
COMPUTING SYMMETRIC RANK-REVEALING

DECOMPOSITIONS VIA TRIANGULAR FACTORIZATION�

PER CHRISTIAN HANSENy AND PLAMEN Y. YALAMOVz

Abstract. We present a family of algorithms for computing symmetric rank-revealing VSV
decompositions, based on triangular factorization of the matrix. The VSV decomposition consists of
a middle symmetric matrix that reveals the numerical rank in having three blocks with small norm,
plus an orthogonalmatrix whose columns span approximations to the numerical range and null space.
We show that for semi-de�nite matrices the VSV decomposition should be computed via the ULV
decomposition, while for inde�nite matrices it must be computed via a URV-like decomposition that
involves hyperbolic rotations.
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1. Introduction. Rank-revealing decompositions of general dense matrices are
widely used in signal processing and other applications where accurate and reliable
computation of the numerical rank, as well as the numerical range and null space,
are required. The singular value decomposition (SVD) is certainly a decomposition
that reveals the numerical rank, but what we have in mind here are the RRQR and
UTV (i.e., URV and ULV) decompositions which can be computed and, in particular,
updated more e�ciently than the SVD. See, e.g., [7, xx2.7.5{2.7.7] and [19] for details
and references to theory, algorithms, and applications.

The key to the e�ciency of RRQR and UTV algorithms is that they consist of an
initial triangular factorization which can be tailored to the particular matrix, followed
by a rank-revealing post-processing step. If the matrix is m�n with m � n and with
numerical rank k, then the initial triangular factorization requires O(mn2) 
ops, while
the rank-revealing step only requires O((n� k)n2) 
ops if k � n, and O(kn2) 
ops if
k� n. The updating can always be done in O(n2) 
ops, when implemented properly.
We refer to the original papers [8], [9], [15], [17], [18], [22], [30], [31] for details about
the algorithms.

For structured matrices (e.g., Hankel and Toeplitz matrices), the initial triangular
factorization in the RRQR and UTV algorithms has the same complexity as the
rank-revealing step, namely, O(mn) 
ops; see [7, x8.4.2] for signal processing aspects.
However, accurate principal singular values and vectors can also be computed by
means of Lanczos methods in the same complexity, O(mn) 
ops [12]. Hence the
advantage of a rank-revealing decomposition depends on the matrix structure and
the numerical rank of the matrix.

Rank-revealing decompositions of general sparse matrices are also in use, e.g., in
optimization and geometric design [26]. For sparse matrices, the initial pivoted trian-
gular factorization can exploit the sparsity of A. However, the UTV post-processors
may produce a severe amount of �ll, while the �ll in the RRQR post-processor is
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restricted to lie in the columns that are permuted to the right of the triangular factor
[7, Thm. 6.7.1]. An alternative sparse URL decomposition A = U RL, where U is
orthogonal and R and L are upper and lower triangular, respectively, was proposed
in [25]. This decomposition can be computed with less �ll, at the expense of working
with only one orthogonal matrix.

Numerically rank-de�cient symmetric matrices also arise in many applications,
notably in signal processing and in optimization algorithms (such as those based on
interior point and continuation methods). In both areas, fast computation and e�-
cient updating are key issues, and sparsity is also an issue in some optimization prob-
lems. Utilization of symmetry leads to faster algorithms, compared to algorithms for
nonsymmetric matrices. In addition, symmetric rank-revealing decompositions enable
us to compute symmetric rank-de�cient matrix approximations (obtained by neglect-
ing blocks in the rank-revealing decomposition with small norm). This is important,
e.g., in rank-reduction algorithms in signal processing where one wants to compute
rank-de�cient symmetric semide�nite matrices.

In spite of this, very little work has been done on symmetric rank-revealing decom-
positions. Luk and Qiao [23] introduced the term VSV decomposition and proposed
an algorithm for symmetric inde�nite Toeplitz matrices, while Baker and DeGroat [2]
presented an algorithm for symmetric semi-de�nite matrices.

The purpose of this paper is to expand on the ideas in [2] and [23] and present
a broader survey of possible rank-revealing VSV decompositions and algorithms, in-
cluding the underlying theory. Our emphasis is on algorithms which, in addition
to revealing the numerical rank, provide accurate estimates of the numerical range
and null space. We build our algorithms on existing methods for computing rank-
revealing decompositions of triangular matrices, based on orthogonal transformations.
Our symmetric decompositions and algorithms inherit the properties of these under-
lying algorithms which are well understood today.

We emphasize that the goal of this paper is not to present detailed implementa-
tions of our VSV algorithms, but rather to set the stage for such implementations.
The papers [4] and [27] clearly demonstrate that careful implementations of e�cient
and robust mathematical software for numerically rank-de�cient problems requires a
major amount of research which is outside the scope of the present paper.

Our paper is organized as follows. After brie
y surveying general rank-revealing
decompositions in x2, we de�ne and analyze the rank-revealing VSV decomposition of
a symmetric matrix in x3. Numerical algorithms for computing VSV decompositions
of symmetric semi-de�nite and inde�nite matrices are presented in x4, and we conclude
with some numerical examples in x5.

2. General Rank-Revealing Decompositions. In this paper we restrict our
attention to real square n � n matrices. The singular value decomposition (SVD) of
a square matrix is given by

A = U �V T =
nX
i=1

ui �i v
T
i ;(2.1)

where ui and vi are the columns of the orthogonal matrices U and V , and � = diag(�i)
with �1 � �2 � � � � � �n � 0. Then kAk2 = �1, kAk

2
F =

Pn
i=1 �

2
i , and cond(A) =

�1=�n. The numerical rank k of A, with respect to the threshold � , is the number of
singular values greater than or equal to � , i.e., �k � � > �k+1 [19, x3.1].
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The RRQR, URV, and ULV decompositions are given by

A = QT �T = UR RV
T
R = UL LV

T
L :

Here, Q, UR, UL, VR, and VL are orthogonal matrices, � is a permutation matrix, T
and R are upper triangular matrices, and L is a lower triangular matrix. Moreover,
if we partition the triangular matrices as

T =

�
T11 T12
0 T22

�
; R =

�
R11 R12

0 R22

�
; L =

�
L11 0
L21 L22

�
;

then the numerical rank k of A is revealed in the triangular matrices in the sense that
T11, R11, and L11 are k � k and

cond(T11) ' �1=�k; kT22k
2
F ' �2k+1 + � � �+ �2n

cond(R11) ' �1=�k; kR12k
2
F + kR22k

2
F ' �2k+1 + � � �+ �2n

cond(L11) ' �1=�k; kL21k
2
F + kL22k

2
F ' �2k+1 + � � �+ �2n:

The �rst k columns of the left matrices Q, UR, and UL span approximations to the
numerical range of A, de�ned as spanfu1; : : : ; ukg, and the last n � k columns of
the right matrices VR and VL span approximations to the numerical null-space of A,
de�ned as spanfvk+1; : : : ; ung. See, e.g., [19, x3.1] for details.

Precise de�nitions of RRQR decompositions and algorithms are given by Chan-
drasekaran and Ipsen [10], Gu and Eisenstat [18] and Hong and Pan [22], and asso-
ciated large-scale implementations are available in Fortran [4]. De�nitions of UTV
decompositions and algorithms are given by Stewart [30], [31]. Matlab software for
both RRQR and UTV decompositions is available in the UTV Tools package [16].

3. Symmetric Rank-Revealing Decompositions. For a symmetric n � n
matrix A, we need rank-revealing decompositions that inherit the symmetry of the
original matrix. In particular this is true for the eigenvalue decomposition (EVD)

A = V �V T =
nX
i=1

vi �i v
T
i ;(3.1)

where vi are the right singular vectors, while �i = j�ij and ui = sign(�i) vi for
i = 1; : : : ; n.

Corresponding to the UTV decompositions, Luk and Qiao [23] de�ned the follow-
ing VSV decomposition

A = VS S V
T
S ;(3.2)

where VS is an orthogonal matrix, and S is a symmetric matrix with partitioning

S =

�
S11 S12
ST12 S22

�
;(3.3)

in which S11 is k � k. We say that the VSV decomposition is rank-revealing if

cond(S11) ' �1=�k; kS12k
2
F + kS22k

2
F ' �2k+1 + � � �+ �2n:
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This de�nition is very similar to the de�nition used by Luk and Qiao, except that they
use ktriu(S22)k2F instead of kS22k2F , where \triu" denotes the upper triangular part.
Our choice is motivated by the fact that kS22k2F ! �2k+1 + � � �+ �2n as kS12kF ! 0.

Given the VSV decomposition in (3.2), the �rst k columns of VS and the last
n � k columns of VS provide approximate basis vectors for the numerical range and
null space, respectively. Moreover, given the ill-conditioned problem Ax = b, we can
compute a stabilized \truncated VSV solution" xk by neglecting the three blocks in
S with small norm, i.e., xk = VS;kS

�1
11 V

T
S;kb where VS;k consists of the �rst k columns

of VS . We return to the computation of xk in x4.4.
Instead of working directly with the matrix S, it is more convenient to work

with a symmetric decomposition of S and, in particular, of S11. The form of this
decomposition depends on both the matrix A (semi-de�nite or inde�nite) and the
rank-revealing algorithm. Hence, we postpone a discussion of the particular form of
S to the presentation of the algorithms. Instead, we summarize the approximation
properties of the VSV decomposition.

Theorem 3.1. Let the EVD and the VSV decompositions of A be given by (3.1)
and (3.2), respectively, and partition the matrix S as in (3.3). Then the singular
values ��i of diag(S11 ; S22) are related to those of A as

j��i � �ij � kS12k2; i = 1; : : : ; k:(3.4)

Moreover, the angle � between the subspaces spanned by the �rst k columns of V and
VS is bounded as

kS12k2
�1 + �k+1

� sin� �
kS12k2

�k � kS22k2
:(3.5)

Proof. The bound (3.4) follows from the standard perturbation bound for singular
values:

j��i � �ij �






�

0 S12
ST12 0

�




2

= kS12k2 ;

where we use that the singular values of the symmetric \perturbation matrix" ap-
pear in pairs. To prove the upper bound in (3.5), we partition V = (Vk ; V0) and
VS = (VS;k ; VS;0) such that Vk and VS;k have k columns. Moreover, we write
� = diag(�k ; �0) where �k is k � k. If we insert these partitionings as well as
(3.1) and (3.2) into the product AVS;0 then we obtain�

Vk�k V
T
k + V0 �0 V

T
0

�
VS;0 = VS;k S12 + VS;0 S22:

Multiplying from the left with V T
k we get

�k V
T
k VS;0 = V T

k VS;k S12 + V T
k VS;0 S22

from which we obtain

V T
k VS;0 = ��1k

�
V T
k VS;k S12 + V T

k VS;0 S22
�
:

Taking norms in this expression and inserting sin� = kV T
k VS;0k2 and k�

�1
k k2 = ��1k ,

we get

sin� � ��1k kS12k2 + ��1k kS22k2 sin�
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which immediately leads to the upper bound in (3.5). To prove the lower bound, we
use that

S12 = V T
S;kAVS;0 = V T

S;kVk�kV
T
k VS;0 + V T

S;kV0�0V
T
0 VS;0:

Taking norms and using sin� = kV T
k VS;0k2 = kV T

S;kV0k2, k�kk2 = �1 and k�0k2 =
�k+1, we obtain the left bound in (3.5).

We conclude that if there is a well-de�ned gap between �k and �k+1, and if the
norm kS12k2 of the o�-diagonal block is su�ciently small, then the numerical rank k
is indeed revealed in S, and the �rst k columns of VS span an approximation to the
singular subspace spanfv1; : : : ; vkg. The following theorem shows that a well-de�ned
gap is also important for the perturbation bounds.

Theorem 3.2. Let eA = A+�A = eVS eS eV T
S , and let � denote the angle between

the subspaces spanned by the �rst k columns of VS and eVS ; then
sin� �

4� + k�Ak2
�k � �k+1 � 4� � k�Ak2

;(3.6)

where � = maxfkS12k2; keS12k2g.
Proof. The bound follows from Corollary 3.2 in [13].

4. Algorithms for Symmetric Rank-Revealing Decompositions. Similar
to general rank-revealing algorithms, the symmetric algorithms consist of an initial
triangular factorization and a rank-revealing post-processing step. The purpose of the
latter step is to ensure that the largest k singular values are revealed in the leading
submatrix S11 and that the corresponding singular subspace is approximated by the
span of the �rst k columns of VS .

For a semi-de�nite matrixA, our initial factorization is the symmetrically pivoted
Cholesky factorization

P TAP = CTC;(4.1)

where P is the permutation matrix, and C is the upper triangular (or trapezoidal)
Cholesky factor. The numerical properties of this algorithm are discussed by Higham
in [21]. If A is a symmetric semi-de�nite Toeplitz matrix, then there is good evidence
(although no strict proof) that the Cholesky factor can be computed e�ciently and
reliably without the need for pivoting by means of the standard Schur algorithm [29].

If A is inde�nite, then our initial factorization is the symmetrically pivoted LDLT

factorization

PTAP = LD LT ;(4.2)

where P is the permutation matrix, L is a unit lower triangular matrix, and D is
a block diagonal matrix with 1 � 1 and 2 � 2 blocks on the diagonal. The state-of-
the-art in LDLT algorithms is described in [1], where it is pointed out that special
care must be taken in the implementation to avoid large entries in L when A is ill
conditioned. Alternatively, one could use the G
GT factorization described in [28]. If
A is a symmetric inde�nite Toeplitz matrix, then the currently most reliable approach
to computing the LDLT factorization seems to be via orthogonal transformation to a
Cauchy matrix [20].

The reason why we need the post-processing step is that the initial factorization
may not reveal the numerical rank of A|there is no guarantee that small eigenvalues
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Table 4.1

The four post-processing rank-revealing steps for a symmetric semi-de�nite matrix.

Post-proc. Decomposition Symmetric matrix

URV C = URRV
T
R S = RTR =

�
RT
11R11 RT

11R12

RT
12R11 RT

12R12 +RT
22R22

�

RRQR C = QT �T S = TTT =

�
TT
11T11 TT

11T12
TT
12T11 TT

12T12 + TT
22T22

�

ULV ECE = UL LV
T
L S = LTL =

�
LT11L11 + LT21L21 LT21L22

LT22L21 LT22L22

�

RRQR (ECE)T = QT �T S = T TT =

�
T11T

T
11 + T12 T

T
12 T12T

T
22

T22T
T
12 T22T

T
22

�

of A manifest themselves in small diagonal elements of C or in small eigenvalues
of D. In particular, since kA�1k2 = ��1n � kL�1k22 kD

�1k2 = �n(L)
�2 �n(D)

�1 and
�n � �n(D) kLk

2
2, we obtain

�n(L)
2 �

�n
�n(D)

� kLk22

showing that a small �n may not be revealed in D when L is ill conditioned.

4.1. Algorithms for Semi-De�nite Matrices. For symmetric semi-de�nite
matrices there is a simple relationship between the SVDs of A and C.

Theorem 4.1. The right singular vectors of PTAP are also the right singular
vectors of C, and

�i(C)
2 = �i; i = 1; : : : ; n:(4.3)

Proof. The result follows directly from inserting the SVD of C into A = CTC.
Hence, once we have computed the initial pivoted Cholesky factorization (4.1),

we can proceed by computing a rank-revealing decomposition of C, and this can be
done in several ways. Let E denotes the exchange matrix consisting of the columns
of the identity matrix in reverse order, and write PTAP as

PTAP = CTC = E (ECE)T (ECE)E:

Then we can compute a URV or RRQR decomposition of C, a ULV decomposition of
ECE, or an RRQR decomposition of (ECE)T , as shown in the left part of Table 4.1.
The approach using the URV decomposition of C was suggested in [2]. Table 4.1 also
shows the particular forms of the resulting symmetric matrix S, as derived from the
following relations:

PTAP = VRR
TRV T

R (URV post-processor)
= �TTT �T (RRQR post-processor)
= (E VL)LTL (E VL)T (ULV post-processor)
= (EQ)T TT (EQ)T (RRQR post-processor.)

Three of these four approaches lead to a symmetric matrix S that reveals the nu-
merical rank of A by having both an o�-diagonal block and a bottom right block
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with small norm. This is, however, not the case for the approach based on RRQR
decomposition of the Cholesky factor C. Instead, since T11 is well conditioned, this
algorithm provides a symmetric permutation P� that is guaranteed to produce a
well-conditioned leading k � k submatrix in (P�)TA (P�).

The remaining three algorithms yield approximate bases for the range and null
spaces of A, due to Theorem 3.1. It is well known that among the rank-revealing
decompositions, the ULV decomposition can be expected to provide the most accurate
bases for the right singular subspaces, in the form of the columns of VL; see, e.g., [31]
and [14]). Therefore, the algorithm that computes the ULV decomposition of ECE is
to be preferred. We remark that the matrix UL in the ULV decomposition need not
be computed.

In terms of the blocks S12 and S22, the ULV-based algorithm is the only algorithm
that guarantees small norms of both the o�-diagonal block S12 = LT21L22 and the bot-
tom right block S22 = LT22L22, because the norms of both L12 and L22 are guaranteed
to be small. From Theorem 4.1 and the de�nition of the ULV decomposition we have

kL21k2 ' kL22k2 ' �
1=2
k+1 and therefore kS12k2 ' kS22k2 ' �k+1.

For a sparse matrix the situation is di�erent, because the UTV post-processors
may produce severe �ll, while the RRQR post-processor produces only �ll in the n�k
rightmost columns of T . For example, if A is the upper bidiagonal matrix

A =

�
10�5Bn�k eke

T
1

0 Bk

�
;

in which Bp is an upper bidiagonal p� p matrix of all ones, and ep is the pth column
of the identity matrix, then URV with threshold � = 10�4 produces a full k � k
upper triangular R11, while RRQR with the same threshold produces a k � k upper
bidiagonal T11. Hence, for sparsity reasons, the UTV approaches may not be suited
for computing the VSV decomposition, depending on the sparsity pattern of A.

An alternative is to use the algorithm based on RRQR decomposition of the
transposed and permuted Cholesky factor (ECE)T = ECTE, and we note that the
permutation matrix � is not needed. In terms of the matrix S, only the bottom
right submatrix of S is guaranteed to have a norm of the order �k+1, because of the

relations kS12k2 = kT12TT
22k2 ' �

1=2
1 �

1=2
k+1 and kS22k2 = kT22TT

22k2 ' �k+1.
In practice the situation is often better, because the RRQR-algorithm|when

applied to the matrix ECTE|tends to produce an o�-diagonal block T12 whose

norm is smaller than what is guaranteed (namely, of the order �1=21 ). The reason is
that the initial Cholesky factor C often has a trailing (n � k) � (n � k) triangular

block C22 whose norm is close to �
1=2
k+1, which may produce a norm kS12k2 close to

�k�1. From the partitionings

C =

�
C11 C12

0 C22

�
; E CTE =

�
En�kC

T
22En�k En�kC

T
12Ek

0 EkC
T
11Ek

�

and the fact that the RRQR post-processor leaves column norms unchanged and is
likely to permute the leading n � k columns of ECTE to the back, we see that the
norm of the resulting o�-diagonal block T12 in the RRQR decomposition is likely to
be bounded by kC22k2. Our numerical examples in x5 illustrate this.

However, we stress that in the RRQR approach we can only guarantee that kS12k2
is of the order �

1=2
1 �

1=2
k+1, and this point is illustrated by the matrix A = KTK,

where K is the \infamous" Kahan matrix [7, p. 105] that is left unchanged by QR
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factorization with ordinary column pivoting, yet its numerical rank is k = n � 1.
Cholesky factorization with symmetric pivoting computes the Cholesky factor C = K,
and when we apply RRQR to ECTE we obtain an upper triangular matrix T in which
only the (n; n)-element is small, while kT12k2 = 1 ' kTk2 and kS12k2 = kT12 TT

22k2 '

kT22k2 ' �
1=2
n .

4.2. Algorithms for Inde�nite Matrices. All known rank-revealing post-
processors maintain the triangular form of the matrix in consideration, but when we
apply them to the matrix L in the LDLT factorization we destroy the block diagonal
form of D. We avoid this di�culty by inserting an additional interim stage between
the initial LDLT factorization and the rank-revealing post-processor, in which the
middle block-diagonal matrix D is replaced by a signature matrix 
, i.e., a diagonal
matrix whose diagonal elements are �1. At the same time, L is replaced by the
product of an orthogonal matrix and a triangular matrix. The interim processor
computes the factorization

PTAP = W CT
CW
T

(4.4)

where W is orthogonal and C is upper triangular, and it takes the following generic
form.

Interim Processor for Symmetric Indefinite Matrices

1. Compute the eigenvalue decomposition D = W �WT .
2. Write � as � = j�j1=2
 j�j1=2.

3. Compute an orthogonal W such that CT = W
T
LW j�j1=2

is lower triangular.

The interim processor is simple to implement and requires at most O(n2) over-
head, because W and W are block diagonal matrices with the same block structure
as D. For each 1� 1 block dii in D the corresponding 1� 1 blocks in W , j�j1=2, and
W are equal to 1, jdiij1=2, and 1, respectively. For each 2� 2 block in D we compute
the eigenvalue decomposition�

dii di;i+1
di;i+1 di+1;i+1

�
= Wii

�
�i 0
0 �i+1

�
WT

ii ;

then the corresponding 2�2 block inW isWii, and the associated 2�2 block inW is a
Givens rotation chosen such that C stays triangular. If A is sparse, then some �ll may
be introduced in C by the interim processor, but since the Givens transformations are
applied to nonoverlapping 2�2 blocks, �ll introduced in the treatment of a particular
block does not spread during the processing of the other blocks. The same type of
interim processor can also be applied to the G
GT factorization in [28].

We shall now explore the possibilities for using post-processors similar to the
ones for semi-de�nite matrices, but modi�ed such that they yield a rank-revealing
decomposition in which either the leftmost or rightmost matrixM is orthogonal with
respect to the signature matrix 
, i.e., we require MT
M = 
̂, where 
̂ is also a
signature matrix. Note that in general we cannot guarantee that 
̂ = 
.

One possibility would be to compute an RRQR-like decomposition C = QT �T

with QT
Q = 
̂, but none of the blocks in the resulting S = RT 
̂R are guaranteed
to have small norm, neither are we guaranteed to obtain a symmetrically permuted
A with a well-conditioned leading k � k submatrix. It is an open question how to
compute such a symmetric permutation for an inde�nite matrix.
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We now turn to algorithms that produce submatrices in S with small norm. The
following theorem shows that there is hope such algorithms will exist.

Theorem 4.2. If �n(C) denotes the smallest singular value of C in the interim
factorization (4.4), then

�n(C) � �1=2n(4.5)

Proof. We have ��1n = k(CT
C)�1k2 � kC�Tk2 k
k2 kC
�1k2 = kC�1k22 =

�n(C)
�2, from which the result follows.

This theorem shows that a small singular value of A is guaranteed to be revealed
in the triangular matrix C. Unfortunately, there is no guarantee that �n(C) does not

underestimate �
1=2
n dramatically, neither does it ensure that the size of �n is revealed

in S. Hence, for inde�nite matrices we cannot rely solely on the matrix C, and the
following theorem (which expands on results in [23]) shows how to proceed instead.

Theorem 4.3. Let wn be the eigenvector of CT
C corresponding to the eigen-
value �n that is smallest in absolute value, and let ~wn be an approximation to wn.
Moreover, choose the orthogonal matrix VS such that V T

S ~wn = en, the last column of
the identity matrix, and partition the matrix

V T
S C

T
C VS = S =

�
S11 s12
sT12 s22

�

such that S11 is (n � 1)� (n� 1). Then

ks12k2 � (�1 + �n) tan�(4.6)

and

js22 � �nj � (�1 + �n) tan�;(4.7)

where � is the angle between wn and ~wn.
Proof. Consider �rst the quantity

V T
S A ~wn = S V T

S ~wn = S en =

�
s12
s22

�
:

Next, write ~wn = wn + u to obtain

V T
S A ~wn = V T

S A (wn + u) = �n V
T
S wn + V T

S Au

= �n V
T
S ( ~wn � u) + V T

S Au = �n en � �n V
T
S u+ V T

S Au:

Combining these two results we obtain�
s12

s22 � �n

�
= V T

S (A � � I)u

and taking norms we get

ks12k
2
2 + (s22 � �2)

2 = k((A� � I)uk22 � kA� � Ik22 kuk
2
2:

Both ks12k
2
2 and js22 � �2j are lower bounds for the left-hand side, while kuk2 is

bounded above by tan�. Combining this with the bound kA � � Ik2 � �1 + �n we
obtain the two bounds in the theorem.
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The above theorem shows that in order for �n to reveal itself in S, we must
compute an approximate null vector of CT
C, apply Givens rotations to this vector
to transform it into en, and accumulate these rotations from the right into C. At
the same time, we should apply hyperbolic rotations from the left in order to keep C
triangular. Theorem 4.3 ensures that ks12k2 is small and that s22 approximates �n.
We note that hyperbolic transformations can be numerically unstable, and in our
implementations we use stabilized hyperbolic rotations [7, x3.3.4].

Once this step has been performed, we de
ate the problem and apply the same
technique to the (n�1)� (n�1) submatrix S11 = ĈT

11
̂11 Ĉ11, where Ĉ11 and 
̂11 are
the leading submatrices of the updated factors. This is precisely the algorithm from
[23]. When the process stops (because all the small singular values of A are revealed)

we have computed the URV-like decomposition C = URRV
T
R such that UT

R
UR = b
,
and the middle rank-revealing matrix is given by

S = RT b
R =

�
RT
11
b
1R11 RT

11
b
1R12

RT
12
b
1R11 RT

12
b
1R12 +RT

22
b
2R22

�
(4.8)

where b
 = diag(b
1 ; b
2) and b
1 is k � k.
The condition estimator used in the URV-like post-processor must be modi�ed,

compared to the standard URV algorithm, because we must now estimate the smallest
singular value of the matrix CT
C. In our implementation we use one step of inverse
iteration applied to CT
C, with starting vector from the condition estimator of the
ordinary URV algorithm applied to C.

The ULV algorithm cannot be modi�ed analogously, the reason being that the
left matrix UL must transform the approximate left singular vector into the form en.
Hence, UL is an orthogonal matrix, but it is not orthogonal with respect to 
, and
this rules out the use of a ULV-like approach for symmetric inde�nite matrices.

Finally, we consider the use of the RRQR decomposition of (ECE)T , which can
be used without modi�cation because the product �TE
E� remains a signature
matrix. This approach is more appealing for sparse problems because the RRQR
decomposition preserves sparsity better than the above URV-like approach. There is,
however, no guarantee that this approach will work because it relies solely on revealing
small singular values of C.

We illustrate this with a small 5� 5 numerical example from [1] where A is given
by A = LD LT with

L =

0
BBBB@
1 0 0 0 0
1 1 0 0 0
1 0 1 0 0
1 �20

13 � 8
17 1 0

1 6�106

13 � 1
17 0 1

1
CCCCA ; D =

0
BBBB@
1 0 0 0 0
0 10�19

3
6�10�7

7 0 0

0 6�10�7

7 �3�10�6

13 0 0

0 0 0 �4�10�5

17
2
7

0 0 0 2
7

1
300

1
CCCCA

and cond(L) = 3:01 � 1011. The singular values of A are

�1 = 5:13; �2 = 0:270; �3 = 0:142; �4 = 2:66 � 10�7; �5 = 1:14 � 10�8

such that A has full rank with respect to the threshold � = 10�10. The corresponding
matrix C has singular values

�1(C) = 104; �2(C) = 2:02; �3(C) = 0:459;
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�4(C) = 3:10 � 10�4; �5(C) = 8:17 � 10�7:

Thus, if we use the threshold �1=2 = 10�5 in the RRQR decomposition of C we
wrongly conclude that A is numerically rank de�cient. The algorithm based on the
URV-like approach, on the other hand, reveals the correct numerical rank.

The above example shows that the numerical rank of C may be smaller than that
of A. The following example shows that the opposite may also be the case:

R =

0
@ 1 1 1
0 1 1
0 0 0

1
A ; b
 =

0
@ 1 0 0
0 �1 0
0 0 1

1
A ; R b
RT =

0
@ 1 0 0
0 0 0
0 0 0

1
A

in which rank(R) = 2 > rank(A) = 1. Althoug this is an extreme case, it signals that
di�culties may also arise in the near-rank-de�cient case.

To summarize, for symmetric inde�nite matrices only the approach using the
URV-like post-processor is guaranteed to reveal the numerical rank of A.

4.3. Updating the VSV Decomposition. One of the advantages of the rank-
revealing VSV decomposition over the EVD and SVD is that it can be updated
e�ciently when A is modi�ed by a rank-one change v vT . From the relation

Aup = A+ v vT = VS
�
S + (V T

S v)(V
T
S v)

T
�
V T
S

we see that the updating of A amounts to updating the rank-revealing matrix S by
the rank-one matrix wwT with w = V T

S v, i.e., S
up = S +wwT .

Consider �rst the semi-de�nite case, and let M denote one of the triangular
matrices R, L, or TT from the algorithms in Table 4.1. Then

Sup =MTM +wwT =

�
M
wT

�T �
M
wT

�

and we see that the VSV updating is identical to standard updating of a triangular
RRQR or UTV factor, which can be done stably and e�ciently by means of Givens
transformation as described in [5], [30] and [31].

Next we consider the inde�nite case (4.8), where the updating takes the form

Sup = RT b
R+ wwT =

�
R
wT

�T � b
 0
0T 1

��
R
wT

�
;

showing that the VSV updating now involves hyperbolic rotations. Hence, the up-
dating is computationally similar to UTV downdating, whose stable implementation
is discussed in [3] and [24]. Downdating the VSV decomposition will, in both cases,
also involve hyperbolic rotations and a signature matrix.

4.4. Computation of Truncated VSV Solutions. Here we brie
y consider
the computation of the truncated VSV solution which we de�ne as

VS;k S
�1
11 V

T
S;kb;(4.9)

where VS;k consists of the �rst k columns of VS . For the URV-based decomposition

S11 = RT
11R11 and S�111 =

�
R�1
11

�T
R�1
11 . For the ULV-based decomposition we have

S11 = LT11L11 + LT21L21, but we can safely neglect the term LT21L21 whose norm is at
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most of the same order as the neglected blocks S12 and S22, namely, �k+1. Finally,
for the RRQR-based decomposition we can use the following theorem.

Theorem 4.4. If S = T TT and bT is the triangular QR factor of (T11 ; T12)T

then

ST11 = bT�1� bT�1�T :(4.10)

Alternatively, if the columns of the matrix

W =

�
W1

W2

�
; W1 2 R

(n�k)�(n�k)

form an orthonormal basis for the null space of (T11 ; T12) then

S�111 =
�
T�111

�T �
I �W1W

T
1

�
T�111 :(4.11)

Proof. If (T11 ; T12)T = bQ bT is a QR factorization then S11 = bTT bT and S�111 =bT�1� bT�1�T whici is (4.10). The same relation leads to S�111 = bT�1 bQT bQ � bT�1�T =�
(T11 ; T12)y

�T
(T11 ; T12)y, where y denotes the pseudoinverse. In [6] used that

(T11 ; T12)
y = (I �W W T )T�1

�
I1
0

�

which, combined with the relation (I � W W T )2 = I � W WT , immediately leads
to (4.11).

The �rst relation (4.10) in Theorem 4.4 can be used when k � n, while the
second relation (4.11) is more useful when k � n. Note that W can be computed by
orthonormalization of the columns of the matrix

Z =

�
R�1
11 R12

�I

�
:

This approach is particularly useful for sparse matrices because we only introduce �ll
when working with the \skinny" n � (n� k) matrix Z.

5. Numerical Examples. The purpose of this section is to illustrate the theory
derived in the previous sections by means of some test problems. Although robust-
ness, e�ciency and 
op counts are important practical issues, they are also tightly
connected to the particular implementation of the rank-revealing post-processor, and
not the subject of this paper.

All our experiments were done in Matlab, and we use the implementations of the
ULV, URV, and RRQR algorithms from the UTV Tools package [16]. The con-
dition estimation in all three implementations is the Cline-Conn-Van Loan (CCVL)
estimator [11]. The modi�ed URV algorithm used for symmetric inde�nite matrices
is based on the URV algorithm from [16], augmented with stabilized hyperbolic rota-
tions when needed, and with a condition estimator consisting of the CCVL algorithm
followed by one step of inverse iteration applied to the matrix CT
C.

Numerical results for all the rank-revealing algorithms are shown in Table 5.1,
where we present mean and maximum values of the norms of various submatrices
associated with the VSV decompositions. In particular, Xo� denotes either R12, L21,
or T12, and X22 denotes either R22, L22, or T22. The results are computed on the



SYMMETRIC RANK-REVEALING DECOMPOSITIONS 13

Table 5.1

Numerical results for the rank-revealing VSV algorithms.

Post-processor kXo�k2 kX22k2 kS12k2 kS22k2
URV mean 2:2 � 10�4 3:2 � 10�4 6:5 � 10�6 2:5 � 10�7

(semi-def.) max 3:0 � 10�3 3:2 � 10�4 8:1 � 10�5 9:4 � 10�6

ULV mean 2:7 � 10�7 3:2 � 10�4 8:6 � 10�11 1:0 � 10�7

(semi-def.) max 4:7 � 10�7 3:2 � 10�4 1:5 � 10�10 1:0 � 10�7

RRQR mean 1:5 � 10�3 3:2 � 10�4 4:8 � 10�7 1:0 � 10�7

(semi-def.) max 2:9 � 10�3 3:2 � 10�4 9:2 � 10�7 1:0 � 10�7

URV-like mean 1:4 � 10�4 3:1 � 10�4 4:6 � 10�4 2:3 � 10�7

(indef.) max 2:1 � 10�3 3:2 � 10�4 9:4 � 10�3 4:3 � 10�6

Table 5.2

Numerical results when the CCVL estimate is improved by one inverse iteration step.

Matrix type kR12k2 kR22k2 kS12k2 kS22k2
Semi- mean 1:8 � 10�7 3:1 � 10�4 2:3 � 10�9 1:0 � 10�7

de�nite max 5:1 � 10�6 3:2 � 10�4 6:1 � 10�8 1:0 � 10�7

Inde�nite mean 6:9 � 10�10 3:1 � 10�4 4:5 � 10�9 1:0 � 10�7

max 2:3 � 10�8 3:2 � 10�4 1:5 � 10�7 1:0 � 10�7

basis of randomly generated test matrices of size 64, 128, and 256 (100 matrices of
each size), each with n� 4 eigenvalues geometrically distributed between 1 and 10�4,
and the remaining four eigenvalues given by 10�7, 10�8, 10�9, and 10�10, such that
the numerical rank with respect to the threshold � = 10�5 is k = n� 4.

The test matrices were produced by generating random orthogonal matrices and
multiplying them to diagonal matrices with the desired eigenvalues. For the inde�nite
matrices the signs of the eigenvalues were chosen to alternate.

Table 5.1 illustrates the superiority of the ULV-based algorithm for semi-de�nite
matrices, for which the norm kS12k2 of the o�-diagonal block in S is always much
smaller than the norm kS22k2 of the bottom right submatrix. This is due to the fact
that the ULV algorithm produces a lower triangular matrix L whose o�-diagonal block
L21 has a very small norm (and we emphasize that the size of this norm depends on
the condition estimator). The second best algorithm for semi-de�nite matrices is the
one based on the RRQR algorithm, for which kS12k2 and kS22k2 are of the same size.
Note that it is the latter algorithm which we recommend for sparse matrices. The
URV-based algorithm for semi-de�nite matrices produces results that are consistently
less satisfactory than the other two algorithms. All these results are consistent with
our theory.

For the inde�nite matrices, only the URV-like algorithm can be used, and the
results in Table 5.1 show that this algorithm also behaves as expected from the theory.
In order to judge the backward stability of this algorithm, which uses hyperbolic
rotations, we also computed the backward error kA�VSS V

T
S k2 for all three hundred

test problems. The largest residual norm was 1:9 �10�11, and the average is 1:5 �10�12.
We conclude that we loose a few digits of accuracy due to the use of the hyperbolic
rotations.

It is well known that the norm of the o�-diagonal block in the triangular URV
factor depends on the quality of the condition estimator|the better the singular
vector estimate, the smaller the norm. Hence, it is interesting to see how much the
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norms of the o�-diagonal blocks in R and S decrease if we improve the singular vector
estimates by means of one step of inverse iteration (at the expense of additional
2(n� k)n2 
ops). In the semi-de�nite case we now apply an inverse iteration step to
the CCVL estimate, and in the inde�nite case we use two steps of inverse iteration
applied to CT
C instead of one. The results are shown in Table 5.2 for 100 matrices
of size n = 256. As expected, the norms of the o�-diagonal blocks are now smaller,
at the expense of more work. The average backward errors kA � VSS V

T
S k2 did not

change in this experiment.

6. Conclusion. We have de�ned and analyzed a class of rank-revealing VSV
decompositions for symmetric matrices, and proposed algorithms for computing these
decomposition. For semi-de�nite matrices, the ULV-based algorithm is the method
of choice for dense matrices, while the RRQR-based algorithm is better suited for
sparse matrices because it preserves sparsity better. For inde�nite matrices, only the
URV-based algorithm is guaranteed to work.

REFERENCES

[1] C. Ashcraft, R. G. Grimes, and J. G. Lewis, Accurate Symmetric Inde�nite Linear Equation
Solvers, SIAM J. Matrix Anal. Appl., 20 (1999), pp. 513{561.

[2] E. S. Baker and R. D. De Groat, A correlation-based subspace tracking algorithm, IEEE Trans.
Signal Proc., 46 (1998), pp. 3112{3116.

[3] J. L. Barlow, P. A. Yoon, and H. Zha, An algorithm and a stability theory for downdating the
ULV decomposition, BIT, 36 (1996), pp. 15{40.

[4] C. H. Bischof and G. Quintana-Ort��, Algorithm 781: Codes for computing rank-revealing QR
factorizations of dense matrices, ACM Trans. Math. Software, to appear.

[5] C. H. Bischof and G. M. Shro�, On updating signal subspaces, IEEE Trans. Signal Process.,
SP-40 (1992), pp. 96{105.

[6] �A. Bj�orck, A bidiagonalization algorithm for solving ill-posed systems of linear equations, BIT,
28 (1998), pp. 659{670.

[7] �A. Bj�orck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996.
[8] T. F. Chan, Rank-revealing QR factorizations, Lin. Alg. Appl., 88/89 (1987), pp. 67{82.
[9] T. F. Chan and P. C. Hansen, Low-rank revealing QR factorizations, Numer. Lin. Alg. Appl.,

1 (1994), pp. 33{44.
[10] S. Chandrasekaran and I. Ipsen, On rank-revealing QR factorizations, SIAM J. Matrix Anal.

Appl., 15 (1994), pp. 592{622.
[11] A. K. Cline, A. R. Conn, and C. F. Van Loan, Generalizing the LINPACK condition estima-

tor; in J. P. Hennart (Ed.), Numerical Analysis, Lecture Notes in Mathematics, Vol. 909,
Springer, Berlin, 1992.

[12] L. Eld�en and E. Sj�ostr�om, Fast computation of the principal singular vectors of Toeplitz ma-
trices arising in exponential data modelling, Signal Proc., 50 (1996), pp. 151{164.

[13] R. D. Fierro, Perturbation analysis for two-sided (or complete) orthogonal decompositions,
SIAM J. Matrix Anal. Appl, 17 (1996), pp. 383{400.

[14] R. D. Fierro and J. R. Bunch, Bounding the subspaces from rank revealing two-sided orthogonal
decompositions, SIAM J. Matrix Anal. Appl., 16 (1995), pp. 743{759.

[15] R. D. Fierro and P. C. Hansen, Low-rank revealing two-sided orthogonal decompositions, Numer.
Algo., 15 (1997), pp. 37{55.

[16] R. D. Fierro, P. C. Hansen, and P. S. K. Hansen, UTV Tools: Matlab templates for rank-
revealing UTV decompositions, Numer. Algo., 20 (1999), pp. 165{194.

[17] L. V. Foster, Rank and null space calculations using matrix decomposition without column
interchanges, Lin. Alg. Appl., 74 (1986), pp. 47{71.

[18] M. Gu and S. Eisenstat, E�cient algorithms for computing strong rank-revealing QR factor-
izations, SIAM J. Sci. Comput., 17 (1996), pp. 848{869.

[19] P. C. Hansen, Rank-De�cient and Discrete Ill-Posed Problems, SIAM, Philadelphia, 1998.
[20] G. Heinig and A. Boyanczyk, Transformation techniques for Toeplitz and Toeplitz-plus-Hankel

matrices II. Algorithms, Lin. Alg. Appl., 278 (1998), pp. 11{36.
[21] N. J. Higham, Analysis of the Cholesky decomposition of a semi-de�nite matrix; in M. G. Cox

and S. J. Hammarling (Eds.), Reliable Numerical Computing, Oxford University Press,



SYMMETRIC RANK-REVEALING DECOMPOSITIONS 15

1990.
[22] Y. P. Hong and C.-T. Pan, The rank revealing QR decomposition and SVD, Math. Comp., 58

(1992), pp. 213{232.
[23] F. T. Luk and S. Qiao, A symmetric rank-revealing Toeplitz matrix decomposition, J. VLSI

Signal. Proc., 14 (1996), pp. 19{28.
[24] H. Park and L. Eld�en, Downdating the rank revealing URV decomposition, SIAM J. Matrix

Anal. Appl., 16 (1995), pp. 138{155.
[25] D. J. Pierce, A Sparse URL Rather Than a URV Factorization, Report MEA-TR-203, Boeing

Computer Services, Seattle, Washington.
[26] D. J. Pierce and J. G Lewis, Sparse multifrontal rank revealing QR factorization, SIAM J.

Matrix Anal. Appl., 18 (1997), pp. 159{180.
[27] G. Quintana-Ort�� and E. S. Quintana-Ort��, Parallel codes for computing the numerical rank,

Lin. Alg. Appl., 275{276 (1998), pp. 451{470.
[28] I. Slapni�car, Componentwise analysis of direct factorization of real symmetric and Hermitian

matrices, Lin. Alg. Appl., 272 (1998), pp. 227{275.
[29] M. Stewart, Cholesky factorization of semi-de�nite Toeplitz matrices, Lin. Alg. Appl., 254

(1997), pp. 497{526.
[30] G. W. Stewart, An updating algorithm for subspace tracking, IEEE Trans. Signal Proc., 40

(1992), pp. 1535{1541.
[31] G. W. Stewart, Updating a rank-revealing ULV decomposition, SIAM J. Matrix Anal. Appl.,

14 (1993), 494{499.


