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Abstract

Deformable template models are a very popular and powerful tool

within the �eld of image processing and computer vision. This thesis

treats this type of models extensively with special focus on handling

their common diÆculties, i.e. model parameter selection, initializa-

tion and optimization. A proper handling of the common diÆculties

is essential for making the models operational by a non-expert user,

which is a requirement for intensifying and commercializing the use

of deformable template models.

The thesis is organized as a collection of the most important articles,

which has been published during the Ph.D. project. To put these

articles into the general context of deformable template models and

to pass on an overview of the deformable template model literature,

the thesis starts with a compact survey of the deformable template

model literature with special focus on representation, model param-

eter estimation, initialization, optimization and performance mea-

sures. The original articles - aligned a bit in notation and corrected

from discovered spelling errors and other typos - are enclosed in the

appendices.

Compared to the literature one contribution is a general scheme for

estimation of the model parameters, which applies a combination

of a maximum likelihood and minimum distance criterion. Another

contribution is a very fast search based initialization algorithm using

a �lter interpretation of the likelihood model. These two methods

vi
can be applied to most deformable template models making a non-

expert user able to use the model.

A comparative study of a number of optimization algorithms is also

reported. In addition a general polygon-based model, an ellipse

model and a textile model are proposed and a number of applica-

tions have been solved. Finally the Grenander model and the Active

Appearance Model have been explored and some extensions are pre-

sented.
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Notation

The notation should be quite consistent throughout the thesis. Bold

lowercase letters denotes vectors, x = (x0; :::; xn�1), and bold upper-

case letters indicates matrices, X.

� regularization constant.


x parameter space of x.

P (v) prior model/distribution.

P (vjy) posterior model/distribution.

P (yjv) likelihood or observation model/distribution.

� covariance matrix.

� model parameters.

v template parameters.

v
t training sample of template parameters.

^v MAP estimate of the template parameters.

U(v;y) energy term of the posterior distribution.

y an image.

z normalizing constant.

X

0 transposed of a matrix X

xii
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Chapter 1

Introduction

The family of deformable template models has been presented under

many di�erent names, where the best known probably are Snakes,

Active Contour models, Active Shape models, deformable models

and deformable templates. A general de�nition of deformable tem-

plate models could be:

A deformable template model can be characterized as a

model, which under an implicit or explicit optimization

criterion deforms the shape to match a known type of

object in an image.

In most cases the core task of the deformable template model is to

perform segmentation of a known type of object, but the models can

also be applied to more general tasks, e.g. image retrieval [16, 102,

104] and tracking [18, 99, 145, 146, 171].

Even though deformable template models have been a very active

research �eld for more than a decade, a recent review of statistical

pattern recognition [104] pinpoints deformable models as a one of

the frontiers of pattern recognition.

2 Chapter 1. Introduction

1.1 Bayesian Framework

The design and use of deformable template models �ts neatly into

the Bayesian framework for image analysis. We refer to Besag [15] or

Mumford [137] for a general introduction to the Bayesian framework

for image analysis. In a Bayesian setting, the deformable template

model framework can be summarized as:

1. Choose a representation of the object, where the template pa-

rameters, v 2 
v, direct or under some mapping de�ne the

object.

2. Construct a prior probability distribution P (vj�), where � cor-

responds to the model parameters, which determine the prop-

erties of the distribution.

3. Formulate a likelihood or observation model, P (yjv; �), which

de�nes the probability of an image, y 2 
y, given any partic-

ular realization of v.

4. Combine the prior distribution and the observation model to

the posterior distribution, P (vjy; �), by Bayes theorem.

P (vjy; �) =

P (vj�)P (yjv; �)

P (yj�) (1.1)

/ P (vj�)P (yjv; �) (1.2)

5. Select or estimate the model parameters, �.

6. Make inference e.g. by estimation of the maximum a posteriori

(MAP):

^v = max
v

P (vjy; �) (1.3)

Note, that �, for simplicity, is omitted in the distribution functions in

most of this thesis as well as in the literature, i.e. P (vjy) = P (vjy; �)

etc.
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The posterior distribution can be interpreted as an (explicit) opti-

mization criterion and under the weak assumption that the posterior

distribution, P (vjy), is Gibbs distributed, the posterior distribution

can be expanded to:
P (vjy) =

1
z

expf�U(v;y)g (1.4)

where U(v;y) : 
v ! R is the energy function and z is a normal-

izing constant, which ensures a proper statistical distribution, i.e.R

v

P (vjy)dv = 1. Due to the dimensionality of 
v it is usually

infeasible to determine the value of z. In practice it is of little im-

portance, since z is a constant, which make the optimization in (1.3)

invariant to the actual value of z.

It is very common to formulate the optimization criteria as an energy

function instead of a posterior distribution. Under the assumption

that P (vjy) is Gibbs distributed and z is constant, maximizing the

probability is equivalent to minimizing the energy, since:

^v = max
v

P (vjy; �)

= max
v

�U(v;y; �)� log(z)

= min
v

U(v;y; �) (1.5)

This shows that the probabilistic formulation is equivalent to the en-

ergy formulation when applied to MAP estimation.

In general we prefer a Bayesian formulation, because it gives a natu-

ral separation of model and image contributions in P (v) and P (yjv),

and it provides the opportunity to simulate and thus visualize the

appropriateness of the prior model. Further it provides several ways

to make inference in P (vjy).

1.2 The Prior and Likelihood Model

The basic principle of the prior model, P (v), is to introduce prior

knowledge into the model. The attraction of using prior knowledge

4 Chapter 1. Introduction

is simply that it is so hard to make progress without it [18]. One

interpretation of the prior model is to see it as a regularizer [147, 148],

which regularizes the shape of the template. In fact, the prior model

in the Snake [108] (equal to the internal energy) is a generalization

of a Tikhonov [173] regularizer [108].

From a statistical point of view the prior model imposes a distribu-

tion on the template parameters. This distribution introduces cor-

relation between parameters and governs the overall deformation.

Fisker et al. [65] demonstrate that in the case of the prior energy

being a quadratic term, the prior model usually corresponds to a

multi-dimensional Gaussian. As demonstrated later this result has

important applications within model parameter estimation as well as

model simulation and validation. Using this result the prior model

of the snake correspond to a multi-dimensional Gaussian with the

mean equal to zero and the inverse covariance equal to a pentadiag-

onal banded matrix.

The likelihood or observation model, P (yjv), is the data driven term.

The model de�nes the interaction between a realization of the tem-

plate v and an observed image y. Basically it de�nes how well the ac-

tual template match the object in the image. Most likelihood models

are based on image intensity [23, 41, 35, 85, 86, 167, 155, 189] and/or

gradient (edge) information [33, 34, 72, 101, 102, 108, 118, 163, 189],

but in principle all kinds of information can be combined e.g. tex-

ture, colour or motion.

1.3 Common DiÆculties

In general, the current approaches to deformable template models

su�ers from a number of common diÆculties. Jain et al. [101] sum-

marize the diÆculties as:

� The user needs to assign weights to di�erent components of the

model. The selection of these weights and other parameters
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determine the success of a deformable template model (Model

Parameter Selection).

� The algorithms need a good initialization to give meaningful

results, otherwise they get stuck at spurious local minima and

thus lead to incorrect results (Initialization).

� The large number of parameters makes the numerical solutions

diÆcult (Optimization).

In short, the common diÆculties can be summarized as Model Pa-

rameter Selection, Initialization and Optimization. These diÆculties

are the main reason why most models only can be applied by an ex-

pert. This is not satisfactory since a good model should be applicable

by a non-expert user. The handling and solution to these diÆculties

are covered intensively in the following chapters.

1.4 Popular Deformable Template Models

Jain et al. [101, 102] divide deformable models into two groups:

Free form and Parametric. Free form deformable templates have no

explicit global structure because their prior model contains only local

continuity and smoothness constraints. The best known example of

free form models are Snakes [108] and Ballons [33, 34]. In parametric

deformable models prior knowledge of the global structure is included

using a parameterized template. Examples of parametric deformable

models are Grenander's model [85], Active Shape model [41], Active

Appearance model [35] and Blake's Active Contour [18]. The cited

models all have the important property of being general in the sense

that they can be applied to an object with an arbitrary shape. A

more detailed overview of the properties of the most popular general

models is given in table 1.1. The �rst reference in the table is the "key

reference" and Eucl. is an abbreviation for Euclidean parameters

(position, scale and rotation).

6 Chapter 1. Introduction

The largest group of deformable models are formulated and tuned

for a speci�c object. Properly the best-known speci�c model is the

eye model and a mouth model proposed by Yuille et al. [189]. For

some problems it is necessary to incorporate speci�c assumption into

the model to be able to solve the problem, but many problems could

have been solved directly by one of the general models.

It is outside the scope of this thesis to give a general description of

all the models in the literature. For a general survey we refer to the

�rst part of the book on Active Contours by Blake and Isard [18]

and the survey papers by McInerney and Terzopoulos [132] and by

Jain et al. [101].

1.5 Relationship To Other Methods

Deformable template models have close relations to a number of

other computer vision and image processing methods, where the

most import are covered in the following sections.

1.5.1 Rigid Template Matching

Early research in template matching concentrated mainly on the sim-

ple rigid shape matching, where a prototype template was trans-

formed by simple transformations like translation, rotation and scal-

ing before it was matched to the image. The matching is typically

performed by a simple correlation-based method using a �ltering ap-

proach, see e.g. [2, 162]. This type of matching is still very popular

in machine vision applications.

The rigidness of this approach makes it insuÆcient for objects with

larger shape variations, which basically lead to the development of

deformable template models. For many models the likelihood model,

P (yjv), can be interpreted as correlation-based match of a deformed

template.
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Table 1.1: Properties of popular 2D deformable template models
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1.5.2 Hough Transform

The Hough transform was �rst proposed by Hough [95]. Since then,

numerous papers have improved the Hough transform, where the

(�; �)-representation of lines [58] and the generalization to arbitrary

shapes for any scale and any rotation [11] are some of the most

inuential. As demonstrated by Stockman and Agrawala [166], the

Hough transform is simply an eÆcient implementation of template

matching. For more a extensive review we refer to the survey papers

[98, 122].

In a deformable model setting the Hough transform can be inter-

preted as a deformable model with a uniform prior, where the ini-

tialization is performed by an intensive but eÆcient search and the

optimization is omitted.

1.5.3 Registration

Image registration requires �nding an optimal transform between an

image pair, the source and target image [123]. For a review of image

registration, we refer to one of the survey papers [7, 21, 123, 129,

177, 183].

Matching a parametric deformable model to an object in an image

can in general be interpreted as a registration of a prototype tem-

plate to the object. Still there is di�erence in the actual objective.

In registration the requirement is an exact correspondence between

homologous points, where deformable models are focused on seg-

mentation rather than necessarily �nding the exact correspondence.

Another di�erence is the actual matching. Traditionally registration

is performed between similar feature types, e.g. pairs of images with

the same or di�erent modality or pairs of landmark sets. Whereas

most deformable models match an object model { with a non-image

representation { to an image.

Still there exist a number of methods, which can be classi�ed as both
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a registration method and a deformable template model, e.g. elastic

models like [9, 10, 49] and the viscous uid model [20, 29, 30].

1.5.4 Markov Random Fields

Markov Random Fields (MRF) provide a convenient and consistent

way of modeling spatial context and stochastic interaction among

entities such as image pixels and other spatially correlated features.

For an elaborate treatment of MRFs we refer to [125].

From a general point MRF's and deformable template models apply

a very similar optimization based framework and both �t neatly

into the Bayesian setting. Li [125] also argue that many deformable

templates models can be interpreted as a high level MRF having

irregular sites with discrete labels, where each site indexes an image

feature such as a point or a line segment.

Despite these similarities the literature is quite clear on what is clas-

si�ed as a MRF and a deformable template model, respectively. The

main di�erence is what is modeled. Deformable templates models

is based on an object model whereas MRFs model the full image or

the interaction between objects.

10 Chapter 1. Introduction
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Chapter 2

Representation

Choosing object representation is one of the most important choices

in the design of a deformable template model. The most popular

representations are summarized bellow. We have chosen to catego-

rize the representations in three main groups: Curves, Orthogonal

basis and Image Templates.

2.1 Curves

2.1.1 Labeled Points and Vertices

One of the �rst and most popular representation is a labeled set of

points with connectivity information. This representation is equiv-

alent with a vertices and edges representation. In the simple case

of one single open or closed contour neighbor points are assumed to

be connected. In this case the point representation corresponds to

a polygon or a linear spline. Numerous authors have used the point

representation, e.g. [22, 33, 57, 85, 108, 118].

12 Chapter 2. Representation

2.1.2 B-splines

Another popular representation is B-splines, which enable a contin-

ues curve description, see e.g. [18] for an introduction. Compared

to a point representation B-splines also have the advantage of a low-

dimensional parameter space, since a similar shape represented is

obtained by a few control points compared to a large number of

points. Another advantage is the "built-in" smoothness. Realization

of deformable models using B-splines was developed by Cipolla and

Blake [31], Menet et al. [133] and Hinton et al. [92]. Other examples

of the use of B-splines representation are given in [18, 99, 113].

2.1.3 Level Sets

Another powerful representation is based on the elegant level sets

[142]. See [159] for an introduction. Compared to the other repre-

sentations level sets have the advantage of allowing automatic merg-

ing and splitting of the initial contour. In the context of deformable

models level sets were simultaneously proposed by Caselles et al. [25]

and Malladi et al. [130]. Since then level sets have received much

attention and a number of models have been based on this approach,

see e.g. [26, 111, 124, 144, 143, 186, 187].

2.1.4 Other Analytic Curves

Beside the mentioned curves, numerous other sets of analytic curves

have been applied to represent the object, e.g. a set of parabolic

curves and circles. Examples of representation based on other sets

of curves are [67, 119, 189].



2.2 Orthogonal basis 13

2.2 Orthogonal basis

2.2.1 Fourier Descriptors

Fourier descriptors represent the object on an orthogonal basis, where

the usual basis function is the sinusoids, i.e. trigonometric functions.

On a sinusoidal basis the representation correspond to the elliptic

Fourier descriptors [78, 116, 127, 163], where the Fourier descriptors

are localized in frequency. In the context of deformable template

models Descriptors were introduced by Scott [158] and Staib and

Duncan [163].

2.2.2 Principal Component Analysis (PCA)

Another representation which applies an orthogonal basis is the Point

Distribution Model proposed by Cootes et al. [36, 41]. In practice,

the object is represented by the mean shape of a training set and a

linear combination of the most important eigenmodes of the shape

variation from this mean. This representation has close connections

to the general Shape Statistic, see e.g [56]. The Point Distribution

Model plays an important role in the popular Active Shape Model

[41] and has been extended with texture in the novel Active Appear-

ance Model [35]. Numerous other models like [60, 126, 139] have

been based on this representation.

2.2.3 Wavelets Descriptors

A third orthogonal basis is the wavelet transform [47, 48], see e.g.

[131, 168] for a general introduction to wavelets. Wavelets are local-

ized both in in space and in frequency (scale), since they are de�ned

as dilated and translated version of the basis or mother wavelet.

Wavelets descriptors are less popular than the Fourier descriptors

and the Point Distribution Model, but there are still examples like

14 Chapter 2. Representation

[139, 188, 190], where [139, 188] apply the Daubechies wavelet [47, 48]

and [190] applies the B-spline wavelet [175, 176], respectively. Note

the comparison of shape models based on the point distribution

model, Fourier descriptors and wavelets in [139]. The previous ex-

amples all applies wavelets for the shape representation, but wavelets

have also been used to make a compact texture representation [184]

in Active Appearance Models [35].

Note that the orthogonal basis usually apply a reduced or truncated

parameter space where only the most important modes and descrip-

tors are used.

2.3 Image Templates

Another popular representation is a prototype image template. The

prototype image is then deformed under a similarity measure to

match a new object in an image. Most of these models can also

be classi�ed as registration methods (see discussion in section 1.5.3).

Typically the template is of the same type as the input image but

edges templates have also been used, see [102]. There is a rich col-

lection of examples of this representation, where some of the best

known are [5, 9, 10, 29, 30, 100, 156].

2.4 Conclusion and Discussion

The central question is now which representation is the best? Unfor-

tunately there is no easy answer to this question, since it dependents

on the rest of the model and the actual problem. Still there is a num-

ber of properties, which from a general point of view are desirable

for the ideal model:

� General.

The representation should be able to model an arbitrary object.
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� Low redundancy and dimensionality.

A low dimensional representation with little redundancy im-

proves the computational eÆciency and make the optimization

easier and more robust.

� Linear parameterization.

Restriction to linear parameterization has certain advantages

in simplifying �tting algorithms and avoiding problems with

local minima [18].

� Orthogonal basis

In general, an orthogonal basis is desirable because it makes the

parameters distinct. This makes the coeÆcients determination

easier and avoids redundancy [163].

� Shape regularization.

Commonly regularization of the shape is obtained by the prior

model and the representation. In many cases the regularization

of the shape is what makes the deformable model successful,

and it is an advantage if the representation can be used as a

regularizer.

� Automatic splitting and merging.

Primarily in the context of free form deformable model auto-

matic splitting and merging is a desirable property.

These properties favors some models, but still there is no superior

representation.

16 Chapter 2. Representation
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Chapter 3

Model Parameter

Estimation

Model parameters play an important role in determining the proper-

ties of the posterior distribution. Commonly the model parameters

are selected before the model is applied and these are kept con-

stant. Examples of model parameters are the mean and variance

in a Gaussian distribution and the weight parameters in the snake,

which determine the relative inuence of the di�erent terms in the

energy function.

Most deformable models contain model parameters, e.g. weight pa-

rameters. With a few exceptions these parameters are selected man-

ually by an expert (c.f. Table 1.1). From a general point of view this

is not acceptable since the goal is a framework, which can be applied

by a non-expert user. Methods applied to automatic model param-

eter selection in deformable template models are described below.

18 Chapter 3. Model Parameter Estimation

3.1 Minimax

Gennert and Yuille [77] propose a general unsupervised technique for

determination of model parameters for multiple objective function

optimization based on the minimax principle. Recall ^v = maxv P (vjy)

= minv U(v;y). The principle is to determine the � that maximizes

U(^v;y; �) when U(v;y; �) has been minimized over v. More formally

the minimax criterion is de�ned as [77]:

^� = max
�

min
v

U(v;y; �) (3.1)

The minimax principle is a very conservative estimate, since the

optimal model parameters correspond to the worst case energy when

the deformable template model has been optimized. This may seem

at �rst far from optimal, but if one recalls that U(v;y; �) has been

minimized over v, it will be seen that the maximization over � does

make sense, while avoiding the problems of � being excessively low or

high [77]. The minimax principle has been applied in [117; 118] to

estimate the regularization parameter in their g-snake. Note that the

minimax principle is based on the assumption that minv U(v;y; �)

is convex with respect to �, which is often not the case [65].

3.2 Maximum Likelihood

Assume a ground truth of n samples, vt0; :::;v
t
n�1, and their corre-

sponding images, yt0; :::;y
t
n�1, has been supplied. Given this training

set the model parameters can { in theory { be estimated by the Max-

imum Likelihood (ML) estimate:

^� = max
�

L(�;vt0; :::;v
t
n�1;y

t
0; :::;y

t
n�1) (3.2)

where L(�;vt0; :::;v
t
n�1;y

t
0; :::;y

t
n�1) is the likelihood function. If

v
t
0; :::;v

t
n�1 and yt0; :::;y

t
n�1 are assumed to be stochastically inde-
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pendent the Maximum Likelihood estimate becomes:

^� = max
�

n�1Y
i=0

P (vtijyti; �) (3.3)

In [65] and [96, 109][70] the ML estimator has been used to estimate

a subset of the model parameters corresponding to the prior model

and all the model parameters, respectively.

Unfortunately
Q
n�1
i=0 P (vijyi; �) is not guaranteed to be a convex

function with respect to all elements in �. In fact it is very rare that

the likelihood model, P (yjv; �l), is convex with respect to the model

parameters, �l, which relates to the likelihood model. Whereas the

prior model, P (vj�p), usually can be rewritten to become convex

with respect to the prior model parameters, �p. In fact most prior

models are born non-convex, but if the corresponding energy func-

tion only contains a quadratic term, Fisker and Carstensen [65] show

that the prior model usually corresponds to a multivariate Gaussian,

which is convex with respect to �p. The importance of this result can

be demonstrated by a univariate Gaussian, where the energy corre-

spond to U(x) =

(x��)2

2�2

, which is non-convex w.r.t. �2. Since U(x)

corresponds to a Gaussian the normalizing constant, z, is known and

the energy can be rewritten to U(x) =

(x��)2

2�2

� log(
p
2��2), which

is convex w.r.t. �2.

In general the convexity of
Q
n�1
i=0 P (vijyi; �) w.r.t. �j is closely re-

lated to whether the parameter, �i, corresponds to a part of the

posterior distribution, which isolated corresponds to a proper distri-

bution. If �j correspond to a proper distribution,
Q
n�1
i=0 P (vijyi; �)

is usually convex. Whereas
Q
n�1
i=0 P (vijyi; �) usually is non-convex

if �j correspond to an improper distribution.

Note that the ML criterion is most sensible for parametric deformable

template models, since this type of models favor a known global

structure, which can be interpreted as the mean of the prior.
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3.3 Minimum Distance

It is infeasible to perform a ML estimation of the model parameters,

�i, which correspond to a non-convex likelihood function. In this

case we propose to use a minimum distance criterion (same concept

but an improved criterion compared to [65]):

^� = min
�

D(V t
; ^V (�)) (3.4)

where D(V t
; ^V (�)) is the distance between V t = v
t
0; :::;v

t
n�1 and

^V (�) = ^v0(�); :::; ^vn�1(�) for ^vi(�) = maxv P (vjyt; �) being the

MAP estimate obtained by running the full initialization and op-

timization scheme with the actual value of �. In fact this is a very

reasonable criterion, since it corresponds to the overall goal of per-

forming the best segmentation, i.e. the segmentation with the small-

est possible distance to the ground truth.

3.3.1 Distance Functions and Performance measures

To apply the minimum distance criterion the distance has to be

de�ned. Unfortunately there is no common standard for performance

evaluation of deformable template models, hence there is no common

function to evaluate the distance between the ground truth and the

segmentation. In fact this is very annoying since it is impossible to

compare the performance of di�erent models.

The most popular distance measures used with deformable mod-

els are summarized bellow (� is omitted for simplicity). Note that

D(V t
; ^V ) andD(vt; ^v) correspond to the distance between two train-

ing sets and the distance between two samples, respectively. Most of

the distance measures assume two �nite point sets, U t = (ut0; :::;u
t
p�1)

and ^U = (^u0; :::; ^uq�1) can be obtained given vt and ^v, respectively.

Usually these points lay on the boundary.
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� Template parameter errors

A simple distance measure used in [65] is the sum of weighted

square errors between the template parameters:

Dsq(V
t
; ^V ) =

1
nl

n�1X
j=0

(vtj � ^vj)
0
C(vtj � ^vj) (3.5)

where l is the number of parameters in v and C is a symmetric

weight matrix. C is usually the identity matrix.

� Point to point errors

Given two �nite point sets, U t and ^U , with unknown corre-

spondence and the same number of elements the average point

to point error with linear reparameterization reported in [163]

is de�ned as:

D
ptpt
(vt; ^v) = min

0�s0<k
1

k
k�1X

i=0
kuti � ^ui+s0k (3.6)

where k = p = q and s0 is the o�set.

Another point to point error with known correspondence used

in [43] is the root mean square (RMS) point to point error

de�ned as:
Dptpt(V
t
; ^V ) =

vuut 1
nk

n�1X
j=0

k�1X
i=0

kut
j;i
� ^uj;ik2 (3.7)

A third point to point error measure is de�ned by:

Dptpt(v
t
; ^v) =

1
k

k�1X
i=0

min

ut
j
2U

t

kutj � ^uik (3.8)

In [60] is reported the mean and standard deviation for this

measure for the full test set, V . Note this criterion makes no

assumption about point correspondence and identical size of

the point sets.
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� Undirected Hausdor� distance

Given two �nite point sets, ut and ^u, the directed Hausdor�

distance is de�ned as [97]:

h(vt; ^v) = max

ut
i
2U

t

min

^uj2 ^U
kuti � ^ujk (3.9)

The undirected Hausdor� distance is then de�ned as [97]:

DH(v
t
; ^v) = max(h(ut; ^u); h(^u;ut)) (3.10)

The average and standard deviation of the undirected Haus-

dor� distance for the full set, V t, is reported in [60].

� Undirected partial Hausdor� distance

Given two �nite point sets, ut and ^u, the partial directed Haus-

dor� distance is de�ned as [124]:

hK(u
t
; ^u) = K

th

ut
i
2U

t

min

^uj2 ^U
kuti � ^ujk (3.11)

where K is a quantile of the maximum distance. The undi-

rected distance is then de�ned using (3.10). This measure is

reported in [124] for two di�erent samples and two di�erent

quantiles, K.

� Normal displacement.

Given two �nite point sets, ut and ^u, with correspondence and

connectivity information the squared normal displacement is

de�ned as [18]:

Dn(v
t
; ^v) =

1
k

k�1X
i=0

((uti � ^ui) � n(^ui))2 (3.12)

where n(ui) is the unit normal at ui. This distance measure

is extensively used in [18].



3.3 Minimum Distance 23

� Point to associated boundary.

Given a �nite point set, ^u, and a piecewise continuous template

curve, r(s;vt), of the ground truth the RMS point to associated

boundary error reported in [43] is de�ned by:

Dpt�b(V
t
; ^V ) =

vuut 1
nk

n�1X
j=0

k�1X
i=0

k min
si2
i

(^uj;i � r(si;v
t
j
))k2

(3.13)

where 
i is the part of the boundary of r(s; v), which is asso-

ciated with ui.

� Area error

The relative area error is de�ned as:

DA(v
t
; ^v) =

A(^v)

A(vt)

(3.14)

where A(v) is the area. In [60] the mean and standard devia-

tion of the relative area is reported.

� Labeling error

The relative labeling error is de�ned as:

DL(v
t
; ^v) =

Nincor(v
t
; ^v)

NPixels(vt)

(3.15)

where Nincor is the number of incorrectly labeled pixels and

NPixels is the total number of pixels. The mean and standard

deviation of this measure is also given in [60].

� Texture error

Given a texture model, y(r; c; ^v), the RMS texture error re-

ported in [43] is de�ned by:

Dt(V
t
; ^V ) =

vuut 1
nj
yj

n�1X
j=0

X
(r;c)2
y

(yj(r; c)
t � y(r; c; ^vj))2

(3.16)

24 Chapter 3. Model Parameter Estimation

ground truth

estimated

ground truth

estimated

Point to point Point to associated border

ground truth

estimated

Normal displacement

Figure 3.1: Examples of distance measures.

where j
yj is the number of members in 
y and 
y is the set

of image coordinates, (r,c), which correspond to the model.

Alternative texture metrics can be found in [152].

Some of the distance measures are illustrated in Figure 3.1. Note,

that special cases exists where a number of the measures above are

identical.

3.3.2 The "Best" Distance Function

It is impossible to select the overall "best" distance function, since

it depends on the actual application and model. Still some distance

functions seem more attractive than others.

From a general point of view the template parameter error is less

attractive, since it is very sensitive to the parameterization and to

di�erent types of templates parameters.

Points on the boundary of a deformable model rarely correspond to

mathematical or anatomical landmarks. In fact points are allowed
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to move along the boundary in most applications. If the model is

not having a point based representation points need to be created,

which is very sensitive to the parameterization. Overall this makes

the point to point based measures seem less attractive.

To avoid problems with points moving along the boundary, informa-

tion of the boundary need to be included. The only measures, which

satis�es this is the normal displacement and the point to associated

boundary. These criteria basically approximate:

D(^v;vt) =

1
L

Z 1
s=0

kr(s; ^v)� r(g(s);vt)k2ds (3.17)

where g(s) is an reparameterization function de�ned such that g(s) =

s gives the original inherited parameterization, mapping points on

the curve r(s; ^v) to points on r(g(s);vt). Unfortunately the true g(s)

is impossible to construct. Note that simple numerical approxima-

tions of (3.17) only is possible if the error is not squared.

The normal displacement relies on two point sets with established

correspondences and the calculation of the normal. This makes the

normal displacement seem less attractive than the point to associated

boundary. The relative labeling error and relative area error are not

very informative due to the to low speci�city and the texture error

only applies to texture based models, which makes these criteria

seem less interesting in the general context.

With respect to the minimum distance estimation of � the sum of

squared point to associated boundary errors seems like the best over-

all distance function. The squared error is selected since this is the

common �tting criterion. In the case of large deviations between

the shapes a symmetric or undirected point to associated boundary

errors could be considered, e.g. by summing the directed errors.

3.3.3 The "best" Performance Measures

The best distance function for minimum distance estimation is not

necessarily the best performance measure since the objective might
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be di�erent. Still the arguments for the point to associated bound-

ary error are valid, but the sum of squared errors seems harder to

interpreted for the user than the error. In fact it seems more rele-

vant to show the full histogram of the point to associated boundary

errors or illustrate the average errors on the di�erent positions of

the object than obtaining a single number. If a single user friendly

number is needed the mean or a proper quantile of the histogram

could be obtained. However this is a fundamental problem of model

�tting and residual analysis, where there is no unique solution.

3.4 Other Techniques

Larsen et al. [121] propose a two step procedure to select the elas-

ticity parameters of a snake based on upper and lower bounds of the

parameters. However this method seems limited to snakes.

Amini et al. [4] discuss the cross validation method proposed by

Wahba et al. [46, 181]. This is a popular method for estimation of

the regularization parameter in the context of regression and splines,

see e.g. [160]. The optimal parameter is found by minimizing the

average discrepancy between the data samples and the predicted

values using cross validation. For an elaborate treatment we refer

to [180]. However the methods are mainly focused on equations of

the form 1
n

P
n
i=1(yi�f(xi))2+�

R
b
a
(f (m)(x))2dx, which makes it less

interesting in the context of deformable template models. Another

problem is that only a limited group of deformable template models

can make a reasonable prediction of a removed template parameter,

vi.
3.5 Minimal Manual Interaction

The manual task of creating training sets is very cumbersome and an

automatic algorithm would be preferable. Cootes et al. [37] solve the



3.6 Conclusion and Discussion 27

problem of few training samples by generating arti�cial samples by

a FEM model. However this is basically not di�erent from imposing

an arti�cial covariance structure as done in e.g. the snake. The only

di�erence is how the covariance structure is created.

A large number of semi-automatic methods have been proposed to

reduce the needed manual interaction. Most of these methods as-

sume a set of dense sampled object outlines are supplied. Note that

it is much easier to create object outlines than actually placing e.g.

landmarks. The output from the algorithms are usually a set of sub-

sampled and registered object outlines. Examples of these types of

methods are [6, 59, 62, 157, 182].

An alternative strategy is proposed by Fisker et al. [65, 70] where the

problem is solved by applying the Expectation-Maximization (EM)

algorithm [51]. In [65] no user interaction is needed whereas one

example shape is required in [70].

3.6 Conclusion and Discussion

In this chapter two quite general methods for estimation of the model

parameters in deformable models are presented. Both methods can

be applied by a non-expert user.

The �rst method is based on the minimax criterion and has the im-

portant feature of not requiring any user interaction. However it still

seems very counter intuitive to choose the parameter corresponding

to the worst case energy. Another problem is that the minimax crite-

rion rely on an assumption of convexity, which is not always ful�lled.

The second method for parameter estimation is based on a combi-

nation of a ML estimate and a minimum distance criterion. The

ML criterion should be applied if possible, since it is much easier to

optimize than the minimum distance criterion. As a rule of thumb

the ML criterion can be applied to estimate parameters, when the

parameter is related to a part of the posterior distribution, which
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isolated corresponds to a proper distribution. This criterion has the

drawback of requiring a training set, which can be a cumbersome

task to create manually. However a number of methods exists, which

reduce or remove the need for manual interaction.

We also review a large number of distance and performance mea-

sures. Based on the previous discussion we suggest that the most

reasonable overall distance measure is the point to associated border.

But it should be stressed that the choice of distance and performance

measures is highly dependent on the application and the model.

Note that experimental results for parameter estimation can be found

in [65, 70].
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Chapter 4

Initialization

To make inference about an object in an image y, estimation of the

maximum a posteriori (MAP) is performed:

^v = max
v

P (vjy) (4.1)

The MAP estimation is with few exceptions carried out using an

optimization procedure, which presume an initial con�guration of

the template parameters. This basically separates the MAP estima-

tion into two steps: initialization and optimization. This chapter is

dedicated to initialization and the following to optimization.

The request for the initial con�guration is, that it should be close

enough to the object in the image to achieve successfully re�nement

during the optimization. Obviously the initialization is very crucial

for the success of the segmentation, since the optimization fails if

the initial con�guration is not close enough to the object. A general

initialization scheme is also essential for a fully automated frame-

work, which can be applied to a new problem by a naive user. Still

initialization has received very little attention in the literature and

many authors do not even comment on how they initialize.

In the following we classify di�erent initialization strategies into three

main groups: Manual, feature based and model based initialization.
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Even though manual initialization is very popular, we will not treat

this topic further.

4.1 Feature Based Initialization

Feature based initialization extracts some features from the image.

These features are then used for initialization of the template. Most

feature based methods are ad hoc methods tuned to a speci�c prob-

lem and are of no general interest. Unfortunately this is how most

automatic schemes work. Still there exists a few interesting feature

based strategies, which are more or less general.

4.1.1 Initialization From Moments

Blake et al. [18] propose to perform the initialization from invariant

moments of a binary blob. The binary blob is obtained by thresh-

olding the image or a preprocessed version. A prototype shape is

then aligned from these moments with respect to Euclidean or aÆne

similarities. Unfortunately binary blobs are not obtainable in the

general case, but initialization from moments still seems like a fast

and eÆcient method for a range of problems.

4.1.2 Texture and Color.

Zhong and Jain [190, 191] propose to use local texture and color

features for initialization. From a prototype image of the object

local texture and color is extracted. To locate a new object regions

with similar color and texture patterns are identi�ed and used for

initialization. To speed up the processing texture and color features

are directly extracted from the compressed domain of the discrete

cosine transform.
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4.1.3 Generalized Hough Transform.

Lai and Chin [118] and Garrido and Blanca [72, 73] propose to per-

form the initialization using the generalized Hough transform [11]

and a modi�ed version of the generalized Hough transform, respec-

tively. A prototype shape is supplied as the arbitrary shape to de-

tect. Recall that the generalized Hough transform is invariant with

respect to Euclidean transformations. Even though the generalized

Hough transform is a powerful method it is not a general initializa-

tion method since it relies on gradient information.

4.2 Model Based Initialization.

In model based initialization the full or a part of the posterior model,

P (vjy), is applied. Staib et al. [163] use the mode of the prior dis-

tribution, P (v), for initialization, i.e. the con�guration of the tem-

plate parameters which have the highest prior probability - usually

the mean shape. Unfortunately this method is only applicable for

a few models, since most prior models are invariant to Euclidean

transformations.

4.2.1 Search Based Initialization.

The only truly general initialization approach, which we have knowl-

edge about, is the search strategy [61, 102, 164][66, 67, 68, 70, 165],

where a sparse search is performed in the parameter space 
v. The

static search strategy used by Jain et al. [102] and Fisker et al.

[66, 67, 68, 70] can be summarized as:

1. Create relevant search con�gurations v0; :::;vk�1 and set i = 0.

2. Calculate P (yjvi) for the center of the template corresponding

to a grid of positions within the relevant region of interest.
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3. Calculate P (vijy) = P (vi)P (yjvi)

4. i = i+ 1. Go to 2 if i < k.

5. Extract the initial con�gurations from the calculated P (vjy).

Note that the search con�gurations includes rotation, scaling and

shape changes but not translation. We refer to [70] for a discussion

on how to create the relevant search con�gurations, select the rel-

evant region of interest and extract the initial con�gurations from

P (vjy).

Cootes et al. [61] and Stegmann et al. [165] use an optimization

based variant of the search strategy, which can be summarized as:

1. Create relevant search con�gurations v0; :::;vk�1 and set i = 0.

2. Perform limited MAP estimation, ^vi = maxvi P (vijy), for the

center of the template corresponding to a grid of positions

within the relevant region of interest. The limited MAP esti-

mation is de�ned as using less than q iterations in the iterative

optimization scheme.

3. i = i+ 1. Go to 2 if i < k.

4. Extract the initial con�gurations from the calculated P (^vjy).

Note that the static search is a special case (q = 0) of the optimiza-

tion based search.

4.2.2 Very Fast Static Search.

The disadvantages of the search strategy is the computational cost,

which mainly originates from the evaluations of P (vjy). In the case

of a static search Fisker et al. [68] propose a very fast search algo-

rithm based on a �lter interpretation of the likelihood. The algorithm
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exploits the fact that many likelihood models can be interpreted as

a simple correlation of a �lter, fl(v;�), and the image, y. Recall

that in the static search a static template, vi, is shifted around the

image and P (yjv) is calculated for each position in the grid - usu-

ally corresponding to each pixel. Using the �lter interpretation all

these calculations can be performed by one convolution of the �l-

ter fl(vi;�) and y. Performing the convolution in the Fourier space

reduces the computation time further and makes the computation

time invariant to the size of the �lter/template [70]. Fisker et al.

[68, 70] report signi�cant reduction in computation time using this

approach. We refer to [68, 70] for details on the fast search strategy

and experimental results.

4.3 Multi-hypothesis Initialization.

For hard initialization problems false con�gurations might be ex-

tracted in the initialization (or a number of true con�gurations are

missed). Examples of hard initialization problems are many objects

in the same image with large changes in scale and orientation, over-

lapping objects and varying background.

The simple solution is to perform a denser search. However this can

be very computational expensive. An alternative strategy is to work

with multiple object hypotheses, i.e. extract all reasonable initial

con�gurations accepting some of them are false hypothesis. These

initial con�gurations are then feed to the optimization algorithm. Fi-

nally a validation is performed to remove the false objects. Examples

of multi-hypothesis initialization can be found in [61][66, 70, 165].

4.4 Conclusion and Discussion.

In this chapter a number of initialization strategies have been re-

viewed. The only initialization strategy, which can be applied to
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any deformable template (with an explicit optimization criterion) is

the search strategy. Two types of search strategies are presented:

static search and optimization based search. The choice of search

depends on the actual problem, model, needed search con�gurations

etc. But as a rule of thumb the static search should be applied for

quite simple initialization problems, since it is faster. Whereas the

optimization based search should be applied in the harder cases.

An alternative to the search based initialization is the feature based

initialization. Feature based search strategies become attractive when

the computational cost becomes to high using a search strategy, e.g.

for objects with large variation in scale and orientation where a huge

number of search con�gurations are needed for a successful initial-

ization.

Given one object in an image the global optimum of P (yjv) cor-

responds to this object, if the model is properly designed. In this

case the search based initialization guarantees successful initializa-

tion since it is only a question of how dense the search need to be

to obtain an initial con�guration, which achieves successfully re�ne-

ment during the optimization. In general a search based approach

is theoretically more appealing since a uni�ed model is used for ini-

tialization and optimization. Whereas the feature based approach

applies one model for initialization and another model for the opti-

mization/�tting. It is hard to see theoretical arguments for applying

two di�erent models. It could be argued that if some feature is rel-

evant for initialization it should be relevant for the optimization as

well and vice versa. Basically there is only one argument for using

features based initialization and that is speed.
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Chapter 5

Optimization

The �nal optimization is typically a medium-to-high-dimensional op-

timization problem. In most cases, the problem can be categorized as

continuous, unconstrained optimization of a nonlinear, non-convex

function. The problem is continuous because the template param-

eters are real, i.e. 
v � R
n where n is the number of template

parameters, and unconstrained because most authors do not work

with hard constrains.

The following sections contain a compact survey of the most popular

optimization methods used with deformable template models. Recall

^v = maxv P (vjy) = minv U(v;y). In practice the MAP estimation

is always performed as minv U(v;y), hence we will only deal with

this in the following.

5.1 Deterministic Optimization Methods

5.1.1 Gradient Based Methods

In the optimization literature the gradient based methods receive

much attention, see e.g. [52, 71] for an introduction. The gradient
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based methods rest on the computation of the partial derivatives of

the posterior energy,
@U(v;y)

@v

. These derivatives are then more or

less cleverly applied in the search for the optimum. In the simple

case of steepest descent the optimization is performed by iteratively

updating the parameters, dv, in the direction of the gradient, i.e.

dvt / �rU(vt;y). The gradient based approaches are very popular

with deformable template models, see e.g. [33, 72, 101, 102, 108,

163, 189].

5.1.2 Dynamic Programming

Assume the posterior can be separated into dependent subproblems:

U(v;y) = U0(v0; :::;vl;y) + U1(v1; :::;vl+1;y) + :::+

Uk�l�1(vk�1�l; :::;vk�1;y) (5.1)

where l is a (small) integer. Then the optimization can be performed

very eÆciently by dynamic programming. Dynamic programming

works by solving the separated energy terms Ui(vi; :::;vi+l;y) recur-

sively given vi+1; :::;vi+l is �xed. Dynamic programming provides

the machinery for enforcing hard constrains and guarantees the op-

timal solution within the resolution of this interval. For a more elab-

orate treatment of dynamic programming see e.g. [13, 44]. In the

context of deformable template model dynamic programming was

introduced by Amini et al. [4]. Applying dynamic programing for

optimization of deformable template models have been investigated

and further developed in [28, 45, 74, 110, 113, 170].

5.1.3 Di�erence Decomposition

In di�erence decomposition proposed by Gleicher [81] and in a similar

approach proposed in parallel by Cootes et al. [35, 40] the template

parameters, v, are updated based on the di�erence, D, between the

image, y, and the present state of the image model. This approach
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is only applicable for deformable template models with a full pixel

model. By displacing the parameters in a training set with ground

truth the relationship between displacements, dv, and di�erence im-

ages, D, are learned. The relationship is approximated by a linear

regression, dv = RD, where the matrix R is obtained from the train-

ing. The main di�erence between the approach in [81] and in [35, 40]

is how R is determined. Di�erence decomposition has also been ap-

plied in [100, 156].

5.1.4 Heuristics

Beside the above mentioned methods numerous heuristics have been

applied. The heuristics are usually tuned to a speci�c model, but

can be very eÆcient. Examples can be found in [41, 60, 118].

5.2 Stochastic Optimization Methods

5.2.1 Genetic Algorithms

Genetic algorithms [82, 93] employ mechanisms similar to the evo-

lution in nature. Genetic algorithms maintain a population of tem-

plates. This population evolves into the optimal solution by produc-

ing new generations of templates, where the survival of the individual

template is based on the corresponding posterior probability. A new

generation is born by mutating the existing population in a proba-

bilistic fashion, e.g. by random crossover. We refer to e.g. [82, 135]

for a more rigorous treatment of genetic algorithms. Examples of

applying genetic algorithms to deformable template models can be

found in [12, 50, 91, 128].
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5.2.2 Simulated Annealing

Simulated annealing [27, 112] can be compared to a physical pro-

cedure { called annealing { in which a physical substance is melted

and then slowly cooled in search of a low energy con�guration. The

system is controlled by a decreasing temperature, Tt, and new con-

�gurations are generated by a random search method, such as the

Metropolis algorithm [134] or the Gibbs sampler [75]. For high Tt a

new con�guration with a higher energy, U(v;y), might be accepted,

whereas at low Tt only con�guration corresponding to an decrease in

U(v;y) is likely to be accepted. The expectation is that large early

uctuations will allow rapidly escape from shallow minima whereas

the latter behaviour will act as a greedy algorithm descending into

the global minimum. Popular temperature schemes are: Tt = �Tt�1

[112] and Tt =

c

log(1+t)
[75], where � and c are constants. Analytic

conditions have been derived for the convergence towards the global

optimum for a number of Markov Random Field models, see [75, 88].

Examples of the use of simulated annealing in the context of defor-

mable models can be found in [23, 85, 155, 167][68, 70].

5.2.3 Stochastic Di�usion

Stochastic di�usion for optimization [3, 76] is based on the stochastic

di�erential equation:

dvt = �rU(vt;y) +
p
2Tt dwt (5.2)

where wt is the standard Brownian motion with independent iden-

tical distributed components and the temperature, Tt, controls the

magnitude of the random uctuations. (5.2) can be interpreted as a

steepest descent algorithm with random uctuation in the gradient.

The annealing approach ensures large uctuation for high tempera-

tures whereas the latter behaviour will be a steepest descent. Given

special assumptions about U(v;y) global convergence have been de-

rived, see [76, 79]. Examples of optimization of deformable template

by stochastic di�usion can be found in [5, 86].
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5.3 Comparative Study

In a comparative study by Fisker et al. [68] the performance of three

gradient based methods, Simulated Annealing and Pattern Search

[94] is compared for a simple ellipse model. With respect to the �nal

energy the study shows, that all methods perform almost equally

well within a reasonable number of function evaluations, but if a

large number of function evaluations is allowed simulated annealing

obtains very good energies. When the speed of convergence is com-

pared, the gradient based methods are fastest during the later phase

of the optimization. When the initial con�guration is further away

from the �nal solution, the relative performance of Pattern Search

and Simulated Annealing increase. Basically all these results are in

very good agreement with the expected behaviour.

5.4 Conclusion and Discussion

The task of optimization is not only a question of obtaining the

minimal energy con�guration, but also a question of convergence

speed. If the objective is to obtain the minimal energy a method

with good global convergence properties should be selected, i.e. dy-

namic programming, simulated annealing or stochastic di�usion. If

concerned at the speed of convergence a deterministic method should

be applied, since the stochastic methods in general su�er from slow

convergence. Dynamic programming satis�es both objectives. How-

ever, it requests the separation of the energy into subproblems. In

general the choice of optimization is a classical tradeo� between accu-

racy and speed, and it is also highly dependent on the actual model.

Note that the computational cost and robustness of the optimization

can be improved by a multi-resolution strategy [42, 102].

Another important aspect for the choice of optimization algorithm is

the general quality of the initialization. If the initialization is close

to the optimum a greedy algorithm becomes more attractive. In
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general it is our experience that a good initialization often is more

important for the performance than the actual choice of optimization

algorithm. This conclusion is also supported by the empirical results

in [68].

Another important - but often forgotten - aspect for obtaining suc-

cessful optimization is the quality of the optimization criterion. A

properly designed optimization criterion should be smooth with few

local maxima. The prior plays an important role in obtaining a

smooth and convex optimization criterion, since most prior models

consist of a quadratic term and hence are born smooth and convex.

Jain et al. [102] utilize this by gradually reducing the smoothness

of the optimization criterion by down weighting the inuence of the

prior during the optimization process.



41

Chapter 6

Conclusion and Discussion

Just the richness of the deformable template model literature doc-

uments the power of this approach. Examples of successful designs

and applications of deformable models have also been demonstrated

in this thesis.

However most models still su�er from a lack of generality and re-

quest expert knowledge. This even holds for most models, which

are general in the sense that they can be applied to objects with

an arbitrary shape. The main problem is the common diÆculties of

model parameter selection and initialization. In this thesis we argue

that a search based approach for initialization seems to be the only

general and the theoretical most appealing way to perform initial-

ization. Due to considerations with computation time feature based

initialization approaches might be attractive for objects with large

Euclidean variations. However experimental results for four di�er-

ent models indicate that the search based approach is feasible for

most problems - especially if the proposed fast �lter based search is

applied.

We also devise a general method for estimation of the model parame-

ters based on a combination of a maximum likelihood and minimum

distance criterion. Usually this method also give the opportunity to
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simulate the prior model, which can be a powerful tool for validation.

Successful model parameter estimation and the power of prior model

simulations have been demonstrated for two di�erent models.

This thesis also explores the last of the common diÆculties, which

is optimization. A comparative study of �ve di�erent general op-

timization algorithms is reported. The conclusion of the study is

that gradient based methods are recommended for good initializa-

tion whereas stochastic methods becomes more attractive for bad

initialization or if the computation time is less important. This con-

clusion correspond very well with the nature of the methods. Note

that dynamic programming has very good properties with respect to

both computation time and global convergence. However dynamic

programming is non-general, since it requires a certain separation of

the optimization criterion. Even though the choice of the optimiza-

tion algorithm can make a di�erence, it is our experience that a good

initialization and a properly designed optimization criteria with few

local minima often are more important factors for the overall perfor-

mance.

The trends within the �eld of deformable template models are quite

clear. The new 2D models are incorporating texture and many new

models are designed for 3D (spatial and temporal). The proposed

models are getting more general, but many models are still invented

for applications, where one of the powerful general models would

have been a better choice. Despite the popularity of deformable

template models in the academic community few commercial appli-

cations seems to be based on this approach. One reason for this

seems to be the requirement for expert knowledge to apply them to

a new problem.

But we hope that this thesis will accelerate the use of deformable

template models in particular in commercial applications.
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Abstract

Knowledge of the nanoparticle size distribution is im-

portant for the interpretation of experimental results in

many studies of nanoparticle properties. An automated

method is needed for accurate and robust estimation of

particle size distribution from nanoparticle images with
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thousands of particles. In this paper, we present an au-

tomated image analysis technique based on a deformable

ellipse model that can perform this task. Results of using

this technique are shown for both nearly spherical parti-

cles and more irregularly shaped particles. The technique

proves to be a very useful tool for nanoparticle research.

Keywords: nanoparticles, size distribution, image analy-

sis, deformable templates, ellipse model

A.1 Introduction.

Nanometer-sized particles currently attract considerable attention

because they often have properties, which di�er from those of the

corresponding bulk materials [87]. Magnetic nanoparticles have im-

portant applications in, for example, magnetic recording media, fer-

rouids, catalysts, and in biotechnology [87, 54]. It is characteristic

for small magnetic particles that they can be superparamagnetic at

�nite temperatures, i.e. the magnetisation direction may uctuate

spontaneously. The dependence of the superparamagnetic relaxation

time on particle size, temperature, inter-particle interactions etc. has

been studied extensively during the last decades [55, 90, 115]. For the

interpretation of experimental results, it is often necessary to have a

detailed knowledge of the size distribution. Electron microscopy is

commonly applied to estimate such particle size distributions. In or-

der to obtain reliable size distributions it is necessary to determine

the size of a large number of particles and a computer technique

is therefore desirable. In this paper, we present an image analy-

sis technique, which can be used for this purpose. We illustrate

the application of the technique to electron micrographs of two dif-

ferent samples. One sample consists of nearly monodispersed and

spherical (a-Fe1�xCx) particles prepared by thermal decomposition

of Fe(CO)5 in an organic liquid followed by oxidation in air (see Fig-

ure A.1). The second sample consists of hematite (�-Fe2O3) particles
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Figure A.1: Subimage of nearly monodispersed and spherical (a-

Fe1�xCx) particles (256x256 pixels, 1 pixel � 0.53 nm).

with a broader distribution in particle sizes and shapes (see Figure

A.2).

A.2 The Elliptic Deformable Template Model.

Due to signi�cant noise in the micrographs more simple segmenta-

tion approaches like noise-reducing �lters followed by binarization

result in highly unsatisfactory objects representing the particles. An

object-oriented, as opposed to pixel-oriented, and in many cases more

powerful image segmentation tool is the family of deformable tem-

plate models. A deformable model can be characterized as a model,

which under an implicit or explicit optimization criterion, deforms
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Figure A.2: Subimage of hematite (�-Fe2O3) particles with a broader

distribution in particle sizes and shapes and a large number of over-

lapping particles (750x750 pixels, 1 pixel � 0.20 nm).
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the shape to match a known type of object in an image. For a general

review we refer to [18, 101, 132]. The ideal model should be based

on all pixels in the local neighborhood of each particle to suppress

noise, and it should be invariant to local level changes in the image

intensity, which is a very common problem. But the model should

not be invariant to scale changes in the image intensity, because then

all kinds of noise patterns will be picked up. These requests rule out

the powerful general models [18, 33, 34, 35, 41, 85, 102, 108, 163], so

a speci�c model needs to be designed.

The �rst step in the design of a new model is to choose the represen-

tation of the individual nanoparticle. In general the representation

should be kept as simple as possible, i.e. the number of parameters,

which describe the nanoparticle, should be low. If a high dimensional

representation is chosen the model tends to over�t to noise and the

optimization will become much harder and potentially unstable. An-

other problem in this context is overlapping particles, such as those

in Figure A.2, where what seems to be one particle with a di�use

shape, often is a number of particles, which overlap. The key to sep-

arate overlapping particles is to introduce constraints on the possible

shapes. One of the most eÆcient and popular methods is to choose

a representation, which only allows certain shapes.

Based on this discussion and empirical shape observations, we choose

to represent the individual nanoparticles as ellipses. In practice a

nanoparticle, represented by an ellipse, is de�ned by the 5 parame-

ters:

v = (rc; cc; a; b; �) (A.1)

where (rc; cc) is the coordinates of the center, a and b are the semi

axes and � is the rotation (see Figure A.3).

The next step is to design the actual match criterion, i.e. a criterion

which indicates how well a given con�guration of an ellipse, repre-

sented by v, actually matches a nanoparticle in an image, y. In a

probabilistic setting this type of criterion is known as the likelihood

model, P (yjv) (see e.g. [150]). Based on the required invariance to
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level changes in the image intensity and the need for incorporating

all pixels in the local neighborhood to suppress noise, the following

likelihood model is proposed:

P (yjv) = 1
zl
expf�(�in(y;v)� �out(y;v))g (A.2)

where �in(y;v) is the mean of the pixel inside the ellipse, �out(y;v)

is the mean of the pixels in a local band around the ellipse (see

Figure A.3) and zl is the normalization constant, which ensures a

proper statistical distribution, i.e.
R


y

P (yjv) = 1, where 
y is the

parameter space of y. Based on the proposed likelihood, P (yjv), the

best segmentation of a particle is obtained, when the con�guration

v locally maximizes the di�erence between the mean of the pixels

inside the ellipse and the mean of the pixels in the band around

the ellipse. In the ideal case this will place the ellipse on the edge

between the particle and the background.

The means in (2) are de�ned by:

�in(y;v) = 1

j
in(v)j
P

(r;c)2
in(v)
y(r; c)

�out(y;v) = 1

j
out(v)j
P

(r;c)2
out(v)
y(r; c)

(A.3)

where y(r; c) is the image intensity at row r and column c, j
j is the

number of pixels in 
, 
in(v) and 
out(v) are the set of pixels inside

the ellipse and the set of pixels in the band around the the ellipse,

respectively (see Figure A.3). The sets are given by:


in(v) = f(r; c)j r2r
a2

+
c2
r
b2

� 1g


out(v) = f(r; c)j1 < r2
r
a2

+
c2
r
b2

� �g

(A.4)

where rr = (r�rc) cos �+(c�cc) sin�, cr = (c�cc) cos ��(r�rc) sin�

and �� 1 corresponds to the ratio between the area of the band and

the ellipse. The choice of the relative size of the band, de�ned by

�, depends on the distance between the particles and the general

amount of noise.

In addition to the likelihood criterion it is very common to incorpo-

rate a prior model, P (v), into the optimization criterion. A prior
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Figure A.3: Ellipse model.

model is a very powerful tool to suppress noise and stabilize the op-

timization, but the �nal segmentation result will be biased, because

the full optimization criterion will favor shapes, which correspond

well with the prior knowledge. For the segmentation of the nanopar-

ticles it does not seem necessary to apply a more speci�c prior, so a

uniform prior distribution is proposed.

The �nal optimization criterion, known as the posterior distribution,

P (vjy), is created using Bayes theorem, P (vjy) / P (v)P (yjv) (see

e.g. [150]):
P (vjy) = 1
zl
expf�(�in(y;v)� �out(y;v))g (A.5)

Because zl is a constant, maximizing P (vjy) = 1
zl
expf�U(vjy)g is

identical to minimizing the posterior energy, U(vjy):

U(vjy) = �in(y;v)� �out(y;v) (A.6)

A.3 Initialization and Optimization.

To apply the proposed model to segment the individual nanoparticles

it is necessary to estimate the con�gurations of v, which correspond
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to the local minima of U(vjy). This estimation is performed using

an iterative optimization procedure, which presumes an initial con-

�guration of the parameters. This separates the estimation into two

steps: initialization and optimization.

To perform the initialization, a search strategy [61, 69, 68, 101] is

applied. The concept of the search strategy is to perform a sparse

search in the parameter space of v. In practice the search is carried

out by shifting di�erent con�gurations of the ellipse around the image

and calculating the posterior energy U(vjy) at each position. These

con�gurations are de�ned as the search con�gurations. The initial

con�gurations are then extracted from the calculated energies. The

full initialization algorithm can be summarized as:

1. Create relevant search con�gurations (a1; b1; �1); :::; (ak ; bk; �k)

and choose i = 1.

2. Calculate U(vijy) for the center of the ellipse (r; c) correspond-

ing to each pixel in y, where vi = (r; c; ai; bi; �i).

3. i = i+ 1. Go to 2 if i � k.

4. Extract the initial con�gurations from the calculated values of

U(vjy).

The actual choice and number of search con�gurations (a1; b1; �1); :::;

(ak; bk; �k) are determined by the amount of variation in scale, ori-

entation and aspect ratio of the actual particles combined with the

overall demand for precise initialization. For many problems it is

suÆcient to do the search with con�gurations corresponding to cir-

cles of di�erent sizes, but for harder problems con�gurations with

di�erent aspect ratios need to be included.

The �nal step is to extract the initial con�gurations from the calcu-

lated U(vjy). Based on the assumption that only one template has

the center in (r; c), the minimum posterior energies U(vjy)(r;c) =
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min(U(r; c; ai; bi; �ijy)) for all (r; c) are obtained. The initial con-

�gurations are then extracted as the con�gurations, which corre-

spond to local minima in U(vjy)(r;c) with a posterior energy be-

low a threshold, tinit. A local minimum is de�ned as a minimum,

which has the lowest posterior energy in a ! � ! window centered

around the minimum. i.e. a local minimum in (r; c) should ful-

�ll U(vjy)(r;c) = min(U(vjy)(r+j;c+l)) for j = �!=2; :::; !=2 and

l = �!=2; :::; !=2.

A disadvantage of the search strategy is the high computational cost,

but the computation time is signi�cantly reduced by a linear �lter

interpretation of the likelihood function [68].

The following optimization can be categorized as continuous uncon-

strained optimization of a nonlinear function. Fisker et al. [68]

report a comparative study of the performance of 5 general optimiza-

tion algorithms on a similar model. The algorithms are the gradient

based steepest descent, conjugate gradient and the Quasi-Newton

method BFGS and the non-gradient based algorithms pattern search

[94] and simulated annealing with random walk [27, 112]. All the

gradient based methods are well known optimization methods, see

e.g. [52]. For initializations close to the �nal result all algorithms

obtain the same average probability, but the gradient based method

used less computation time, so BFGS is recommended. For poor ini-

tializations simulated annealing gives a statistically signi�cant higher

probability than the other methods, and in these cases simulated an-

nealing is recommended. We refer to [68] for the detailed parameter

settings for BFGS and simulated annealing.

A.4 Validation.

In the simple case where the particles do not overlap, the proposed

algorithm performs very well independent on size variations, but for

the case with large overlaps and size variations a number of false

con�gurations are extracted in the initialization (or a large number
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of true con�gurations are missed). To solve this problem a �nal

validation must be performed on the optimized result.

Essentially, false candidates only occur, when there is a high degree

of overlap, so validation is only needed for these particles. The over-

lap is separated into two types. The �rst type is, when one particle

is inside a single other particle. The second type is, when a number

of particles overlap, i.e. the total overlap is above toverlap percent. A

particle is de�ned to be inside another particle if more than tinside

percent of the particle is overlapping the other. When one or more

small particles are inside a large particle, the fundamental question

is, whether the large particle or the group of small particles is cor-

rect. The �rst request for the small particles is that they cover

approximately the same area as the large one, otherwise the small

particles do not seem to be a reasonable alternative. In practice the

small particles are requested to overlap the large particle by at least

toverlap percent. In the case with a overlap larger than toverlap, the

energy of the large particle and the average energy of the group of

small particles is compared, and the one with the highest energy is

removed.

This still leaves the second type of overlap, where groups of particles

overlap more than the maximal value, toverlap. To correct this, the

particle with the largest overlap is removed in each group until all

particles are below toverlap.

A.5 Experimental Results.

The proposed model and algorithm have been applied on two qualita-

tively di�erent samples. The �rst sample consisted of ferromagnetic

particles of the amorphous alloy a-Fe1�xCx (x � 0.22) prepared by

thermal decomposition of iron penta-carbonyl (Fe(CO)5, 20.0 cm
3) in

an organic liquid (cis-trans decalin, 50.0 cm3) in the presence of sur-

factant molecules (oleic acid, 4.0 g) by the method described in [178].

The size and distribution of sizes of the resulting particles depend on
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the choice and amount of surfactant and the heating conditions. The

preparation technique leads to the formation of well-separated, sur-

factant coated particles with nearly spherical shape and with a very

narrow size distribution (see Figure A.1). This fact makes these par-

ticles interesting for basic studies of the dynamic magnetic behavior

of ensembles of nanoparticles. The magnetic properties of magnetic

dispersions with di�erent volume concentrations of the particles have

been studied using ac and dc magnetometry. The main focus of these

studies has been to compare the dynamic behavior with that of in-

teracting atomic dipoles and in particular with that of spin-glass

materials [53, 89, 106]. The particles oxidize in contact with air.

Therefore, the TEM studies were performed on grids with oxidized

particles prepared by placing a droplet of the ferrouid on the grid

and leaving the grid in air until the particles had fully oxidized.

The nearly spherical shapes of the nanoparticles in this sample cor-

respond very well with the ellipse representation. The �rst step in

the segmentation of the particles is to perform the initialization.

Based on the distance between the particles, the area of the band

is chosen to be identical to the area of the ellipse, i.e � = 2. Due

to the limited variation in shape and size, only two search con�g-

urations are used. The con�gurations are two circles with radius 5

and 6 pixels, i.e. a1 = b1 = 5; a2 = b2 = 6 and �1 = �2 = 0. The

corresponding minimum posterior energy image U(vjy)(r;c) for the

subimage in Figure A.1 is shown in Figure A.4. The initial con�g-

urations are then extracted as the con�gurations, which correspond

to local minima in the posterior energy image. The window size

! is selected to the smallest radius in the initial con�gurations, i.e

! = 5, so the distance between the center of two initial con�gura-

tions is at least 3 pixels. The next step is to select the threshold,

tinit, which determines the sensitivity of the method with respect to

separating particles and background. Based on empirical experience

tinit is selected to tinit = �10:5, which according to the de�nition

of U(v;y) corresponds to a di�erence of 10.5 between the average

intensities inside the ellipse and in the band around the ellipse. The
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Particles a-Fe1�xCx �-Fe2O3

Correct 4545 (99.8%) 575 (94.3%)

Incorrect 4 (0.1%) 22 (3.6%)

Missed 7 (0.1%) 13 (2.1%)

Table A.1: Manual evaluation of segmentation. The table shows the

number of correctly segmented, incorrectly segmented and missed

nanoparticles.

initial con�gurations are extracted and optimized using BFGS (see

Figure A.5). Due to the limited number of overlapping particles no

automatic validation is performed. The segmentation is manually

validated (see Table A.1), which is quite easy for these particles. As

many as 99.8% of the particles are segmented correctly and all the

errors (missed and incorrect) correspond to overlapping particles.

Another important result is that as many as 4545 particles are seg-

mented. Such a number of measurements would have been extremely

time consuming to obtain manually. The total computation time for

the segmentation of the full image on a PC, Pentium II 350 Mhz,

was 15.2 min. (initialization: 0.2 min., optimization: 15.0 min.). In

general the computation time is highly dependent on a number of

factors, where some of the most important are the number and size

of the particles.

From the segmented particles with the incorrectly segmented parti-

cles removed, the distribution of the approximated diameters, d �

2
p
ab, the approximated volumes, V � 4
3
�(ab)3=2, and the aspect

ratios of the particles, � max(a; b)=min(a; b), are calculated (see

Figures A.6, A.7 and A.8). Gaussian and lognormal distributions

are �tted to the diameter and the volume distributions (see Figure

A.6-A.7 and Table A.2). To measure the goodness of �t, [153] rec-

ommend to use the Kolmogorov statistic, D, for a sample size greater

than 2000 and Shapiro-Wilk statistic, W, for a sample size less than

2000. Beside the test statistic the corresponding p-value is calcu-



A.5 Experimental Results. 55

Figure A.4: Minimum posterior energy U(vjy)(r;c) used for initial-

ization of the a-Fe1�xCx nanoparticles. The dark spots correspond

to low energy, i.e. nanoparticles.
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Figure A.5: Final segmented a-Fe1�xCx nanoparticles.
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Figure A.6: Distribution of approximated diameters of a-Fe1�xCx

nanoparticles.

lated. The interpretation of the p-value is, that if the �tted model

were correct, discrepancies as large or larger than the one observed

would take place p% of the time [150], i.e. a large p-value, which cor-

responds to a small D, indicates a good �t. Based on the test statis-

tics the best model for the diameter distribution is the Gaussian and

for volume distribution it is the lognormal (see Table A.2). Visually

the Gaussian and the lognormal distributions seem to describe the

empirical distributions very well, but based on the p-values the hy-

pothesis that the observations originate from the �tted distribution

is rejected for all the �ts, except the Gaussian �t to the diameter

distribution. However, testing for goodness of �t can be misleading.

For suÆciently good statistical quality of the data, the goodness of

�t criteria will reject any parametric distribution because it is only

an approximation to the empirical distribution [150].

The second sample consists of hematite nanoparticles produced ac-

cording to the gel-sol method developed by [169]. First a sample of
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Figure A.7: Distribution of approximated volumes of a-Fe1�xCx

nanoparticles.
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Figure A.8: Distribution of aspect ratios of a-Fe1�xCx nanoparticles.
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Table A.2: Properties of �tted distributions (number-weighted). The

third column contains the estimated parameters for the Gaussian

density (f(x)dx = 1p
2��
exp(� (x��)2

2�2

)dx) and for the lognormal den-

sity (f(x)dx = 1

x�
p
2�
exp(� ln2(x=�)

2�2

)dx). The fourth column contains

the Kolmogorov statistic, D, or the Shapiro-Wilk statistic, W, and

the corresponding p values
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relatively large polycrystalline hematite particles was prepared by

the gel-sol method. Some of the subcrystallites were then separated

from the larger polycrystalline particles by low energy ball milling

the powder in an agate container with agate balls. The sample was

dispersed in diluted HNO3 and the remaining agglomerates were re-

moved by centrifugation, resulting in an ionic suspension [8] of a

small amount of hematite nanoparticles. Using this particle suspen-

sion as seeds in a second gel-sol preparation, a powder of particles

with a typical size of about 60 nm was obtained. These particles are

polycrystalline and the individual subcrystallites can be separated

relatively eÆciently by a treatment with ball milling and centrifuga-

tion as before. The �nal ionic dispersion of hematite nanoparticles is

relatively stable and can be diluted with water and added to a grid

for TEM studies.

Due to the broader distribution in shape and size and the large num-

ber of overlapping particles, the analysis of the electron micrographs

of the second sample is more diÆcult than that of the �rst sam-

ple. Although the particle shapes are not strictly elliptic, the elliptic

shape still seems to be a reasonable low dimensional representation.

Circles are still used as initial con�gurations, but because of the

variations in size, a much larger number of initial con�gurations is

needed. In practice ai = bi = 13 + i and �i = 0 for i = 1; ::17

are used. For this problem � = 2, ! = 13 and tinit = �9 are

applied. The initialization of the particles in Figure A.2 is shown

in Figure A.9. Due to the shape variation, the initial con�gura-

tions are further away from the minimum energy con�guration than

the �rst sample, so simulated annealing is used for the optimization

(see Figure A.10). Due to larger particles a higher variance of the

random walk and 1000 iterations are used. The used variance is

�
2
rc

= �
2
cc

= 2; �2a = �
2
b

= 1 and �� = 0:2 (we refer to [68] for a

detailed description of the meaning of the symbols). The last step

is then to perform the validation. If the particles overlap by more

than 70% with one or more other particles, it is very hard to distin-

guish between each individual particle. On this basis the validation
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Figure A.9: Initialized �-Fe2O3 nanoparticles. Note that a number

of false ellipses are extracted as initial con�gurations.

parameters are selected to toverlap = tinside = 70%. The result of the

validation is shown in Figure A.11.

The manual evaluation of the segmentation is summarized in Ta-

ble A.1. A nanoparticle is evaluated as correctly segmented, if the

shape and size correspond reasonable well with the "true particle".

It should be stressed that this evaluation is subjective, and the man-

ual evaluation only indicates the performance. The incorrectly seg-

mented particles can be separated into 4 types: large carbon particle

(6), border problems (5) and poor segmentation (11). The large car-

bon particle is a foreign object, which ideally should not be in the

image. The incorrectly segmented particles along the border could

be removed by erasing all segmented particles within a certain dis-

62 Appendix A. Estimation of Nanoparticle Size Distributions

Figure A.10: Optimized �-Fe2O3 nanoparticles.
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Figure A.11: Final segmentation of �-Fe2O3 nanoparticles after val-

idation. The white ellipse indicates a missed particle.
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tance from the border at the expense of an increasing number of

missed particles. The poorly segmented particles indicate more seri-

ous problems, where the optimization is caught in a local minimum,

which does not correspond to the "true particle". But this is still

a quite small number compared to the overall number of particles.

Most of the missed particles correspond to particles, which overlap

with other particles (see Figure A.11). The total computation time

for this segmentation on a PC, Pentium II 350 Mhz, was 210.2 min.

(initialization: 79.5 min., optimization: 122.6 min., validation: 8.1

min.).

The distributions of the approximated diameters, the approximated

volumes and the aspect ratios of the particles are shown in Fig-

ures A.12, A.13 and A.14. The distribution of the approximated

diameters and volumes are again �tted by a Gaussian and a lognor-

mal distribution function. Based on the Shapiro-Wilk statistic, W,

the Gaussian and the lognormal describes the diameter distribution

equally well, whereas the lognormal distribution obtain the best �t

to the volume (see tabel A.2). Note that large values of the Shapiro-

Wilk statistic, W, indicates a good �t. If tests for goodness of �t are

performed, the tests reject that the observations originate from the

�tted distributions.

A number of tests has been performed to test the sensitivity of the

parameters, which need to be selected. In general the algorithm

is quite insensitive to reasonable values of the parameters. In most

cases the main di�erence is the total computation time. But it should

be stressed that tinit is far more important than the other parame-

ters, which can be chosen by simple rules of thumb. tinit is intuitively

easy to choose, because it corresponds to the minimum distance be-

tween the average intensity inside and outside the particle.
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Figure A.12: Distribution of approximated diameters of �-Fe2O3

nanoparticles.

A.6 Discussion.

The image analysis technique, discussed in this paper, appears to be

very useful for analysis of the particle size distribution in electron

micrographs with large numbers of particles. In particular it gives

reliable estimates of the size distribution when the particles are well

separated and the particle shape can be well approximated with el-

lipses. This is the case for the oxidized a-Fe1�xCx particles (Figure

A.1). An electron micrograph of the same sample has also been anal-

ysed manually using a magni�er with a built-in scale. In the ana-

lysis, a spherical particle shape was assumed and 254 particles were

analysed. The resulting size distribution of oxidized particles was

well described as a lognormal distribution with the geometric mean

�d = 5:79 nm and the logarithmic standard deviation �d = 0:07

(This corresponds to a diameter of about 4.6 nm before oxidation).

The estimated parameters for a Gaussian distribution are �d = 5:83
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Figure A.13: Distribution of approximated volumes of �-Fe2O3

nanoparticles.
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Figure A.14: Distribution of aspect ratios of �-Fe2O3 nanoparticles.
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nm and standard deviation �d = 0:42 nm. The mean values are in

good agreement with those obtained in the present work, but the

standard variations are larger (see table A.2). This is presumably

related to the larger uncertainty in the manual estimates.

The manually obtained volume-weighted volume distribution is well

described by a lognormal distribution with geometric mean volume

�V = 103:7 nm3 and logarithmic standard deviation �V = 0:22.

The corresponding values obtained by the technique described in

this paper are �V = 113:5 nm3 and �V = 0:13. Thus we �nd again

that the mean values agree quite well, but the standard deviation is

smaller when using image analysis. The size distribution is reected

in magnetic measurements. A �t to a zero-�eld cooled magnetization

curve measured on a very dilute ferrouid with very weak inter-

particle interactions using a volume-weighted lognormal distribution

yielded �V = 0:20 [89]. The discrepancy may be related to the

inuence of surface e�ects on the magnetic anisotropy constant. It

should also be noted that the fact that only 2D projections of the

particles are observed may result in an incorrect size distribution and

smaller aspect ratios than those of the real particles.

The use of the image analysis technique is more problematic in cases

when there is overlap of particles and the particle shape is more ir-

regular, like the �-Fe2O3 particles, shown in Figure A.2. However,

any technique that could be used for analysis of the size distribution

in such images would have diÆculties estimating the size of overlap-

ping particles. The results obtained by use of the analysis described

in this paper are therefore at least as reliable as those estimated by

use of other techniques. Furthermore, the present technique has the

advantage that the distribution can be estimated empirically with

good statistics.

The size distributions of nanoparticles are commonly well approxi-

mated by lognormal distribution functions [84]. It is also clear that

the size distribution of the �-Fe2O3 particles is better approximated

by a lognormal distribution than by a Gaussian distribution (Fig-

ures A.12-A.13 and Table A.2). The diameter distribution of the
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oxidized a-Fe1�xCx particles is well �tted by both types of distri-

bution functions, but the �t to the Gaussian distribution is slightly

better than the �t to a lognormal distribution (see Figures A.6-A.7

and Table A.2). This observation is in accordance with the results

of O'Grady and Bradbury [141], who found that nanoparticles, pre-

pared by carbonyl decomposition, are better �tted to Gaussian dis-

tributions, while other preparation techniques commonly lead to size

distributions that are better �tted to lognormal distributions. The

volume distribution of the oxidized a-Fe1�xCx particles is, however,

better �tted with a lognormal distribution.

In non-spherical ferromagnetic particles, shape anisotropy can give

a signi�cant contribution to the total magnetic anisotropy. The a-

Fe1�xCx particles prepared by carbonyl decomposition are amor-

phous [178, 179], and therefore the magnetocrystalline anisotropy is

negligible. The shape anisotropy of a particle with the average as-

pect ratio (max(a; b)=min(a; b) �= 1:05) and the same magnetisation

of the current particles is, however, about a factor of 10 smaller than

the measured value. Therefore, other contributions (e.g. surface

anisotropy) seem to be more important.

A.7 Conclusion.

In many studies of the properties of nanoparticles a detailed knowl-

edge of the size distribution is important for the interpretation of

experimental results. The technique presented in this paper seems

to be very useful for this purpose. In particular it can easily handle

a large number of particles and it is much faster and less subjective

than commonly used manual techniques.

The technique has, of course, limitations, especially if the particles

overlap and if the particle shape is not well represented by the used

template. Uncertainties in the estimated volume distributions can

also be expected because one observes 2D images of 3D objects. How-

ever, these limitations are equally important when other techniques
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(e.g. manual) are used to analyse the micrographs. We therefore can

conclude that the technique, demonstrated here, is both faster and

more reliable than other commonly used techniques.

It should be noted that the model and algorithm has been devel-

oped to segmentation of nanoparticles, but it can directly be applied

to segmentation of other particles and objects, which are well ap-

proximated by ellipses and have a similar intensity distribution, e.g.

cells.
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Automated visual

inspection of textile

Rune Fisker & Jens Michael Carstensen

Dep. of Mathematical Modelling, Tech. University of Denmark

Abstract

Amethod for automated inspection of two types of textile

is presented. The goal of the inspection is to determine

defects in the textile. A prototype is constructed for sim-

ulating the textile production line. At the prototype the

images of the textile are acquired by a high speed line

scan camera. The vertical threads are located using a

vertical projection of the image. It is thereby possible

to identify the defects in the vertical threads. A struc-

tural model of the horizontal threads is formulated. The

model consists of a Markov random �eld, which repre-

sents a priori knowledge about the position and struc-

ture of the horizontal threads and an observation model

that incorporates knowledge about the visual appearance
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of the threads given their position and structure. Using

this model the horizontal threads are located. Features

are calculated from the located threads to identify the

defects. To go from the prototype to a production line

system we only need to gain a speed factor of 4.

Keywords: pattern recognition, image analysis, automated

inspection, textile, line scan, Markov random �elds

B.1 Introduction

In large parts of the textile industry the quality of the produced tex-

tile is measured by manual inspection. Manual inspection is labour

intensive and is subject to the traditional problems related to ob-

jectivity and reproduction of a measurement. Besides this it is very

diÆcult to ensure that defects get through the manual system unde-

tected. Undetected defects are very expensive in terms of customer

complaints.

The visual inspection system focus on two types of textiles shown in

�gure B.1. The perfect textile can be described as a homogeneous

pattern where the vertical and the horizontal threads are orthogonal,

all the threads are straight, and the distances between consecutive

threads are constant. A given textile has to be classi�ed as �rst,

second, or third quality where the quality is determined by the kind

and size of defects in the textile. The possible defects in the ver-

tical threads are missing vertical threads or too large deviations in

the distance between consecutive vertical threads. In the horizontal

threads the possible defects are oblique threads, oblique borders of

the threads, waving threads, or too large deviation in the distance be-

tween the threads. The width of the textile is 1 meter and the length

is almost in�nite. In conjunction with a max production speed of 25

meter/min. the system have to inspect 0.42 meter2/second continu-

ously .
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Figure B.1: Examples of the two types of textiles with ordinary

weave (left) and herringbone weave (right), which have to be in-

spected. The images are acquired using transmission. The horizon-

tal size of the textile is 15.75 cm and the vertical size is 17.75. With

the chosen resolution the image is 630 x 630.
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Automated inspection of textile quality have earlier been investi-

gated using a Gaussian Markov Random Field [32], �rst-order gray

level statistics [107] and second-order gray level statistics in Gaus-

sian pyramids [24], Wavelet transform followed by a threshold [105],

an enhancement �lter followed by a threshold [140] and simple fea-

tures feed to a Neural network [138, 172]. We presents a new method

based on a vertical projection and a stochastic model of the textile

pattern.

B.2 Detection of defects in the vertical

threads

If the textile is moved in a constant direction the vertical threads

will always be vertical in the image because of the way the textile

is woven. This can be utilized to locate the position of the vertical

threads by making a vertical projection of the image. The vertical

projection of an image is made by calculating the average intensity

for each column. In the vertical projection of an textile image the

threads are located as local minima and the centre of the vertical

spaces as local maxima. Given the knowledge of the position of

the vertical threads the distance between the threads are directly

determined. Based on the distance it is possible directly to detect

deviations in the distance between the threads. From the distance it

is also possible to detect missing vertical threads because they will

appear as app. twice the normal distance between two threads. To

determine the quality of a textile limits for the maximal deviation

in the distance for each quality class are de�ned. An example of

a vertical projection is shown in �gure B.2. To suppress the noise

the projection is smoothed by a Gaussian �lter. In the projection

are drawn the located vertical threads as vertical lines. In the �gure

is shown a plot of the distances. Notice the peak between thread

number 12 and 13, which corresponds to the large distance between

thread 12 and 13 in the image. Additionally the deviation limits
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Figure B.2: Textile image (top, left). Vertical projection of image

where the located vertical threads are drawn as vertical lines (bot-

tom, left). Plot of distance based on the located threads. Notice

the large peak in the plot, which corresponds to the large distance

between thread 12 and 13 (right).

for �rst, second and third quality are drawn in the plot. Because

the deviation is outside the interval for �rst and second quality the

textile is classi�ed as third quality.

B.3 Detection of defects in the horizontal

threads

The detection of defects in the horizontal threads are also based on

localization of each individual thread. In order to locate the hori-

zontal threads a model of the threads is formulated. The continuous

thread k is represented by one point in each centre of a vertical space.

76 Appendix B. Automated visual inspection of textile

D

k-1

k

k+1

k+2

j-1 j j+1 j+2j-2

Figure B.3: Model of horizontal threads.

Thread k is thus modelled as

vk = (vk;0; vk;1; vk;2; :::; vk;L�1);

see �gure B.3. To reduce the complexity of the model the horizontal

position of the vertical space j is assumed known since it easily can

be located at the same time as the vertical threads.

Based on the representation of the threads a deformable template [23,

85, 114, 154, 189] is formulated, which incorporates the information

in a given image with a template of the textile structure. Given

an image y and the thread vk�1 the a posteriori distribution of the

deformable template for vk using a Markov Random �eld is given

as:
P (vkjy;vk�1) / expf��0

L�1X
j=1

(vk;j � vk;j�1)
2

��1
L�1X

j=0
(vk;j � vk�1;j �D)2 � �2

L�1X
j=0

Mm(vk;j ; j)g

where the two �rst terms contains the template of the structure.

The �rst term favours strictly horizontal threads. The second term

describes that the thread vk should be placed in a prede�ned dis-

tance D from vk�1. The third term describes the interaction of an
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observed image and a particular realization of vk where Mm(vk;j; j)

is the horizontal mean at the vertical position vk;j of the pixels in the

vertical space j. �0, �1 and �2 are model constants, which determine

the relative weight of each term.

Based on the a posteriori distribution the next horizontal thread is

located in a three step procedure:

1. Locate a point on the next thread.

2. Search for the rest of the next thread.

3. Validate.

To locate a point on the next thread it is assumed that a subset of the

next thread vk;[m;l] = (vk;m; vk;m+1; ::; vk;l) locally will have the same

shape as the previous thread and will be placed in the distance 0.5

to 1.5 D relatively to that thread. This assumption can be described

as:

vk;[m;l] = vk�1;[m;l] + id; d 2 [0:5D; 1:5D]

where i is the vector (1,1,..,1) with the same length as vk�1;[m;l]. A

subset of the next thread ^vk;[m;l] is then located by determining the

value ^d, which maximizes the a posteriori distributionP (vk;[m;l]jy;vk�1).

The point on the next thread ^vk;j 2 ^vk;[m;l] is then located at the

point, which have the highest a posteriori probability.

Assume that one or more points on the next thread vk;[m;l] are lo-

cated. The next point to the right on the thread vk;l+1 is then located

at the position ^vk;l+1, which maximizes the a posteriori distribution.

Conditioning only on already located points and using that the a pos-

teriori distribution is a Markov Random �eld the next point ^vk;l+1

can be located as the position, which maximizes:

P (vk;l+1 = qjy; vk;l; vk�1;l) / expf��0(q � vk;l)
2

��1(q � vk�1;l+1 �D)2 � �2Mm(q; l + 1)g;

q 2 [vk;l � C; vk;l + C]

78 Appendix B. Automated visual inspection of textile

Figure B.4: The result of the search from left (top,left) and right

(top,right) respectively with �0 = 4, �1 = 2:5, �2 = 15 and  = 20%.

The crosses marks the point found on the next thread. The result of

the validation based on the leftward and rightward searches(bottom).

where C is a constant de�ned as the maximum shift of the thread

between two vertical spaces. An analogous expression can be derived

to locate points to the left.

To validate the result two searches are made one from the left side of

the textile vl
k

and one from the right vr
k
. These are compared point

v
l
k;j

by point vr
k;j
. If the di�erence between the points is larger than

a prede�ned percentage  of D it is assumed that there is an error

in one of the searches. After detecting an error the whole interval

where the di�erence is larger than  percent of D is determined.

Then the a posteriori probability for each interval is determined and

the interval with the highest a posteriori is assumed to be correct

and is used in the �nal result. If there is no large deviation between

the searches the thread with the highest a posteriori is used.

The three step procedure is illustrated in �gure B.4 with �0 = 4,

�1 = 2:5, �2 = 15 and  = 20%. The two upper images are the

result of the search from left and right respectively. The crosses

mark the point found on the next thread. The bottom image is the

result of the validation based on the searches from left and right.

Notice that the �nal result is a combination of the two searches.
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B.3.1 Defects Analysis

After the horizontal threads are located they have to be analyzed

for defects. For this purpose a number of features are de�ned, which

make it possible to detect the presence and the size of the defects.

The features are:

� Mean distance dk =

1
L

P
L�1

j=0 vk;j � 1
L

P
L�1

j=0 vk�1;j

� Local distance dk;j = vk;j � vk�1;j.

� The gradient ak of the thread

Thread vk is approximated by a linear thread akh(j)�bk, where

ak is the gradient, bk is the position of the linear thread at

the vertical axis, and h(j) is the horizontal position of vertical

space.

� The linear variation Æk of the gradient ak de�ned as Æk = ak��a

where �a is the mean gradient of the threads.

� 2. moment �2
k

= 1
L

P
L�1

j=0 (vk;j � ak vm(j) � bk)
2

� 3. moment k =

1
L

P
L�1

j=0 (vk;j � ak vm(j)� bk)
3

The mean and local distances are used for detection of deviations

in the distance between the horizontal threads. The gradient of the

thread is used for detection of oblique threads. The 2. moment,

which can also be described as the linearity of the thread is used for

detection of waving threads. The linear variation of the gradient and

the 3. moment is used for detection of threads with oblique border.

The 3. moment can be interpreted as the skewness of the thread.

B.4 Experiments

In order to analyze images of the same quality as in the production

a hardware prototype is made, which simulates the production. The
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textiles are moved forward using a conveyer belt and the image ac-

quisition is made by a high speed line scan camera. To get the best

contrast in the images transmission (background light) is used. The

light has to be high frequency because 50 Hz light will be superim-

posed in the images. All presented images are acquired using the

prototype.

Images of 22 pieces of textile have been acquired at the prototype.

Three images each representing 20 % of the original image are shown

in �gure B.5, B.6 and B.7. In the textiles the located threads are

drawn. The dark threads indicates that there have been detected an

error. Notice the threads are located correct. Based on the located

threads the features for the defect analysis are calculated and plotted

in the �gures.

The textile in �gure B.5 contains deviation in the distance between

the horizontal threads. Note the peaks in the plot of the distance

between the horizontal threads, which indicate the deviation in the

distance. Notice also the small oscillations in the rest of the features

as expected because there is no other defects. Figure B.6 contains a

textile with oblique threads, which is clearly indicated by the high

gradient in the plot of the gradient and the small oscillations in the

rest of the features. The last textile in �gure B.7 have an oblique

border, which is revealed by the plot of the 3. moment, 2. moment,

and the linear variations of the gradient. Note how the method works

for both the two di�erence types of textiles.

B.5 Conclusion

A method which successfully inspects two types of textiles and de-

termine the quality has been presented. The quality is determined

by the presence and size of the defects which appear in the textile.

The defects in the vertical threads are found by locating the verti-

cal threads using a vertical projection of the image. The horizontal

threads are located using a structural model of the threads. Based
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Figure B.5: Textile with large deviations in the distance between

the horizontal threads (left). In the textile the located threads are

drawn. Plot of the features for the defect analysis (right). Note the

large peaks in the plot of the mean distance between the horizontal

threads, which indicate the defects.
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Figure B.6: Textile with oblique horizontal threads (left). In the

textile the located threads are drawn. Plot of the features for the

defect analysis (right). Note the high values of the gradient related

to the oblique horizontal threads.
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Figure B.7: Textile with oblique border of the horizontal threads

(left). In the textile the located threads are drawn. Plot of the

features for the analysis for defects (right). Note the peak in the

3. moment, 2. moment, and the linear variations of the gradient,

which indicate the defect.
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on the located horizontal threads a number of features are calculated

which are used for detection of defects in the horizontal threads. All

defects in the tested samples of textile have been located correctly.

In relation to the realtime demands this method should be acceler-

ated by a factor 4. This seems very encouraging while it should be

possible to accelerate the method by optimizing the implementation

and using dedicated hardware.
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Appendix C

A General Polygon-based

Deformable Model for

Object Recognition

Rune Fisker and Jens Michael Carstensen

Dep. of Mathematical Modelling, Tech. University of Denmark

Abstract

We propose a general scheme for object localization and

recognition based on a deformable model. The model

combines shape and image properties by warping a arbi-

trary prototype intensity template according to the de-

formation in shape. The shape deformations are con-

strained by a probabilistic distribution, which combined

with a match of the warped intensity template and the

image form the �nal criteria used for localization and

recognition of a given object. The chosen representation
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gives the model an ability to model an almost arbitrary

object. Beside the actual model a full general scheme

for applying the model is proposed. The scheme includes

general methods for initialization, optimization and val-

idation. Experimental results for real data are shown.

Compared to related work the proposed model and the

methods for initialization and validation contains a num-

ber of interesting features and improved abilities.

Keywords: deformable templates, active contour models,

active shape models, warping.

C.1 Introduction

The group of models known as deformable models have been pre-

sented under many di�erent names, where the best known probably

are active contour models (snakes), active shape models and defor-

mable templates. One of the characteristics of deformable models is

that an object embedded in an image is represented by a vector of

template parameters v 2 
, where 
 is the parameter space. Di-

rect or under some mapping the template parameters v de�ne the

object. To make inference about the object in an image y a prob-

abilistic distribution P (vjy) (or an equivalent energy function) is

formulated such that the con�guration of the template parameters,

which match the object best, have the highest probability. The prob-

abilistic distribution can be separated in two parts: the prior P (v)

and the likelihood P (yjv). The prior distribution P (v) represents

the prior knowledge about the object and is independent of the im-

age, and the likelihood P (yjv) (or the observation model) represents

the interactions with the image (the observations). Using Bayes the-

orem P (vjy) / P (yjv)P (v) the prior and likelihood is combined to

the �nal posterior distribution used to make interference.
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C.2 Deformable models

Jain et al. [102] divide deformable models into two groups: Free form

and Parametric. Free form deformable templates have no explicit

global structure because the prior only contains local continuity and

smoothness constraints. This makes free form templates able to rep-

resent an arbitrary shape as long as the continuity and smoothness

constraints are satis�ed. The best known example of free form mod-

els is active contour models or snakes originally proposed by Kass et

al. [108]. To compensate for the shrinking e�ect of closed active con-

tour models Cohen and Cohen [33, 34] add an ination force to the

snake model. Another example is Lai and Chin [118], who proposed

a more generalized formulation of active contour models.

In parametric deformable models prior knowledge of the global struc-

ture is included using a parameterized template. One of the pio-

neers of deformable models is Grenander, who proposes a paramet-

ric model [85] based on a 2D vector cycle representation of the given

object and a stochastic distribution that governs the deformations

of the initial template. This model has been further developed and

described in [86, 155]. Jain et al. [102] propose a general framework

for object matching based on prototype (or average) templates and

with a di�erent type of deformations and local constrains on these

deformations. This model has for example been used for recogni-

tion of handwritten digits [103]. A similar model has been proposed

by Garrido and Blanca [72], but they use di�erent methods for ini-

tialization and optimization. Another general stochastic model is

proposed by Staib et al. [163]. This model uses elliptic Fourier de-

scriptors to represent the boundary of the object. Cootes et al. [41]

propose an active shape model, where the object is represented by

the mean shape of a training set and a linear combination of eigen-

vectors of the shape variation from this mean. This work has further

been developed into the novel Active Appearance models [35], which

also incorporates the appearance, i.e. grey level information. All the

previous cited parametric models are general, because they, given a
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Figure C.1: The object shape represented with vertices ui and edges

zij .

prototype template or a training set, are able to handle an almost ar-

bitrary object. Probably the largest group of deformable models are

formulated and tuned for a speci�c object, because it is often needed

to incorporate special assumption to be able to make inference about

a speci�c object. The properly best known model formulated for a

speci�c problem is an eye model and a mouth model proposed by

Yuille et al. [189], which is used to locate the eyes and mouth in face

images. A description of more models can be found in the excellent

book on Active Contours by Blake and Isard [18] and in the survey

paper by McInerney and Terzopoulos [132] and by Jain et al. [101].

C.3 The polygon-based model

An object is de�ned by the set of template parameters v = (u;z),

where u is an ordered set of vertices u = (u0;u1; :::;uL�1) and z is a

set of edges z = (zij ; :::;zkl), where ui 2 RN and zij = uj �ui, see

�gure C.1. The model can not only represent a single closed contour,

but an arbitrary combination of combined or not combined polygons

and lines, hence the name a polygon-based deformable model.
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C.3.1 Prior model

The basic principle of prior models is to introduce prior knowledge

into the model. The attraction of using prior knowledge is simply

that it is so hard to make progress without it [18]. We propose a new

prior model containing two parts. The �rst part favors con�gurations

of the templates, where the ratio ij;jk between the length of edge zij

and zjk is close to the prior knowledge about this ratio 
p
ij;jk
. The

second part penalizes the deviation between the actual angle �ij;jk 2

[��; �] and the prior angle �
p
ij;jk

2 [��; �] between the edge zij

and the edge zjk, see �gure C.1. The prior angle �
p
ij;jk

corresponds

to the prior knowledge about the value of this angle. During the

formulation of the prior model focus was on incorporating model

properties, which are easy to interpret, in order to make it easier to

control and understand the inuence of the prior. The prior model

is de�ned as:
P (v) =

1
Z

expf�
X

	

�

ij;jk
(

jzij j
jzjkj

� 
p
ij;jk
))2

�
X

	

�
�
ij;jk(1� cos(�ij;jk � �

p
ij;jk
))g (C.1)

where 	 = f(ij; jk); :::g is the set of edge pairs, where prior knowl-

edge should be included, jzjkj is the length of zjk, �ij;jk 2 R+ is the

prior weight parameter, which determines the relative inuence of

the deviation between
jzij j

jzjkj
and 

p
ij;jk
, ��
ij;jk

2 R+ is the equivalent

parameter for �ij;jk and 1
Z

is the normalizing constant. Note that

the order of vertices indexes i,j and k in e.g. �ij;jk is arbitrary as

long as one vertices always is present twice. The actual values of


p
ij;jk

and �
p
ij;jk

for an given object can either be determined from a

training set or chosen based on empirical experience. The criterion

(1�cos(�ij;jk��pij;jk)) is chosen to ensure the result is zero when the

error is zero and to get a proper symmetric function for the radial

error.
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The trigonometric term in the second part of the proposed prior

(C.1) can be rewritten to become a direct function of the vertices

u. In the case of N = 2, i.e. ui = (xi; yi), the trigonometric term

becomes:

cos(�ij;jk � �
p
ij;jk
)

= cos(�ij;jk)c
p
ij;jk

+ sin(�ij;jk)s
p
ij;jk

=

(xj � xi)(xk � xj) + (yj � yi)(yk � yj)

jzij jjzjkj c
p
ij;jk

+

(xj � xi)(yk � yj)� (yj � yi)(xk � xj)

jzij jjzjkj s
p
ij;jk

(C.2)

where c
p
ij;jk

= cos(�
p
ij;jk
), s

p
ij;jk

= sin(�
p
ij;jk
). Equivialent results can

be derived for models of higher order (N > 2).

The proposed prior is able to model objects containing smooth parts

and parts with corners by choosing �
p
ij;jk

= 0 and �
p
ij;jk

= �
2
, respec-

tively. By choosing �
p
ij;jk

= 0 8 (ij; jk) 2 	 the behaviour of the

prior becomes very similar to the behaviour of the internal energy

of a snake [108] without the shrinking e�ect, because the �rst term

in (C.1) do not shrink the model and the second term in (C.1) will

have similar properties as the second derivative in the snake internal

energy. In general the proposed prior is able to model an arbitrary

object, which can be approximated by vertices and edges. Basically

most of the priors of the other general deformable models are able

to model the same objects, but the proposed prior is the only model,

where it is possible to control the actual value of the angle between

edges and of the relative length of the edges independently. Another

advantage of the proposed prior is that it is invariant to scale, ro-

tation and translation, which is not a common feature for most of

the general models. The invariance is due to the fact that both mea-

sures, i.e. ij;jk and �ij;jk, used in the prior are relative measures,

which make them invariant to scale, rotation and translation.
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C.3.2 The Likelihood function

The proposed likelihood is based on the matching of an intensity tem-

platemv to the image. The intensity template is directly connected

to the template parameters v, and a prototype intensity template

m

pt
v corresponding to the parameters vpt is assumed to be known.

The actual con�guration of the intensity templatemv corresponding

to the template parameters v is determined by a warp ofmpt
v tomv

according to the deformation of vpt to v. The intensity template

is only de�ned in a band bjk around each edge zjk, see �gure C.2.

For N = 2 each band bjk is de�ned by the quadrangle spanned by

the four intersection points uij;jk
l
;uij;jk
r
;u
l
jk;kl and u

r
jk;kl, where

u
l
ij;jk and urij;jk corresponds to the intersection of the borders of

band bij and bjk, see �gure C.2. These points can be de�ned in two

ways depending on if the width of the band is assumed to be con-

stant or scale with the size of the template. This assumption should

be based on the actual behaviour of the object, i.e. does the width

of the intensity template change for di�erent sizes of the object. The

intersection points are then de�ned by:

u
l
ij;jk = uj + d

l
ij;jktan(

�ij;jk
2

)
zjk

jzjkj
� d
l
ij;jk

zjk

jzjkj

u
r
ij;jk = uj � d

r
ij;jk
tan(

�ij;jk
2

)
zjk

jzjkj
+ d
r
ij;jk

zjk

jzjkj

where zjk = (�yk + yj; xk � xj) is the orthorgonal vector to zjk ,

�ij;jk = cos
�1(zij � zjk=(jzij jjzjkj)), dlij;jk = d
l if the bands are as-

sumed to have constant width or dl
ij;jk

= d
l
=2(jzij j=jzptij j+jzjkj=jzptjkj)

if the width is assumed to vary with the size, where dl is a given

constant and z
pt
jk is the edge zjk corresponding to the prototype

template. The reason for choosing dl
ij;jk

proportional to the average

scaling of zij and zjk for a not constant width of the band is to

avoid discontinuities in the band width. The local deformation of
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Figure C.2: The intensity template.

each band bjk is approximated by a bilinear transformation:

x
pt = r
jk
10x+ r

jk
01y + r

jk
11xy + r

jk
00

y
pt = s
jk
10x+ s

jk
01y + s

jk
11xy + s

jk
00 (C.3)

where (xpt; ypt) and (x; y) are the coordinates in the prototype tem-

plate and the warped template, respectively, and rjk and sjk are

the warping coeÆcients. The actual values of rjk and sjk are found

by inserting the corresponding intersection points uij;jk
l
;uij;jk
r
;

u
l
jk;kl;u

r
jk;kl, u

pt;l

ij;jk;u
pt;r

ij;jk, u
pt;l

jk;kl and u
pt;r

jk;kl in (C.3) and solve for

r
jk and sjk. The values of (xpt; ypt) are real numbers, and the inten-

sities corresponding to (xpt; ypt) need to be interpolated. Tradition-

ally it is necessary to use bilinear or cubic interpolation to achieve

proper results, but if the prototype template is created at least �ve

times larger than the actual size of the template in the image, proper

results can be obtained by the much faster nearest neighbour interpo-

lation. The actual values of the intensities in the intensity template
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are either determined from a training set or based on empirical ex-

perience. In the special case where a point in the warped template is

contained in more than one band the average, maximum or minimum

value is used depending on the actual object. The equations above

have been derived for the case where two edges intersects at each

vertices, but the result can be generalized to any positive number of

intersection in each vertices.

The criteria used for matching the image y and the warped template

mv is correlation, which leads to the following likelihood function

P (yjv):
P (yjv) = 1
Z

expf(
P

r;c
(mv(r; c) � �m)(y(r; c) � �y)

��m�y

g (C.4)

where
P

r;c

is the sum over the Nm pixels in the template, which are

not "don't cares", i.e. values outside the bands, and the correspond-

ing image pixels, �m = 1
Nm

P
r;c
mv(r; c), �y = 1
Nm

P
r;c
y(r; c),

�
2
m = 1
Nm

P
r;c
(mv(r; c) � �m)
2, �2y = 1
Nm

P
r;c
(y(r; c) � �y)
2 and

� is regularization constant, which gives the relative inuence of

the likelihood. One advantage of using correlation for matching is

that it is invariant to linear transformation of the intensity. An-

other advantages is that the output always is between -1 and 1,

which make it much easier to perform a robust thresholding. If

speed is a concern and the intensity variation between objects are

low computationally cheaper matching approaches like the sum of

squared di�erences
P

r;c
(mv(r; c) � y(r; c))2 or unnormalized corre-

lation
P

r;c
mv(r; c)y(r; c) can be used. It is approximately twice as

fast to compute
P

r;c
(mv(r; c) � y(r; c))2 or
P

r;c
mv(r; c)y(r; c) as

correlation.

The approach of using intensity templates in the likelihood function

enable the likelihood to model an arbitrary intensity function and

therefore and arbitrary object. With the exception of the work by

Cootes and his colleagues [35, 41] the other general models assume

the contour to be placed on a special image feature, typical the image
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edges. The Active Shape Models [41] and the novel Active Appear-

ance Models [35] match a 1D gray scale pro�le and a eigenvector

representation of a full 2D gray scale template to the image, respec-

tively. Compared to the full intensity template the proposed band

approach reduces the amount of data to warp and match. It also has

the advantage of being able to focus the matching on the descrip-

tive subparts of the object. This can be a very important feature

for recognition of e.g. overlapping or transparent objects. The two

other models also have the disadvantage of presuming a training set.

Another di�erence is that for the full template approach it is not

possible only to scale the intensity template a long the edges, i.e.

keep the band width constant. But in general the three models each

have their advantages with respect to di�erent problems.

Finally the posterior P (vjy) is created using Bayes theorem and the

prior (C.1) and the likelihood (C.4).

C.3.3 Initialization and optimization

The proposed polygon-based model is then used to make inference

about an object in an image by estimating the template parameters,

which corresponds to the local maximum a posteriori (MAP), de�ned

as: ^v = maxv P (vjy). The MAP estimation is performed using an

iterative optimization procedure, which presume an initial con�gu-

ration v0 of the template parameters. This basically separates the

MAP estimation in two steps: initialization and optimization. For a

general review of initialization and optimization techniques used for

deformable models refer to [68].

For the initialization a search strategy is used, where the general idea

is to do a multiresolution search for the con�gurations in parame-

ter space with the highest posterior probabilities. Traditionally the

search is performed for di�erent combinations of position, scale and

rotation. The con�gurations with a probability above some thresh-

old are then used as the initial con�gurations [102]. By a �lter inter-

pretation of the likelihood, the calculation of the likelihood can be
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performed for a large number of positions by a convolution of this

�lter and the image [68]. The result of the convolution is basically

equivalent to translating the template, such that each pixel is the

centre of the template, and calculating the likelihood. For a large

number of models the �lter interpretation of the likelihood increase

the speed of the likelihood calculation signi�cantly [68]. The �lter

interpretation of the likelihood for the proposed model is very easy

to derived, because the likelihood �lter corresponding to v is equiva-

lent to the intensity templatem0;0
v with centre in (0; 0). Instead of a

convolution of the �lter and the image, the �lter should be correlated

with the image to calculated the likelihood. These ideas have been

developed into the following algorithm for initialization:

1. Chose the image scale � � 1.

2. Create the intensity templates m0;0
vo
; :::;m

0;0
vM�1

for the rele-

vant con�gurations of the model vo; :::;vM�1.

3. Create the likelihood P (yjvi) by correlating each template

m

0;0
vi

with the image y and add the prior P (vi) to get the

posterior P (vijy).

4. Extract the initial con�gurations, which correspond to local

maxima in the posterior, and which have a value above a given

threshold ti. Add these con�gurations to the existing con�gu-

rations.

5. Decrease the image scale � = � � 1 and optionally optimize

and validate the existing con�gurations if � > 1.

6. If � � 1 goto 2.

The �nal optimization after step 6 and the optional optimization

in step 5 is basically just an ordinary optimization problem, but the

optimization is not trivial, due the dimensionality and multimodality.

A number of general gradient and non-gradient based optimization
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algorithms have been applied and the most successful, in the sense of

achieving the best average probabilities, seems to be the non-gradient

based optimization method Pattern Search [94].

C.3.4 Validation

For non-trivial object recognition tasks, e.g. object with high vari-

ability in shape and intensity, and for a coarse sampling of the rele-

vant con�guration of the initial template (in step 2) a number of false

initial candidates might be accepted. Even after the optimization a

number of these false candidates might be caught in local maxima,

which do not correspond to a true object. To remove the false ob-

jects a validation might need to be performed. A simple validation is

performed by removing all optimized templates, which have a prob-

ability below a given threshold tv > ti. This validation can also be

used to determine whether one or more objects of a given type is

present in the image.

For a non-trivial task the simple validation might not be good enough,

because subparts of objects gives a high response or two small ob-

jects look like one big etc. This requires an additional validation of

overlapping templates to remove false candidates. In practice the

validation is performed by examining all templates, which have their

centre inside another template. If the probability of the template,

which is inside, is lower than the other template, the �rst template

is removed. This method does not guarantee that true objects are

removed, but in general it tend to remove more false objects than

true object, because of the comparison of energy. One obvious limit

of this validation is that if two true objects overlap more than ap-

proximately 50 percent, one true object will be removed.
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Figure C.3: Example of pre-processed image of sugar crystals.

C.4 Experimental Results

The polygon-based deformable model have been applied to a real

problem, where sugar crystals should be located and their size mea-

sured in images, which are acquired during the crystallisation process

of sugar, see �gure C.3. The size distribution of the sugar crystals is

an important feature for the �nal quality of sugar, and the producers

of sugar are very interested in measuring this property during the

crystallisation to control the distribution. At �rst glance the task

seems quite trivial, but due to the high variability in shape and lo-

cal intensity distribution, missing parts and the tendency to touch

and overlap, simpler approaches based on grey scale morphology,

thresholding and blob analysis have failed.

Based on empirical experience the individual crystals are assumed to

be modelled by a simple polygon model with four vertices u0;u1;u2

and u3 and four edges z0 1;z1 2;z2 3 and z3 0. The ideal crystal is

assumed to be an rectangle, which leads to the prior assumption

�
p
ij;jk

= �=2 8 (ij; jk) 2 	, where 	 = f(0 1; 1 2); (1 2; 2 3); (2 3; 3 0);

(3 0; 0 1)g. The values for p
ij;jk

are chosen individually such that the
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Figure C.4: Prototype intensity template (left) and �lter bank used

for initialization at full image size, i.e. � = 1 (right). White values

inside the �lter indicates "don't cares", i.e. values outside the bands.

prior probability of the initial con�guration always is zero. Based

on empirical observations the intensity orthogonal to the edges is

approximated by a Gaussian distribution with the mean at the edges

and the variance �2
I
. This assumption is used for the creation of

the prototype intensity template, see �gure C.4. The width of the

crystal borders seems to be relative independent of the crystal size,

so constant values are chosen for �2
I

= 2 and for the width dl
jk

= 2��I

of the intensity band bjk. The model weight parameters are chosen

to �

ij;jk

= 0:05, ��
ij;jk

= 18 (ij; jk) 2 	 and � = 1.

The initailization is performed according to the proposed algorithm

starting at � = 2, i.e. the original image is reduced to half the width

and height. A bank of intensity template �lters m0;0
vo
; :::;m

0;0
vM�1

are created for each image scale. In practice the di�erent tem-

plates vo; :::;vM�1 are created from a default rectangle and a de-

fault square, which are scaled on a given interval and rotate 5�=8

radians for each con�guration, see �gure C.4. Note, that the �lters

show the warp of the prototype intensity template according to dif-
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Figure C.5: The maximum posterior image Imax(P (vij(y)) at full im-

age size. Dark correspond to low energy, i.e. high probability .

ferent con�gurations of the template parameters, and that crystals

which are smaller that the smallest �lter template, in general not are

of interest. The �lters are then correlated with the image and the

prior energies are added. The result is M posterior energy images

IP (v0jy); :::; IP (vM�1 jy), where the pixel IP (vijy)(r; c) is identical to

the posterior P (vijy) for the template vi with centre in (r; c). Note,

that in practise the energies equivalent to �log of the probability is

always used and not the actual probabilities. To extract the local en-

ergy minima (equivalent to the probabilistic maxima) the maximum

posterior image Imax(P (vij(y)) = max(IP (v0jy); :::; IP (vM�1jy)) is

created, see �gure C.5. The dark spots in the �gure indicate posi-

tions, which correspond to a crystal in the image. Note, that only

the smaller crystals show large response, because only the small ini-

tial templates are used at this resolution. The large templates are

initialized at a lower resolution.

The con�gurations corresponding to local minima below the thresh-

old ti = �0:4 are extracted as initial con�gurations. If other tem-

plates already exist from an initialization at a higher scale, the poste-
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rior energy of these templates are inserted in the maximum posterior

image at the pixel, which correspond to the centre of each template.

These energies appear as black dots in the maximum posterior im-

age, see �gure C.5. The energies are inserted before the extraction of

new initial con�gurations. During the multiresolution initialization

the optional optimization and validation is performed to remove false

candidates at an early point and to increase reliability of the energies

of the existing templates. The result of the initialization can be seen

in �gure C.6. Note that templates on dark objects, which touch the

boundary of the image, are removed to avoid dealing with boundary

conditions. The result of the �nal initialization contains a number

of false candidates, but in general it is better to accept a number

of false candidates than to reject a number of true objects, because

false candidates usually will be removed during the validation. In

general the exact choice of the threshold ti and of the number M

of con�guration used for initialization is a trade-o� between speed

and accuracy, because a lower threshold ti or an increased number

of con�guration M will improve the accuracy of the �nal result, but

also increase the computational cost.

The initial con�gurations are fed to Pattern Search, which optimize

the individual templates, see �gure C.7. The optimized result is then

validated with respect to energy and overlap to obtain the �nal re-

sult, see �gure C.8. The validation removes a lot of false candidates,

such that the �nal result with few exceptions contains true objects.

Unfortunately the overlap validation also removes a few overlapping

true objects. From a general point of view it is not satisfying that

objects are missed, but for the actual application it is important

that the accepted objects corresponds to true objects, and it does

not matter that a few crystal are missed as long as it is not system-

atic (what is not the experience). In general the method recognise

a large percentage of the crystals, including crystals where pieces of

the border are missing and crystal which are touching and partly

overlapping.
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Figure C.6: The result of the initialization.

Figure C.7: The result after the optimization.
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Figure C.8: The �nal result after validation.

C.5 Discussions and future work

This work presents a systematic method for object localization and

recognition. The framework is general in the sense that it can be

applied to almost any object. Promising experimental results have

been presented on an object recognition task, where the objects have

a high variability in appearance, have missing parts and a tendency

to touch and overlap. The model and the scheme have been ap-

plied to 2D greyscale images, but can easily be generalized to higher

dimensions and multiband images.

We are in the process of improving the validation of overlapping

objects and incorporate general local measures to accelerate the ini-

tialization, which hopefully will lead to an further improved scheme.

Regarding the actual sugar crystal data, improvement should be ob-

tained by creating a more advanced intensity template rather than

improving the model or the scheme. At the moment the model is

also considered used for a number of other problems.



103

Appendix D

Extending and applying

Active Appearance

Models for automated,

high precision segmen-

tation in di�erent image

modalities

Mikkel B. Stegmann, Rune Fisker, Bjarne K. Ersbll

Dep. of Mathematical Modelling, Tech. University of Denmark

Abstract

In this paper, we present a set of extensions to the defor-

mable template model: Active Appearance Model (AAM)

proposed by Cootes et al. AAMs distinguish themselves

by learning a priori knowledge through observation of
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shape and texture variation in a training set. This is

used to obtain a compact object class description, which

can be employed to rapidly search images for new object

instances. The proposed extensions concern enhanced

shape representation, handling of homogeneous and het-

erogeneous textures, re�nement optimization using Sim-

ulated Annealing and robust statistics. Finally, an ini-

tialization scheme is designed thus making the usage of

AAMs fully automated. Using these extensions it is demon-

strated that AAMs can segment bone structures in ra-

diographs, pork chops in perspective images and the left

ventricle in cardiovascular magnetic resonance images in

a robust, fast and accurate manner. Subpixel landmark

accuracy was obtained in two of the three cases.

Keywords: Deformable Template Models, Snakes, Robust Statis-

tics, Initialization, Metacarpal Radiographs, Cardiovascular Mag-

netic Resonance Imaging, Segmentation.

D.1 Introduction

In recent years, the model-based approach towards image interpreta-

tion named deformable template models has proven very successful.

This is especially true in the case of images containing known objects

with large variability.

Among the earliest and most well known deformable template models

is the Active Contour Model { known as Snakes proposed by Kass

et al. [108]. Snakes represent objects as a set of outline landmarks

upon which a correlation structure is forced to constrain local shape

changes. In order to improve speci�city, many attempts at hand

crafting a priori knowledge into a deformable template model have
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been carried out. These include parameterization of a human eye

using ellipsis and arcs by Yuille et al. [189].

In a more general approach, while preserving speci�city Cootes et al.

[41] proposed the Active Shape Models (ASM) where shape variabil-

ity is learned through experimental observation. In practice, this is

accomplished by a training set of annotated examples followed by a

Procrustes analysis combined with a principal component analysis.

A direct extension of the ASM approach has lead to the Active

Appearance Models (AAMs) [35]. Besides shape information, the

textural information, i.e. the pixel intensities across the object, is

included into the model. AAMs have been further developed in

[39, 40, 61, 136]. Quite similar to AAMs and developed in paral-

lel herewith, Sclaro� & Isidoro suggested the Active Blob approach

[156]. Active Blobs is a real-time tracking technique, which captures

shape and textual information from a prototype image using a �nite

element model, to model shape variation. Compared to AAMs, Ac-

tive Blobs deform a static texture, whereas AAMs deforms both tex-

ture and shape during the optimization. Early modeling of texture

includes the eigenfaces by Turk & Pentland [174], where face recog-

nition was accomplished using a PCA-based texture model similar

to the one integrated into AAMs.

Other general deformable template models include the ones proposed

by Grenander [85] and Jain [102]. For further information on defor-

mable template models, refer to the surveys given in [63, 101, 132].

D.2 Active Appearance Models

Below is presented the outline of the Active Appearance Model ap-

proach. AAMs distinguish themselves frommany other segmentation

methods in the sense that segmentation can be carried out using the

approach as a black box. The user only needs to provide a training

set of annotated shapes. For further details refer to [35, 40, 164].

106Appendix D. Extending and applying Active Appearance Models

D.2.1 Shape & Landmarks

AAMs handle shapes as a �nite set of landmarks. Here the term

shape is de�ned as "All the geometrical information that remains

when location, scale and rotational e�ects are �ltered out from an

object." [56] and the concept of a landmark as "A point of correspon-

dence on each object that matches between and within populations."

[56].

A mathematical representation of a shape with n-points in k dimen-

sions could be a concatenation of each dimension in a kn-vector. The

vector representation used for planar shapes is then:

x = (x1; x2; : : : ; xn; y1; y2; : : : ; yn)
T (D.1)

Notice that the above representation does not contain any explicit

information about point connectivity. In the presented framework,

point connectivity is added as auxiliary data.

D.2.2 Shape Formulation

When dealing with redundancy in multivariate data { such as shapes

{ AAMs utilize the linear orthogonal transformation; principal com-

ponent analysis (PCA). In our application for describing shape vari-

ation by PCA { a shape of n points is considered one observation,

xi, in a 2n dimensional space.

In practice the PCA is performed as an eigenanalysis of the covari-

ance matrix of the shapes aligned w.r.t. position, scale and rotation,

i.e. after a Procrustes analysis. As shape metric in the alignment

procedure the Procrustes distance [83] is used. Other shape metrics

such as the Hausdor� distance [97] could also be considered.

Consequently it is assumed that the set of N shapes constitutes some

ellipsoid structure of which the centroid { the mean shape { can be

estimated as: x = 1
N

P
N
i=1 xi. The ML estimate of the covariance
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matrix can thus be given as, � = 1
N

P
N
i=1(xi � x)(xi � x)T The

principal axes of the 2nth dimensional shape ellipsoid are then given

as the eigenvectors, �s, of the covariance matrix, � (where �s is a

diagonal matrix of eigenvalues):

��s = �s�s (D.2)

A new shape instance can then be generated by deforming the mean

shape by a linear combination of eigenvectors, weighted by bs:

x = x+�sbs (D.3)

Essentially, the point or nodal representation of shape has now been

transformed into a modal representation where modes are ordered

according to the percentage of variation that they explain. To regu-

larize and improve performance modes are included until the cumu-

lated variation is above a certain threshold (e.g. 95%).

D.2.3 Texture Formulation

Contrary to the prevalent understanding of the term texture in the

computer vision community, this concept will be used somewhat dif-

ferently below. Here we de�ne texture as "The pixel intensities across

the object in question (if necessary after a suitable normalization)."

A vector is chosen, as the mathematical representation of texture,

wherem denotes the number of pixel samples over the object surface:

g = (g1; g2; : : : ; gm)
T (D.4)

In the shape case, the data acquisition is straightforward because

the landmarks in the shape vector constitute the data itself. In

the texture-case one needs a consistent method for collecting the

texture information between the landmarks, i.e. an image sampling
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function needs to be established. This can be done in several ways.

Here, a piece-wise aÆne warp based on the Delaunay triangulation

of the mean shape is used. Alternatively thin-plate splines [19] could

substitute the piece-wise aÆne warp to obtain a smooth warp. For

details on the Delaunay triangulation and image warping refer to

[80, 161].

Following the warp from an actual shape to the mean shape, a nor-

malization of the g-vector set is performed to avoid the inuence from

global linear changes in pixel intensities. Hereafter, the analysis is

identical to that of the shapes. Hence, a compact PCA representa-

tion is derived to deform the texture in a manner similar to what is

observed in the training set:
g = g +�gbg (D.5)

Where g is the mean texture; �g represents the eigenvectors of the

covariance matrix and �nally bg are the modal texture deformation

parameters.

For all practical purposes there will always be far more dimensions

in the texture vectors than observations (annotated examples) thus

leading to rank de�ciency in the covariance matrix. Hence, to eÆ-

ciently compute the eigenvectors of the covariance matrix one must

reduce the problem through use of the Eckart-Young theorem.

D.2.4 Combined Model Formulation

To remove correlation between shape and texture model parameters

{ and to make the model representation even more compact { a

3rd PCA is performed on the shape and texture PCA scores of the

training set, b to obtain the combined model parameters, c:

b = Qc (D.6)
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The PCA scores are easily obtained due to the linear nature of the

model:

b =
�
W sbs

bg

�
=

�
W s�

T
s (x� x)

�T
g (g � g)

�

(D.7)

A suitable weighting between pixel distances and pixel intensities

is obtained through the diagonal matrix W s [40]. An alternative

approach is to perform the two initial PCAs based on the correlation

matrix as opposed to the covariance matrix.

Now, a complete model instance including shape, x and texture, g,

is generated using the c-model parameters.

x = x+�sW

�1
s Qsc (D.8)

g = g +�gQgc (D.9)

Regarding the compression of the model parameters, one should no-

tice that the rank of Q will never exceed the number of examples in

the training set.

Another feasible method to obtain the combined model is to concate-

nate both shape points and texture information into one observation

vector from the start and then perform PCA on the correlation ma-

trix of these observations.

D.2.5 Optimization

In AAMs the search is treated as an optimization problem in which

the di�erence between the synthesized object delivered by the AAM

and an actual image is to be minimized. By adjusting the AAM-

parameters (c and pose) the model texture, gmodel, can be deformed
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to �t the image, gimage, in the best possible way. The quadratic error

norm is applied as optimization criterion [40]:

E =

mX
i=1

(gmodel � gimage)
2 =

mX
i=1

(Ægi)
2 = jÆgj2 (D.10)

Though the parameterization of the object class in question can be

compressed markedly by the principal component analysis { by leav-

ing out the principal axes that explain little variation { it is far from

an easy task to optimize the system. This is not only computa-

tionally cumbersome but also theoretically challenging since it is not

guaranteed that the search-hyperspace is convex. However, AAMs

circumvent these potential problems in a rather untraditional fash-

ion, assuming a linear relationship between parameter changes, Æc,

and pixel di�erences, Æg.

Æc = RÆg (D.11)

Since the matrix R is estimated once at model building time, this

is very run-time eÆcient by avoiding any computationally expensive

and potentially unstable high-dimensional optimization. In practice

R is estimated by a set of experiments using the training set, which

are fed into a multivariate principal regression framework. In the

AAM optimization, this prediction scheme is applied iteratively. Fig.

D.1 shows a prediction plot for one pose parameter. For details refer

to [40, 164]. It should be noticed that the Active Blobs approach

[156] is optimized using a method quite similar to that of AAMs

named di�erence decomposition [81].
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Figure D.1: Displacement plot for a series of model predications versus

the actual displacement. Error bars are equal to one std.dev.

D.3 Extensions

D.3.1 Enhanced Shape Representation

Basic AAMs using the piece-wise aÆne warping, rely on the Delau-

nay triangulation of the shape points. This results in a triangular

mesh covering the convex hull of the point set. For concave shapes

this might not be the optimal solution. For example there could be

substantial texture noise in the area outside the actual shape { but

still inside the convex hull { thus leading to a less compact model.

To avoid this we suggest removing the triangles outside the shape.

This is trivially accomplished by traversing the triangles; testing if

the triangle centroid should be outside the shape polygon. If so,

remove the triangle. To test if a point is inside the shape polygon

we utilize the simple geometrical fact that, if a line from the point,

p, to in�nity crosses the polygon an odd number of times, then the

point p is inside the polygon.
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Despite the above, problems remain where greater exibility is re-

quired. Objects can contain areas where the texture variation might

be considered noise. One thus wants to exclude such areas due to

arguments similar to the above given. Another situation is that of

having several structured objects, but in between those, the texture

is highly unstructured. Features to accommodate such situations

are implemented in the current AAM framework. Shapes are de-

�ned in terms of paths, which is a subset of the shape points with a

given point connectivity. Each path can have a combination of the

following properties:

� Open/closed path { Open path: a path where all points are

connected to two points each.

� Inner/outer path { Outer path: a path where only the inside

is included into the shape surface.

� Original/arti�cial path { Arti�cial path: a path added after

the original annotation.

� Hole/non-hole { Hole: a path where the inside is excluded

from the shape surface.

This provides a high degree of freedom, resulting in a more optimal

AAM representation of the given problem. For further details, refer

to [164].

D.3.2 Neighborhood AAMs

While the removal of convex triangles gave greater shape control

it also increases the risk of what we coin the shrinking problem.

During matching of objects with a relatively homogeneous texture,

matches sometimes tend to lie inside the real object. This is due to

the fact that the AAMs evaluate the �t on the object texture only.
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Figure D.2: Shape neighborhood added using an arti�cial border placed

along the normal vectors of the original model points.

To avoid this we suggest including some neighboring region of the

object. This will usually lead to more texture contrast in the model,

since objects (often) are identi�ed as something that stands out from

its surroundings.

Neighborhood adding must be done carefully to avoid introducing

new shape information. More precisely the shape PCA must retain

its eigenvalue distribution. To accomplish this, we generate shape

points fully correlated with the original points. The curvature is

estimated at each original point. Then each new point is placed on

the normal vector in a distance proportional to the relative size of

the shape. See �g. D.2. However, the texture PCA will su�er since

the goal is to add new information, namely background pixels, of

which one could expect a substantially higher degree of variation

than across the object.

The metacarpal bones in �g. D.3 serve as a good example of a shape

with a relative homogeneous surface. By adding neighborhood the

texture in �g. D.3 (b) is substantially more speci�c than the shape

without, �g. D.3 (a).

D.3.3 Border AAMs

While the previous section provided a method for handling homoge-

neous objects, this section concerns the counter-example; heteroge-

neous objects.

114Appendix D. Extending and applying Active Appearance Models

(a) (b)

Figure D.3: (a) Shape annotated using 150 landmarks. (b) Shape with a

neighborhood region added resulting in 2� 150 = 300 landmarks.
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For the described texture model, it is not possible to capture objects

with large heterogeneity i.e. high texture variation. Think of this

as a signal with a lack of structure. In such cases, we suggest to

capture only an area around the outer rim, thereby excluding the

"noisy" part of the object. This approach should be feasible since

we (often) perceptually identify the outer rim due to it is structured

behavior (often an abrupt change in intensity). We call this a border

AAM. Using the enhanced shape representation, a border AAM is

simply achieved by adding an interior path, which de�nes a hole and

by adding an outer path as described in the previous section.

By using this rationale AAMs can be made insensitive to large-scale

texture noise inside the shapes, which otherwise would lead to a poor

texture �t and a low landmark accuracy. The pork chops of �g. D.4

constitute a good example of this situation, due to the heterogeneity

of the complex structure of fat and meat from one training example

to another.

To conclude this section, we stress that border AAMs also should

be substantially faster than basic AAMs, since only a fraction of the

original pixels is considered.

D.3.4 Fine-tuning the model �t

The AAM search provides a fast way of optimizing the AAM us-

ing prior knowledge. However, this might not lead to the optimal

solution, primarily due to weakness in the assumption that the op-

timization problems in an AAM search are strictly similar to those

observed in a training set. Thus, we suggest �ne-tuning the model

�t by using a general-purpose optimization method. This approach

is feasible since it is reasonable to assume that we are close to the

optimum after the traditional AAM search. Hence, the optimiza-

tion �ne-tuning should be possible in a reasonable amount of time.

Though one is not guaranteed that the hyperspace is smooth at the

position where the AAM search has converged, it is still more proba-
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(a)
(b)

Figure D.4: (a) Shape annotated using 83 landmarks. (b) Border shape

with 3� 83 = 249 landmarks.
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ble that we are near a well-behaved manifold in the hyperspace. The

considered optimization methods are:

� Gradient based methods: Steepest descent, Conjugate gra-

dient, Quasi-Newton (BFGS) [71]

� Non-gradient based methods: Pattern search [94]

� Random-sampling based methods: Simulated annealing

[27, 112]

Preliminary experiments have shown that the random-sampling based

method simulated annealing has best performance. Hence, this is the

only optimization method considered in the experimental section.

However, investigations are not conclusive since the performance of

these methods is quite sensitive to con�guration parameters { i.e.

step sizes, standard deviations, stop criterions etc. Nevertheless, the

decision is motivated by the observation that our objective function,

jÆgj2, is most likely non-convex. Thus, deterministic optimization

techniques have a high risk of being caught in spurious minima's,

whereas random-sampling techniques are more likely to escape.

D.3.5 Applying Robust Statistics

As seen earlier, AAM optimization is driven by texture di�erences,

i.e. jÆgj2. The measure, with which the optimization evaluates itself,

is here forth named the similarity measure. However, the term

similar is inherently vague in a mathematical sense. This section,

will dwell on interpretations of the term similar that mimics the

human ability of compensating for small numbers of gross errors,

thus achieving robustness in recognition. These are called robust

similarity measures where the term robust refers to the insensitivity

to outliers. Cootes et al. [61] previously extended the basic AAM

with learning-based matching to obtain robustness. This is achieved
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using a threshold for each element in Æg estimated from the training

set.

We suggest using robust similarity measures. To formalize the model

�tting problem, a set of parameters, c = [c1; : : : ; cp]
T, are adjusted

to �t a set of measurements (e.g. an image), g = [g1; : : : ; gm]
T. This

is done by a minimization of the residuals:

E =

mX
i=1

�(gi � u(i; c); �s) =

mX
i=1

�(ei; �s) (D.12)

where u is a function that returns the model reconstruction of the

i
th measurement and �s is the scale parameter that determines what

should be deemed outliers. The �-function determines the weighting

of the residuals, and is also called the error norm where the most

common error norm is the quadratic norm: �(ei) = e
2
i
. This is often

referred to as the L2 norm, which is the one used by basic AAMs,

see (D.10).

It is easily seen, that the quadratic norm is notoriously sensitive to

outliers, since these will contribute highly to the overall solution due

the rapid growth of the x2 function. It is therefore preferable to use

a norm that falls o� at large residuals. As an example of a smooth

norm that falls o� quickly is the Lorentzian estimator [17]:

�(ei; �s) = log(1 +

e
2
i

2�2s
) (D.13)

The Lorentzian norm has been integrated into the basic AAM to

supplement the quadratic norm of Cootes et al. However, one should

notice that even though the AAM-search evaluate its predictions

using a robust measure, the predictions themselves are done using the

pixel di�erences directly. To address this problem Cootes et al. [61]

perform a thresholding of the texture vector before the prediction.

This could be viewed upon as a robust preprocessing step. The

threshold limit is estimated from the training set.
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Figure D.5: Example of AAM search and Simulated Annealing �ne-

tuning, without (left) and with (right) the use of a robust similarity measure

(Lorentzian error norm). Landmark error decreased from 7.0 to 2.4 pixels

(pt.crv. error).

To demonstrate the e�ect of a robust error norm, an AAM search

with �ne-tuning using Simulated Annealing has been done with and

without the Lorentzian estimator. Since radiographs are 2D pro-

jections of density, people wearing �nger rings will have high-white

outliers on one or more phalanges.1 In the case given in �g. D.5

the Lorentzian error norm was used. To simulate outliers the radio-

graph has been manipulated so that it appears as if the metacarpal is

wearing a �nger ring.2 While not perfect, the robust AAM provides

a substantially better �t compared to that of the basic AAM (both

using simulated annealing).

For a further treatment of robust error norms and line processes in

vision refer to [17].

1Other outlier examples include highlights in perspective images and absence

of interior parts, occlusion etc.

2Though this is highly unlikely since the metacarpals are situated in the middle

of the hand.
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D.3.6 Initialization

The basic AAM optimization scheme is inherently dependent on

good initialization. To accommodate this, we devise the following

search-based scheme thus making the use of AAMs fully automated.

The technique is inspired by the work of Cootes et al. [61] who use

a pixel di�erence evaluation criteria and a threshold estimation for

detecting multiple object instances.

The fact that the AAMs are self-contained is exploited in the initial-

ization { i.e. they can fully synthesize (near) photo-realistic objects

of the class that they represent concerning shape and textural ap-

pearance. Hence, we use the model without any additional data to

perform the initialization.

The idea is to exploit an inherent property of the AAM-optimization

{ i.e. convergence within some range from the optimum. See e.g. �g.

D.1. This is utilized to narrow down an exhaustive search from a

dense to a sparse population of the hyperspace spanned by pose-

and c-parameters. In other words, normal AAM-optimizations are

performed sparsely over the image using perturbations of the pose

and model parameters.

This has proven to be both feasible, fast and robust. A set of relevant

search con�guration ranges is established and the sampling within

this set is done as sparsely as possible. Any available prior knowledge

about pose is utilized when determining search ranges.

The crucial part of this algorithm is somewhat inspired from the

class of Genetic Algorithms.3 The total set of search con�gurations

constitutes the initial population of candidates. From this we let

the n �ttest survive. These are then reproduced into more evolved

guesses. From these the best is drawn and deemed the initial con�g-

uration. In pseudo-code, the initialization scheme for detecting one

object per image is:

3Notice however, while GAs are probabilistic, our technique is deterministic.

Further, are the aspects of mutation and crossover in GAs not utilized here.
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1. Set m to a suitable low number (we use m = 3)

2. Establish a candidate set, fKg, containing n result entries

3. Obtain application speci�c search ranges within each parame-

ter (e.g. ��1 � c1 � �1; xmin � x � xmax, etc.)

4. Populate the space spanned by the ranges { as sparsely as

the linear regression allows { by a set of search con�gurations

V = fv1; : : : ;vng.

5. For each vector in V

6. Do AAM optimization (max m iterations)

7. Calculate the �t, E = jÆgj2

8. If E < max
E

fKg add (vi; E). If the number of elements in

fKg exceeds n, then remove max
E

fKg

9. End

10. For each element in fKg

11. Do AAM optimization (max k iterations, k > m)

12. Calculate and update the �t, E = jÆgj2

13. End

The element in fKg with the minimum E will now hold the initial

con�guration.

We stress that the application speci�c search ranges in step 3 are

merely a help to increase initialization speed and robustness rather

than a requirement. If no prior is known, step 3 is eliminated and

an exhaustive search is performed.

This scheme is readily extended into more than one object per image

by a clustering of the candidate set using overlap tests. The approach
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in general can be accelerated substantially by searching in a multi-

resolution (pyramidal) representation of the image. For a detailed

treatment of initialization of deformable template models refer to

[63].

D.4 Experimental Results

Segmentation in medical images has always posed a diÆcult problem

due to the special image modalities (CT, MRI, PET etc.) and the

large biological variability. Thus, AAMs and the proposed extensions

have been assessed on the three di�erent modalities; see �g. D.6 and

below:
� A { Radiographs of Metacarpals

Training set: 23 images/annotations

Image size: 240�275 pixels

Shape model: 150 landmarks

Texture model: � 13.000 pixels

95% variation explained using: 18 parameters

� B { Cardiovascular MRIs

Training set: 13 images/annotations

Image size: 256�191 pixels

Shape model: 83 landmarks

Texture model: � 15.000 pixels

95% variation explained using: 10 parameters

� C { Perspective images of Pork Chops

Training set: 13 images/annotations

Image size: 256�256 pixels

Shape model: 66 landmarks

Texture model: � 2.200 pixels

95% variation explained using: 11 parameters
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Figure D.6: Collage of the considered cases with successful segmentations.

Upper left: A { Radiographs of Metacarpals. Upper right: B { Cardiovas-

cular MRIs. Lower: C { Perspective images of Pork Chops. All images

cropped to show details.
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Common for all three cases is a relatively small training set (< 30).

Using larger training sets the chances of over constraining the model

can be reduced, leading to more (representative) exibility. However,

since the actual construction of the training sets is done by manually

placing landmarks on the images { a tedious and error prone task

{ one wants to keep the training sets relatively small. Methods for

(semi)-automatic extraction of landmarks are reviewed in [164].

Each experiment consisted of building an AAM leaving one image,

I, out. Subsequently the model was used to perform automatic

segmentation in I using the proposed initialization scheme.4 Each

experiment was assed using the mean point to curve (point to as-

sociated border) measure and the mean intensity deviation measure

[63]. Images were in grayscale 8-bit format. All �gures in table D.1

are means over all leave-one-out experiments. Failure was declared

when the point to curve error exceeded 10 pixels. Regarding perfor-

mance the MRI-optimizations each took 200 ms on average on a PII

350 MHz.

The minimum and maximum error for the tests with lowest average

error in each case was:

� A 3: min. 0.53 / max. 1.01 pixels (point to curve)

� B 5: min. 0.60 / max. 1.34 pixels (point to curve)

� C 3: min. 0.65 / max. 2.43 pixels (point to curve)

In case A, the adding of neighborhood made the model more spe-

ci�c, removing the single failure in A1. Further �ne-tuning using

simulated annealing increased not only the explicit optimization cri-

teria, but also the landmark accuracy. The neighborhood adding in

case B also yielded higher landmark accuracy. Due to large-scale

4Regarding the sparse sampling in the initialization phase, the x- and y-pose-

component were sampled at a frequency of 12 pixels. c-parameters were kept

constant zero.
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Table D.1: Leave-one-out test results for case studies.

# Type Point to curve Mean Init.

deviation intensity fail.

(pixels) deviation

A { Metacarpals

1 Basic AAM 0.88 4.9 1

2 1+Neighborhood 0.84 5.2 0

3 2+SA 0.82 5.0 0

4 3+Lorentzian 0.83 5.0 0

B { Pork Chops

1 Basic AAM 1.12 13.2 0

2 1+Neighborhood 0.91 13.9 0

3 2+SA 0.89 13.6 0

4 3+Lorentzian 0.91 13.6 0

5 Border AAM 0.86 23.5 0

C { Cardiac MRIs

1 Basic AAM 1.18 7.1 0

2 1+Neighborhood 1.73 7.5 0

3 1+SA 1.06 5.9 0

4 3+Lorentzian 1.13 6.0 0
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texture noise inside the object, the border AAM yielded the highest

accuracy. Notice that the rather large texture error in B5 is not

comparable to B1 { B4, since it is a completely di�erent texture

model. Contrary to case A, the cardiac AAM in case C possessed

substantial structured contrast inside the object (the left ventricle),

hence neighborhood-adding lead to a poorer �t. In all three cases,

�ne-tuning using simulated annealing improved both texture and

landmark �t.

The lack of improvements using the robust Lorentzian similarity

measure suggests that signi�cant outliers as in �g. D.5 were not

present.

D.5 Future work

We are currently investigating several methods, which extend the

AAM scheme. Flexibility of the shapes are being enhanced by uni-

fying Finite Element Models and AAMs by adding arti�cial interior

points, which are deformed by an FEM. Further an Active Tex-

ture Weighting scheme is being designed which will add more ex-

ibility to the texture model representation. Each texture pixel is

given a weight, which is determined 1) manually, by drawing a semi-

transparent mask or 2) automatically, by some function of the pixel

variance over the training set. In the latter case, we expect this au-

tomatic method to supersede the manual decision of using a normal,

neighborhood or border AAM. AAMs also extend to higher spatial

dimensions [61], which will be the topic of our long-term future re-

search.

D.6 Implementation

All experiments, illustrations etc. have been made using the Active

Appearance Models Application Programmers Interface (AAM-API)
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developed in the C++ language. The API is released under the open

source initiative, which means that others freely can download, use

and elaborate on the AAM-API. E�ort has been put into provid-

ing documentation and educational features such as movie genera-

tion of the modes of variation, model search etc. Further informa-

tion on AAMs, source code and documentation can be obtained at

http://www.imm.dtu.dk/�aam/.

D.7 Conclusion

In this paper, we have presented a set of extensions which all yield

higher landmark accuracy when applied to the type of situations they

address. The proposed extensions are an enhanced representation of

shape used for handling of homogeneous and heterogeneous textures

and a �ne-tuning of the AAM optimization with and without the

usage of robust error norms. Finally, the usage of AAMs is fully

automated by the presented initialization scheme.

The performance has been assessed on three di�erent image modal-

ities { i.e. radiographs, perspective images and magnetic resonance

images, reaching a mean landmark location accuracy of 0.82, 0.86

and 1.06 pixels (pt.crv.), respectively, all using a relatively small

training set of 23, 13 and 13 examples. The experiments were ac-

complished with no manual interaction. The implementation was

unchanged in all three cases. No parameters were adjusted to pro-

duce the results.5

The three cases stress the fact that the AAM approach with the pro-

posed extensions is a fully automated, general vision technique that

captures domain knowledge through observation. Furthermore, we

have experienced the AAM approach with the proposed extensions

to be data-driven, self-contained and fast.

5To the bene�t of future research activities and comparative studies, we intend

to make all images and annotations available at our website.
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Abstract

Deformable templates have been intensively studied in

image analysis through the last decade, but despite its

signi�cance estimation of model parameters has received

little attention. We present a method for supervised and

unsupervised model parameter estimation using a gen-

eral Bayesian formulation of deformable templates. In

the supervised estimation the parameters are estimated

using a likelihood and a least squares criterion given a

training set. For most deformable template models the

supervised estimation provides the opportunity for sim-

ulation of the prior model. The unsupervised method is

based on a modi�ed version of the EM algorithm. Exper-

imental results for a deformable template used for textile

inspection are presented.
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E.1 Introduction

The general idea of deformable models is that a structure embed-

ded in the image can be considered as a deformation of a given

template. The deformable model is a Bayesian combination of two

parts. One part which represents the prior knowledge about the

structure, i.e. the deformable template, and a second part which rep-

resent the interactions with the observations (the image), the obser-

vation model. Deformable templates can roughly be separated into 2

groups: Free form and Parametric. Free form deformable templates

have no explicit global structure because the prior only contains local

continuity and smoothness constrains [33, 108, 118, 121]. In para-

metric deformable models prior knowledge of the global structure

is included using a parameterized template of a speci�c structure

[23, 64, 85, 102, 189].

Another characteristic of deformable models is that a number of

model parameters, which gives the relative inuence of di�erent

terms in the model, have to be selected. Though all deformable

models contains model parameters the selection of these model pa-

rameters has received very little attention. [108, 189] don't comment

on the selection and [23, 33, 64, 102] selects the model parameters

based on empirical observations. [121] give guidelines for choosing

the optimal parameters in the prior model based on bounds for the

parameters. Only [118] use an unsupervised method based on a min-

imax criterion to determine the regularization parameter which gives

the relative inuence of the prior and observation part, respectively.

We present a new method for supervised and unsupervised selec-

tion of all model parameters in a deformable model. This method

also gives the opportunity for simulating the prior model for most

deformable models. Section 2 contains a general Bayesian formu-

lation of deformable models. Then the method for supervised and

unsupervised model parameter estimation is presented, followed by

experimental results and a conclusion.
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E.2 Deformable models

A structure is modeled by a template that is uniquely described by a

set of template parameters v = (v1; v2; ::::; vp). Let 
v denote the pa-

rameter space of v. Using Bayes theorem deformable models can be

described by the posterior probability P (vjy) of a realization of the

template parameters v given an image y. The posterior probability

P (vjy) is de�ned as:

P (vjy) = P (v)P (yjv)P
v2
v

P (v)P (yjv) (E.1)

where P (v) is the prior model and P (yjv) is the observation model.

[33, 108, 118, 121, 189] talks about energy and not about probabili-

ties, but basically the formulations are analogous.

E.2.1 The prior model

The prior model represents the prior knowledge of the template pa-

rameter distribution. Typical the prior model consists of a number

terms which represent di�erent types of prior knowledge. Let the

prior probability be Gibbs distributed and given by:

P (v) =

1
Zp(�)

expf�U(v;�)g (E.2)

where Zp(�) =
P
v2
v

expf�U(v;�)g is the normalizing constant,

U(v) : 
v 7! R is the energy function representing the prior knowl-

edge and � = (�1; :::; �n) 2 
� are the prior parameters which gives

the relative inuence of the di�erent terms.

Theorem 1: Let U(v;�) = v
0
A(�)v+ b(�)v+ c(�) depending only

on v and �. If A(�) is symmetric and positive de�nite and b(�)

132 Appendix E. On parameter estimation in deformable models

belongs to the subspace de�ned by a linear mapping with �(�) then

P (v) 2 N(�(�);�(�)) and:

P (v) = 1p
2�

p

1p
det�(�)
�

expf�1
2
(v � �(�))0�(�)�1(v � �(�))g

(E.3)

where �(�) = ��(�)b(�) and �(�)�1 = 2A(�).

Proof: U(v;�) = 1
2
(v � �(�))0�(�)�1(v � �(�)) = 1
2
v
0�(�)�1v �

�
0�(�)�1v + 1
2
�
0�(�)�1� i.e. �(�) = ��(�)b(�) and �(�)�1 =

2A(�). �

If the prior (E.3) is rank de�cient the conditional distributions p(v n

vsjvs) for vs � v will be rank suÆcient. Theorem 1 implies that all

vi 2 v has a prior distribution, i.e. P (v) should be a function of all

vi 2 v. If this is not ful�lled then is the subset vp � v, which have a

prior distribution, used instead of v. The assumption about U(v;�)

made in theorem 1 covers most deformable templates presented in

the literature.

In the case where it can be justi�ed that U(v;�) ful�ll the assump-

tion made in theorem 1 the mean �(�) can also be found as the

solution to
@U(v;�)

@v

= 0 and the inverse covariance �(�)�1 as the

Hessian
@2U(v;�)

@2v

= �(�)�1. This method can be a fast alternative

for determining �(�) and �(�)�1 if U(v;�) is not directly in the

form v
0
A(�)v + b(�)v + c(�)

E.2.2 The observation model

The observation model gives the probability for a given realization

of v corresponds to the observations y 2 
y - the image. In many

cases the interaction corresponds to image intensity [23, 64, 85, 189]

and/or edge information [33, 102, 108, 118, 121, 189] but in principle
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all kind of information can be combined e.g. texture or colour. Let

the observation model be Gibbs distributed::

P (yjv) = 1
Zo(�)

expf� 1
�

U(y;v;�)g (E.4)

where Zo(�) =

P
v2
v

expf� 1
�
U(y;v;�)g is the normalizing con-

stant, � 2 
� is the regularization parameter that determines the

relative inuence of the prior and the observation model, U(y;v;�) :


y 7! R is the energy function representing the interaction between

y and v and � = (�1; :::; �l) 2 
� are the observation parameters

which gives the relative inuence of the di�erent types of informa-

tion.

E.3 Supervised model parameter estimation

Assume a training set of q template parameter sets vt1; ::;v
t
q corre-

sponding to some structure within an image y are known.

E.3.1 The prior model

In the case where the assumption in theorem 1 is ful�lled the prior

parameters can be estimated by using theorem 1 and the maximum

likelihood (ML) estimator, which is de�ned as:

^� = max
�

L(�;vt1; :::;v
t
q) (E.5)

where it is assumed that ^� 2 
�. If vt1; ::;v
t
q are stochastic inde-

pendent and the covariance is rank suÆcient then is the likelihood

function directly given as:

L(^�;vt1; :::;v
t
q) = P (vt1; :::;v

t
q) =

qY
k=1

P (vtk) (E.6)
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where P (vt1; :::;v
t
q) is the simultaneous density function for the prior

distribution P (vt
k
) given by (E.3). If the covariance is rank de�cient,

i.e. rank(�) = p�r for r > 0, it is necessary to condition on at least

r variables to obtain full rank. In this case e.g. the pseudo-likelihood

[14] can be used as an approximation to the true likelihood:

PL(^�;vt1; :::;v
t
q) = P (vt1; :::;v

t
q) (E.7)

=

qY
k=1

mY
i=1

P (vtk;ijvtk n vtk;i)

If vt1; ::;v
t
q are not stochastic independent then P (v

t
1; :::;v

t
q) must be

rewritten using conditional probabilities and Bayes theorem. When

the prior parameters are estimated it is possible to simulate the prior

model by sampling in the unconditional or conditional prior distri-

bution.

E.3.2 The posterior model

Due to the image information in P (yjv) is it impossible to make

any distribution assumption about P (vjy). This make it impossi-

ble to use the ML estimator for estimation of the observation and

regularization parameters, because it is infeasible to calculate the

normalizing constant even for small 
v. A likelihood approximation

with the normalizing constant removed from P (vjy) or a criterion

equivalent to the minimax criterion proposed by [118] can't be used

either, because P (vjy) without the normalizing constant in many

case would not be convex within (
�;
�). The observation and

regularization parameters are instead estimated as the parameters

which minimize the least squares error (LSE) between the training

set parameters vt1; ::;v
t
q and the estimated parameters ^v1; :::; ^vq:

(^�; ^�) = min
�;�

1
pq

qX
i=1

(vti � ^vi)
0
C(vti � ^vi) (E.8)
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where C is diagonal matrix where each parameter can be assigned

an estimation weight (in most cases C is chosen equal to the iden-

tity matrix I) and ^vi is the maximum a posteriori (MAP) estimate

of parameter set i de�ned as ^vi = maxvi P (vijy). Many di�er-

ent technics have been applied for MAP estimation as deterministic

[33, 102, 108, 118, 189], stochastic [23, 85] and heuristic optimization

algorithms [64].

If the assumption in theorem 1 is not ful�lled the model parameters

(�; �;�) can still be estimated by expanding (E.8) to:

(^�; ^�; ^�) = min

�;�;�

1
pq

qX
i=1

(vti � ^vi)
0
C(vti � ^vi) (E.9)

If log P (vjy) is a linear function of (�; �;�) then (E.9) have to

be solved with respect to the constraint: � +
P
n
i=1 �i +

P
l
i=1 �i =

constant to limit the number of solutions to one.

E.4 Unsupervised model parameter estima-

tion

The unsupervisedmodel parameter estimation is based on a modi�ed

version of the Expectation-Maximization (EM) algorithm [51]:

1. Start with the observations y, an initial estimate of v and a

guess for (�; �;�).

2. Estimate ^v = maxv P (vjy) using the current (�; �;�).

3. Use the algorithm for supervised model parameter estimation

(Section E.3) to estimate (^�; ^�; ^�) taking ^v as training set.

4. Go to 2 for a number of iterations or until (�; �;�) has ap-

proximately converged.
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E.5 Experimental results

A deformable template is used for localization of the horizontal yarns

in a system for automated visual inspection of textile [64]. The

system should be used for inspection of above 35 di�erent types of

textile and new types are developed frequently, so it is necessary that

a non-expert can train the system, i.e. select the model parameters

(�; �;�).

The horizontal yarn k is modelled as vk = (vk;1; vk;1; vk;2; :::; vk;p)
0,

where vk;j is the vertical position of yarn k in the vertical space j

between the vertical yarns. The horizontal position of the vertical

space j is assumed known, because it is easily located as a local

maxima in a vertical projection of the image [64]. The distance

between each vertical space j is assumed to be constant.

The posterior probability of the deformable model used for textile

inspection is given by [64]:

P (vkjvk�1;y) = 1

Zo(�)Zp(�)
�

expf��1
P
p
j=2(vk;j � vk;j�1)

2

��2
P
p
j=1(vk;j � vk�1;j � d)2

� 1
�

P
p
j=1 I(vk;j ; j)g

(E.10)

where the two �rst terms, U(v;�) = �1
P
p
j=2(vk;j � vk;j�1)

2 +

�2
P
p
j=1 (vk;j�vk�1;j�d)2, correspond to the prior model. The �rst

term favors strictly horizontal threads. The second term describes

that the thread vk should be placed in a prede�ned distance d 2 R+

from vk�1. The third term in P (vkjvk�1;y) is the observation model

where I(vk;j; j) is the negative horizontal mean at the vertical posi-

tion vk;j of the pixels in the vertical space j. � = (�1; �2) 2 R2
+ are

the prior parameters and � 2 R+ is the regularization parameter.

Let U(v;�) = �1(Nvk)
0(Nvk) +�2(vk � (vk�1+d))
0(vk� (vk�1+

d)) = �1v
0
k
N

0
Nvk+�2(vkIvk�2(vk�1+d)vk+(vk�1+d)
0(vk�1+

d) = v
0
k
(�1N
0
N+�2I)vk�2�2(vk�1+d)vk+(vk�1+d)
0(vk�1+d)



E.5 Experimental results 137

where

N =
2

6664
0 0 ::: 0

�1 1 ::: 0

...

...

. . .

...

0 0 ::: 1
3

7775 (E.11)

N

0
N =

2
6664

1 �1 ::: 0

�1 2 ::: 0

...

...

. . .

...

0 0 ::: 1
3

7775 (E.12)

From above it's seen that the prior model ful�ll the assumption

in theorem 1 (which was obvious because the prior only consists

of quadratic terms). By theorem 1 P (vkjvk�1) 2 N(�k(�);�(�))

where:

�k(�) = �(�)2�2(vk�1 + d)

�(�)�1 =2
6664

2�1 + 2�2 �2�1 ::: 0

�2�1 4�1 + 2�2 ::: 0

...

...

. . .

...

0 0 ::: 2�1 + 2�2
3

7775

(E.13)

E.5.1 Estimation of model parameters

Assume a training set of 150 yarns vt1; :::;v
t
150 is manual marked in

a image by an operator, see subset in �gure E.2 and E.1. It can be

shown that the rank of ��1 is full 8(�1; �2) 2 R

2
+, but the prior

probabilities are not independent. Because the prior probability is a

Markov Random �eld and by using Bayes theorem the likelihood is
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given by:

L(�;vt1; :::;v
t
150)

= P (vt1; :::;v
t
150)

= P (vt1)P (v
t
2; :::;v

t
150jvt1)

= P (vt1)P (v
t
2jvt1)P (vt3; :::;vt150jvt2)

= P (vt1)
Q150

k=2 P (v
t
k
jvt
k�1)

(E.14)

where P (vt
k
jvt
k�1) =

1p
2�

p

1p
det�(�)

expf�0:5(vt
k
��(�)2�2(vtk�1+

D))0�(�)�1(vt
k

��(�)2�2(v
t
k�1 +D))g and P (vt1) is constant be-

cause v1 is estimated using an ad hoc procedure.

Prior parameters �1 = 1:0476 and �2 = 0:0172 are then estimated

for the known yarns corresponding to �gure E.1. Simulations of the

prior model are then performed by sampling in the Gaussian distri-

bution N(�k(�);�(�)), see �gure E.1. If the simulated horizontal

yarns are compared to the real yarns this seems to verify that the

prior model with the estimated parameters is a good model of the

yarns. The regularization parameter � = 0:3652 is then estimated

using the LSE (E.8) with C = I and a heuristic MAP-estimation

algorithm [64]. The yarns in the image in �gure E.2 is located using

the estimated parameters with very good results, see �gure E.2. To

examine the variation of the estimated parameters within the same

textile sample, two parameter sets have been estimated on two dif-

ferent pieces of one sample. This was done for two di�erent samples

and the mean variation on �1; �2 and � was 1.9%, 5.2% and 9.5%,

respectively. The parameter variation between samples depends on

the amount of variations and defects within the samples used for es-

timation. This is so signi�cant that the estimated parameters often

can be used to discriminate between god and bad samples. Using 5

representative samples were the parameters estimated with the mean

�1 = 1:0214; �2 = 0:0202 and � = 0:4145 and the standard deviation

0.2009, 0.0066 and 0.0717, respectively. The parameters were then

used to locate the yarns in the 5 samples with very good results lead-

ing to an average increase on only 6% in the LSE (E.8) compared

to the LSE obtained with the individual estimated parameters. The
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method for supervised parameter estimation have also been tested

on other types of textile with good results.

The unsupervised method performs well, but it is a little bit sen-

sitive to the initial guess (�; �;�) because it tends to get caught

in local maxima if the regularization parameter is chosen very large

or small. This sensitivity is a well known problem for the EM algo-

rithm. For 6 randomly chosen (�; 1
�
;�) 2 [0:2; 2] under the constrain

�1 <

1
�

and �2 <

1
�

were the parameters corresponding to the yarns

in �gure E.2 estimated with the mean �1 = 1:3429; �2 = 0:0059 and

� = 0:5050 and the standard deviation 0.1708, 0.0001 and 0.1005.

The algorithm converged within 10 iterations. If the estimated pa-

rameters are compared with the previous estimated parameter there

exists some di�erences, but still the LSE is only increased by 14 %

compared to the LSE for the individual estimated parameters, and

the yarns are still located very well, see �gure E.2. Similar results for

the unsupervised parameter estimation are obtained for other textile

samples and types.

E.6 Conclusion

A method for supervised and unsupervised estimation of model pa-

rameters in deformable templates have been presented. Experimen-

tal results are successful and indicates that the methods are robust,

though the unsupervised method is a little sensitive to the initial pa-

rameter con�gurations. The opportunity for simulations of the prior

model seems to be a good tool for veri�cation of the model. The

presented methods also contains interesting perspectives regarding

using the estimated parameters as features for description of the lo-

cated structure and regarding automated model selection using an

information criterion.
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Simulated textile, a1 = 1.0476, a2 = 0.0172, P(z) = 0.0259

Figure E.1: Manually marked horizontal yarns (top) and simulated

horizontal yarns (bottom)
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Figure E.2: Textile with manually marked horizontal yarns (top),

yarns located using supervised estimated parameters (center) and

yarns located using unsupervised estimated parameters (bottom).
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Appendix F

Initialization and

Optimization of

Deformable Models

Rune Fisker, Jens Michael Carstensen and Kaj Madsen

Dep. of Mathematical Modelling, Tech. University of Denmark

Abstract

The deformable model literature has in general been very

focused on the formulation and development of new mod-

els or the solution of a speci�c application. The �nal

and crucial steps of initialization and optimization of the

deformable model, needed for making inference, have re-

ceived very little attention. We present an improved gen-

eral method for initialization based on a �lter interpre-

tation of the likelihood. This method will, for a large

number of models and problems, generate the initializa-

tion signi�cantly faster than the previously proposed gen-

eral methods. To perform the optimization a number of
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general algorithms from the optimization literature is in-

troduced, which are novel in the context of deformable

models. These algorithms are compared to general al-

gorithms previously used for optimization of deformable

models. Tests are performed on real data.

Index terms: Deformable models, active contour models,

deformable templates, initialization and optimization.

F.1 Introduction

The group of models known as deformable models have been pre-

sented under many di�erent names, where the best known probably

are active contour models (snakes), active shape models and defor-

mable templates. One of the characteristics of deformable models is

that an object or structure embedded in an image is represented by

a vector of template parameters v 2 
v, where 
v is the parame-

ter space. Direct or under some mapping the template parameters

v de�nes the structure. To make inference about the object in an

image y a probabilistic distribution P (vjy) (or an equivalent energy

function) is formulated such that the con�guration of the template

parameters, which best match the object, have the highest proba-

bility. The probabilistic distribution can be separated in two parts:

the prior P (v) and the likelihood P (yjv). The prior distribution

P (v) represents the prior knowledge about the structure and is inde-

pendent of the image, and the likelihood P (yjv) (or the observation

model) represents the interactions with the image (the observations).

Using Bayes theorem the prior and likelihood is combined to the �nal

posterior distribution used to make interference:

P (vjy) / P (yjv)P (v) (F.1)

Some authors use an energy formulation of deformable models and

not a probabilistic or Bayesian one, but basically the formulations are
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analogous [65]. In general we prefer a Bayesian formulation, because

it gives a natural separation of model and image contributions in

P (v) and P (yjv), and it provides the opportunity to simulate and

thus visualize the appropriateness of the prior model. Further it

provides several di�erent ways to make inference in P (vjy).

F.2 Deformable models

Jain et al. [102] divide deformable models into two groups: Free form

and Parametric. Free form deformable templates have no explicit

global structure because the prior only contains local continuity and

smoothness constraints. This makes free form templates able to rep-

resent an arbitrary shape as long as the continuity and smoothness

constraints are satis�ed. The best known example of free form mod-

els is active contour models or snakes originally proposed by Kass et

al. [108]. To compensate for the shrinking e�ect of closed active con-

tour models Cohen and Cohen [33, 34] add an ination force to the

snake model. Another example is Lai and Chin [118], who propose

a more generalized formulation of active contour models.

In parametric deformable models prior knowledge of the global struc-

ture is included using a parameterized template. One of the pio-

neers of deformable models is Grenander, who proposes a paramet-

ric model [85] based on a 2D vector cycle representation of the given

object and a stochastic distribution that governs the deformations

of the initial template. This model has been further developed and

described in [86, 155]. Jain et al. [102] propose a general framework

for object matching based on prototype (or average) templates and

with a di�erent type of deformations and local constrains on these

deformations. A similar model is proposed by Garrido and Blanca

[72], but they use di�erent methods for initialization and optimiza-

tion. Another general stochastic model is proposed by Staib et al.

[163]. This model uses elliptic Fourier descriptors to represent the

boundary of the object. Cootes et al. [41] propose an active shape
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model, where the object is represented by the mean shape of a train-

ing set and a linear combination of eigenvectors of the shape variation

from this mean. This work has further been developed into the novel

Active Appearance models [35], which also incorporates the appear-

ance, i.e. grey level information. All the previous cited parametric

models are general, because they, given a prototype template or a

training set, are able to handle an almost arbitrary object. Probably

the largest group of deformable models are formulated and tuned

for a speci�c object, because it is often needed to incorporate special

assumption to be able to make inference about a speci�c object. The

properly best known model formulated for a speci�c problem is an

eye model and a mouth model proposed by Yuille et al. [189]. A

description of more models can be found in the excellent book on

Active Contours by Blake and Isard [18] and in the survey papers

by McInerney and Terzopoulos [132] and by Jain et al. [101].

Most of the deformable models presented in the literature have a

prior model P (v), which penalize the deviation of a given parame-

ter con�guration with respect to the prototype/ideal con�guration.

In most cases, the prior model is assumed to be Gibbs distributed,

which gives the opportunity to simulate the model by sampling in

the conditional or unconditional prior distribution [23, 65]. In many

cases the likelihood model P (yjv) is formulated such that the inter-

action between a realization of the template v and an observed image

y corresponds to image intensity [23, 41, 35, 85, 86, 167, 155, 189]

and/or gradient (edge) information [33, 34, 72, 101, 102, 108, 118,

163, 189], but in principle all kinds of information can be combined

e.g. texture or colour. Another characteristic of most deformable

models is that a number of model weight parameters, which gives

the relative inuence of di�erent terms in the model, have to be se-

lected. Most authors select the weight parameters based on empirical

observations. A method for supervised and unsupervised estimation

of the parameters is proposed by Fisker and Carstensen [65].
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F.3 Initialization

The formulated or chosen deformable model is then used to make

inference about a structure in an image, e.g. by estimating the tem-

plate parameters, which corresponds to the maximum a posteriori

(MAP), de�ned as:

^v = max
v

P (vjy) (F.2)

The MAP estimation is performed using an iterative optimization

procedure, which presume an initial con�guration v0 of the template

parameters. This basically separates the MAP estimation in two

steps: initialization and optimization.

The request for the initial con�guration is, that it should be rel-

atively close to the real object in the image to achieve successful

re�nement during the optimization. A number of authors initialize

the template manually [33, 34, 108, 189], use ad hoc methods for

their speci�c problem [23, 85, 155] or do not comment on the issue

[35, 167]. Only a few authors propose more general methods for ini-

tializations. Staib et al. [163] use the mode of the prior distribution

for initialization, i.e. the con�guration of the template parameters

which have the highest prior probability. Unfortunately this will

only work, when there exist a non-uniform prior for all template pa-

rameters, which is not the case in general. Almost all models are

for example invariant to translation, i.e. a uniform prior on trans-

lation. Lai and Chin [118] and Garrido and Blanca [72] propose to

use the generalized Hough transform [11] and a modi�ed version of

the generalized Hough transform, respectively. The algorithms pre-

sented only work for models using a gradient based likelihood model

and can not be used in the general case. Jain et al. [102] propose a

search strategy, where the general idea is to search for the con�gu-

rations in parameter space with the highest posterior probabilities.

The con�gurations with a probability above some threshold are then

used as the initial con�gurations. To improve the computational eÆ-

ciency of the search a sub-sampled template is used. Jain et al. [102]
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also smooth the likelihood. The general idea of using modes of the

posterior density, i.e. con�gurations corresponding to local maxima,

as initial con�gurations means that this approach can be applied

to any deformable model. Another advantage is that the function

which calculate the likelihood and prior probability as a function of

the template parameters v during the optimization directly can be

used for initialization as well. This way of calculating the likelihood

is de�ned as direct calculation.

In principle, the search for maxima should be performed for varia-

tions of all parameters in the template, but in practice the search

should only be performed on a relevant and feasible set of parame-

ters. Jain et al. [102] for example only search evenly spaced positions

combined with a discrete set of orientations. Although the search is

performed on a limited number of di�erent parameter sets the com-

putational cost is often huge.

In the typical case the search only need to be performed on the po-

sition occasionally combined with a search at di�erent rotations and

scales. The rest of the template parameters are chosen such that they

optimize the prior distribution. In this case, the prior distribution

is often constant for a large number of con�gurations, because most

models are invariant to translation and rotation. This means that

the computational cost only come from the likelihood calculations.

On this basis we propose a method for calculating the likelihood

for a large number of di�erent positions, which signi�cantly reduces

the computational cost compared to the cost for the direct calcu-

lations. The fundamental idea is that for a given con�guration of

the template, the likelihood function can be interpreted as a rigid

�lter, which is convolved with the relevant images at a given posi-

tion. This approach presumes that the likelihood can be interpreted

as a �lter, but this is almost always the case. In the normal case

where the template change all the time this is without interest, but

this is not the case when the template is constant for a large number

of likelihood evaluations at di�erent positions. The calculation of

the likelihood for a given con�guration of the template for a large
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number of positions can then simply be done by a convolution of the

relevant image with the corresponding �lter. As shown under the ex-

perimental results this approach can lead to a signi�cant reduction

of the computational cost for initialization. The gain in computation

time depends of course on how sparse the positions are sampled and

on the used deformable model and image. In general, the advan-

tage increases when the di�erence between the size of the image and

the template increases and when the distance between each sampled

position decreases. The �lters can be computed before the initializa-

tion, so this will not increase the computational load. Problems can

arise along the borders of the image depending on how the border

properties of the convolution algorithm and the deformable model

are de�ned. Direct calculating of the likelihood probability along

the borders can of course solve this problem, but in most cases this

is not a problem, because the entire structure is assumed to be inside

the image. In the case of more than one combination of template

parameters, e.g. parameters corresponding to a number of di�erent

scales, a corresponding bank of likelihood interpreted �lter can be

used.

F.4 Optimization

The �nal optimization is typically a medium-to-high-dimensional op-

timization problem. The problem can, in most cases, be categorized

as continuous unconstrained optimization of a nonlinear function.

The problem is continuous because the template parameters are real,

i.e. 
v � R
N whereN is the number of template parameters, and un-

constrained because most authors do not work with hard constrains.

In reality there exists constrains, e.g. due to the limited size of the

images, but in practice this is not a problem for most models, which

is partly because the prior distribution acts as a penalty function,

that forces the solution to stay inside or close to the feasible region.

Note that maximizing the probability according to (F.2) is equivalent

to minimizing the energy of a deformable model, because the energy
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U(v;y) = �log(P (vjy))+constant under the weak assumption that

P (vjy) is Gibbs distributed. To avoid confusion, the optimization

will only deal with the energy minimization perspective.

A number of di�erent optimization methods have been applied to

perform the optimization. In [23, 85, 155, 167] simulated annealing

[27, 112] is used for optimization. Another popular method is the

steepest descent approached used in [33, 72, 102, 101, 108, 118, 163,

189]. Other approaches for the optimization are dynamic program-

ming [4] and di�erent heuristics [35, 41]. Dynamic programming can

not be used in the general case, because it presumes a logical order

of the parameters. Likewise it is not possible to use the heuristics in

the general case, because they are tuned to a speci�c problem and/or

model. The computational cost and robustness of the optimization

can be improved by using a multiresolution strategy [42, 102].

When the generally applied methods for optimization of deformable

models are compared to the literature for continuous unconstrained

optimization the di�erence is signi�cant. The optimization literature

is very focused on the more advanced gradient based methods and

the disadvantages of steepest descent. Another important issue in

the optimization literature, which has received very little attention

in the deformable model literature, is the speed of convergence of

the di�erent methods. These reections are the main motivation for

comparing the following optimization methods:

� Pattern Search (PS) [94].

� Steepest Descent (SD) .

� Conjugate Gradient with Fletcher-Reeves update and without

resetting (CG).

� Quasi-Newton (BFGS).

� Simulated Annealing (SA) [27, 112].
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Pattern search is a non-gradient based optimization algorithm, which

has received increasing interest in the optimization community. Con-

jugate gradient and BFGS are well known optimization methods (see

e.g [52]), which should have better properties than steepest descent.

The gradient based methods create the problem of estimating the

gradient g(v) = (g1(v); :::; gN (v))
T = (
@U(v;y)

@v1

; :::;
@U(v;y)

@vN

), which

in general is impossible for the likelihood by analytic means. In

practice the gradient can be estimated by �nite di�erences gi(v) �

(U(v+hiei;y)�U(v;y))=hi (forward di�erences) or gi(v) � (U(v+

hiei;y)�U(v�hiei;y))=(2hi) (central di�erences), where ei and hi

are the unit vector and the step size in the i'th direction, respectively.

A third option is to make a linear �t to a number of energies U(v+

h1ei;y); :::; U(v + hMei;y) to get an even more robust estimate of

the gradient.

Another issue for the gradient based methods is, when a descent

direction s has been determined, to decide how long the step s

should be in this direction. The search along the descent direction

is known as line search. In the early days of optimization the exact

line search was dominating, but today soft line searches (see e.g [52])

are gaining in popularity. Soft line searches approximate the step s

corresponding to the minimum along s, by terminating the search

under some weak criterion. Soft line search should in general be

faster than exact line search.

For simulated annealing it is necessary to choose a temperature

scheme and a method for generating a new con�guration. The best

way to generate a new random con�guration is by sampling in the

posterior distribution or almost as good by sampling in the prior

distribution like [85, 155, 167]. Unfortunately this is not possible

in the general case, because the distributions often are improper.

On this basis a Monte Carlo random walk method is chosen, where

independent white noise is added to each template parameter. An

exponential temperature scheme is chosen, i.e. T t+1 = kT
t.
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Figure F.1: Original close-up image yo of nanoparticles.

F.5 Experimental results

The methods for initialization and optimization have been tested on

a simple deformable model used to estimate the size and shape char-

acteristics of nanoparticles in scanning electron microscope images,

see �gure F.1. These nanoparticles are known to be approximately

elliptical. To impose the elliptical shape on the particles is used

a deformable ellipse model. The parameters of the located ellipses

capture the relevant size and shape characteristics. The presence of

signi�cant noise makes more simple approaches like direct �ltering

end up with highly irregular objects representing the particles. A

particle is modelled by an ellipse with the template parameters:

v = (r0; c0; a; b; �) (F.3)
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where (r0; c0) is the ellipse centre, a and b are the ellipse axes and �

is the rotation relative to horizontal. The a posteriori probability is

given by:

P (vjy) = 1
Z

expf�(1 � a
b
)2 � 1
�
( 1
j
inj

P
(r;c)2
in

y(r; c)

� 1
j
outj

P
(r;c)2
out

y(r; c))g (F.4)

where 
in = f(r; c)j (rr)2
a2

+
(cr)
2

b2

� 1g and 
out = f(r; c)j1 < (rr)
2

a2

+

(cr)
2

b2

� 2g where rr = (r � r0)cos(�) + (c � c0)sin(�) and cr =

(c� c0)cos(�)� (r� r0)sin(�), y(r; c) is the image intensity at row r

and column c, � is the regularization constant and Z is the normal-

izing constant. The �rst term corresponds to the prior model P (v)

and the next two to the likelihood P (yjv). The interpretation of the

prior model is that the ideal particle is circular. The prior model

is invariant to translation, rotation, and scale, which also seems to

be a fair assumption. The interpretation of the likelihood is that

the mean of the pixels in a band around the ellipse are subtracted

from the mean of the pixels within the ellipse, where the band have

the same area as the area of the ellipse. The probability is then

increased by maximizing the di�erence. The regularization constant

determines the relative inuence of the prior and likelihood. Un-

der normal circumstances the regularization constant � should be

estimated according to [65], but to make it possible to compare the

energy for the di�erent optimization methods � have to be the same,

so � is set to � = 3.

F.5.1 Initialization

The �rst step to use the proposed method for initialization is to make

a �lter interpretation of the likelihood function. It is assumed that

an approximated radius r is known. The axis of the ellipse is then

set to a = b = r to maximize the prior probability. With a = b = r

the model is rotation invariant and an approximate scale is known,

so only the di�erent positions need to be evaluated. To be able to
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locate the ellipses the likelihood needs to be calculated with a sam-

ple distance of one pixel in the vertical and horizontal positions in

the image at full resolution. This is equivalent to calculating the

likelihood for the centre of the ellipse (r0; c0) equal to each pixel po-

sition. Based on these assumptions a �lter fL(a; b; �) equivalent to

the likelihood can be derived. Given a radius r it is straight forward

to determine the pixels which belongs to the inside of the ellipse and

to the band around the ellipse according to (F.4). An example of the

likelihood interpreted �lter fL(5; 5; 0) corresponding to a = b = r = 5

can be seen in �gure F.2. The likelihood P (yjrc; cc; a; b; �) is then

Figure F.2: Likelihood interpreted �lter fL(5; 5; 0) corresponding to

r = 5.

calculated by a convolution of the �lter fL(a; b; �) and the image y.

The likelihood corresponding to P (yjrc; cc; a; b; �) is then identical

to the pixel value (rc; cc) in the �ltered image L(a;b;�). The result of

a convolution of the �lter fL(5; 5; 0) corresponding to r = 5 and the

image in �gure F.1 can be seen in �gure F.3. It is assumed, that the

entire ellipse and the surrounding band should be inside the image,

such that all pixels closer to the border than
p
2r are set equal to

zero. A comparison of the computation time for the direct calcula-

tions according to (F.4) and the �lter calculations of the likelihood in
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�gure F.3 shows, that the �lter approach is approximately 550 times

faster in a C++ implementation and 1400 times faster in an identical

Matlab implementation. These results of course depends on the ac-

tual implementation of the direct calculations and the convolution.

The direct calculations are performed by independent repeated call

to an optimized function, which calculate the likelihood correspond-

ing to the template parameters v. The speed of the direct calcu-

lation could of course be increased, if the implementation used the

knowledge, that some parameters are constant for a large number of

calculations, but then in most cases it would be impossible to use the

same function for likelihood calculation during the optimization. To
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Figure F.3: Likelihood image L(5;5;0) created by �ltering the orig-

inal image yo by fL(5; 5; 0). The pixel value (rc; cc) is identical to

P (yojrc; cc; 5; 5; 0) .

create the initial con�gurations the likelihood image is thresholded
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Figure F.4: Likelihood image L(5;5;0) thresholded and labelled.

and labelled, see �gure F.4. Each blob is assumed to correspond

to a nanoparticle. The initial con�guration for each ellipse model is

then generated by setting the centre of the ellipse equal to the centre

of gravity of the corresponding blob, the main axis a = b = r and

the orientation � = 0. The initialization procedure locate all the

nanoparticles in �gure F.1.

F.5.2 Optimization

The task of optimization is not only a question of �nding the lo-

cal minimal energy, but also a question of convergence speed. The

following performance studies evaluate both aspects. As in the op-

timization literature the number of function (energy) evaluations
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measures the speed of convergence. The number of function eval-

uations is chosen, because the major part of the computation time

is spend on function evaluations, so in practice it is a very good

approximation of the actual time independent of the speci�c im-

plementation. All stated energies and number of function evalua-

tions are average values from a large number of particles. For all

methods except simulated annealing the stop criterion is de�ned as

U(vt; y)�U(vt+1
; y) < 0:001 and the number of function evaluations

is limited to 300. As stop criterion for simulated annealing a maxi-

mum number of energy evaluation equal to 400 is used, because it is

impossible to use U(vt; y)� U(vt+1
; y) < 0:001.

The �rst evaluations are performed to �nd the optimal method and

parameters for the gradient estimation. These tests are performed on

noisy initial con�gurations, i.e. an amount of white noise is added

to the initial con�gurations, generated by the proposed initializa-

tion method, to make the optimization more diÆcult. A steps size

h = (0:5; 0:5; 0:5; 0:5; �=20) performed well for the forward di�erence,

the central di�erence and the linear �t gradient estimation methods.

In general none of the methods are very sensitive to the step size.

The linear �t is made to the energies corresponding to v + jhiei

for j = �2; ::; 2. When the performance of the three methods are

compared, the forward di�erence is 1.8 and 2.9 times faster than

the optimization based on the central di�erence and the linear �t,

respectively. But the �nal average energy is 7-8 percent lower. The

�nal average energy for the central di�erence and the linear �t dif-

fer with less than one percent and the central di�erence is 1.6 times

faster. Due to faster convergence and the small di�erence in �nal

energy central di�erence is chosen for gradient estimation in the fol-

lowing test. A comparison of the exact line search and the soft shows

that soft line search use less function evaluation and obtain a better

�nal average energy, so the soft line search is used in the follow-

ing results. The parameters for simulated annealing, which perform

best, are T 0 = 0:01, k = 0:98 and the variance of the random walk

�
2
rc

= �
2
cc

= 0:5; �2a = �
2
b

= 0:25 and �� = 0:1. For Pattern Search an
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Figure F.5: Performance evaluation for optimization of the initial

con�guration.

initial step size h0ps = (1; 1; 1; 1; �=8) and h0ps = (2; 2; 2; 2; �=4) per-

form best for the initial and noisy initial con�guration, respectively.

Using the chosen methods and parameters for each optimization al-

gorithm the �rst evaluation is performed directly on the initial con-

�gurations. The general performance results can be seen in table F.1

and �gure F.5. Using the generated initial con�guration and BFGS

for optimization the particles are located, see �gure F.6. When the �-

nal average energies are compared, all the algorithms perform almost

equally well, and a one way analyses of variance rejects the hypothe-

ses that the �nal energies should be di�erent. In the initial phase of

the optimization all the methods converge with the same speed, but

during the later optimization Pattern Search and especially Simu-

lated Annealing converge slower, see �gure F.5. With respect to the

chosen stop criterion the gradient-based methods converge 2.3 faster

than Pattern Search, see table F.1. Simulated Annealing is obmit-
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ted in this comparison, because it has a di�erent stop criterion. The

faster convergence of the gradient based methods is not a surprise,

because pattern search and simulated annealing use alot of function

evaluations on "walking in the wrong direction".

Table F.1: Final average energy, relative energy, average number of

function evaluations and relative number of evaluations for optimiza-

tion of the initial con�gurations.

Method SA PS SD CG BFGS

Energy -6.49 -6.51 -6.44 -6.43 -6.44

Rel. Energy 1.00 1.00 0.99 0.99 0.99

Std. Energy 0.77 0.79 0.79 0.79 0.78

#Eval. - 148.5 60.2 62.0 60.5

Rel. #Eval. - 2.47 1.00 1.03 1.00

The next test is performed on a noisy initial con�guration, see ta-

ble F.2 and �gure F.7. With exception of Conjugate Gradient, the

�nal average energies for the methods are approximately the same.

This time a one way analysis of variance rejects the hypotheses that

the �nal energies are identical, and a following paired t-test shows

that Conjugate Gradient has a signi�cant higher energy than all the

other methods. Compared to the previous test, all the �nal aver-

age energies are higher, because a few optimized particles are caught

in local minima. In the initial phase of the optimization Pattern

Search and Simulated Annealing converge faster than the gradient

based method, but again Pattern Search and Simulated Annealing

are passed during the later phase of the optimization.

If the maximum number of function evaluations for simulated anneal-

ing is increased to 10000, simulated annealing obtain a �nal average

energy of 6.51 and 6.60 for the initial con�guration and the noisy

initial con�guration, respectively. Compared to the energies for the

other methods this result is very good, but the computational cost is
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Figure F.6: Estimated particles contours overlaid in original image.
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very high. For the noisy con�guration Simulated Annealing obtain

a statistically signi�cant lower energy than the other methods.

Table F.2: Same measures as table F.1 for optimization of the noisy

initial con�guration.

Method SA PS SD CG BFGS

Energy -6.33 -6.32 -6.33 -5.83 -6.27

Rel. Energy 1.00 1.00 1.00 0.92 0.99

Std. Energy 0.93 0.97 0.97 1.14 1.05

#Eval. - 158.0 88.3 92.3 92.0

Rel. #Eval. - 1.79 1.00 1.05 1.04

F.6 Conclusion and discussion

We have proposed a faster method for initialization of deformable

models and introduced a number of algorithms from the optimization

literature, which are novel in the context of deformable models. The

methods are all general in the sense, that it should be possible to

apply them to almost any deformable model.

The proposed method for initialization is signi�cantly faster on the

test data than the method based on direct calculations. The method

is based on a �lter interpretation of the likelihood and presumes that

the likelihood can be interpreted as a convolution, which is almost

always the case. It should be stressed that the proposed method

only is of interest, when part of the initialization task is to �nd the

position of the template. Compared to the initialization method

based on direct calculations the only additional work is to created

the likelihood �lters.

With respect to the �nal energy the optimization tests show, that

all methods perform almost equally well within a reasonable number
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Figure F.7: Performance evaluation for optimization of the noisy

initial con�guration.

of function evaluations, but if the number of function evaluations is

of no concern simulated annealing obtains very good energies, when

it is allowed to use a large number of evaluations. When the speed

of convergence is compared, the gradient based methods are fastest

during the later phase of the optimization. Compared to the gradient

based methods, the relative performance of Pattern Search and Sim-

ulated Annealing increase, when the initial con�guration is further

away from the �nal solution. In general it is not very satisfactory

that some models get caught in local minima and approaches like

smoothing the likelihood, stronger regularized models or more prior

knowledge would maybe solve part of the problem.



F.6 Conclusion and discussion 163

Acknowledgements

We would like to acknowledge Torsten D�orge for the initial work on

the nanoparticle model and the M�osbauer group at the Department

of Physics, Technical University of Denmark, for the nanoparticle

images.

164Appendix F. Initialization and Optimization of Deformable Models



165

Appendix G

The Grenander

Deformable Template

Model: A General Scheme

Rune Fisker, Nette Schultza, Nicolae Dutab and Jens Michael Carstensena

a Dep. of Mathematical Modelling, Tech. University of Denmark

b Dep. of Computer Science, Michigan State University, USA

Abstract

General deformable models have reduced the need for

hand crafting new models for every new problem. But

most of the general models still rely on manual interac-

tion by an expert, when applied to a new problem, e.g.,

for selecting parameters and initialization. In this paper

we propose a full and uni�ed scheme for applying the gen-

eral deformable template model proposed by Grenander

et al. [85, 114] to a new problem with minimal manual
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interaction, which can be done by a naive user. The main

contributions compared to previous work are two learn-

ing schemes for the model parameters, a very fast gen-

eral initialization algorithm and an adaptive likelihood

model based on local means. The learning schemes for

the model parameters are either based on a training set or

just one example. The model parameters are trained by

a combination of a 2D shape learning algorithm, a Maxi-

mum Likelihood based criteria and a modi�ed version of

the Expectation-Maximization algorithm. The fast ini-

tialization algorithm is based on a search approach using

a �lter interpretation of the likelihood model.

Key words: deformable templates, active contour models,

initialization, model parameter estimation.

G.1 Introduction

The deformable template model literature is very rich in di�erent

models, see [18, 101, 132] for a survey of the best known models.

One reasons for this is a general tendency to hand craft a new model

for every new problem, even though existing general models, such

as [18, 35, 41, 85, 102, 163], can be applied in many cases. Even

though general deformable models reduce the need to hand craft a

new model, most of the general models still su�er from non-general

initialization methods and rely on manual selection of some or all of

the model parameters. The model parameters, �, are de�ned as the

parameters which determine the properties of the optimization crite-

ria. The ultimate goal must be a full automatic algorithm which can

be applied to a new problem with no interaction at all. A more realis-

tic goal is to supply one example, and run an incremental or iterative

learning algorithm such as the Expectation-Maximization [51]. No

matter whether a training set is created manually or by some iter-

ative algorithm, a method for estimation of the model parameters,
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�, based on a training set and a general initialization/optimization

method are needed as well. In this paper we proposed such meth-

ods for the general deformable template model proposed by Ulf

Grenander et al. [85, 114] and further investigated and developed in

[73, 86, 96, 109, 151, 155].

G.2 The Grenander model.

The Grenander Model is formulated in the Baysian framework. To

make inference the posterior distribution, P (vjy;�), is maximized,

where v is the template parameters de�ning the object, y is the im-

age and � is the model parameters. Using Bayes theorem, P (vjy;�) /

P (yjv;�)P (vj�), the posterior can be separated into the prior, P (vj�),

and the likelihood, P (yjv;�). In the Grenander Model the object

is represented by a set of vertices v = (vT0 ; :::;v
T
n�1)

T 2 
v � R
2n ,

where vi = (xi; yi)
T . From the vertices v the corresponding edges

z 2 R
2n can be calculated, where zi = vi � vi�1 in a cyclic manner

(see Figure G.1). The template vector cycle z = (zT0 ; :::; z
T
n�1)

T 2

R
2n must satisfy the closure constrain:
P
n�1
i=0 z

(x)
i

= 0 and

P
n�1
i=0 z

(y)
i

= 0, where zi = (z
(x)
i

; z
(y)
i

). In general an object can either be rep-

resented by the vertices v or by the edges z and an o�set vn�1. The

relationship is:

v = Evn�1 + Fz (G.1)

where

E =
2

66666664
1 0

0 1

1 0

0 1

1 0

...

...
3

77777775
and F =

2
66666664

1 0 0 0 0 : : :

0 1 0 0 0 : : :

1 0 1 0 0 : : :

0 1 0 1 0 : : :

1 0 1 0 1 : : :

...

...

...

...

...

. . .
3

77777775
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G.2.1 Prior model.

Assume that a mean or prototype shape �v = (�vT0 ; :::; �v
T
n�1)

T 2 
v

exists. Given a new shape v with the same number of vertices, the

corresponding change in local scale and orientation of each mean

edge zi = Si(�i; �i)�zi can be determined. Matrices changing scale

and orientation are: �
 0

0 
�

;  2 R+ (G.2)

and �
cos(') sin(')

� sin(') cos(')
�

; ' 2 [��; �] (G.3)

Their product can be written in the following linear form creating

the local deformation matrix:

Si(�i; �i) =
�
1 + �i ��i

�i 1 + �i
�

(G.4)

where �i =  cos(') � 1 and �i = � sin('). For small values of

' and  near 1, �i �  � 1 controls changes in scale and �i � �'

controls changes in orientation.

One of the central concepts in the Grenander model is, that the

parameters � = (�0; :::; �n�1) and � = (�0; :::; �n�1) are assumed

to follow an independent cyclic �rst-order Gaussian-Markov process

with mean zero [85]. The density of a �rst-order Gaussian-Markov

process with mean zero for the n-cyclic parameter vector � is de�ned

by:

f(�) =

1p
2�

npjR�j
expf�1
2
�
T
R
�1
� �g (G.5)

where R�1� is a cyclic tridiagonal band matrix which is positive def-

inite. It follows directly that � � N(0; R�), where N(0; R�) is the

n-dimensional multi-variate Gaussian distribution with mean zero

0 and covariance R�. R
�1
� can be parameterized in the following
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manner:

R
�1
� =2

6666664
�0 + 2�1 ��1 0 : : : ��1

��1 �0 + 2�1 ��1 : : : 0

0 ��1 �0 + 2�1

. . . 0

...

...

. . .

. . .

...

��1 0 0 : : : �0 + 2�1
3

7777775

(G.6)

� = (�0, �1) are such that R�1� is positive de�nite. This param-

eterization gives a more intuitive interpretation of the parameters

controlling R�1� than the original parameterization in [85]. The pa-

rameters � are easier to interpret in the following form of the density

(G.5):
f(�) =

1
z

expf�1
2

n�1X
i=0

(�0(�i)
2 + �1(�i � �i�1)
2)g (G.7)

where z = 2�n=2jR�j1=2. �0 controls the likelihood of how much �i

di�ers from zero, see (G.7). For large values of �0, f(�) � 0 even for

small values of �i. In this case it is very unlikely that �i di�ers very

much from zero. �1 controls the neighbor relationship between �i

and �i+1. For positive values of �1 neighbors tend to be positively

correlated and the opposite is true for negative �1. Large values of

�1 correspond to tight bonding between neighbors.

An equivalent density distribution is derived for the orientation pa-

rameter vector � with weight parameters �0 and �1. In the original

formulation individual weights, ��0;i; �
�
1;i; �

�
0;i and �

�
1;i, are assigned

to each �i and �i, but when the model is actually applied all weights

are assumed to be equal ��0;i = �
�
1;i = �0 and �

�
1;i = �

�
1;i = �1, see

[86, 109, 155]. To simplify the notation the index is omitted initially.

Recall zi = Si(�i; �i)�zi. This can be rearranged into:

zi =
�
�zx
i

��zy
i

�z
y
i

�zx
i

� �
�i
�i

�
+ �zi (G.8)

170 Appendix G. The Grenander Model: A General Scheme.

Rearranging the global vector cycle this way gives:

z = G! + �z for G = �H (G.9)

where ! = (�T ;�T )T ,

� =
2

666664
�zx0 ��zy0 0 0 : : :

�z
y
0 �zx0 0 0 : : :

0 0 �zx1 ��zy1 : : :

0 0 �z
y
1 �zx1 : : :

...

...

...

...

. . .
3

777775

(G.10)

and H is a permutation matrix interchanging rows:

H =
2

666664
1 0 0 : : : 0 0 0 : : :

0 0 0 : : : 1 0 0 : : :

0 1 0 : : : 0 0 0 : : :

0 0 0 : : : 0 1 0 : : :

...

...

...

...

...

...

...

. . .
3

777775

(G.11)

If � � N(0; R�) and � � N(0; R�) are stochastically independent,

the following distribution is obtained from (G.9) for the edges z �

N(�z; Rz) where
Rz = GR!G
T for R! =

�
R� 0

0 R�
�

(G.12)

Unfortunately this distribution z � N(�z; Rz) does not satisfy the

closure constraint, i.e. a sample drawn from N(�z; Rz) will in general

not be closed. The closure constraint can be rewritten to Lz = 0,

where

L =
�
1 0 1 0 1 0 :::

0 1 0 1 0 1 :::
�

2 R
2�n (G.13)

Using the theory on conditioning Gaussian distributions the template

vector distribution conditioning on closure is [zjLz = 0] � N(�z; R)

where

R = Rz �RzL
T (LRzL
T )�1LRz (G.14)
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The �nal distribution of the vertices, v, is:

v � N(Evn�1 + F �z; FRF T ) (G.15)

Therefore, we consider the prior model, P (vj�v;�), to be distributed

N(Evn�1 + F �z; FRF T ).

G.2.2 Likelihood model with global mean.

The original likelihood (or observation) model P (vjy;�) is based on

the assumption that the pixel values, yr;c, inside and outside the

object are independently Gaussian distributed with mean �in and

�out and common variance �. This assumption leads to following

likelihood:

P (vjy;�) =
Y

(r;c)2
in

1p
2��

expf�(yr;c � �in)
2

2�

g�

Y
(r;c)2
out

1p
2��

expf�(yr;c � �out)
2

2�

g

(G.16)

where 
in and 
out are the set of pixels, which are inside and outside

the template, respectively. � can also be interpreted as a regulariza-

tion weight parameter, which determines the relative inuence of the

prior and the likelihood part, respectively. In the original model, the

pixels outside are de�ned as the rest of the image, but for images

with varying background it is more reasonable to limit the pixels

outside to belong to a local area around the template. In practice,

we de�ne the local area by a rectangle aout, which is obtained by

a vertical �v and horizontal �h ination of the smallest rectangle,

which contains the actual initial con�guration.
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G.3 Model parameter estimation based on a

training set.

To actually apply the Grenander model values need to be assigned to

the model parameters � = (�v;�; �in; �out; �; �v; �h). In the following

sections a fully automated scheme for estimation of the model pa-

rameters based on m manually marked object outlines, o0; ::;om�1,

in the images, y0; :::;ym�1, is presented. The outlines (manually

drawn contours) are not assumed to be registered and are densely

(1-pixel) sampled. Compared to a point-based training set with es-

tablished point correspondences, the outlines are more robust and

easier to create, primarily because points do not have to be placed

at corresponding positions on each object. Along with the outlines

the rectangles, aout;0; :::;aout;m�1, de�ning the local areas need to be

given.

The central assumption in the estimation of the model parameters of

the prior model is that each training sample corresponds to a sample

from the prior model (G.15), which has been changed by a random

Euclidean transformation.

G.3.1 Prior mean shape

The crucial step in the estimation of the mean template is to create

the aligned parameterization vt0; ::;v
t
m�1 of the outlines o0; ::;om�1.

Note that vt0; ::;v
t
m�1 are aligned with respect to the Euclidean trans-

formation to remove the random Euclidean changes. The mean

template �vt is then calculated as the simple average of the vertices

v
t
0; ::;v

t
m�1.

The parameterization implies a subsampling and a registration pro-

cess. The simple solution to the problem is to subsample the outline

by n equidistant vertices and then perform a point registration (see

[129] for an overview of point registration). Unfortunately the sep-

aration of subsampling and registration tend to give noisy results.
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A 2D Shape Learning algorithm proposed by Duta et al. [59] solves

the problem by combining subsampling and registration into one

step. One of the main di�erences from previously reported methods

is the manner in which registered points are extracted from each

shape outline, using a exible point matching technique that takes

into account both pose/scale di�erences as well as non-linear shape

di�erences.

The shape learning algorithm produces a set of contours with estab-

lished point correspondence. The templates in the training set are

aligned with the last template and then averaged using Procrustes

analysis [56, 83]. This does not insure that the average shape has an

average size/orientation with respect to the training set of templates.

These properties are obtained by scaling and rotating the output

from the shape learning algorithm by 1
m

P
m�1

i=0

1
i

and � 1
m

P
m�1

i=0 'i,

where i and 'i are the scale and rotation, which aligned shape i

with the last shape.

G.3.2 Prior weight parameters

Most deformable models contain weight parameters, but never the

less weight parameter estimation has received very little attention

in the literature. With few exceptions the weight parameters are

tuned manually. The work by Lai et al. [118] is one exception.

They use a non-general minimax criteria to estimate the regulariza-

tion parameter. Fisker & Carstensen [65] uses a combined maximum

likelihood and minimum distance criteria to estimate weight param-

eters in a deformable model used for textile inspection. Recent work

by Kent et al. [109] and Hurn et al. [96] has considered the question

of weight parameter estimation in Grenander related models. The

work by Kent et al. [109] only considers circulant symmetry objects

and the work by Hurn et al. [96] uses a closure constraint based

on v0 = vn. Unfortunately this closure constraint leads to an in-

homogeneous covariance structure, where the vertices in the end of

the vector cycle have much higher variance, than those in the start.

174 Appendix G. The Grenander Model: A General Scheme.

This should be compared to the covariance in (G.15), which has an

almost homogeneous covariance structure.

The estimation of the weight parameters are based on the aligned

training samples, vt0; :::;v
t
m�1. Using the assumption that vt
i

is a

sample from the prior distribution N(Evn�1 + F �z; FRF T ), we pro-

pose to estimate the weights � using the Maximum Likelihood (ML)

estimator:

^� = max
�

m�1Y
i=0

P (vtij�vt;�) (G.17)

To evaluate P (vij�v;�) the inverse of FRF T has to be calculated.

Unfortunately this is not straight forward, because R is rank de�-

cient, due the closure constraint,
P
n�1
i=0 zi = 0, which removes two

degrees of freedom, i.e. rank(FRF T ) = 2n � 2. This problem is

solved by using a pseudo inverse of FRF T . Due to the closure con-

strain the two last rows and columns of FRF T will always be zero.

This is basically also the reason for the last element of v being identi-

cal to the o�set vn�1 in (G.1). Based on this observation the pseudo

inverse (FRF T )� is de�ned by:

(FRF T )� =
�
��111 0

0 0
�

(G.18)

where �11 is the �rst 2n�2 rows and columns of FRF T . The pseudo

inverse is also used, when the prior is evaluated.

G.3.3 Likelihood parameters

The means, �in, �out, and the common variance, �, used in the like-

lihood model can be estimated from v
t
0; :::;v

t
m�1; aout;0; :::;aout;m�1

and the corresponding images, y0; :::;ym�1, by calculating the tra-

ditional means and the pooled variance of the pixels values inside

and outside the template. In fact this is also a Maximum Likelihood

estimate.
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The true vertical �v and horizontal �h ination can not be estimated

directly, so �v and �h are approximated by the average vertical and

horizontal ination, which map the smallest rectangle containing vt
i

to aout;i independent of position. This approximation is based on

the assumption, that the initial con�guration will be placed close to

the center of aout;i with approximately the same size as vt
i
.

G.4 Initialization.

To actually make inference about an object in an image y, estimation

of the maximum a posteriori (MAP), ^v = maxv P (vjy;�), is per-

formed. This MAP estimation is usually separated into two steps:

Initialization and Optimization.

Most deformable models have been initialized using heuristics tuned

to the speci�c problem, which is not acceptable from the general

point of view. Di�erent initialization approaches using the mode

of the prior [163], the generalized Hough transform [72, 73, 118]

and moments [18] have been applied with success to the respective

models, but these approaches cannot be applied in the general setting

of the Grenander Model. The only general initialization approach,

which we have knowledge about, is the search strategy [61, 102],

where a sparse search is performed in the parameter space 
v. Note,

that the Hough transform [95, 98, 122] in general can be interpreted

as a deformable model with a uniform prior, where the initialization

is performed by an intensive and eÆcient search and the optimization

is omitted.

For most problems the initial position is unknown, and a compu-

tational expensive part of the deterministic search is to shift dif-

ferent con�gurations of the template around the image and calcu-

late the posterior probability P (vjy;�). Based on this observa-

tion we proposed a fast search strategy using a �lter interpreta-

tion, fl(v;�), of the likelihood energy U(y;v;�), where P (yjv;�) =
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1
c
expf�U(y;v;�)g, such that the likelihood energy, which corre-

sponds to the template positioned with the center at each pixel of

the image, can be calculated by a correlation of the �lter fl(v;�) and

the image y. The likelihood energy U(y;v;�), derived directly from

P (yjv;�) = 1
c

expf�U(y;v;�)g in (G.16), can be rearranging into a

�ltering in the following way (note this is still only for one position

of the template):

U(y;v;�) =
X


in

(y � �in)
2

2�

+
X


out

(y � �out)
2

2�

=

X

in[
out

y
2

2�
+
j
inj

2�

�
2
in +

j
outj
2�

�
2
out�

X

in

y�in
�

�
X


out

y�out

�

=

X

in[
out

y
2

2�
+
j
inj

2�

�
2
in +

j
outj
2�

�
2
out�

y � fl(v; �in; �out; �)

(G.19)

where j
j is the number of pixels in 
,
P


 y is a short form forP
(r;c)2
 y(r; c), y � fl(v; �in; �out; �) is the convolution for one posi-

tion and fl(v; �in; �out; �) is the likelihood interpreted �lter, which

has the size of aout and contain two constant areas with the coef-

�cients �in=� and �out=� depending on whether the pixels will be

inside or outside the object. To calculate the likelihood energy for

the centers of the template corresponding to a region of interest ROI

in the image, the convolution of y and fl(v; �in; �out; �) is performed

for the ROI and the terms
P


in[
out

y
2

2�

and
j
inj

2�

�
2
in

+
j
outj

2�

�
2
out are

evaluated.

Compared to calculating the likelihood independently at di�erent

positions, this approach gives a signi�cant reduction in the practical

computational cost. This reduction is mainly due to highly optimized

convolution procedures and avoidance of unnecessary recalculations

at each position. Another signi�cant gain in computation time can
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be obtained, if the image can be resampled/paded into having 2r

columns and 2s rows, respectively, where r 2 N+ and s 2 N+ . Then

the convolutions can be performed in the Fourier space using the con-

volution theorem and Fast Fourier Transform. The full initialization

algorithm can be summarized as follows:

1. Create relevant search con�gurations v0; :::;vk�1 and set i = 0.

2. Create likelihood interpreted �lters fl(vi;�) (and optionally

their Fourier transform Fl(vi;�) ).

3. Calculate P (yjvi;�) for the center of the template correspond-

ing to each pixel within the ROI by a correlation of fl(vi;�)

and y.

4. Calculate P (vijy;�) = P (vij�)P (yjvi;�)

5. i = i+ 1. Go to 2 if i < k.

6. Compute the initial con�gurations from P (vjy;�).

The actual choice and number of initial search con�gurations v0; :::;

vk�1 is determined by the amount of variation in scale, orientation

and shape of the training set combined with the overall demand for

precise initialization. For most problems it is enough to do the search

in the Euclidean space, i.e. scale, translation and orientation, but

for harder problems con�gurations with shape variation need to be

included. Ways of including shape variation is to apply con�gura-

tions sampled from the prior model or con�gurations created from

the mean shape and the most important eigenvectors of the empiri-

cal or imposed covariance structure. In the normal setting the ROI

is chosen, such that the full template always is inside the image.

The �nal step is to extract the initial con�gurations from the calcu-

lated P (vjy;�). In practice this is done by extracting the maximum

posterior P (vjy;�)(r;c) corresponding to each template center (r; c)

based on the assumption that only one template has the center in
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(r; c). In the case where the number of objects in the image is known,

the initial con�gurations are extracted as the corresponding number

of local maxima with the highest posterior probability P (vjy;�)(r;c).

In the case where the number of objects in the image is unknown the

initial con�gurations are extracted as local maximas with a posterior

probability P (vjy;�)(r;c) above a threshold tp.

G.5 Optimization

The optimization is performed using a Simulated Annealing scheme

[27, 112] incorporating the Metropolis algorithm [134]. The temper-

ature is decreased by an exponential temperature scheme Tt+1 =

kTTt and the new sample vnew is generated by sampling in the

prior distribution P (vj�). In practice only a small segment vseg =

(vT
l
; :::;v
T
l+q�1)

T of the vector cycle is changed at each iteration.

The samples are then generated from the conditional prior distri-

bution P (vsegjv=seg;�), where v=seg = (v0; :::;vl�1;vl+q; :::;vn�1).

Due to the �rst-order Markov assumption the conditional distribu-

tion only depends on the endpoints of the segment P (vsegjv=seg;�) =

P (vsegjvl�1;vl+q;�). In practice the conditional distribution P (vsegj

vl�1;vl+q;�) is obtained from the conditional distributions f(�seg

j�l�1;�l+q) and f(�segj�l�1;�l+q), which are propagated through a

similar framework as used for the full prior distribution in section

G.2.1. We refer to [155] for the entire derivation, but note that the

means for f(�segj�l�1;�l+q) and f(�segj�l�1;�l+q) applied in this

work are the true conditional means created by the theory for con-

ditioning Gaussian distributions and not the approximations used in

[155].

Due to the Metropolis algorithm it is only necessary to calculate

the ratio between the posteriors P (vnewjy;�)=P (voldjy;�). Because
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most of vnew and vold are identical the likelihood ratio reduces to:

P (yjvnew;�)

P (yjvold;�)
=expf

X

old

in

(y � �in)
2

2�

�
X


new

in

(y � �in)
2

2�

+
X


old

out

(y � �out)
2

2�

�
X


new

out

(y � �out)
2

2�

g

where the sum is performed over the set of pixels, which are inu-

enced by the change in the segment vseg. 
new

in

, 
new

out , 

old
in

and


old
out separate this set into the pixels which belong to the inside and

outside of vnew and vold, respectively.

G.6 Model parameter estimation based on

one example.

Even when outlines are used for the training sets, the manual tracing

is a cumbersome task. To minimize the need for manual interaction

the following model parameter estimation, based on a modi�ed ver-

sion of the Expectation-Maximization (EM) algorithm [51], is pro-

posed:

1. Set j = 0 and initialize �j.

2. Estimate ^vi = maxvi P (vijyi;�j) for i = 0; ::;m � 1

3. Estimate �j by the training set based model parameter esti-

mation using ^v0; :::; ^vm�1 as the training set.

4. j = j + 1. Go to 2 until stop.

The manual input is now limited to the initialization of the model

parameters, �0. Note a training set of images is still required. The
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most quali�ed way to select the initial values is to manually out-

line one representative shape, oi, and the local area, aout;i, in the

corresponding image, yi. A resampled version of the outline, oi,

is then used as the initial mean shape, �v, and the initial values of

�in; �out; �; �v and �h are estimated from yi and aout;i. When only

one shape outline is given, it is not feasible to estimate an initial

value of �, so a guess need to be made.

The EM algorithm is shown to converge to the ML estimate at least

locally under some moderate conditions [185]. Global convergence

is also proven for special cases, e.g. in [120, 149]. However, the

convergence of the EM algorithm can be painfully slow [125]. With

respect to the proposed algorithm is does not seem to be possible to

do a formal proof on the convergence, but the experimental results

indicate good convergence.

G.7 Adaptive local mean model.

For many problems the local mean varies over the object and back-

ground, and the assumption of one global mean, �in and �out, is

insuÆcient. Another problem is that the constant means make the

likelihood model very sensitive to changes in the gray level intensity.

On this basis we propose a likelihood model, which adapts to the

local mean in a band around the edges. The likelihood ratio for the

local mean model is:

P (yjvnew; �)

P (yjvold; �)
= expf

X

old

in

(y � �
seg

in

)2

2�

�
X


new

in

(y � �
seg

in

)2

2�

+
X


old

out

(y � �
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out
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�
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out

(y � �
seg

out
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g

where �
seg

in

and �
seg

out

are the local means inside and outside of the

segment, vseg. To adapt to the pixel intensities the local means
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are estimated from the actual con�guration vold. To apply equal

weight to each edge, zi, the means are estimated as the average of

the means, �i;in and �i;out, around each edge zi. In practice �i;in

and �i;out are calculated from the pixels in a local band with width

b around zi. Only pixels inside aout are taken into account. The

size of the band width b is estimated as the average of the bands

manually marked around each training sample vt
i
. Initially all means

inside and outside are assumed to be identical, i.e. �i;in = �in and

�i;out = �out. Based on this assumption the original model is used

for initialization following section G.4.

G.8 Experimental results.

The proposed framework has been applied to segmentation of cross-

sections of pork carcasses. This is a part of a study of di�erent

properties of meat done for a number of Slaughter-houses (see Figure

G.2).

To estimate the model parameters, 14 outlines of cross-sections,

o0; :::;o13, have been manually marked in 14 images. The �rst step

is to apply the 2D shape learning algorithm [59] to subsample and

align the shapes creating the corresponding template parameters

v
t
0; :::;v

t
13 (see Figure G.3). The number of vertices has manually

been speci�ed to 83, which basically is a reasonable tradeo� between

speed and accuracy, see discussion in section G.9. The mean shape,

�vt, is then created as the average of vt0; :::;v
t
13 (see Figure G.3).

Before the ML estimator (G.17) is used to estimate the empirical

weight parameters, the approach has been tested on simulated data

with the mean equal to �vt. In general the results indicate a robust

and stable method which is not to sensitive to small sample sizes.

The Maximum Likelihood criteria seems to have a smooth convex

surface, making the actual optimization very robust.

The empirical weight parameters � are estimated to �0 = 22:96

and �1 = 3:57. A powerful tool to verify the prior model and the
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estimated mean, �v, and weights, �, is to generate samples from

the prior model (G.15) (see Figure G.4). When the simulations are

compared to the real shapes in Figure G.3, the simulated shapes

show a shape variation, which is reasonably close to variation in the

real samples. This simulation basically veri�es that the derived prior

model with the estimated parameters is an acceptable model of the

real shape variation. The last step in the estimation of the model

parameters, �, is the calculation of �in = 150:60; �out = 30:69; � =

778:05; �v = 0:18 and �h = 0:09 following section G.3.3.

Based on the limited variation in scale, rotation and shape, the mean

shape �vt is chosen to be the only relevant con�guration used in the

fast search strategy. Using the estimated model parameters the like-

lihood interpreted �lter fl(�) and its the Fourier transform Fl(�) is

created (see Figure G.5). This completes the o�-line training.

Given a new image y0 the �rst step to make inference is to perform

the initialization using the fast search strategy. The core of the fast

search strategy is to calculate the likelihood energy for the center of

the mean template corresponding to each pixel within the ROI by a

correlation of fl(�) and y0 (see Figures G.2, G.5 and G.6). The cor-

relation is performed in the Fourier space by temporarily padding the

image to 512x1024. The �nal posterior energy is obtained by adding

the prior energy, which in this case is zero. The initial con�guration

is selected as the con�guration, which corresponds to the maximum

posterior energy, using the knowledge that there will be one and only

one cross-section in the image. Comparing the computation time for

the likelihood energy by independent calculations ( 977.04 sec. on

a Pentium II 350 Mhz) and by the correlation approach (1.06 sec.),

the latter is approximately 900 times faster, leading to an overall

initialization times that is approximately 600 times faster (indepen-

dent: 977.54 sec., correlation: 1.56 sec.). Note that the independent

calculations only are done for the ROI, i.e. 35490 pixel � 9 percent

of the image. Whereas the Fourier based approach calculate the like-

lihood energy for the full image using a cyclic border approach. The

computation times is of course highly sensitive to the actual imple-
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mentation, but both implementations are optimized with respect to

speed.

The second step is to perform the actual optimization based on the

initial con�guration. In the simulated annealing scheme is used

T0 = 50, kT = 0:97, 400 iterations and a segment size of 3. The

methods are evaluated on a test set containing 15 images with man-

ually marked outlines. The average point to associated boundary

error [43] measured from the outline to the template is 4:07(�6:30)

and 1:02(�0:46) pixels using the global mean and local mean crite-

ria, respectively. The result of optimizing the initial con�guration

(73.87 sec.) in Figure G.2 using the adaptive local mean criteria is

shown in Figure G.7. The very high error for the global mean mainly

originate from errors in 3 images, where the pixel intensities di�er

allot from the estimated average intensities, �in and �out. The per-

formance of the global mean is improved to an error of 1:54(�0:48),

when an adaptive estimation of �in; �out and � is introduced after

the initialization.

The last experiments concern the model parameter estimation based

on one example. The initial values of �, except �, are estimated

from the representative outline, o0, and the corresponding image y0

and local area aout;0. Finally a guess is made on the initial val-

ues of �. The estimated model parameters are � = (14:30; 22:60),

�in = 144:16; �out = 38:20; � = 1289:12; �v = 0:15 and �h = 0:10.

Compared to the training set based estimate of �, the values �0 has

decreased and �1 increased. However this is no surprise, since the

mean shape is both used to segment the cross-sections and iteratively

estimated from the segmented cross-sections, which should increase

the correlation between edges, i.e. �1. Due to the diagonal elements,

�0 + 2�1, of the covariance structure in (G.6), it seems correct that

�0 decreases when �1 increases, if the overall covariance structure

should be in reasonably good accordance with the previously esti-

mated. The pixel statistics estimates vary a bit compared to the

training set based estimates, which is due to the fact that the local

areas are set by the estimated �v and �h, so sometimes parts of the
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box below the cross-sections are included in the local area. With

respect to convergence, the algorithm usually converges within 40

iterations and does not seem to be very sensitive to the initial guess

on �. When the estimated parameters are applied to the test set,

the error is 1:21(�0:78).

G.9 Conclusion and Discussion.

We have proposed a general scheme for applying the Grenander

Model to a new problem, which requires minimal manual interac-

tion. The scheme has successfully been applied to segmentation of

cross-sections of pork carcasses. The test results indicate a very fast

general search based initialization algorithm, which is signi�cantly

faster than a search using independent calculations. We have also

proposed an adaptive likelihood model based on local means, which

obtain better performance on the test set than the original model.

When the performance of the training set based model parameter

estimation is compared to the estimation based on one example, the

�rst obtain the best performance, but the estimation based on one

example still obtained promising results.

The proposed scheme has reduced the needed for manual selection

of parameters signi�cantly, but still the number of vertices, the opti-

mization parameters and the initial values of � need to be selected.

The selection of the number of vertices is a tradeo� between speed

and accuracy, but in a statistical setting the number of vertices can

be selected straight forward by using a model selection criteria like

the Akaike Information Criteria [1]. Note that the outline based

training sets make it very easy to change the number of vertices,

because of the 2D shape learning algorithm. The manual selection

of the optimization parameters and the initial values of � is a minor

problem, since these parameters are quite general.
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vi+1 vi
vi-1

z i
z i-1

Figure G.1: A template with vertices v and edges z.

Figure G.2: Image y0 of cross-section of pork carcass (512x768) with

initial con�guration overlaid.
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Figure G.3: Subsampled and aligned training set (full line) and mean

shape (dotted line).

Figure G.4: Shape simulations using estimated � and �v.
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Figure G.5: Likelihood interpreted �lter fl(�) (283x696). The bright

and dark color correspond to the pixels inside and outside �vt limited

by the local area aout.

Figure G.6: Likelihood energy image. The pixel (r; c) is identical

to Ul(y0j�vt;�) where �vt has center in (r; c). The black rectangle

corresponds to the ROI.
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Figure G.7: Optimized template using local means.
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