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Abstract

This thesis investigates various methods for carrying out approximate in-
ference in intractable probabilistic models. By capturing the relationships
between random variables, the framework of graphical models hints at which
sets of random variables pose a problem to the inferential step. The approx-
imating techniques used in this thesis originate from the �eld of statistical
physics which for decades has been facing the same type of intractable com-
putations when analyzing large systems of interacting variables e.g. magnetic
spin systems. In general, these approximating techniques are known as mean
�eld methods.

The thesis provides a brief introduction to the basic methodology of learn-
ing and inference in graphical models as well as a short review of the various
types of mean �eld approximations which recently have been shown to be
e�cient for carrying out approximate inference in intractable probabilistic
models.

Starting from the naive mean �eld approximation we derive for the in-
dependent component analysis (ICA) model with instantaneous mixing gen-
eral expressions for the posterior quantities needed to perform learning by
Expectation-Maximization (EM). Furthermore, we explore the feasibility of
going beyond the naive mean �eld approximation for this model. In fact, it
turns out that the overcomplete ICA problem can be solved using a simple
linear response correction to the mean su�cient statistics obtained by naive
mean �eld approximation. In addition, we apply to the ICA problem an adap-
tive version of the [Thouless, Anderson and Palmer 1977] (TAP) mean �eld
approach which is due to [Opper and Winther 2000c].

To illustrate the methodology on a real world problem, an explorative
analysis of a functional magnetic resonance imaging (fMRI) dataset from
a visual activation study is carried out using ICA with binary sources. It
is shown this approach, which is computationally e�cient, infers reasonable
brain activation functions.

Finally, we outline various ways of carrying out approximate message
passing in probabilistic models for which marginalization over some of the
clique variables is intractable.





Resumé (Abstract in Danish)

I nærværende afhandling undersøgers forskellige teknikker til at udføre ap-
proximativ inferens i beregningsmæssigt tunge probabilistiske modeller. Med
udgangspunkt i teorien om gra�ske modeller er det muligt direkte at få et in-
dblik i, hvornår approximerende metoder er påkrævede. De teknikker, som er
benyttet i denne afhandling, har alle deres oprindelse i statistisk fysik. I løbet
af de sidste årtier har folk indenfor dette område udviklet approximerende
metoder for at kunne analysere systemer med mange vekselvirkende enheder
som f.eks. magnetiske spin systemer. Disse metoder går samlet under beteg-
nelsen middelfeltsmetoder.

Denne afhandling giver foruden en kort introduktion til inferens og pa-
rameterestimation i gra�ske modeller også en oversigt over de forskellige
metoder, som i tidens løb har vist sig egnede for approximativ inferens i
probabilistiske modeller.

Med udgangspunkt i den naive middelfeltsapproximation udleder vi ge-
nerelle udtryk for kilde-posteriorsandsynligheden i en model for �indepen-
dent component analysis� (ICA) hvor kilderne blandes instantant. For denne
model undersøger vi fordelene ved at benytte mere advancerede approxima-
tioner. Det viser sig, at det underbestemte tilfælde, hvor der er �ere kilder
end mikrofoner, kan løses ved en lineær responskorrektion af de su�ciente
statistikker, som fås fra den naive middelfeltsapproximation. Endeligt anven-
der vi til dette ICA problem en adaptiv version af [Thouless, Anderson and
Palmer 1977] (TAP) middelfeltsmetoden, som blev foreslået af [Opper and
Winther 2000c].

Vi illustrerer metoden i en explorativ analyse af en sekvens af dynamiske
hjerneskanbilleder optaget under et visuelt aktiveringsstudie. Det er vist, at
denne metode, som er beregningsmæssig e�ektiv, rent faktisk er i stand til
at �nde plausible hjerneaktiveringsmønstre.

Endelig gives der forslag til, hvordan det er muligt at lave approximativ
sekventiel inferens i probabilistiske modeller, hvor eksakt marginalisering over
enkelte klikkepotentialer er umuligt.





Preface

The present thesis has been submitted in partial ful�llment for the Ph.D.
degree in electrical engineering. The work documented in this thesis has been
carried out at the Department for Informatics and Mathematical Modelling,
Section for Digital Signal Processing at the Technical University of Denmark.
The project was supervised by professor Lars Kai Hansen, associate professor
Jan Larsen and Dr. Carl Edward Rasmussen. The work was commenced in
February 1998 and completed in April 2001 with a six months stay at UC
Berkeley in the fall of 1999.

The reader is expected to be well-versed in the most common machine
learning techniques and terminology. These subjects are not introduced in this
thesis since excellent treatments on these matters have existed for decades
which means that the most common terminology and techniques of this �eld
at the present time is regarded as well established. Furthermore, basic know-
ledge of the principles behind using magnetic resonance imaging techniques
for in vivo imaging of the human brain is appreciated but not a prerequisite.

I have tried to set out the text in such a way that the main features stand
out clearly; it may sometimes seem that I go to great lengths to explain the
obvious, but that is how I am.
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Nomenclature

An attempt has been made to use standard symbols and operators consis-
tently throughout the presentation. Although most symbols and operators
are introduced along the way, the reader should with no e�ort be able to in-
fer the meaning of any non-de�ned symbol from its context. In some passages
of the text I have chosen to spontaneously suppress variables and indices to
make the main features stand out more clearly. Again, the reader should be
able to infer the exact details in these cases.

In a hopeful attempt to make the present exposition more readable I have
chosen to make overloaded use of the expectation operator h�i. To be speci�c,
given a function f(
) of a set of variables 
, we de�ne

hfi1j! �
Z
d(
n!)f(
) ; (0.1)

where ! � 
, i.e. we integrate out all variables except the ones belonging
to !. For instance, suppose f(x; y; z) is the joint probability density of the
random variables X;Y and Z. Then, the marginal density f(z) can be writ-
ten as hf(x; y; z)i1jz. Furthermore, we de�ne h�i1 � h�i1j; such that e.g. the
normalizing constant for an unnormalized probability density f is given by
hfi1.
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1. Introduction

The Road goes ever on and on
Down from the door where it began.
Now far ahead the Road has gone,
And I must follow, if I can,
Pursuing it with eager feet,
Until it joins some larger way
Where many paths and errands meet.
And wither then? I cannot say.

J.R.R. Tolkien

The ability to make inference is vital for any learning device to adapt and
make decisions in changing environments. This is true for both human be-
ings as well as machine learning algorithms. While human beings are able to
carry out the inferential step quite e�ciently e.g. to make predictions into
the immediate future, this task is from a probabilistic point of view compu-
tationally intractable since it may involve calculations of high dimensional
sums or integrals. Needless to say, it would be of great scienti�c and techno-
logical importance to �nd e�cient approaches to solve this problem since it
would constitute a signi�cant step towards learning in structures as complex
as the one found in the human brain.

1.1 The Brain, Graphical Models and Statistical Physics

The human brain is made up of approximately 1011 neurons which are or-
ganized into 107 elementary networks, each of which consists of 104 densely
interconnected neurons. Through functional activation studies many of these
elementary networks have been shown to be highly specialized to a speci�c
task. The collective behavior of networks of densely interconnected neurons
has provided us with a highly adaptive learning architecture which enables us
to adapt rapidly to changing environments. Whereas many of these networks
have been specialized and re�ned through biological evolution others are be-
ing modi�ed constantly in our daily life. Another advantage of distributed
architectures is that of robustness. Due to the dense connectivity we would
expect the performance to these architectures to degrade gracefully.

From a practical point of view it would be nice if there existed a frame-
work we could use in a principled way to come up with (and solve) new and
interesting machine learning algorithms and which, in principle, could incor-
porate knowledge of how the brain is organized. Indeed there is such a frame-
work, namely that of probabilistic networks and expert systems also known
as graphical models. This framework provides a principled way of merging
di�erent experts or specialized models into one system which is probabilisti-
cally consistent. Like the human brain, the resulting model is a highly struc-
tured stochastic system. One powerful property of the framework of graphical
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models is that it makes use of the principle of modularity by exploiting the
structure of the system to make inference by local and (hopefully) e�cient
computations.

For many systems, however, it turns out to be computationally intractable
to carry out these local computations. This happens in particular when the
elements (say the neurons in the brain or the random variables in a statisti-
cal model) involved in the local computation are densely interconnected. For
several decades statistical physicists have been facing the same type of in-
tractable computations when analyzing large systems of interacting variables
e.g. magnetic spin systems. In the pursue to tackle this problem they have
developed a rich class of approximating methods, collectively known as mean
�eld methods, which in the last decade have been successfully applied to a
large selection of intractable probabilistic models.

1.2 Functional neuroimaging

As mentioned already, it is of great scienti�c and technological interest to be
able to make inference in highly structured stochastic system of similar scale
as the human brain. Provided the ultimate goal in this scienti�c endeavor is
to simulate the human brain we would need to have knowledge about e.g. the
connectivity in the networks of neurons and furthermore know the functional
signi�cance of the di�erent networks. Obviously, this can only be achieved
through an enormous amount of interdisciplinary e�orts. We will here take on
a more pragmatic position and use small scale machine learning architectures
or probabilistic models to analyze data from functional activation studies.
Hence, the goal of this, in comparison, modest task is to gain insights into
the distribution of the functional areas in the human brain.

Although it is well known that the brain undergoes physical changes when
exposed to sensory input e.g. by modulating the strength of the synaptic
junction, I still fell that the following disclaimer is imperative:

If you choose to proceed reading this text, you agree on getting your brain
physically modi�ed. Oops � you already did � sorry.

Thesis overview

This thesis is organized into seven chapters and eight appendices. The �rst
chapter serves as an general introduction to the present exposition, while the
remaining chapters form the main part of the thesis concerning methods for
approximate inference in intractable probabilistic models and their applica-
tions to the analysis of functional neuroimages. In more detail, the contents
of the individual chapters and appendices are:

Chapter 1 gives a general introduction to the thesis.



1.2 Functional neuroimaging 3

Chapter 2 provides a short introduction to learning and inference in graphi-
cal models. This chapter introduces two canonical models which are useful
to have in mind throughout this thesis.

Chapter 3 reviews some of the various mean �eld approximations which
have been successfully used to carry out approximate inference in in-
tractable probabilistic models.

Chapter 4 makes use of advanced mean �eld methods to solve the in-
tractable inference problem encountered in the generative model for pro-
babilistic independent component analysis (ICA) with instantaneously
mixed sources.

Chapter 5 presents a explorative analysis of functional magnetic reso-
nance imaging (fMRI) data using probabilistic ICA with adaptive bi-
nary sources. This chapter also considers the problem of determining the
number of latent sources.

Chapter 6 outlines various strategies for carrying out approximate message
passing. However, this chapter, which presents work in progress, somehow
lacks experimental support. The material has been included since it binds
together most of the topics considered in this thesis.

Chapter 7 summarizes the work presented and outlines possible conclu-
sions. Suggestions for some possible directions to carry on this work are
also provided.

Appendix A summarizes the useful results for marginalizing and condition-
ing on variables in the Gaussian probability density.

Appendix B-H contains reprints of selected papers which have been au-
thored and co-authored during the Ph.D. study.





2. Learning and Inference in Graphical Models

This chapter brie�y introduces the basic notion of conditional independence
which together with graph theory provide the theoretical foundation of lo-
calized computations for inference in probabilistic models. The material con-
sidered in this chapter is kept at a rather operational level, hence we will be
omitting a large part of the proofs supporting the underlying theory. Readers
interested in such details are referred to the excellent books of [Jensen 1996;
Jordan 1998; Cowell et al. 1999; Jordan and Bishop 2001] which this chap-
ter strongly relies on. Besides of providing a brief introduction to learning
and inference in graphical models, this chapter mainly serves the purpose of
introducing the terms and notation which will be used throughout this thesis.

2.1 Directed Acyclic Graphs (DAGs)

The idea of introducing graph theory in probabilistic modeling might at �rst
sight seem unnecessary. However, not only is the graph topology a useful tool
to assist in the actual modeling process of a speci�c problem, but it also bare
the solution to how computationally e�cient algorithms for doing inference
can be devised. Using probability theory as our main starting point we will
motivate the introduction of the graph theoretical concepts as they come in
handy.

In this section we will consider graphs which are directed and acyclic. A
graph is said to be directed if all its edges are directed and acyclic if it does
not possess any cycles (along any directed path). A directed path can never
cross itself and movement along a path never goes against the directions of
the edges. A directed graph which is acyclic is called a directed acyclic graph
(DAG). One important feature of DAGs is that they possess a, however not
unique, topological ordering , i.e. it is always possible to �nd an ordering of
the nodes such that for each node Si all of its parents �i precedes it in the
ordering. The chain rule of probability theory states that any joint probability
distribution p(s) of N random variable (S1; S2; : : : ; SN ) can be factorized as

p(s1; s2; : : : ; sN ) =

NY
i=1

p(sijs1; s2; : : : ; si�1) ; (2.1)
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where p(s1js0) � p(s1). Knowing this, we are now able to relate the factoriza-
tion eq. (2.1) of an arbitrary joint distribution to the topology of a DAG. It is
noted that the conditional probability associated to each random variable Si
in eq. (2.1) is conditioned on all the random variables (S1; S2; : : : ; Si�1), i.e.
the random variables are in fact a valid topological ordering with respect to
conditioning. Using the fact that we can always relabel the nodes of a DAG
into a topological ordering we see that the parents �i of a node Si are just
the conditioning nodes in its conditional distribution, p(sijs1; s2; : : : ; si�1),
in the factorization eq. (2.1). Figure 2.1(a) shows an example of a DAG with
three nodes. All possible joint probability distributions of three random vari-
ables can be factorized according to this DAG. At this point it is not clear
what insight we have achieved in relating the graph topology to the fac-
torization of the joint distribution with respect to the DAG. This, however,
becomes clear when edges starts to be removed from the graph. This naturally
leads us to the introduction of Bayesian networks. A Bayesian network is a
directed acyclic graph whose structure de�nes a set of conditional indepen-
dence properties. To each node we associate a (local) conditional probability
distribution, where the conditioning is on the parents of the node. The joint
distribution is given by

p(s) =
Y

p(sij�i) ; (2.2)

where p(sij�i) are the local conditional probabilities associated with the graph.
We say that eq. (2.2) is a recursive factorization according to the DAG. As
an example, consider the DAG in �gure 2.1(b) which is a subgraph of the
DAG shown in �gure 2.1(a). Comparing the chain rule factorization eq. (2.1)
with the recursive factorization eq. (2.2) for this Bayesian network it is seen
that p(s3js1; s2) = p(s3js2), i.e. S3 is conditionally independent of S1 given
S2 which we usually write as S3 ? S1jS2. This shows that missing edges in
the graph have a probabilistic interpretation in terms of conditional indepen-
dence. Taking this example to the extreme by removing all edges we arrive
at the DAG shown in �gure 2.1(c) which implies that S1, S2 and S3 are
independent random variables. This is easily veri�ed using the recursive fac-
torization and Bayes rule. It is important to note that whereas missing edges
in the graph necessarily do imply independence the edges that are present do
not necessarily imply dependence.

We have now seen that a graphical model is associated with a family of
probability distributions. In fact, as edges are being removed from the DAG
the harder it gets to be a member of the associated family of probability dis-
tributions. Figure 2.1(a-c) illustrated this by considering successive subgraphs
starting from the large family containing all joint distribution of three ran-
dom variables and ending at the small family containing only fully factorized
joint distributions. The conditional independence relation implied by these
simple DAGs was readily obtained using Bayes rules but for large Bayesian
networks such direct procedures of determining conditional independence be-
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Fig. 2.1. Three DAGs consisting of 3 nodes implying di�erent conditional indepen-
dence assumption; (a) implies no conditional independence relations and thus able
to capture all joint distribution consisting of three random variables; (b) implies
the conditional independence relation S3 ? S1jS2; (c) implies independent random
variables.

tween random variables becomes quite tedious. It turns out, however, that the
topology of the graph provides the inferential machinery for answering ques-
tions about probability distributions without one having to resort to direct
calculations which, when done by hand, are prone to errors. This naturally
leads to the introduction of the notion of d-separation.

2.1.1 d-separation

The notion of d-separation (shorthand for �directed separation�) allows con-
ditional independencies to be read directly from the graph. It is essentially
the probabilistic counterpart to naive graph separation in the sense that it
looks at the probabilistic connectivity instead of just the topological connec-
tivity of the edges in the DAG. Using Bayes rule one can easily determine the
probabilistic connectivity of the serial, diverging and converging connection
shown in �gure 2.2. The arrows in the �gure shows the probabilistic connec-
tivity of the DAG and the shaded nodes are the instantiated nodes. E.g.,
�gure 2.2(c) shows that two nodes in a converging connection are marginal
independent but not conditional independent given the intermediate node.
This behavior is typically referred to as explaining away .

In addition to the serial, diverging and converging connections it is useful
to consider the connection between a single parent and its single child. To
determine the probabilistic connectivity of such boundary connection it is
useful to note that the conditional independence statement SA ? SB jSC is a
property of the marginal distribution p(sA; sB ; sC). Since marginalizing over
a childless node is equivalent to simply removing the node (and all its edges
to its parents) we can basically just add an extra node while leaving the
joint distribution of the original parent and child invariant. We see that valid
insertions of an extra node leads to either a serial or diverging connection and
we can now read of the probabilistic connectivity of the boundary connection
simply by using �gure 2.2.
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Serial connection Diverging connection Converging connection

(a) (b) (c)

Fig. 2.2. Summarizes the concept of d-separation. The �gure illustrates how two
nodes communicates (shown as arrows) when their intermediate node yields an (a)
serial (b) diverging and (c) converging connection. The top row shows the case
there the intermediate node is not instantiated and the lower row shows the case
when conditioning on the intermediate node (shown as shading). It is seen that the
serial connection and the diverging connection is d-separated when conditioning on
the intermediate node whereas the converging connection is d-separated when the
intermediate node is not instantiated.

By repeatedly using the probabilistic connectivity of the serial, diverging
and converging connections we are able to answer questions about condi-
tional independence in complicated DAGs. This procedure is the Bayes ball
algorithm of [Shachter 1998]. We have now motivated the following de�nition
of d-separation.

De�nition 2.1.1 (d-separation). [Jensen 1996] Two variables A and B in
a directed acyclic graph are d-separated if for all paths between A and B there
is an intermediate variable C such that either

1. the connection is serial or diverging and the state of C is known
2. the connection is converging and neither C nor any of C's descendants

have received evidence.

An extension to d-separation is, however, needed to determine conditional
independence relationships in Bayesian networks in which some of the nodes
are deterministically determined given their parents. This leads to the notion
of D-separation [Geiger et al. 1990]. The extension consists of regarding the
nodes which are deterministically related to observed nodes as instantiated.
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Fig. 2.3. Shows the Markov blanketM i (illustrated by the shaded nodes) of node
i. Instantiating node j removes the possibility of �explaining away� dependencies
due to node k.

The Markov blanket M i of a variable Si is the parents of i, the children
of i and the variables sharing a child with i. An example of a Markov blanket
is shown in �gure 2.3. Clearly, a node will always be d-separated from the
rest of the network when all variables in its Markov blanket are instantiated.

In section 2.4.2 we will consider a particular DAG which is able to cap-
ture a large class of interesting models used in statistics, in particular Hid-
den Markov models, the Kalman �lter/smoother and independent component
analysis.

2.2 Undirected Graphical Models

One appealing property of Bayesian networks is that the joint probability
distribution can be expressed as a product of local functions on the DAG
associated to the network. In fact, these local functions turned out to be the
local conditional probabilities p(sij�i). The general procedure for performing
e�cient inference in graphical models does not, however, directly exploit
the topological structure of DAGs. Instead it makes use of the structure of
another class of models referred to as undirected graphical models or Markov
Random Fields (MRFs). A graph is said to be undirected if all the edges in
the graph are not directed. Undirected and directed acyclic graphs are both
special cases of chain graphs which are graphs that have no directed cycles.

As for a Bayesian network, the joint probability distribution of an undi-
rected graphical model can be expressed as a product of local functions. In
particular, we say that a probability density p(s) factorize with respect to a
given undirected graph G if
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p(s) =
1

Z

Y
c2C

�c(sc) ; (2.3)

where the product is over the set of all cliques, C, in the graph and �c is
the potential function associated with clique c, i.e. a non-negative function
depending only on the nodes, Sc, in the clique. A clique is a complete graph
which is maximal in the sense that the graph can not be extended to include
additional nodes without losing the property of being complete. A graph is
called complete if every pair of nodes are pairwise linked, i.e. the graph is
fully connected . The normalization constant, Z, (also known as the partition
function) have been introduced explicitly in eq. (2.3) since there is no guar-
antee that a product of arbitrary functions is normalized and hence de�nes
a probability distribution.

It is easily seen that the factorization eq. (2.3) implies that SA is inde-
pendent of SB given SC if the set of nodes C separates the nodes A from
the nodes B, where by separation we mean naive graph-theoretic separation.
A speci�c case of this is shown in �gure 2.4. Let V denote the set of nodes
associated with the undirected graph. Let ~A denote the union of A and the
nodes in V nC which are reachable from A and let ~B = V n( ~A [ C). Clearly,
every clique is composed of nodes from either ~A [ C or ~B [ C, hence

p(s) = p(s ~A; s ~B ; sC) =
1

Z

� Y
c2( ~A[C)

�c

�� Y
c2( ~B[C)

�c

�
(2.4)

=
1

Z
f(s ~A; sC)f(s ~B ; sC) ; (2.5)

which explicitly shows that the joint distribution is a product of two functions;
one function depending on sA and the other depending on sB . The conditional
probability is then

p(s ~A; s ~B jsC)=
f(s ~A; sC)f(s ~B ; sC)

hf(s ~A; sC)i1jsC hf(s ~B ; sC)i1jsC
(2.6)

=
p(s ~A; sC)p(s ~B ; sC)

hp(s ~A; sC)i1jsC hp(s ~B ; sC)i1jsC
(2.7)

= p(s ~AjsC)p(s ~B jsC) ; (2.8)

which shows that S ~A ? S ~B jSC , hence SA ? SB jSC . The property that SA
is independent of SB given SC if the set of nodes C separates the nodes A
from the nodes B is often referred to as the global Markov property . That
the factorization eq. (2.3) implies the global Markov property suggests that
a product of potential functions is indeed the natural factorization of the
joint distribution when considering undirected graphical models. Indeed, for
strictly positive probability distributions the reversed implication, i.e. that
the global Markov property implies the factorization eq. (2.3), can be ob-
tained using the Hammersley-Cli�ord theorem.
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Fig. 2.4. The set C separates A from B since all paths from A to B have to pass
through C. The same is seen to be true for the extended sets ~A and ~B. Obviously
is it su�cient to show that ~A is conditional independent of ~B given C.

The potential functions are commonly parameterized as �c = exp(�Ec),
where Ec is a unconstrained function. The joint probability distribution is
then speci�ed in term of the Boltzmann distribution

p(s) =
1

Z
e��E(s); (2.9)

where E(s) =
P
c2C Ec is denoted the energy function and � is known as

the inverse temperature. The inverse temperature is not directly part of the
probabilistic model speci�cation and it is clear that � = 1 in this case. Since
the inverse temperature controls the smoothness of the joint distribution p(s)
it is, however, a useful quantity to have at hand when solving combinatorial
optimization problems which have been casted onto undirected graphs, see
e.g. simulated annealing [Kirkpatrick et al. 1983] and mean �eld annealing
[Peterson and Söderberg 1989]).

In certain application domains it is more natural to state the generative
model in terms of an undirected graphical model. Markov random �elds have
been widely used in image processing and computer vision ever since they
were introduced in this context in the classic paper of [Geman and Geman
1984]. A nice treatment of various applications of MRFs to computer vision
as well as an extensive list of references can be found in [Li 1995]. In sec-
tion 2.4.1 we will as an example of a MRF consider the Boltzmann Machine
which is an extension of the Hop�eld network to include hidden units [Hertz
et al. 1991]. In chapter 3, the Boltzmann Machine will due to its connec-
tion to statistical physics be our canonical example in the treatment of mean
�eld methods for approximate inference. To see why and when such approx-
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Fig. 2.5. Shows the process of graph moralization. (a) Shows the original graph (in
solid) as well as the edge added (in dashed) in the �rst step of �marrying� parents.
(b) Shows the moralized graph.

imations are needed we have to consider the computational complexity in
arbitrary graphical models. This is the subject of the next section.

2.3 Inference in Graphical Models

In this section we describe the general procedure for doing e�cient inference
in graphical models. As mentioned in section 2.2, this e�ciency is achieved
by exploiting the structure of the undirected graphical model. Often, how-
ever, the generative model has been speci�ed in terms of a directed graphical
model. Hence we need to consider how a directed graph can be recast into a
undirected graph. This lead us to the concept of the graph moralization.

2.3.1 Graph Moralization

The joint distribution for the directed and undirected graphical model is
given by respectively eq. (2.2) and eq. (2.3), i.e. in both cases a product of
local functions on the graph. It is tempting just to drop the edge directions
of the DAG and then identify the potential function �c(sc) with the local
conditional probability p(sij�i) for which the set of nodes fsig[�i is contained
in c. This is, however, not in general a valid potential function since there
is no guarantee that the set of nodes fsig [ �i is contained in any clique,
the reason being that some of the parents �i might not be interconnected.
The way to deal with this problem is to construct the moral graph, i.e. add
undirected edges to all co-parents which are not currently joined and �nally
drop the directions of all remaining directed edges (see �gure 2.5). Clearly,
the probability distribution associated with the original DAG will still be a
member of the family of distributions associated with the moral graph. The
potential functions associated with clique c in the moral graph is then the
product of all the local conditional probabilities p(sij�i) for which fsi [ �ig
is contained in c. Obviously, we can now equivalently restate the Markov
blanket M i of node Si as being the set of its neighbors in the moral graph.
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2.3.2 The generalized potential representation

Since an arbitrary joint probability distribution cannot in general be ex-
pressed as a product of marginals, the factorization eq. (2.3) leaves us with
little hope of equating the potential �c with the marginal p(sc). There is,
however, an alternative way of expressing the joint distribution in which the
potentials indeed can be identi�ed with the marginals. As in section 2.2, con-
sider a triple (A;B;C) of disjoint subsets of the vertex set V of an undirected
graph G, such that C separates A from B; this time, however, with the addi-
tional constraint that GC is a complete subgraph of GV and V = (A[B[C).
Such a triple is said to form a decomposition of the graph. Furthermore, we
say that an undirected graph G is decomposable if either it is complete, or it
possesses a proper decomposition (A;B;C) such that both subgraphs GA[C
and GB[C are decomposable. A decomposition (A;B;C) is proper if both A
and B are non-empty. Consider the graph decomposition ( ~A; ~B;C) shown in
�gure 2.4. Clearly, the joint distribution with respect to the graph can be
expressed as in eq. (2.5), i.e.

p(s) = p(s ~A; s ~B ; sC) =
1

Z
f(s ~A; sC)f(s ~B ; sC) ; (2.10)

and by direct integration we �nd

p(s ~A; sC) =
1

Z
f(s ~A; sC)

~f(s ~B ; sC) ; (2.11)

where ~f(s ~B ; sC) = hf(s ~B ; sC)i1js ~A;sC . Note that the constrain that GC is a

complete subset of V makes sure that ~f(s ~B ; sC) can be represented in terms
of complete subgraphs of GC . Similar results are obtained for the marginals,
p(s ~B ; sC) and p(sC), which implies that p(s ~A; sC) and p(s ~B ; sC) factorize
with respect to the subgraphs G ~A[C and G ~B[C respectively, and that the
joint distribution is given by

p(s ~A; s ~B; sC) =
p(s ~A; sC)p(s ~B ; sC)

p(sC)
: (2.12)

Conversely, let p(s ~A; sC) and p(s ~B ; sC) factorize with respect to the subgraphs
G ~A[C and G ~B[C , respectively. Clearly, if p(s) satis�es eq. (2.12) then it also
factorize with respect to G. If the graph G happens to be decomposable we
can apply eq. (2.12) recursively. This shows that the joint distribution p(s)
associated to a decomposable graph can be expressed as

p(s) =

Q
c2C �c(sc)Q
c02S �c0(sc0)

; (2.13)

where C is the set of cliques and S is the set of separators, i.e. the intersec-
tion of the adjacent cliques, in the decomposable graph G. Equation (2.13) is



14 2. Learning and Inference in Graphical Models

A

B

A

B C

E F

D

C

E F

D

(a) (b)

ABC

BCDEFBCBCDE CDEFCDE

ABC

BC

(c) (d)

Fig. 2.6. Two triangulated graphs obtained from the DAG shown in �gure 2.5 using
node elimination ordering (a) fA;B; �g and (b) fA;D; �g; (c,d) shows the junction
tree associated with the triangulated graph (a) and (b), respectively.

known as the generalized potential representation. It can be shown that an
undirected graph G is decomposable if and only if it is triangulated [Cowell
et al. 1999]. An undirected graph is said to be triangulated (or chordal) if
there are no cycles of length 4 or more distinct nodes without a short-cut. Ob-
viously, a graph which is not triangulated can always be made so by adding
extra edges in a suitable way. One such way is using a simple elimination
procedure in which nodes are being successive removed from the graph; prior
to removing a node Si any non-connected neighbors of Si are connected by
adding �ll-in edges. The union of Si and its neighbors constitute the elimi-
nation clique corresponding to Si. The edges of the triangulated graph are
obtained as the union of the set of edges in the original (undirected) graph
and the set of �ll-in edges. The cliques in the triangulated graph can then be
inferred from the elimination cliques. It is important to note that triangula-
tion of a graph is not unique. Figure 2.6(a,b) shows two valid triangulations
of the moral graph in �gure 2.5(b), obtained using two di�erent elimination
orderings, namely fA;B; �g and fA;D; �g. Figure 2.6(c,d) shows the junction
tree corresponding to the two triangulated graphs. A tree of cliques is a junc-
tion tree if for each pair of cliques A, B, all cliques on the (unique) path
between A and B contain the intersection A \ B. Indeed, it can be shown
that there exists a junction tree of cliques for the graph G if and only if G is
decomposable [Cowell et al. 1999].
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A BC

φ φ φA C B

Fig. 2.7. Two cliques A and B and the separator C = A\B between them. During
the message passing scheme the clique and separator potentials are modi�ed. In
each message passing update the separator potential stores a copy of the message
which is absorbed by the receiving clique. After a complete set of updates the two
potentials have become consistent.

2.3.3 Message Passing on Junction Trees

Suppose there are only two cliques A and B in the triangulated graph; this
e.g. turned out to be the case in �gure 2.6(b,d). Now, let C = A \ B be
the separator of A and B. The scenario is illustrated in �gure 2.7. Since the
graph is triangulated and hence decomposable then accordingly to eq. (2.13)
the joint distribution can be written as

p(s) =
�A(sA)�B(sB)

�C(sC)
: (2.14)

However, from the speci�cation of a probabilistic model we known the clique
potentials �A and �B and furthermore we know that the joint distribution
factorize as p(s) / �A(sA)�B(sB). Thus, a reasonable guess would be to
initialize the separator potential to the partition function, �C = Z. We can,
however, without any loss of generality ignore the partition function and ini-
tialize �c = 1. Since our objective is to interpret the potential functions as
marginals we need a principled way of modifying the clique and separator po-
tentials. Consider the following set of marginal-propagation updates [Jensen
1996].

��C = h�Ai1jsC ; ��B = (��C=�C)�B ; ��A = �A
���C = h��Bi1jsC ; ���A = (���C =�

�
C)�

�
A ; ���B = ��B

(2.15)

We can think of ��C as a message passed from A to B and think of ���C as
a message passed from B to A. It is easily shown that each update (mes-
sage passing) leaves the joint distribution invariant. After a complete set of
updates the link between the two potentials have become consistent, that is
h���A i1jsC = h���B i1jsC . This follows directly from eq. (2.15),

h���A i1jsC =
���C
��C

h��Ai1jsC = ���C = h���B i1jsC : (2.16)

Using the invariance of the joint distribution and eq. (2.16) we can now
calculate the marginal
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p(sA) = hp(sA; sB ; sC)i1jsA =
���A (sA)

���C (sC)
h���B (sB)i1jsC = ���A (sA) ; (2.17)

and similarly p(sB) = �B and p(sC) = �C . This shows that inference can
be seen as the process of achieving local consistency between the potential
function of neighboring cliques. For arbitrary junction trees it is obvious that
the junction tree property is a su�cient condition for local consistency to im-
ply global consistency, hence the inference problem can be solved by a set of
linked local computations in which links between neighboring cliques are be-
ing made consistent. These local computations can be carried out e�ectively
using the following protocol.

Protocol 1 (Message passing scheme) [Jensen 1996] A node A can send
exactly one message to a neighboring clique B, and it may only be sent when
A has received a message from each of its other neighboring cliques.

The update, eq. (2.15), shows that the key to e�cient inference algorithms
is to form triangulated graphs which have small cliques, in terms of their
state space. Thus, considering the example shown in �gure 2.5 and 2.6 we
could obtain the most e�cient inference procedure by performing message
passing on the junction tree shown in �gure 2.6(c). This example shows that
we need to �nd a good elimination ordering in order to obtain the triangu-
lated cover which minimizes the sum of the state space sizes of the cliques.
Unfortunately, it turns out that this is in general a NP-hard problem. Hence,
various heuristics have been developed for triangulating non-chordal graphs.
One such heuristic which is due to [Kjærul� 1990] is restated in the excellent
procedural guide to inference in graphical models by [Huang and Darwiche
1996]. During an elimination procedure the heuristic suggests choosing the
node that causes the least number of �ll-in edges to be added, breaking ties
by choosing the node that induces the cliques with the smallest state space.
It turns out that this greedy heuristic produces reasonable triangulations in
real world settings [Huang and Darwiche 1996].

In many applications we are interested in calculating the most probable
con�guration of all the dynamical variables instead of the entire marginals
distributions. This calculation can be carried out computationally e�ciently,
merely by substituting the marginalizations by max-operators in the message
passing updates eq. (2.15). This time, after a complete set ofmax-propagation
updates the cliques have become max-consistent, i.e. for every pair of neigh-
boring cliques A and B separated by C we have maxAnC ���A = maxBnC ���B
[Jensen 1996]. One highly celebrated special case of max-propagation is the
Viterbi algorithm [Rabiner 1989] which is widely used in speech signal pro-
cessing to �nd the MAP hidden sequence in Hidden Markov Models.
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2.4 Two canonical models

Before proceeding to the problem of learning in graphical models let us con-
sider two canonical graphical models; the �rst being undirected and the sec-
ond being directed.

2.4.1 The Boltzmann machine

The Boltzmann machine (BM) [Hertz et al. 1991] is an undirected graphical
model de�ned on a set S = fV [Hg of N binary random variables Si =
f�1; 1g where V and H is the set of visible and hidden units, respectively.
The (Hop�eld) energy function of a BM is at most quadratic, i.e. in general
of the form

E(s) = �1

2

NX
i;j=1

Jijsisj �
NX
i=1

�isi = �1

2

NX
i;j=0

Jijsisj ; (2.18)

where the interactions-weights are chosen symmetric such that Jij = Jji. The
last equality is obtained by introducing an extra node S0, which is clamped
to state +1 and de�ne Ji0 to be equal to the threshold �i. Since the self-
interaction weights, Jii(i > 0), leave the probability distribution invariant
we can without loss of generality let Jii = 0 for i > 0. When referring to
the BM we will therefore, unless otherwise mentioned, be using the following
parameterization

E(s) = �1

2

NX
i;j

Jijsisj �
NX
i=1

�isi ; (2.19)

where Jii = 0. This undirected graphical model has a physical analog in the
Ising model which is a model of magnetic systems. In the Ising model node,
Si represents the orientation of the spin at lattice site i; the spin is oriented
�up� if Si = 1 and �down� if Si = �1.

2.4.2 A hidden state space model

In spite of their simple factorization, the graphical models considered in this
section are able to account for a large class unsupervised models which have
been proposed through time for modeling multidimensional data. All the gen-
erative models factorize according to the DAG shown in �gure 2.8 which also
shows one of the possible junction trees associated to this DAG. Hence, with
this factorization we assume that the i'th observable Yi is generated from the
hidden state Xi which evolves according to a simple �rst-order Markov dy-
namics. The particular case where both the hidden state and observation are
obtained as a linear mapping of the conditioning state corrupted with Gaus-
sian noise is considered in [Roweis and Ghahramani 1999]. Starting from this
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Fig. 2.8. Shows the DAG for the hidden state space model and one of the possible
junction trees associated to it. The observation Yi is conditional independent given
the hidden stateXi which evolves according to a �rst order hidden Markov dynamic.

generative model they recover various well known statistical models as e.g.
factor analysis, principal components analysis (PCA) and Kalman �lter mod-
els. Furthermore, by applying additional non-linear mappings it is possible
to obtain vector quantization, hidden Markov models (HMMs) and the gen-
erative model for independent component analysis (ICA). In the next section
we follow [Jordan and Bishop 2001] and [Murphy 1998] and illustrate the
message passing scheme on the Gaussian linear state space model or linear
dynamical system. In chapter 6 we consider the same DAG in the context of
a on-line classi�cation model where approximate message passing is needed.

2.4.3 The Gaussian linear state space model

In this section we consider the Gaussian linear model which gives rise to the
classical Kalman �lter and Rauch-Tung-Striebel (RTS) recursions [Roweis
and Ghahramani 1999]. This model which have been extensively investigated
by the engineering and control communities for decades takes the form

X0 � N (�0;�)
Xt = AXt�1 + �t ; �t � N (0;��)
Y t = BXt + "t ; "t � N (0;�") ;

(2.20)
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where A is the state transition matrix, B is the observation matrix and
f�tg and f"tg are mutually independent white Gaussian noise sequences with
covariance�� and�", respectively. In the following derivation of the Kalman
�lter and RTS recursions we will be using the canonical parameterization
of the Gaussian density, see appendix A. Hence, for this model the local
conditional probabilities associated to the DAG shown in �gure 2.8 are given
by
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(2.21)

To solve the inference problem using the message passing scheme, every clique
has to exchange exactly one bidirectional message with each of its neighbors
in such a way that the message passing protocol is upheld. We achieve this
by assigning one of the cliques in the junction tree as root and then carry out
two sweeps each following the message passing protocol. In the �rst (forward)
sweep every clique except the root sends a message towards the root node and
in the second (backward) sweep messages are distributed from the root clique
to all other cliques. Following [Murphy 1998; Jordan and Bishop 2001] we
assign the clique fXT�1; XT g to be the root clique. The separator potentials
are initialized, i.e.  = ~ = 1, and the clique potentials � are easily identi�ed
as

�(x0;y0) = p(x0)p(y0jx0) = N�

��
�0�0
0

�
;

�
�0 +B

T�"B �BT�"
��"B �"

��

�(xt;xt+1) = p(xt+1jxt) = N�

��
0

0

�
;

�
AT��A �AT��
���A ��

��

�(xt;yt) = p(ytjxt) = N�

��
0

0

�
;

�
BT�"B �BT�"
��"B �"

��
(2.22)

Since the result of unconditional inference follows directly from the theory,
we will now consider the case there evidence is present at fY ig = f _yig. Here
the dot is used to emphasize instantiated random variables. We start by
having a look at the forward sweep in which messages are being send towards
the root. According to the message passing protocol the potential �(xt;xt+1)
has to wait sending its message toward the root until it has absorbed the
messages stored in the updated separator potentials  �(xt) and ~ �(xt+1).
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Provided that the separator potential  (xt) has already been updated, i.e.
we have tjt and �tjt such that

 �(xt) / e�
1
2x

T
t �tjtxt+

T
tjtxt ; (2.23)

we can easily let the potential �(xt;xt+1) absorb the message stored in
 �(xt),

�Æ(xt;xt+1) =  �(xt)�(xt;xt+1) (2.24)

/ N�

��
tjt
0

��
Ktjt �AT��
���A ��

��
; (2.25)

where

Ktjt = AT��A+�tjt : (2.26)

The superscript Æ is used to emphasize that the clique potential has only
been partially updated. Since �Æ(xt;xt+1) is proportional to p(xt;xt+1j _yt1)
we can at this point �nd the one-step-ahead prediction or time update by
marginalizing xt,

p(xt+1j _yt1) = N�(t+1jt;�t+1jt) ; (2.27)

where

t+1jt = ��AK
�1
tjt tjt (2.28)

�t+1jt = �� ���AK�1
tjtA

T�� : (2.29)

In order to complete the update of the clique potentials �(xt;xt+1) we �rst
need to update the evidence dependent separator potentials which is easily
done

~ �(xt) = hÆ(yt � _yt)�(xt;yt)i1jxt (2.30)

/ e�
1
2x

T
t B

T�"Bxt+(B
T�" _yt)

Txt ; (2.31)

which in turn yields the updated clique potential

��(xt;xt+1) = ~ �(xt+1)�Æ(xt;xt+1) (2.32)

/ N�

��
tjt

BT�" _yt+1

�
;

�
Ktjt �AT��
���A �� +B

T�"B

��
: (2.33)

Finally, we obtain  �(xt+1) by marginalizing the updated clique potential
with respect to xt which yields the following datum or measurement updates

t+1jt+1 = t+1jt +BT�" _yt+1 (2.34)

�t+1jt+1 = �t+1jt +BT�"B : (2.35)

To initialize the forward sweep in which messages are being send toward
the root we need to know the boundary condition for the recursions. This is
readily obtained
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 �(x0) = hÆ(y0 � _y0)�(x0;y0)i1jx0 (2.36)
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�0�0 +B

T�� _y0;�0 +B
T�"B

�
: (2.38)

Equations (2.26), (2.28), (2.29), (2.34) and (2.35) together with the bound-
ary condition eq. (2.38) constitute the information �lter equations which are
algebraically equivalent to the usual Kalman �lter recursions [Anderson and
Moore 1979].

We now turn to the backward sweep in which messages are being dis-
tributed from the root clique to all other cliques. The derivations of the
backward recursions follows along the same lines as the ones leading to the
forward recursions, i.e. we start by assuming that the separator potential
 �(xt+1) has already been updated

 ��(xt+1) / e�
1
2x

T
t+1�t+1jTxt+1+

T
t+1jTxt+1 ; (2.39)

which is then used to update the clique potential

���(xt;xt+1) =
 ��(xt+1)
 �(xt+1)

��(xt;xt+1)

/ N�

��
tjt
�t+1jT
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;

�
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���A Lt+1jT
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(2.40)

where we have introduced

�t+1jT = BT�" _yt+1 + t+1jT � t+1jt+1 = t+1jT � t+1jt (2.41)

Lt+1jT = �� +B
T�"B +�t+1jT ��t+1jt+1 : (2.42)

Given the updated clique potential ���(xt;xt+1) we may now update the next
separator potential along the chain, i.e. calculate  ��(xt) = h���(xt;xt+1)i1jxt
which yields the following recursions

tjT = tjt +AT��L
�1
t+1jT (t+1jT � t+1jt) (2.43)

�tjT = Ktjt �AT��L
�1
t+1jT��A : (2.44)

Similarly, we update the last set of separator potential, i.e.

~ ��(xt+1) = h���(xt;xt+1)i1jxt+1
/ e�

1
2x

T
t+1

~�t+1jTxt+1+~Tt+1jTxt+1 ; (2.45)

where

~t+1jT = �t+1jT +��AK
�1
tjt tjt (2.46)

~�t+1jT = Lt+1jT ���AK�1
tjtA

T�� : (2.47)

The base case  ��(xT�1) for the backward recursion of  are found straight-
forwardly by the marginalizing the root potential ���(xT�1; xT ) with respect
to xt.
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V H

Fig. 2.9. Illustration of the generic learning problem for graphical models. Given a
set of visible nodes V , we want to estimate the model parameters (not shown in the
�gure) in the presence of a set of hidden nodes H. Hence, to carry out ML learning
we have to be able to calculate the posterior density of the hidden variables.

2.5 Learning in Graphical Models

This section describes two di�erent ways for learning the parameters in graph-
ical models in the maximum likelihood framework, i.e. to choose the model
parameters maximizing the marginal probability density of a given set of vis-
ible (evidence) nodes. The general situation is depicted in �gure 2.9 in which
the node set S of the graphical model has been partitioned into the set of
visible nodes V and the set of hidden nodes H.

2.5.1 Boltzmann Learning

The Boltzmann learning rule [Hertz et al. 1991] was introduced by Hinton
and Sejnowski as a procedure for doing supervised learning of Boltzmann ma-
chines. However, we will here consider a general undirected graphical model
with node set S = fV ;Hg, where V is the set of visible nodes and H is
the set of hidden nodes. Let E� denote the energy function associated to the
undirected graphical model with parameters � = f�ig. The joint probability
distribution then takes the form

p(sj�) = 1

Z
e�E�(s) ; (2.48)

where Z =


e�E�(s)

�
1
is the partition function associated to the joint dis-

tribution. To do maximum likelihood parameter estimation we need to cal-
culate the (log) probability of the visible nodes given the model parameters,
i.e. marginalize out the hidden nodes

log p(vj�) = log

�
1

Z
e�E�(v;h)

�
1jv

= log
Zv
Z

; (2.49)
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where we have introduced the partition function Zv =


e�E�(s)

�
1jv associated

to the posterior

p(hj�;v) = 1

Zv
e�E�(h;v) : (2.50)

This clearly shows that we have to be able to make inference (about hidden
states) in order to carry out learning. Using the simple relation
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the Boltzmann learning rule is readily obtained as the gradient ascent on the
likelihood, i.e.

��i = �

(�
�@E�
@�i

�
pjv
�
�
�@E�
@�i

�
p

)
; (2.52)

where � is the learning rate. Equation (2.52) shows that the learning process
consists of an unlearning (or student) component, h�ip, in which the parame-
ters are free to move and a learning (or teacher) component, h�ipjv, in which
the visible nodes are clamped. As an example consider applying the Boltz-
mann learning rule (2.52) on the Boltzmann machine eq. (2.19). It is seen that
this requires the calculation of correlations between nodes. This is, however,
computational infeasible if the system contains large cliques. For such sys-
tems we need to consider approximating methods for calculating correlations
which will be the subject of chapter 3.

2.5.2 Learning by Expectation Maximization (EM)

The EM algorithm was proposed by [Dempster et al. 1977] as an iterative
approach for doing maximum likelihood estimation in the presence of hidden
variables. Again we consider a graphical model with node set S = fV ;Hg,
where V is the set of visible nodes andH is the set of hidden nodes. The joint
probability density associated with the model is p(v;hj�), where � = f�ig is
the collection of model parameters. Like for Boltzmann learning the objective
of the EM algorithm is to maximize the likelihood, i.e.

L(�) = log p(vj�) = log hp(v;hj�)i1jv : (2.53)

A lower bound on the likelihood can be obtained using Jensens inequality1,

L(�) = log

�
p(v;hj�)
q(h)

�
q

�
�
log

p(v;hj�)
q(h)

�
q

= L�(q;�) ; (2.54)

1 Jensens inequality states h�(X)i � �(hXi), where � is a convex function. [Cover
and Thomas 1991]



24 2. Learning and Inference in Graphical Models

where q(h) is an arbitrary probability density over the hidden variables. It
can now be shown that the EM algorithm essentially performs gradient ascent
on the lower bound, L� [Neal and Hinton 1998]. Noting that the likelihood is
independent of the hidden variables H, the slack � between the likelihood
and the lower bound is readily obtained

� = L(�)� L�(q;�) =
�
log

q(h)p(vj�)
p(v;hj�)

�
q

= KL(qkpH) ; (2.55)

where pH = p(hjv;�) is the posterior probability of the hidden states H
and KL(q k p) = hlog q=piq is the Kullback-Leibler (KL) distance (or diver-
gence) between q and p. The EM algorithm alternates between maximizing
L� with respect to the distribution, q (E-step), and the parameters � (M-
step), respectively, keeping the other �xed. In the E-step the KL distance is
minimized when q is equal to the posterior, p(k)H = p(hjv;�(k)) of the hidden
nodes, eq. (2.55). Alternatively, this can be seen by performing free-form op-
timization of q on the lower bound, L�. Since q does not depend on � the
M-step amounts to maximizing the expected complete likelihood , p(v;hj�)
with respect to p(k)H ,

�(k+1) = argmax
�
hlog p(v;hj�)i

p
(k)
H

: (2.56)

Since the bound is tight at the beginning of each M-step and furthermore,
the E-step does not change �, the combined EM step is guaranteed to not
decrease the likelihood after each combined EM step, i.e.

L(�(k�1)) = L�(q(k);�(k�1)) � L�(q(k);�(k)) � L(�(k)) ; (2.57)

where the �rst equality follows after having performed the E-step and the
�rst inequality comes from the M-step and the last inequality follows from
the lower bound eq. (2.54). When the EM algorithm has converged to a �xed-
point �� we know that �� is a maximum for L�(q;��) and that L and L� are
equal at ��. Assuming L and L� are both di�erentiable this implies that �� is
a stationary point (not necessarily a local maximum) of L. In practice, how-
ever, convergence to saddle points or local minima in the likelihood is rarely
seen. The big advantage of using EM is that we can make explicit use of the
factorization of the complete log likelihood and hence decouple the estimation
problem. All we need to calculate is the expected su�cient statistics (with
respect to the posterior of the hidden variables) and solve a maximization
problem. As mentioned already in section 2.3.3, it is in general not possible
to solve the inference problem exactly. Likewise, it might be the case that the
maximization problem has no analytically solution. However, since both the
expectation step and maximization step in turn maximizes the same lower
bound on the likelihood, we are allowed to make only partial E-steps and
M-steps without loosing the monotonic increase in the likelihood, eq. (2.57).
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In this case the EM algorithm is called a generalized EM (GEM) algorithm.
E.g. instead of using the true posterior in the E-step we could consider a fam-
ily of tractable distributions and pick the member minimizing �. Similarly,
we are allowed to use our favorite numerical optimizer to either partially or
completely solve the maximization step. It should be noted, however, that by
using an approximation to the true posterior we are no longer guaranteed to
get the same estimates as ML-estimation. This is due to the fact that it may
be impossible to achieve L� = L within the chosen family of approximating
distributions. Hopefully, we have chosen the family of approximating distri-
butions large enough to be close (in the KL sense) to the true posterior. In
such case the GEM algorithm would yield reasonable ML estimates.





3. Mean Field Approximations

The previous chapter showed that our success of making probabilistic learn-
ing and inference in dense grahical models depends on the size of the largest
clique in the triangulated graph since we potentially need to sum over all
posible con�gurations of the clique variables. This chapter reviews some of
the various types of mean �eld (MF) methods that have been proposed in
context of statistical physics for computing the partition function which is the
most intractable sum we need to consider for probabilistic models. Common
for the mean �eld approaches are that they only are strictly valid in the limit
of in�nite numbers of degrees of freedom. This makes MF approaches partic-
ularly well suited for analyzing systems behavior in the thermodynamic limit
(N ! 1) as well as solving combinatorial optimization problems (� ! 1)
which have been casted onto graphical models. However, mean �eld approx-
imations may still be a valid approximation for �nite system size since dense
graphs can be probabilistically simple e.g. averaging phenomena can make
nodes relatively insensitive to the particular con�guration of its neighboring
nodes. In this chapter we let without loss of generality � = 1 to ease the
notation.

3.1 The saddle-point approximation

The saddle-point approximation1 (also known as the method of steepest de-
scent) was proposed by [Peterson and Anderson 1987] as a method to over-
come the computational intensive task of learning of BMs and later proposed
as a method for solving combinatorial optimization problems [Peterson and
Söderberg 1989]. The main idea of the saddle-point approach is to replace a
sum over discrete variables by a integral over a set of auxiliary variable. To
be speci�c, given a system of N dynamical variables with energy function,
E(s), we are interested in an approximation to the partition function
1 The term saddle-point approximation originates from the fact that the real and
imaginary parts of an analytic function, f(z) = u(x; y) + jv(x; y), where z =
x+ jy, must satisfy the Cauchy-Riemann equations, that is @u=@x = @v=@y and
@u=@y = �@v=@x.
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Z =

Z
dse�E(s) : (3.1)

By inspired hindsight we de�ne the N -dimensional Dirac delta function as

Æ(x) =

�
1

2�

�N Z
dhejh

Tx ; (3.2)

whereby the partition function can be calculated as

Z =

Z
dmdsÆ(s�m)e�E(m) /

Z
dhdme�Ee(m;h) ; (3.3)

where we have de�ned the e�ective (complex) energy function

Ee(m;h) = E(m) + (jhTm�
X

log

Z
dsie

jhisi) : (3.4)

Since the introduction of the auxiliary variables have rendered the dynami-
cal variables, S, independent, the sum over the state space has now become
tractable. Assuming that Ee is an analytic function the integral can be ap-
proximated using saddle-point integration [Marsden and Ho�man 1987],

Z / e��Ee(m
�;h�) (3.5)

where the saddle-points (m�;h�) are given by the mean �eld equations

@Ee
@hi

= 0) m�
i =

R
dsisie

hisiR
dsiehisi

;
@Ee
@mi

= 0) h�i = � @E

@mi
: (3.6)

For the moment being we have to think of the �xed-point solution, fm�
i g, as

a set of order parameters i.e. combinations of dynamical variables that do not
average to zero for any value of control parameters, in the thermodynamical
limit. To circumvent this problem, a modi�cation to the described saddle-
point approximation has been proposed by [Bhattacharyya and Keerthi 1999]
which relies on the generalized steepest descent theorem [Marsden and Ho�-
man 1987]. The generalized steepest descent theorem yields the asymptotic
expansionZ



d�f(�)e�Ee(�) / f(�0)e
�Ee(�0) ; (3.7)

where f(�) is a bounded continuous function on the path of integration  and
�0 is the �xed-point solution E0

e(�0) = 0. Since the factor of proportionality is
independent of f we can apply saddle-point integration to both the nominator
and denominator of hf(S)i, that is

hf(S)i =
R
dsf(s)e��E(s)R
dse��E(s)

=

R
 d�f(�)e

��Ee(�)R

d�e��Ee(�)

= f(�0) ; (3.8)
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and hence hSii = m�
i and hSiSji = m�

im
�
j . It is seen that this approximation

directly addresses the problem of calculating averages of dynamical variables
in a system with energy function E. However, in the the next section we will
determine the nature of the �xed-point solution m� for the original saddle-
point approximation as stated in [Peterson and Anderson 1987].

3.2 Variational methods

Generally, variational methods seek computationally tractable bounds on the
partition function by simplifying the intractable joint probability distribu-
tion e.g. by modifying the local conditional probability functions. Variational
methods come in various �avors; however, in the present review we mainly
consider the Kullback-Leibler variational bound which provides a lower bound
on the partition function. The �rst application of the KL variational bound to
BNs was done by [Saul et al. 1996] in the context of sigmoid belief networks
and recently in a Bayesian setting for graphical models [Attias 2000]. An al-
ternative, however closely related, approach to obtain tractable bounds is to
make use of the concept of convex duality [Rockafellar 1970]. This was done
in [Jaakkola and Jordan 1999] to obtain an upper bound on the probability
of positive �ndings in the QMR database.

3.2.1 Kullback-Leibler variational bound

Due to its operational simplicity, the KL variational bound is presently the
most common mean �eld method for approximate learning and inference in
graphical models. Given an intractable energy function, E, we are interested
in the partition function, Z, of the probability density

p(s) =
1

Z
e�E(s) : (3.9)

Consider a family of tractable distributions, q, for which the partition function
Z0 is tractable. Now, our goal is to pick the member of q which approximates
p the best. As our measure of closeness between the two distributions we will
use the KL divergence

KL(qkp) = hlog q=piq = hlog qiq � hlog piq : (3.10)

Since KL(qkp) � 0 we get the lower bound, Z�
q , on the partition function

logZ � logZ�
q = �hEiq � hlog qiq ; (3.11)

where the average, hEiq of the energy function with respect to the tractable
distribution is called the variational energy . The equality (3.11) can equiva-
lently be expressed in terms of the variational free energy , F �

q , which provides
an upper bound on the free energy



30 3. Mean Field Approximations

F = � logZ � F �
q = hEiq + hlog qiq = hEiq �H(q) ; (3.12)

where we have introduced the di�erential entropy of q [Cover and Thomas
1991],

H(q) = �hlog qiq : (3.13)

Inserting q into eq. (3.11) we recover what is known in statistical physics as
the Gibbs-Bogoliubov-Feynman inequality [Zhang 1996],

logZ � logZ0 � hE �E0iq ; (3.14)

where E0 is the energy function of the tractable probability distribution.
Equation (3.11) has translated the problem of minimizing the KL distance
between the approximating distribution, q, and the intractable distribution,
p, into a problem of maximizing a lower bound on the partition function.
This shows that the feasibility of the KL variational bound depends in our
ability to calculate the variational free energy F �

q . A widely used family of ap-
proximating distributions is obtained by the naive mean �eld (NMF) ansatz
[Parisi 1988],

q(s) =
Y

qi(si) ; (3.15)

in which all the dynamical variables, fSig, are independent, i.e. the approxi-
mating distribution is the family of non-interacting systems. Calculating the
variational (functional) derivative of the variational free energy F �

q with re-
spect to qi we readily obtain the free-form optimized marginal distribution

qi / e
�hE(s)iqni ; (3.16)

which we will denote the naive mean �eld distribution of Si. The average
h�iqni is taken with respect to the marginal distribution qni =

Q
j 6=i qj . Note

that the equality in eq. (3.11) is attained if and only if the target distribution
is factorized. This follows directly from the identity

KL(qkp) = 0, q = p : (3.17)

An important property of the NMF approach is that only local operations
are needed for updating the mean �eld distribution eq. (3.16) [Haft et al.
1999]. This is easily seen by expressing the energy function in terms of the
joint distribution

qi / e
hlog p(sijsni)p(sni)i

qni / e
hlog p(sijsni)i

qni (3.18)

/ e
hlog p(sijM i)iqMi ; (3.19)

where we in the last line have introduced the Markov blanket, M i, of the
variable Si. This is a very important property since it shows the optimization
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process itself leads to coupling of dynamical variables even though they are
assumed independent.

Whereas the interpretation of the �xed-points of the saddle-point method
is not very transparent, this is more straightforward in the variational ap-
proach. Assume that the order statisticm�

i of the saddle-point approximation
is to be interpreted as the mean of node Si with respect to its naive mean
�eld distribution qi, i.e.

m�
i = hSiiqi : (3.20)

Comparing eq. (3.6) and eq. (3.16) it follows that the saddle-point method
and the NMF approach are equivalent, i.e. they yield the same results, if

hE(S)iqni = Si
@E(m)

@mi
: (3.21)

In the case of the BM we see that condition (3.21) holds and for both ap-
proaches we recover the classic mean �eld equations

hSiiqi = tanh

0
@X
j 6=i

Jij hSjiqj + �i

1
A : (3.22)

Usually, the marginal distribution, qi, is assumed to be of some speci�c
form parameterized with a set of additional variational parameters, f�ig, from
which the corresponding averages can be inferred. The bound optimization
is then performed with respect to the variational parameters [Jordan et al.
1998]. To illustrate this, consider the node Si of the Boltzmann machine
shown in �gure 3.1. We wish to approximate the target distribution in a family
of approximating distributions where all the nodes are independent and each
node distribution, qi, is parameterized by �i. Equation (3.19) showed that Si
will be coupled to the nodes in its Markov blanket and hence coupled to the
variational parameters in its Markov blanket.

Another advantage of the variational methods is that the approximating
distribution can be aimed more directly at the factorization of the target
distribution, hence obtaining a better approximation. Instead of using the
naive mean �eld ansatz it is possible to exploit substructures of the original
distribution which are computational tractable [Saul and Jordan 1996]. This
feature of the KL variational bound was exploited in context of factorial hid-
den Markov model [Ghahramani and Jordan 1997]. However, for some archi-
tectures, such as the QMR database and the layered sigmoid belief network,
it is not straightforward to identify tractable substructures. Alternatively we
could just choose a speci�c family of approximating distributions, q, which
we think is able to capture particular properties of the target distribution.
For instance, in [Jaakkola and Jordan 1998] a mixture of mean �eld distribu-
tions were used to capture higher-order interactions of a multimodal target
distribution.
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Si λiSj λj

(a) (b)

Fig. 3.1. (a) A node Si in a Boltzmann Machine. (b) KL variational transforma-
tion using the NMF ansatz. The mean �eld equations of Si yields a deterministic
relationship which only depends on the mean �elds of the nodes in the Markov
blanket of Si. The deterministic relationship is illustrated by the dashed lines.

3.2.2 Linear Response Correction

A limitation of variational mean �eld theory using factorized trial distri-
butions is that it only treats �self-interactions� correctly, while producing
trivial second moments, i.e. hSiSii = hSiihSji for i 6= j. As pointed out by
[Kappen and Rodríguez 1998b] this naive mean-�eld approximation may fail
completely in some cases when applied to Boltzmann learning which was
introduced in this context by [Peterson and Anderson 1987]. Instead, they
went on to propose an e�cient learning algorithm based on linear response
(LR) theory. Linear response theory gives a recipe for computing an improved
approximation to the covariances directly from the solution to the NMF equa-
tions [Parisi 1988]. Consider an intractable distribution p corresponding to a
system with energy function E. The trick is to impose an external �eld (or
bias) h = fhig to the intractable system, i.e. we consider a modi�ed (and
still intractable) system with energy function

Eh = E �
X

hisi : (3.23)

The mean of the random variable Si with respect to the probability distri-
bution of the modi�ed system can be obtained utilizing the external �eld

hSiiph =
1

Zh

@Zh
@hi

(3.24)

where Zh =


e�Eh(s)

�
1
is the partition function of the modi�ed system with

probability density ph. The mean of the random variable Si with respect
to the probability distribution, p, of the original system is straightforwardly
obtained by simply removing the external �eld, i.e.

hSii = hSiiph
���
h=0

: (3.25)
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Clearly, the second moment can be obtained following the same procedure

hSiSjiph =
1

Zh

d2Zh
dhjdhi

=
1

Zh

dZh hSiiph
dhj

(3.26)

= hSiiph hSjiph +
d hSiiph
dhj

; (3.27)

which follows directly using eq. (3.24) repeatedly. Equation (3.27) which is
valid for expectations with respect to the density ph of the modi�ed in-
tractable system is known as the linear response theorem [Parisi 1988]. How-
ever, provided hSiiqh obtained by the NMF approach is a reasonable ap-
proximation to hSiiph , this equation can indeed be used to get a nontrivial
approximation to the covariance with respect to the modi�ed system

�hij = hSiSjiqh � hSiiqh hSjiqh =
d hSiiqh
dhj

; (3.28)

which in turn can be used to obtain a nontrivial approximation to the co-
variance with respect to the original intractable distribution

�ij = �hij
��
h=0

: (3.29)

In the case where h is in itself the linear terms in E the mean is given directly
by

hSii = 1

Z

@Z

@hi
; (3.30)

where Zh =


e�E(s)

�
1
in the partition function of the intractable distribution

p. Similar, we get the following relation between the mean and covariance

�ij = hSiSji � hSii hSji = d hSii
dhj

; (3.31)

which is the basic expression for getting an improved estimate of the covari-
ance within the mean �eld ansatz.

3.2.3 KL versus backward KL minimization

The main reason for using the KL divergence as the distance measure between
the tractable approximating density, q, and the target density, p, is that it
only requires computations of expectations with respect to the tractable dis-
tribution. However, as pointed out by [Jordan et al. 1998], another motivation
for using the KL distance is its connection to the concept of convex duality
[Rockafellar 1970]. It can be veri�ed that the log partition function

logZ = log
D
e�E(s)

E
1
; (3.32)
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is a convex function of �E. Hence, the log partition function can be expressed
in terms of an integral2 of�E over a variational kernel q and the dual function
of logZ, more speci�cally

logZ = sup
q
f� hEiq � f�(q)g ; (3.33)

where the dual function f� of logZ is given by

f�(q) = sup
E
f� hEiq � logZg : (3.34)

Hence, to calculate the dual function f� we need to �nd the energy func-
tion E� that maximizes �hEiq � logZ. The maximizing energy function is
obtained straightforwardly by free-form optimization which yields the result

E� = � logZq : (3.35)

Inserting the maximizing energy function eq. (3.35) into eq. (3.34) we get the
dual function of logZ,

f�(q) = hlog qiq = �H(q) ; (3.36)

which we recognize as minus the di�erential entropy of q. Finally, by inserting
the dual function into eq. (3.33) we recover the KL variational lower bound
eq. (3.11).

In section 3.2.1 we found the optimal trial distribution qi within the mean
�eld ansatz was given by the naive mean �eld distribution eq. (3.16) when
using KL(qkp) as our measure of closeness. Due to the asymmetry of the KL
divergence it is natural to ask what would be the optimal trial distribution
if we instead use KL(pkq) as our distance measure between q and p. Let us
denote this distance as the backward KL divergence (BKL) between q and p,

BKL(qkp) = KL(pkq) = hlog p=qip : (3.37)

Hence, to calculate the backward KL distance we have to take expectations
with respect to the intractable density p. The optimal trial distribution qi
within the NMF ansatz is readily obtained by free-form optimizing BKL, i.e.

Æ

Æqi
KL(pkq) = � Æ

Æqi
hlog qiip + �i (3.38)

= �
Z
ds0p(s0)Æ(s0i � si)=qi(s

0
i) + �i (3.39)

= �p(si)=qi(si) + �i = 0 ; (3.40)
2 For convex f(x) we have f(x) = supqfq

Tx � f�(q)g, where the dual function

f�(q) = supxfq
Tx� f(x)g and q = fqig is the set of variational parameters. In

this case we take the linear combination to the in�nite limit hence treating the
sum as an integral and q as a function instead of a set of parameters.
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where �i is the Lagrange multiplier insuring the normalization of qi. This
shows that the optimal qi is given by

qi = p(si) : (3.41)

That is, qi is obtained by matching the moments of the marginal p(si). To gain
additional insight into the di�erence between the two distance measures let
us consider a speci�c example where the approximating probability density
is taken from the exponential family

q(xj�) = 1

Z�
e��

Tf(x) = e��
Tf(x)�logZ� : (3.42)

Start by considering the KL divergence as our measure of closeness between
the family of approximating densities q and the target density p. To �nd the
minimizing parameter �� we take the derivative of the KL distance

@

@�
hlog q=piq = � @

@�

�
�T hfiq + logZ� + hlog piq

�
(3.43)

= �
�� @

@�
hf iTq

�
� +

@

@�
hlog piq

�
(3.44)

= �� � @

@�
hlog piq ; (3.45)

where the second equality makes use of hf iq = �(@=@�) logZ�. In the last
equality we have made use of the linear response correction calculation from
section 3.2.2 to show that

� @

@�
hfiTq =

�
fT

@

@�

�
�Tf + logZ�

��
q

(3.46)

=

�
fT
�
f +

@

@�
logZ�

��
q

(3.47)

=
D
fT
�
f � hfiq

�E
q
= � ; (3.48)

where � is the covariance matrix given by

� =


ffT

�
q
� hfiq



fT
�
q
: (3.49)

Due to the changed sign of the bias term � the sign has changed in these
expressions for the mean and covariance compared to the similar expressions
obtained in section 3.2.2. The last term in eq. (3.45) can be calculated as

� @

@�
hlog piq =

��
@

@�

�
�Tf + logZ�

��
log p

�
q

(3.50)

=
D�
f � hfiq

�
log p

E
q

(3.51)

= hf log piq � hfiq hlog piq (3.52)
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This shows that the minimizing parameter �� for the KL distance has to
satisfy

��� = hfiq hlog piq � hf log piq : (3.53)

Now consider the backward KL distance as the measure of closeness. Tak-
ing the derivatives of BKL yields

@

@�
hlog p=qip = � @

@�
hlog qip =

�
@

@�

�
�Tf + logZ�

��
p

(3.54)

= hf ip � hfiq (3.55)

where we in the �rst equality use that p is independent of �. This shows that
the minimizing parameter �� for the BKL distance has to satisfy

hfip = hfiq : (3.56)

Provided the target distribution p is also from the exponential family

p(xj�0) = 1

Z�0
e��

T
0 f(x) = e��

T
0 f(x)�logZ�0 ; (3.57)

the minimizing parameter �� must satisfy

�(�� � �0) = 0 and hf ip = hf iq ; (3.58)

for KL and BKL minimization, respectively.
Let us consider a speci�c example where the target and approximating

distribution is given respectively by

p(xj�0) / e�
1
2�(x��)2(x+�)2 and q(xj�) / e�

1
2 �(x��)2 ; (3.59)

where � and � is the mean and precision of the Gaussian trial distribution.
We start by minimizing the KL distance

hlog q=piq=
1

2



log � + �(x4 � 2x2�2)� �(x2 + �2 � 2x�)

�
q
+K (3.60)

=
1

2

�
log � + �



x4
�
q
� (2��2 + �)



x2
�
q
+ ��2

�
+K (3.61)

=
1

2

�
log � + �



x4
�
q
� 2��2

�
��1 + �2

�� 1
�
+K ; (3.62)

where K is a constant independent of � and � . In this example, the KL
distance only depends on the �rst, second and fourth order moment of the
Gaussian trail density. Using tables of standard integrals (e.g. [Gradshteyn
and Ryzhik 1980]), a general expression for calculating moments of the Gaus-
sian eq. (3.59) can be obtained

hxniq = �nn!

bn=2cX
k=0

(2��2)�k

(n� 2k)!k!
; (3.63)
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which in turn is used to calculate the fourth order moment

x4
�
= �4 + 6��1�2 + 3��2 : (3.64)

The derivative of eq. (3.62) with respect to the mean of the approximating
Gaussian is given by

@

@�
hlog q=piq = ��

�
2�2 + 6��1 � 2�2

�
; (3.65)

which shows that the stationary points of the KL divergence must satisfy

� = 0 or �2 = �2 � 3��1 where �2 � 3��1 : (3.66)

For � = 0 the stationary points are attained at

� = ���2 �
p
�(��4 + 6) : (3.67)

However, only the positive solution is a valid solution since we know as a fact
that � is positive. The stationary points corresponding to �2 = �2 � 3��1

are attained at

�� = 2
�
��2 �

p
�(��4 � 3)

�
where �4 � 3=� : (3.68)

The valid stationary point can be found by taking a closer look at the two
possible solutions �� in eq. (3.68) when � is large. We see that �2�� ! 0
for �4 � 3=�, hence violating the condition that �2 � 3��1 in eq. (3.66).
However, for all valid choices of � and � we have �2�+ � 6 which indeed
satis�es �2 � 3��1. Hence, in the bifurcating � region the solution to the
precision is given by �+. By computing the Hessian of the KL divergence it
can be veri�ed that these stationary points indeed correspond to the maxima
of the KL divergence, which is summarized in

(�; �) =

(
(0;���2 +p�(��4 + 6)) for �4 < 3=�

(�p�2 � 3��1; 2
�
��2 +

p
�(��4 � 3)

�
) for �4 � 3=�

(3.69)

Figure (3.2)(a-b) shows as a function of �, the optimal mean � and the pre-
cision � of the Gaussian trial distribution in the case where � = 3, i.e. where
the phase transition appears at � = 1. Furthermore, the �gure shows the cor-
respondingMCMC estimates of the mean and precision obtained by averaging
200 parameter estimates obtained by Hybrid Monte Carlo simulations [Neal
1993; MacKay 1998]; each of which draws 10000 samples (discarding 1000
as burn-in samples) using 10 leapfrog iterations with step size 0.1 and unit
variance Gaussian momentum updates. This simulation shows that sampling
based methods (at least phenomenological) examine the same type symme-
try breaking as the ones occurring when minimizing the KL divergence. By
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Fig. 3.2. Symmetry breaking in the KL divergence. Shows (a) the true and simu-
lated mean � and (b) the true and simulated precision � in the case where � = 3.
The target density (solid) and the possible approximating densities (dashed) is
shown for (c) � = 0:99, i.e. just before the phase transition (d) for � = 1:01 i.e.
immediately after the phase transition and (e) for � = 2:0 i.e. in the case of well
separated modes in target density. Both bifurcated solutions are shown in (d) and
(e).

varying the Hybrid Monte Carlo parameters and hence the di�usion length
of the sampler the location of bifurcation point can be changed. However,
the key point is that for any values for these control parameters the Monte
Carlo methods will for a particular � undergo a phase transition which fur-
thermore suggests that the mean �eld approximation in some sense possesses
an intrinsic temperature. The observation that sample-based methods and
the naive mean �eld approximation, at least quantitatively, yield the same
results shows that mean �eld methods in fact are a reasonable approach for
approximating intractable densities; give and take the usual pros and cons of
both methods.

We know from eq. (3.41) that the optimal factorized trial distribution
obtained by minimizing the BKL divergence simply matches the moments of
marginal of the target distribution. Hence, for every choice of � the mean of
the Gaussian trial density is constantly � = 0 which in turn implies that no
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phase transition will appear when using the BKL divergence as the measure
of distance between the target and factorized trail density.

Besides the computational issues mentioned in the beginning of the sec-
tion this example suggests another reason for favoring the KL divergence over
the BKL divergence when approximating intractable densities. Clearly, the
moment matching property of the BKL is undesirable when approximating
multimodal densities, e.g. consider the case shown in �gure 3.2(e). Obviously,
we would not consider a Gaussian with mean 0 as being a useful approxima-
tion for this target density. Indeed, a much more reasonable approximation
would be to pick up one of the modes like the approximation obtained by
minimizing the KL distance. When considering graphical models with hidden
variables such multi-modality is likely to appear in the marginal densities of
the children of the hidden variables. This is especially true then the hidden
variables are multinomial.

The main point of the section was to highlight some of the qualitatively
di�erences between approximation obtained by minimizing the KL versus the
BKL divergence. Loosely speaking, the KL divergence places emphasis on not
inferring unlikely values at the cost of not inferring some of the likely values,
whereas the BKL divergence places emphasis on inferring all likely values at
the cost of inferring some of the unlikely values [Frey 1998]. Indeed, we see
in �gure 3.2 that the mean �eld approximation tends to underestimate the
variance of the true target density.

Recently, some authors (e.g. [Ghahramani and Beal 2000]) have suggested
using importance sampling from the KL variational approximation to obtain
unbiased estimates of various quantities of interest. However, a good impor-
tance sampler should in general be more heavy tailed than the target density.
Hence, since the KL variational approximation tends to underestimated the
variance this endeavor to yield unbiased estimates should be carried out with
caution. The situation is best illustrated by considering the variance of the
importance weights, i.e.


(p=q)2
�
q
� (hp=qiq)2 =



p2=q

�
1
� 1 (3.70)

=
Zq
Z2
p

Z
dxe�2Ep(x)+Eq(x) � 1 ; (3.71)

where we in the last equation have expressed the target density p and ap-
proximating density q in term of the Boltzmann distribution with energy
function Ep and Eq , respectively. Hence, the variance converges if Eq � 2Ep
and diverges otherwise. E.g. assume that both the target and approximating
density are Gaussians with variance �2p and �2q respectively. In that case the
variance of the importance weights diverges if �2q � �2p=2. When the variance
of the importance weights diverges the variance of the importance estimate
of say hfi will also tend to diverge provided the function f does not decay
fast enough towards zero. Depending on the functional form of the target and
approximating density this e�ect becomes more or less pronounced.
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3.3 Perturbational methods

We have seen that the analysis of the partition function Z is central in mean
�eld theory because once it is calculated all statistical information about the
system can be deduced from it. This suggests that the quality of the inferred
statistics depends strongly upon how well the approximating partition func-
tion matches the true partition function of the system. One inherent limita-
tion of the KL variational bound methods is that they do not suggest ways to
tighten the bound beyond the family of approximating distributions e.g. the
family of factorized densities. However, by extending the idea of variational
bounds, it is possible to derive methods in which more accurate approxima-
tions can be achieved in a systematic way. Common for these methods is
that they perturb particular functions around a computationally tractable
density.

3.3.1 The Plefka expansion

The naive mean �eld distribution eq. (3.16) was obtained by minimizing the
variational free energy in the family of factorized distributions. However, as
mentioned in section 3.2.1 the minimized variational free energy will be dif-
ferent from the true free energy when the target distribution is not factorized,
i.e. it is impossible to get an arbitrary approximation to the free energy within
this framework. Instead of minimizing the variational free energy F �

q subject
to the constraint that the trial density q is factorized we now minimize a
slightly modi�ed variational free energy F �

q;� subject to the constraint that
q belongs to the family of distributions for which hSiq = m [Opper and
Winther 2000a], i.e.

G�(m) = min
q
fF �

q;�g subject to hSiq =m ; (3.72)

where the modi�ed variational free energy is given by

F �
q;� = h�Eiq + hlog qiq : (3.73)

The modi�ed variational free energy essentially rede�nes the energy of the
system to be �E. This minimization problem is easily solved by taking the
functional derivative

ÆF �
q;�

Æq
=

Æ

Æq

�
� hEiq + hlog qiq +

X
hi(mi � hsiiq)

�
(3.74)

= �E(s) + log q + 1�
X

hisi ; (3.75)

where we in the �rst line have introduced a set of Lagrange multipliers fhig
enforcing the constraint hSiq =m. Equating eq. (3.75) to zeros we �nd the
optimal distribution within the family is given by
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q�;h / e��E(s)+
P
hisi ; (3.76)

where the dependence of � and h is shown explicitly in the subscript of
q = q�;h. Finally, by inserting the optimal probability density into eq. (3.72)
we get

G�(m) =
X

himi � logZq�;h =
X

himi + Fq�;h ; (3.77)

where h is given implicit by the constraint m = hSiq�;h and Zq�;h is the
normalizing constant of q�;h. Since the mean vector m is physically more
meaningful than h, it is appropriate to consider it as free and treat h as
being dependent on m. The set of mean �eld equations are obtained by

@G�
@mi

=
X
i0

@G�
@hi0

@hi0

@mi
(3.78)

=
X
i0

 
mi0 +

X
k

hk
@mk

@hi0
� @

@hi0
logZq�;h

!
@hi0

@mi
(3.79)

=
X
i0

X
k

hk
@mk

@hi0

@hi0

@mi
= hi ; (3.80)

where we have assumed that m = hSiq�;h can be uniquely solved for any
�xed m and �, such that @m=@h is the inverse of @h=@m. The �rst step
towards getting the original free energy is to set h = 0 which translates the
mean �elds equation into

@G�
@mi

= 0 ; (3.81)

Unfortunately, we are not in a position to evaluate G� at � = 1 which would
give us the Gibbs free energy G for the system we are actually interested in.
Clearly, the normalization of q�;0 is as intractable as the normalization of the
original density so it is not clear what we have gained by this approximation
to p. However, the parameter � makes it possible to interpolate between the
factorized distribution (� = 0) and the distribution of interest qh (� = 1).
As proposed by [Plefka 1982], the trick is to expand eq. (3.77) as around the
tractable solution at � = 0. In other words, since m = hSiq�;h is intractable
for all � 6= 0 and tractable for � = 0 we approximate G� around � = 0, i.e.

G�(m) = G0(m) +

1X
k=1

1

k!

@kG�
@�k

����
�=0

�k : (3.82)

In [Bhattacharyya and Keerthi 1999] the Plefka expansion is seen more
directly from a KL variational perspective. Again the starting point is to
consider a modi�ed density
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Fig. 3.3. The Plefka expansion from a KL variational bound perspective. (a) The
modi�ed target system is obtained by adding a global �eld � (change temperature,
controlling the interaction) to the original system. (b) The approximating system is
obtained by adding an additional external �eld (dashed lines) to the modi�ed target
system. The approximating density is now found minimizing the KL distance.

q�;h(s) =
1

Z�;h
e��E(s)+

P
hisi ; (3.83)

where Z�;h =


e��E(s)+

P
hisi
�
1
is the associated partition function. Remem-

ber that p = q1;0 is the target distribution of interest. Let q� = q�;0 be the
approximating density. By using the Kullback-Leibler distance as the measure
of closeness between the two distributions we obtain

KL(q�;h kq�) = hlog q�;h=q�iq�;h (3.84)

= logZ� � logZ�;h +
X

hi hSiiq�;h ; (3.85)

where the last equation makes use of the fact that � hEi cancels out due to its
appearance in both log q�;h and log q�. Note that the approximating family
of densities have the target distribution as a member which obviously implies
that it is possible to obtain the exact free energy of the target system. Using
the fact that KL(�k �) � 0 we recognize eq. (3.77) as the right hand side of

F� � F�;h +
X

hi hSiiq�;h : (3.86)

This view of the Plefka expansion is illustrated schematically in �gure 3.3.
Let us have a closer look at the zeroth order term in the Plefka expansion.

Noting that the partition function is independent of S = fSig, we can write
the zeroth order term as

G0(m) =
X

himi � logZq0;h =
DX

hiSi � logZq0;h

E
q0;h

(3.87)

=

�
log

e
P
hiSi

Zq0;h

�
q0;h

= hlog q0;hiq0;h = �H(q0;h) : (3.88)

This shows that the zeroth order term is just the negative entropy of the
factorized distribution. Before calculating any higher order derivatives of the
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Gibbs free energy it is important to note that

1

Z

@Z

@�
= �hEiq�;h +

X @hi
@�

mi ; (3.89)

since h is in fact a function ofm and � due to the constraintm = hSiq�;h . Let
us for simplicity just consider the �rst and second derivatives of the Gibbs
free energy. Using eq. (3.89) the �rst derivative readily becomes
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himi � logZq�;h

�
= hEiq�;h ; (3.90)

which in turn is used to calculate the second derivative
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To calculate the second order derivative we need to evaluate
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����
�=0

=
@2G�
@�@mi

����
�=0

=
@

@mi
hEiq0;h ; (3.93)

which is obtained using eq. (3.80) and (3.90). We see that the KL variational
bound eq. (3.11) and (3.12) is obtained as the �rst order expansion of G. In
[Kappen and Rodríguez 1998a], the linear response correction to the corre-
lations was given by the Hessian of the Gibbs free energy. To illustrate the
basic methodology of the Plefka expansion let us as an example consider our
canonical example of the BM. Direct use of eq. (3.76) shows that for � = 0
any system of binary variables Si 2 f�1; 1g has an optimal distribution given
by

q0;h(s) =
Y ehisi

ehi + e�hi
; (3.94)

and hence the mean of hSii is given by

mi =
ehi � e�hi

ehi + e�hi
= tanh(hi) ; (3.95)

which in turn is used to solve for the Lagrange multipliers

hi =
1

2
log

1 +mi

1�mi
: (3.96)

Inserting eq. (3.96) into eq. (3.94) shows that we, not surprisingly, could have
parametrized the factorized distribution directly in terms of the means, i.e.
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q0;h(s) =
Y�

1 +mi

2

�Æsi;1 �1�mi

2

�Æsi;�1

: (3.97)

The zeroth order term, i.e. the entropy, of this binary probability distribution
with Si 2 f�1; 1g is then given by
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1 +mi

2

�
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�
1 +mi
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�
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�
log

�
1�mi

2

�
: (3.98)

In order to calculate higher order terms we need to introduce the energy
function of the speci�c system under consideration. The �rst order derivative
needed in a Plefka expansion of the Boltzmann machine eq. (2.19) is easily
obtained using eq. (3.90),
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Using the fact that
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the second order derivative can be obtained by tedious calculations
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The second order mean �eld equations are readily found by solving eq. (3.81)
using the second over Plefka expansion

mi = tanh

0
@�i +X

j 6=i
Jijmj +

X
j 6=i

J2ijmi(1�m2
j )

1
A : (3.102)

This constitutes the classic TAP equations derived in [Thouless et al. 1977] for
the SK model of disordered magnetic materials [Sherrington and Kirkpatrick
1975]. However, contrary to the original derivation of the TAP equations the
perturbational derivation does not assume any knowledge about the distribu-
tion of the couplings. This is a useful property of the perturbational methods
since the distribution of the couplings is usually not part of the speci�cation
of a probabilistic model. Finally, one should always keep in mind that the
range of validity of perturbational methods is determined by the convergence
domain of the resulting power series although this is di�cult to access in
practice.

Recently, various alternative approaches for performing approximate in-
ference in intractable probabilistic models have been proposed by several
authors. As for the Plefka expansion, most of these approaches rely in a per-
turbational expansion in a power series where each coe�cient is evaluated
in some tractable distribution, although there are exceptions to this, see e.g.
[Leisink and Kappen 2000].
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3.3.2 Variational cumulant expansions

In the variational cumulant expansion of [Barber and van de Laar 1999] the
following modi�ed energy function is considered

E� = �E1 + (1� �)E0 ; (3.103)

where E1 is the energy function of the density of interest, E0 is some tractable
energy function and � is the perturbational parameter interpolating between
the two corresponding densities. The log partition function of the modi�ed
system is then given by

logZ� = log
D
e�E0��(E1�E0))

E
1
= log

D
Z0e

��(E1�E0))
E
p0

(3.104)

= logZ0 + log
D
e�(E0�E1))

E
p0

; (3.105)

where the last term is recognized as the cumulant generating function asso-
ciated to the moment generating function since
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�
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: (3.106)

The partition function of the density of interest can now be found by Taylor
expanding the cumulant generating function around � = 0,

logZ1 = logZ0 +

1X
k=1

1

k!
�k;0 (3.107)

= logZ0 +

lX
k=1

1

k!
�k;0 +

1

(l + 1)!
�l+1;� ; (3.108)

where �k;� is the k'th cumulant of E0�E1 with respect to p� . The intractable
remainder in the last equation follows from the mean value theorem where
0 � � � 1. For the �rst order approximation we recover the KL variational
bound through the Gibbs-Bogoliubov-Feynman inequality eq. (3.14),

logZ1 = logZ0 + h(E0 �E1)ip0 +
1

2
�2;� (3.109)

� logZ0 + h(E0 �E1)ip0 ; (3.110)

where the inequality follows from the non-negativity of the variance �2;� for
any value of �. However, for higher order expansions it is not possible to obtain
such a bound. Hence, maximizing the lower bound is no longer a reasonable
approach for optimizing the variational parameters. Instead, it is possible to
use an independence criterion due to the fact that the partition function of
the density of interest is independent of the variational parameters f�ig, i.e.

d logZ1
d�i

= 0 (3.111)
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In [Barber and van de Laar 1999] this approach is applied on the Boltzmann
machine to recover the TAP solution eq. (3.102) as a second order expansion
by imposing the additional constraint that the second order solution should
be close to the �rst order solution.

3.3.3 The information geometrical viewpoint

In [Tanaka 2000] the mean �eld approximation is seen from an information
geometrical point of view. Essentially this view boils down to considering
the Gibbs free energy eq. (3.77) used in the Plefka expansion. In this case,
however, the perturbational parameter is not a single scalar parameter � but
instead the entire set of parameters mitigating interactions between dynam-
ical variables, i.e. all parameters except bias parameters. The coe�cients in
the resulting power series expansion are found to be the cumulants of the
approximating density. Taking on such information geometrical point of view
makes it possible to gain some additional insight into to relationships be-
tween the naive mean �eld approach and more advanced approaches. It can
be shown that the KL distance between a factorized density q0 and a target
density p can be expanded into two contributions

KL(q0 kp) = KL(q0kq) +KL(qkp) ; (3.112)

where q is a density which belongs to the same of the family of densities
as p, i.e. shares the same canonical parameters, and furthermore satis�es
hSiq = hSiq0 . The situation is illustrated in �gure 3.4. The relationship
eq. (3.112) quanti�es the intuition that the naive mean �eld ansatz is a rea-
sonable assumption when the target density is close to being factorized. In
addition, it shows that higher order mean �eld approaches essentially takes
into account the distance between the family (or manifold) of distributions,
A, of which the target density is a member and the family of factorized dis-
tributions A0. This means that the reactor terms in the higher order mean
�eld methods arise from the KL(q0 kq) term.

A closely related approach is found in [Kappen and Wiegerinck 2000]
which makes use of the BKL and the fact that the naive mean �eld distri-
bution, qi, in this case is equal to the marginal distribution pi. Since the
marginal distribution pi is intractable they propose expanding log pi around
qi in terms of changes of all the parameters which give rise to interactions
between dynamical variables.

3.3.4 The cavity approach and adaptive TAP

The adaptive TAP approach of [Opper and Winther 2000c] considers proba-
bilistic models of the type

p(s) =
1

Z
�(s)e

1
2

P
i;j siJijsj+

P
�isi ; (3.113)
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Fig. 3.4. Illustration of the information geometrical viewpoint of mean �eld ap-
proximations. The KL divergence between the approximating density q and the
target density p, both of which lives on the same manifold of distributions A, is
given by KL(q k p) = KL(q0 k p) � KL(q0 k q), where q0 lives on the manifold of
factorized densities A0. To �rst order this yields the naive mean �eld approximation
i.e. KL(q kp) � KL(q0 kp). The dashed line illustrates the distributions satisfying
the constraint in eq. (3.72).

where the interaction-weights are symmetric, Jij = Jji, and Jii = 0 such
that all self-interactions are contained in the single variable constraint �(s) =Q
�(si). The derivation of the adaptive TAP equations is based on the cavity

approach introduced by [Mezard et al. 1987]. The starting point of the cav-
ity approach is the following exact equation for the marginal density of the
dynamical variable Si,

p(si) =

Z
dsnip(s) / �(si)

Z
dsniesi(hi+�i)p(sni) ; (3.114)

where p(sni) is the marginal distribution of all the remaining variables when
Si is excluded from the system. Since the dynamical variable Si only interacts
with the remaining variables through the �eld hi =

P
j Jijsj it is convenient

to introduce the cavity distribution, i.e. the distribution of the �eld hi at the
location of the missing variable Si,

p(hi) =

Z
dsniÆ(hi �

X
j

Jijsj)p(sni) : (3.115)

The marginal distribution of Si can now be expressed in terms of the cavity
distribution instead of the marginal p(sni), i.e.

p(si) =
1

Zi
�(si)e

si�i


esihi

�
ni =

1

Zi
�(si)e

si�ie�Ei ; (3.116)

where Zi is the partition function associated to the marginal and h�ini is
the average with respect to the cavity distribution and the (minus) energy
function is recognized as the cumulant generating function
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�Ei(si) = log
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where �(i)k are the cumulants of the cavity distribution. The basic assump-
tion of all cavity derivations of the TAP mean �eld theory is that all variables
fSig have only weak mutual dependencies. Mathematical expressed within
the so-called clustering hypothesis this becomes equivalent to the vanish-
ing of all cumulants �(i)k with k > 2 for fully connect systems [Opper and
Winther 2000c]. The �rst two cumulants are given by �

(i)
1 = hhiini and

Vi � �
(i)
2 =



h2i
�
ni � hhii

2
ni. Hence, under the assumption of vanishing higher

order cumulants the marginal distribution of Si is given by

p(si) =
1

Zi
�(si)e

1
2Vis

2
i+(�i+hhiini)si (3.118)

The �rst set of TAP equations consists of the expectations of fSig obtained
by using the partition function, Zi, of the marginal distribution eq. (3.118),

hSii = @

@�i
logZi : (3.119)

To close the set of mean �eld equation we need to derive expressions for hhiini
and Vi. An expression of the average cavity �eld hhiini is obtained by

hhii = 1

Zi

Z
dsi�(si)e

si�i
@

@si



esihi

�
ni = hhiini + Vi hSii ; (3.120)

where the last equality follows from using the truncated power series ex-
pansion of the cumulant generating function eq. (3.117). The last term in
eq. (3.120) is often referred to as the Onsager reaction term . While the
naive mean �eld approach neglects the reaction term by setting Vi = 0 the
adaptive TAP approach seeks to estimate the variance Vi by requiring self-
consistency between two estimates of hS2i i � hSii2; one obtained using the
TAP equations of the expectations directly and the other obtained by the
linear response theorem from the naive mean �eld solution. The linear re-
sponse theorem expresses the covariance matrix in terms of the mean, i.e.

�ij = hSiSji � hSii hSji = @ hSii
@�j

: (3.121)

Provided that perturbations of the TAP equations leave the variances fVig
unchanged the linear response correction to the covariance matrix can be
found by solving the set of linear equations given by
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where the last equality follows from using eq. (3.120). This set of linear equa-
tions can easily be solved with the result

�LR = (�� J)�1 ; (3.125)

where J = fJijg is the matrix of interaction-weights and

� � diag (�1; �2; : : : ; �N) ; where �i � Vi +

�
@ hSii
@�i

��1
: (3.126)

The set of TAP equations of the variances fVig is obtained by requiring self-
consistency in the estimates of hS2i i� hSii2, i.e. we equate the estimate �MF

ii

obtained by direct use of the mean �eld equations and the linear response
corrected estimate �LRii ,

@ hSii
@�i

= [(�� J)�1]ii ; (3.127)

and solve for the variances fVig. The Gibbs free energy used in the Plefka ex-
pansion in section 3.3.1 was obtained by free-form minimization of a modi�ed
version of the variational free energy F �

q;� subject to the constraint the trail
density q had to belong to the family of distributions for which hSiq = m.
The TAP free energy is obtained in a similar way by imposing the additional
constraint hS2iq =M , i.e.

G�(m;M) = min
q
fF �

q;�g s.t. hSiq =m and hS2iq =M ; (3.128)

where the modi�ed variational free energy is de�ned by

F �
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sT (�J)s+ sT� + log �(s)
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q

+ hlog qiq : (3.129)

Again, the perturbational parameter � makes it possible to interpolate be-
tween the factorized trial density (� = 0) and the density of interest (� = 1).
The optimizing trial density is readily found by free-form optimization of the
modi�ed variational free energy F �

q;� , i.e.

q�;;� / �(s)e
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2 s

T (�J)s+sT�+
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2

P
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2
i ; (3.130)
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where fig and f�ig are the Lagrange multipliers enforcing the constraint
of the means fmig and second moments fMig, respectively. Substituting the
optimizing trial density back into eq. (3.128) yields the TAP free energy of
the modi�ed system

G�(m;M) =
X
i

imi +
1

2

X
i

�iMi � (3.131)

log
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ds�(s)e
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T (�J+�)s+sT (�+) ; (3.132)

where we have introduced the matrix � = diag(�1; �2; : : : ; �N ) and the vector
 = fig of variational parameters. By construction, the solution to @G� = 0
and @�G� = 0 yields the �xed-point conditions m = hSiq� andM = hS2iq� ,
respectively. To calculate the free energy of the system of interest, G1, we
make use of the following integral relation
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The remaining integral gives rise to the Onsager correction and can be evalu-
ated using the linear response correction eq. (3.125) to the covariance [Opper
and Winther 2000c],
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Hence the TAP free energy of the system of interest is given by

G1 = G0 � 1

2
mTJm+�G ; (3.137)

where the �rst term is the TAP free energy evaluated with the factorized trial
density at � = 0,
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The second term in eq. (3.137) is the naive mean �eld energy. As a san-
ity check, we should recover the adaptive TAP equations directly from the
free energy eq. (3.137). Indeed, we see that the solution to @hSiiG� = 0 and
@hS2i iG� = 0 yields the �xed-point conditions i = hhiini and �i = Vi, respec-
tively.
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In this chapter we develop mean �eld approaches for probabilistic indepen-
dent component analysis (ICA). The sources are estimated from the mean
of their posterior distribution and the mixing matrix (and noise level) is
estimated by maximum a posteriori (MAP). The latter requires the compu-
tation of (a good approximation to) the correlations between sources. For
this purpose we investigate three of the mean �eld methods considered in
the previous chapter, namely the KL variational bound, linear response and
adaptive TAP approach. These increasingly advanced mean �eld algorithms
are tested on a number of problems. On synthetic data the advanced mean
�eld approaches are able to recover the correct mixing matrix in cases where
the variational mean �eld theory fails. For hand-written digits, sparse encod-
ing is achieved using non-negative source and mixing priors. For speech, the
mean �eld method is able to separate in the underdetermined (overcomplete)
case of two sensors and three sources. One major advantage of the proposed
method is its generality and algorithmic simplicity. Finally, we point out
several possible extensions of the approaches developed here.

4.1 Introduction

Reconstruction of statistically independent source signals from linear mix-
tures is an active research �eld with numerous important applications, for
background and references see e.g. [Lee 1998; Girolami 2000]. Blind signal
separation in the face of additive noise typically involves four estimation
problems: Estimation of source signals, source distribution, mixing coe�-
cients, and noise distribution.

A full Bayesian treatment of the combined estimation problem is possible
but requires extensive Monte Carlo sampling [Belouchrani and Cardoso 1995],
therefore several authors have proposed variational (also known as mean �eld
or ensemble) approaches in which the posterior distributions are either ap-
proximated by factorized Gaussians and/or integrals over the posteriors are
evaluated by saddle point approximations [Attias 1999; Belouchrani and Car-
doso 1995; Lewicki and Sejnowski 2000; Lappalainen and Miskin 2000; Hansen
2000; Rowe 1999; Knuth 1999]. The resulting algorithm is an Expectation-
Maximization (EM) like procedure in which the four estimation problems
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are performed sequentially. One important problem with these approxima-
tions arises from the assumed posterior independence of sources. In partic-
ular, variational mean �eld theory using factorized trial distributions only
treats �self-interactions� correctly, while producing trivial second moments,
i.e. hSiSii = hSiihSji for i 6= j. This is a poor approximation when estimating
the mixing matrix and noise distribution since these estimates will typically
depend upon correlations.

Recently, Kappen and Rodríguez [Kappen and Rodríguez 1998b] pointed
out that for Boltzmann Machines this naive mean-�eld (NMF) approxima-
tion � introduced in this context by [Peterson and Anderson 1987] � may
fail completely in some cases. They went on to propose an e�cient learning
algorithm based on linear response (LR) theory. Linear response theory gives
a recipe for computing an improved approximation to the covariances di-
rectly from the solution to the NMF equations [Parisi 1988]. In this chapter,
we give a general presentation of LR theory and apply it to the probabilistic
ICA problem. We also brie�y outline the supposedly more accurate adaptive
TAP mean �eld theory [Opper and Winther 2000c] and compare this method
to the NMF and LR approach. The actual derivation of the adaptive TAP
mean �eld approach in context of the probabilistic ICA model is presented in
chapter 5. Whereas estimates of correlations obtained from variational mean
�eld theory and its linear response correction in general di�er, adaptive TAP
is constructed such that it is consistent with linear response theory.

We expect that advanced mean �eld methods such as LR and TAP can
be useful in the many contexts within neural computation, where variational
mean �eld theory already have proven to be useful, e.g. for sigmoid belief
networks [Saul et al. 1996]. In our experience, the main di�erence between
variational mean �eld and the advanced methods lies in the estimates of cor-
relations (often needed in algorithms of the EM-type) and the calculation
of the likelihood of the data. We will, however, postpone the discussion of
the latter to chapter 5 where a general method for computing the likelihood
from the covariance matrix is presented. In ICA simulations, we �nd that
the variational approach can fail typically by ignoring some of the sources
and consequently overestimating the noise covariance. The LR and TAP ap-
proaches on the other hand succeed in all cases studied. However, we do
not �nd a signi�cant improvement using TAP (which is also somewhat more
computationally intensive), suggesting that LR is close to being the optimal
mean �eld approach for the probabilistic ICA model.

The derivation of the mean-�eld equations is valid for a general source
prior (without temporal correlation) and tractable for priors that can be
integrated analytically against a Gaussian kernel. This includes mixture of
Gaussians, Laplacian and binary distributions. For other priors, one has to
evaluate an extensive number of one dimensional integrals numerically. Alter-
natively, one can construct computationally tractable ICA algorithms using
priors that are only de�ned implicitly. To illustrate this point we de�ne one
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such algorithm which approximately corresponds to the prior having a power
law tail.

To underline the �exibility and computational power of the probabilistic
ICA framework and its mean �eld implementation, we give two quite di�erent
real world examples of recent interest that straightforwardly can be solved
within this framework. The �rst example is that of separating speech in the
overcomplete setting of two sensors and three sources [Lewicki and Sejnowski
2000] using a heavy tailed source prior such as a Laplacian or the (approx-
imative) power law prior described above. The second real world problem
considered in this chapter is that of feature extraction in images. For images,
it is natural to work with a non-negativity constraint for the mixing matrix
and sources as in [Lee and Seung 1999]. In the probabilistic framework this
type of prior knowledge is readily build into the mixing matrix and source
priors.

Throughout this chapter we con�ne ourselves to �xed source priors. There
are, however, no theoretical problems in extending the EM algorithm to esti-
mating hyperparameters. In fact, we will address this problem in chapter 5.
Alternatively, see e.g. [Attias 1999] for a nice example of the methodology of
estimating the source prior parameters within the EM framework. Hence, in
this chapter we are mainly concerned with the inferential step of the learning
problem, which in general is the hard part of any learning algorithm.

The chapter is organized as follows. In section 4.2 the basic probabilistic
ICA model and the associated learning problem is stated. Section 4.3 con-
cerns the inference part of the learning problem; we will see that variational
mean �eld theory, linear response theory and the adaptive TAP approach can
be seen as stepwise more re�ned ways of estimating correlations. Applying
the advanced mean �eld methods to independent component analysis is the
main contribution of this chapter. Another contribution is the generality of
the framework. In section 4.4 we examine various types of explicitly given
source priors which in turn leads us to de�ne an implicitly given source prior.
The impatient or application minded reader might consult section 4.4.1 which
shows a table summarizing all priors considered in this chapter. Section 4.5
shows some simulation results on both synthetic data and on real world data.
The pseudo-code for the algorithm is outlined in section 4.6 and some addi-
tional priors not directly used in this chapter are given in section 4.7. Finally,
obvious ways to extend this work is outlined in the discussion given in sec-
tion 4.8.

4.2 Probabilistic ICA

We formulate the ICA problem as follows [Hansen 2000]: The measure-
ments are a collection of N temporal D-dimensional signals X = fXdtg,
d = 1; : : : ; D and t = 1; : : : ; N , where Xdt denotes the measurement at the
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Fig. 4.1. The generative model for noisy ICA in the case of I = 3 sources and
D = 2 sensors. A priori, the sources fSig are mutually independent but a posteriori
they become coupled through the observation fXig due to �explaining away� e�ects.

dth sensor at time t. Similarly, let S = fSitg, i = 1; : : : ; I , denote a collec-
tion of I mutually statistical independent sources, where Sit is the ith source
at time t. The measured signal X is assumed to be an instantaneous linear
mixing of the sources corrupted with additive white Gaussian noise � that
is

X = AS + � ; (4.1)

whereA is a (time independent) mixing matrix and the noise is assumed to be
without temporal correlations and with a time independent covariance matrix
�, i.e. we have �dt�d0t0 = Ætt0�dd0 . Thus, we have the following likelihood for
parameters and sources

p(X jA;�;S) = (det 2��)�
N
2 e�

1
2 Tr(X�AS)T��1(X�AS) : (4.2)

Figure 4.1 shows the generative model for noisy ICA in the case of I = 3
hidden sources and D = 2 sensors. The aim of independent component anal-
ysis is to recover the unknown quantities given a set of observables; namely
the sources S, the mixing matrix A and the noise covariance �.

The main di�culty is associated with the estimation of the source signals.
The estimation problems for the mixing matrix and the noise covariance ma-
trix are relatively simple, given the su�cient source statistics. Hence, our
primary objective is to improve on the estimate of su�cient statistics from
the posterior distribution of the sources. The mixing matrix A and the noise
covariance � are then in turn estimated by maximum a posteriori (MAP)
(or maximum likelihood II (ML-II)). This naturally leads to a EM-type al-
gorithm where the expectation step amounts to �nding the posterior mean
and covariances of the sources and the maximization step is the MAP/ML-II
estimation. Mean �eld methods especially the advanced ones are well suited
for the non-trivial expectation step.
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Given the likelihood eq. (4.2), the posterior distribution of the sources is
readily given by

p(SjX ;A;�) =
p(XjA;�;S)p(S)

p(XjA;�)
; (4.3)

where p(S) is a prior on the sources which might include temporal correlations
(although we will postpone this problem to a future contribution [Højen-
Sørensen et al. 2001a]).

4.2.1 Estimation of mixing matrix and noise covariance

The likelihood of the parameters is given by

p(X jA;�) =

Z
dSp(XjA;�;S) p(S) : (4.4)

The problem of estimating the mixing matrix and noise covariance now
amounts to �nding the saddle-points of the likelihood eq. (4.4) with respect
to the mixing matrix and noise covariance. We note that the saddle-points
will be given in terms of averages over the source posterior. Alternatively, we
could as our starting point have used the EM approach and considered the
complete log-likelihood and the mean su�cient statistics directly. It is easily
seen that the two approaches in this case are equivalent due to the Gaussian
likelihood. It is the computation of mean su�cient statistics with respect to
the posterior which pose the main challenge for mean �eld approaches since
the sources will be coupled through the observations.

The mixing matrix A will be estimated by maximum a posteriori (MAP)
and the noise by ML-II for convenience

AMAP = argmax
A

p(AjX;�) (4.5)

�MLII = argmax
�

p(X jA;�) ; (4.6)

where the posterior of A is given by p(AjX;�) / p(XjA;�)p(A), where
p(A) is the prior on A. For the optimization in eqs. (4.5) and (4.6), we need
the derivatives of the likelihood term

@

@A
log p(XjA;�) = ��1(XhSiT �AhSST i) (4.7)

@

@�
log p(XjA;�) =

1

2
��1h(X�AS)(X�AS)T i��1�N

2
��1 ; (4.8)

where h�i = h�iSjA;�;X denotes the posterior average with respect to the
sources given the mixing matrix and noise covariance. Equating eq. (4.8) to
zero leads to the well known result for �,

�MLII =
1

N
h(X �AS)(X �AS)T i : (4.9)
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In the particular case of measurements with i.i.d. noise we can simplify the
covariance � = �2I , hence �2 = Tr�MLII=D, where D is the number of
sensors.

For A, we consider two factorized priors p(A) =
Q
di p(Adi), a zero

mean Gaussian p(Adi) / exp(��diA2
di=2) and the Laplace distribution

p(Adi) / exp(��dijAdij). Furthermore, we consider optimizing Adi both un-
constrained and constrained to be non-negative. Clearly, the MAP approach
o�ers a �exibility for encoding prior knowledge about A which is not avail-
able in the maximum likelihood II approach, i.e. one can encode sparseness
[Hyvärinen and Karthikesh 2000] and non-negativeness (for e.g. images and
text, see section 4.5 and [Lee and Seung 1999]).

Unconstrained mixing matrices. A straightforward calculation gives us the
following iterative equation for the MAP estimate of A,

A(k+1) =
�
XhSiT ��(�A(k) + �sign(A(k)))

�
hSST i�1 ; (4.10)

where we have included both priors and set �di = � and �di = �. This
equation can be solved explicitly for the Gaussian prior with equal noise
variance on all sensors, i.e. � = 0 and � = �2I , and yields the result

A =XhSiT �hSST i+ ��2I
��1

: (4.11)

The ML-II estimate is the special case obtained by setting � = 0.

Non-negative mixing matrices. To enforce non-negative A, we introduce a
set of non-negative Lagrange multipliers Ldi � 0 and maximize the modi�ed
cost: log p(AjX;�) + TrLTA. Solving for the Lagrange multipliers we get

L = ��1(AhSST i �XhSiT ) + �A + � : (4.12)

We can write down an iterative update rule for Adi > 0 using the Kuhn-
Tucker condition LdiAdi = 0 [Luenberger 1984] together with the result for
the Lagrange multipliers

A
(k+1)
di =

[��1XhSiT ]di
[��1A(k)hSST i]di + �A

(k)
di + �

A
(k)
di : (4.13)

In the case of no prior knowledge i.e. � = 0 and � = 0, we get an update rule
similar to the image space reconstruction algorithm used in positron emission
tomography (see e.g. [Pierro 1993] for references) or the more recently pro-
posed non-negative matrix factorization procedure of [Lee and Seung 1999].

4.3 Mean Field Theory

We will present three di�erent mean �eld approaches that give us estimates
of the source second moment matrix of increasing quality. First, we derive
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mean �eld equations using the standard variational mean �eld theory. Next,
using linear response theory, we obtain directly from the variational solu-
tion improved estimates of hSST i needed for estimating A and �. Finally,
we present the adaptive TAP approach of Opper and Winther [Opper and
Winther 2000c] which goes beyond the simple factorized trial distribution of
variational mean �eld theory to give a theory which is self-consistent to within
linear response corrections. From mean �eld theory we also get an approxi-
mation to the likelihood p(XjA;�) which can be used for model selection
[Hansen 2000].1 In appendix 4.6, we summarize all mean �eld equations and
give an EM-type recipe for solving them.

The following derivation is valid for any source prior without tempo-
ral correlations. Speci�c source priors are discussed in section 4.4. Although
equations for the mean �eld estimates of the mean and covariance of the
sources are written with equality in this section, it is to be understood that
they are only approximations.

4.3.1 Variational Approach

We adopt the standard KL variational mean �eld theoretic approach and
approximate the posterior distribution, p(SjX;A;�), in a family of product
distributions q(S) =

Q
i;t q(Sit).

2 For a Gaussian likelihood p(XjA;�;S),
the optimal choice of q(Sit) is given by a Gaussian times the prior [Csató
et al. 2000]

q(sit) / p(sit)e
� 1

2�its
2
it+itsit ; (4.14)

where we use the canonical parameterization of the Gaussian density. This
result is obtained straightforwardly by using of the functional form of the
naive mean �eld distribution, eq. (3.16). Also, it turns out to be useful to
consider the canonical parameterization of the Gaussian likelihood for the
model parameters fA;�g

p(X jA;�;S) = p(XjJ ;h;S) = 1

ZL
e�

1
2 Tr(S

TJS)+Tr(hTS) ; (4.15)

where logZL = N
2 log det 2�� + 1

2 TrX
T��1X is the log partition function

of the likelihood, and we have introduced the M �M interaction-matrix J
and the data dependent external �eld h (having same dimension as S) given
respectively by,

J = AT��1A (4.16)

h = AT��1X : (4.17)
1 The variational approximation is a lower bound to the exact likelihood whereas
the TAP and LR approximations � not given here � are not bounds, but
hopefully more accurate.

2 Note that q(Sit) is also the variational mean �eld approximation to the marginal
distribution

R Q
i0 6=i;t0 6=t dSi0t0p(SjX;A;�).
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Note that h acts as an external �eld from which all moments of the sources
can be obtained. This is the key property that we will make use of in the
next section when we derive the linear response corrections. The starting
point of the variational derivation of mean �eld equations is the Kullback-
Leibler divergence between the product distribution q(S) and the true source
posterior, i.e.

KL(qkp) =
Z
dSq(S) log

q(S)

p(SjX;A;�)

= log p(XjA;�)� log p(XjA;�;NMF) (4.18)

log p(XjA;�;NMF) =
X
i;t

log

Z
dsitp(sit)e

� 1
2�its

2
it+itsit (4.19)

+
1

2

X
it

(�it � Jii)hS2iti+Tr(h� )T hSi

+
1

2
TrhST i(diag(J)� J)hSi � logZL ;

where p(XjA;�;NMF) is the naive mean �eld approximation to the likeli-
hood and diag(J) is the diagonal matrix of J . The Kullback-Leibler is zero
when q = p and positive otherwise. The parameters of q should consequently
be chosen as to minimize KL(q kp). The saddle points de�ne the mean �eld
equations:3

@

@hSiKL(qkp) = 0 :  = h� (J� diag(J))hSi (4.20)

@

@hS2iti
KL(qkp) = 0 : �it = Jii : (4.21)

The remaining two equations depend explicitly on the source prior, p(S);

@

@it
KL(qkp) = 0 : hSiti = @

@it
log

Z
dsitp(sit)e

� 1
2�its

2
it+itsit

� m(it; �it) (4.22)

@

@�it
KL(qkp) = 0 : hS2iti = �2 @

@�it
log

Z
dsitp(sit)e

� 1
2�its

2
it+itsit :

(4.23)

The variational mean m(it; �it) plays a crucial role in de�ning the mean
�eld algorithm since all dependence upon the prior is implicit in m (as well
as in @m

@ for the advanced mean �eld methods). In section 4.4, we calculate
3 The requirement that we should be at a local minima of log p(XjA;�;NMF) is
ful�lled when the covariance matrix eq. (4.27) is positive de�nite. To test whether
we are at the global minima is harder. However, when the model is well-matched
to the data, we expect the problem to be convex.
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m(it; �it) for some of the prior distributions found in the ICA literature.
Finally, by inserting the saddle points into eq. (4.19), the naive mean �eld
approximation to the likelihood reduces to

log p(XjA;�;NMF) =
X
i;t

log

Z
dsitp(sit)e

� 1
2�its

2
it+itsit (4.24)

+
1

2
TrhST i(J � diag(J))hSi � logZL : (4.25)

This approximation to the likelihood can be used to determine the number
of latent sources. We will, however, postpone this subject until chapter 5.

4.3.2 Linear Response Theory

So far we have not discussed how to obtain mean �eld approximations to the
covariances

�tt
0

ii0 � hSitSi0t0i � hSitihSi0t0i :
Since variational mean �eld theory uses a factorized trial distribution, the
covariances between di�erent variables is trivially predicted to be zero. How-
ever, using linear response theory, we can improve the variational mean �eld
solution. As mentioned earlier, h acts as an external �eld. This makes it pos-
sible to calculate the means and covariances as derivatives of log p(XjJ ;h),
i.e.

hSiti = @ log p(XjJ ;h)
@hit

(4.26)

�tt
0

ii0 =
@2 log p(XjJ ;h)

@hi0t0@hit
=
@hSiti
@hi0t0

: (4.27)

These relations are exact when using the exact likelihood. However, we can
also use the NMF likelihood through the mean �eld equations (4.20), (4.21)
and (4.22) to derive an approximate equation for �tt

0

ii0 ,

�tt
0

ii0 =
@m(it; �it)

@it

@it
@hi0t0

=
@m(it; �it)

@it

0
@� X

i00;i00 6=i
Jii00�

tt
i00i0 + Æii0

1
A Ætt0 : (4.28)

As a direct consequence of the lack of temporal correlations in the present
setting, the �-matrix factorizes in time, i.e. �tt

0

ii0 = Ætt0�
t
ii0 . We can straight-

forwardly solve for �tii0

�tii0 =
�
(�t + J)

�1�
ii0

; (4.29)

where we have de�ned the diagonal matrix
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�t = diag (�1t; : : : ; �It) ; �it �
�
@m(it; �it)

@it

��1
� Jii : (4.30)

For comparison, the naive mean �eld result is �t;NMF
ii0 = Æii0

@hSiti
@hit

which
follows directly from eq. (4.23).

Why is the covariance matrix obtained by linear response more accu-
rate? Here, we give an argument that can be found in Parisi's book on sta-
tistical �eld theory [Parisi 1988]: Let us assume (as always implicit in any
mean �eld theory) that the approximate and exact distribution are close
in some sense, i.e. q(S) � p(SjX;A;�) = ". Then by direct application
of the factorized distribution we have hSitSi0tiExact = hSitSi0tiNMF + O(").
On the other hand since KL(q k p) is non-negative the NMF theory log-
likelihood gives a lower bound on the log-likelihood, see eq. (4.18). Con-
sequently, the linear term vanishes in the expansion of the log-likelihood:
log p(XjA;�) = log p(XjA;�;NMF) + O("2). Obtaining moments of the
variables through derivatives of the approximate log-likelihood, i.e. by linear
response, is therefore more precise than to use the trial distribution directly.

For some speci�c cases it is possible to demonstrate the improvement
directly. Consider the Gaussian prior4 p(sit) / exp(�s2it=2). In this case the
variational mean �eld, eq. (4.22) is given by f(; �) = =(1 + �). Thus, the
variational mean �eld theory predicts

�t;NMF
ii0 = Æii0

@hSiti
@hit

= 1=(1 + �it) = 1=(1 + Jii) : (4.31)

However, the linear response estimate eq. (4.29) gives �t;LRii0 =
�
(I + J)�1

�
ii0

and hence reconstructs the full covariance matrix identical with the exact
result obtained by direct integration.

4.3.3 Adaptive TAP Approach

So far we have derived two di�erent estimates of the covariance matrix from
variational mean �eld theory: �t;NMF

ii0 = Æii0
@hSiti
@hit

and �t;LRii0 =
�
(�t + J)

�1�
ii0
.

Obviously there is no guarantee that the two estimates are identical. Vari-
ational mean �eld theory is thus not self-consistent within linear response
corrections. The adaptive TAP approach [Opper and Winther 2000c] on the
other hand goes beyond the factorized trial distribution and requires self-
consistency for the covariances estimated by linear response. This is achieved
by introducing a set of IT additional mean �eld (or variational) parame-
ters, the variances �it in the marginal distribution eq. (4.14), such that the
diagonal term �t;TAPii obeys
4 It is noted that a Gaussian source prior is not suitable for doing source separation.
We merely use it here to show that the linear response correction in this case
recovers the exact result.
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@hSiti
@hit

=
�
(�t + J)

�1�
ii
; (4.32)

where �it and it now depend upon �it through the relations

�it =
�
�tii
��1 � �it (4.33)

it = hit �
X
i0

(Jii0 � �i0tÆii0 )hSi0ti : (4.34)

To recover the variational mean �eld equations (4.30) and (4.20), we just
let �it = Jii. It is beyond the scope of this chapter to derive the adaptive
TAP mean �eld theory. Instead, the reader is referred to section 3.3.4 for
a derivation of the adaptive TAP approach valid for models with quadratic
interactions and general variable prior. In chapter 5, the mean �eld equations
for the noisy ICA model have been derived using the cavity approach instead
of the KL variational bound approach. We have chosen to present and test
the resulting theory here because it o�ers the most advanced (and hopefully
the most precise) mean �eld approximation for this type of model.

4.4 Source Models

In this section we calculate for various source priors the variational mean m,
eq. (4.22) and the derivative @m=@ needed for the linear response correction
and adaptive TAP updates. The priors that we are considering are all chosen
such that the variational mean can be calculated using tables of standard
integrals, e.g. [Gradshteyn and Ryzhik 1980]. It turns out to be convenient to
introduce the Gaussian kernel D with unit variance and its associated cumu-
lative distribution function (cdf.) � in order to keep the following expressions
of a manageable size, i.e.

D(x) =
1p
2�

exp

�
�1

2
x2
�
; D0(x) = �xD(x) (4.35)

�(x) =

Z x

�1
D(t)dt ; �0(x) = D(x) : (4.36)

4.4.1 Summary of source priors

Table 4.1 summarizes the variational means and response functions corre-
sponding to the priors described in this paper. It should be mentioned that
this is by no means a complete list of all priors for which it is possible to
calculate these quantities, e.g. the Rayleigh distribution is one such prior.
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Source Prior p(s) Mean Function Response Func.

m(; �) = hSi @hSi
@

Binary 1
2
Æ(s� 1) + 1

2
Æ(s+ 1) tanh() 1� hSi2

Gaussian Mix. eq. (4.37) eqs. (4.39) & (4.41)
Gaussian 1p

2�
exp(�s2=2) =(1 + �) 1=(1 + �)

Heavy tail not analytic 

�
� � 

��+2
1
�
+ � 2���

(��+2)2

Uniform 1
b�a�(s� a)�(b� s) eq. (4.65) eq. (4.66)

Laplace 1
2
exp(�jsj) eq. (4.43) eq. (4.45)

Pos. Gauss
q

2
�
exp(�s2=2)�(s) eq. (4.60) eq. (4.62)

Exponential exp(�s)�(s) eq. (4.47) eq. (4.48)

Table 4.1. The variational mean and response function corresponding to various
source priors. The three �rst rows describe source priors having negative, zero and
positive kurtosis, respectively. The fourth row express non-negative priors. The
step�function is de�ned as �(s) = 1 for s > 0 and zero otherwise.

4.4.2 Mixture of Gaussians source prior

In this section we consider a general mixture of Gaussians, i.e.

p(sj�;�) =
NiX
k=1

�kp(sj�k; �k) ; s 2 R (4.37)

where each of the Ni individual mixture components are parametrized by

p(sj�k; �k) = 1p
2��2k

e�
1
2 (s��k)2=�2k : (4.38)

Using this source prior the generative ICA model becomes the indepen-
dent factor analysis model proposed in [Attias 1999]. Since the main scope of
this chapter is concerned with reliable inferring mean su�cient statistics with
respect to the sources we will in contrary to [Attias 1999] always regard the
source parameters as �xed, e.g. we are at no times adapting the source priors
to data. However, it is straightforward to extend the proposed methodology
to allow for this possibility, e.g. in a EM setting where the improved mean
�eld solutions are being used in the posterior expectation of the complete
log-likelihood.

Trivial but tedious calculations shows that the variational mean m(; �)
of a mixture of Gaussians is given by

m(; �) =

PNi

k=1 �k
�2k+�k
��2

k
+1

e�kPNi

k=1 �ke
�k

; (4.39)

where we have introduced
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�k =
�kp

��2k + 1
; and �k = �1

2

�
(�k=�k)

2 � (�k + �k=�k)
2

��2k + 1

�
: (4.40)

The derivative with respect to  is easy to obtain but are left out in the
interest of space. For the special case of a mixture of two Gaussians (Ni = 2)
with common variance �2 and means �k = �� we get

m(; �) =
1

��2 + 1

�
�2 + � tanh(

�

��2 + 1
)

�
: (4.41)

For �2 = 0 and � = 1, we recover the variational mean for the binary
source p(s) = 1

2Æ(s � 1) + 1
2Æ(s + 1): m = tanh(). This particular choice

of the bi-Gaussian source distribution (eq. 4.41) which is also known as the
symmetric Pearson mixture density, was proposed in [Girolami 1998] as a
simple way of achieving a negative kurtosis (sub-Gaussian) density function.
To become familiar with the m-function and its derivative, consider the vari-
ational mean of the bi-Gaussian with �2 = 1 shown in �gure 4.2(a,b) for two
values of �; namely � = 1, for which the density function is uni-modal and
� = 4 for which the density function is signi�cantly bimodal. We see that the
more bimodal the source distribution is the more compact the region of high
curvature becomes. By introducing additional mixture components it is pos-
sible to form the region of high curvature, which is illustrated in �gure 4.2(g)
in the case of a mixture of �ve Gaussians.

4.4.3 Laplace source prior

Although a sub-Gaussian distribution may be a reasonable source prior for
some applications, e.g. telecommunications (discrete priors, see e.g. [van der
Veen 1997]) or processing of functional magnetic resonance images [Petersen
et al. 2000], there are, however, a large class of interesting real world signals,
such as speech, which have heavier tails than the Gaussian distribution. We
therefore need to consider source priors which have positive kurtosis (super-
Gaussian). One such choice which have been widely used in the ICA commu-
nity is p(s) = 1=(� cosh s) [Bell and Sejnowski 1995; MacKay 1996]. Using
this prior, however, it is not possible to calculate the variational mean ana-
lytically. Instead, we consider the Laplace or double exponential distribution
which is very similar. The Laplace density is given by

p(s) =
�

2
e��jsj ; s 2 R; � > 0: (4.42)

where � > 0 is the decay rate of the Laplacian. The variational mean can be
calculated as

m(; �) =
1p
�

�+�+ + ����
�+ + ��

; (4.43)
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Fig. 4.2. Shows the variational mean m (left row) and its derivative m0 (right row)
as a function of  and �. (a) and (b) shows the bi-Gaussian case with �2 = 1 for
�i = �1 and �i = �4, respectively. (c) and (d) shows the Laplacian prior for decay
rates � = 1=2 and � = 2, respectively. (e) and (f) shows the exponential prior for
decay rates � = 1=2 and � = 2, respectively.; (g) shows the variational mean m and
the derivative m0 of a mixture of �ve Gaussian with mixing proportions �i = 1=5,
means �i = f�4;�1; 0; 1; 4g and standard deviations �i = f1; 2; 4; 2; 1g. (h) shows
the heavy tailed prior eq. (4.51) with � = 1.
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where we have introduced

�� =
 � �p
�

; and �� = �(���)D(��) : (4.44)

Using eqs. (4.35) and (4.36), the derivative is found to be

@m

@
=

1

�

�
1� ���+ +D(�+)D(��)

�+ � ��
�+ + ��

+
p
�
(�+�� + ���+)

(�+ + ��)
m

�
:

(4.45)

Figure 4.2(c,d) shows the variational mean and its derivative for a slowly
decaying (� = 0:5) and a fast decaying (� = 2) Laplacian prior. The Laplacian
prior have, contrary to the bi-Gaussian source, its region of high curvature
for numerical large values of .

4.4.4 Exponential source prior

Some application domains naturally restrict the possible range of the hidden
sources and the mixing matrix due to the physical interpretation of these
quantities in the generative model. This is for instance the case when the
measured signal is known to be a positive superposition of latent counting
numbers or intensities. Positivity constrains are relevant, e.g., in �parts based
representations� of natural images, deconvolution of the power spectrum of
nuclear magnetic resonance (NMR) spectrometers and latent semantic anal-
ysis in text mining [Lee and Seung 1999]. In this section we consider the
exponential source prior parameterized by

p(s) = �e��s ; s 2 R+ ; � > 0 (4.46)

where � > 0 is the decay rate of the exponential density. The variational
mean and response function associated to this source prior are given by

m(; �) =
1p
�

��(�) +D(�)

�(�)
(4.47)

@m

@
=

1

�
+

D(�)p
��(�)

m ; (4.48)

where we, as for the Laplacian case, have introduced

� =
 � �p
�

: (4.49)

Figure 4.2(e,f) shows the variational mean and its derivative for the expo-
nential source prior. It is veri�ed that the exponential variational mean is
non-negative. At this point we will make some short remarks on some al-
gorithmic issues when the normal cdf. � appears in the denominator of the
variational mean. Special care has to be taken when � ! �1, e.g. when



66 4. Independent Component Analysis

 � � < 0 and � is small, i.e. for small self-interactions. Using l'Hospital's
rule together with eqs. (4.35) and (4.36), it is seen that

D(�)

�(�)
! �� for � ! �1 ; (4.50)

which in turn implies that the variational mean m ! 0 and its derivative
(@m=@) ! 1=� for � ! �1. In section 4.5.4, we will use this prior to
learn a set of sparse localized basis functions in images. The source priors
considered until now are just some examples of priors where the variational
mean can be computed analytically. However, in section 4.7 we simply state
some additional examples of priors for which this calculation can be carried
out analytically.

4.4.5 Power law tail prior

In the previous sections we have only considered source priors for which it
was possible to carry out the integration eq. (4.22) analytically. For arbitrary
source priors, however, the one dimensional integral may be solved using
standard approaches for numerical integration. Alternatively, we could sim-
ply use the insight gained in the previous sections, where we considered the
functional form of the variational mean of various source priors, to come up
with computationally tractable m functions directly. To give an example of
this, we will construct an m which for large jj=p� corresponds to a dis-
tribution with a power law tail p(s) / jsj�� for jsj large. In this limit the
integral in eq. (4.22) is dominated by its saddle-point. The saddle-point value

of s is s0 =

2� (1 +

q
1� 4��

2 ) � 
� � �

 . This gives the behavior of the mean
function for large . We can now straightforwardly construct a mean function
that has this asymptotic behavior and is well-de�ned for small values of ,

m(; �) =


�
� �

�� + 2
: (4.51)

Figure 4.2(h) shows the heavy tail m-function as a function of  and �.
Figure 4.3 shows for a �xed � = 1 the variational mean and derivative for
some of the unconstrained source priors considered so far. For  ! 1, the
Gaussian and the uniform (improper) prior give respectively the the lower
and upper value for m for the priors considered. The variational means and
derivatives for the priors considered in this chapter are summarized in the
table in section 4.4.1.

4.5 Simulations

In this section we compare the performance of the di�erent mean �eld ap-
proaches described in the previous sections, i.e. NMF, LR correction and
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Fig. 4.3. Shows the variational mean (top) and derivative (lower) as a function of
 for various source priors and �xed � = 1. From top to bottom the legends are;
[- -] Gaussian with unit mean and variance; [� � � ] Mixture of two Gaussians with 0
mean and std. 1 and 2; [- -] Mixture of two Gaussians with unit variance and mean
at �3; [�] and [-�-] Laplacian with � = 1 and � = 1=4, respectively; [�-�-] Heavy
tail with � = 1=2; [- -] Uniform (improper) distribution.
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adaptive TAP. To begin with, we conduct two experiments with arti�cial
generated data. The source priors used in these experiments are equal to the
source prior which generated the dataset. We consider both the complete case
in which 2 binary sources are mixed into 2 sensors and the overcomplete case
of 3 continuous sources mixed into 2 sensors. Finally, we apply the linear
response corrected mean �eld approach to perform ICA on two real world
datasets; namely speech signals and parts of the MNIST handwritten digit
database.

4.5.1 Synthetic binary sources in a complete setting

Independent component analysis of binary sources has been considered e.g. in
data transmission using binary modulation schemes such as MSK or biphase
codes [van der Veen 1997]. Here, we consider a binary source S = f�1g with
prior distribution p(s) = 1

2 [Æ(s � 1) + Æ(s + 1)]. In this case we recover the
well known mean �eld equations hSi = tanh(). Figure 4.4(a) shows the
column vectors of the mixing matrix and 1000 samples generated from the
ICA generative model using a fairly low noise variance, �2 = 0:3. Ideally, the
noise-less measurements would consist of the four combinations (with sign)
of the columns in the mixing matrix. However, due to the noise, the measure-
ments will be scattered around these prototype observations (shown as + in
�gure 4.4(a)). Figure 4.4(b) shows, for each of the mean �eld approaches,
the variance as a function of iteration number. At these moderate noise vari-
ances an improvement in the convergence rate is obtained by using the linear
response corrected mean �eld solution. The adaptive TAP approach, on the
other hand, is seen to have a slower convergence rate and only a marginal
improvement in the estimated noise variance and mixing matrix is obtained.
This is due to the fact that this approach is critically sensitive to how well
the variational parameters have been determined.

Figure 4.4(c,d,e) shows, for the di�erent mean �eld approaches, the tra-
jectories of the �x-point iterations. All the methods use the same initial con-
ditions ('�') and the �nal point in the trajectory is marked 'Æ'. The dashed
lines are +=� the column vectors of the true mixing matrix. In this case there
is no signi�cant di�erence in the mixing matrix estimated using the di�erent
mean �eld approaches.

We now increase the noise variance to �2 = 1. In this case it is hard to
identify the prototype signals from the measured data (see �gure 4.5(a)). The
naive mean �eld approach fails in recovering the mixing matrix. Figure 4.5(c)
shows that one of the directions in the mixing matrix vanishes during the
�xed-point iterations which in turn result in the noise variance being overes-
timated (see �gure 4.5(b)). However, the linear response corrected mean �eld
approach and adaptive TAP recover the true mixing matrix.
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Fig. 4.4. Binary source recovery for a low noise variance, �2 = 0:3. (a) Shows 1000
measurements (scatter plot), +=� the column vectors of the true mixing matrix
(the solid axis) and the measurement prototypes (+) for the noise-less case. (b)
Shows the estimated variance for NMF, LR and TAP as a function of iterations.
The thick solid line is the true empirical noise variance. The empirical variance is
the variance of the 1000 random noise contributions. The trajectories of the �xed-
point iteration using (c) NMF, (d) LR and (e) adaptive TAP. The initial condition
is marked '�' and the �nal point 'Æ'. The dashed lines are the true mixing matrix.

4.5.2 Continuous sources in an overcomplete setting

In this section the problem is to recover more sources than sensors; in par-
ticular we consider mixing 3 source into 2 sensors. The source used in this
experiment is the symmetric Pearson mixture eq. (4.41) with � = 1. A total
of 2000 samples were generated from the generative model (see �gure 4.6(a))
and the three mean �eld approaches were used to learn the mixing matrix.
The trajectories plot in �gure 4.6(c) shows that the naive mean �eld approach
fails in recovering the mixing matrix. Similar to the binary case with high
variance, one of the directions in the mixing matrix vanishes (see �gure 4.6).
Only the dominant direction in the data-space is captured whereas the two
remaining directions collapse into one �mean� direction. However, both the
linear response corrected and the adaptive TAP mean �eld approaches suc-
ceed in estimating the mixing matrix. We will restrict ourselves to the LR
approach in the next real world examples since NMF has turned out to fail in
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Fig. 4.5. Binary source recovery for a high noise variance, �2 = 1. (a) Shows 1000
measurements (scatter plot), +=� the column vectors of the true mixing matrix
(the solid axis) and the measurement prototypes (+) for the noise-less case. (b)
Shows the estimated variance for NMF, LR and TAP as a function of iterations.
The thick solid line is the true empirical noise variance. The trajectories of the �xed-
point iteration using (c) NMF, (d) LR and (e) adaptive TAP. The initial condition
is marked '�' and the �nal point 'Æ'. The dashed lines are the true mixing matrix.

some cases and TAP is considerably more computationally expensive while
giving comparable performance.

4.5.3 Separating 3 speakers from 2 microphones

In this section we consider the problem of separating three speakers from
two microphones. At hand we have the three original speech signals, each
having a duration of 1 second and sampled at 8 kHz. The speech signals are
then instantaneously linearly mixed into 2 microphones. Figure 4.7(a) shows
a scatter plot of the 8000 samples in the measurement (microphone) space.
The fact that natural speech has a heavy tailed distribution makes this over-
complete problem somewhat easier in the sense that the hidden directions of
the mixing matrix reveal themselves clearly in the scatter plot. The linear
response corrected mean �eld approach was used in performing ICA with
the computationally tractable variational mean eq. (4.51) with � = 1. The
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Fig. 4.6. Overcomplete continuous source recovery with �2 = 1. (a) Shows 2000
measurements (scatter plot), +=� the column vectors (4 times axis) of the true
mixing matrix (the solid axis). (b) Shows the estimated variance for NMF, LR and
TAP as a function of iterations. The thick solid line is the true empirical noise
variance. The trajectories of the �x-point iteration using (c) NMF, (d) LR and
(e) adaptive TAP. The initial condition is marked '�' and the �nal point 'Æ'. The
dashed lines are the true mixing matrix.

initial mixing matrix was randomly picked (shown as the dotted axis in �g-
ure 4.7(a)). Figure 4.7(b) shows the convergence of the algorithm in terms
of the angle between the estimated directions and the true directions (the
dashed lines in �gure 4.7(a)). Figure 4.7(a) shows that the algorithm con-
verges rapidly to a mixing matrix which is very close to the one that actually
mixed the speech signals. Figure 4.8 shows each of the inferred sources plot-
ted against each of the true sources. We see that the three recovered sources
are nicely correlated with exactly one of the true sources and (more or less)
uncorrelated with the remaining sources. Notice that any relabelling of the
sources and corresponding perturbation of the columns of the mixing matrix
leaves the solution of the ICA problem invariant.

4.5.4 Local feature extraction with sparse positive encoding

In this section we apply the linear response corrected ICA algorithm to the
problem of �nding a small set of localized images representing parts of the
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Fig. 4.7. Overcomplete speech separation (3-in-2) using the heavy tailed m-
function eq. (4.51) with � = 1; see �gure 4.2(h). (a) scatter plot of 1 sec. of the
mixed speech (@8 kHz), the true A (dashed lines), the initial A (black dotted)
and the estimated A. (b) shows the estimated angle as a function iteration. The
horizontal lines illustrate true angles at 0 and �45 degrees.

digit images in the MNIST handwritten digit database. For illustration pur-
poses we will only consider a small sub-set of the database, namely the �rst
500 cases of the handwritten digit �3�. Figure 4.9(a) shows 25 examples from
this sub-set of the dataset. As mentioned already in section 4.4.4 it is natural
to consider positive constraints on latent variables (say pixels) when dealing
with images. However, such constraints are usually ignored by most of the
commonly used preprocessing models e.g. the principal component analysis
(PCA) generative model which simply amounts to sequentially �nding or-
thogonal directions (components) with maximum variance in the data space.
Ignoring such constraints is problematic since for an unconstrained model to
yield positive digit images there has to be an interaction between positive
and negative regions in di�erent components and it is therefore not obvious
what the set of components represents visually.

To illustrate these points we conduct two ICA experiments using the expo-
nential prior p(s) / e�s, s 2 R+ . In the �rst experiment we do not constrain
the mixing matrix whereas in the second experiment the mixing matrix is
constrained to be positive. For both experiments we assume that there are
25 hidden images. Figure 4.9(c) shows the 25 hidden images obtained using
ICA with positively constrained sources but unconstrained mixing matrix.
Although the sources in this case are positively constrained, the fact that
hidden images are allowed to be subtracted in order to obtain a positive im-
age leads to non-local hidden images which are hard to interpret visually.
Figure 4.9(d) shows the 25 hidden images obtained by performing ICA which
enforces the positive constraint on the mixing matrix. In this case the hidden
images clearly represent local features, in particular the di�erent handwrit-
ing styles/strokes in the various parts of the written digit. For comparison we
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show the eigenimages obtained by the square loss version of the non-negative
matrix factorization algorithm (NNMF) of [Lee and Seung 2001]. Although
the positively constraint ICA model and the NNMF roughly yield the same
results one major drawback of the non-negative matrix factorization is, how-
ever, its lack of probabilistic interpretation.

4.6 Algorithmic recipe

In table 4.2, we give an EM recipe for solving the mean �eld equations and
the equations for the mixing matrix and the noise covariance. It is indicated
in the table which equations that have been used. Here, we have given the
equations for the adaptive TAP approach. Linear response theory is obtained
by omitting the updating step for �it, i.e. by setting N� := 0. Furthermore,
setting �tii0 := Æii0m

0(it; �it) instead of �t := (�t + J)
�1 leads to the naive

mean �eld algorithm.
In the table, we have given the update rule for the non-negative mixing

matrix eq. (4.13). To get to the unconstrained mixing matrix, the uncon-
strained update rule eq. (4.10) should be used.

Note that we use a greedy update step for all variables but the expec-
tations hSi. Especially adaptive TAP is quite sensitive to the choice of the
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(a) (b)

(c) (d)

Fig. 4.9. Feature extraction of 500 cases of the handwritten digit �3� from the
MNIST handwritten digit database. (a) shows 25 cases from the dataset. (b) shows
the eigenimages obtained by the square loss version of the non-negative matrix
factorization algorithm. Eigenimages obtained by the noisy ICA model using a
exponential prior with � = 1 and (c) unconstrained mixing matrix and (d) positive
constrained mixing matrix.

learning rate �. It is therefore made adaptive such that it is increased with
a factor of 1:1 if the sum of the squared deviations

P
i;t jÆhSitij2 decreases

compared to the previous update. Otherwise it is decreased with a factor 2.
Our experience with the TAP equations also indicates that running with vari-
able number of updates of hSi could be helpful. However, in the simulations
described here we kept the number of iterations �xed.
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Initialization: Eqs. (4.16),(4.17) and (4.21)
J := AT��1A

h := AT��1X
hSi := 0 (or small random values if 0 is a �xed point)
for m := 1; : : : ;M and t := 1; : : : ; N :

�mt := Jmm

endfor

NhSi := 20,N� := 10,NA := 10,N� := 1,ftol := 10�5

do:
Expectation-step:

for NhSi iterations, eqs. (4.34) and (4.22)
for m := 1; : : : ;M and t := 1; : : : ; N :

mt = hmt �
P

m0(Jmm0 � �m0tÆmm0 )hSm0ti
ÆhSmti := f(mt; �mt)� hSmti

endfor
hSi := hSi+ �ÆhSi

endfor
for N� iterations, eqs. (4.33) and (4.32)

for m := 1; : : : ;M and t := 1; : : : ; N :
�mt := �mt +

1
f 0(mt;�mt)

endfor
for m := 1; : : : ;M and t := 1; : : : ; N :

Æ�mt :=
1

[(�t+J)�1]
mm

� 1
f 0(mt;�mt)

�mt := �mt + Æ�mt

endfor
endfor
for t := 1; : : : ; N , eq. (4.29)

�t := (�t + J)
�1

endfor
Maximization-step

for NA iterations, eq. (4.13) or (4.10)
for d := 1; : : : ; D and m := 1; : : : ;M :

ÆAdm := [��1XhSiT ]dm
[��1AhSST i]dm+�Adm+�

Adm �Adm

Adm := Adm + ÆAdm

endfor
endfor
for N� iterations, eq. (4.9)

Æ� := 1
N
h(X �AS)(X �AS)T i ��

� := � + Æ�
endfor

J := AT��1A

h := AT��1X

while max(jÆhSmtij
2; jÆ�mtj

2; jÆAdmj
2; jÆ�dd0 j

2) > ftol

Table 4.2. Pseudo-code for the mean �eld ICA algorithms.
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4.7 Some additional analytical source priors

In this section we derive the variational mean and response function for some
additional analytical source priors which have not been directly used in this
chapter. We show these calculations in some details since they are of the same
type as the one we carried out in deriving the variational mean of the sources
in section 4.4.

4.7.1 Positively constrained Gaussian source prior

Calculating the variational mean eq. (4.22) in general involves the calulation
of an intergral of the formZ

dsp(s)e�
1
2�s

2+s ; (4.52)

where p(s) is the source prior. The source priors considered in this chapter are
all of such a form that this integral can reparameterized into a integral over
a Gaussian kernel. For this reason it is useful to have at hand an expression
for the integral of a Gaussian kernel, i.e.Z x

�1
dse�

1
2�s

2+s = (
p
2�D(

p
�
))�1

Z x

�1
dse�

1
2�(s� 

�
)2 (4.53)

= (
p
�
p
2�D(

p
�
))�1

Z �

�1
dse�

1
2 s

2

(4.54)

=
�(�)p
�D( p

�
)
; (4.55)

where � =
p
�(x � =�). The �rst equality follows from completing squares

and introducing the Gaussian probability density function, eq. (4.35). The
second equality follows by changing the integration variable whereas the �nal
equality follows by introducing the Gaussian cdf., eq. (4.36). We can now
calculate the following integralZ +1

0

dse�
1
2�s

2+s =

Z +1

�1
(�)�

Z 0

�1
(�) =

1� �(� p
�
)

p
�D( p

�
)

=
�( p

�
)

p
�D( p

�
)
: (4.56)

Suppose we are interested in calculating the variational mean of a density
having eq. (4.56) as partition function. It is remembered that any factor of
proportionality independent of  is not needed in calculating the variational
mean, i.e.

m(; �) = (
�

D
)
�1�0D � �D0



D2
= (

�

D
)
�1D2=

p
�+ =��D

D2
(4.57)

=


�
+

D( p
�
)

p
��( p

�
)
: (4.58)
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We can now return to the problem of calculating the variational mean of
a positively constrained Gaussian parameterized by

p(sj�; �) / e�
1
2 (s��)2=�2 ; s 2 R+ ; (4.59)

where � and �2 are the mean and variance, respectively. Multiplying the
source prior onto the Gaussian kernel and identifying terms it is seen that the
product can be written as a Gaussian with � := �+1=�2 and  := +�=�2.
Substituting back into eq. (4.58) we directly obtain the variational mean

m(; �) =
 + �=�2

�+ 1=�2
+

1p
�+ 1=�2

D(�)

�(�)
; (4.60)

where we have introduced

� =
 + �=�2p
�+ 1=�2

(4.61)

and the response function can be readily derived

@m

@
=

�=�2

�+ 1=�2

 
1� �

D(�)

�(�)
�
�
D(�)

�(�)

�2!
: (4.62)

We now turn to consider the variational mean and the response function
associated to the uniform source prior.

4.7.2 Uniform source prior

In this section we consider the uniform prior parametrized by

p(s) =
1

b� a
; s 2 [a; b] ; (4.63)

where b � a. By reusing the calculations made in section 4.7.1 we directly
obtainZ b

a

dse�
1
2�s

2+s =

Z b

�1
(�)�

Z a

�1
(�) = �(�b)� �(�a)p

�D( p
�
)

; (4.64)

where �x =
p
�(x � =�) =

p
�x � p

�
. Here, we have again left out the

normalizing constant since it is of no importance in the calculation of the
variational mean

m(; �) =


�
+

1p
�

D(�a)�D(�b)

�(�b)� �(�a)
; (4.65)

and the response function
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�2!
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This and the previous section showed some illustrative examples of the cal-
culation needed in deriving the variational mean and response functions for
the source priors considered in this chapter.

4.8 Discussion

In this chapter, we have presented a probabilistic (Bayesian) approach to ICA.
Sources are estimated by their posterior mean while maximum a posteriori
estimates are used for the mixing matrix and the noise covariance matrix.
By this procedure we derived an EM-type algorithm. The expectation step
is carried out using di�erent mean �eld (MF) approaches namely variational
(also known as ensemble learning or naive MF), linear response and adaptive
TAP. The MF theories produce estimates of posterior source correlations of
increasing quality. These are needed for the maximization step in the estimate
for the mixing matrix and the noise covariance matrix.

The importance of a good estimate of correlations is seen for speci�c
examples where in fact the simplest variational approach fails. The general
applicability of the formalism and its MF implementation is demonstrated
on local feature extraction in images (using non-negative mixing matrix and
source priors) and in overcomplete separation of speech (using heavy tailed
source priors). The good performance of the mean �eld approach supports
the belief that we get fair estimates of the posterior means and covariances.
However, a rigorous test requires either explicit numerical integration which
is possible only for low dimensional problems or Monte Carlo sampling (which
may also be inaccurate in complex cases).

In the following, we will discuss a number of possible extensions of this
work. One obvious extension is the modeling of temporal correlations. The
most general formulation of the model with temporal correlation leads to
the consideration of the junction tree algorithm. We are currently working
on a mean �eld algorithm for online belief propagation on the junction tree
[Højen-Sørensen et al. 2001a].

Optimization of the hyperparameters of the prior can be performed by
trivially extending the current EM algorithm. The mean �eld approach can
also be used to derive leave-one-out estimators [Opper and Winther 2000b;
Opper and Winther 2000c] that can be used both for optimization of hy-
perparameters and model selection. Model selection can also be performed
using the (approximate mean �eld) likelihood of a test set. In chapter 5, the
optimization of the hyperparameters of the prior and the model selection
problem is considered in an analysis of functional neuroimages.

Finally, it could be interesting to relax some of the basic requirement
of the model. Firstly, that of statistical independence of the sources. Our
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formalism can be extended to treat a priori Gaussian correlations between
(the non-Gaussian) sources. We should be able to estimate these correlations
e�ectively by for example the linear response technique. Secondly, the model
can be extended to nonlinear mixing by for example introducing a sigmoidal
squashing of the mixed signal. This situation can also, with some increase
in the computational complexity be, included in the mean �eld framework
[Opper and Winther 2000c].





5. Analysis of Functional Neuroimages

The low signal-to-noise ratio and the many possible sources of variabil-
ity makes recording from non-invasive functional neuroimaging techniques
a most challenging data analysis problem. In this chapter we present a
computationally e�cient mean �eld algorithm for noisy independent com-
ponent analysis (ICA) with adaptive binary sources for exploratory analysis
of functional magnetic resonance imaging (fMRI) data. The number of hid-
den sources is determined using the Bayesian information criterion (BIC) in
which the TAP free energy is used as an approximation to the likelihood.
The developed algorithm is applied to both an arti�cial data set and a set of
functional neuroimages from a visual activation study. In chapter 4 the start-
ing point of the derivation of the mean �eld algorithm for probabilistic ICA
was the KL variational bound. In this chapter, however, we derive the mean
�eld algorithm by using the cavity approach which leads to the adaptive TAP
algorithm examined experimentally in chapter 4.

5.1 Introduction

Functional magnetic resonance imaging (fMRI) is the common name for a
large selection of non-invasive techniques that enables indirect measures of
neuronal activity in the working human brain. Common for these techniques
are that they utilize the MRI technique to detect and measure the region-
ally localized physiological changes which accompany neuronal activation.
The most common fMRI technique is based on an image contrast induced by
temporal shifts in the relative concentration of oxyhemoglobin and deoxyhe-
moglobin; this is known as the blood oxygenation level dependent (BOLD)
contrast . The working model which relates to neuronal activity to the mea-
sured BOLD contrast goes as follows [Bandettini and Wong 1998]. An in-
crease in neuronal activity causes local vasodilatations which in turn causes
an increase in blood �ow; the so-called hemodynamic response. This results
in an excess of oxygenated hemoglobin beyond the metabolic need, thus re-
ducing the proportion of paramagnetic deoxyhemoglobin in the vasculature.
This in turn leads to a reduction in susceptibility di�erences in the vicin-
ity of veinules, veins and red blood cells within veins, which thereby causes
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an increase in spin coherence and therefore an increase in the measured sig-
nal in T2=T2� weighted sequences. For the uninitiated, a nice discussion on
how brain metabolism relates to the BOLD signal can be found in [Barinaga
1997]. The typical fMRI activation study consists of maintaining a healthy
volunteer in controlled mental states; typically a baseline control state and an
active task state. The temporal course of the baseline/activation paradigm
is denoted the reference function. The BOLD signal is the regional hemody-
namic response to focal neuronal activation. Being dispersed in both space
and time, the hemodynamic response severely confounds the interpretation
of the neuronal activation from the BOLD signal. Needless to say, the neu-
ronal response may itself consist of multiple components besides the activity
induced by the stimulus.

Bandettini et al. [Bandettini et al. 1993] analyzed the correlation between
a binary reference function and the BOLD signal. Lange and Zeger [Lange
and Zeger 1997] discuss a parameterized hemodynamic response adapted by
a least squares procedure whereas multivariate strategies have been pur-
sued in [Worsley et al. 1997] and [Hansen et al. 1999]. Several explorative
strategies have been proposed for �nding spatio-temporal activation patterns
without explicit reference to the activation paradigm. McKeown et al. [McKe-
own et al. 1998] used the independent component analysis algorithm of [Bell
and Sejnowski 1995] to identify spatially independent patterns and found
several types of activations including components with �transient task re-
lated� response, i.e., responses that could not simply be accounted for by
the paradigm; such components would typically not be identi�ed by a sim-
ple principal component analysis (PCA) since they would tend not to be
orthogonal to the task. Other authors have argued for identifying temporally
independent patterns, e.g. [Hansen 2000]; a comparative study of temporal
and spatial ICA approaches for analyzing fMRI were carried out in [Petersen
et al. 2000]. While previous ICA approaches succeeded in �nding task re-
lated components, the ICA schemes applied were not well-matched to the
binary on/o� character of the stimulus (see also [Petersen et al. 2000] for
further discussion of this point). Hence, in this chapter we will focus on the
more appropriate binary source distribution assumption. Furthermore, it is
interesting to note that when analyzing the signals for spatially independent
components, the binary source assumption corresponds to another popular
approach for exploratory analysis of fMRI, namely wave form clustering. The
binary spatial component can be viewed as the binary association of pixels
with the corresponding time course; see e.g. [Goutte et al. 99] for use of clus-
tering techniques for fMRI analysis. A extensive discussion of the statistical
limitations in functional neuroimaging can be found in [Petersson et al. 1999].

The ICA technology invoked here for analyzing fMRI makes use of ad-
vanced mean �eld (or alternatively variational) methods to carry out approx-
imative posterior inference in the generative ICA model; this is described in
greater detail in chapter 4. To the best of our knowledge all generative ICA
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models which until now have been used for analyzing functional neuroimages
have been assuming unconstrained continuous hidden sources. An elaborate
list of references of such ICA algorithms and applications can be found in
e.g. [Lee 1998; Girolami 2000].

The chapter is organized as follows. In section 5.2 and 5.3, we develop a
computationally e�cient algorithm for learning and inference in a noisy ICA
model with adaptive binary f0; 1g-sources, based on the cavity mean �eld
approach of [Opper and Winther 2000c]. In section 5.4, the number of hidden
sources is determined by the Bayesian information criterion (BIC) using the
TAP free energy as an approximation to the likelihood. In section 5.5 and
5.6 we show some results on an arti�cial data set and a real fMRI data set,
respectively. We end this chapter with a discussion in section 5.7.

5.2 The generative model for noisy ICA

Spatial and temporal ICA of functional neuroimages are both based on the
decomposition of the spatio-temporal observations in terms of a sum of pair-
wise �outer-products� of a set of characteristic images and time series. Here
we follow [Hansen 2000; Højen-Sørensen et al. 2001b] and consider noisy mix-
tures. For simplicity we present the theory for the case of temporal ICA, hence
assuming that the observation can be considered as a sum of characteristic
images activated by a set of corresponding independent times series. How-
ever, the choice is arbitrary and in the experimental evaluation we use the
theory for both spatial and temporal analysis of fMRI.

As for the model from chapter 4, the generative model considered in this
chapter assumes the D observations xt = fxdtg at time t = 1; : : : ; N to be an
instantaneously mixing of I hidden independent sources st = fsitg corrupted
with additive white Gaussian noise "t with covariance �, i.e.

xt = Ast + �t ; (5.1)

where A is the mixing matrix. It is useful to consider the canonical param-
eterization of the likelihood of the model parameters 
L = fA;�g and
sources st,

p(xtj
L; st) = p(xtjJ ;�t; st) = Z�1
L;te

� 1
2s

T
t Jst+�

T
t st : (5.2)

where logZL;t = 1
2 log det 2�� + 1

2x
T
t �

�1xt is the log partition function,
and we have introduced the interaction-matrix J and the data dependent
external �eld �t given respectively by

J = AT��1A and �t = AT��1xt : (5.3)

The aim of independent component analysis is to recover the unknown quan-
tities; the sources S = fstg, the mixing matrix A and the noise covariance�
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given an observed set of data X = fxtg. This can be done using the general-
ized EM algorithm in which the expected su�cient statistics hsti and hstsTt i
are computed based on an approximation to the posterior density of the hid-
den sources. The quality of the expected su�cient statistics depends on the
mean �eld method used in approximating the source posterior. A comparative
study of the solution to the inference problem provided by a naive mean �eld
(variational) approach and the more advanced linear response correction and
adaptive TAP approach was carried out in [Højen-Sørensen et al. 2001c] in
context of the noisy ICA model. In contrast to [Højen-Sørensen et al. 2001c]
we will in this chapter use the cavity approach [Opper and Winther 2000c] to
obtain a set of mean �eld equations as well as an approximation to the proba-
bility of the observed data, i.e. the minus free energy. Since this chapter deals
with recovering hidden sources from functional neuroimages, i.e. very large
data sets, we will, however, due to the computational complexity of the linear
response corrections and the adaptive TAP approach only be considering the
expected su�cient statistics provided by the naive mean �eld approach.

5.3 Cavity mean �eld and adaptive TAP for noisy ICA

We obtain the set of mean �eld equations for the noisy ICA model following
the adaptive TAP approach of [Opper and Winther 2000c] which considers
probabilistic models of the type

p(st) / �(st)e
1
2 s

T
t
~Jst+�

T
t st ; (5.4)

where the interaction-weights are symmetric, ~Jij = ~Jji, and ~Jii = 0 such
that all self-interactions are contained in the single variable constraint �(st) =Q
i �(si;t). Hence, for the noisy ICA we �rst have to remove all self-interaction

term in the likelihood into the single variable constraint. For notational sim-
plicity consider a particular example x = fxig, i.e. we will in the following
suppress the subscript t. Furthermore, let 
S = f�ig denote the parameters
of the source model consisting of I hidden sources parametrized by �i and let

 = f
L;
Sg denote the entire set of model parameters. The adaptive TAP
approach was derived in section 3.3.4 for models with probability densities
given by eq. (5.4). In context of the probabilistic ICA model the distribution
of interest is the source posterior

p(sj
;x) / p(s)Z�1
L e�

1
2s

TJs+�T s : (5.5)

Hence, all we need to do now is to express �(s) and ~J in terms of p(s) and
J . Clearly, we have

�(s) = p(s)Z�1
L e�

1
2s

Tdiag(J)s (5.6)
~J = diag(J)� J : (5.7)
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Hence, using the cavity approach we directly get the following approximation
to the marginal source posterior

p(sij
;x) / p(si)e
1
2 (Vi�Jii)s2i+(�i+i)si ; (5.8)

where p(si) is the prior distribution associated to the i'th source and the
mean of the cavity �eld is given by

i = �
X
j

(1� Æij)Jijmj � Vimi ; (5.9)

where Vi is the variance of the cavity �eld andmi is the posterior mean of the
hidden sources si. The �rst set of mean �eld equations are obtained directly
from eq. (5.8) by noticing that �i acts as an external �eld from which all
posterior cumulants of the sources can be obtained. Using the linear response
theorem an improved estimate of the posterior source covariance � can be
obtained

�LR = (�+ J)�1 ; (5.10)

where J = fJijg is the matrix of interaction-weights and

� � diag (�1; �2; : : : ; �N) ; where �i � Vi +

�
@mi

@�i

��1
� Jii :

(5.11)

In the adaptive TAP approach proposed by [Opper and Winther 2000c] the
variance of the cavity �eld is estimated by requiring consistency in the poste-
rior variance �MF

ii obtained by the naive mean �eld approach and the poste-
rior variance �LRii obtained through linear response correction which provide
the second set of mean �eld equations. To carry out any form of model selec-
tion we need to be able to compute the likelihood, i.e. the probability of the
observed data given the model parameters 
 associated to a modelM. This
is clearly intractable since we have to marginalize the hidden sources which
are coupled through the observed data. However, following section 3.3.4 we
obtain an approximation to the (minus) log-likelihood given by the TAP free
energy

� log p(xj
) = �
X
i

log

Z
dsip(si)e

1
2 (Vi�Jii)s2i+(�i+i)si

�1

2
mT (J � diag(J))m+ logZL

�1

2

X
i

Vi�ii � 1

2
log det�+

1

2

X
i

log�ii (5.12)

Although the presented mean �eld theory is feasible for a large class of
source priors (see chapter 4 for details) we will in this particular application
restrict ourself to consider binary f0; 1g�sources parameterized by
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p(si;t) = �
si;t
i (1� �i)

1�si;t ; (5.13)

where �i is the mean of the binary sources. The set of mean �eld equations
fmig are readily obtained by utilizing the external �elds f�ig, i.e.

mi = hSii = @

@�i
logZi =

�ie
1
2 (Vi�Jii)+(�i+i)

�ie
1
2 (Vi�Jii)+(�i+i) + (1� �i)

; (5.14)

where Zi is the partition function associated to the posterior p(sij
; xi), i.e.
the likelihood p(xij
), obtained when using the eq. (5.8) as an approximation
to the complete likelihood. The response function needed to improve the
estimate for posterior source covariance is then given by

@mi

@�i
= (1�mi)mi : (5.15)

In section 5.5 and 5.6 we will only consider expected su�cient statistics ob-
tained by the naive mean �eld approach which is then used in the E-step to
get improved estimates of the mixing matrix A, noise covariance matrix �
and source parameters f�ig. Using the naive mean �eld ansatz the approx-
imation to the log-likelihood is readily obtained from the TAP free energy
eq. (5.12), i.e.

log p(xj
) =
X
i

log

Z
dsip(si)e

� 1
2Jiis

2
i+(�i+i)si

+
1

2
mT (J � diag(J))m� logZL : (5.16)

In section 5.4, this approximation to the log-likelihood is used together with
the Bayesian Information Criterion (BIC) to determining the number of in-
dependent sources in the observed data.

5.4 Estimating the number of sources

The above development was predicated at ICA with a �xed number of sources.
When applying the model to real world data the number of latent components
is unknown. In [Hansen et al. 1999; Hansen 2000], the number of components
were determined for PCA and ICA, respectively using test set methods, e.g.
testing how well a �tted model on one set fMRI data generalizes to another
independent set. This approach, however, can su�er from basic violations of
the underlying statistical assumptions of stationarity across multiple runs.
Here we suggest to use an approximate Bayesian approach. The Bayesian
information criterion (BIC) [Schwarz 1978] is an approximation to the log
marginal likelihood p(X jM), whereM denotes the model. In context of the
noisy ICA model eq. (5.1) the modelM is simply determined by the number
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of hidden sources I . The log marginal likelihood is obtained by marginalizing
the model parameters 
, i.e.

p(X jM) =

Z
d
ef(
)p(
jM) ; (5.17)

where f(
) = log p(Xj
;M) denotes the log likelihood associated to model
M . As the amount of the data,N , grows to in�nity the log likelihood becomes
more sharply peaked in the neighborhood around its maximum ~
. Hence, a
reasonable approach is to evaluate the integral by Laplace integration, i.e. to
approximate the log likelihood by

f(
) � f(
̂) +
1

2
(
 � 
̂)TH(
 � 
̂) ; (5.18)

and evaluate the integral as

p(X jM) � ef(
̂)

Z
d
e

1
2 (
�
̂)TH(
�
̂)p(
jM) (5.19)

� ef(
̂)p(
̂jM)

Z
d
e

1
2 (
�
̂)TH(
�
̂) (5.20)

=
ef(
̂)p(
̂jM)p
det(�2�H)

; (5.21)

where the second approximation follows from the assumption that the prior
p(
jM) can be regarded as constant in the vicinity of the sharp peak at 
̂
and the equality follows from assuming that �H is positive de�nite. The log
marginal likelihood is then approximated by

log p(XjM)� log p(Xj
̂;M)+logp(
̂jM)� 1

2
log det(�2�H) (5.22)

� log p(Xj
̂;M)� j
j
2

logN ; (5.23)

where j
j denotes the number of model parameters associated to model M
which in this case is the number of sources. The last approximation follows
from retaining only those terms that increase with the sample size, i.e. the log-
likelihood which increases linearly with N and log det(�H) which increases
as j
j logN . The approximation eq. (5.23) is the Bayesian information cri-
terion (BIC). We see that the BIC combine the likelihood with some penalty
relating to the complexity of the model. Furthermore, it obviates the need for
parameter priors although the derivation assumes that the prior is non-zero
around 
̂. Notice that the BIC is only strictly valid for models with complete
data, i.e. where the values of all variables are speci�ed in each training case.
In the presence of hidden variables the log-likelihood does not necessarily
tend toward a peak as the sample size increases. In fact, it turns out that the
model penalizing term in the BIC in that case is the rank of the Jacobian
matrix of the transformation between the parameters of the network and
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the parameters of the observable variables [Geiger et al. 1998]. However, for
the present model we have an approximation for the likelihood of the model
parameters, i.e. we have been able to marginalize the hidden variables and
hence taken into account the volume contribution arising from that integral.
Hence, provided the TAP free energy yields a reasonable approximation to
the likelihood we are in a perfectly valid position to use the BIC for complete
data.

5.5 Analysis of an arti�cial data set

In this section we test the algorithm on a data set with known ground truth.
A total of 500 samples, each consisting of 50 observations, was drawn from
the generative model with 5 hidden sources with mean � = (:2; :25; :5; :5; :8)
and noise covariance � = �2I, where �2 = 1. In all the experiments pre-
sented in this chapter we have assumed diagonal noise covariance matrix
with common variance �2. Figure 5.1(a) shows as a function of the number
of hidden sources I , the log marginal likelihood p(XjI) computed using the
BIC with both the exact likelihood and the approximation provided by the
free energy. The log marginal likelihood for the hypothesis that no non-trivial
independent components are present in the data is shown assuming Gaussian
noise with free covariance and common variance. The log marginal likelihood
shown in the �gure is the average of 50 random parameter initializations. We
see that the BIC is successful in detecting the right number of hidden sources.
Although the free energy provides a lower bound on the log-likelihood, it is
worth noticing that the free energy indeed provides a very accurate estimate
of the log-likelihood when the data has more independent components than
the generative model being �tted. However, when the data has fewer indepen-
dent components than the �tted model the free energy tends to underestimate
the log-likelihood signi�cantly and hence also the log marginal likelihood. As
mentioned in section 5.4 this happens when there are many likely con�gura-
tions of the model parameters and the latent sources; this is especially the
case when the data is �tted by a too �exible model. Figure 5.1(b) shows a
histogram of the estimated source parameters � for 500 random parameter
initializations. This �gure clearly suggests that it is possible to recover the
source parameters from the observed data.

5.6 Analysis of a fMRI data set

In this section we analyze a fMRI data set acquired during a visual activa-
tion study. The data set was acquired by Dr. Egill Rostrup, Danish Center
of Magnetic Resonance Research. A single slice fMRI scan were acquired ev-
ery 330 millisecond in a para-axial orientation parallel to calcarine sulcus
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Fig. 5.1. Analysis of an arti�cial data set with D = 50, M = 5 and N = 500. In
this experiment the source parameters were � = (:2; :25; :5; :5; :8). (a) shows the log
marginal likelihood as a function of the number of hidden sources. The log marginal
likelihood is computed using both the exact likelihood and the free energy. At I = 0
the log marginal likelihood is calculated for a Gaussian with both a free covariance
(Æ) and a diagonal covariance with common variance (�). (b) shows the histogram
of the estimated sources parameters from 500 random initializations. The histogram
clearly re�ects the true statistics of the underlying sources.

using T2�-weighted EPI (@ 1.5 T). Each run of the experimental paradigm
consisted of 30 scans of �xation, 30 scans of stimulation and 60 scans of post-
stimulus �xation and was repeated 10 times. The visual activation consisted
of an annular full-�eld checkerboard reversing at 8 Hz. This is a very strong
stimulus of the primary visual areas and we expect these to respond with a
notable on-o� activation.

To reduce the computational cost we extracted the voxels belonging to
the brain using a simple morphological masking procedure on the single slice.
We perform spatial and temporal ICA for the resulting 4196x120 matrix of
observations, both with varying number of components.

In �gure 5.2 we show in panel (a) the log marginal likelihood as function
of the number of components for temporal ICA. A generative ICA model
with a single latent component is optimal in this case, and in panel (b)
we show the inferred posterior mean of the source and the on-o� binary
reference function (with values 0 and 0.5 for clarity). The ICA time series
shows a few scattered activations and a large contiguous activation beginning
approximately 3 seconds (10 scans) after stimulus onset. This is consistent
with typical hemodynamic delays found in primary visual cortex [Bandettini
and Wong 1998]. The spatial pattern associated to the inferred source is
presented in panels (c) and (d). In (c) we show the 2.5 % most positive (white)
and negative (black) activation �hot spots� superimposed on an anatomical
background which has the same spatial resolution as the data. In panel (d)
we provide a quantitative representation of the spatial pattern. The spatial
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Fig. 5.2. Analysis of a fMRI data set using temporal binary ICA. (a) shows the
log marginal likelihood as a function of the number of hidden sources. At I = 0
the log marginal likelihood is calculated for a Gaussian with common variance. (b)
shows the experimental paradigm (in solid) and the inferred sources. (c) shows the
.025 (black) and .975 (white) fractiles of the values in the eigenimage superimposed
on an anatomical reference. (d) shows a quantitative representation of the spatial
pattern retaining only the 0.1 and 0.9 fractiles of the eigenimage.

pattern is dominated by a large cluster of pixels in the primary visual areas.
We note two relatively weak, but bilateral negative activations that could be
auditive regions that are processing audible scanner noise when the subject
is not attending to visual input, as suggested in [Petersen et al. 2000] for the
same data set.

In �gure 5.3 we present the results of searching for spatially independent
components. In panel (a) we show the log marginal likelihood with nine be-
ing the most probable number of latent components. This is consistent with
[McKeown et al. 1998] who found a high number of interpretable components
using spatial ICA. In panel (b) and (c) we show the binary images and the
associated time series. The time series have been globally post-normalized
such that the maximal value is 1. Notice that some of the binary images are
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Fig. 5.3. Analysis of a fMRI data set using spatial binary ICA. (a) shows the log
marginal likelihood as a function of the number of hidden sources. At I = 0 the
log marginal likelihood is calculated for a Gaussian with common variance. The log
marginal likelihood is the average of 30 random parameter initializations. (b) shows
the posterior mean of the nine hidden binary images. (c) shows the corresponding
responses associated to each of the nine hidden images.

mainly in the o�-state, while others are mainly in the on-state. In particular,
two components (4 and 7) have strong responses which are highly correlated
with the stimulus. Furthermore, these two component time series are active
only in the expected regions for visual stimulation. The weaker signals are
confounds that are found globally (components 1,3,5,6,8,9) or locally (com-
ponents 2).
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5.7 Discussion

In this chapter we presented a general approach to ICA with binary sources
and applied to a fMRI data set from a visual activation study. It was ar-
gued that a binary source assumption is indeed appropriate for explorative
analysis of the on-o� type of stimulation commonly used in fMRI activation
studies. We proposed using the BIC as an approximation for the log marginal
likelihood and used this to determine the number of hidden sources. We ap-
plied the scheme for both spatial and temporal ICA. Interestingly, the two
models lead to rather di�erent �optimal� descriptions. While both agree on
the form of the image and time series for the activation components, the
spatial ICA suggest to invoke eight additional independent components with
weaker signal strengths in the optimal model. Future studies should be aimed
at understanding of the signi�cance of this observation.



6. Approximate Message Passing

In this chapter we describe a possible approach for carrying out approximate
message passing in probabilistic models for which marginalization of some of
the clique potentials turns out to be intractable. The approach is illustrated
on a generative model for on-line classi�cation as well as on a simple extension
of the previously considered probabilistic ICA model which takes into account
temporal correlations between sources. Common for these two probabilistic
models is that they can be speci�ed in terms of the DAG for the state-
space model considered in section 2.4.2. Although the approach, at least in
principle, is generally applicable, the two di�erent examples suggest that the
success of this methodology is highly dependent of the particular probabilistic
model under consideration.

6.1 Moment passing scheme

The easiest way to illustrate the moment passing scheme is to apply it on
a speci�c model. Figure 6.1 shows a fragment of the junction tree associ-
ated to the state-space model analyzed in section 2.4.2. With reference in
this fragment, let us consider the forward-pass in which messages are be-
ing passed towards the root clique. Provided the separator potentials  �(xt)
and ~ �(xt+1) have already been updated, we can now update the separator
potential  �(xt+1) using the marginal-propagation update eq. (2.15), i.e.

 �(xt+1) =
Z
dxt 

�(xt) ~ �(xt+1)�(xt; xt+1) : (6.1)

However, for general potentials it is not possible to analytically evaluate the
integral of the product of separator and clique potentials. In this speci�c ex-
ample, suppose that it is the updated separator potential  �(xt) which ren-
ders an analytically evaluation of the integral impossible. Instead, provided
the evaluation of the integral becomes doable, simply by replacing  �(xt)
with an appropriate Gaussian approximation, we could then carry out the
approximate marginal-propagation update

 �(xt+1) =
Z
dxt 

�
g (xt)

~ �(xt+1)�(xt; xt+1) ; (6.2)
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Fig. 6.1. Illustration of the moment passing scheme. Shows a fragment of the
junction-tree associated to the state-space model. In this example all the separator
potentials f �(xt)g are being approximated by Gaussians in the BKL sense.

where  �g(xt) is a Gaussian approximation to the separator potential  �(xt).
In order to proceed further with the message passing recursion we need to
calculate a Gaussian approximation to the newly updated separator poten-
tial  �(xt+1). One way to obtain the mean and variance of this Gaussian
approximation is to calculate the cumulant generating function

K(�) = log

Z
dxt+1 

�(xt+1)e�xt+1 ; (6.3)

and �nd the �rst two cumulants, �1 and �2, using the relation

�k =

�
@k

@�k
K(�)

�����
�=0

: (6.4)

Besides of providing the mean and variance directly, another advantage of
using the cumulant generating function instead of the moment generating
function is that we do not need to know the normalization of the product of
potentials. In the next section we illustrate this scheme on a model for on-line
classi�cation.

6.2 A generative model for on-line classi�cation

Although the following generative model seems somewhat arti�cial it is
closely related to a Bayesian approach for on-line learning known as assumed-
density �ltering (e.g. see [Opper 1998] or more recently [Minka 2001]). In the
Bayesian approach for on-line learning, the cases in the training set are being
processed sequentially in such a way that the posterior after one training ex-
ample acts as the prior for the next. In this section we consider a generative
model for on-line classi�cation (with labels yt = �1) given by
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p(x0) = N (0;�0) (6.5)

p(xtjxt�1) = N (Axt�1;�) (6.6)

p(ytjxt) = �(ytw
Txt) : (6.7)

Since this model possesses the same conditional independence relations as
the state-space model from section 2.4.2 we can reuse the junction-tree from
�gure 2.8. In that case the potentials are given by

�(x0; y0) = �(y0w
Tx0)N (0;�0) (6.8)

�(xt;xt+1) = N (Axt;�) (6.9)

�(xt; yt) = �(ytw
Txt) : (6.10)

In this section we will only consider the forward recursion since the backward
recursion essentially follows along the same lines. Assume that we have al-
ready made a Gaussian approximation to the separator potential  �(xt); in
other words we assume that we have at hand

 �g (xt) = N (�tjt;�tjt) : (6.11)

The marginal-propagation update for the next separator potential  (xt+1)
is then given by

 �(xt+1) = ~ �(xt+1)
Z
dxt 

�
g(xt)�(xt;xt+1) (6.12)

= ~ �(xt+1)N (�t+1jt;�t+1jt) ; (6.13)

where the mean �t+1jt and the covariance matrix �t+1jt of the one-step-
ahead predictor can be computed by

N =

N (xt;�tjt;�tjt)N (xt+1;Axt;�)

�
1jxt+1

(6.14)

=

�
N�

��
xt
xt+1

�
;

�
�Ttjt�tjt
0

�
;

�
�tjt +AT�A �AT�

��A I

���
1jxt+1

(6.15)

= N�(xt+1;t+1jt;�t+1jt) : (6.16)

Here we have made use of the canonical parameterization of the Gaussian
density to �nd the canonical parameters for the one-step-ahead density

t+1jt = �A
�
�tjt +A

T�A
��1

�Ttjt�tjt (6.17)

�t+1jt = ���A ��tjt +AT�A
��1

AT� : (6.18)

By applying the matrix inversion lemma eq. (A.9) we can obtain the corre-
sponding mean and covariance matrix

�t+1jt = A�tjt (6.19)

�t+1jt = A�tjtAT +� ; (6.20)

which we alternatively could have derived directly by taking the conditional
expectation and variance of xt+1 = Axt + ", where the conditioning is on
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the observed sequence fy1; y2; : : : ; ytg and " is Gaussian noise with covariance
matrix �.

To complete the update of the separator potential  (xt+1) we need to
consider the e�ect of multiplying the label driven potential ~ �(xt+1) onto
the Gaussian one-step-ahead predictor. Since this is obviously trivial for the
case where the class label Yt+1 is not observed we only consider here the case
where Yt+1 = _yt+1. In this case the cumulant generating function for the
updated separator potential is given by

K(�) = log

Z
dxt+1�( _yt+1w

Txt+1)N (�t+1jt;�t+1jt)e�
Txt+1 (6.21)

=
1

2
�T�t+1jt� + �Tt+1jt� + logL(�) ; (6.22)

where

L(�) =

Z
dxt+1�( _yt+1w

Txt+1)N (~�t+1jt;�t+1jt) (6.23)

=

Z
dsdxt+1Æ(s� _yt+1w

Txt+1)�(s)N (~�t+1jt;�t+1jt) ; (6.24)

and ~�t+1jt = �t+1jt + �t+1jt�. In eq. (6.24) we have introduced the new
scalar variable s = _yt+1w

Txt+1 by making use of the delta-function trick.
Since the distribution of this new variable is clearly Gaussian we can �nd the
mean and variance by direct calculations

�s = hsi = _yt+1w
T hxt+1i = _yt+1w

T ~�t+1jt (6.25)

s2
�
= wT



xt+1x

T
t+1

�
w = wT (�t+1jt + ~�t+1jt ~�

T
t+1jt)w (6.26)

�2s = h(s� hsi)2i = 
s2�� hsi2 = wT�t+1jtw : (6.27)

Hence we have

L(�) =

Z
ds�(s)N (�s ; �

2
s) (6.28)

=

r
�s
2�

exp

�
�1

2
�s�

2
s

�Z
ds�(s) exp

�
�1

2
�ss

2 + ss

�
(6.29)

= �
�
s=
p
�s(�s + 1)

�
; (6.30)

where �s = 1=�2s and s = �s�s. To obtain the last equation we have made
use of the following result

Z
dx exp

�
�1

2
ax2 + bx

�
�(cx+ d) =

�( bc+adp
a2+ac2

)
p
aD( bp

a
)
; a > 0 : (6.31)

The cumulant generating function associated to the updated separator po-
tential  �(xt+1) therefore reduces to
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K(�) = 1

2
�T�t+1jt� + �Tt+1jt� + log� (�t+1) ; (6.32)

where we for notational convenience have introduced

�t+1 =
_yt+1w

T (�t+1jt +�t+1jt�)q
1 +wT�t+1jtw

: (6.33)

The mean is then found by taking the derivative

@K(�)
@�T

= �T�t+1jt + �Tt+1jt +
D(�t+1)

�(�t+1)

@�t+1
@�T

(6.34)

= �T�t+1jt + �Tt+1jt +
D(�t+1)

�(�t+1)

_yt+1w
T�t+1jtq

1 +wT�t+1jtw
; (6.35)

and evaluate it in � = 0 which then yields the mean of the newly updated
separator potential

�t+1jt+1 = �t+1jt +
D(�

(0)
t+1)

�(�
(0)
t+1)

_yt+1w
T�t+1jtq

1 +wT�t+1jtw
; (6.36)

where �(0)t+1 denotes �t+1 evaluated in � = 0, that is

�
(0)
t+1 =

_yt+1w
T�t+1jtq

1 +wT�t+1jtw
: (6.37)

Similarly, to derive the covariance matrix we start by calculating the Hessian

@2K(�)
@�@�T

= �t+1jt +
�
@

@�

D(�t+1)

�(�t+1)

�
_yt+1w

T�t+1jtq
1 +wT�t+1jtw

(6.38)

where we have introduced

@

@�

D(�t+1)

�(�t+1)
= �H(�t+1)

@�t+1
@�

; (6.39)

and

H(�t+1) =

�
�t+1 +

D(�t+1)

�(�t+1)

�
D(�t+1)

�(�t+1)
: (6.40)

Evaluating the Hessian in � = 0 yields the covariance matrix of the newly
updated separator potential

�t+1jt+1 = �t+1jt �H(�
(0)
t+1)

�t+1jtwwT�t+1jt
1 +wT�t+1jtw

: (6.41)
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Fig. 6.2. Gain factors for the parameter updates in the on-line classi�cation model.
The gain factor for the mean and covariance matrix is D(�)=�(�) and H(�), re-
spectively.

The basis case for the forward recursion is readily identi�ed from the ordinary
datum update recursion, since the cumulant generating function in the basis
case basically is of the same type as eq. (6.21). Hence the basis case for the
forward recursion is given by

�0j0 =

r
2

�

_y0w
T�0p

1 +wT�0w
(6.42)

�0j0 = �0 � 2

�

�0ww
T�0

1 +wT�0w
: (6.43)

Figure 6.2 shows as a function of �t+1 the gain factor for both the mean and
covariance updates. Essentially this �gure shows that we tend to make the
most radical parameter changes when the observed labels are very unlikely
under our one-step-ahead predictive distribution. Similarly, we tend not to
make any changes to the parameters as long as we are predicting well; in
other words we simply discount the value of unsurprising labels.

After having processed the entire dataset sequentially using these forward
recursions we are left with �ltered state estimates. Obviously, we could carry
out a subsequent set of backward recursions which would provide us with
smoothened state estimates. However, it should always be kept in mind that
both the �ltered and smoothened state estimate is just an approximation to
the true posterior density.
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Fig. 6.3. Graphical representation of a generative model for ICA with temporal
correlated sources. The connections from each of the sources in Xt to every mi-
crophone in Y t are not shown explicitly but simply implied by a single connection
between Xt and Y t. The gray horizontal arrow shows the temporal dependence of
each source as well as the a priori independence between sources.

6.3 ICA with temporal correlated sources

In this section we consider the implication of performing the moment passing
scheme on a generative model for ICA with temporal correlated sources. The
model, which is a simple extension of the ICA model considered in chapter 4,
takes the form

p(x0) =
Y
m

1

2
�
(m)
0 e��

(m)
0 jx(m)

0 j (6.44)

p(xtjxt�1) =
Y
m

1

2
�(m)e��

(m)jx(m)
t �x(m)

t�1j (6.45)

p(ytjxt) = N (Axt;�) ; (6.46)

where �(m)
0 and �(m) is the Laplacian decay rates associated to the m'th

source. The graphical representation of this model is shown in �gure 6.3.
Whereas the intractable part of the inferential step for the on-line classi�ca-
tion model was the measurement update, it is in this case the time update
which is computationally intractable. We de�ne the following set of potentials

�(x0;y0) = N (Ax0;�)
Y
m

1

2
�
(m)
0 e��

(m)
0 jx(m)

0 j (6.47)

�(xt;xt�1) =
Y
m

1

2
�(m)e��

(m)jx(m)
t �x(m)

t�1j (6.48)

�(xt;yt) = N (Axt;�) : (6.49)

Again with reference in �gure 6.1, assume that we have already obtained
 �g(xt) which is a Gaussian approximation to the separator potential  �(xt).
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We now follow along the same lines as in section 6.2 and calculate the cumu-
lant generating function of the updated potential  �(xt+1). Since the likeli-
hood is Gaussian we will, however, this time, restrict ourself to �nd a Gaussian
approximation for the time update, i.e. we consider the cumulant generating
function

K(�) = log

Z
dxt 

�
g(xt)

Z
dxt+1�(xt;xt+1)e

�Txt+1 (6.50)

=
X
m

(�(m))2

(�(m))2 � (�(m))2
+ log

Z
dxt 

�
g(xt)e

�Txt : (6.51)

The �rst term in the last equation is simply a sum of cumulant generat-
ing functions for zero mean Laplacian distributions with variances 2=(�(m))2

whereas the last term is the moment generating function of the Gaussian
approximation  �g(xt). This is, however, kind of a depressing result since it
shows that the mean and the covariance matrix of the approximating Gaus-
sian for the time update  �(xt+1) is simply given by �t+1jt = �tjt and
�t+1jt = �tjt+I�, respectively. Using this approximation the remaining re-
cursions are identical to the Kalman �lter (and RTS) updates. This approach
for temporal ICA clearly seems dubious. However, it should be remembered
that the usual requirement of non-Gaussian of the source is not required when
dealing with temporal correlated sources.



7. Conclusion

The Road goes ever on and on
Out from the door where it began.
Now far ahead the Road has gone,
Let others follow it who can!
Let them a journey new begin,
But I at last with weary feet
Will turn towards the lighted inn,
My evening-rest and sleep to meet.

J.R.R. Tolkien

This chapter summarizes the work presented in the thesis and outlines pos-
sible conclusions. Furthermore, in the end of this chapter there is given some
suggestions for possible directions one could go to carry on this work.

7.1 Summary of the work

In this thesis we investigated mean �eld methods for carrying out approx-
imate inference in intractable graphical models. In particular, we applied
increasingly advanced mean �eld methods on a generative model for inde-
pendent component analysis where the sources are instantaneously mixed.
For a speci�c family of source priors we derived analytical expressions for the
posterior mean and covariance of the sources which are needed for carrying
out learning by expectation-maximization. In fact, it was shown that sim-
ply guessing a reasonable functional form for these quantities is su�cient to
perform source separation. This is in a sense related to the concept of using
contrast-functions in blind source separation. For algorithmic design, this is
a useful property since it gives us some freedom to make ICA algorithms that
only makes use of functions that are easy to evaluate. It was experimentally
shown that overcomplete ICA is not possible within the naive mean �eld ap-
proach. However, by simply improving the naive mean �eld estimate of the
posterior source covariance by a linear response correction step it turned out
that separation of more sources than sensors was indeed possible.

We carried out a exploratory analysis of a fMRI dataset from a visual
activation study using the computationally e�cient ICA algorithm that one
gets by assuming binary sources. With reference in the experimental setting
in functional activation studies, we motivated the seemingly naive choice
of using binary f0; 1g-sources in this context. We would like to emphasize
that we by no means are claiming that the presented generative model of
the measured BOLD signal is solidly founded from a physiological point of
view. However, this particular choice of sources naturally leads to a simple
interpretation of the observed signal; something which is entirely missed by
many of the �of the shelf� ICA approaches used in this context. In spite of
its simplicity, this method indeed seems to infer reasonable brain activation
patterns.
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In the end of the thesis we considered a way for carrying out approximate
message passing. There we used the moment matching property of the BKL
distance instead of the KL divergence. We considered two examples; a gen-
erative model for on-line classi�cation with binary labels and a generative
model for ICA with temporal correlated sources. However, whether or not
these models are useful remains to be investigated.

The results presented in this thesis shows that we for some type of prob-
abilistic models indeed obtain better results by using simple tricks such a
linear response correction or more advanced mean �eld methods like e.g.
TAP. However, since the computational cost typically increases dramatically
for the advanced mean �eld methods the improvement of the quality of the
solution should be of a considerable size before invoking these methods in
practical applications.

7.2 Suggestions for future work

The advanced mean �eld methods considered in this text are applicable to
many of the models which have been proposed in the machine learning com-
munity and for which the naive mean �eld approach has proven to be e�cient.
It is still an open question whether the advanced mean �eld methods are fea-
sible for any of those models. For instance, the naive mean �eld approach was
used to make approximate inference in the Factorial Hidden Markov Model
[Ghahramani and Jordan 1997] and it is likely that the advanced methods
would be able to improve the quality of the inferential step; except for the
distribution of the hidden states, this model is essentially identical to the
generative model for temporal ICA considered in section 6.3.

At this time the persistent reader might have guessed that the subject
of this text is deterministic methods (as opposed to sample based methods)
for approximating inference in intractable probabilistic models. One obvious
way for future work is of course that of combining the two approximating
modalities into one e�cient method. In my opinion, a must more interest-
ing question is how the naive mean �eld approximation and sample based
methods are related too each other as suggested in section 3.2.3. Essentially
we need to know the answer to this question in order to do better than just
combining the two modalities in a more or less ad hoc fashion.

Another really interesting direction of research is that of approximate
inference by loopy belief propagation and its connection to ordinary mean
�eld theory. In the recent years there has been quite a lot of progress in
this �eld of research both experimentally and theoretically (e.g. see [Yedidia
2000]).



A. The multivariate Gaussian density

This appendix introduces the two parameterizations for the multivariate
Gaussian density which are used in this thesis. Furthermore, for these two
parameterizations we summarize the well known results for marginalizing and
conditioning on variables in the Gaussian density since these operations hap-
pens to appear frequently in many highly celebrated statistical models, e.g.
Gaussian linear state space models and Gaussian processes (also known as
Kriging or optimal prediction/interpolation models).

The moment parameterization of the Gaussian density is given by

N (x;�;�) = Z�1 exp
�
�1

2
(x� �)T��1(x� �)

�
; (A.1)

where � is the mean,� is the covariance matrix and Z = j2��j1=2 is the nor-
malizing constant. The canonical parameterization of the Gaussian density
is given by

N�(x;;�) = Z�1
� exp

�
�1

2
xT�x+ Tx

�
; (A.2)

where � = ��1 and  = ��1� are known as the canonical parameters and
Z� = Z exp

�
1
2�

T��1�
�
is the normalizing constant expressed in terms of

the parameters associated to the moment parameterization. In the canonical
parameterization, the mean and covariance matrix is obviously given by � =
��1 and � = ��1, respectively.

In order to state the standard results for marginalization and conditioning
of Gaussian random variables x, it is convenient to partition the vector x into
two subvectors x1 and x2 and consider the joint densities

p(

�
x1
x2

�
) = N

��
x1
x2

�
;

�
�1
�2

�
;

�
�11 �12

�21 �22

��
(A.3)

= N�

��
x1
x2

�
;

�
1
2

�
;

�
�11 �12

�21 �22

��
: (A.4)

The following standard expressions essentially follows from block-diagonalizing
the partitioned covariance matrix � and the partitioned inverse covariance
matrix � as well as using knowledge about Gaussian integrals and the trick
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of completing squares. The block-diagonalizing step can be carried out using
a Gauss-elimination procedure in which suitable matrices are premultiplied
and postmultiplied onto the partitioned matrix.

In short, by conditioning on x2 it can be shown that the conditional
density expressed in terms of the two parameterizations is given by

p(x1jx2) = N (x1;�1 +�12�
�1
22 (x2 � �2);�11 ��12�

�1
22 �21) (A.5)

= N�(x1;1 ��12x2;�11) : (A.6)

Similarly, it can be shown that marginalizing with respect to x2 yields the
marginal density

p(x1) = N (x1;�1;�11) (A.7)

= N�(x1;1 ��12�
�1
22 2;�11 ��12�

�1
22 �21) : (A.8)

Equations (A.5)�(A.8) show that there is no way of saying which of the two
parameterizations are the better in terms of the computational cost. In fact,
while one parameterization is advantageous for one type of Gaussian manip-
ulations it turns out to be disadvantageous for the other type of Gaussian
manipulations. In other words, for both parameterizations we must at some
time face the computationally expensive problem of inverting a matrix.

When changing between the two parameterizations it is convenient to
make use of the matrix inversion lemma[Anderson and Moore 1979] which
establish the identity

�
A�BD�1C

��1
= A�1 +A�1B

�
D �CA�1B

��1
CA�1 (A.9)

Furthermore, using the matrix inversion lemma and the fact that

CA�1BD�1 = I � �D �CA�1B
�
D�1 ; (A.10)

we can now derive another useful identity

�
A�BD�1C

��1
BD�1 = A�1B

�
D �CA�1B

��1
: (A.11)

The identity provided by the matrix inversion lemma in a sense falls out
during the derivation of the marginal and conditional Gaussian densities. To
be speci�c, let M denote the partitioned matrix and let U and L denote
an upper and lower triangular matrix, respectively. Clearly we can block-
diagonalizeM using both UML and LMU and use both results to derive
expressions for the inverseM�1. Obviously, the two approaches should yield
the same inverse M�1. The matrix inversion lemma is then obtained by
simply equating entries in the two expressions for the inverse M�1. Since
the matrix inversion lemma is derived by considering the inversion of block
matrices it seems reasonable that this identity is indeed useful when juggling
between the two parameterizations of the Gaussian density.



B. UAI*2001 submission

This appendix contains the paper:

de Freitas J. F. G.,Højen-Sørensen P. A. d. F. R., Jordan M. I. and Rus-
sell S.: Variational MCMC. Submitted to the 17th Conference on Uncertainty
in Arti�cial Intelligence. (2001).





C. Neurocomputing*2001 submission

This appendix contains the paper:

Højen-Sørensen P. A. d. F. R., Winther O. and Hansen L. K.: Analysis of
Functional Neuroimages using ICA with Adaptive Binary Sources. Submitted
to Journal of Neurocomputing (2001).





D. Neural Computation*2000 submission

This appendix contains the paper:

Højen-Sørensen P. A. d. F. R., Winther O. and Hansen L. K.: Mean Field
Approaches to Independent Component Analysis. Submitted to Journal of
Neural Computation (2000).





E. NIPS*2000 contribution

This appendix contains the paper:

Højen-Sørensen P. A. d. F. R., Winther O. and Hansen L. K.: Ensem-
ble Learning and Linear Response Theory for ICA. In Advances in Neural
Information Processing Systems, (NIPS 13), NIPS*00. (2000).





F. NNSP*2000 contribution

This appendix contains the paper:

Højen-Sørensen P. A. d. F. R., de Freitas J. F. G. and Fog T.: On-
line Probabilistic Classi�cation with Particle Filters. In Proceeding of IEEE
International Workshop on Neural Networks for Signal Processing. NNSP*00,
(2000).





G. NIPS*1999 contribution

This appendix contains the paper:

Højen-Sørensen P. A. d. F. R., Hansen L. K. and Rasmussen C. E.:
Bayesian modelling of fMRI time series. In Advances in Neural Information
Processing Systems, (NIPS 12), NIPS*99. (1999).





H. HBM*1999 contribution

This appendix contains the paper:

Højen-Sørensen P. A. d. F. R., Hansen L. K. and Rostrup E.: A Bayesian
approach for estimating activation in fMRI time series. In Proceedings of
the 5th Int. Conf. on Functional Mapping of the Human Brain. NeuroImage
(1999).
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