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Abstract

An econometric analysis of continuous-time models of the term structure of interest rates is pre-
sented. A panel of coupon bond prices with different maturities is used to estimate the embedded
parameters of a continuous-discrete state space model of unobserved state variables: the spot inter-
est rate, the central tendency and stochastic volatility. Emphasis is placed on the particular class of
exponential-affine term structure models that permits solving the bond pricing PDE in terms of a
system of ODEs. It is assumed that coupon bond prices are contaminated by additive white noise,
where the stochastic noise term shouldaccount for model errors. A nonlinear filtering method is
used to compute estimates of the state variables, and the model parameters are estimated by a quasi-
maximum likelihood method provided that some assumptions are imposed on the model residuals.
Both Monte Carlo simulation results and empirical results based on the Danish bond market are pre-
sented.

KEY WORDS: Nonlinear filtering, quasi maximum likelihood estimation, state space models,
stochastic differential equations, stochastic volatility, term structure modelling.

∗The Danish Ministry of Finance, Christiansborgs Slotsplads 1, DK-1218 København K. E-mail:mba@fm.dk
†E-mail: jnn@imm.dtu.dk
‡E-mail: hm@imm.dtu.dk

1



Contents

1 Introduction 3

2 Term structure models 4
2.1 Exponential-affine term structure models. . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Nonlinear filtering with discrete time observations 8
3.1 Conditional moments estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Quasi maximum likelihood method 11

5 Monte Carlo Analysis 12

6 An Empirical Study 13
6.1 Empirical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

7 Conclusion 16

2



1 Introduction

The term structure of interest rates is, perhaps, the most important entity in finance as it describes the
relationship between the yield on a default free discount bond and its maturity. It is a key concept in
economic and financial theory, and in the risk-neutral valuation and hedging of interest rate contingent
claims. Many models of the term structure are based on the assumption that all information about the
economy is contained in a finite-dimensional vector of state variables whose dynamics are governed by
stochastic processes1. The dynamics may be derived either by using absence of arbitrage arguments, ob-
tained endogenously in a general equilibrium framework or identified from market data using economet-
ric methods. The exact expression for the price of default free discount bond depends on the specification
of the stochastic processes for the state variables and the associated market price of risk.

In the pioneering work by (Vasicek, 1977) a univariate diffusion process is proposed for modelling the
unobservable instantaneous interest rate (spot rate). Cox, Ingersoll and Ross (1985) proposed the square-
root process for the spot rate in a general equilibrium framework in order to introduce heteroscedasticity
in the spot rate dynamics. All univariate models imply that the entire term structure is perfectly corre-
lated, i.e. the fact that the entire term structure is inferred from the current short rate, and they do not
allow for changes in the slope of the term structure. This is clearly at odds with numerous empirical
findings, see the studies in e.g. (Dybvig, 1989) on US data and (Steeley, 1991) on UK data. Further-
more, Dybvig (1989) suggests that the short rate and the volatility of the short rate should be used as
state variables, and Litterman and Scheinkman (1991) suggests that the spot rate volatility should be
mean reverting. These empirical findings exclude the Ornstein-Uhlenbeck model and the log-normal
model considered by (Stein and Stein, 1991; Heston, 1993). In order to exclude negative volatility the
spot rate volatility may be modelled by a Cox-Ingersoll-Ross process. The ability of a term structure
model to capture the stochastic feature of spot rate volatility is a direct measure of its hedging use-
fulness. Thus stochastic volatility is introduced in our model as a second state variable. A third state
variable is introduced to model the mean level of the spot rate (the central tendency) following the find-
ings in (Balduzzi, Das and Foresi, 1998). This yields thespecial interest rate dynamics modelconsidered
in (Chen, 1996) that also fits into the general “affine yield” setting considered by (Duffie and Kan, 1996).
These models are also calledexponential-affine term structure models, because bond yields are affine in
the state variables within this model class. The methodology proposed here may, however, be applied to
all term structure models for which a closed form expression for the price of a discount bond is available.

Estimating the term structure of interest rates is clearly a difficult problem to which a number of solutions
have been proposed in the literature. Firstly, the Generalized Method of Moments (Hansen, 1982) is
applied for estimating the parameters of a univariate model in (Chan, Karolyi, Longstaff and Sanders,
1992) using the one month Treasury bill as a proxy for the spot rate; Abken (1993) applies it to forward
rates and the Efficient Method of Moments (Gallant and Tauchen, 1996) is applied in (Buraschi, 1996;
Dai and Singleton, 1997). Pearson and Sun (1994) considers a two-dimensional CIR-model with explicit
expressions for the bond prices and uses the probabilitydistributionof the state variables in the likelihood
function. Unfortunately, this method cannot be used when the number of simultaneously observed time
series of bond prices exceeds the number of state variables.

It is proposed to use the yield of discount bonds with different maturities as the observable entities
in (Chen and Scott, 1993; Daves and Ehrhardt, 1993; Pearson and Sun, 1994; Duffie and Singleton, 1997)
by “inversion of the yield curve”, i.e. it is assumed thatm maturities are observed without observation
error and the associated bond pricing equation is inverted such that the yields are used as “instruments”
for the state variables. Thus it is necessary to convert bond prices to yields as described in e.g. (Anderson,
Breedon, Deacon, Derry and Murphy, 1996). In a series of recent papers, it is assumed that the yields (or

1A notable exception is the framework based on forward rates proposed in (Heath, Jarrow and Morton, 1992).
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other observable entities) are contaminated by observation noise due to asynchronous trading, rounding
off prices, bid-ask spreads, temporary deviations that are not arbitraged away and other market imper-
fections. This makes it convenient to cast the term structure model in state space form augmented by
an observation equation that relates the observation to the underlying state variables. This leads to the
application of Kalman filtering techniques, see (Jazwinski, 1970; Maybeck, 1982) for an introduction
to such techniques. If the data consists of zero-coupon yields and the term structure model is Gaus-
sian, the linear Kalman filter in combination with a maximum likelihood method may be applied to
estimate the state variables and the model parameters. Pennacchi (1991) was the first to use this ap-
proach in financial econometrics. Exponential-affine models, in particular multifactor Gaussian and
CIR models, are considered in (Chen and Scott, 1993; Chen and Scott, 1995; Claessens and Pennac-
chi, 1996; Lund, 1997a; Babbs and Nowman, 1999; Duan and Simonato, 1999). The Extended Kalman
filter is applied by (Cumby and Evans, 1995; Claessens and Pennacchi, 1996), who considers defaultable
bonds. The two approaches only differ in the update step. Fr¨uhwirth-Schnatter (1994) approximates
the true update density by a Gaussian density with the mean and variance of the exact update density
using numerical integration. However, the dimension of the integral is the same as the number of states
implying that this approach is computationally demanding. Lund (1997a) considers a nonlinear obser-
vation equation and applies the Iterated Extended Kalman Filter (IEKF), but utilizes a Gaussian model
and observed yields in the empirical part of the paper. However, it is argued in (Lund, 1997a) that bond
yields contain less information than original bond prices so the application of coupon-bearing bonds po-
tentially permits more powerful tests, because the prices of long-term bonds are relatively more sensitive
to the model parameters. Using bond prices as observations lead to a nonlinear relation between the
observations and the state variables2, see e.g. (Nielsen, 1996).

The econometric method proposed in this paper may be applied to estimate parameters in multivariate,
nonlinear state space models from observed bond prices and thus constitutes a considerable extension of
the filtering techniques reported in the literature so far. The work reported here represents a generalization
of the second order filter applied in (Nielsen, Vestergaard and Madsen, 2000) to stochastic volatility
models in the sense that the proposed methodology allows for a nonlinear observation equation.

Following the work reported in (Chen and Scott, 1993; Chen and Scott, 1995; Jegadeesh and Pen-
nacchi, 1996; Duffie and Singleton, 1997; Lund, 1997a; Lund, 1997b; Honoré, 1998; Duan and Si-
monato, 1999), a “panel data” approach is taken, i.e. the time-series information in the data and the
cross-sectional information obtained by simultaneously observing prices of coupon-bearing bonds with
different maturities are used to fully exploit the information in the data set for reasons of efficiency3.

The rest of the paper is organized as follows. In Section 2 the term structure modelling framework is
presented. In Section 3 the non-linear filtering method is presented, and Section 4 describes how the
model parameters are estimated by a quasi maximum likelihood method. In Section 5 the properties of
the estimates are examined by a Monte Carlo study, and some results from the Danish bond market are
presented in Section 6. Section 7 concludes.

2 Term structure models

Let the stochastic process{X} describing the state of the economy be defined on the state spaceS, which
will, in general, be thed-dimensional Euclidean spaceRd or a subset thereof. Assume that{X} solves
the Itô Stochastic Differential Equation (SDE)

dXt = f(t,Xt;ψ)dt+ g(t,Xt;ψ)dWt; X0 = Xt0, (1)

2For exponential-affine models the relationship is obviously affine.
3Honoré (1998) imposes some linear restrictions on the observation errors to avoid using a filtering approach.
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or, written componentwise as,

dX i
t = f i(t,Xt;ψ)dt+

d∑
j=1

σij(t,Xt;ψ)dW j
t ; i = 1, . . . , d, (2)

wheref : [t0, T ]×Rd×Rp 7→ Rd andg : [t0, T ]×Rd×Rp 7→ Rd×d are assumed to satisfy sufficient
regularity (Lipschitz and bounded growth) conditions to ensure the existence and uniqueness of solu-
tions to (1), see eg. (Øksendal, 1995; Karatzas and Shreve, 1996);Xt0 is a stochastic initial condition
satisfyingE[‖Xt0‖2] <∞; ψ is ap-dimensional parameter vector belonging toψ, a subset ofRp; and
{Wt} is ad-dimensional Wiener process defined on the usual probability space(Ω,F , P ), whereΩ is
the sample space,F is aσ-algebra, andP is the objective probability measure4.

Remark 2.1The spot rate is typically expressed as a functionrt(Xt) of the state variables. In this paper
it is assumed that the instantaneous spot rate is the first element of the state vector,rt = X1

t .

The unique arbitrage-free price at timet, P (t, T,X), of a zero-coupon bond maturing at timeT (t ≤ T )
can be obtained as the discounted expected value of the cash flow. The conditional expectation should
be taken with respect to the equivalent martingale measureQ defined by the Radon-Nikodym derivative

dQ

dP

∣∣∣∣
Ft

= exp
{
−

t∫
t0

λT (u,Xu;ψ)dWu −
1
2

t∫
t0

||λ(u,Xu;ψ)||2du
}
, (3)

which is characterized by a vectorλ(t,Xt;ψ) known as themarket price of risk, wheredim(λ(t,Xt;ψ)) =
dim(Xt). Thei’th component ofλ(t,Xt;ψ) measures the extent to which risk taken in thei’th factor
is compensated through a higher expected return. In other words the price of a bond that pays out one
unit-of-account at maturityT is given by

P (t, T,Xt;ψ) = EQ

[
e−

R T
t ru(Xu)du|Ft

]
= EQ

[
e−

R T
t rudu|Ft

]
. (4)

According to Girsanov’s Theorem the stochastic process{X} satisfies the SDE

dXt = [f(t,Xt;ψ) + λ(t,Xt;ψ)g(t,Xt;ψ)]dt+ g(t,Xt;ψ)dWQ
t (5)

whereWQ
t is a Wiener process under the martingale measureQ.

Under mild regularity conditions the bond prices solves a partial differential equation (PDE), see e.g. (Duffie,
1996). The corresponding PDE is given by

DP (t, T,Xt;ψ)− rtP (t, T,Xt;ψ) = 0; (t,Xt) ∈ [0, T )× S (6)

with the boundary condition

P (T, T,XT) = 1, (7)

where

DP (t, T,Xt;ψ) =
∂P (t, T,Xt;ψ)

∂t
+
∂P (t, T,X)

∂XT
t

(f(t,Xt;ψ) + λ(t,Xt;ψ)g(t,Xt;ψ))

+
1
2

tr

[
g(t,Xt;ψ)gT (t,Xt;ψ)

∂P (t, T,X)
∂Xt∂XT

t

]
(8)

4See (Protter, 1990) for definitions involving the theory of stochastic processes.
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According to the Feynman-Kac representation theorems the bond price obtained by computing the ex-
pected value (4) or solving the PDE (8) is the same. It is only possible to obtain explicit solutions for a
few particular models. However, some results may be obtained for the special class ofexponential-affine
term structure models.

2.1 Exponential-affine term structure models

Duffie and Kan (1996) provides the most general definition of the class of exponential-affine term struc-
ture models, i.e.

dXt = (aXt + b)dt+ Σ


√
v1(Xt) 0 . . . 0

0
√
v2(Xt) . . . 0

. ..
0 . . . 0

√
vd(Xt)

dWt, (9)

wherea ∈ Rd×d, b ∈ Rd, Σ ∈ Rd×d, and

vi(x) = αi + βTi x (10)

where, for eachi, αi is a scalar andβi ∈ Rd. See (Duffie and Kan, 1996) for the coefficient restrictions
that ensures the existence of unique solutions to (9).

Remark 2.2 It is seen that in order to obtain an exponential-affine model the driftf and squared diffu-
sionggT should be affine in the state vector and time-homogenous. This also implies thatP (t, T,Xt;ψ)
need only be parametrized in the time-to-maturityτ = T − t.

Remark 2.3 As argued in (Campbell, Lo and MacKinlay, 1997, Sec. 11.1.4) exponential-affine term
structure models limit the way in which interest rate volatility can change with the level of interest rates.

The term structure model considered in the empirical part of the paper is the three-factorspecial interest
rate dynamicsmodel proposed by (Chen, 1996), which fits into the framework (9)–(10) above5. The first
factor is the instantaneous spot rate which is described by the following SDE

drt = κ1(θt − rt)dt+
√
vtdW

1
t (11)

whereκ1 is a constant parameter,θt is the stochastic central tendency towards which the spot rate mean
reverts and

√
vt is the stochastic volatility of the spot rate.

The volatility of the spot rate is assumed to evolveaccording to a square-root process, cf. (Dybvig, 1989),
i.e.

dvt = κ3(v̄ − vt)dt+ η
√
vtdW

3
t (12)

whereκ3 v̄ andη are parameters.

Following the findings in (Balduzzi et al., 1998), a third state variable is introduced to model the dynam-
ics of the central tendency and it is described by a square-root process

dθt = κ2(θ̄− θt)dt+ ξ
√
θtdW

2
t (13)

5Chen (1996) also considers a more general model that does not fit into the framework (9)–(10).
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whereκ2, θ̄ andξ are parameters6.

Remark 2.4The model (11)–(13) corresponds to (9)–(10) with

Xt =

 rt
θt
vt

 ; a =

 −κ1 κ1 0
0 −κ2 0
0 0 −κ3

 ; b =

 0
κ2θ̄
κ3v̄

 ,Σ = I,

α1 = α2 = α3 = 0, βT1 = 0; βT2 = ( 0 ξ2 0 ), andβT3 = ( 0 0 η2 ).

For exponential-affine term structure models with three state variables the price of a zero-coupon bond
is given by

P (τ ;ψ) = P (t, T,Xt;ψ) = A(τ)e−B(τ )rt−C(τ )θt−D(τ )vt. (14)

The functionsA(τ),B(τ), C(τ) andD(τ) are determined by requiring that (14) be the solution to (6).
When it is assumed that the Wiener processes are mutually independent, and the market price of risks
are constant, the PDE for the three-factor model presented above becomes

1
2
vt
∂2P (t, T,Xt;ψ)

∂r2
t

+
1
2
η2vt

∂2P (t, T,Xt;ψ)
∂v2

t

+
1
2
ξ2θt

∂2P (t, T,Xt;ψ)
∂θ2

t

+
[
κ1(θt − rt) + λrvt

]∂P (t, T,Xt;ψ)
∂rt

+
[
κ2(θ̄− θt) + λθξθt

]∂P (t, T,Xt;ψ)
∂θt

+
[
κ3(v̄ − vt) + λvηvt

]∂P (t, T,Xt;ψ)
∂vt

+
∂P (t, T,Xt;ψ)

∂t
= rtP (t, T,Xt;ψ), (15)

whereλr, λθ andλv are the market prices of risk for the factorsrt, θt andvt. By substitution of (14) into
the PDE (15) the following system of Ordinary Differential Equations (ODEs) is obtained

1 = κ1B(τ) +B
′
(τ) (16)

0 = −κ1B(τ) +
1
2
ξ2C2(τ) + (κ2 − λθξ)C(τ) + C

′
(τ) (17)

0 =
1
2
B2(τ) +

1
2
η2D2(τ)− λrB(τ) + (κ3 − λvη)D(τ) +D

′
(τ) (18)

0 = κ2θ̄C(τ) + κ3v̄D(τ) +
A
′
(τ)

A(τ)
(19)

with the initial conditionsA(0) = 1 andB(0) = C(0) = D(0) = 0, where, say,B
′
(τ) = ∂B(τ )

∂τ .

The solution to (15) is given in (Chen, 1996) in terms of the Bessel function (of the first and second
kind), the Kummel function and the confluent hypergeometric function. However, it is computationally
more convenient to solve (16)-(19) numerically using e.g. a Runge-Kutta method.

Remark 2.5Only (16) can be solved in closed form, i.e. without the need for special functions.

6AlthoughW 1
t , W 2

t andW 3
t are assumed independent, the spot ratert, its meanθt and its volatility vt are correlated

through (11).
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The yieldR(τ ;ψ) is given by

R(τ ;ψ) = −1
τ

lnP (τ ;ψ) (20)

= −1
τ

[lnA(τ)−B(τ)r − C(τ)θ −D(τ)v] (21)

provided thatP (τ ;ψ) is given by (14). Thus the functionsB(τ),C(τ), andD(τ) determine the sensitiv-
ity of a bond’s yield to the factorsr, θ andv, and can be calledfactor loadingsfor r, θ andv, respectively.

Remark 2.6 Chen (1996) provides a number of illustrations and interpretations of the factor loadings,
and concludes that the factor loadings implied by the model are similar in nature to those empirically
identified by (Litterman and Scheinkman, 1991).

3 Nonlinear filtering with discrete time observations

In this section the continuous-discrete nonlinear filtering problem will be described for a general stochas-
tic state space model and the approximations made to obtain the second order filter will be discussed.
The presentation follows (Maybeck, 1982) and (Nielsen et al., 2000).

Assume that observations are made available at discrete time instantst1 < . . . < ti < . . . tN , whereN
denotes the number of observations. The relation between the state variables{X} and the observations
is given by the observation equation:

Yti = h(ti,Xti;ψ) + vti (22)

whereh : [t0, T ]×Rd×Rp 7→ Rm is a known function, which is assumed to be twice continuously dif-
ferentiable with respect toXt. Finally{vti} is am-dimensional zero mean Gaussian white noise process
with covarianceΣti . The stochastic entitiesX0, Wt andvti are assumed to be mutually independent for
all t andti.

The filtering problem consists of establishing the conditional densityp(Xt|Yti) of the state vectorXti,
conditioned on the observations up to and including timeti, Yti denotes this information-set. Having
found this conditional density the optimal estimator of the state vector (with respect to some specified
criterion like the Minimum Mean Square Error (MMSE)) can be determined.

Prior to deriving the socalledtruncated second order filter, the basic principle behind filtering methods is
described. The initial value of the state variablesXt0 is assumed to follow a parameterized a priori dis-
tribution where the parameters are to be estimated using a Quasi Maximum Likelihood method (QML).
Given the dynamics of the state variables (1) the distribution of the state vector immediately prior to
observing the first vector of bond prices may be computed. Using this distribution and the observation
equation (22), the distribution of the predicted value of the bond prices are determined. Next, given the
distribution of the predicted bond prices and the observed bond prices, the a posteriori distribution of the
state variable may be computed. Again the system dynamics (1) are used to obtain the distribution of the
state vector at the time just before the next vector of bond prices becomes available.

The conditional densityp(Xt|Yti−1) can be found in the following manner. First consider the prediction
density, which is the distribution of the state vectorXti conditioned on the information-setYti−1 . Since
the solution to (1) is a Markov process, the process is completely described by the transition densities
p(Xt|Xt′) for t > t′.
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The transition densities can in principle be found by solving the Kolmogorov forward equation

∂p(Xt|Xti−1)
∂t

= −
d∑
j=1

∂

∂xjt

{
p(Xt|Xti−1)f j(t,Xt;ψ)

}
+

1
2

d∑
j=1

d∑
k=1

∂2

∂xjt∂x
k
t

{
p(Xt|Xti−1)

[
g(t,Xt;ψ)gT (t,Xt;ψ)

]jk}
(23)

for t ∈ [ti−1, ti) with the initial conditionp(ξ|Xti−1) = δ(ξ − Xti−1), whereδ(·) is the Dirac delta-
function, assuming the existence of continuous partial derivatives as indicated.

The conditional densityp(Xt|Yti−1) may then be found as

p(Xt|Yti−1) =
∫
S
p(Xt|Xti−1)p(Xti−1|Yti−1)dXti−1 (24)

wherep(Xti−1|Yti−1) is the conditional density for the previous observation update, which can be cal-
culated as follows according toBayes rule

p(Xti|Yti) =
p(Yti |Xti,Yti−1)p(Xti|Yti−1)

p(Yti|Yti−1)

=
p(Yti |Xti)p(Xti|Yti−1)

p(Yti|Yti−1)
(25)

The denominator is given by

p(Yti|Yti−1) =
∫
S
p(Yti|Xti)p(Xti|Yti−1)dXti (26)

Equations (23)–(26) constitute the general continuous-discrete time filtering problem. Unfortunately,
except for a few special cases (e.g. narrow-sense linear systems), closed form solutions to these equa-
tions are not available. The computation of the entire density functionp(Xt|Yti−1), which provides
the connection between the evolution of the state variable and the observations, requires the solution
of partial integro-differential equations (derived by means of the Kolmogorov forward equation) and
observation updates involve solving functional integral difference equations (derived by means of the
Bayes’ formula). This implies that the general optimal nonlinear filter will be infinite dimensional. For
practical purposes expansions truncated to some low order are required both in the time propagation
and observation update of the nonlinear filter. One possible approach is to consider expansions of some
of the conditional moments, and this will be pursued in the following. Other approaches are described
in (Maybeck, 1982).

3.1 Conditional moments estimator

LetX̂t|ti−1
denote the conditionalmean ofXt given the information setYti−1 , i.e.X̂t|ti−1

= E[Xt|Yti−1 ] =
Ei−1[Xt] and letVt|ti−1

= E[(Xt− X̂t|ti−1
)(Xt − X̂t|ti−1

)T |Yti−1] denote the conditional variance of
the state estimate fort ∈ [ti−1, ti). Explicit expressions for the time evolution ofXt|ti−1

andVt|ti−1

may be derived using the Kolmogorov forward equation (23), which results in differential equations for
these conditional moments expressed in terms of expectations off(t,Xt;ψ) andg(t,Xt;ψ). However,
these differential equations cannot be solved explicitly because the appropriate densities are not available

9



in closed form. An approximate filter is obtained by writing downtime propagation equationsthat de-
scribes the evolution of the state variables between sampling instants, andupdating equationsthat relates
the conditional mean and conditional variance of the state variables to the observations at the sampling
instants. However, a Taylor expansion off(t,Xt;ψ) andg(t,Xt;ψ) truncated after the second order
terms followed by taking expectations give rise to the following approximate time propagation equations,
see (Maybeck, 1982) for the details,

dX̂t|ti−1

dt
= f(t, X̂t|ti−1

;ψ) + Ei−1[Bt|ti−1
] (27)

dVt|ti−1

dt
= F(t, X̂t|ti−1

;ψ)Vt|ti−1
+ Vt|ti−1

FT (t, X̂t|ti−1
;ψ)

+Ei−1

[
g(t, X̂t|ti−1

;ψ)gT (t, X̂t|ti−1
;ψ)

]
(28)

with the initial conditionsX̂ti−1|ti−1
andVti−1|ti−1

.

The bias-correction termEi−1[Bt|ti−1
] is an-dimensional vector with thekth component

Ek
i−1[Bt|ti−1

] =
1
2

tr

{
∂2fk(t, x;ψ)

∂x2
Vt|ti−1

} ∣∣∣∣x=X̂t|ti−1
(29)

andF(t, X̂t|ti−1
;ψ) is given by then× n matrix

F(t, X̂t|ti−1
;ψ) =

∂f(t, x;ψ)
∂x

∣∣∣∣x=X̂t|ti−1
(30)

The last term in (28) is ad × d symmetric matrix with elementij given by (where the dependence on
X̂t|ti−1

, t|ti−1, andψ have been dropped for convenience)

Ejk
i−1[ggT ] =

d∑
ν=1

d∑
l=1

gjν(gT )lν + tr

{(
∂gjν

∂x

T
∂(gT )lk

∂x

)
V

}

+
1
2
gjν tr

{
∂2(gT )lk

∂x2
V
}

+
1
2

tr

{
V
∂2gjν

∂x2

}
(gT )lk (31)

Remark 3.1Notice thatgjν denotes elementjν ofg, whereas(gT )lj denotes elementlj of the transpose
of g. Also notice that the partial derivative of a scalar with respect to a vector yields a row vector such

that, say,∂(gT )lj

∂x is a row vector, and∂gjν

∂x

T
is a column vector.

The observation update of the mean and the covariance is approximated by a power series in the residual,
which for computational tractability is truncated at first order terms.

X̂ti|ti = a0 + a1(Yti − Ŷti|ti−1
) (32)

Vti|ti = b0 + b1(Yti − Ŷti|ti−1
) (33)

wherea0, a1, b0 andb1 are random variables as a function ofYti−1. In order to avoid negative computed
values ofV̂ti|ti theb1 is set identically to zero.
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The updating equations are given by

Ati = H(ti, X̂ti|ti−1
;ψ)Vti|ti−1

HT (ti, X̂ti|ti−1
;ψ)−Ei−1[B̃ti|ti−1

]ET
i−1[B̃ti|ti−1

]
+Σti (34)

Kti = Vti|ti−1
HT (ti, X̂ti|ti−1

;ψ)A−1
ti

(35)

X̂ti|ti = X̂ti|ti−1
+ Kti

{
Yti − h(ti, X̂ti|ti−1

;ψ)−Ei−1[B̃ti|ti−1
]
}

(36)

Vti|ti = Vti|ti−1
−KtiH(ti, X̂ti|ti−1

;ψ)Vti|ti−1
(37)

whereH(ti, X̂ti|ti−1
;ψ) is defined as them× d matrix

H(ti, X̂ti|ti−1
;ψ) =

∂h(ti, x;ψ)
∂x

∣∣∣∣x=X̂ti|ti−1
(38)

and the bias-correction termEi−1[B̃ti|ti−1
] is am× 1-vector with thekth component given by

Ek
i−1[B̃ti|ti−1

] =
1
2

tr

{
∂2hk(x;ψ)

∂x2
Vti|ti−1

} ∣∣∣∣x=X̂ti|ti−1
(39)

Higher order filters can be obtained by including higher order terms from the Taylor series expansions of
f andg. However, the severe computational disadvantages make such filters infeasible, and it is generally
recommended to use the first or second order filters on better models. The numerical work is considerably
more demanding for the multivariate case, i.e. it involves the numerical solution ofd + d

2(d + 1) =
d
2(d+ 3) ODEs for the conditional first and second order central moments given by (27)–(28) between
each sampling instant.

Frey and Runggaldier (1999) proposes a methodology that may be viewed as a nonlinear filtering method
for discretely observed stochastic differential equations (in particular, stochastic volatility models) with-
out observation noise, where the sampling instantsti are modelled as a marked point process (Bj¨ork,
Kabanov and Runggaldier, 1996; Bj¨ork, Masi, Kabanov and Runggaldier, 1997).

4 Quasi maximum likelihood method

In this section a QML method for estimation of the parameters in the continuous-discrete time state space
model (1) and (22) is presented. It is assumed that the nonlinear filter based on the first two conditional
moments from Section 3 is used to generate the one-step ahead prediction errors

εti(ψ) ≡ Yti − h(ti, X̂ti|ti−1
;ψ) (40)

Assuming that the prediction errors are Gaussian, the Quasi log-likelihood function is given by

QN(ψ; YtN ) =
N∑
i=1

li(ψ) (41)

where

li(ψ) = −1
2

log
∣∣∣H(ti, X̂ti|ti−1

;ψVti|ti−1
H(ti, X̂ti|ti−1

;ψT + Σti

∣∣∣
−1

2

(
εTti(ψ)

[
H(ti, X̂ti|ti−1

;ψVti|ti−1
H(ti, X̂ti|ti−1

;ψT + Σti

]−1
εti(ψ)

)
. (42)
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Remark 4.1The assumption of Gaussianity may be tested using standard statistical tests for Gaussian
white noise residuals.

The consistent, asymptotically normally distributed and efficient estimators obtained using the ordinary
Kalman filter and ML is lost for more general state space models with non-Gaussian transition densi-
ties as argued in e.g (Lund, 1997a). However, Bollerslev and Wooldridge (1992) shows that the nice
properties of ML estimators are retained for QML estimators provided that the mean and variance are
correctly specified. It is assumed that the approximate equations for the conditional mean and con-
ditional covariance obtained by using a second order filter provide a better approximation to the true
conditional moments than the ones used in the earlier cited work, so it is conjectured that the properties
of the obtained estimators are most likely closer to those of (Bollerslev and Wooldridge, 1992) than those
of (Lund, 1997a). A Monte Carlo study reported in the next Section supports this conjecture.

Remark 4.2 The one-step ahead prediction errors defined by (40) are structurally in accordance with
the innovations approach in the linear Kalman filter with a linear observation equation, i.e. with a
linear observation equationH ≡ 0. However, in the general nonlinear case, the expressions in the
curly brackets in (36) contain the additional bias-correction terms given by (39). This is due to the
approximative nature of a second order filter, and it suggests that the one-step ahead prediction errors
(residuals) obtained from (40) may be confounded with some of the deficiencies of the filter in the general
case.7

5 Monte Carlo Analysis

In this Section a Monte Carlo study is performed to analyze the properties of the estimates provided by
the methodology described in the previous two sections. In the study the SDE (1) is solved numerically
using the Euler discretization scheme, see e.g. (Kloeden and Platen, 1995) for details.

Let δ = ∆/K denote the length of the discretization time step, whereK > 1 is the number of time steps
in each interval[ti−1, ti] for i = 1, . . . , N and∆ = ti − ti−1 is the time between samples. Furthermore,
introduceτi−1,k = ti−1 + kδ for k = 0, . . . , K, and let the stochastic process{Z} be a discrete-time
approximation of{X}. For the SDE (1) theν’th component of the Euler discretization scheme is given
by the stochastic difference equation

Zντi−1,k
= Zντi−1,k−1

+ fν(τi−1,k−1,Zτi−1,k−1
;ψ)δ +

d∑
j=1

gνj(τi−1,k−1,Zτi−1,k−1
;ψ)δW j

τi−1,k
(43)

for ν = 1, . . . , d with the initial conditionZτi−1,0 = Xti−1 andδW j
τi−1,k = W j

τi−1,k −W
j
τi−1,k−1 is the

N (0, δ) distributed increment of thejth component of thed-dimensional standard Wiener processWt.

In order to obtain a data set consisting ofN observations, it is necessary to simulateK ·N values of the
state vector and pick out everyK ’th value of the state vector. To obtain a reasonable approximation to
the continuous-time evolution of the state variablesK = 1000 is chosen. The sampling time∆ is set
to 1

50 corresponding to weekly observations. Having simulated the evolution of the state variables the
prices of the corresponding zero-coupon bonds are found by (14), where the functionsA(τ),B(τ),C(τ)
andD(τ) are fully determined by the model parameters and the market prices of risk. Gaussian white
noise with varianceσ2 = 1.0 ∗ 10−6, which gives an approximate97.5% fractile of the error of± 42
basis point for the 6 month yield and± 7 basis point for the 20 years yield, is added to the observations

7See (Tanizaki, 1996) for a discussion of this in discrete-time structural models.
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In the simulation study presented in Table 1 zero-coupon bonds with the following maturities are used:
6 month, 1, 2, 3, 5, 7, 10, and 20 years. The market price of risksλr, λθ andλv are all equal to zero. The
true parameter values are also provided in the table.

Parameter True Mean Std.dev. t-test
κ1 0.4000 0.4011 0.0113 0.5052
κ2 0.2000 0.2002 0.0052 0.1527
κ3 0.1000 0.0936 0.0202 -1.5806
θ̄ 0.1000 0.1000 0.0005 -0.2993
v̄ 0.0006 0.0006 0.0002 0.2806
ξ 0.1000 0.0998 0.0021 -0.5097
η 0.0100 0.0078 0.0023 -4.6948
r0 0.1000 0.1001 0.0008 0.6724
θ0 0.1000 0.0999 0.0012 -0.6167
v0 0.0006 0.0006 0.0002 0.3461

106σ2 1.0000 0.9992 0.0132 -0.3120

Table 1: QML estimates for the full three-factor model (simulation): Consider the special interest rate
dynamics modeldrt = κ1(θt − rt)dt+

√
vtdW

1
t , dθt = κ2(θ̄ − θt)dt+ ξ

√
θtdW

2
t anddvt = κ3(v̄ −

vt)dt + η
√
vtdW

3
t , wherert is the spot rate,θt is the central tendency,vt is the stochastic volatility,

(W 1
t ,W

2
t ,W

3
t )T is a three-dimensional Wiener process with uncorrelated elements, andκ1, κ2, κ3 θ̄, ξ,

v̄ andη are constant parameters. The bond price satisfy the system of equations (16)-(19).

The results reported in Table 1 are based on 25 data set with 1000 observations. The mean and the
standard deviation for the parameter estimates are presented as well as thet-test statistics under the null
hypothesis that the estimated parameters are unbiased. It appears that unbiased estimates are obtained for
all the model parameters except theη parameter which measures the volatility of the volatility processvt.
The reason for this parameter to be slightly downwards biased is the smoothing effect of the filter on the
estimate of the state vector, which tends to reduce the volatility of the processes. Unbiased estimates of
the initial values of the three state variables and the variance of the observation noise are also obtained.
Other simulation studies (not reported here) show that similar results are obtained for different choices
of parameter values.

Remark 5.1 The smoothing effect of the nonlinear filter is also seen in simulation studies in (Nielsen
et al., 2000), where it also has an unfortunate effect on the estimates of the drift parameters in the
unobserved stochastic volatility process (13). This latter effect is not pronounced in the present study.

6 An Empirical Study

The proposed econometric method is applied to a cross-section of daily observations of eight default-free
Danish coupon-bearing bonds. The bonds considered have different time to maturity ranging from 2 to
10 years and the yearly coupon rate ranges from 6% to 9%. The period January 2, 1996 to December 31,
1997 is considered, which gives a data sample covering 499 days of observations. The selected bonds
are some of the most traded bonds at the Danish bond market, so the bonds are fully liquid.

Some notation is required to cope with both the cross-section and time series information in the data
sample. It is assumed that at mostm bond prices are observed simultaneously and that theν’th coupon-
bearing bond carriesJν coupons,ν = 1, . . . , m, whereCjν denotes the value of the coupons forj =
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1, . . . , Jν − 1 andCJνν denote the sum of the coupon and the face value. Thus, at timeti, the value of
theν’th coupon-bearing bond is given by

P ciν(ψ) + accrued interest(t) =
Jν∑
j=1

CjνP (τijν ;ψ)I{τijν≥0} (44)

whereτijν = Tjν − ti is the appropriate time-to-maturity,I{·} is an indicator function (ensuring that
the price of a particular bond that has matured does not contribute to the summation) and the price of a
zero-coupon bondP (·, ·) is given by (14). Finally, the price vectorPc

i(ψ) = (P ci1(ψ), . . . , P cim(ψ))T

is substituted forh(ti,Xti;ψ) in (22), where the stochastic process{v} accounts for observation noise
due to asynchronous trading, rounding off prices, bid-ask spreads, temporary deviations that are not
arbitraged away and other market imperfections.
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Figure 1: The sum of the price and the accrued interest rate for 8 Danish bonds in the period January 2.
1996 to December 31. 1997.

The market prices plus the accrued interest (including the observation noise) are plotted in Figure 1. The
discontinuities in the time series are caused by the fact that the bond isex-coupon, which means that the
bond is sold without the right to receive the next interest payment.

Given the state space model (11)–(13) and the observation equation derived from the bond prices (as
described above) the nonlinear filter (Section 3) and the QML method (Section 4) may be applied. As the
observations are only available on trading days at the Copenhagen Stock Exchange, i.e. approximately
250 days per year excluding weekends and public holidays, the updating of the state variables are only
done on trading days. The propagation equations (27)–(28) are used to predict the expected values of the
state vector (and the associated covariance) on between trading days. Finally, the price of each particular
zero-coupon bond is obtained by solving (16)-(19) using a Runge-Kutta method and the price of the
coupon-bearing bond is obtained from (44).
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For reasons of identifiability, it is assumed that the variance of the observation noise{v} is given by
σ2Im×m, whereIm×m is am×m identity matrix.

6.1 Empirical results

Using an implementation of the proposed methodology it is possible to estimate all the parameters in
the general model (11)-(13) and test nested models thereof. Figure 2 provides an overview of the seven
models considered in this study.

Model 7 Model 6 Model 5

Model 4 Model 3 Model 2

Model 1

κ =  =  =   = 0η λ

κ =  =   = 0rν λ

κ =  =   = 0ν η = 0η

λ = 0

=  =  = 0κ θ ξ

λ λ=   = 0

λ = 0

3

3

θ

θ

3

2

r

ν

v

v

Figure 2: A diagram of the interrelations between the various special cases of the special interest rate
dynamics model.

In the remainder of the paper modelM1 will refer to the one-factor Vasicek model for which the em-
pirical results are provided in Table 2. ModelsM2 throughM4 refer to three two-factor models with
constant volatility and stochastic level of mean reversion (central tendency), see Table 3, and modelsM5

throughM7 are special cases of the general three-factor model (11)–(13), see Table 4.

Parameter Model 1
κ1 0.04115 (0.00034)
θ0 0.21232 (0.00424)
v0 0.000058 (0.000012)
r0 0.04526 (0.00036)

106σ2 37.53657 (0.86349)
lnL -18106.29

Table 2: QML estimates for the Vasicek model: Considerdrt = κ1(θ0 − rt)dt+
√
v0dW

1
t , whereκ1

is the speed-of-adjustment of the interest rate to the level of the meanθ0 andv0 is the volatility. The
standard deviations are given in parenthesis.

LetLi denote minus the optimal value of the log-likelihood function for modelMi for i = 1, . . . , 7. A
likelihood ratio test for the hypothesis that modelMi offers a significantly better description of the data
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than the modelMj is given by

LRij = 2(Li − Lj) ∼ χ2
1−α(d); i > j, (45)

whereχ2
1−α(d) denote the (1-α)–percentile of aχ2-distribution withd degrees-of-freedom,d being the

number of parameter restrictions imposed onMi to obtainMj.

Parameter Model 2 Model 3 Model 4
κ1 0.24763 (0.00268) 0.24773 (0.00274) 0.24701 (0.00270)
κ2 0.22265 (0.00362) 0.22325 (0.00370) 0.23924 (0.00559)
θ̄ 0.010318 (0.00026) 0.10222 (0.00026) 0.09581 (0.00024)
λr N/A 2.48145 (0.84473) 1.40550 (0.49692)
λθ N/A N/A 0.18851 (0.00729)
r0 0.04319 (0.00028) 0.04319 (0.00028) 0.04318 (0.00028)
θ0 0.08235 (0.00053) 0.08175 (0.00053) 0.08212 (0.00053)
v0 0.00006 (0.00001) 0.00006 (0.00001) 0.00006 (0.00001)
ξ 0.08681 (0.00226) 0.08714 (0.0234) 0.08754 (0.00429)

106σ2 5.68269 (0.13598) 5.68547 (0.13609) 5.68467 (0.13602)
lnL -21473.37 -21473.38 -21473.51

Table 3: QML estimates for the two-factor model: Considerdrt = κ1(θt − rt)dt +
√
v0dW

1
t and

dθt = κ2(θ̄ − θt)dt + ξ
√
θtdW

2
t , wherert is the spot rate,θt is the central tendency,(W 1

t ,W
2
t )T is a

two-dimensionalWiener process with uncorrelated elements, andκ1, κ2, θ̄ andξ are constant parameters.

Referring to Table 5, the test statistic LR21 = 6734.2 (with 3 degrees-of-freedom), that the Vasicek
model is rejected compared to the two-factor models. This result was to be expected as the yields in
a one-factor model is perfectly correlated and this property is, in general, not supported empirically.
Note also that the variance of the observation noise decreases to about one seventh by increasing the
number of factors from one to two. The test statistics LR43 = 0.26 and LR32 = 0.02, both with one
degree-of-freedom, show that the restrictionsλr = 0 andλθ = 0, andλθ = 0 cannot be rejected on a
5%-level.

Although the two-factor models are superior to the one-factor model, a more general model is needed to
capture the dynamics of the Danish term structure of interest rates. Compared to the three-factor model
with market price of risks, i.e.M7 in Table 4, the restrictions imposed to get the two-factor models in
Table 3 is rejected at all levels. It is also rejected that the general three-factor model can be reduced to
a three-factor model with the volatility process being a random walk, i.e.M5, because LR65 = 524.82
with 3 degrees-of-freedom. However, it cannot be rejected that the market price of risksλr andλθ are
equal to zero, i.e.M6, because LR76 = 1.96 with 2 degrees-of-freedom.

7 Conclusion

In this paper we have presented a method to estimate the interest rate dynamics based on panel-data of
prices of coupon bonds. We use a truncated second order filter to obtain estimates of the unobservable
state variables in the three factor model presented, and the quasi maximum likelihood method is used to
estimate the model parameters. The advantages of using a panel of bond prices instead of some points
on the yield curve are that the bond prices can be observed directly at the market, which is not the case
for the yield curve. The empirical analysis of the Danish bond market shows that at least a three-factor
model is needed to describe the dynamics of the term structure of interest rates.
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Parameter Model 5 Model 6 Model 7
κ1 0.29730 (0.00157) 0.56841 (0.04335) 0.57079 (0.04538)
κ2 0.49427 (0.00425) 0.76515 (0.05251) 0.75886 (0.05432)
κ3 N/A 0.12142 (0.01103) 0.04334 (0.01298)
θ̄ 0.09974 (0.00008) 0.11230 (0.00564) 0.11357 (0.00598)
v̄ N/A 0.00002 (0.00001) 0.00005 (0.00001)
λr N/A -378.95806 (69.98981) -392.84243 (74.32463)
λθ N/A N/A -0.07072 (0.08432)
λv N/A N/A -34.40820 (19.6537)
r0 0.04475 (0.00029) 0.04876 (0.00176) 0.04878 (0.00187)
θ0 0.06864 (0.00068) 0.07908 (0.00665) 0.07948 (0.00698)
v0 0.00076 (0.00006) 0.00005 (0.00001) 0.00005 (0.00001)
ξ 0.13671 (0.00216) 0.08622 (0.00915) 0.08585 (0.00964)
η 0.04571 (0.00205) 0.00233 (0.00034) 0.00227 (0.00038)

106σ2 4.08327 (0.09861) 3.77699 (0.09243) 3.76348 (0.10042)
lnL -21872.22 -22134.63 -22135.61

Table 4: QML estimates for the full three-factor model: Consider the special interest rate dynamics model
drt = κ1(θt− rt)dt+

√
vtdW

1
t , dθt = κ2(θ̄− θt)dt+ ξ

√
θtdW

2
t anddvt = κ3(v̄− vt)dt+ η

√
vtdW

3
t ,

wherert is the spot rate,θt is the central tendency,vt is the stochastic volatility,(W 1
t ,W

2
t ,W

3
t )T is a

three-dimensional Wiener process with uncorrelated elements, andκ1, κ2, κ3, θ̄, ξ, v̄ andη are constant
parameters. The bond price satisfy the system of equations (16)-(19).
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