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Abstract

In this paper an expression for the bias implied by prediction error methods (weighted least
squares methods) in both i.i.d. samples and time series models with heteroscedasticity is derived pro-
vided that explicit expression for the (conditional) mean and variance are available. It is shown that
prediction error methods including weighted least squares methods fit within the general theory of
estimating functions, which facilitates the derivation of optimal weights in the sense of Heyde (1997)
such that the properties of estimators, in particular unbiasedness, optimality and efficiency, obtained
by using these methods may be discussed. Four examples are provided.
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1 Introduction

Parameter estimation is an inherent part of system identification and a huge literature is devoted to the
subject. Prediction Error Methods (PEM), in particular the special case of Weighted Least Squares
(WLS), are often used and, henceforth, implemented in many automated model construction tools. It is
the objective of this paper to discuss the properties of the estimators provided by these methods when
the problem is cast in the theory ofestimating functions. The theory of estimating functions dates back
to (Godambe, 1960) for the i.i.d. case, see also (McLeish and Small, 1988; Godambe, 1991; Heyde, 1997)
for the general theory. The methodology encompasses Least Squares (LS), WLS, conditional least-
squares, minimum chi-squared, M-estimation and Maximum Likelihood (ML) under minor regularity
conditions. Estimating functions are closely related to likelihood methodology in the sense that the
optimal estimating function is the one with the highest (vector) correlation with the score function from
ML theory (Heyde, 1997), but it is essentially a method of moments. In many applications only explicit
expressions for the mean and variance are required, i.e. in the i.i.d. case the unconditional mean and
variance and in the time series case the conditional mean and variance.

The main advantage of estimating functions is that precise mathematical statements about the optimal
choice of estimating functions and the statistical properties of the estimating functions can be made
explicitly. Using the optimality criterion defined in (Heyde, 1997), which is related to the socalled
Godambe information, an explicit expression for the bias provided by the PEM method is derived and
estimating functions with optimal weights are provided. The PEM estimator may behave very badly in
the presence of heteroscedasticity, i.e. non-constant variance (Heyde, 1997). In many cases the estimating
functions approach is easier to implement, because, in the theory of estimating functions, the focus is
on functions that have the value of the parameter as a root rather than the parameter itself. Thus the
parameter is obtained by solving (estimating) equations rather than optimizing an appropriately chosen
criteria function wrt. the paramaters.

The remainder of the paper is organized as follows: Section 2 considers estimating functions from the
linear and quadratic family and provides an expression for the bias of the WLS estimator. Both the
i.i.d. case and the time series case are considered. Section 3 contains a discussion of relations between
estimating functions and PEM. Some examples are provided in Section 4, and Section 5 provides some
concluding remarks.

2 Estimating functions and weighted least squares

Consider a sample ofn independent stochastic variablesXi. Assume that the mean and variance are
given by

αi(θ) = E[Xi; θ] (1a)

σ2
i (θ) = V[Xi; θ] (1b)

respectively, whereθ ∈ Θ, a subset ofR, is a parameter to be estimated.

Initially, it is assumed that only one parameter must be estimated to simplify the notation. The model
specification (1) covers general nonlinear regression models and allows for non-constant variance with-
out making any distributional assumptions. The time series case with autocorrelated observations are
considered in Section 2.3.

The weighted least squares estimate (a special case of the PEM estimate) ofθ is found by optimizing the
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following criteria function

SWLS(θ) =
n∑
i=1

(Xi − αi(θ))2

σ2
i (θ)

, (2)

i.e. by solving theestimating equation

S
′
WLS(θ̂) = −2

n∑
i=1

α′i(θ̂)
(Xi − αi(θ̂))

σ2
i (θ̂)

−
n∑
i=1

σ2
i (θ̂)

′

σ2
i (θ̂)

· (Xi − αi(θ̂))2

σ2
i (θ̂)

= 0, (3)

where a prime (′) denotes the derivative with respect toθ.

An estimating functionG(X1, . . . , Xn; θ) is a function of both the data and the parameter vector. An
unbiasedestimating function satisfies the estimating equation

E[G(X1, . . . , Xn; θ)] = 0. (4)

The following example provides one important reason for considering estimating functions.

EXAMPLE 2.1.Assuming that an explicit expression for the densityp(Xi; θ) of Xi, i = 1, . . . , n, is
available, the likelihood function is given by

Ln(θ) = L(X1, . . . , Xn; θ) =
n∏
i=1

p(Xi; θ) (5)

and thescore functionfollows immediately

Sn(θ) = S(X1, . . . , Xn; θ) = [lnLn(θ)]
′
=

n∑
i=1

[lnp(Xi; θ)]
′

(6)

The Maximum Likelihood (ML) estimate is given as the solution toSn(θ) = 0, which implies thatSn(θ)
is an estimating function. �

In many cases an explicit expression for the densityp does not exist which implies that a ML estimator
is not available, yet it is convenient to obtain estimators that are as closely related to the score function
S(θ) as possible, because the ML estimator is known to be optimal (unlessθ is on the boundary ofΘ).

Using (3), it is evident that the PEM (WLS) method corresponds to the estimating functionGWLS(θ) =
S
′
WLS(θ).

THEOREM 2.1.The PEM (WLS) estimator will generally not be unbiased. Eq. (3) will not in general
provide a consistent estimator.

Proof. It is easily seen that

E[GWLS(θ)] =
n∑
i=1

σ2
i (θ)

′

σ2
i (θ)

· E[(Xi − αi(θ))2]
σ2
i (θ)

=
n∑
i=1

σ2
i (θ)

′

σ2
i (θ)

, (7)

which shows that the WLS estimator will generally not be unbiased. �

REMARK 2.1. If the σi(θ)’s do not depend onθ then the WLS estimator is consistent and unbiased,
which is readily seen from (3) using the fact thatσ2

i (θ)
′ = 0. H
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The EF considered in Theorem 2.1 is a special case of the PEM method, i.e. a WLS method where the
inverse of the variance is used as weights. The remarkable result in the theorem is that the expected value
of the derivative of the PEM (WLS) criterion (2), i.e. (3), is not zero. It is shown later in Lemma 2.1 that
it is precisely this result that in general leads to biased estimates and an arbitrarily large efficiency loss.

In order to introduce a feasible definition of optimality, consider the simple Least Squares (LS) method,
i.e.

SLS(θ) =
n∑
i=1

(Xi − αi(θ))2. (8)

The LS estimator obviously solves
n∑
i=1

α
′
i(θ̂)(Xi − αi(θ̂)) = 0, (9)

which leads to the estimating functionGLS(X1, . . . , Xn; θ) = S
′
LS(θ). Thus the LS estimator is charac-

terized by the weightsα
′
i(θ̂). As it will become evident the weightsα

′
i(θ) are not generally optimal and

thus they will most likely lead to inefficient estimators forθ.

2.1 Estimating functions from the linear family

Consider the class of Estimating Functions from theLinear family(EFL) given by

G(X1, . . . , Xn; θ) =
n∑
i=1

bi(θ)(Xi − αi(θ)), (10)

wherebi(θ) denotes the weights applied to the martingale differenceXi − αi(θ). An expression for the
optimal weightsb∗i (θ) will be determined shortly.

REMARK 2.2.Clearly the LS estimator is obtained forbi(θ) = α
′
i(θ). H

Assume that an estimating functionG(X1, . . . , Xn; θ) is given. Define thestandardized estimating
functionG(s)(X1, . . . , Xn; θ) by

G(s)(X1, . . . , Xn; θ) = −E[G
′
(X1, . . . , Xn; θ)]

E[G2(X1, . . . , Xn; θ)]
G(X1, . . . , Xn; θ). (11)

Using a shorter notation the variance of the standardized estimating function is found to be

V[G(s)
n (θ)] = V[−E[G

′
n(θ)]

E[G2
n(θ)]

Gn(θ)] =
E[G

′
n(θ)]2

E[G2
n(θ)]2

V[Gn(θ)]

=
E[G

′
n(θ)]2

E[G2
n(θ)]2

(E[G2
n(θ)]− E[Gn(θ)]2), (12)

which may be reduced to

V[G(s)
n (θ)] =

E[G
′
n(θ)]2

E[G2
n(θ)]

(13)

provided that an unbiased estimating function is used, i.e.E[Gn(θ)] = 0.

Heyde (1997) provides three good reasons for assessing the optimality of an estimating function in terms
of V[G(s)

n (θ)]:
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• The asymptotic distribution of the estimatorθ̂ is normal, i.e.(θ − θ̂) ∼ N(0,V[G(s)
n (θ)]−1). This

implies that the most efficient estimator is the one that maximizesV[G(s)
n (θ)].

• The correlation between the score function (from likelihood theory) and the estimating function is
maximized. In likelihood terminologyV[G(s)

n (θ)] is theFisher information.

• The numerator in (13) is a measure of sensitivity such that a large value ofE[G
′
n(θ)] implies a

high sensitivity against biasedness. Conversely, a small value of the denominatorE[G2
n(θ)] yields

a small variance of the estimator.

Using (13) as the optimality criterion also solves the bias-variance problem illustrated in Figure 1: Con-
sider two estimating functionsG(s)

1,n(θ) andG(s)
2,n(θ), where the first one provides an unbiased estimator

θ̂1 and the second an estimatorθ̂2, which may be biased. Clearly ifV[θ̂1] < V[θ̂2] thenθ̂1 is preferable,
but if V[θ̂1] > V[θ̂2] then it is not clear which estimating function to prefer. The optimality criterion in
(13) provides a solution to the bias-variance problem in the sense that a small bias is allowed in order to
get as close as possible to the score function.

-2
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2

3

4

10 20 30 40 50

Figure 1: The bias-variance problem: The points on the thin line representθ̂2, the points on the thick line
represent̂θ1 and the dotted line represents the true value.

THEOREM 2.2.Given the optimality criterion (13) the optimal weights in (10) are given by

bi(θ) =
α
′
i(θ)

σ2
i (θ)

, (14)

It holds that

V[G(s)
n (θ)] =

n∑
i=1

(α
′
i(θ))

2

σ2
i (θ)

(15)

The optimal estimating function from the linear family is thus given by

G∗n(θ) =
n∑
i=1

α
′
i(θ)

σ2
i (θ)

[Xi − αi(θ)] (16)
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Proof. V[G(s)
n (θ)] is maximized by solving∂ V[G

(s)
n (θ)]

∂bj(θ)
= 0 for j = 1, . . . , n, which results in the

following n equations

2(
∑n

i=1 biα
′
i(θ))α

′
j(θ)(

∑n
i=1 b

2
i (θ)σ

2
i (θ))− 2σ2

j (θ)bj(θ)(
∑n

i=1 biα
′
i(θ))

2

(
∑n

i=1 b
2
i (θ)σ

2
i (θ))2

= 0.

Rewriting this system of equations yields

bj(θ) =
α
′
j(θ)
σ2
j (θ)

(
∑n

i=1 b
2
i (θ)σ

2
i (θ))

(
∑n

i=1 bi(θ)α
′
i(θ))

= c
α
′
j(θ)
σ2
j (θ)

,

wherec is an arbitrary, real constant indicating that the optimal weights are only unique up to the mul-
tiplicative constantc, which is, however, of no importance for the optimal estimating function. It is
difficult to prove whether ∂2

∂bi(θ)∂bj(θ)
V[G(s)

n (θ)] is negative definite in order to ensure that the found
optimum is a maximum. Instead the Cauchy-Schwarz inequality is used to verify that

(
∑n

i=1 bi(θ)α
′
i(θ))

2∑n
i=1 σ

2
i (θ)b

2
i (θ)

≤

(∑n
i=1

(α
′
i(θ))

2

σ2
i (θ)

)2

∑n
i=1

(
α
′
i(θ)

σ2
i (θ)

)2 .

Consider

(
∑n

i=1 bi(θ)α
′
i(θ))

2∑n
i=1 σ

2
i (θ)b

2
i (θ)

=
(
∑n

i=1 bi(θ)α
′
i(θ))

2
∑n

i=1

(
α
′
i(θ)

σ2
i (θ)

)2

∑n
i=1 σ

2
i (θ)b

2
i (θ)

∑n
i=1

(
α
′
i(θ)

σ2
i (θ)

)2

≤
(
∑n

i=1 bi(θ)α
′
i(θ))

2
∑n

i=1

(
αi(θ)

′

σ2
i (θ)

)2

(
∑n

i=1 bi(θ)α
′
i(θ))2

=
n∑
i=1

(
α
′
i(θ)

σ2
i (θ)

)2

.

Multiplying this expression by
∑n

i=1 σ
2
i (θ)b

2
i (θ) on both sides of the equality sign yields

n∑
i=1

σ2
i (θ)b

2
i (θ)

n∑
i=1

(
α
′
i(θ)

σ2
i (θ)

)2

≥
(

n∑
i=1

bi(θ)α
′
i(θ)

)2

.

The proof is now straightforward

(
∑n

i=1 bi(θ)α
′
i(θ))

2∑n
i=1 σ

2
i (θ)b

2
i (θ)

≤
n∑
i=1

(
α
′
i(θ)

σ2
i (θ)

)2

=

[∑n
i=1

(
α
′
i(θ)

σ2
i (θ)

)2
]2

∑n
i=1

(
α
′
i(θ)

σ2
i (θ)

)2 ,

which shows that the optimum is a maximum. �

REMARK 2.3.Notice that the first term in (3) is essentially the same as the optimal EFL (16). H
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The result in Theorem 2.2 shows that it is possible to obtain an unbiased and efficient estimator as op-
posed to the PEM (WLS) estimator. Notice that this result is obtained without making any distributional
assumptions as the EFL is based only on explicit expressions for the mean and the variance. The (W)LS
estimator is only unbiased in the special case whereσ2

i (θ) does not depend onθ. Clearly the optimal
estimating function given by (16) is just as easy to apply as the WLS method provided that explicit
expressions for the mean and variance are available.

The next Theorem is important for assessing the efficiency of the PEM (WLS) estimator (3).

THEOREM 2.3.For the estimating function given by (3), it holds that

V[G(s)
WLS(θ)] =

[
n∑
i=1

(
2 (α

′
i(θ))

2

σ2
i (θ)

+ 2 (σ2
i (θ)

′
)2

σ4
i (θ)

− σ2
i (θ)

′′

σ2
i (θ)

)]2

E[G2
WLS(θ)]

×
[

E[G2
WLS(θ)]−

(
n∑
i=1

σ2
i (θ)

′

σ2
i (θ)

)]
, (17)

where

E[G2
WLS(θ)] = 4

n∑
i=1

(α
′
i(θ))

2

σ2
i (θ)

+
n∑
i=1

(σ2
i (θ)

′
)2

σ8
i (θ)

(
E[(Xi − αi(θ))4]− σ4

i (θ)
)

+

(
n∑
i=1

σ2
i (θ)

′

σ2
i (θ)

)2

+ 4
n∑
i=1

α
′
i(θ)σ

2
i (θ)

′

σ6
i (θ)

E[(Xi − αi(θ))3] (18)

Proof. See (Nolsøe, 1999, Section 2.4). �

L EMMA 2.1. It follows from Theorem 2.1 thatE[GWLS(θ)] 6= 0. This implies that the simple optimality
criterion given by (13) cannot be used. Instead the computationally more demanding criterion (12) must
be used. In this case, it holds that

θ− θ̂ ∼ N

√V[GWLS(θ)] E[GWLS(θ)]√
V[G(s)

WLS(θ)] E[G2
WLS(θ)]

,
V[GWLS(θ)]2

E[G2
WLS(θ)]2 V[G(s)

WLS(θ)]

 (19)

where

V[GWLS(θ)] = 4
n∑
i=1

(α
′
i(θ))

2

σ2
i (θ)

+
n∑
i=1

(σ2
i (θ)

′
)2

σ8
i (θ)

(
E[(Xi − αi(θ))4]− σ4

i (θ)
)

+4
n∑
i=1

α
′
i(θ)σ

2
i (θ)

′

σ6
i (θ)

E[(Xi − αi(θ))3]. (20)

Proof. See (Nolsøe, 1999, Section 2.4). �

2.2 Estimating functions from the quadratic family

Next assume that a parameter vectorθ ∈ Θ, a subset ofRp, is to be estimated. Introduce the vector ofp
linearly independent functionsmi(θ) = (mi(θ)1, . . . , mi(θ)p)T .
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To introduce Estimating Functions from the Quadratic family (EFQ) consider the following moment
restrictions

mi(θ) =
(

Xi − αi(θ)
(Xi − αi(θ))2 − σ2

i (θ)

)
, (21)

which are socalled martingale differences with expectation zero. One reason for increasing the number
of moment restrictions is that this brings the resulting EF closer to the score function. Using EFL it is
possible to obtainp equations that are linearly dependent such that it is not possible to estimate allp
parameters. This problem may be eliminated by using a larger class of EFs, e.g. EFQ.

Consider thep-dimensional estimating function

Gn(θ) =
n∑
i=1

Ai(θ)mi(θ), (22)

where the optimal weights are given by, see (Heyde, 1997),

Ai(θ) = E[∂θTmi(θ)]TV−1
i (θ) (23)

Vi(θ) = V[mi(θ)] = E[mi(θ)mi(θ)T ] (24)

and the matrix of partial derivatives is

∂
θT

mi(θ) =

 ∂θ1mi(θ)1 . . . ∂θpmi(θ)1
...

...
∂θ1mi(θ)p . . . ∂θpmi(θ)p

 , (25)

where, say,∂θ1mi(θ)1 is short for the partial derivative∂∂θ1mi(θ)1.

Introduce the following notation for the moments

αi(θ) = E[Xi; θ] (26a)

σ2
i (θ) = E[(Xi − αi(θ))2; θ] (26b)

ηi(θ) = E[(Xi − αi(θ))((Xi − αi(θ))2 − σ2
i (θ)); θ] (26c)

ψi(θ) = E[((Xi− αi(θ))2 − σ2
i (θ))2; θ] (26d)

It follows immediately by applying (26) that

Vi(θ) =
(
σ2
i (θ) ηi(θ)
ηi(θ) ψi(θ)

)

V−1
i (θ) =

 ψi(θ)

σ2
i (θ)ψi(θ)−η2

i (θ)
− ηi(θ)

σ2
i (θ)ψi(θ)−η2

i (θ)

− ηi(θ)

σ2
i (θ)ψi(θ)−η2

i (θ)

σ2
i (θ)

σ2
i (θ)ψi(θ)−η2

i (θ)


and, finally,

E[∂
θT

mi(θ)] = −
(
∂θ1αi(θ) · · · ∂θpαi(θ)
∂θ1σ

2
i (θ) · · · ∂θpσ

2
i (θ)

)
E[∂
θT

mi(θ)]TV−1
i (θ) = 

−∂θ1αi(θ)ψi(θ)+ηi(θ)(∂θ1σ
2
i (θ))

σ2
i (θ)ψi(θ)−η2

i (θ)

∂θ1αi(θ)ηi(θ)−σ2
i (θ)(∂θ1σ

2
i (θ))

σ2
i (θ)ψi(θ)−η2

i (θ)
...

...
−∂θpαi(θ)ψi(θ)+ηi(θ)(∂θ1σ

2
i (θ))

σ2
i (θ)ψi(θ)−η2

i (θ)

∂θpαi(θ)ηi(θ)−σ2
i (θ)(∂θpσ

2
i (θ))

σ2
i (θ)ψi(θ)−η2

i (θ)


9



This leads to the class of EFQ, i.e.

Gn(�) =

nX
i=1

 
−(∂

�
T αi(�))Tψi(�) + ηi(�)(∂

�
T σ2

i (�))T

σ2
i (�)ψi(�)− η2

i (�)
(Xi − αi(�))

+
(∂
�
T αi(�))T ηi(�)− σ2

i (�)(∂
�
T σ2

i (�))T

σ2
i (�)ψi(�)− η2

i (�)
((Xi − αi(�))2 − σ2

i (�))

!
, (27)

where∂
θT
αi(θ) = (∂θ1αi(θ), . . . , ∂θpαi(θ)) is introduced to allow a simpler notation.

REMARK 2.4. It is noticed that the optimal weights in front of the two martingale difference terms
Xi−αi(θ) and(Xi−αi(θ))2−σ2

i (θ) differ from those given by the WLS estimating equation (3).H

REMARK 2.5.To illustrate that theOF -optimal weights depend on the specification of the moment
restrictions, consider the following alternative to (21), i.e.

mi(θ) =
(

Xi − E[Xi; θ]
X2
i − E[X2

i ; θ]

)
=
(

Xi − αi(θ)
X2
i − σ2

i (θ)− α2
i (θ)

)
. (28)

Using these moment restrictions yield the followingOF -optimal weights

Gn(�) =

nX
i=1

 
(∂
�
T αi(�))T (2αi(�)ηi(�) + ψi(�))− (ηi(�) + 2αi(�))(∂

�
T σ2

i (�))T

σ2
i (�)ψi(�) − η2

i (�)

×(Xi − αi(�))

−
(∂
�
T αi(�))Tηi(�) − σ2

i (�)(∂
�
T σ2

i (�))T

σ2
i (�)ψi(�) − η2

i (�)
(X2

i − σ2
i (�)− α2

i (�))

!
, (29)

where the notation from (26) has been used. This result differs from (27), but there is no available theory
to determine whether the moment restrictions given by (21) or (28) should be used. However, the EFQ
given by either (27) or (29) isOF -optimal given the moment restrictions (21) or (28), respectively. Let
EFQ′ denote the EFQ given by (29). H

2.3 Correlated observations

Now assume that the observationsXi for i = 1, . . . , n are correlated, i.e. the observations may be
considered as a time series. Denote the conditional mean and conditional variance by

F (Xi−1; θ) = E[Xi|Xi−1; θ] (30a)

Φ(Xi−1; θ) = V[Xi|Xi−1; θ] (30b)

respectively.

The model specification (30) covers first order autoregressive processes and allows for heteroscedasticity
e.g. the ARCH model (Engle, 1982), see also (Bollerslev, Chou and Kroner, 1992) for a review.

The earlier results for computing the optimal weights for estimating functions from the linear and
quadratic family may immediately be generalized to the time series case.

L EMMA 2.2.The optimal EFL is given by

G∗n(θ) =
n∑
i=1

F
′
(Xi−1; θ)

Φ(Xi−1; θ)
[Xi − F (Xi−1; θ)], (31)

whereF (Xi−1; θ) andΦ(Xi−1; θ) are given by (30).
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Proof. See (Heyde, 1997). �

Clearly the martingale differenceXi − F (Xi−1; θ) in (31) for i = 1, . . . , nmay be interpreted asone-
step ahead prediction errorsfor first order Markov processes.

REMARK 2.6.The optimal estimating functions from the quadratic family are obtained by a simple
generalization of (26) and (27), see (Heyde, 1997; Nolsøe, 1999) for details. H

3 Estimating functions and prediction error methods

In this section some relations between the estimating function methodology and the prediction error
method will be discussed.

Again, letXi, i = 1, . . . , n, denote a time series of correlated stochastic variables.

Let Fn = σ{Xn, Xn−1, . . . , X0} denote the information set (σ-algebra) up to and including timen.
Finally, let

εi(θ) = Xi − E[Xi|Xi−1; θ] (32)

denote the one-step ahead prediction errors for first order Markov processes, and introduce the criterion

Vn(θ,Fn) = h

(
1
n

n∑
i=1

l(i, θ, εi(θ))

)
(33)

wherel(·, ·) is a function fromZ×Rp×R to the space of positive semidefinites× s matrices andh(·)
is a function from the space ofs× s matrices to the real numbers.

Ljung and Caines (1979) establishes, under minor regularity conditions, the asymptotic normality of the
estimator obtained by optimizing (33). However the criterion (33) is too general to obtain any results
regarding the efficiency of the estimators, and it is inherently difficult to obtain results for the optimal
choices ofl andh. In the PEM context, the following estimating equation seems an obvious choice

∂
θT
Vn(θ,Fn) = 0, (34)

where0 is ap-dimensional vector of zeros. Thus it is difficult to relate the methods to one another in
general. For simplicity assume that a one-dimensional parameterθ is to be estimated. Ifσ2

i (θ) = σ2
i

then it is possible to compute a criterion function using EFL as follows

V1,n(θ,Fn) =
n∑
i=1

∫
Θ

α′i(θ)
σ2
i

(Xi − αi(θ))dθ

=
n∑
i=1

1
σ2
i

∫
Θ
α′i(θ)(Xi − αi(θ))dθ (35)

However, ifσ2
i is allowed to depend onθ then the criterion function given by

V2,n(θ,Fn) =
n∑
i=1

∫
Θ

α′i(θ)
σ2
i (θ)

(Xi − αi(θ))dθ (36)

might not in general be integrable. If it is integrable the criterion function will depend on the specification
of αi(θ) andσ2

i (θ). This approach may be seen as a means of making the optimal choice of at least the
functionl in the PEM context.

11



In a number of special cases it is possible to make some comparisons. Assuming that the prediction
errorsε(θ) = (ε1(θ), . . . , εn(θ))T are independent with covariance matrixΣ = diag(σ2

1, . . . , σ
2
n)

independent ofθ, it is customary to consider the special case

l(i, θ, ε(θ)) = εT (θ)Σ−1ε(θ) = tr ε(θ)εT (θ)Σ−1; h(x) = x (37)

This is the ordinary LS problem for which the LS and EFL methods provide the same optimal solution.
The WLS problem is obtained by allowingΣ to depend onθ. Theorem 2.1 states that the WLS method
may lead to biased and inconsistent estimates, whereas the EFL solution provided in Theorem 2.2 is
optimal.

Assuming thatε(θ) is Gaussian with zero mean and covarianceΣ(θ), it is convenient to consider the
criterion

l(i, θ, ε(θ)) =
1
2
εT (θ)Σ−1(θ)ε(θ) +

1
2

log det Σ(θ) (38)

As the Gaussian distribution belongs to the exponential family, the ML, EFL and EFQ methods provide
the same optimal solution, whereas the afore-mentioned comments regarding the LS and WLS methods
still hold.

4 Examples

In this section the properties of the estimators provided by the PEM (LS and WLS), EFL and EFQ
methods will be analyzed for three particular models using simulated data. In a fourth example only the
formulae are given.

4.1 Example 1: The Poisson distribution

As a simple example, assume thatXi ∈ Pois(θi) for i = 1, . . . , n, i.e. thatXi follows an inhomogeneous
Poisson distribution with intensityθi. It follows thatE[Xi] = V[Xi] = E[(Xi − E[Xi])3] = θi and
E[(Xi − E[Xi])4] = (3θi + 1)θi. The estimators and the variance of the estimators obtained by using
PEM (LS and WLS), ML, EFL and EFQ are given in Table 1. It is noted that the estimator obtained
using ML, EFL and EFQ are the same. This result holds for all distributionsbelonging to the exponential
family of distributions (Barndorff-Nielsen, 1978), see e.g. (Nolsøe, 1999).

Method PEM (LS) PEM (WLS) EFL/EFQ/ML

θ̂ 6
n(n+1)(2n+1)

n∑
i=1

iXi ±
√

2
n(n+1)

n∑
i=1

X2
i
i

2
n(n+1)

n∑
i=1

Xi

V[θ̂] 9θ
(2n+2)2 N/A 2θ

n(n+1)

Table 1: The table contains estimators ofθ using the PEM (LS and WLS) and EFL/EFQ/ML methods.
The last three methods coincide for the Poisson distribution.

A simulation study has been repeated 500 times withθ = 0.1 for i = 1, . . . , 100, i.e. using 100 obser-
vations in each stochastically independent sample. The results reported in Table 2 have been obtained. It
is seen that the WLS method provides a biased estimate, that the LS method provides a very inefficient
estimate and that the EFL/EFQ/ML methods provide an unbiased estimate, which is also the most effi-
cient. The computed values of the variance of the standardized estimating functionV[G(s)(θ)] attains
its maximum for the EFL/EFQ/ML method as expected. Based solely on the mean and variance ofθ̂,
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it is not entirely clear whether one should accept the small bias of the WLS estimate given that it is
more efficient than the PEM (LS) estimate or vice versa, but the values ofV[G(s)(θ)] clearly illustrates
the efficiency loss implied by the PEM (WLS) method. Thus in this case the LS method is preferable
compared to the WLS method, albeit the observations exhibit heteroscedasticity. The asymptotic result
V[θ̂] = V[G(s)(θ̂)]−1 holds approximately except for the PEM (WLS) method. This result was to be
expected according to Lemma 2.1. Histograms for the 500 estimates for each of the three methods are
provided in Figure 2.

PEM (LS) PEM (WLS) EFL/EFQ/ML

E[θ̂] 0.1002 0.1094 0.1001
V[θ̂] (·10−5) 2.317 2.094 1.963
V[G(s)(θ̂)] (·104) 4.336 0.232 5.193

Table 2: The mean and variance of the 500 estimates ofθ are listed using the LS, WLS and EFL/EFQ/ML
methods. The last three methods coincide for the Poisson distribution.
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Figure 2: Histograms of the estimate obtained using the LS, WLS and EFL methods (left to right).

Figure 3 provides an illustration of the properties of the various estimators assuming that the distribution
ofXi belongs to the exponential family. It is seen that the EFL, EFQ and ML provide the same estimator.

4.2 Example 2: The log-normal distribution

As an example of a distribution that does not belong to the exponential family consider the log-normal
distribution. This example also illustrates that an unbiased EF need not yield an unbiased estimator
(see the discussion on the bias-variance problem in Section 2.1). Assume thatXi ∈ LN(θ, β2) for i =
1, . . . , n, whereβ is assumed known. It follows readily thatE[Xi] = eθ+

1
2
β2

, V[Xi] = e2θ+β2
(eβ

2−1),
E[(Xi − E[Xi])3] = e3θ+3

2
β2

(eβ
2 − 1)2(eβ

2
+ 2) andE[(Xi − E[Xi])4] = e4θ+2β2

(eβ
2 − 1)2(e4β2

+
2e3β2

+ 3e2β2 − 3).
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Figure 3: Hierarchy of estimation methods of parameters in the exponential family.

It is well-known that the unbiased ML estimator is given by

θ̂ =
1
n

n∑
i=1

ln(Xi). (39)

It follows from (16) that the EFL estimator is given by

θ̂ = −1
2
β2 + ln

(
n∑
i−1

Xi

)
− ln(n). (40)

This is also the PEM (LS) estimator. It may be shown thatE[θ̂] = θ− eβ
2−1
2n , which implies that the EFL

estimator is consistent, but biased for finite samples.

REMARK 4.1.Considering the transformed dataln(Xi) the EFL method will provide the ML estimator.
H

The PEM (WLS)-estimator is found to be

θ̂ = −1
2
β2 + ln

(
n∑
i=1

X2
i

)
− ln

(
n∑
i=1

Xi

)
, (41)

which has the expected valueE[θ̂] = θ + β2 + eβ
2−1
2n − e4β

2−1
2n2 , i.e. the PEM (WLS) estimator is

inconsistent and biased.

The EFQ estimator should solve a second order equation ineθ, which is left out for brevity, see (Nolsøe,
1999).

A simulation study has been repeated 500 times withθ = β = 1 for i = 1, . . . , 100, i.e. using 100 obser-
vations in each stochastically independent sample. The results reported in Table 3 have been obtained. It
is seen that the ML method outperforms the other methods, and that the PEM method provides a grossly
biased and inefficient estimate. These results give rise to Figure 4, which provides an illustration of the
properties of the various estimators and their interrelations.

4.3 Example 3: AR(1)-ARCH(1) model

Consider a first-order AutoRegressive process

Xi = φXi−1 + εi, (42)

14



PEM EFL EFQ EFQ′ ML

E[θ̂] 1.9009 0.9884 0.9906 0.9902 0.9920
V[θ̂] 0.1210 0.0160 0.0125 0.0130 0.0094
V[G(s)(θ̂)] 1.6260 60.0510 79.0818 76.9148 94.5909

Table 3: The mean and variance of the 500 estimates ofθ are listed using the PEM (LS and WLS), EFL,
EFQ and ML methods.

LS

= WLS

EFL

ML

> >

EFQ EFQ’

>>

Figure 4: Hierarchy of estimators assuming thatXi ∈ LN(θ, β2).

whereεi is a process exhibiting first order AutoRegressive Conditional Heteroscedasticity (ARCH), i.e.
εi = σiηi with ηi ∼ N(0, 1), and

σ2
i = α0 + α1ε

2
i−1, (43)

whereα0 > 0, α0 ≥ 0. The unconditional variance ofεi is σ2 = α0/(1− α1) provided thatα1 < 1. In
other words

E[Xi|Fi−1] = φXi−1 (44a)

V[Xi|Fi−1] = α0 + α1ε
2
i−1 (44b)

Note that the conditioning has been extended fromXi−1 to the entire information set available at time
i− 1 denotedFi−1.

For simplicity, consider the caseα0 = 1 andα1 = 1 + φ. To obtain an estimate ofφ using EFL (10), the
following estimating equation should be solved

Gn(φ) =
n∑
i=1

Xi−1

1 + (1 + φ)ε2i−1

[Xi − φXi−1] (45)

Using (9) the PEM (LS) estimator is given by

φ =

n∑
i=1

Xi−1Xi

n∑
i=1

X2
i−1

(46)

Finally, using (3) the PEM (WLS) estimator is the root of the equation

n∑
i=1

(
2Xi−1(Xi − φXi−1)

1 + (1 + φ)ε2i−1

+
ε2i−1(Xi − φXi−1)2

(1 + (1 + φ)ε2i−1)2

)
= 0 (47)

The results reported in Table 4 are obtained by simulating 500 stochastic independent samples each
consisting of 500 observations forφ = −0.5 andφ = 0.5, respectively. Note that (43) is not stationary
for φ = 0.5. The 500 parameter estimates for each value ofφ are illustrated in Figure 5. The LS
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Figure 5: Estimation results for the LS, WLS and EFL methods (top to bottom). The left (right) panel
shows the histogram and the empirical density (i.e. a normal density with the empirical mean and vari-
ance) of the same estimates forφ = −0.5 (φ = 0.5).
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method provides an unbiased estimate that is mostly inefficient in the nonstationary case (φ = 0.5). The
WLS method provides the second most efficient, but grossly biased estimate. Indeed the biasedness is
most pronounced in the stationary case (φ = −0.5). It is seen that the EFL method provides the most
efficient and unbiased estimate. Figure 5 shows the histograms of the parameter estimates along with
normal distributions with the mean and variance listed in Table 4 in order to investigate the asymptotic
distribution of the estimates (right panel only). Significant deviations from normality are not seen for
any of the methods.

φ = −0.5 φ = 0.5
LS WLS EFL LS WLS EFL

E[θ̂] -0.4930 -0.2385 -0.4992 0.4330 0.6274 0.4989
V[θ̂] 0.004632 0.002437 0.001916 0.0446 0.0032 0.0014
V[G(s)(θ̂)] 267.79 0.7080 501.25 14.65 28.87 998.16

Table 4: The mean and variance of the 500 estimates ofφ = −0.5 andφ = 0.5 are listed using the PEM
(LS and WLS) and EFL methods.

4.4 Example 4: Stochastic variance models

Taylor (1986) proposesStochastic Variance (SV) models(orStochastic Volatilitymodels) as an alternative
to GARCH models, i.e.

Yi = e
1
2
Xiεi; εi ∼ N(0, 1), (48)

whereXi is an AR(1)-process

Xi = φ0 + φ1Xi−1 + ei; ei ∼ N(0, σ2
e). (49)

It is assumed thatεi andei are mutually independent. Harvey, Ruiz and Shephard (1994) considers the
special case, where (49) is a pure random walk (φ0 = 0 andφ1 = 1).

Eqs. (48)–(49) may be restated in stochastic state space form withlnχ2(1) measurement noise

lnY 2
i = Xi + ξi − 1.27 (50a)

Xi = φ0 + φ1Xi−1 + ei (50b)

with ξi = ln e2
i + 1.27 such thatE[ξi] = 0 andVar[ξi] = π2/2, see e.g. (Abramowitz and Stegun,

1970, p. 943), where (50a) may be interpreted as a measurement equation and (50b) as a state space
equation1. Harvey et al. (1994) proposes that theξi be treated asN(0, π2/2) and applies the Kalman filter
in combination with a Quasi-Maximum Likelihood (QML) method. However, Sandmann and Koopman
(1998) shows that the distributionN(−1.27, π2/2) provides a poor approximation to the exactlnχ2(1)
distribution.

REMARK 4.2.As in the last section it is assumed that the realization of the latent process is known,
because it is outside the scope of the present paper to discuss the filtering problem. The recently proposed
Prediction-based Estimating Functions(PEF) makes it possible to estimate the parameters in the latent
process (49), but not the statesXi, see (Sørensen, 1999; Nolsøe, Nielsen and Madsen, 2000). H

1The exact mean ofln e2
i is−(γ + ln 2), whereγ ≈ 0.5772 is Euler’s constant.
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It follows immediately thatE[Xi|Xi−1] = φ0+φ1Xi−1 and thatV[Xi|Xi−1] = σ2
e . Due to the normality

of ηi andXi, and hence log-normality ofe
1
2
Xi , it holds that

E[Y 2j+1
i |Fi−1] = 0 j = 0, 1, 2, . . . (51a)

E[Y 2j
i |Fi−1] =

j∏
k=1

(2k − 1)ej(φ0+φ1Xi−1)+1
2
j2σ2

e j = 1, 2, 3, . . . . (51b)

Stochastic variance models provide a description of the conditional variance as do GARCH models,
which implies that EFL cannot be used to estimate all the model parameters. Instead EFQ must be used,
which requires explicit expressions for the following martingale differences withθ = (φ0, φ1, σ

2
e)T

αi(θ) = E[Yi|Fi−1; θ] = 0 (52a)

σ2
i (θ) = E[(Yi − αi(θ))2|Fi−1; θ] = E[Y 2

i |Fi−1; θ] = eφ0+φ1Xi−1+1
2
σ2
e (52b)

ηi(θ) = E[(Yi − αi(θ))
{
(Yi − αi(θ))2 − σ2

i (θ)
}
|Fi−1; θ] = 0 (52c)

ψi(θ) = E[
{

(Yi − αi(θ))2 − σ2
i (θ)

}2 |Fi−1; θ]

=
(

3e2σ2
e + eσ

2
e + 2e

3
2
σ2
e

)
e2(φ0+φ1Xi−1) (52d)

The optimal EFQ is readily obtained by solving

n∑
i=1

(1 Xi−1
1
2

)T
σ2
i (θ)
ψi(θ)

(Y 2
i − σ2

i (θ)) = 0. (53)

It is also readily seen that the PEM (WLS) estimator is obtained by solving

n∑
i=1

(1 Xi−1
1
2

)T
Y 2
i

σ2
i (θ)

= 0, (54)

which can, however, only be used to estimate one of the parameters, i.e. only the elements of the sum
containingXi−1 can take on all real values and, hence, sum to zero. Note that this does not imply that
the other parameters cannot be estimated if a transformation ofYi is applied.

REMARK 4.3.Assuming thatσ2
e is known, the optimal EFL (31) may be determined from (50) by

definingZi = lnY 2
i = Xi + ξi − 1.27. It follows readily thatE[Zi|Fi−1] = φ0 + φ1Xi−1 − 1.27 and

V[Zi|Fi−1] = σ2
e + π2

2 , which yields the EF

n∑
i=1

(1 Xi−1)T
(Zi − φ0 − φ1Xi−1 + 1.27)

σ2
e + π2

2

= 0, (55)

which may be solved in closed form. H
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5 Discussion and conclusion

The main result of this paper is that the prediction error method, in particular the special case of a
(weighted) least squares method where the inverse of the (conditional) variance is applied as weights,
leads to biased estimates provided that the (conditional) variance depends on the parameter vector. How-
ever, using the theory of estimating functions, it is possible to derive optimal estimators in the intuitive
appealing sense of optimality considered in (Heyde, 1997). For estimating functions from the linear fam-
ily only explicit expressions for the (conditional) mean and variance are needed, whereas for estimating
functions from the quadratic family explicit martingale differences in terms of the third and fourth order
moments are also needed. In both cases no distributional assumptions need be imposed.

Some comparisons between prediction error methods and estimating functions have been made. It is
shown that the latter only fits in the former framework in a few special cases. However in one special
case estimating functions from the linear family may be used to derive an optimal criterion function. Re-
cent developments of socalledprediction-based estimating functionsbridges the gap between these two
methodologies and provides a means of choosing optimal weights in a reasonably general framework,
see (Sørensen, 1999) for the general theory, and Nolsøe et al. (2000) for a generalization that allows for
measurement noise.
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