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Abstract

The prediction-based estimating functions proposed by (Sgrensen, 1999) are generalized to fa-
cilitate parameter estimation in discretely observed stochastic differential equations, where the ob-
servations are corrupted by additive white noise. The new class of estimating functions has most
of the nice properties of martingale estimating functions. However, they may be applied when no
obvious or easily calculated martingales exist. Simple expressions are derived for the optimal esti-
mating functions when the classes of generalized prediction-based estimating functions are defined
by a finite-dimensional space of predictors. Only unconditional moments are needed for this class
of estimating functions, so a considerably smaller amount of simulation is needed compared to other
classes of estimating functions based on conditional moments. Particular attention is devoted to the
Cox-Ingersoll-Ross model and stochastic volatility models. Using Monte Carlo simulation the small-
sample properties are examined and the method is compared to other estimating functions.
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1 Introduction

Until recently the only feasible solution to the parameter estimation problem in discretely, partially ob-
served stochastic differential equations (SDESs), where the measurements are contaminated with additive
Gaussian white noise, has been to apply the Kalman-Bucy filter (Kalman and Bucy, 1961) for linear
(in the narrow-sense) systems to compute the likelihood function. The filter is based on the evolution
of the conditional moments of the underlying state variables, which is assumed to be given by SDEs.
For nonlinear systems, ordinary differential equations describing the evolution of the conditional mo-
ments are obtained by Taylor expansions of functions of the drift and diffusion functions. For nonlinear
systems, the extended Kalman filter (EKF) may be applied provided that the diffusion function does not
depend on the process. Otherwise higher order filters must be applied (Jazwinski, 1970; Maybeck, 1982),
see (Nielsen, Vestergaard and Madsen, 2000) for a recent application of second order filters. The EKF
is particularly well-suited for handling a nonlinear measurement equation that describes the functions of
the underlying state variables that are measured in noise. Nielsen, Madsen and Melgaard (2000) pro-
poses a multivariate generalization of a transformation due to (Baadsgaard, Nielsen, Spliid, Madsen and
Preisel, 1997) such that the EKF may be applied for a special class of SDEs, eventhough the diffusion
function depends on the process.

The explicit treatment of measurement noise makes it possible to distinguish between process noise, i.e.
the noise typically described by a Wiener process, that affects the future behavior of the process, and
the measurement noise, which in technical and physical applications is merely due to uncertainty in the
measurement device and in e.g. financial applications is due to rounding off prices, asynchronous trad-
ing, bid-ask spreads and other market imperfections. One-step ahead prediction errors are provided by
these filters such that quasi-likelihood estimates may be obtained using a Prediction Error Decomposition
(PED) (Schweppe, 1965) under the assumption that the prediction errors are for instance Gaussian dis-
tributed. Ljung and Caines (1979) provides an analysis of the properties of the estimators. In the systems
and control literature this method is called a Prediction Error Method (PEM), see e.g. (Ljung, 1987). It
relies on QML theory for the parameter estimation problem. However, the nonlinear filters are based
on Taylor expansions in a way that makes explicit analysis of the validity of the approximations infeasi-
ble. The validity and the performance of the nonlinear filter may, to some extent, be tested using model
validation tools.

Recent developments of the theory of estimating functions for discretely, partially observed SDEs in
Sgrensen (1999) makes explicit analysis of the properties of the estimators possible in the general case,
where only some of the states are discretely observed without measurement noise. The other classes
of EFs mentioned below cannot handle unobserved, latent processes. Although the Prediction-based
Estimating Functions (PEFs) attributable to (Sgrensen, 1999) allow for estimating parameters in the
unobserved processes, if any, it does not explicitly treat the problem of estimating the states of the
(un)observed processes at the sampling times, because this approach, which is also adopted in this paper,
relies on unconditional moments as opposed to conditional moments. This constitutes a fundamental
difference between the PEFs and the filtering methods.

The general theory of Estimating Functions (EFs) dates back to (Godambe, 1960), see also (McLeish and
Small, 1988; Godambe, 1991; Heyde, 1997). However, the development of EFs for discretely observed
SDEs is of a more recent date. The Martingale Estimating Functions (MEFs) from the linear family for
discretely observed SDEs developed by (Bibby and Sgrensen, 1995) are inspired by the properties of the
pseudo-score function, i.e. the score function obtained by discretizing the continuous-time likelihood
function (Liptser and Shiryayev, 1977) provided that the diffusion function does not depend on the pa-
rameter. Requiring that the EF be a martingale implies that the asymptotic properties may be obtained
without letting the time between measurements tend to zero. Unfortunately it also implies that the EFs in-
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volve conditional moments and that the optimal EFs involve derivatives of these moments with respect to
the parameters, which, most often, must be computed by simulation, see (Kloeden and Platen, 1995) for
some approximate methods. If the diffusion function depends on the unknown parameter other classes of
EFs should be used, e.g. the MEFs from the quadratic family attributable to Bibby and Sgrensen (1996),
see also (Bibby and Sgrensen, 1997), that also requires computing the third and fourth order conditional
moments. Kessler (2000) proposes a new class of simple EFs that provides explicit expressions for the
estimators of the parameters in univariate SDEs. These EFs can only be used to estimate parameters ap-
pearing in the stationary density, because it is based on uitcorad moments. However, the martingale
property is lost and asymptotically efficient estimators are not available. Kessler and Sgrensen (1999)
proposes another class of MEFs that are based on eigenfunctions of the generator associated with the
SDE, see also (Bibby and Sgrensen, 1998), which utilizes a combination of the latter two methods. A
review is provided in (Sgrensen, 1997).

The PEFs proposed by Sgrensen (1999) and the new class of Prediction-based Estimating Functions with
Measurement noise (PEFMs) proposed in the present paper are based on predictors of functions of the
observed process. Particular attention is given to classes of PEFMs given by a finite-dimensional space
of predictors. For this class a simple expression for the optimal estimating functions (in the sense of
fixed sample optimality) is available. Yet the presence of measurement noise makes the computation of
the unconditional moments more involved. PEFMs only involve the unconditional moments as opposed
to MEFs, where the conditional moments and, in some cases, their derivatives are required.

Other available methods are the Generalized Method-of-Moments (Hansen, 1982; Chan, Karolyi, Longstaff
and Sanders, 1992), Simulated Method-of-Moments (Duffie and Singleton, 1993), Indirect Inference
(Gourieroux, Monfort and Renault, 1993) and Efficient Method-of-Moments (Gallant and Tauchen,
1996; Gallant and Long, 1997). Only EMM can handle unobserved states, see (Gallant, Hsieh and
Tauchen, 1997; Andersen and Lund, 1997) for applications to stochastic volatility models, but none of
these methods allow for measurement noise explicitly. This also holds for the nonparametric methods
proposed by (A-Sahalia, 199§; Ait-Sahalia, 1996; Stanton, 1997; Jiang and Knight, 1997; Bak, 1998)

and compared using Monte Carlo simulation by (Chapman and Pearson, 1998; Jiang and Knight, 1999).
Pritsker (1998) analyzes the power of the tests proposed iysS@ialia, 1996). An overview of param-

eter estimation methods for discretely observed SDEs is given in (Nielsen, Madsen and Young, 1999).

In Section 2 the modelling framework is put forth. The proposed PEFMs will be presented in Section 3,
where the particular problems involved in allowing for measurement noise will be discussed. A simple
expression for the optimal estimating functions in the sense of (Heyde, 1997, Theorem 2.1) is presented
in Section 4. Some applications will be given in Section 5, where particular attention is devoted to the
CIR model (Cox, Ingersoll and Ross, 1985) and stochastic volatility models; a class of SDEs that are used
extensively in mathematical finance, where one of the processes is not directly observed. In Section 6
the properties of the proposed method, simple and explicit estimating functions and a nonlinear filter
used in combination with a QML method are studied using Monte Carlo simulation. Finally, Section 7
concludes.

2 The model

Consider a one-dimensional diffusion = (X;);>o defined on the state spaeC R satisfying the
stochastic differential equations

dX; = b(Xy;0)dt + o(Xy; 0)dWy;,  Xp = x, 1)

indexed byd, wheref belongs td®, an open subset &?; (W);> is the standard Wiener proce$sind
o are knownR -valued functions defined ofi x ®, which are assumed to be smooth enough to ensure,
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for every@ € ©, the uniqueness in law of the solution to (1).
Let s(x; @) denote the density of the scale measure

w0 [ B).
CoNDITION 2.1.The following hold for alld € ©®
/Ooo s(z; 0)dx = /0 s(z;0)dx = 0o (3)
and
/ " Is(2: 0)0(2: 0)] "\ = A(6) < oo. @)

Under these assumptiodsis ergodic, and with respect to the Lebesgue measure its stationary density
isx — [A(0)s(z;0)0?(x;0)] L.
The differential operatof. defined by

o 1, 0?

for all twice differentiable functions is called tigeneratorof the SDE (1). A twice continuously differ-
entiable functionp(z; ) is called areigenfunctiorfor L with eigenvalue\(6) if it satisfies

Lo(z;0) = —A\(0)p(z;0) (6)

for all z in the state spacs.
A discretized trajectoryY;, )o<i<n With t; = ¢A is assumed to be given by

Y;fi - h(Xti) + &t (7)

whereA is the sampling timep the number of measurementsa specified function antt;, )o<i<y, iS
the Gaussian white noise proce$$0, o2) that accounts for the measurement noise.

For computational reasons the following is assumed to hold.

CONDITION 2.2.his a polynomialinz, i.e.h(z) = 2™ + 2™ 1 + ...+ 1,m € N.

3 Prediction-based Estimating Functions

LetF;, = o{Ys, ..., Y: } denote ther-algebra generated by the fiisheasurement¥;, = (Y;,,...,Y;)
fori = 1,...,n, wheren denotes the number of measurements. Assume initiallysthat 0 and
h(z) = z,i.e.Y;, = Xy, in order to introduce the Sgrensen (1999) framework. Shortly, we will gen-
eralize to the more general framework obtaineddér> 0 and a measurement functiénsatisfying
Condition 2.2. Letf;, j = 1,...,J, be one-dimensional functions defined on the state sfasat-
isfying Eg[f;(Y:,)?] < oo for all @ € ©, whereEy denotes the expectation operator witeis the

true parameter value. Lé*l%9 denote the ?-space of square integrabfe,-measurable one-dimensional
stochastic variables and IPI?] =1,...,J,beclosed Iinearsubspacesmf. As in (Sgrensen, 1999)
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a subspace can be interpreted as a set of predictofgBf . ,) given the previous measuremes,.

. . . T
Let ng_l)(e) = (ﬂf;”(a), . ,w;f;”(a)) be ap-dimensional stochastic vector with coordinates

belonging thQ .. Sgrensen (1999) introduces the following class of prediction-based estimating func-
i—1,
tions

n

J
Gu(6) = > TV (0) [f5(vi) -7 V0)] (®)

i=1 j=1

Whereﬁﬁi_l)(e) is the Minimum Mean Square Error (MMSE) linear predictorfefY;, ) on Pﬁl,j and

G, (0) is ap-dimensional vector, i.ef;(Yy,) — 7%](,"‘1)(9) is thed’th prediction error. It is well-known
thatﬁﬁi_l)(e) is the orthogonal projection of;(Y;, ,) on P¢€1,j with respect to the inner product in
H?, and it is uniquely determined by the projection equations

Eglm(f;(Y:,) — 7 V(6))] =0 ©)

forall w € Pﬁl,j. It follows from (9) that (8) provides an unbiased estimating function.

In the remainder of the paper we shall only be concerned with prediction-based estimating functions
where each of the sersql’j is finite-dimensional. Thusitis assumed tﬁ%ﬁl’j is spanned bgzgi_l) =

(ZJ({_I), . ,Zﬁfl;l)), where the functiongj(»z_l) = qﬁyk)(Ytl, oY) fork =1,... g, are linearly
independent inH?_l. It is assumed thaZJ(é_l) = 1 in order to ensure that the MMSE predictor of
fi(¥z,)in Pﬁl,j is unbiased. From (9), it follows that the optimal linear predictor is given by

770 0) =alye) +a o)zl Y, (10)
where
al(0) = i1 ;0 bl 0), (11)
and
als " (0) = Bglf;(vi)] - 'V (0) Eglz V) (12)

HereC,_; ;(0) denotes the covariance matrixzj‘i_l) when@ is the true parameter value, and

. i 2 4
b (9) = (Covg(ZJ(Zl_l)7 F(Y), .., Covg(Z5 V) f; (Yti))) ' 13)

It follows that the prediction-based estimating functions proposed by (Sgrensen, 1999) can be computed
provided that the covariances bﬂ’_l)(e) andC;_; (@) can be computed. Sindﬁy—l)(e) is com-
pletely characterized by a second order moment representation of the stochastic vector

i—1 i—1
(£, 2570, 20 ),

only parameters appearing in these moments for at least caie be estimated using (8). For computa-
tional tractability this imposes some restrictions on the choice of the funcf}oamdqﬁ;’k). Often simple
polynomials inY;, will be sufficient. There is no available theory for the optimal choice of the functions
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fi andqﬁyk) due to the lack of a properly defined optimality criterion, but the choice must be guided by
the (subset of the) parameters that should be estimated.

Let us now turn to the general case, whefe> 0 andh should only satisfy Condition 2.2. The projection
results described above still holds, but the computations will be more complicated due to the presence
of the noise ternfey,)1<i<,. Itis assumed in (7) thdt,, )1<i<, is a Gaussian white noise process such

that a second order moment representation is still sufficient. As it will be illustrated in Section 5 a large
number of unconditional moments need be computed either explicitly or by simulation. Explicit expres-
sions are derived in Section 4. Simulation methods are not covered in this paper, although it is noted that
it is much easier to simulate unconditional moments than conditional moments, see e.g. (Kloeden and
Platen, 1995).

REMARK 3.1.Hansen and Scheinkman (1995) shows that the aliasing problem does not ekxist for
reversibleSDEs without measurement noise? (= 0). We shall not go into the problem of uniquely
identifying models of the type (1) from the discretized traject@ry )<<, in the general case where

2
o > 0. v

4 Optimal estimating functions

In this section explicit expressions for the optimal prediction-based estimating functions with measure-
ment noise will be given. The notation is as in (Sgrensen, 1999). The presentation in Section 4.1
follows (Sgrensen, 1999) that also relies on optimality results from (Heyde, 1997). Section 4.2 contains
new results regarding explicit expressions for unconditional moments of(Bath>o and (Yz,)1<i<n

and their interrelations.

4.1 Optimal estimating functions

Introducing a slightly more compact notation tfth coordinate oﬂgi_l)(e) in (8) is given by

i—1 i) (im1
7Tz(,j )(9): a’gj;czg(‘k ) (14)
k=0

with Zﬁé‘l) = 1. Writing the weightml(;;C inp x Z;»]:l(qz‘j + 1)-matrices as

afh@) - all @ - a6 - df). (6
AD(6) = : : : B (15)
ah@) - all @ - a6 - d). (8)



fori=1,...,n,and definingzjzl(qij + 1)-dimensional vectors by

25O (V) — 7 0(6)]

z Vit - 770 (0)]

®(() = f (16)

25V 1Y) — 7570(0)]

25D f5(Ye) - 751 (0)]

allows us to write the estimating functi@,, (8) in (8) as
G.(0) =) A (g2 (0). (17)
=1

The summation may be avoided by defining the (n Z;]:l(qz‘j + 1))-matrix
D, (6) = (A<1>(9) N .A<">(9)) , (18)
and the(n ijl(qij + 1))-dimensional vector

K, (0)T = ((b(l)(H)T, . ,<1><”>(9)T) , (19)
i.e. the estimating function (17) takes the simple form
G,(0) =D, (0)K,(0) (20)
For the estimating functiof,, (8) = (Gn.1(0),...,Gn,(0))" define the partial derivatives

00,Gn1(0) ... 05,Gn1(0)

G (6) = : : (21)
00,Gnp(0) ... 09,Gnp(0),

g

where, saydy, G, 2(0) = 75-Gn2(8), and
99Gn(0)" = (99 Gn(6))". (22)

The concept of fixed sample optimalit§ ¢-optimality) is defined in (Heyde, 1997), where it is shown
that an estimating functioG: (6) is Or-optimal if and only if

Egl0grGn(0)] " ElGn(0)G/,(0)"] = EgldgrG;,(0)] " Eg[G,(6)G/,(6)"] (23)
for all G,,(0) of the form (20). According to (Heyde, 1997, p. 14-15) this is obtained when
Eg[Gn(0)G/,(8)"] = — Eg[9grGn(8)]- (24)

This result leads to the following theorem from (Heyde, 1997, Theorem 2.1).
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THEOREM 4.1.Suppose thatfor all € © the covariance matrix d&,,(8) is invertible andr [K(0)]
has rankp. Then the estimating function

G, (0) = D,(9)K,(0), (25)
where
D;(6) = — Bgl0gK;(8)"] (Eg[Kn(0)K(6)"]) (26)

is optimal within the class of estimating functions of the form (20) for wH(0) has rankp.

Proof. Follows immediately by inserting (25) and (26) in (24). ]

AssumingthatY;, )i <i<, is stationary and that the sél’g_l,j is spanned b)Z](,Z_l) =0k (Ye,1s- s Vi)
k=0,...,q;, wherehj; (now independent af as isg;) is a function fromR?to R, ¢ € N, much sim-
pler results for the optimal estimating function can be obtained. This choiZ%ﬁBP being given as a

function ofq lagged measurements implies tlzﬁ_l) is only well defined for > ¢ + 1. In this case, it

holds thatA (“t1)(9) = ... = A(™ (@) = A(0) such that (17) takes a much simpler form, namely
0) Y o). (27)
i=q+1

Under this assumption th@-optimal weights are given in the next theorem.
THEOREM 4.2.The optimal weights in (27) are given by

A*(0) =U(6)"M,(6) ", (28)
where
00, 1(8) - aapcb@(e)
U(6) = —E[09yr ") (0)] = — ; (29)
O, @glae) S’ p<béll<e>
and
_ (i ) n—q—k+1
M.,,(6) E[®l +Z 1
(Ele¢ ><e>¢><z+k><e> |+ B[00 (9)(9)7]) . (30)
Proof. See (Sgrensen, 1999, Proposition 3.2). ]

REMARK 4.1.Conditions for invertibility ofM,, is given in (Sgrensen, 1999, Proposition 3.2). ¥

REMARK 4.2.Eg. (30) is more conveniently expressed as

_ (i ) n—q—k+1
M.,,(6) E[®( +Z a1
(Efe" ><e>¢><z+k><e> |+ E[20(0)0D(9)")"), (31)
when implementing the method on a computer. v
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4.2 Computing unconditional moments

In most applications the functiorfs and¢;; will be polynomials in the measurements at different time
instants. Thus in order to determine the unconditional mixed moments constiflififig(8) (%) (6)7]
expressions of the form

[/ Y- -1@{;”] (32)
form e N, ji,...,jm € NyVandt; < ta < ... m being positive sampling times must be de-

termined. Using (7) this problem reduces to determlnlng explicit expressions for moments on the form
E[XJ1 : XJ::] provided that the following condition holds.

ConDITION 4.1.Polynomials are eigenfunctions to the generator (5) of the diffusion process (1), i.e.
the eigenfunctions

0) = 7ij(0)2’ (33)
5=0
satisfies the equation
Loi(x;0) = —Aipi(2; 0) (34)

fori=1,...,m.
REMARK 4.3.The constants;;(6) are computed from (33). See Section 5.1 for an example. v

LEMMA 4.1.Under Condition 4.1, it holds that

i i J
exp(—At) Z’m(@)m] = Z 75 (0) Z vir(t;0)zF; i=1,...,m (35)
=0 =0 k=0

from which the constants;; (¢; 6) are determined.

Proof. Taking the conditional expectation on both sides of (33) yields
E[‘Pi(Xtv ‘XO - (IZ ZVZ] X]‘XO - (IZ] (36)

Under weak regularity conditions
E[pi(X¢; 0)|Xo = 2] = exp(=Ait)pi(x; 9), (37)
see (Kessler and Sgrensen, 1999, Section 5). Inserting (37) in (36) yields

exp(—\it)pi(z; 0) Z%J E[X7| X, = «]. (38)
Under Condition 4.1, Eqg. (38) can be expressed as
J
exp(—Ait)pi(; 0) Z%J 0)> v(t; 0)a" (39)

Inserting (33) in (39) completes the proof. ]
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REMARK 4.4. It follows immediately from (38)—(39) that

J
EX/|Xo=2] = Zl/jk(t; 0)z; jeN (40)
k=0

This leads to the main result given in the next theorem.

THEOREM 4.3.Assume that the diffusiofiX;):>( solves (1). Foin € N, j1, jo, . .. , jm € Nj* and the
samplingtimeg; <ty < ... < t,,, it holds that
‘ ‘ Jm Jatia
E[thll o Xt]::] = Z ij,im(tm —tm—1; 0) IR Z V(j3+i4),i3(t3 — t9; 0)
im=0 i3=0
Jo+is3 o
X Vjyrin)p (fa — 11; 0) BIX7 ] (41)
in=0

Proof. The proof is made by inductioE[ng] obviously fulfills (41).
Assume that

Jm Jatia
E[thll .- Xt]::] = Z ij,im(tm — tm—1; 0) X - X Z V(j3+i4),i3(t3 — 19; 0)
im=0 i3=0
Jo+is o
X Vjyrin)ip (fa — 11; 0) BIX7 ]
i9=0
Next let us prove that
‘ ‘ ‘ Jm+1 Ja+ig
E[wa]11 o Xt]::XtJZE] - Z Vim+1im41 (tmt1 = tm; 0) X - -+ X Z V(j3+z‘4),i3(t3 —12;6)
im+1=0 i3=0
Jo+is
-
X Z V(jg-f—ig),ig (tQ — tl, 0) E[thll 22]
i9=0
By conditioning onX}™, we get
BIX{ XMl = E[EX] - XX X

= E[X{ - X EX X
. . jm+1 -

= E[thll T XtJ:: Z Vim+1,im+1 (tm+1 — tms O)XZ::H]

it 1=0
- Z Vi1 yimt1 (tm-f-l —tm; 0) X E[thllXt]; te 'Xg$+zm+1]
it 1=0
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According to the assumption by induction we obtain

. jm+1
E[thll .. th;njll] = Z Vit imat (tm—f—l —tm; 0)
ZAm-&-lio
Jm
im=0
Jatia
X3 Vgtia)is(ts — t2; 0)
i3=0
j2+’i3 ‘ A
% Z Vijatis) is (t2 — t15 0) E[X7172],
i2=0
which completes the proof. .

REMARK 4.5.The resultin Theorem 4.3 is a generalization of a resultin (Sgrensen, 1999). v

5 Applications

This section considers two examples of using PEFMs, namely the Cox-Ingersoll-Ross mode (Cox et al.,
1985) and stochastic volatility models.

5.1 The CIR model

Consider the CIR model which is used extensively in mathematical finance as a model for e.g. spot
interest rates

dXt = Oé(/B — Xt)dt + o/ Xtth; X() =, (42)

where® = (a,3,0) € (0,00)3 such that the procegsX;);>¢ is ergodic. It is well-known thaf{;
has a non-central chi-square distribution and tRa(the stationary case) has a gamma-distribution
r (%f‘—f, %) It follows that the stationary mean and variance are giveR[By| = 5 andV[X]| = %
respectively. The higher order moments satisfy the recursive relation

(m —1)o?

B = (5 T ) By (43)

for m > 2. The spectrum (set of eigenvalues)Ag = {ja: j € N} with corresponding eigen-
functionsg;(z; 6) = Lﬁ")(ana‘Q), WhereLgn) is thejth order Laguerre polynomial with parameter
n = 2afo~2 — 1 (Karlin and Taylor, 1981).

A discretized trajectoryY;, )o<i<» With t; = ¢A is assumed to be given by

Y, = Xy, + &4, (44)

For notational simplicity, we assume that only one parameter is to be estimatgd+ik.
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Let f(y) = v% J = 1, and let the spac@‘s’1 on which the linear projection is made be spanned by
Z,(i—1) — <Z§Z 1), o ,Zé’ 1)), WhereZ,gZ b _ or (Yo, Yoi1s-- -, Ys,_5) = Y2 . The dimension of
the spacdlél1 is chosen arbitrarily to be equal to 5.

Assuming stationarity, the optimal (MMSE) predictor pfY;,) on 739 1 Is given by a special case of
(10), i.e.

#0D = ao +a(0)TZ0) = 4o + g,,lytf_l I &53/5_5

such that the projection errors are given by

Y2 —ag—aYy? | —...— a5V |
and (16) takes the form
Y2 —ag—ar1Y?  —...—asY?
(I)(i) _ Yg 1(Y. —ao—alY;f . .—CAL5Y;?_5)
Yg 5(Y — a() — a1Y; e — CAL5Y;?_5)

In order to compute the optimal weighds®(6) given by (28) and the optimal PEFM in (27), it is neces-
sary to compute the matrix of partial derivatiie$0) in (29) and the matri®,,(0) in (30). The latter
consists of (mixed) moments &f, that may be computed as follows. It is possible to derive a general
expression that relates the simple unconditional momenis @nd.X;, .

LEMMA 5.1.For the discretized trajectoy;,)1<i<n given by (44), it holds that

E[Y?™] = Z(s E[X;"] (45)
with
om) o 1T for j 2.4
5; = (j)aekl;[l(Qk—l) or j=0,2,4,... 46)
0 for j=1,3,5,...
for m € N.

Proof. The binomial formula yields the result

2m
BY2"] = E[(X,, +2)?" = 3 (2;”) E[X2" ] | @7)
j=1

As (e¢,)1<i<n IS Gaussian white noise, it holds that
E[x/1 et =0

for i1,is € N2. AsE[e2*] = 0 andE[e}’] = o2/ [T._,(2k — 1) for j € N the definition of the
constant$; € Nin (46), and hence (45), follows. [ |
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From the lemma, it follows that e.g.

E[Y] E[X?] + 02
E[Y}}] E[X/]+ 6 E[X}]o? + 307
E[Y}] E[X{] + 15 E[X]o? + 45 E[X}]o? + 1500
EY?] = E[X]]+28E[X[]o? +210E[X}]o? 4+ 420 E[X7]o? + 10502

7

Furthermore, it holds that
VIYZ] = E[X}]+4E[X}]o? + 20! — E[X7]?
Cov[Vi}, Vi) = E[(Y; - EYVZ)(YE - BIYS))] = Cov[X7, X2 t1 # ta,
Using these relations higher order unconditional moment&ygf,<;<,, may be expressed in terms
of the unconditional moments @¢fX;, )<<, given by (43). The same applies for mixed moments of
(Yi)1<i<n, €.0.
2v2v2v2 _ 2 2 2 2
EY Y YVl = El(Xy +e) (Xey +e6,)"(Xey + 265) " (Xay + £2,)7]
= BX?XZXEXP]+ o2 EIXE X7 XE]
+o? B[X7 X2 X7 ] + 02 E[X? X2 X2 + o2 B[X2 X7]
+ol B[X2XE] + o2 BIXZ X2 ] + 408 B[X} ] + of
Theorem 4.3 provides expressions for the mixed momems, X2 X2 X?2] in terms ofE[X["], where
the latter is given by (43).
ExAMPLE 5.1.Letus now try to determine expressionsaf(t; 8), v»1 (t; @) anduss(t; 0) by applying
(35). To ease the notatiar(t; @) will be written asv;;, and~;;(0) as~;;. Insertingi = 2 in (35)
yields
exp(—Aat) - (720 + 7217 + ¥222%) = Yoor00 + Y21(V10 + V117)
+y22(120 + V12 + 1/22362)

Collecting terms ine yields

Yoo exp(—Aat) = Y20v00 + V21710 + Y2220
vo1exp(—Aat) = Yo1v11 + Y2221
Yo2exp(—Aat) = y22100.
These equations are then solved with respeet tdor j = 1, 2, 3, which yields
vo = 2% (exp(—Aat) — vo0) — i (48a)
V22 V22
V21
V1 = —(eXp(—)\Qt) — 1/11) (48b)
V22
Vo9 — eXp(—)\Qt) (48C)

Inserting the solutions fary, v1p andv,; obtained by solvind.ga(z; 0) = —A2pa(x; 0) andLy; (z; 6) =
—A1p1(z;0) in (48) yields

Voo = @(exp( Aot) — 1) — Em( exp(—Ait) — 1)
Y22 Y22 Y11

Uyp = E(exp(—>\27f) — exp(—A1t))
V22

ves = exp(—Aat)
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ExampPLE 5.2.Under Condition 4.1, it follows that the second eigenfunctiefr; 8) is given by (up
to a multiplicative constant)

Po(;0) = Yoo + Y212 + Y222° (49)

where the constantg; for ¢ = 0, 1, 2 are determined as follows. For the CIR model, Eq. (34) takes the
form

a3 — ) (a1 + 2722) + 07 2y22 = — A2 (720 + Y212 + Y2227)
Making the arbitrary choice,s = 1 and matching coefficients yields

2a3 + o2 B(2a8 + o
Y21 = ————— andyyy = Q
o 2c

such that

so(wi) = LD _20BL

200 «

It is clear that even for a small sample a huge amount of mixed moments should be computed in order
to determine the optimal PEFM given by (27). These computations may be carried out using a symbolic
mathematical package, say, Mapte the moments may be computed by simulation. In both cases, it is
convenient to introduce an algebra to handle all the special cases, where some of the indices in the mixed
momentE[X? X2 X2 X2] coincides. Depending on the (autocorrelation and mixing) properties of the
data, it may also be possible to simplify and reduce the number of mixed moments. See (Nolsge, 1999)
for further details.

5.2 Stochastic Volatility Models

Sagrensen (1999) considers the simple Stochastic Volatility (SV) model

dX; = \/’U_tth (508.)
d’l)t = b(’l)t70)dt+6(’l)t70)dBt (SOb)

where(W;):>0 and(B):>o are assumed to be two independent standard Wiener processes.

Consider the difference8;, = X;, — X;, , that turns out to be returns between sampling instants
provided thatX;, is the logarithm of a stock price. Since

ti
Zio= | JodW, (51)

1
ti—1

it follows, as in (Serensen, 1999), that the procg&ss= (Z:,)o<i<n IS stationary, that theZ;,’s are
uncorrelated, but not independent, and that

Zti = \/Sitigtiv (52)

1Some programs may be obtained from the authors on request.
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where
ti
Sti = / ’Utdt (53)
ti—1

and where thé;,’s are independent, identically standard normal stochastic variables, and independent of
S = (St)o<izn-
Introducing the measurement equation

Yi, = Zy, + ey, (54)

it follows that the moments of; may be expressed in terms of the moment®:9fZ; ande; at the
sampling instants, i.e.

E[(Zi+¢e)? = E[Z}+ &2 +2Ze4] = Elvy] + o2 (55)
Var(Z, + )] = E[(Zi+e)'] - E[(Zi+e0)?)
[
[

&

= E[Z}]+6E[Z}02 + 302 — (E[Z}] + 02)?
= E[Z}|+4FE[Z}0? + 202 — E[Z2)? (56)

Under the assumption that (50b) is the CIR-model (42) the expressions in Lemma 5.1 may be used to
compute these moments (by substitutiigfor Z;). For other models, see (Sgrensen, 1999).

REMARK 5.1.Allowing for correlated Wiener processes would make it possible to model the socalled
“leverage” effect, , i.e. the fact that large upward moves in equity markets typically have smaller volatility
impacts than large downwards moves of the same magnitude. It would be particularly interesting to
model the leverage effect introduced by (Black, 1976; Christie, 1982) dynamically, because (Engle and
Lee, 1999) suggests that this effect is only a temporary behavior in the stock market. \/

Alternatively, the Efficient Method-of-Moments (EMM) method (Gallant and Tauchen, 1996) is applied

in (Gallant et al., 1997; Gallant, Hsu and Tauchen, 1998). A Bayesian approach based on a Markov
Chain Monte Carlo (MCMC) methodology is proposed by (Eraker, 1998). Neither of these methods
allow for measurement noise. However, another estimation method for this class of models based on a
second order nonlinear filter is proposed by (Nielsen, Vestergaard and Madsen, 2000).

Additional theoretical results on SV-models may be found in e.g. the series of papers (Genon-Catalot,
Jeantheau and Ledo, 1998; Genon-Catalot, Jeantheau andédw, 1998; Genon-Catalot, Jeantheau
and Lagdo, 1999).

6 Monte Carlo studies

In this section the properties of the proposed PEFMs will be analyzed and compared to the properties of
the simple and explicit estimating functions (Kessler, 2000), and a nonlinear filter used in combination
with a QML method using Monte Carlo simulation. Discrete measurements of the CIR model are used,
i.e. the model is given by (42)+(44).

6.1 A nonlinear filter

The general continuous-discrete time nonlinear filtering problem is described in (Jazwinski, 1970; May-
beck, 1982) with recent applications in finance given in (Nielsen, Vestergaard and Madsen, 1999; Nielsen,
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Vestergaard and Madsen, 2000). Briefly the general idea is to infer information about the unobserved
statesX;, from the measurements, for i = 1,...,n using two sets of equations: A propagation set
describing the evolution of the states between the sampling times and an update set that updates the
estimates of the states at the sampling timeset );, denote the information set provided by the mea-
surements up to and including time The transition densitigg X;,| X;, ,; @) can, at least in principle,

be found as the solution to the Chapman-Kolmogorov forward equation, and the conditional density
p(X¢| Ve, ,; @) may then be found from

p(Xt‘ytj_1; 0) = /Sp(Xt‘XL_N O)p(Xti_1‘}/;fi_1;0)dXti_1 for te [t’i—lv t’l)? (57)

wherep(X,|Y:, ,;0) is the conditional density for the previous measurement update that follows from

Bayes’ rule

p(Y;Z ‘Xtﬂ }/;fi—l; O)p(Xti‘Xti—l; 0)
p(Y:, [V, _,; 0)

Assuming that the measurement noise is Gaussian, the first numerator term may be simplified to

p(Y, | Xt,, Y, 13 0) = p(Y:,| X+, @), where the latter is Gaussian. The denominator is given by

p(X:,|Yy;0) = (58)

(Vi |Yi_,;0) = /S p(Yi| X1,; 0)p(X,,|Yi: 0)dX,, (59)

Unfortunately, an explicit expression for the conditional dengit¥{+|);, ,;6) given in (57) cannot

be obtained for the CIR model (42), which implies that an approximate solution to the continuous-
discrete time filtering problem given by (57)—(59) must be found. Motivated by the linear Kalman
filter (Kalman and Bucy, 1961; Harvey, 1989) that is based on the first two conditional moments, i.e.
the conditional mean and variance, the exact time propagation of the states are approximated by two
Ordinary Differential Equations (ODES) for the first two conditional moments of the conditional density,
see e.g. (Maybeck, 1982). However, for the CIR model (42) it turns out that these approximate ODEs
coincide with the true ODFs Indeed these ODEs may be solved explicitly, i.e.

E[Xti‘Xti—l] = ﬁ + (Xti—l - ﬁ)e_aA (608-)
o’B o2 o o2 B\ _aa

VX | Xy, ] = 2ot E(Xti_l —B)e - o (Xti_l - 5) e 208 (60Db)

with A = t; — t;_1. The approximate updating equations are given by
E[XL‘XL] - E[Xti‘Xti—l] + Kt7(Y;f7 - E[Xti‘Xti—l]) (618.)
V[XL‘XL] - (1 - Kti) V[Xti‘Xti—lL (Glb)

where the Kalman gaif, is
VIX;:. | X,

Kt. _ [ tz‘ tz—l] (62)

e V[Xti‘Xti—l] + 052

The equations (60)—(62) constitute the modified truncated second order filter.

QML estimates of the paramet@rare readily obtained by assuming that the one-step ahead prediction
errorsY;, —E[X},| X;, ,]in(61a) are Gaussian. Given that the first two conditional moments are correctly
specified by the filter, it follows immediately from (Bollerslev and Wooldridge, 1992) that the QML
estimates attain the same nice properties as ML estimates.

2This statement holds for the socalled truncated second order filter that ignores all central momé&nts$ bigher order
than two.
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REMARK 6.1.It is noted that the assumption inherent to the applied filter is that the conditional mean
and variance provide an adequate description of the transition density. This assumption only holds for
narrow-sense linear SDEs with a Gaussian density. \/

6.2 Simple and explicit estimating functions

Kessler (2000) proposes the class of Simple and Explicit Estimating Functions (SEEF) given by

F.(0)=> Lg(Xy,), (63)
=1

whereg belongs to the set of twice continuously differentiable functionsSpand the generatat is

defined in (5). This class may be used provided that the sampling inteiigdlarge” such that the auto-
correlation between subsequent measurements may effectively be neglected, and that the measurements
are not observed in noise. Under some regularity conditions, the methodology provides consistent and
asymptotically normal, but not asymptotically efficient, estimates of parameters in the stationary density.

It is based on the unconditional moments as the PEFs proposed by (Sgrensen, 1999).

Insertingg(z) = (z,2%)T in (63) and solvingF,,(8) = 0 for o ando? yields the following explicit
estimators for the CIR model (42), i.e.

n n n
o2 3 Xy, 20 % X2 —2a8 Y Xy,
=1 and 62 ==L = (64)
Z Xi;
i=1

Qn

- n n
2 Z )(t2 - 26 Z Xti
i-1 i=1

where the estimator for each parameter is obtained under the assumption that the remaining parameters
are fixed at their true values. In the following two simulation studies the estimators (64) will be used on
both the simulated states;, and the measuremerits .

6.3 Simulation studies

Two Monte Carlo simulation studies are reported in this section. In each study 20 stochastically indepen-
dent time series each consistingraf500 measurements have been simulated. The Milstein discretiza-
tion scheme (Kloeden and Platen, 1995) is used to obtain a numerical solution to (42) and measurement
noise is subsequently added to the simulated states. For computational convenience, one parameter is
estimated at a time while the others are fixed at their true value. The nuisance parghieso fixed.

Due to the severe computational requirements of PEFM only estimatearado? are provided in both

studies. The results obtained in Section 5.1 have been used extensively.

In the first study the parameter vector
07 = (o, B,0% %) = (0.08,0.25,0.0073, (0.015)?)

is used. The sampling time i8=0.1. The results reported in Table 1 are obtained. The mean and
standard deviation of the 20 samples of each parameter is listed. All the methods underestimate
almost the same level of efficiency is obtained. This, in particular, holds for the filtering/QML method.

In our experience filters tend to underestimategpeed-of-adjustmeparameterx when it is “small”
compared to the sampling tinde, see e.g. (Baadsgaard, 1996; Nielsen, Vestergaard and Madsen, 2000).
On the other hand, the filtering/QML method outperforms the EF-based methods regarding the estimate
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of o2. It is noted that the SEEF method provides remarkably poor estimate& oiVhen the SEEF
method is applied to the stateSEEF} only 10 out of the 20 estimates are positive, while 14 estimates
are positive when the SEEF method is applied to the measurenSHEF(°. It appears that\ is too
small to allow for the autocorrelation between subsequent measurement to be neglected.

| | True | PEFM | SEEFx | SEEFy | Filter |
0.08 0.0743 0.0725 0.0756 0.0546
@ : (0.0145) | (0.0148) | (0.0145) | (0.0144)
2 | 00073 0.0066 0.0120 0.0124 0.0074
N (0.0011) | (0.0082) | (0.0091) | (0.0013)

Table 1: Estimation results from the first simulation study. The estimates provided are obtained as the
mean of 20 independent samples each consisting of 500 measurements from the CIR model (42). The
standard deviations are given in parenthesis. The true valuesabed(, 02) = (0.08, 0.25, 0.0073,
(0.015)?).

In the second study the parameter vector
07 = (o, B3,0% %) = (0.5,0.25,0.0225,0.01)

is used. The sampling time i5=0.1. The results reported in Table 2 are obtained. In this study the
filtering/QML method and the PEFM method provide almost identical results. The filtering estimates are
slightly less biased, and the efficiency of the estimateois higher. Thus the value ef in this study

is sufficiently large compared to the sampling ticheto avoid the afore-mentioned problems with the
filtering/QML method. Similar problems have not occurred with the PEFM method.

| | True | PEFM [  Filter |
05 0.4911 0.4959
@ ' (0.0553) (0.0584)
0.01873 0.01973
2
07100225, 007322) | (0.003349)

Table 2: Estimation results from the second simulation study. The estimates provided are obtained as
the mean of 20 independent samples each consisting of 500 measurements from the CIR model (42).
The standard deviations are given in parenthesis. The true values, ater€, 02) = (0.5, 0.25, 0.0225,

0.01).

7 Conclusion

A generalization of the prediction-based estimating functions (PEFs) proposed by (Sgrensen, 1999) that
allows for measurement noise has been proposed. The method is based on unconditional (mixed) mo-
ments and new explicit results have been obtained for computing these moments. The CIR model is
used to illustrate some of the moment calculations inherent to the method; an explicit expression for the
relation between the measurements and the underlying states is derived. The method has been presented
for univariate diffusion processes, but it may readily be generalized to multifactor models.

An obvious advantage of PEFM is that optimal estimators may be derived and their asymptotic properties
are well-established. An equally obvious disadvantage is the huge number of unconditional and mixed

3These results are obtained simply by substitutipgfor X, in (64).
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moments that need be computed even for univariate SDEs. From a theoretical point of view it is possible
to generalize the PEFM method to cope with multivariate SDEs, but they may be very difficult to imple-
ment, unless suboptimal weights are used. Nonlinear filtering methods are well-suited for multivariate
SDEs, but the approximations that are inherent to the ODEs for the conditional moments are very diffi-
cult to assess such that the properties of the QML-estimates are difficult to establish. In our experience
the bias imposed by these moment approximations are, however, negligible in most applications.

References

Ait-Sahalia, Y. (1998), ‘Nonparametric Pricing of Interest Rate Derivative SecuritiE€pnometrica
64, 527-560.

Ait-Sahalia, Y. (1996), ‘Testing Continuous-time Models of the Spot Interest R&eView of Financial
Studie®, 385-426.

Andersen, T. G. and Lund, J. (1997), ‘Estimating continuous time stochastic volatility models of the
short term interest rateJournal of Econometricg7, 343-378.

Baadsgaard, M., Nielsen, J. N., Spliid, H., Madsen, H. and Preisel, M. (1997), Estimation in stochastic
differential equations with a state dependent diffusion tdanmy. Sawaragi and S. Sagara, eds,
‘SYSID 97 - 11th IFAC Symposium on System Identification’, IFAC.

Baadsgaard, M. T. (1996), Estimation in Stochastic Differential Equations, Master’s thesis, Department
of Mathematical Modelling, Lyngby, Denmark.

Bak, J. (1998), Nonparametric methods in finance, Master's thesis, Institute of Mathematical Modelling,
Technical University of Denmark.

Bibby, B. M. and Sgrensen, M. (1995), ‘Martingale estimating functions for discretely observed diffusion
processesBernoullil, 17-39.

Bibby, B. M. and Sgrensen, M. (1996), ‘On Estimation for Discretely Observed Diffusions: A Review’,
Theory of Stochastic Process¥48), 49-56.

Bibby, B. M. and Sgrensen, M. (1997), ‘A hyperbolic diffusion model for stock pridésance and
Stochastic4(1), 25-41.

Bibby, B. M. and Sgrensen, M. (1998), Simplified estimating functions for diffusion models with a
high-dimensional parameter, Preprint 1998-10, Department of Theoretical Statistics, University of
Copenhagen.

Black, F. (1976), Studies of stock price volatility changesProceedings of the 1976 Meeting of the
American Statistical Association’, pp. 177-181.

Bollerslev, T. and Wooldridge, J. M. (1992), ‘Quasi maximum likelihood estimation and inference in
dynamic models with time-varying covarianceStonometric Reviewk1(2), 143-172.

Chan, K. C., Karolyi, G. A,, Longstaff, F. A. and Sanders, A. B. (1992), ‘An empirical comparison of
alternative models of the short-term interest raleyrnal of Financet7, 1209-1227.

Chapman, D. A. and Pearson, N. D. (1998), Is the short rate drift actually nonlinear?, Technical report,
Finance Department, Graduate School of Business, The University of Texas at Austin.

20



Christie, A. A. (1982), ‘The Stochastic Behaviour of Common Stock Variances: Value, Leverage and
Interest Rate EffectsJournal of Financial Econometrick0, 407—432.

Cox, J. C., Ingersoll, J. E. and Ross, S. A. (1985), ‘A theory of the term structure of interest rates’,
Econometricé3, 385—-407.

Duffie, D. and Singleton, K. J. (1993), ‘Simulated moments estimation of markov models of asset prices’,
Econometrice1, 929-952.

Engle, R. F. and Lee, G. G. J. (1999), A Permanent and Transitory Component Model of Stock Return
Volatility, in R. Engle and H. White, eds, ‘Cointegration, Causality, anaé€asting: A Festschrift
in Honor of Clive W. J. Granger’, Oxford University Press, pp. 475-497.

Eraker, B. (1998), MCMC Analysis of Diffusion Models with Applications to Finance. Manuscript,
NHH, Bergen.

Gallant, A., Hsu, C.-T. and Tauchen, G. (1998), Using High/Low Data to Calibrate Volatility Diffu-
sions and Extract the Forward Integrated Variance. Manuscript, Department of Economics, Duke
University.

Gallant, A. R., Hsieh, D. and Tauchen, G. E. (1997), ‘Estimation of stochastic volatility models with
diagnostics’Journal of Econometric81, 159-192.

Gallant, A. R. and Long, J. R. (1997), ‘Estimating stochastic differential equations efficiently by mini-
mum chi-squaredBiometrika84, 125-141.

Gallant, A. R. and Tauchen, G. E. (1996), ‘Which Moments to Matda@anometric Theor§2(4), 657—
681.

Genon-Catalot, V., Jeantheau, T. andddw, C. (1998), ‘Limit theorems for discretely observed
stochastic volatility modelsBernoulli4, 283—-303.

Genon-Catalot, V., Jeantheau, T. andddw, C. (199B), Stochastic volatility models as hidden Markov
models and statistical applications, Preprint, Univerdd'Marne-la-Va#eé.

Genon-Catalot, V., Jeantheau, T. andddw, C. (1999), ‘Parameter estimation for discretely observed
stochastic volatility modelsBernoulli5(5), 855-872.

Godambe, V. P. (1960), ‘An optimum property of regular maximum-likelihood estimatiamals of
Mathematical Statistic81, 1208-1211.

Godambe, V. P. E. (1991 stimating FunctiongOxford Science Publications, Oxford.

Gourieroux, C., Monfort, A. and Renault, E. (1993), ‘Indirect inferendeyrnal of Applied Economet-
rics 8, 85-118.

Hansen, L. P. (1982), ‘Large sample properties of generalized method of momEeoctsipmetrica
50, 1029-1054.

Hansen, L. P. and Scheinkman, J. A. (1995), ‘Back to the future: Generating moment implications for
continuous-time markov processdstonometric&3(4), 767—804.

Harvey, A. C. (1989)Forecasting, Structural Models and the Kalman Filt&€ambridge University
Press, New York.

21



Heyde, C. C. (1997Quasi-Likelihood And Its ApplicationSpringer Series in Statistics, Springer, New
York.

Jazwinski, A. H. (1970)Stochastic Processes and Filtering Thedkgademic Press, New York.

Jiang, G. J. and Knight, J. L. (1997), ‘A nonparametric approach to the estimation of diffusion process -
with an application to a short-term interest rate modetonometric Theor¢3, 615-645.

Jiang, G. J. and Knight, J. L. (1999), ‘Finite sample comparison of alternative estimatargidfusion
processes - a monte carlo studjournal of Computational Financ(3).

Kalman, R. E. and Bucy, R. S. (1961), ‘New results in linear filtering and prediction probldmshal
of Basic Engineering, Transactions ASMA, Serie®3>95-108.

Karlin, S. and Taylor, H. M. (19814 Second Course in Stochastic Procesgéeademic Press.

Kessler, M. (2000), ‘Simple and explicit estimating functions for a discretely observed diffusion process’,
Scand. J. Statis27(1), 65-82.

Kessler, M. and Sgrensen, M. (1999), ‘Estimating equations based on eigenfunctions for a discretely
observed diffusion proces®Bernoulli5, 299-314.

Kloeden, P. E. and Platen, E. (199B)ymerical Solutions of Stochastic Differential Equations, Second
Edition, Springer-Verlag, Heidelberg.

Liptser, R. S. and Shiryayev, A. N. (197 Btatistics of Random Processes |,$pringer-Verlag, New
York.

Ljung, L. (1987),System Identification: Theory for the UsBrentice-Hall, New York.

Ljung, L. and Caines, P. E. (1979), ‘Asymptotic normality of predictor error estimators for approximate
system models'Stochastic8, 29-46.

Maybeck, P. S. (1982xtochastic Models, Estimation and Confratademic Press, London.

McLeish, D. L. and Small, C. G. (1988)he Theory and Applications of Statistical Inference Functions
\ol. 44 of Lecture Notes in StatisticSpringer, New York.

Nielsen, J. N., Madsen, H. and Melgaard, H. (2000), Estimating parameters in discretely, partially ob-
served stochastic differential equations, Technical Report 2000-xx, Dept. of Math. Modelling, Tech.
Univ. of Denmark, Lyngby, Denmark.

Nielsen, J. N., Madsen, H. and Young, P. (1999), Parameter estimation in stochastic differential equa-
tions: An overview,n ‘Proceedings of The 14th IFAC World Congress’, IFAC, Elsevier Science,
pp. 289-294.

Nielsen, J. N., Vestergaard, M. and Madsen, H. (1999), Nonlinear filtering of univariate stochastic volatil-
ity models,in H.-F. Chen, D.-Z. Cheng and J.-F. Zhang, eds, ‘Proceedings of the 14th IFAC World
Congress’, Vol. M, IFAC, Elsevier Science, pp. 123-128.

Nielsen, J. N., Vestergaard, M. and Madsen, H. (2000), ‘Estimation in continuous-time stochastic
volatility models using nonlinear filtersiternational Journal of Theoretical and Applied Finance
3(2), 1-30.

22



Nolsge, K. (1999), Estimating functions and applications, Master’s thesis, Institute of Mathematical
Modelling, Technical University of Denmark.

Pritsker, M. (1998), ‘Nonparametric density estimation and tests of continuous time interest rate models’,
The Review of Financial Studi&4(3), 449-487.

Schweppe, F. (1965), ‘Evaluation of likelihood function for Gaussian sign@&E Transactions on
Information Theoryi 1, 61-70.

Sgrensen, M. (1997), Estimating functions for discretely observed diffusions: A reéniew, Basawa,
V. P. Godambe and R. L. Taylor, eds, ‘Selected Proceedings of the Symposium on Estimating
Functions’, Vol. 32 ofMS Lecture Notes - Monograph Seri#dS, pp. 305-325.

Sgrensen, M. (1999), Prediction-Based Estimating Functions, Preprint 1999-5, Department of Theoreti-
cal Statistics, University of Copenhagen.

Stanton, R. (1997), ‘A Nonparametric Model of Term Structure Dynamics and the Market Price of Inter-
est Rate Risk’Journal of Finance&2(5), 1973-2002.

23



