)1≤i≤n
and their interrelations.

4.1 Optimal estimating functions

Introducing a slightly more compact notation thel’th coordinate ofΠ(i−1)
j (θ) in (8) is given by

π
(i−1)
l,j (θ) =

qij∑
k=0

a
(i)
ljkZ

(i−1)
jk (14)

with Z
(i−1)
j0 = 1. Writing the weightsa(i)

ljk in p×
∑J

j=1(qij + 1)-matrices as

A(i)(θ) =


a

(i)
110(θ) · · · a

(i)
11qi1

(θ) · · · a
(i)
1J0(θ) · · · a

(i)
1JqiJ

(θ)
...

...
...

...

a
(i)
p10(θ) · · · a

(i)
p1qi1

(θ) · · · a
(i)
pJ0(θ) · · · a

(i)
pJqiJ

(θ)

 (15)
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for i = 1, . . . , n, and defining
∑J

j=1(qij + 1)-dimensional vectors by

Φ(i)(θ) =



Z
(i−1)
10 [fj(Yti)− π̂

(i−1)
1 (θ)]

...

Z
(i−1)
1qij

[fj(Yti)− π̂
(i−1)
1 (θ)]

...

...

Z
(i−1)
J0 [fJ(Yti)− π̂

(i−1)
J (θ)]

...

Z
(i−1)
JqiJ

[fJ(Yti)− π̂
(i−1)
J (θ)]


(16)

allows us to write the estimating functionGn(θ) in (8) as

Gn(θ) =
n∑
i=1

A(i)(θ)Φ(i)(θ). (17)

The summation may be avoided by defining thep×
(
n
∑J

j=1(qij + 1)
)

-matrix

Dn(θ) =
(
A(1)(θ) . . .A(n)(θ)

)
, (18)

and the
(
n
∑J

j=1(qij + 1)
)

-dimensional vector

Kn(θ)T =
(

Φ(1)(θ)T , . . . , Φ(n)(θ)T
)

, (19)

i.e. the estimating function (17) takes the simple form

Gn(θ) = Dn(θ)Kn(θ) (20)

For the estimating functionGn(θ) = (Gn,1(θ), . . . , Gn,p(θ))T define the partial derivatives

∂
θT

Gn(θ) =

 ∂θ1Gn,1(θ) . . . ∂θpGn,1(θ)
...

...
∂θ1Gn,p(θ) . . . ∂θpGn,p(θ),

 (21)

where, say,∂θ1Gn,2(θ) = ∂
∂θ1

Gn,2(θ), and

∂θGn(θ)T = (∂θTGn(θ))T . (22)

The concept of fixed sample optimality (OF -optimality) is defined in (Heyde, 1997), where it is shown
that an estimating functionG∗n(θ) isOF -optimal if and only if

Eθ[∂θTGn(θ)]−1 Eθ[Gn(θ)G∗n(θ)T ] = Eθ[∂θTG∗n(θ)]−1 Eθ[G∗n(θ)G∗n(θ)T ] (23)

for all Gn(θ) of the form (20). According to (Heyde, 1997, p. 14-15) this is obtained when

Eθ[Gn(θ)G∗n(θ)T ] = −Eθ [∂θTGn(θ)]. (24)

This result leads to the following theorem from (Heyde, 1997, Theorem 2.1).
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THEOREM 4.1.Suppose that for allθ ∈ Θ the covariance matrix ofKn(θ) is invertible andE
θT

[K(θ)]
has rankp. Then the estimating function

G∗n(θ) = D∗n(θ)K∗n(θ), (25)

where

D∗n(θ) = −Eθ[∂θK∗n(θ)T ]
(
Eθ[Kn(θ)Kn(θ)T ]

)−1
(26)

is optimal within the class of estimating functions of the form (20) for whichDn(θ) has rankp.

Proof. Follows immediately by inserting (25) and (26) in (24). �

Assuming that(Yti)1≤i≤n is stationary and that the setsPθi−1,j is spanned byZ(i−1)
jk = φjk(Yti−1, . . . , Yti−q),

k = 0, . . . , qj, wherehjk (now independent ofi as isqj ) is a function fromRq toR, q ∈ N, much sim-

pler results for the optimal estimating function can be obtained. This choice ofZ
(i−1)
jk being given as a

function ofq lagged measurements implies thatZ
(i−1)
jk is only well defined fori ≥ q + 1. In this case, it

holds thatA(q+1)(θ) = . . . = A(n)(θ) = A(θ) such that (17) takes a much simpler form, namely

Gn(θ) = A(θ)
n∑

i=q+1

Φ(i)(θ). (27)

Under this assumption theOF -optimal weights are given in the next theorem.

THEOREM 4.2.The optimal weights in (27) are given by

A∗(θ) = U(θ)TMn(θ)−1, (28)

where

U(θ) = −E[∂
θT

Φ(i)(θ)] = −


∂θ1Φ(i)

1 (θ) · · · ∂θpΦ
(i)
1 (θ)

...
...

∂θ1Φ(i)
q+1(θ) · · · ∂θpΦ(i)

q+1(θ)

 (29)

and

Mn(θ) = E[Φ(i)(θ)Φ(i)(θ)T ] +
n−q∑
k=1

n− q − k + 1
n− q + 1

×(
E[Φ(i)(θ)Φ(i+k)(θ)T ] + E[Φ(i+k)(θ)Φ(i)(θ)T ]

)
. (30)

Proof. See (Sørensen, 1999, Proposition 3.2). �

REMARK 4.1.Conditions for invertibility ofMn is given in (Sørensen, 1999, Proposition 3.2). H

REMARK 4.2.Eq. (30) is more conveniently expressed as

Mn(θ) = E[Φ(i)(θ)Φ(i)(θ)T ] +
n−q∑
k=1

n− q − k + 1
n− q + 1

×(
E[Φ(i)(θ)Φ(i+k)(θ)T ] + E[Φ(i)(θ)Φ(i+k)(θ)T ]T

)
, (31)

when implementing the method on a computer. H

9



4.2 Computing unconditional moments

In most applications the functionsfj andφjk will be polynomials in the measurements at different time
instants. Thus in order to determine the unconditional mixed moments constitutingE[Φ(i)(θ)Φ(i)(θ)T ]
expressions of the form

E[Y j1
t1

Y j2
t2
· · ·Y jm

tm
] (32)

for m ∈ N, j1, . . . , jm ∈ Nm0 and t1 < t2 < . . . < tm being positive sampling times must be de-
termined. Using (7) this problem reduces to determining explicit expressions for moments on the form
E[Xj1

t1
· · ·Xjm

tm ] provided that the following condition holds.

CONDITION 4.1.Polynomials are eigenfunctions to the generator (5) of the diffusion process (1), i.e.
the eigenfunctions

ϕi(x; θ) =
i∑

j=0

γij(θ)xj (33)

satisfies the equation

Lϕi(x; θ) = −λiϕi(x; θ) (34)

for i = 1, . . . , m.

REMARK 4.3.The constantsγij(θ) are computed from (33). See Section 5.1 for an example. H

L EMMA 4.1.Under Condition 4.1, it holds that

exp(−λit)
i∑

j=0

γij(θ)xj =
i∑

j=0

γij(θ)
j∑

k=0

νjk(t; θ)xk; i = 1, . . . , m (35)

from which the constantsνjk(t; θ) are determined.

Proof. Taking the conditional expectation on both sides of (33) yields

E[ϕi(Xt; θ)|X0 = x] =
i∑

j=0

γij(θ) E[Xj
t |X0 = x]. (36)

Under weak regularity conditions

E[ϕi(Xt; θ)|X0 = x] = exp(−λit)ϕi(x; θ), (37)

see (Kessler and Sørensen, 1999, Section 5). Inserting (37) in (36) yields

exp(−λit)ϕi(x; θ) =
i∑

j=0

γij(θ) E[Xj
t |X0 = x]. (38)

Under Condition 4.1, Eq. (38) can be expressed as

exp(−λit)ϕi(x; θ) =
i∑

j=0

γij(θ)
j∑

k=0

νjk(t; θ)xk (39)

Inserting (33) in (39) completes the proof. �
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REMARK 4.4. It follows immediately from (38)–(39) that

E[Xj
t |X0 = x] =

j∑
k=0

νjk(t; θ)xk; j ∈ N (40)

H

This leads to the main result given in the next theorem.

THEOREM 4.3.Assume that the diffusion(Xt)t≥0 solves (1). Form ∈ N, j1, j2, . . . , jm ∈ Nm0 and the
sampling timest1 < t2 < . . . < tm, it holds that

E[Xj1
t1
· · ·Xjm

tm ] =
jm∑
im=0

νjm,im(tm − tm−1; θ)× · · · ×
j3+i4∑
i3=0

ν(j3+i4),i3(t3 − t2; θ)

×
j2+i3∑
i2=0

ν(j2+i3),i2(t2 − t1; θ) E[Xj1+i2
t1

] (41)

Proof. The proof is made by induction.E[Xj1
t1

] obviously fulfills (41).

Assume that

E[Xj1
t1
· · ·Xjm

tm ] =
jm∑
im=0

νjm,im(tm − tm−1; θ)× · · · ×
j3+i4∑
i3=0

ν(j3+i4),i3(t3 − t2; θ)

×
j2+i3∑
i2=0

ν(j2+i3),i2(t2 − t1; θ) E[Xj1+i2
t1

]

Next let us prove that

E[Xj1
t1
· · ·Xjm

tmX
jm+1
tm+1

] =
jm+1∑
im+1=0

νjm+1 ,im+1(tm+1 − tm; θ)× · · · ×
j3+i4∑
i3=0

ν(j3+i4),i3(t3 − t2; θ)

×
j2+i3∑
i2=0

ν(j2+i3),i2(t2 − t1; θ) E[Xj1+i2
t1

]

By conditioning onXjm
tm , we get

E[Xj1
t1
· · ·Xjm+1

tm+1
] = E[E[Xj1

t1
· · ·Xjm

tmX
jm+1
tm+1
|Xjm

tm ]]

= E[Xj1
t1
· · ·Xjm

tm E[Xjm+1
tm+1
|Xjm

tm ]]

= E[Xj1
t1
· · ·Xjm

tm

jm+1∑
im+1=0

νjm+1 ,im+1(tm+1 − tm; θ)X im+1
tm ]

=
jm+1∑
im+1=0

νjm+1 ,im+1(tm+1 − tm; θ)× E[Xj1
t1

Xj2
t2
· · ·Xjm+im+1

tm ]

11



According to the assumption by induction we obtain

E[Xj1
t1
· · ·Xjm+1

tm+1
] =

jm+1∑
im+1=0

νjm+1 ,im+1(tm+1 − tm; θ)

×
jm∑
im=0

νjm,im(tm − tm−1; θ)× · · ·

×
j3+i4∑
i3=0

ν(j3+i4),i3(t3 − t2; θ)

×
j2+i3∑
i2=0

ν(j2+i3),i2(t2 − t1; θ) E[Xj1+i2
t1

],

which completes the proof. �

REMARK 4.5.The result in Theorem 4.3 is a generalization of a result in (Sørensen, 1999). H

5 Applications

This section considers two examples of using PEFMs, namely the Cox-Ingersoll-Ross mode (Cox et al.,
1985) and stochastic volatility models.

5.1 The CIR model

Consider the CIR model which is used extensively in mathematical finance as a model for e.g. spot
interest rates

dXt = α(β −Xt)dt + σ
√

XtdWt; X0 = x, (42)

whereθ = (α, β, σ) ∈ (0,∞)3 such that the process(Xt)t≥0 is ergodic. It is well-known thatXt

has a non-central chi-square distribution and thatX (the stationary case) has a gamma-distribution

Γ
(

2αβ
σ2 , σ

2

2α

)
. It follows that the stationary mean and variance are given byE[X ] = β andV[X ] = βσ2

2α ,

respectively. The higher order moments satisfy the recursive relation

E[Xm] =
(

β +
(m− 1)σ2

2α

)
E[Xm−1] (43)

for m ≥ 2. The spectrum (set of eigenvalues) isΛθ = {jα : j ∈ N0} with corresponding eigen-

functionsφj(x; θ) = L
(η)
j (2αxσ−2), whereL

(η)
j is thejth order Laguerre polynomial with parameter

η = 2αβσ−2 − 1 (Karlin and Taylor, 1981).

A discretized trajectory(Yti)0≤i≤n with ti = i∆ is assumed to be given by

Yti = Xti + εti . (44)

For notational simplicity, we assume that only one parameter is to be estimated, i.e.p = 1.

12



Let f(y) = y2, J = 1, and let the spacePθi−1 on which the linear projection is made be spanned by

Z(i−1) =
(
Z

(i−1)
1 , . . . , Z

(i−1)
5

)
, whereZ

(i−1)
k = φk

(
Yti , Yti−1, . . . , Yti−5

)
= Y 2

ti−k . The dimension of

the spacePθi−1 is chosen arbitrarily to be equal to 5.

Assuming stationarity, the optimal (MMSE) predictor off(Yti) onPθi−1 is given by a special case of
(10), i.e.

π̂(i−1) = â0 + â(θ)TZ(i−1) = â0 + â1Y
2
ti−1

+ . . . + â5Y
2
ti−5

such that the projection errors are given by

Y 2
ti − â0 − â1Y

2
ti−1
− . . .− â5Y

2
ti−5

and (16) takes the form

Φ(i) =


Y 2
ti − â0 − â1Y

2
ti−1
− . . .− â5Y

2
ti−5

Y 2
ti−1

(Y 2
ti − â0 − â1Y

2
ti−1
− . . .− â5Y

2
ti−5

)
...

Y 2
ti−5

(Y 2
ti − â0 − â1Y

2
ti−1
− . . .− â5Y

2
ti−5

)

 .

In order to compute the optimal weightsA∗(θ) given by (28) and the optimal PEFM in (27), it is neces-
sary to compute the matrix of partial derivativesU(θ) in (29) and the matrixMn(θ) in (30). The latter
consists of (mixed) moments ofYti that may be computed as follows. It is possible to derive a general
expression that relates the simple unconditional moments ofYti andXti .

L EMMA 5.1.For the discretized trajectory(Yti)1≤i≤n given by (44), it holds that

E[Y 2m
ti ] =

2m∑
j=0

δj E[X2m−j
ti

] (45)

with

δj =


(

2m
j

)
σjε

j/2∏
k=1

(2k− 1) for j = 0, 2, 4, . . .

0 for j = 1, 3, 5, . . .

(46)

for m ∈ N.

Proof. The binomial formula yields the result

E[Y 2m
ti ] = E[(Xti + εti)

2m] =
2m∑
j=1

(
2m

j

)
E[X2m−j

ti
εjti ] (47)

As (εti)1≤i≤n is Gaussian white noise, it holds that

E[X2i1+1
ti

ε2i2+1
ti

] = 0

for i1, i2 ∈ N2
0. As E[ε2i+1

t ] = 0 andE[ε2j
t ] = σ2j

ε
∏j
k=1(2k − 1) for j ∈ N0 the definition of the

constantsδj ∈ N in (46), and hence (45), follows. �
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From the lemma, it follows that e.g.

E[Y 2
ti ] = E[X2

ti] + σ2
ε

E[Y 4
ti ] = E[X4

ti] + 6 E[X2
ti]σ

2
ε + 3σ4

ε

E[Y 6
ti ] = E[X6

ti] + 15 E[X4
ti]σ

2
ε + 45 E[X2

ti ]σ
4
ε + 15σ6

ε

E[Y 8
ti ] = E[X8

ti] + 28 E[X6
ti]σ

2
ε + 210 E[X4

ti]σ
4
ε + 420 E[X2

ti]σ
6
ε + 105σ8

ε

Furthermore, it holds that

V[Y 2
ti ] = E[X4

ti ] + 4 E[X2
ti]σ

2
ε + 2σ4

ε − E[X2
ti ]

2

Cov[Y 2
t1, Y

2
t2] = E[(Y 2

t1 − E[Y 2
t1])(Y 2

t2 − E[Y 2
t2])] = Cov[X2

t1, X
2
t2]; t1 6= t2,

Using these relations higher order unconditional moments of(Yti)1≤i≤n may be expressed in terms
of the unconditional moments of(Xti)1≤i≤n given by (43). The same applies for mixed moments of
(Yti)1≤i≤n, e.g.

E[Y 2
t1Y

2
t2Y

2
t3Y

2
t4 ] = E[(Xt1 + εt1)2(Xt2 + εt2)2(Xt3 + εt3)2(Xt4 + εt4)2]

= E[X2
t1X

2
t2X

2
t3X

2
t4] + σ2

ε E[X2
t1X

2
t2X

2
t3]

+σ2
ε E[X2

t1X
2
t2X

2
t4] + σ2

ε E[X2
t1X

2
t3X

2
t4] + σ4

ε E[X2
t2X

2
t3]

+σ4
ε E[X2

t2X
2
t4] + σ4

ε E[X2
t3X

2
t4] + 4σ6

ε E[X2
t1] + σ8

ε

Theorem 4.3 provides expressions for the mixed momentsE[X2
t1X

2
t2X

2
t3X

2
t4] in terms ofE[Xm

t ], where
the latter is given by (43).

EXAMPLE 5.1.Let us now try to determine expressions ofν20(t; θ), ν21(t; θ) andν22(t; θ) by applying
(35). To ease the notationνjk(t; θ) will be written asνjk andγjk(θ) asγjk. Insertingi = 2 in (35)
yields

exp(−λ2t) · (γ20 + γ21x + γ22x
2) = γ20ν00 + γ21(ν10 + ν11x)

+γ22(ν20 + ν21x + ν22x
2)

Collecting terms inx yields

γ20 exp(−λ2t) = γ20ν00 + γ21ν10 + γ22ν20

γ21 exp(−λ2t) = γ21ν11 + γ22ν21

γ22 exp(−λ2t) = γ22ν22.

These equations are then solved with respect toν2j for j = 1, 2, 3, which yields

ν20 =
γ20

γ22
(exp(−λ2t)− ν00)− γ21

γ22
ν10 (48a)

ν21 =
γ21

γ22
(exp(−λ2t)− ν11) (48b)

ν22 = exp(−λ2t) (48c)

Inserting the solutions forν00, ν10 andν11 obtained by solvingLϕ2(x; θ) = −λ2ϕ2(x; θ) andLϕ1(x; θ) =
−λ1ϕ1(x; θ) in (48) yields

ν20 =
γ20

γ22
(exp(−λ2t) − 1)− γ21

γ22

γ10

γ11
(exp(−λ1t)− 1)

ν21 =
γ21

γ22
(exp(−λ2t) − exp(−λ1t))

ν22 = exp(−λ2t)

�
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EXAMPLE 5.2.Under Condition 4.1, it follows that the second eigenfunctionφ2(x; θ) is given by (up
to a multiplicative constant)

φ2(x; θ) = γ20 + γ21x + γ22x
2 (49)

where the constantsγ2i for i = 0, 1, 2 are determined as follows. For the CIR model, Eq. (34) takes the
form

α(β − x)(γ21 + 2γ22) + σ2xγ22 = −λ2(γ20 + γ21x + γ22x
2)

Making the arbitrary choiceγ22 = 1 and matching coefficients yields

γ21 = −2αβ + σ2

α
andγ20 =

β(2αβ + σ2)
2α

such that

φ2(x; θ) =
β(2αβ + σ2)

2α
− 2αβ + σ2

α
x + x2

�

It is clear that even for a small sample a huge amount of mixed moments should be computed in order
to determine the optimal PEFM given by (27). These computations may be carried out using a symbolic
mathematical package, say, Maple1 or the moments may be computed by simulation. In both cases, it is
convenient to introduce an algebra to handle all the special cases, where some of the indices in the mixed
momentE[X2

t1X
2
t2X

2
t3X

2
t4] coincides. Depending on the (autocorrelation and mixing) properties of the

data, it may also be possible to simplify and reduce the number of mixed moments. See (Nolsøe, 1999)
for further details.

5.2 Stochastic Volatility Models

Sørensen (1999) considers the simple Stochastic Volatility (SV) model

dXt =
√

vtdWt (50a)

dvt = b(vt; θ)dt + c(vt; θ)dBt (50b)

where(Wt)t≥0 and(Bt)t≥0 are assumed to be two independent standard Wiener processes.

Consider the differencesZti = Xti − Xti−1 that turns out to be returns between sampling instants
provided thatXti is the logarithm of a stock price. Since

Zti =
∫ ti

ti−1

√
vtdWt, (51)

it follows, as in (Sørensen, 1999), that the processZ = (Zti)0≤i≤n is stationary, that theZti ’s are
uncorrelated, but not independent, and that

Zti =
√

Stiξti , (52)

1Some programs may be obtained from the authors on request.
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where

Sti =
∫ ti

ti−1

vtdt (53)

and where theξti ’s are independent, identically standard normal stochastic variables, and independent of
S = (Sti)0≤i≤n.

Introducing the measurement equation

Yti = Zti + εti , (54)

it follows that the moments ofYt may be expressed in terms of the moments ofvt, Zt andεt at the
sampling instants, i.e.

E[(Zt + εt)2] = E[Z2
t + ε2

t + 2Ztεt] = E[vt] + σ2
ε (55)

Var[(Zt + εt)2] = E[(Zt + εt)4]−E[(Zt + εt)2]2

= E[Z4
t ] + 6E[Z2

t ]σ
2
ε + 3σ4

ε − (E[Z2
t ] + σ2

ε)
2

= E[Z4
t ] + 4E[Z2

t ]σ
2
ε + 2σ4

ε −E[Z2
t ]2 (56)

Under the assumption that (50b) is the CIR-model (42) the expressions in Lemma 5.1 may be used to
compute these moments (by substitutingXt for Zt). For other models, see (Sørensen, 1999).

REMARK 5.1.Allowing for correlated Wiener processes would make it possible to model the socalled
“leverage” effect, , i.e. the fact that large upward moves in equity markets typically have smaller volatility
impacts than large downwards moves of the same magnitude. It would be particularly interesting to
model the leverage effect introduced by (Black, 1976; Christie, 1982) dynamically, because (Engle and
Lee, 1999) suggests that this effect is only a temporary behavior in the stock market. H

Alternatively, the Efficient Method-of-Moments (EMM) method (Gallant and Tauchen, 1996) is applied
in (Gallant et al., 1997; Gallant, Hsu and Tauchen, 1998). A Bayesian approach based on a Markov
Chain Monte Carlo (MCMC) methodology is proposed by (Eraker, 1998). Neither of these methods
allow for measurement noise. However, another estimation method for this class of models based on a
second order nonlinear filter is proposed by (Nielsen, Vestergaard and Madsen, 2000).

Additional theoretical results on SV-models may be found in e.g. the series of papers (Genon-Catalot,
Jeantheau and Lar´edo, 1998a; Genon-Catalot, Jeantheau and Lar´edo, 1998b; Genon-Catalot, Jeantheau
and Larédo, 1999).

6 Monte Carlo studies

In this section the properties of the proposed PEFMs will be analyzed and compared to the properties of
the simple and explicit estimating functions (Kessler, 2000), and a nonlinear filter used in combination
with a QML method using Monte Carlo simulation. Discrete measurements of the CIR model are used,
i.e. the model is given by (42)+(44).

6.1 A nonlinear filter

The general continuous-discrete time nonlinear filtering problem is described in (Jazwinski, 1970; May-
beck, 1982) with recent applications in finance given in (Nielsen, Vestergaard and Madsen, 1999; Nielsen,
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Vestergaard and Madsen, 2000). Briefly the general idea is to infer information about the unobserved
statesXti from the measurementsYti for i = 1, . . . , n using two sets of equations: A propagation set
describing the evolution of the states between the sampling times and an update set that updates the
estimates of the states at the sampling timesti. LetYti denote the information set provided by the mea-
surements up to and including timeti. The transition densitiesp(Xti |Xti−1; θ) can, at least in principle,
be found as the solution to the Chapman-Kolmogorov forward equation, and the conditional density
p(Xt|Yti−1; θ) may then be found from

p(Xt|Yti−1; θ) =
∫
S

p(Xt|Xti−1; θ)p(Xti−1|Yti−1 ; θ)dXti−1 for t ∈ [ti−1, ti), (57)

wherep(Xti|Yti−1 ; θ) is the conditional density for the previous measurement update that follows from
Bayes’ rule

p(Xti|Yti ; θ) =
p(Yti |Xti , Yti−1; θ)p(Xti|Xti−1; θ)

p(Yti |Yti−1; θ)
. (58)

Assuming that the measurement noise is Gaussian, the first numerator term may be simplified to
p(Yti |Xti, Yti−1; θ) = p(Yti |Xti; θ), where the latter is Gaussian. The denominator is given by

p(Yti |Yti−1; θ) =
∫
S

p(Yti|Xti ; θ)p(Xti|Yti ; θ)dXti (59)

Unfortunately, an explicit expression for the conditional densityp(Xt|Yti−1 ; θ) given in (57) cannot
be obtained for the CIR model (42), which implies that an approximate solution to the continuous-
discrete time filtering problem given by (57)–(59) must be found. Motivated by the linear Kalman
filter (Kalman and Bucy, 1961; Harvey, 1989) that is based on the first two conditional moments, i.e.
the conditional mean and variance, the exact time propagation of the states are approximated by two
Ordinary Differential Equations (ODEs) for the first two conditional moments of the conditional density,
see e.g. (Maybeck, 1982). However, for the CIR model (42) it turns out that these approximate ODEs
coincide with the true ODEs2. Indeed these ODEs may be solved explicitly, i.e.

E[Xti |Xti−1] = β + (Xti−1 − β)e−α∆ (60a)

V[Xti |Xti−1] =
σ2β

2α
+

σ2

α
(Xti−1 − β)e−α∆ − σ2

α

(
Xti−1 −

β

2

)
e−2α∆ (60b)

with ∆ = ti − ti−1. The approximate updating equations are given by

E[Xti|Xti ] = E[Xti|Xti−1] + Kti(Yti − E[Xti|Xti−1]) (61a)

V[Xti|Xti ] = (1−Kti) V[Xti |Xti−1], (61b)

where the Kalman gainKti is

Kti =
V[Xti |Xti−1]

V[Xti|Xti−1] + σ2
ε

(62)

The equations (60)–(62) constitute the modified truncated second order filter.

QML estimates of the parameterθ are readily obtained by assuming that the one-step ahead prediction
errorsYti−E[Xti|Xti−1] in (61a) are Gaussian. Given that the first two conditionalmoments are correctly
specified by the filter, it follows immediately from (Bollerslev and Wooldridge, 1992) that the QML
estimates attain the same nice properties as ML estimates.

2This statement holds for the socalled truncated second order filter that ignores all central moments ofXt of higher order
than two.
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REMARK 6.1. It is noted that the assumption inherent to the applied filter is that the conditional mean
and variance provide an adequate description of the transition density. This assumption only holds for
narrow-sense linear SDEs with a Gaussian density. H

6.2 Simple and explicit estimating functions

Kessler (2000) proposes the class of Simple and Explicit Estimating Functions (SEEF) given by

Fn(θ) =
n∑
i=1

Lg(Xti), (63)

whereg belongs to the set of twice continuously differentiable functions onS, and the generatorL is
defined in (5). This class may be used provided that the sampling interval∆ is “large” such that the auto-
correlation between subsequent measurements may effectively be neglected, and that the measurements
are not observed in noise. Under some regularity conditions, the methodology provides consistent and
asymptotically normal, but not asymptotically efficient, estimates of parameters in the stationary density.
It is based on the unconditional moments as the PEFs proposed by (Sørensen, 1999).

Insertingg(x) = (x, x2)T in (63) and solvingFn(θ) = 0 for α andσ2 yields the following explicit
estimators for the CIR model (42), i.e.

α̂n =
σ2

n∑
i=1

Xti

2
n∑
i=1

X2
ti
− 2β

n∑
i=1

Xti

and σ̂2
n =

2α
n∑
i=1

X2
ti − 2αβ

n∑
i=1

Xti

n∑
i=1

Xti

, (64)

where the estimator for each parameter is obtained under the assumption that the remaining parameters
are fixed at their true values. In the following two simulation studies the estimators (64) will be used on
both the simulated statesXii and the measurementsYti .

6.3 Simulation studies

Two Monte Carlo simulation studies are reported in this section. In each study 20 stochastically indepen-
dent time series each consisting ofn=500 measurements have been simulated. The Milstein discretiza-
tion scheme (Kloeden and Platen, 1995) is used to obtain a numerical solution to (42) and measurement
noise is subsequently added to the simulated states. For computational convenience, one parameter is
estimated at a time while the others are fixed at their true value. The nuisance parameterσ2

ε is also fixed.
Due to the severe computational requirements of PEFM only estimates ofα andσ2 are provided in both
studies. The results obtained in Section 5.1 have been used extensively.

In the first study the parameter vector

θT = (α, β, σ2, σ2
ε) = (0.08, 0.25, 0.0073, (0.015)2)

is used. The sampling time is∆=0.1. The results reported in Table 1 are obtained. The mean and
standard deviation of the 20 samples of each parameter is listed. All the methods underestimateα, but
almost the same level of efficiency is obtained. This, in particular, holds for the filtering/QML method.
In our experience filters tend to underestimate thespeed-of-adjustmentparameterα when it is “small”
compared to the sampling time∆, see e.g. (Baadsgaard, 1996; Nielsen, Vestergaard and Madsen, 2000).
On the other hand, the filtering/QML method outperforms the EF-based methods regarding the estimate
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of σ2. It is noted that the SEEF method provides remarkably poor estimates ofσ2. When the SEEF
method is applied to the states (SEEFx) only 10 out of the 20 estimates are positive, while 14 estimates
are positive when the SEEF method is applied to the measurements (SEEFy)3. It appears that∆ is too
small to allow for the autocorrelation between subsequent measurement to be neglected.

True PEFM SEEFx SEEFy Filter

α 0.08
0.0743

(0.0145)
0.0725

(0.0148)
0.0756

(0.0145)
0.0546

(0.0144)

σ2 0.0073
0.0066

(0.0011)
0.0120

(0.0082)
0.0124

(0.0091)
0.0074

(0.0013)

Table 1: Estimation results from the first simulation study. The estimates provided are obtained as the
mean of 20 independent samples each consisting of 500 measurements from the CIR model (42). The
standard deviations are given in parenthesis. The true values are (α, β, σ2, σ2

ε) = (0.08, 0.25, 0.0073,
(0.015)2).

In the second study the parameter vector

θT = (α, β, σ2, σ2
ε) = (0.5, 0.25, 0.0225, 0.01)

is used. The sampling time is∆=0.1. The results reported in Table 2 are obtained. In this study the
filtering/QML method and the PEFM method provide almost identical results. The filtering estimates are
slightly less biased, and the efficiency of the estimate ofσ2 is higher. Thus the value ofα in this study
is sufficiently large compared to the sampling time∆ to avoid the afore-mentioned problems with the
filtering/QML method. Similar problems have not occurred with the PEFM method.

True PEFM Filter

α 0.5
0.4911

(0.0553)
0.4959

(0.0584)

σ2 0.0225
0.01873

(0.007322)
0.01973

(0.003349)

Table 2: Estimation results from the second simulation study. The estimates provided are obtained as
the mean of 20 independent samples each consisting of 500 measurements from the CIR model (42).
The standard deviations are given in parenthesis. The true values are (α, β, σ2, σ2

ε) = (0.5, 0.25, 0.0225,
0.01).

7 Conclusion

A generalization of the prediction-based estimating functions (PEFs) proposed by (Sørensen, 1999) that
allows for measurement noise has been proposed. The method is based on unconditional (mixed) mo-
ments and new explicit results have been obtained for computing these moments. The CIR model is
used to illustrate some of the moment calculations inherent to the method; an explicit expression for the
relation between the measurements and the underlying states is derived. The method has been presented
for univariate diffusion processes, but it may readily be generalized to multifactor models.

An obvious advantage of PEFM is that optimal estimators may be derived and their asymptotic properties
are well-established. An equally obvious disadvantage is the huge number of unconditional and mixed

3These results are obtained simply by substitutingYti for Xti in (64).
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moments that need be computed even for univariate SDEs. From a theoretical point of view it is possible
to generalize the PEFM method to cope with multivariate SDEs, but they may be very difficult to imple-
ment, unless suboptimal weights are used. Nonlinear filtering methods are well-suited for multivariate
SDEs, but the approximations that are inherent to the ODEs for the conditional moments are very diffi-
cult to assess such that the properties of the QML-estimates are difficult to establish. In our experience
the bias imposed by these moment approximations are, however, negligible in most applications.
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