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Preface

This thesis has been prepared at the Department of Mathematical Modelling
(IMM), The Technical University of Denmark, and Krüger A/S, in partial ful-
filment of the requirements for the degree of Ph.D. in engineering.

The thesis is concerned with the modelling of wastewater processes with the
objective of using the models for control of sewer systems and wastewater
treatment plants. The main contribution to this field includes both linear and
nonlinear dynamic stochastic modelling of the influents to wastewater treat-
ment plants as well as modelling of processes in the wastewater treatment
plant.

Ramløse, 12th November 1999.

Henrik Bechmann
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Summary

In this thesis, models of pollution fluxes in the inlet to 2 Danish wastewater
treatment plants (WWTPs) as well as of suspended solids (SS) concentrations
in the aeration tanks of an alternating WWTP and in the effluent from the
aeration tanks are developed. The latter model is furthermore used to analyze
and quantify the effect of the Aeration Tank Settling (ATS) operating mode,
which is used during rain events. Furthermore, the model is used to propose a
control algorithm for the phase lengths during ATS operation.

The models are mainly formulated as state space model in continuous time with
discrete-time observation equations. The state equations are thus expressed in
stochastic differential equations. Hereby it is possible to use the maximum
likelihood estimation method to estimate the parameters of the models. A Kal-
man filter is used to estimate the one-step ahead predictions that are used in the
evaluation of the likelihood function. The proposed models are of the grey-box
type, where the most important physical relations are combined with stochastic
terms to describe the deviations between model and reality as well as measure-
ment errors.

The pollution flux models are models of the COD (Chemical Oxygen Demand)
flux and SS flux in the inlet to the WWTP. COD is measured by means of a UV
absorption sensor while SS is measured by a turbidity sensor. These models
include a description of the deposit of COD and SS amounts, respectively, in
the sewer system, and the models can thus be used to quantify these amounts as
well as to describe possible first flush effects. The buildup and flush out of the
deposits are modelled by differential equations, thus the models are dynamic
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models. The dynamic models are furthermore compared to simpler static mo-
dels and it is found that the dynamic models are better at modelling the fluxes
in terms of the multiple correlation coefficientR2.

The model of the SS concentrations in the aeration tanks of an alternating
WWTP as well as in the effluent from the aeration tanks is a mass balance
model based on measurements of SS in one aeration tank and in the common
outlet of all the aeration tanks, respectively. This model is a state space model
with the SS concentrations and the sludge blanket depths in the aeration tanks
as state variables and with the SS concentrations in one aeration tank and in
the common outlet as observations.

The SS concentration model is used to quantify the benefits of ATS operation
in terms of increased hydraulic capacity. The model is furthermore used to
propose a control algorithm for the phase lengths during ATS operation. The
quantification of the benefits of ATS operation as well as the proposal for a
control algorithm is based on the assumption that if the SS concentration in
the secondary clarifier increases beyond a plant and situation specific amount
above the normal dry weather level, the SS concentration in the effluent in-
creases to an unacceptable level. It was found that ATS increases the hydraulic
capacity of the WWTP considered by more than 167%, while the proposed
control algorithm is yet to be implemented in full scale.



Resumé (in Danish)

I denne afhandling er der udviklet modeller for henholdsvis forureningsflux
i indløbet til 2 danske renseanlæg og for koncentrationer af suspenderet stof
(SS) i luftningstankene på et alternerende renseanlæg såvel som i udløbet fra
luftningstankene. Sidstnævnte model er desuden anvendt til at analysere og
kvantificere effekten af Aeration Tank Settling (ATS) driftsformen, der anven-
des under regn. Desuden er modellen anvendt til at foreslå en styringsalgoritme
for faselængderne under ATS drift.

Modellerne er hovedsagligt formuleret som tilstandsmodeller i kontinuert tid
med diskret tids observationsligninger. Tilstandsligningerne er derfor formu-
leret i stokastiske differentialligninger. Herved er det muligt at anvende max-
imum likelihood estimationsmetoden til at estimere modellernes parametre,
idet et Kalmanfilter anvendes til at estimere et-trins prædiktionerne der bruges
til evaluering af likelihood-funktionen. De foreslåede modeller er af grey-box
typen hvor de væsentligste fysiske sammenhænge benyttes i modelformule-
ringen kombineret med stokastiske termer til at beskrive afvigelserne mellem
model og virkelighed samt målefejl.

Forureningsfluxmodellerne er modeller for COD (Chemical Oxygen Demand)
flux og SS flux, i indløbet til renseanlægget. COD er målt vha. en UV ab-
sorptionssensor mens SS er målt vha. en turbiditetssensor. Disse modeller
inkluderer en beskrivelse af aflejringerne af henholdsvis COD og SS mængder
i afløbssystemet, hvorved modellerne kan anvendes til at kvantificere disse
mængder, samt til at beskrive eventuelle first flush effekter. Opbygningen
og udskylningen af aflejringerne er modelleret vha. differentialligninger, så
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modellerne er dynamiske modeller. De dynamiske modeller er desuden sam-
menlignet med simplere statiske modeller og det er fundet at de dynamiske
modeller er bedre til at modellere fluxene målt vha. den multiple korrelations
koefficientR2.

Modellen for SS koncentrationerne i luftningstankene i et alternerende rensean-
læg såvel som i udløbet fra luftningstankene er en massebalancemodel baseret
på målinger af henholdsvis SS i én luftningstank og i det fælles udløb fra
alle luftningstankene. Denne model er en tilstandsmodel med SS koncentra-
tionerne samt slamspejlsdybderne i luftningstankene som tilstande, og med SS
koncentrationerne i den ene luftningstank samt i det fælles udløb som observa-
tioner.

SS koncentrationsmodellen er anvendt til at kvantificere fordelene ved ATS
drift målt i øget hydraulisk kapacitet ved at kvantificere SS mængderne i luft-
ningstankene under ATS drift. Modellen er desuden anvendt til at foreslå
en styringsalgoritme for faselængderne under ATS drift. Kvantificeringen af
fordelene ved ATS drift samt den foreslåede styringsalgoritme er baseret på
en antagelse om at stiger SS koncentrationen i efterklaringstanken mere end
en anlægs- og situationsspecifik størrelse over normal tørvejrsniveau, stiger SS
koncentrationerne i udløbet til et uacceptabelt niveau. Det er fundet at ATS
øger den hydrauliske kapacitet for det betragtede renseanlæg med mere end
167 %, mens den foreslåede styringsalgoritme endnu ikke er implementeret i
fuldskala.
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Chapter 1

Introduction

Urban drainage was introduced to improve sanitary conditions. It involves
the diversion of wastewater and storm water out of the cities as efficiently as
possible and away from the surface of the streets. However, the discharge of
wastewater has a major impact on the receiving waters. Potentially insufficient
or no wastewater treatment could devastate the ecological balance of nature,
e.g. by lowered oxygen levels and possibly death of fish in the receiving waters.
Hence, wastewater treatment plants has in this century been established and
upgraded to remove pollutants in form of organic matter and nutrients from
the wastewater.

As a consequence of the cholera epidemics in Europe in the middle of the 19th
century, sewer systems were established, to divert the wastewater out of the
cities. Then the wastewater could be removed from the cities, but the pollution
was just transported to the surrounding environment. The organic pollution in
the wastewater resulted in loss of oxygen in the recipients, which lead to the
development of wastewater treatment plants that remove organic matter. Nutri-
ents in form of ammonia, nitrate and phosphate stimulate the growth of algae
which in the receiving waters and result in excessive loss of oxygen and un-
desirable changes in the aquatic life. Hence, nutrient removal was introduced
on the wastewater treatment plants. In Denmark, the introduction of nutrient
removal was mainly caused by the water pollution act enacted in 1987. Today,
the wastewater treatment is so effective that the critical situations arise during
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4 CHAPTER 1. INTRODUCTION

rain storms, during which the upper limits of the sewers and wastewater treat-
ment plants are reached. This result in untreated wastewater being lead to the
receiving waters. Hence, the focus is today on extension of the sewer systems
with detention basins to store the excessive water from a rain storm until the
rain stops. Another possibility is to use modern on-line measurement equip-
ment combined with on-line controllers to control the sewers and wastewater
treatment plants so that more water can be handled.

To be able to design the optimal control laws the dynamics of the sewers and
wastewater treatment plants has to be understood.

The understanding of the dynamic behavior of sewer systems and wastewater
treatment plants is today often formulated as dynamic models. As the models
can be formulated in many ways, it is important that the model formulation
and complexity is in agreement with the modelling objective, i.e. some models
are developed to yield a very detailed description of the involved processes
while other models are developed to be operational for prediction and control
purposes.

1.1 Modelling approaches

Deterministic (white-box) models are developed from the idea that a full un-
derstanding of nature can be obtained by identifying and describing all the
physical, chemical and biological laws that govern the system concerned. The
IAWQ1 Activated Sludge Models for the processes in an activated sludge was-
tewater treatment plant (Henze et al., 1987, 1995, 1999; Gujer et al., 1999) and
the commercially available urban drainage modelling tools based on the St.
Vernant equations (Chow et al., 1988) such as Mouse (Lindberg et al., 1989;
Crabtree et al., 1995; Mark et al., 1995, 1998b), are examples of deterministic
models. The deterministic models are often formulated in continuous time, i.e.
the dynamics are described by differential equations. Due to the large number
of parameters it is often impossible to estimate the parameters uniquely from
available measurements.

1IAWQ is an abbreviation for International Association on Water Quality, formerly Inter-
national Association for Water Pollution Research and Control abbreviated IAWPRC. In 1999
International Water Association, IWA, was formed by the merger of IAWQ and International
Water Services Association, IWSA.
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Black-box models (Ljung, 1995, 1999; Sjöberg et al., 1995) are developed fol-
lowing a data based approach. The objective is to describe the input-output
relations by equations that do not reflect physical, chemical, biological etc.
considerations. Time series models: Auto Regressive (AR) models, Auto Re-
gressive Moving Average (ARMA), AR with eXternal input (ARX), ARMA
with eXternal input (ARMAX), Box-Jenkins (transfer function) models etc.
(Box and Jenkins, 1976; Box et al., 1994; Ljung, 1995, 1999; Madsen, 1995;
Poulsen, 1995) are examples of black-box models. These models are formu-
lated in discrete time, i.e. the dynamics of the phenomenon concerned are
described by difference equations. The time series models include stochastic
terms to account for uncertainties in model formulation and measurements. As
the models do not incorporate any prior knowledge, the parameters have to be
estimated. Neural networks are another type of black-box models. The pa-
rameters of neural networks are also found by an estimation method, but the
terminology is that neural networkslearn by training (see e.g.Sjöberg et al.
(1995)).

Grey-box models are based on the most important physical, chemical and bi-
ological relations and with stochastic terms to count in uncertainties in model
formulation as well as in observations. The objective is to have physically
interpretable parameters that are possible to estimate by means of statistical
methods. Grey-box models are often formulated as a combination of contin-
uous time and discrete time relations. The physical relations are formulated
in continuous time, with differential equations to describe the dynamics, and
the observation equations are expressed as discrete time relations, as measure-
ments are taken at discrete time events. By including stochastic terms in both
the continuous time description of the system and the discrete time description
of the observations, it is possible to distinguish between modelling uncertain-
ties and measurement uncertainties, and to quantify the uncertainties.

Physical insight can also be used to establish models formulated in discrete
time only (Young and Wallis, 1985; Young et al., 1997). However, the esti-
mated parameters are not directly the parameters of the underlying continuous
time model, even though there are unique relations between the discrete time
and continuous time parameters.
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1.1.1 Sewer system modelling

Sewer systems are often modelled by means of commercially available soft-
ware like the Storm Water Management Model, SWMM (Meinholz et al.,
1974), Hydroworks (Heip et al., 1997) and Mouse (Lindberg et al., 1989; Crab-
tree et al., 1995; Mark et al., 1995, 1998b). Modelling with such packages has
been used as a planning tool for introducing real time control of sewer systems
(Entem et al., 1998; Hernebring et al., 1998; Mark et al., 1998a), where the
modelling software is used to simulate the sewers.

The time series modelling approach has been used byCapodaglio(1994) to
make one day ahead predictions of the water flow in a sewer system based
on measurements of rainfall.Delleur and Gyasi-Agyei(1994) use transfer
function models to predict suspended solids concentrations in sewers from ob-
servations of temperature and flow rate. Modelling of flow rate from rainfall
observations has been carried out byRuan and Wiggers(1997).

Liong and Chan(1993) use neural networks to predict storm runoff volumes
from a catchment. The predicted volumes from the neural networks are com-
pared with output from the SWMM model.Nouh (1996) applies neural net-
works to model the peak concentrations of total suspended solids, nitrates
and total phosphorus in sewer flows, and compares the results with those of
SWMM.

The grey-box method is applied byGrum(1998) to model suspended organic
matter (suspended COD concentration) and the water level at an overflow
structure in a Dutch combined sewer system.

1.1.2 Sedimentation and first flush

Sedimentation in combined sewers (sewers that handle both municipal waste-
water and runoff water) and the first flush phenomenon are closely related to
the different flow conditions during dry weather and wet weather. If sedimen-
tation of pollutants in the sewer (and on impervious areas of the catchment)
can occur during dry weather periods, the sediments can be flushed out of the
sewer during wet weather situations, due to the increased flow. In the first part
of the rain event the concentrations will be increased, thus the term first flush.
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If the rain continues after the sewer is cleaned, the rain water is assumed to
dilute the municipal wastewater, with lower concentrations as a result.

Ashley and Crabtree(1992) analyse the sources of sediments in sewers, how
the sediments can be classified and how they are deposited in combined sew-
ers. The flushing effects are treated byGeiger(1987); Deletic (1998); Saget
et al. (1996); Bertrand-Krajewski et al.(1998); Gupta and Saul(1996), who
classify the effects by plotting the cumulative load of pollutants (suspended
solids, COD etc.) normalized with the total amount of pollutants against the
cumulative flow normalized with the total amount of water for a storm event,
see Fig.1.1. If the observed curve is above the equilibrium liney = x, flushing
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Figure 1.1. Cumulative pollution curves.

is taking place and if the observed curve is below the equilibrium line dilution
has occurred. It should be noted that this method treats all storm events equal,
and it is not possible from an observed curve to see if the origin was a light
rain event or a heavy thunder storm.
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Gupta and Saul(1996) perform regression analyses on the cumulative load
of pollutants and find that peak rainfall intensity, the storm duration and the
antecedent dry weather period are most informative among the analysed vari-
ables.

1.1.3 Control of sewer systems

The introduction of automatic control of sewer systems is a cost effective way
to improve the effluent quality, compared e.g. to building new overflow struc-
tures, as automatic control is expected to enable better utilization of the existing
facilities.

By means of appropriate models, predictive control algorithms can be estab-
lished. These algorithms utilize predictions from the models to select the best
control action at a given time.

Entem et al.(1998), Hernebring et al.(1998), andMark et al.(1998b) prepare
for the application of the Mouse model for on-line control purposes, i.e. a
complicated deterministic model, suitable for simulation studies, is expected
to produce predictions applicable for on-line control, even thoughCarstensen
et al. (1996) stress that no single model exists that is suitable for both plan-
ning, detailed analysis and on-line control.Carstensen and Harremoës(1997)
compared the flow predictions from a Mouse model used on-line with a much
simpler transfer-function model based on measurements of rainfall intensity
and time of day only and estimated on observations from the catchment con-
sidered, and finds that the transfer-function model is much better in predicting
the flow. It is thus not expected that white-box models like Mouse is usable for
on-line purposes.

1.1.4 Wastewater treatment plant modelling

Activated sludge wastewater treatment plants are often modelled by the IAWQ
Activated Sludge Models (Henze et al., 1987, 1995, 1999; Gujer et al., 1999).
Commercial software that implements the models is available, see e.g.EFOR
Version 3.0(1998). Computer models based on the IAWQ models are used
to simulate different control strategies and the possible benefits (Dupont and
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Sinkjær, 1994; Rangla et al., 1998).

Novotny et al.(1991); Capodaglio et al.(1992); Berthouex and Box(1996) ap-
ply the traditional time series analysis models to wastewater treatment plants.
Novotny et al.(1991) andCapodaglio et al.(1992) use physical insight in form
of mass balances combined with Euler approximation to establish correspond-
ing discrete time models.

Ward et al.(1996) combine the Activated Sludge Model No. 1 (Henze et al.,
1987) with time series models to establish a hybrid model of the activated
sludge process and to enable prediction of suspended solids in the effluent.

Zhao et al.(1999) compare the Activated Sludge Model No. 2 (Henze et al.,
1995) with a simplified model and a neural net model, whilePu and Hung
(1995) establish a neural network model for a trickling filter plant.

Modelling of secondary clarifiers is treated inEkama et al.(1997), which in-
clude a description of the Vesilind model (Vesilind, 1968, 1979) for hindered
sludge settling velocity.Härtel and Pöpel(1992) have re-parameterized the
original Vesilind mode, to include the dependency of sludge volume index,
SVI, on the settling velocity.Dupont and Dahl(1995) suggest a model that is
adequate for both free and hindered settling.

Comparison of different one-dimensional sedimentation models is carried out
by Grijspeerdt et al.(1995) and Koehne et al.(1995). In Grijspeerdt et al.
(1995) both steady state and dynamic properties of the examined models are
compared. It is found that the Takács model (Takács et al., 1991) is the most
reliable. Koehne et al.(1995) conclude that the models considered all model
storm water flow situations well, but lack sufficient accuracy in simulating dry
weather situations.

1.1.5 Control of wastewater treatment plants

Concepts of control of wastewater treatment plants are treated byOlsson et al.
(1989) andOlsson(1992), who also treat the instrumentation problem as well
as the subject of building models suitable for control purposes. Note that the
model structures suggested are of the time series analysis type, and not of the
detailed deterministic IAWQ activated sludge model type.
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Results from the introduction of on-line instrumentation combined with ad-
vanced control strategies in wastewater treatment plants are reported byNielsen
and Önnerth(1995) andÖnnerth and Bechmann(1995), where both more cost
effective operation and better treatment results are obtained.

1.1.6 Purpose

The purpose of this research project is to establish on-line operational models
for the wastewater coming to a wastewater treatment plant and for selected pro-
cesses in the plant, and to suggest control algorithms that utilize the existing
facilities in the sewer and treatment plant in an optimal way. The project is a
contribution towards the total integrated control of sewer systems and waste-
water treatment plants.

1.2 Outline of the thesis

This thesis is based on 6 papers written during the project and is divided into
two parts. The first part contains a summary of the theory behind the modelling
carried out in preparation of the papers as well as a compilation of the results
of the papers, which are are included in PartII .

In Chapter2 the background for stochastic modelling of dynamic systems is
given. The aim is to give the background for establishing models comprised of
continuous time descriptions of the system dynamics and discrete time descrip-
tions of the measurement process. Hence, the chapter begins with a description
of stochastic systems. Then a maximum likelihood method for estimation of
the parameters in the models is presented. This estimation method requires use
of the extended Kalman filter, which is introduced next. A method for treating
uncertain and missing observations is presented before the validation of the
estimated models is treated. Finally in this chapter, the grey-box modelling
concept is explained and the advantages of this concept is explained.

Chapter3 summarizes the results presented in the papers and discusses aspects
of the work behind the papers not treated in them. The papers should be read in
connection with Chapter3, as the results in the papers are not repeated in this



1.2. OUTLINE OF THE THESIS 11

chapter. Furthermore, suggestions concerning future work in the areas treated
is given.

Finally, the conclusions is presented in Chapter4, after which the papers are
included.
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Chapter 2

Stochastic modelling of
dynamic systems

In this chapter some of the mathematical and statistical background for sto-
chastic modelling of dynamic systems is given. The objective is to establish
the basis for building continuous time stochastic state space models with dis-
crete time observations, to estimate the parameters of the models, and finally
to validate the models.

2.1 The Wiener process

The Scottish botanist Robert Brown observed the irregular motion of pollen
grains suspended in water in 1828. The motion, called Brownian motion, was
later explained by the random collisions between the pollen grains and the
water molecules. The Wiener process is a fundamental stochastic process pro-
viding a mathematical description of the Brownian motion. The application of
the Wiener process goes far beyond the study of microscopic suspended par-
ticles, and includes modelling of noise and random perturbations in physical
systems, e.g. thermal noise in electrical circuits.

13
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The properties that define then-dimensional Wiener process{wt, t ≥ 0} are:

1. w0 = 0 with probability 1

2. The incrementswt1−wt0 ,wt2−wt1 , . . . ,wtk −wtk−1
, of the process

are mutually independent for any partitioning of the time interval0 ≤
t0 < t1 < · · · < tk <∞

3. The incrementwt − ws for any0 ≤ s < t is Gaussian with mean and
covariance:

E[wt −ws] = 0 (2.1)

V[wt −ws] = Σw(t− s) (2.2)

whereΣw is a positive semi definite matrix.

WhenΣw is the identity matrix, a standard Wiener process is obtained.

Among other important properties of the Wiener process, it should be noted
that the sample paths are continuous with probability one, but nowhere differ-
entiable with probability one.

Even though the Wiener process is not differentiable, the formal time derivative
of wt is called Gaussian white noise. This derivative only makes sense as a
generalized function. The process has a uniform spectral density function for
all real frequencies, which is a characteristic of white light, hence, the term
white noise.

See e.g.Melgaard(1994); Madsen and Holst(1996); Øksendal(1995); Jazwin-
ski (1970) for more details about the Wiener process.

2.2 Stochastic differential equations

In order to be able to handle stochastic terms in differential equations it is
necessary to introduce stochastic integrals.

Consider the one-dimensional stochastic differential equation:

dXt = f(Xt, t)dt+G(Xt, t)dwt (2.3)
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wheref(Xt, t) is the drift coefficient,G(Xt, t) is the diffusion coefficient and
wt is a standard one-dimensional Wiener process.

A formal integration of (2.3) yields:

Xt = X0 +
∫ t

0
f(Xs, s)ds+

∫ t

0
G(Xs, s)dws (2.4)

The first of the integrals can be interpreted as a standard Riemann integral, but
the second integral is more difficult to handle, as the sample paths of the Wiener
process have unbound variation (Madsen and Holst, 1996). One solution is to
apply the Itô stochastic integral, defined as the mean-square limit of the left
hand rectangular approximation:

N−1∑
i=0

G(Xti , ti)(wti+1 − wti) (2.5)

for all partitions0 = t0 < t1 < · · · < tN = t as the maximum step size
max
i

(ti+1 − ti)→ 0.

More details can be found in e.g.Øksendal(1995); Kloeden and Platen(1995);
Madsen et al.(1998); Madsen and Holst(1996).

2.3 Stochastic state space models

State space models are often used to describe dynamic systems. With the in-
troduction of stochastic differential equations it is possible to establish contin-
uous time stochastic state space models with discrete time observations. This
is reasonable because physical systems are of a continuous time nature, and
measurements are taken at discrete time instances. In a stochastic state space
model, stochastic terms are used both in the differential equations and in the
observation equations. Hereby, it is possible to distinguish between modelling
uncertainty in the differential equations and measurement uncertainty in the
observation equations.

The dynamics of a general non-linear stochastic state space model are de-
scribed by:

dXt = f(Xt,U t,θ, t)dt+G(U t,θ, t)dwt, t ≥ 0 (2.6)



16 CHAPTER 2. STOCHASTIC MODELLING OF DYNAMIC SYSTEMS

Here,Xt is the state vector,f is a vector function that describes the evolu-
tion of the system as a function of the current state, the input vectorU t, the
parameters of the model represented by the parameter vectorθ, and the time
t. The vector functionG describes how the noise enters the system. The noise
is represented by the stochastic processw(t), which is ann-th order standard
Wiener process.

The measurements are taken at discrete time intervals and are thus expressed
in the observation equation:

Y k = h(Xk,Uk,θ, tk) + ek, tk ∈ {t0, t1, . . . , tN} (2.7)

whereh is a function that expresses how the measurements are related to the
states and the input, and finallyN is the number of observations. The observa-
tion noisee is assumed to be a Gaussian white noise sequence independent of
w. Here, the subscriptk is introduced as a shorthand notation fortk.

2.4 Maximum likelihood estimation

When a stochastic state space model of a given system is formulated and mea-
surements from the system are obtained, the parameters are to be estimated.
Even though different approaches to the estimation problem are described in
the literature (see e.g.Ljung (1999)), only the maximum likelihood method
will be described here.

The observations are considered as realizations of stochastic variables. The
objective of the method is to maximize the probability of the observations, i.e.
when a maximum likelihood estimate of the parametersθ is found, no other
parameters will result in a higher probability of the observed data.

In the following it is assumed that the system is observed at regular time in-
tervals (i.e. with a constant sampling time). To simplify the notation the time
is normalized with the sampling time, and thus the time index belongs to the
set0, 1, 2, . . . , N , whereN is the number of observations. In general every
observation is a vector.

LetY(t) denote the matrix of all observed outputs until and including timet:

Y(t) = [Y t,Y t−1, . . . ,Y 1,Y 0]′ (2.8)
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The unconditional likelihood functionL′(θ;Y(N)) is the joint probability of
all the observations assuming that the parameters are known, i.e.:

L′(θ;Y(N)) = p(Y(N)|θ) (2.9)

In order to express the likelihood function as a product of conditional densities,
successive applications of the ruleP (A ∩B) = P (A|B)P (B) are used:

L′(θ;Y(N)) = p(Y(N)|θ)
= p(Y N |Y(N − 1),θ)p(Y(N − 1)|θ)

=
( N∏
t=1

p(Y t|Y(t− 1),θ)
)
p(Y 0|θ)

(2.10)

The conditional likelihood function (conditioned onY 0) is then:

L(θ;Y(N)) =
N∏
t=1

p(Y t|Y(t− 1),θ) (2.11)

As the increments ofw and the observation noisee are Gaussian, the condi-
tional densities for a linear system are also Gaussian. For a non-linear sys-
tem like (2.6) we shall assume that the conditional densities are approximately
Gaussian. The Gaussian assumption enables an evaluation of the likelihood
function. The normal distribution is completely characterized by the mean and
the covariance. Hence, in order to parameterize the conditional distributions,
the conditional mean and conditional covariance are introduced as:

Ŷ t|t−1 = E[Y t|Y(t− 1),θ] and (2.12)

Rt|t−1 = V[Y t|Y(t− 1),θ] (2.13)

respectively. Notice that (2.12) is the one-step prediction and (2.13) the asso-
ciated covariance.

The innovations or one-step prediction errors are:

εt = Y t − Ŷ t|t−1 (2.14)
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Then the conditional likelihood function (2.11) becomes:

L(θ;Y(N))

=
N∏
t=1

(
(2π)−m/2 detR−1/2

t|t−1 exp(−1
2ε
′
tR
−1
t|t−1εt)

) (2.15)

wherem is the dimension of theY vector. Traditionally the logarithm of the
conditional likelihood function is considered, i.e.

logL(θ;Y(N))

= −1
2

N∑
t=1

(
log detRt|t−1 + ε′tR

−1
t|t−1εt

)
+ const

(2.16)

The maximum likelihood estimate ofθ is found as the value that maximizes
the conditional likelihood functionL(θ;Y(N)), which is the same value that
maximizeslogL(θ;Y(N)) and minimizes− logL(θ;Y(N)). Thus, the max-
imum likelihood estimate ofθ is found as:

θ̂ = arg min
DM

N∑
t=1

(
log detRt|t−1 + ε′tR

−1
t|t−1εt

)
(2.17)

whereDM is the set of allowed values ofθ

As it is not possible to optimize the likelihood function analytically, a numeri-
cal method has to be used. The quasi Newton method is a reasonable choice.

The maximum likelihood estimator is asymptotically normally distributed with
meanθ and variance

D = H−1 (2.18)

whereH is the Hessian given by

{hlk} = −E
[ ∂2

∂θl∂θk
logL(θ;Y(N))

]
(2.19)

where{hlk} denotes the element in rowl and columnk of H andθj denotes
elementj of θ (Conradsen, 1984a).

An estimate ofD is obtained by equating the observed value with its expecta-
tion and applying

{hlk} ≈ −
( ∂2

∂θl∂θk
logL(θ;Y(N))

)∣∣∣
θ=θ̂

(2.20)
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Equation (2.20) is used to estimate the variance of the parameter estimates.
The variance estimate of each of the parameter estimates serves as basis for
calculating t-test values for test under the hypothesis that the parameter is equal
to zero. Furthermore, the correlation between the parameter estimates is found
based on the estimate ofD.

2.5 The extended Kalman filter

The Kalman filter provides estimates of the states in a state space model based
on measurements from the real system. In the maximum likelihood estimation
method described above, the one step predictions and associated covariances
are needed for calculating the likelihood function, and this is what the Kalman
filter provides. The Kalman filter is derived for linear systems, and is thus
not directly applicable to non-linear systems. However, the extended Kalman
filter, based on linearizations of the system equation (2.6) around the current
state estimate, can then be applied.

Consider now the model described by:

dXt = f(Xt,U t,θ, t)dt+G(θ, t)dwt, (2.21)

with wt being a standard Wiener process. Note thatG is now limited to be a
function of the parameters and time only. The observations are taken at discrete
time instantstk and described by:

Y k = h(Xk,Uk,θ, tk) + ek, tk ∈ {t0, t1, . . . , tN} (2.22)

wheree is a Gaussian white noise process independent ofw, and with

ek ∈ N(0,S(θ, tk)) (2.23)

For the continuous-discrete time extended Kalman filter for the state space
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model (2.21)–(2.22) the prediction equations are:

dX̂t|k

dt
= f(X̂t|k,U t,θ, t), t ∈ [tk, tk+1[ (2.24)

dP t|k

dt
= A(X̂t|k,U t,θ, t)P t|k

+ P t|kA
′(X̂t|k,U t,θ, t)

+G(θ, t)G′(θ, t), t ∈ [tk, tk+1[

(2.25)

whereA is obtained by a linearization of the system equation (2.21):

A(X̂t|k,U t,θ, t) =
∂f

∂X

∣∣∣
X=X̂t|k

(2.26)

At the observation timestk the updates are:

Kk = P k|k−1C
′
k[CkP k|k−1C

′
k + S(θ, tk)]−1 (2.27)

X̂k|k = X̂k|k−1 +Kk(Y k − h(X̂k|k−1,Uk,θ, tk)) (2.28)

P k|k = P k|k−1 −KkCkP k|k−1 (2.29)

whereC is the linearization of the observation equation (2.22):

Ck = C(X̂k|k−1,Uk,θ, tk) =
∂h

∂X

∣∣∣
X=X̂k|k−1

(2.30)

To make the integration of (2.24) and (2.25) computationally feasible and nu-
merically stable for stiff systems, the time interval[tk, tk+1[ between to subse-
quent observations is divided intons subintervals (sub-sampled) and the equa-
tions (2.24) and (2.25) are linearized around the state estimate at each sub-
sampling time. The state propagation equation for the subinterval[tj , tj+1[
becomes:

dX̂t

dt
= f(X̂j ,U j ,θ, tj) +A(X̂j ,U j ,θ, tj)(X̂t − X̂j)

= A(X̂j ,U j ,θ, tj)X̂t

+ (f(X̂j ,U j ,θ, tj)−A(X̂j ,U j ,θ, tj)X̂j) t ∈ [tj , tj+1[

(2.31)

Equation (2.31) has the solution:

X̂j+1 = X̂j + (Φs(j)− I)(A(X̂j ,U j ,θ, tj)−1f(X̂j ,U j ,θ, tj)) (2.32)
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where

Φs(j) = eA(X̂j ,Uj ,θ,tj)τs (2.33)

andτs = tj+1 − tj = T/ns whereT is the sampling time. The matrix ex-
ponential can be calculated by e.g. Padé approximation (cf.Madsen et al.
(1998)). The state covariance equation becomes:

P j+1 = Φs(j)P jΦs(j)′ + Λs(j) (2.34)

where

Λs(j) =
∫ τs

0
Φs(j)G(θ, t)G(θ, t)′Φs(j)′ds (2.35)

The extended Kalman filter and the iterated extended Kalman filter are treated
in more detail in e.g.Madsen et al.(1998) andJazwinski(1970).

2.6 Uncertain and missing observations

When working with real systems in an imperfect real world, measurements
are sometimes missing. Sometimes all measurements are available, but the
modeller has a priori information that some measurements are less valid than
others. This is easily handled by adjusting the covarianceS(θ, t) of the ob-
servation noise process according to the validity of the measurements. If a
measurement is considered uncertain, the corresponding parameter inS(θ, t)
is increased. How much, depends on how uncertain the measurement is. If a
measurement is completely missing, the corresponding variance is ideally set
at∞. When increasingS(θ, t) the Kalman gainKk is reduced and the data
update (2.28) of the state estimates that depend on the given measurement is
reduced correspondingly.

Missing observations in the input data should be handled otherwise. If a single
or at least few observations in a row are missing, these can be substituted by
interpolated values, but in case of long periods with missing observations in-
terpolation is often not an option. In this case a change in the model should be
considered. Sometimes it is possible to change an input variable to an output
variable, by a slight modification of the model. When this is done, the missing
observations can be handled by means of the method proposed above.
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2.7 Model validation

When an estimation of the parameters of a model has been carried out, it is
important to check if the resulting model is satisfactory. This is done by model
validation. This is often carried out by applying several methods simultane-
ously, of which some will be mentioned in the following.

2.7.1 Tests in the model

The maximum likelihood estimation method provides estimates of the variance
of the parameters, cf. Section2.4, and enables test for the significance of the
parameters, i.e. to test whether the parameters are significantly different from
zero. The hypothesis to test is:

H0 : θj = 0 against H1 : θj 6= 0 (2.36)

The test value isθ̂jσ̂jj , whereθ̂j denotes thej-th parameter estimate andσ̂2
jj the

associated variance estimate. As the parameter estimates are asymptotically
normally distributed, the test value is t distributed, and then a t-test of the
hypothesis in (2.36) can be performed (Conradsen, 1984b).

Based on the estimate of the parameter covariance (2.18), the corresponding
correlation matrix can be computed. Over-parameterization of the model is
indicated by closely correlated parameters, i.e. by correlation coefficients be-
tween two parameters close to1 or−1. Hence if correlation coefficients close
to 1 or−1 are observed, a reformulation of the model should be considered.

2.7.2 Graphical methods

An obvious method for model validation is a graphical comparison of the mo-
del output and the observations, which is simply carried out by plotting the
observed and modelled data. The question is if the outputs of the model seem
to match the observations. Note that it is possible to obtain both one-step (or
k-step) predictions and simulations from a state space model. The one-step
predictions use the observations at timet and the model equations to predict
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the observations at the next sample time, while thek-step predictions use the
observations at timet and the model equations to predict the observationsk
sample times ahead. Simulations are characterized by only using the initial
conditions, the inputs and the model to simulate the outputs.

The model output can also be compared with the observations by plotting the
residuals, i.e. the difference between the observations and modelled data. Nat-
urally, this can be done for both the one-step (ork-step) predictions and the
simulations.

The states of the model are often interpretable in a physical sense. Hence, the
state estimates should be plotted so that it can be checked if they are realis-
tic. This is particularly important, when unmeasured states are included in the
model.

Often the graphical methods reveal possibilities for model enhancements, e.g.
inclusion of bounds on states etc.

2.7.3 Residual analysis

The residuals are that part of the observations that the model does not count
in. Hence, an analysis of the residuals can provide useful information on how
to improve the model, or to improve the confidence in the model. If the mo-
del describes the true system well, the residuals are white noise, and it is thus
obvious to test if the residuals can in fact be considered as white noise. Further-
more, the maximum likelihood method is based on a white noise assumption.
If this assumption is not fulfilled, the appealing properties of the method are
lost. If the residuals are not white noise, the properties of the residuals can
give an indication of how to improve the model. For instance, if the autocorre-
lation function of the residuals show first order autoregressive behaviour, then
an extra state is needed in the model.
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Auto- and cross-correlations

If the residualsεt of a scalar process are white noise, the estimated autocorre-
lation function is

ρ̂ε(k) ∈approx N(0,
1
N

) (2.37)

Approximative 95% and 99% confidence limits are±2σ = ±2/
√
N and

±3σ = ±3/
√
N . Plots of both the estimated autocorrelations for the residuals

and the confidence limits provide a graphical way to test whether the white
noise assumption should be rejected.

The cross-correlations between inputu and residuals can be used to check
whether the input contains more information that has to be included in the
model. Provided that the residuals (or the inputs) are white noise, the estimated
cross-correlation function is

ρ̂uε(k) ∈approx N(0,
1
N

) (2.38)

Hence, a significance test equivalent to the one described above for the auto-
correlation function can be carried out. Note, however, that autocorrelations in
u or ε can generate large cross-correlations between the two, even though they
are not mutually correlated (Madsen, 1995).

Estimators for the auto- and cross-correlations are given inMadsen(1995).

Cumulative periodogram

The periodogram for the residuals for the frequencies

νi =
i

N
, i = 0, 1, . . . , N/2

is forN even:

Î(νi) =
1
N

[( N∑
t=1

εt cos 2πνit
)2

+
( N∑
t=1

εt sin 2πνit
)2
]

(2.39)
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The periodogram is a frequency domain description of the variation of the
residuals, asI(νi) indicates how much of the variation of the residuals is
present at the frequencyνi.

The normalized cumulative periodogram is

Ĉ(νj) =
∑j

i=1 Î(νi)∑N/2
i=1 Î(νi)

(2.40)

which is a non-decreasing function, defined for the frequenciesνi. For white
noise the variation is uniformly distributed over the frequencies. The total
variation forN observations isNσ2

ε and hence the theoretical periodogram for
white noise is

I(νi) = 2σ2
ε (2.41)

The theoretical cumulative periodogram is thus a straight line from origo to
(0.5, 1). If the residuals are white noise, it is expected thatĈ(νi) is close to
this line. Confidence intervals around the straight line can be calculated using
a Kolmogorov-Smirnov test, cf.Melgaard(1994).

Note thatνi are normalized frequencies, normalized by the sampling frequency
1/T , i.e..fi = νi/T .

2.7.4 Cross validation

Cross validation is a method that requires two data sets: 1) an estimation data
set, and 2) a validation data set. The estimation data set is used for the pa-
rameter estimation. The validation data set is then used to test if the estimated
model describes this data set equally well as the estimation data set. It is im-
portant to carry out this type of test, as a pitfall a modeller might fall into is to
model the data and not the system. When testing the model on a new data set
from the same system, it will be evident if the estimation data or the system
was modelled.
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2.8 Grey-box modelling

Traditionally modelling of dynamic systems has been carried out following one
of two approaches. Theblack-boxconcept is a data based concept, where prior
knowledge of the system is not included in the model. Examples of black-box
models are the traditional time series models: autoregressive (AR) models,
moving average (MA) models, and combinations of these (ARMA). To these
models external input can be included to build e.g. ARX or ARMAX models.
Another type of black-box models is neural networks. A deterministic model
purely based on known relations for a system is characterized as awhite-box
model. White-box models of complex systems as sewer systems and waste-
water treatment plants are often comprised of numerous detailed equations for
the subsystems of the system. White-box models are subject to uncertainties,
but a description of these is usually not included in the models, and hence not
quantified.

In the environmental sciences, the IAWQ Activated Sludge Models (Henze
et al., 1987, 1995, 1999; Gujer et al., 1999) for the processes in activated sludge
wastewater treatment plants, and the Mouse models (Lindberg et al., 1989;
Crabtree et al., 1995; Mark et al., 1995, 1998b), based on the St. Vernant
equations (Chow et al., 1988) for sewer systems, are examples of deterministic
or white-box models.

Often the deterministic models are very detailed and have many parameters,
which makes it difficult or impossible to estimate the parameters by ordinary
statistical methods.

The grey-box method is supposed to be the best mix of the two methods. A
grey-box model combines the available knowledge of the most important phys-
ical relations with statistical modelling tools. Hereby it is possible to establish
models with few parameters compared to the white-box models, and with pa-
rameters that have physical meaning as opposed to the black-box models. Fur-
thermore, the uncertainties are included in the grey-box model, and the param-
eters of the noise processes are also estimated. Hence, the model uncertainties
are quantified.
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2.9 Summary

In this chapter an overview of stochastic modelling is given. The Wiener pro-
cess is introduced in order to describe continuous time white noise. Itô stocha-
stic integrals and differential equations serve as basis for establishing contin-
uous time stochastic state space models. The parameters in such models are
suggested estimated by the maximum likelihood method. The extended Kal-
man filter is described, as it calculates the one-step predictions that are needed
by the estimation method. When a model is established and the parameters
are estimated, it should be validated. Therefore a set of validation tools is pre-
sented. Finally, the grey-box modelling approach is presented and compared
with other modelling approaches.
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Chapter 3

Results and discussion

The results of the work carried out in the present Ph.D. project are documented
in the papers included in PartII of this thesis. The purpose of this chapter is
to discuss aspects of the work that are not treated in the papers, to look at the
results in a broader perspective and to compile the results of the papers, as well
as to suggest areas for future research.

The work presented here is divided into two parts:

The first part focuses on the wastewater coming into the wastewater treatment
plant. The emphasis has been on developing dynamic grey-box models capable
of describing the first flush phenomenon by modelling the incoming fluxes,
but the results presented also cover the on-line measurements of pollutants and
comparison with static models. This work is presented in PapersA–C.

In the second part, focus is on the biological part of the wastewater treatment
plant, especially during wet weather conditions, where Aeration Tank Settling
(ATS) operation is activated. In PaperD a model for ATS is presented and the
result of implementing the model on-line is documented. The model of Paper
D forms the basis for further modelling as carried out in preparation of Paper
E.

In PaperE ATS operation is described in more detail, and a dynamic grey-
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box model of the suspended solids concentrations in the aeration tanks as well
as in the effluent from these is established. This model is used in PaperF
to quantify the advantages of ATS operation in terms of increased hydraulic
capacity of the biological part of the plant and the results are compared with the
hydraulic capacity during ordinary dry weather operation. A control algorithm
for enabling ATS and for selecting the optimal combination of phase lengths
during ATS is also proposed in PaperF.

3.1 Sewer models

The influent pollutant fluxes at two wastewater treatment plants, and hence two
catchments, have been modelled. Skive wastewater treatment plant delivered
data used in the preparation of PaperA and PaperB, and data from Aalborg
East wastewater treatment plant was used in PaperC.

The models estimated in PaperA and PaperB are based on the same model
structure: A diurnal profile of the incoming flux combined with a first order
linear differential equation for the deposits in the sewer and on impervious
areas of the catchment.

The estimations in PaperA were carried out using the Matlab System Identi-
fication Toolbox (Ljung, 1995) with thebj (Box-Jenkins) function in discrete
time, and the results were translated to continuous time (with thed2cm func-
tion). In this paper the model structure is applied directly to the UV absorption
flux and the turbidity flux. If COD and UV absorption as well as SS and tur-
bidity are proportional, this approach is equivalent to modelling COD and SS
fluxes, but as the relationships are affine, the models of UV absorption and tur-
bidity fluxes are not equivalent to the models of COD and SS fluxes. However
in this paper UV absorption and turbidity are thought of as measures of COD
and SS concentrations, respectively.

The estimated models are cross validated, i.e. one data set is used for the
estimation and another data set is used for the validation of the model. Fur-
thermore, the estimated diurnal profiles for UV absorption and turbidity fluxes
are shown. The modelled amounts of UV absorption and turbidity deposited in
the sewers are also shown. As it is not possible to estimate the actual levels of
the deposits in the sewer with the model structure used, only deviations from
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the initial level can be found.

In PaperB the COD and SS fluxes are modelled. The estimations were made
with the CTLSM software (Madsen and Melgaard, 1991; Melgaard and Mad-
sen, 1991), hence, the parameters are estimated by a maximum likelihood
method directly in continuous time. In this paper the standard deviations of
the parameter estimates are also included.

The modelling carried out in PaperB is based on the same data as used in Pa-
perA and the estimated models are cross validated like in PaperA. However,
the models of PaperB are models of the COD and SS fluxes (as opposed to the
models of PaperA). In PaperB the estimated amounts of deposits in the sewer
are shown as deviations from the unknown average for the time period con-
cerned. Due to the fact that the models are of COD and SS fluxes, respectively,
the deposits are amounts COD and SS.

In PaperC four different model structures are estimated and compared. The
data used in this paper are from Aalborg East wastewater treatment plant. The
contribution from this paper is twofold: 1) The dynamic model structure used
in the previous papers is compared with simpler static models, and 2) The
dynamic model structure is applied to a different sewer system.

Cross validations of the estimated models was not carried out in PaperC. This
would, however, be relevant to do so that the different models could be com-
pared on a validation data set also.

3.1.1 Cumulated flux vs. cumulated flow

When dealing with sewer systems and rain storms, it is of interest whether first
flushes are present or not. As the proposed models do not directly describe
whether and when a first flush is present, this issue will be discussed here.
The graph of the normalized cumulated flux vs. cumulated flow is used in
the characterization whether a first flush was present, i.e. a graph with the
parametric description:

(x, y) = (

∫ t
t0
Qdt∫ t1

t0
Qdt

,

∫ t
t0
QXdt∫ t1

t0
QXdt

) t0 ≤ t ≤ t1 (3.1)
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whereX is the concentration of the pollutant concerned,Q is the flow, andt0
andt1 denote the start and end times of the rain incident.

When using this method, it is not possible from a given graph to distinguish
between different types of rain incidents, e.g. between a short intensive thun-
derstorm and a long rain with lower intensity.

It is easier to distinguish different rain incidents from the non-normalized
graph:

(x, y) = (
∫ t

t0

Qdt,

∫ t

t0

QXdt) t0 ≤ t ≤ t1 (3.2)

Model 1 of PaperC consists only of a diurnal profile (a harmonic function with
a 24-hour period), and is therefore not applicable to storm situations. Model 2
models the pollutant fluxes as affine with the flowQX = c0 + c1Q, i.e. the
pollutant flux is modelled as a constant level with addition of a term propor-
tional to the flow. Hence, the deviation from the constant pollutant flux level
is modelled as a flux with constant concentration. Models 1 and 2 are thus not
capable of describing first flush phenomena. Hence, it is only meaningful to
apply the cumulated flow – cumulated flux methodology to models 3 and 4 of
PaperC.

The cumulated flow – cumulated flux methodology is applied to a rain incident
in the data series from Aalborg East wastewater treatment plant. The flow to
the plant during the period in question is shown in Figure3.1

In Figures3.2 and3.3 the normalized cumulated SS flux vs. normalized cu-
mulated flow of models 3 and 4 are shown, and in Figures3.4and3.5, the cor-
responding non-normalized graphs are shown. Note that the observed fluxes
are compared to simulations from the models, and not one (ork) step ahead
predictions. From Figures3.2and3.3 it can be seen that both models can pre-
dict increased pollutant concentrations during the rain incident, but also that
the simulated fluxes are too low in the first approx. 70 – 80 % of the incident.
When inspecting the non-normalized graphs in Figures3.4and3.5, it becomes
clear that the modelled fluxes are too low as the graphs for the measurements
and the simulations does not end in the same point.

The normalized cumulated COD flux vs. the normalized cumulated flow is
shown in Figures3.6 and3.7 with the corresponding non-normalized graphs
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Figure 3.1. Influent flow to Aalborg East wastewater treatment plant.
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Figure 3.3. Normalized cumulated SS flux vs. normalized cumulated flow,
model 4.
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Figure 3.5. Cumulated SS flux vs. cumulated flow, model 4.
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model 4.
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Figure 3.9. Cumulated COD flux vs. cumulated flow, model 4.

in Figures3.8and3.9.

The increase of COD concentrations during the rain incident are not as clear
as the increase of SS concentrations, and the COD flux models simulate the
fluxes lower than the observed data. From Figures3.8 and3.9 it can be seen
that the models predict a small degree of dilution, even though a (small) flush
effect is present.

From the non-normalized graphs in Figures3.8and3.8 it is also clear that the
modelled COD fluxes are lower than the observed fluxes as the measurement
graphs does not end in the same point as the corresponding simulation graphs.

When comparing the SS and COD flux graphs it is seen that first flush is more
apparent for SS than for COD. When COD is stabilized in the sewer and SS is
not, this difference is expected.

In general the models of SS and COD fluxes under estimate the concentration
increases during the rain incident in question.
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3.1.2 Suggestions concerning future research – sewer mo-
dels

As the proposed models are quite simple linear models, it is not surprising that
they do not describe the observed data perfectly, and that the models should be
reformulated, for example by increasing the order of the differential equation
describing the pollution deposits and/or including non-linear terms. Further-
more, the sub-model for buildup and flush-out of pollutants in the sewer can be
split up into two: 1) A sub-model describing the buildup of pollutants in dry
weather periods, and 2) A sub-model for flush-out during wet weather peri-
ods. These two sub-models need not be of the same order – the buildup model
could for example be made up of a first order differential equation, whereas the
flush-out model could be of a higher order. The switch between the two sub-
models should be controlled by the flow, and implemented by application of
smooth threshold functions (see PaperE for an application of smooth threshold
functions).

As first flushes and dilutions are expected to be a result of limited amounts of
pollutants deposited in the sewer, introduction of limitations on the deposits
in the sewer system could be an important extension to the dynamic model
4. However, to be able to estimate the limits of the deposits, the data must
include periods where the limits are reached, i.e. intensive rain events where
the sewer system is cleaned and long dry weather periods where the deposited
pollutants reach the upper limits. Such data series with a sufficient number of
observations of the extreme events might be difficult to obtain.

3.2 ATS operation

Aeration Tank Settling (ATS) is introduced to enable the biological treatment
facilities to handle larger wastewater flows than possible with ordinary dry
weather operation. The traditional way to handle storm situations is to store the
excess water that the biological part of the plant cannot handle in storm tanks,
if available. If the plant is not equipped with storm tanks or if they are already
full, the excess water has to bypass the aeration tanks and secondary clarifiers.
Hence, bypass wastewater, which has not been biologically treated, is being
lead to the receiving waters. The details of ATS operation are described in
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PapersD–F.

When ATS is activated, the biological tanks of the plant are capable of handling
a significantly larger flow, and thus to remove nutrients from considerably more
wastewater during a rain event.

PaperD documents the first preliminary modelling of ATS operation. The
model is formulated in discrete time, and forms the basis for the work of the
following papers.

In PaperE the modelling of suspended solids in the aeration tanks of an al-
ternating BioDenipho plant as well as in the effluent from the aeration tanks
during ATS is documented. In this paper the model is formulated in contin-
uous time with discrete-time observations. The modelling is based on mea-
surements of flow to the biological partQi , the recirculation flowQr, the
concentrations of suspended solids in one aeration tankXssm6, in the recir-
culation flowXssr and in the effluent from the aeration tanksXssoutat. The
flow path through each of the aeration tank pairs as well as the mixing sig-
nals (fpkl, mk andml for the aeration tank pair consisting of aeration tanks
k and l, (k, l) ∈ {(1, 2), (3, 4), (5, 6)}, are also used as inputs to the model.
The incoming flowQi is actually measured in the effluent from the secondary
clarifier, but when the water dynamics of the aeration tanks and clarifier are
insignificant, these flows are equal.

In Figure 3.10 the data set used for the parameter estimation in PaperE is
shown. The flow path and mixing signals are only shown for aeration tanks 5
and 6, as the signals for the other two tank pairs are delayed versions of these
data. The data set covers two ATS operation events with a dry weather period
in between. The first ATS event covers the period from 25 October 1:30 to
October 26 15:50. Then the plant is in dry weather operation until October 27
12:30. The second ATS period continues to the end of the data set on October
29 0:00.

Note that the average SS concentration in the influent to the aeration tanks
(assuming that the SS concentration inQin is zero) calculated as

Xssinat(t) =
Qr

Qi +Qr
Xssr (3.3)

is included in the graphs. It is reasonable to assume that the SS concentration
in Qin is zero as the estimations carried out in preparation of PaperE showed
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that this concentration was insignificant.

In Figures3.11and3.12estimated and simulated SS concentrations and sludge
blanket depths for a part of the estimation data set used in PaperE are shown.
Both the estimated and the simulated variables are output from the extended
Kalman filter. The estimated values are the data updated state estimates, where
the measurements have been used to compute the results. The simulated data
are the results of a simulation of the model, i.e. only the input data to the model
(flow path through the aeration tanks, mixing signals, return sludge concentra-
tions, inflow and return sludge flow) and initial values of the SS concentrations
and sludge blanket depths in the aeration tanks are used. The flow pathfp56

through the considered aeration tank pair is also included. Whenfp56 = 1
the incoming wastewater as well as the return sludge flow is directed to aera-
tion tank 5 and the clarifier is fed from aeration tank 6 and vice versa when
fp56 = 0.

From Figure3.11it can be seen that the sludge concentration is increasing in
the aeration tank with discharge to the clarifier and decreasing in the influent
tank. When comparing the SS concentrations in the aeration tanks in Figure
3.11with the average SS concentration in the wastewater entering the aeration
tanks in Figure3.10, it is noted that the average SS concentration in the in-
fluent is about 3 g SS/m3 and that the SS concentrations in the aeration tanks
fluctuate around 4.5 g SS/m3. Hence, the SS concentration in the wastewater
entering the influent aeration tank is lower than in the wastewater already in the
tank. As the amount of water in the tanks is almost constant, the fluctuations in
the sludge concentrations in the aeration tanks are caused by the fact that the
incoming water pushes the sludge over to the effluent tank, and when the flow
path is changed the sludge is pushed back again. The result of the sludge mov-
ing between the aeration tanks is seen in the SS concentrations in the effluent
from the tanks. When the flow path is switched, the effluent is taken from a
tank with a lower concentration. The concentration in the effluent tank then
increases until the next change of flow path, but as sludge settling occurs in the
tank, the SS concentration in the effluent is not increasing at the same rate as
in the aeration tank.

The estimated and simulated sludge blanket depths in aeration tanks 5 and
6 are shown in Figure3.12. It can be seen that the sludge blanket depth is
limited to about 0.8 m. Unfortunately, the aeration tanks at the Aalborg West
plant are not equipped with sludge blanket sensors, so it is not possible to
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Figure 3.11. Estimated and simulated SS concentrations in aeration tanks 5
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compare the estimated and simulated values with measurements. However, it is
straight forward to include sludge blanket measurements in the model, if sludge
blanket sensors are installed. From the estimated sludge blanket depths it is
seen that they become negative, especially in dry weather periods. This is of
course not feasible, but this physical limitation was not included in the model.
However, the negative values occurring are small, and thus not considered a
major problem.

The estimated model is used in PaperF to simulate different operating modes
of the plant, i.e. dry weather operation and 5 different ATS strategies, which
result in different flow capacity increases at the plant. The simulations are
used to quantify how much ATS operation can increase the flow capacity, as
well as to propose a control algorithm for selecting the optimal ATS operating
mode. Examples of both dry weather and ATS operation situations at Aalborg
West wastewater plant are included in PaperF to illustrate a real ATS operation
situation and to compare with a dry weather situation. It should be noted that
the ATS event illustrated is controlled by another control algorithm than the
one proposed in the paper. In order to make the comparison fair and because
the load of the plant varies over the week, both situations include a Saturday
and a Sunday. The selection of the days was carried out by first looking for a
storm situation and then selecting a similar period with dry weather.

3.2.1 Suggestions concerning future research
– aeration tank SS model

In the model for SS in the aeration tanks as well as in the effluent from these
established in PaperF, parameters for errors in the measurements ofXssr and
Xssoutat are estimated simultaneously with the other model parameters. Of
course there can also be systematic errors in the flow measurements, but param-
eters for errors in the flow observations were not estimated. Error parameters
for the flow observations should be included in the model to make it possible
to test whether there are significant errors in the measurements of the flows.

The model includes all 6 aeration tanks of Aalborg West wastewater treatment
plant, which are operated in an identical way except for time delays between
each of the tank pairs. The time delay is equal to the re-sampling interval (12
minutes). The benefits of using a full 6-tank model compared to a simplified
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2-tank model are expected to be of minor significance, as the 6-tank model
is made up of 3 identical 2-tank models, with a time delay of 1 re-sampling
interval between each of the tank pairs. A simplified model should therefore
be tried and the results compared with the full 6-tank model. The advantage
of a simplified model is that it will only contain 4 states (2 SS concentrations
and 2 sludge blanket depths) instead of the 12 states (6 SS concentrations and
sludge blanket depths) of the full model, and hence the computations required
for estimation and simulation are reduced significantly. Furthermore will the
application of the model on other plants with a different number of aeration
tanks be simpler.

As can be seen from the estimated sludge blanket depths in Figure3.12, the
depths sometimes become negative. As this is not physically possible, the
sludge blanket sub-model could therefore be reformulated to prevent negative
sludge blanket depths values, e.g. by means of a logarithm transformation of
the sludge blanket depth equations.

The sludge blanket depths are unobserved states of the model. It is thus not
possible to compare the modelled sludge blanket depths with measurements.
Therefore addition of sludge blanket depth sensors in at least on of the aera-
tion tanks could be used to gain more confidence in the model. Furthermore
will addition of sludge blanket sensors enable estimation of the sludge settling
parameters.

The possibilities for developing a better model ofXssoutatshould be investi-
gated as the current model does not perform as well as desired. It is expected
that a goodXssoutatmodel is required for modelling the SS conditions in the
secondary clarifier and in the effluent from here. Better modelling ofXssoutat

could be achieved by refining the sludge settling model, e.g. by introducing
more layers in the sludge settling model than the two used here.

Control of ATS operation

The content of suspended solids in the secondary clarifier has not been mod-
elled in the present work. Inclusion of a clarifier model is another extension
option, which should enable predictions of the SS concentrations in the effluent
to the receiving waters, and thus make it possible to design control algorithms
that can control the effluent SS concentrations to the recipient closer to the
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allowed limits and thus further optimize ATS operation.

Finally, a combined ATS control strategy based on both information from the
influent to the wastewater treatment plant and from the current state in the ae-
ration tanks and secondary clarifier should be established. The control strategy
should control both the ATS operation and the bypass flow. Hereby, it should
be possible to decide whether it is advantageous to use the ATS capabilities to
handle the incoming flow or some of the flow should bypass the biological part
of the plant. The use of available detention basins at the treatment plant should
be included in the strategy as well. The control of ATS, bypass flow and de-
tention basins at the wastewater treatment plant should be integrated with the
control of the overflow structures, storage basins, pumping stations etc., of the
sewer system to enable optimal operation of the total system.



Chapter 4

Conclusions

In this thesis, stochastic models for the incoming wastewater to two different
wastewater treatment plants as well as for the SS concentrations in the aeration
tanks of an alternating wastewater treatment plant and in the effluent from the
aeration tanks are presented. The latter model is furthermore used to quantify
the effects of the Aeration Tank Settling (ATS) operating mode as well as to
propose a control algorithm for controlling the phase lengths during ATS.

The objective of modelling the incoming wastewater to a wastewater treatment
plant was to model possible first flush effects. In PapersA andB dynamic
models of the COD flux and SS flux in the influent to two Danish wastewater
treatment plants are developed. The models include the buildup and flush out
of pollutants in the form of COD and SS in the sewer and on impervious areas
of the catchment. The results show that the models can be used to describe
some of the first flush effect, but also that the models in some situations predict
a dilution even though this is not the case. It is furthermore found that the
models make it possible to estimate the deviations in COD and SS deposits in
the sewer and on impervious areas of the catchment from an initial level but
not the actual amounts in the sewer.

In PaperC the dynamic models are compared to simpler static models to quan-
tify the improvements of including the dynamics of the deposits. The quality of
the models is measured by the multiple correlation coefficient (R2) of the mo-
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del simulations. This comparison shows that inclusion of the deposits results
in significant improvements of the simulation abilities of the model. However,
an analysis of the model predictions shows that the proposed models could and
should be improved. Hence, suggestions concerning future research within
modelling of incoming wastewater are given. It is thus suggested that the mo-
dels could be improved by increasing the order of the differential equations that
describe the pollution deposits and by separating the model into a dry weather
part and a wet weather part. Furthermore is it suggested that non-linear terms
are included to describe the physical limitations of the deposits.

The second part of the work is about ATS operation in an alternating waste-
water treatment plant. ATS is an operating mode that increases the hydraulic
capacity of the wastewater treatment plant and thus enables the plant to treat
considerably increased wastewater amounts. In PapersD andE a mass bal-
ance model of the SS concentrations in the aeration tanks as well as in the
effluent from these is established. In PaperE the model is estimated. The re-
sulting model performs very well in simulating the SS concentrations in the
aeration tanks. The simulations of the SS concentrations in the effluent from
the aeration tanks are not as good as the simulations of the concentrations in
the aeration tanks but are however still good. In order to improve the model,
it is therefore suggested that the sub-model for the SS concentrations in the
effluent from the aeration tanks be refined, e.g. by introducing more layers
in the sludge settling model. The work with the mass balance model proved
that there were systematic errors in the SS concentration measurements, and
therefore error models on the SS observations were included in the model. It
is, however, not yet clear whether the flow measurements are also subject to
systematic errors. It is therefore suggested that error models for the flow mea-
surements are included so that it could be investigated if they are also subject
to errors.

The Aalborg West wastewater treatment plant, which was the subject of the
model estimation, has 3 aeration tank pairs. All 6 aeration tanks are included in
the model. As the tank pairs are operated in an identical way except for a short
time delay, it might be a good idea to simplify the model to only one logical
tank pair. The benefits of this simplification are reduced computation time and
easier generalization to other plants with a different number of aeration tank
pairs.

The model is used to quantify ATS operation as well as to propose a control
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algorithm for choosing the optimal phase lengths during ATS. It is found that
ATS increases the hydraulic capacity of the considered plant by more than
167% (from the dry weather capacity of 6000 m3/h to more than 16000 m3/h).
A comparison between ATS and the construction of detention basins capable
of handling some of the excess water reveals that the financial advantages of
ATS are extremely good.
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Abstract

On-line measurements of pollutants in the wastewater combined with grey-box
modelling are used to estimate the amount of deposits in the sewer system. The
pollutant mass flow at the wastewater treatment plant is found to consist of a
diurnal profile minus the deposited amount of pollutants. The diurnal profile is
found to be a second order harmonic function and the pollutants deposited in
the sewer is identified using first order ordinary differential equations.

Key words:Sewer system, wastewater treatment plant, grey-box models, sta-
tistical identification, first flush.

Introduction

When designing control systems for sewer systems and wastewater treatment
plants, only the hydraulic load of the sewer system and the hydraulic capacity
of the wastewater treatment plant are normally considered. This means that
first flush effects are not taken into account, and that a maximum amount of
wastewater is sent through the equalisation basins or primary clarifiers of the
treatment plants. This practice often multiplies the pollutant discharge with the
combined sewer overflows.

The wastewater composition is often described by two components - a con-
tribution from the dry weather wastewater and a contribution from the run-off
water assumed to have constant concentrations. The pollutant concentrations
of the dry weather flow are described by a diurnal mean and the run-off water
is considered as having constant pollutant concentrations - typically 1/10 to 1/5
of the dry weather concentration level. This approach does not yield a realistic
description when pollutants are depositing in the sewer system.

On-line measurements of UV absorption and turbidity in the sewer system can
be used to estimate the actual level of chemical oxygen demand (COD) and
suspended solids (SS) in the wastewater (Kanaya et al., 1985; Ruban et al.,
1993; Nowack and Ueberbach, 1995; Matsché and Stumwöhrer, 1996), and
hence to identify diurnal concentration variations and the amount of deposits
settled in the sewer system in dry weather, and the washing out of this during
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rain.

In the present work a grey-box model for the deposition of pollutants in the
sewer system is suggested. A grey-box model is a stochastic model which
describes only the most important relationships of the deterministic theory,
and such a model is very useful when the objective is control of the wastewater
system (Carstensen et al., 1996). The parameters of the model are estimated
and using the estimated model it is shown how the deposits in the sewer system
grow in dry weather and are washed out during rain.

Data catchment

In Skive in central Jutland, Denmark, the a measuring box developed by Krüger
has been operating during the early spring of 1997. The Krüger measuring box
is a compact and portable unit, and consists of a datalogger, a UV absorbance
sensor and a turbidity sensor. Furthermore the measuring box is collecting
flow measurements through a connection to the supervisory control and data
acquisition (SCADA) system of the WWTP. The SCADA system computes
estimates of the inlet flow based on measurements from the inlet pumping sta-
tion. The inlet flow consists of a flow to the biological part of the WWTP
and a flow to an equalisation basin. The measuring box is equipped such that
it is possible to remote control the box and to transfer data to the Krüger of-
fice. Off-line measurements of the rain fall are also available, as is laboratory
analyses of COD and SS.

Two sets of data are used in this paper. The first set covers the two week period
from 13th to 26th of March, and it is used for the estimation. The second set
which covers 9 days from 28th of March to 5th of April, is used for validation.
The data sets are shown in Figures1 and2. Unfortunately there is only some
relatively small rain incidents available, and the available incidents are mutual
alike.
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Figure 1. The estimation data set.

Theory

It has been found previously that the relationships between COD and UV ab-
sorption (UV), and between SS and turbidity (Turb) are linear (Kanaya et al.,
1985; Ruban et al., 1993; Nowack and Ueberbach, 1995; Matsché and Stumwöhrer,
1996), i.e.

COD = α UUV + β U (1)

SS = α TTurb + β T (2)

whereα U, β U, α T andβ T are constants. This means that the UV absorption
and turbidity measurements can be thought of as concentrations of COD and
SS, respectively. ThereforeQU = Q × UV andQT = Q × Turb describe
the pollutant mass flow in terms of UV absorption and turbidity “masses”,
respectively. The quantity of pollutant deposits in the sewer system can also
be modelled in terms of UV absorption and turbidity masses.

It is assumed that pollutants gradually deposits in the sewer (and on impervious
areas) during dry weather (low wastewater flow) and that the deposists are
flushed out during storm situations. The amounts of COD deposits modelled
in UV absorbance terms, and SS deposits modelled in turbidity terms arexU
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Figure 2. The validation data set.

andxT. The time derivatives of these,dxU/dt anddxT/dt are the flows of
UV absorbance and turbidity masses into the sewer depots.

The flow of COD and SS measured as UV absorption and turbidity masses to
the WWTP, is assumed to consist of a fixed diurnal profile (the pollutants that
enter the sewer system) minus a contribution to the depots in the sewer system.
The diurnal profile is assumed to be a periodic function with a 24 hour period,
which can be described by an-th order harmonic. Lettingt denote is the time
of the 24 hour period given in (decimal) hours, the flows are then described by:

QU = a0 +
n∑
k=1

(
ak sin(2πk

t

24h
) + bk cos(2πk

t

24h
)
)
− dxU

dt
(3)

QT = c0 +
n∑
k=1

(
ck sin(2πk

t

24h
) + dk cos(2πk

t

24h
)
)
− dxT

dt
(4)

respectively, wherea0 andc0 are assumed to be the global mean values ofQU

andQT over the entire data set.

With t0 as the initial time point of the measuring period, andyU andyT defined
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as:

yU(t) = −
∫ t

t0

(QU − a0)

yT(t) = −
∫ t

t0

(QT − c0)

we obtain, using (3) and (4), that

yU(t) = xU(t)− xU(t0)

−
∫ t

t0

n∑
k=1

(
ak sin(2πk

t

24h
) + bk cos(2πk

t

24h
)
)
dt

(5)

yT(t) = xT(t)− xT(t0)

−
∫ t

t0

n∑
k=1

(
ak sin(2πk

t

24h
) + bk cos(2πk

t

24h
)
)
dt

(6)

It is easily seen that the integration of the sines and cosines will yield a diurnal
mean of zero. Hence the trend ofyU andyT will follow the trend ofxU and
xT. When examining the trends ofyU andyT it is possible to seeif pollutants
are deposting in the sewer sinceyU andyT will be growing, when pollutants
are depositing, and falling and when the pollutants are flushed out.

If pollutants actually are deposting one approach to identify the amount of
deposits in terms of UV absorption and turbidity mass (xU andxT) in the
sewer system is to model these using simple first order ordinary differential
equations:

dxU

dt
= aU(xU,0 − xU) + bU(Q0 −Q)

= −aUxU − bUQ+ cU,
(7)

dxT

dt
= aT(xT,0 − xT) + bT(Q0 −Q)

= −aTxT − bTQ+ cT,
(8)

wherecU = aUxU,0 + bUQU,0 andcT = aTxT,0 + bTQT,0. The actual flow
through the sewer isQ, aU, bU, aT and bT are constants.Q0 is the global
mean value ofQ, andxU,0 andxT,0 are assumed to be the means ofxU and
xU, respectively.
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The explanation of the differential equations, (7) and (8), is that when there
is a small amount of deposits in the sewer and the flow is low, pollutants will
be built up to an equillibrium (dependant onxU,0, Q andQU,0 or xT,0, Q and
QT,0). When a large amount is deposited and the flow is high, the pollutants
will be flushed out of the sewer resulting in higher pollutant levels in the was-
tewater.

Results - Discussion

From the plots ofyU andyT in Figure3 it is seen that both has a growing trend
between the rain incidents, and a significant falling trend in a short period after
the rain incidents. The conclusion is, that it is evident that deposition and
flushing out of pollutants actually does occur. Hence there is reason to try to
model these depositions.
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Figure 3.

In dry weather the relations between COD and UV absorption, and between
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SS and turbidity was found to be:

COD = 5.0
mg

l×m−1
UV − 26

mg
l

SS = 1.52
mg

l× FTU
Turb− 7.8

mg
l

with correlation coefficients 0.90 and 0.85 respectively. These relations are
good during dry weather, but are not suitable in storm situations. Hence instead
of measuring discharge during storms, we model the build-up of pollutants
during dry weather. This simple approach is reliable if the dry weather load to
the sewer is predictable or constant.

A second order harmonic was found to be reasonable in describing the diurnal
profiles for both UV and turbidity mass flow. In Figure4 results of the mass
flow estimations are shown with the validation data set. The model is seen to
describe the measurement data reasonably well.
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Figure 4. Real and modelled UV and turbidity mass flows.

The estimated parameters in (3), (4), (7) and (8) are shown in Table1, and the
estimated diurnal profiles forQU andQU are shown in Figure5, and as ex-
pected the pollutant load is lowest in the night and the early morning hours and
are highest in the afternoon. It is important to notice that the estimated values
of cU andcT are dependant on the initial values ofxU andxT, respectively.



64 PAPER A

The initial values ofxU were estimated to45× 103m3 ×m−1 for the estima-
tion data set and52 × 103m3 ×m−1 for the validation data set. The initial
values ofxT were estimated to90× 103m3 × FTU for the estimation data set
and95× 103m3 × FTU for the validation data set.

a0 = 44.4× 103m3/h×m−1 c0 = 48.2× 103m3/h× FTU
a1 = −6.54× 103m3/h×m−1 c1 = −10.3× 103m3/h× FTU
b1 = −2.40× 103m3/h×m−1 d1 = −2.60× 103m3/h× FTU
a2 = −1.25× 103m3/h×m−1 c2 = −1.15× 103m3/h× FTU
b2 = 3.81× 103m3/h×m−1 d2 = 1.98× 103m3/h× FTU
aU = 0.0821h−1 aT = 0.0685h−1

bU = 59.7m−1 bT = 121.5FTU
cU = 81.2× 103m3/h×m−1 cT = 162× 103m3/h× FTU

Table 1.

The values ofaU andaT shows that the UV and turbidity will build up in the
sewer with the time constants1/0.0821h = 12.2h and1/0.0685h = 14.6h.
This means that after a (considerable) change in the flow, the UV and turbidity
masses in the sewer will reach 63% of the equilibrium in 12.2 and 14.6 hours,
respectively.

The estimations of the pollutant masses in the sewer is shown in Figure6. It
is clear that the pollutants are built up in the sewer during dry weather and
flushed out during the rain incidents. During the first approximately 24 hours
after the rain incident the growth is much faster than it was just before the rain,
which shows that the level of UV and turbidity at the WWTP is higher during
the rain periods, than under normal dry weather conditions. After the rain the
levels will be lower at the WWTP, since the depots in the sewer are built up
again.

Conclusions

On-line measurements of UV absorption, turbidity and wastewater flow com-
bined with grey-box modelling can be used to identify a model for pollutant
concentrations in the wastewater and the amount of deposits in the sewer sys-



Wat. Sci. Tech.,37(12), pp. 87–93, 1998 65

0 3 6 9 12 15 18 21 24
3

3.5

4

4.5

5

5.5

6
x 10

4

Time of day

Q
U
 [m3/h m−1]

Q
T
 [m3/h FTU]  

Figure 5. The estimated diurnal profiles.

tem at a given time.

Longer test periods with more variation in length of dry weather periods and
rain intensity are needed for a better validation of the models and prediction
methods.

When models of the build-up of pollutants are established, the combination of
the models and a flow prediction (Carstensen et al., 1998) can be used to predict
the pollutant concentrations in the wastewater. These predictions can be used
adjust the control strategy for the sewer and the WWTP. The control actions
for the sewer can typically be a choice between directing the wastewater to a
detention basin, to the WWTP or directly to the recipient.
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Summary

On-line measurements of turbidity, UV absorption and flow in the inlet to a
Danish wastewater treatment plant are used to establish a dynamic model of
the deposition of pollutants in the sewer system and the pollutant mass flow
to the treatment plant. The modelling is made using the grey box approach,
which is a statistical method that uses known physical relations to formulate the
model. The dynamics of the sewer are modelled by means of continuous time
stochastic differential equations combined with dry weather diurnal pollutant
mass flows.

Key words:On-line measurements; sewer systems; wastewater treatment plant;
dynamic systems; grey box modelling; stochastic differential equations; first
flush; diurnal pollutant load

Introduction

Modelling of sewer systems is necessary to gain a better understanding of the
dynamics of the system, and to verify if deposition of pollutants occurs. If
deposition occurs then the model can be used to predict and quantify the first
flushes. When the dynamics of the first flushes are quantified, it can be used
to calculate the necessary size of a storage basin in the sewer system or at the
wastewater treatment plant.

When modelling sewer systems, these are often described using a configura-
tion of storage volumes and pipes with different dimensions. This approach
results in a mathematical model with many parameters and internal states of
the stores. Unfortunately the data seldom provides sufficient information to
uniquely identify all parameters.

In this paper a data based grey box modelling approach is used. A grey box
model is a stochastic model which only describes the most important physical
relations. The benefits of this approach are that the resulting model has few pa-
rameters and states which are possible to identify, using appropriate statistical
methods. Due to the small number of parameters, few computational resources
are needed to estimate the parameters, which makes the parameter estimation
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applicable for on-line use, e.g. for on-line control purposes (Carstensen et al.,
1996).

The present work is based on on-line measurements of UV absorption, turbid-
ity and flow. The measurements of UV absorption and turbidity are used to
estimate the actual level of chemical oxygen demand (COD) and suspended
solids (SS) in the wastewater (Kanaya et al., 1985; Ruban et al., 1993; Nowack
and Ueberbach, 1995; Matsché and Stumwöhrer, 1996). Based on these data
a model including the diurnal profiles of COD and SS mass flow as well as
the amount of COD and SS deposits in the sewer, is proposed and identified.
The model parameters are estimated using one set of data, and cross validated
using another data set.

The deposits, which are not practically measurable, are states in the model and
hence estimated by means of the procedure. By use of the model the estimated
amounts of deposited pollutants in the sewer are identified and shown.

The measurement system

A measuring box, developed by Krüger A/S, Denmark, has been collecting
measurements from the inlet to the wastewater treatment plant of the town of
Skive in central Jutland, Denmark, in the early spring of 1997. The Krüger
measuring box is a compact and portable unit which consists of a datalog-
ger, a Dr. Lange UV absorbance sensor model LXV 109 and a Dr. Lange
SOLITAXplus LXV 121 turbidity sensor. Furthermore inlet flow estimates are
collected from the supervisory control and data acquisition (SCADA) system
of the WWTP. The flow estimates are computed in the SCADA system on the
basis of measurements from the inlet pumping station. Off-line measurements
of the precipitation and laboratory analyses of COD and SS are also available.

The influent to Skive WWTP is separated into industrial and municipal waste-
water. The sensors are placed in the municipal wastewater.



Environmetrics, 11(1),PP. 1–12, 2000 71

COD and SS

Linear relationships between the concentration of COD denotedCCOD and
UV absorption (UV ) and between the concentration of SS denotedCSS and
turbidity (Turb) have been suggested by several authors (Kanaya et al., 1985;
Ruban et al., 1993; Nowack and Ueberbach, 1995; Matsché and Stumwöhrer,
1996), i.e.

CCOD = α UUV + β U (1)

CSS = α TTurb+ β T (2)

whereα U , β U , α T andβ T are constants. The concentrations of COD and SS
are measured ingO2/m3 andgSS/m3. The models are calibrated on the basis
of laboratory measurements ofCCOD andCSS and the corresponding on-line
measurements ofUV andTurb. When the concentrations are multiplied by
the wastewater flowQ (in m3/h) the results are the mass flows of COD and
SS ingO2/h andgSS/h, respectively.

A dynamical model of the deposited pollutants

It is assumed that pollutants quantified as masses of COD and SS deposit grad-
ually in the sewer system and on impervious areas of the catchment in dry
weather (low wastewater flow). Similarly, it is assumed that the deposited pol-
lutants are flushed out during rain incidents and into the inlet of the treatment
plant. This means that the model does not explicitly describe reactions occur-
ring in the sewers, but these processes are in part accounted for through the
statistical calibration of the model.

The deposited amounts of COD and SS are denotedXCOD andXSS , respec-
tively. The time derivatives,dXCOD/dt anddXSS/dt are the growth rates at
which COD and SS are built up in the depots. The growth rates are assumed to
be described by the first order linear differential equations:

dXCOD

dt
= aCOD(XCOD − X̄COD) + bCOD(Q− Q̄) (3)

dXSS

dt
= aSS(XSS − X̄SS) + bSS(Q− Q̄) (4)
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whereQ is the wastewater flow in the inlet and̄XCOD andQ̄ are the mean
values ofX andQ. The proposed model is thus a simple first order storage
model. When the parametersaCOD, bCOD, aSS andbSS are assumed to be
negative constants, a flow larger than the mean flow will cause a decrease of the
amount of deposits and a flow lower than the mean flow will cause an increase
of the deposits. Likewise a deposited amount of pollutants larger than the mean
will cause a decrease in the corresponding growth rate, and vice versa.

Furthermore we assume that the pollutant mass flow entering the sewer system
is following a diurnal profile and that the rain water does not contain any COD
and SS. The diurnal profiles are modelled by periodic functions with a 24 hour
period, which are described byn-th order harmonic functions. A simple mass
balance of the sewer system shows that the mass flows of COD and SS at
the WWTP are the corresponding diurnal profile minus the contribution to the
depots. The pollutant mass flowsQCOD = Q×COD andQSS = Q× SS in
the inlet to the WWTP are then modelled by:

QCOD = a0 +
n∑
k=1

(
ak sin(2πk

t

24h
) + bk cos(2πk

t

24h
)
)
− dXCOD

dt
(5)

QSS = c0 +
n∑
k=1

(
ck sin(2πk

t

24h
) + dk cos(2πk

t

24h
)
)
− dXSS

dt
(6)

wherea0, ak, bk, c0, ck anddk (1 ≤ k ≤ n), are the parameters of the harmonic
functions. Combining (3) with (5) and (4) with (6) leads to:

QCOD = −aCOD(XCOD − X̄COD)− bCOD(Q− Q̄)

+ a0 +
n∑
k=1

(
ak sin(2πk

t

24h
) + bk cos(2πk

t

24h
)
)

(7)

QSS = −aSS(XSS − X̄SS)− bSS(Q− Q̄)

+ c0 +
n∑
k=1

(
ck sin(2πk

t

24h
) + dk cos(2πk

t

24h
)
)

(8)

In order to use a matrix notation we introduceX,U andY as the state vector,
the input vector and the observation vector, respectively; i.e.:

X = [XCOD − X̄COD, XSS − X̄SS ]′ (9)

U = [Q− Q̄, 1, sin(2π
t

24h
), cos(2π

t

24h
), . . . , cos(2πk

t

24h
)]′ (10)

Y = [QCOD, QSS ]′ (11)
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and the matricesA,B,C andD defined by:

A =
[
−aCOD 0

0 −aSS

]
(12)

B =
[
−bCOD 0 0 0 . . . 0
−bSS 0 0 0 . . . 0

]
(13)

C =
[
aCOD 0

0 aSS

]
(14)

D =
[
bCOD a0 a1 b1 a2 b2 . . . ak bk
bSS c0 c1 d1 c2 d2 . . . ck dk

]
(15)

After addition of a noise term (3) and (4) can now be described by the stocha-
stic differential equation:

dX = AXdt+BUdt+ dw(t) (16)

where the stochastic processw(t) is assumed to be a vector Wiener process.
The noise term is included to describe the deviations between the model equa-
tions (3) and (4) and the true system.

The observation equation in the matrix notation is found by combining (3) with
(5) and (4) with (6):

Y (t) = CX(t) +DU(t) + e(t) (17)

Here the terme(t) is the measurement error, which is assumed to be a zero
mean Gaussian white noise sequence independent ofw(t).

The parameter estimation method

This section briefly describes the method used to estimate the parameters of the
stochastic differential equation (16) for the dynamics of the sewer system. The
estimation method is a maximum likelihood method for estimating parameters
in stochastic differential equations based on discrete time data. For a more
detailed description of the method we refer toMadsen and Melgaard(1991) or
Melgaard and Madsen(1993).
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The observations are given in discrete time, and, in order to simplify the nota-
tion, we assume that the time indext belongs to the set{0, 1, 2, ..., N}, where
N is the number of observations. Introduce

Y(t) = [Y (t),Y (t− 1), . . . ,Y (1),Y (0)]′ (18)

i.e.Y(t) is a vector containing all the observations up to and including timet.

Using the matrix notation the continuous time stochastic differential equation
describing the dynamics of the sewer system can be written as the so-called Itô
differential equation (Øksendal, 1995)

dX(t) = f(X,U , t)dt+G(U , t)dw(t) (19)

whereX is the state vector,U an input (e.g. control) vector,w a vector
standard Wiener process (see e.g.Kloeden and Platen(1995)), andf andG are
known functions. The matrixG(U, t) describes any input or time dependent
variation related to how the variation generated by the Wiener process enters
the system.

For the observations we assume the discrete time relation

Y (t) = h(X,U , t) + e(t) (20)

wheree(t) is assumed to be a Gaussian white noise sequence independent of
w. All the unknown parameters, denoted by the vectorθ, are embedded in the
continuous-discrete time state space model (equations (19) and (20)).

The likelihood function is the joint probability density of all the observations
assuming that the parameters are known, i.e.

L′(θ;Y(N)) = p(Y(N)|θ)
= p(Y (N)|Y(N − 1),θ)p(Y(N − 1)|θ)

=
( N∏
t=1

p(Y (t)|Y(t− 1),θ)
)
p(Y (0)|θ)

(21)

where successive applications of the ruleP (A∩B) = P (A|B)P (B) are used
to express the likelihood function as a product of conditional densities.

In order to evaluate the likelihood function it is assumed that all the conditional
densities are Gaussian. In the case of a linear state space model as described
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by (16) and (17), it is easily shown that the conditional densities are actually
Gaussian (Madsen and Melgaard, 1991). In the more general non-linear case
the Gaussian assumption is an approximation.

The Gaussian distribution is completely characterized by the mean and covari-
ance. Hence, in order to parameterize the conditional distribution, we intro-
duce the conditional mean and the conditional covariance as

Ŷ (t|t− 1) = E[Y (t)|Y(t− 1),θ] and

R(t|t− 1) = V [Y (t)|Y(t− 1),θ]
(22)

respectively. It should be noted that these correspond to the one-step prediction
and the associated covariance, respectively. Furthermore, it is convenient to
introduce the one-step prediction error (or innovation)

ε(t) = Y (t)− Ŷ (t|t− 1) (23)

For calculating the one-step prediction and its variance, an iterated extended
Kalman filter is used. The extended Kalman filter is simply based on a line-
arization of the system equation (19) around the current estimate of the state
(seeGelb (1974)). The iterated extended Kalman filter is obtained by local
iterations of the linearization over a single sample period.

Using (21) – (23) the conditional likelihood function (conditioned onY (0))
becomes

L(θ;Y(N))

=
N∏
t=1

(
(2π)−m/2 detR(t|t− 1)−1/2 exp(−1

2ε(t)
′R(t|t− 1)−1ε(t))

) (24)

wherem is the dimension of theY vector. Traditionally the logarithm of the
conditional likelihood function is considered

logL(θ;Y(N))

= −1
2

N∑
t=1

(
log detR(t|t− 1) + ε(t)′R(t|t− 1)−1ε(t)

)
+ const

(25)

The maximum likelihood estimate (ML-estimate) is the setθ̂, which maxi-
mizes the likelihood function. Since it is not, in general, possible to optimize
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the likelihood function analytically, a numerical method has to be used. A
reasonable method is the quasi-Newton method.

An estimate of the uncertainty of the parameters is obtained by the fact that the
ML-estimator is asymptotically normally distributed with meanθ and covari-
ance

D = H−1 (26)

where the matrixH is given by

{hlk} = −E
[

∂2

∂θl∂θk
logL(θ;Y(N))

]
(27)

An estimate ofD is obtained by equating the observed value with its expecta-
tion and applying

{hlk} ≈ −
(

∂2

∂θl∂θk
logL(θ;Y(N))

)
|θ=θ̂

(28)

The above equation can be used for estimating the variance of the parameter
estimates. The variances serves as a basis for calculating t-test values for test
under the hypothesis that the parameter is equal to zero. Finally, the correla-
tion between the parameter estimates is readily found based on the covariance
matrixD.

Results and Discussion

In dry weather the relations between COD and UV absorption and between SS
and turbidity were found by regression analysis to be:

CCOD = 5.0
g

m3m−1
UV − 26

g
m3

(29)

CSS = 1.52
g

m3FTU
Turb− 7.8

g
m3

(30)

with degrees of explanationR2 = 0.90 andR2 = 0.85, respectively. In dry
weather equations (29) and (30) describe the relations well, and it is assumed
that it is reasonable to extrapolate to rainy situations. More thorough research
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will have to be carried out to refine the relationships between the measurements
of UV absorption and turbidity, and COD and SS, respectively. This investi-
gation could include flow dependent parameter values. Such an approach will
increase the need for laboratory analysis of COD and SS enormously.

The parameters in the model were estimated using the CTLSM program (Mad-
sen and Melgaard, 1991; Melgaard and Madsen, 1991). Different orders of the
harmonic functions were tried, and it was found that a second order harmonic
was reasonable in describing the diurnal profiles for both COD and SS mass
flow. The estimated parameters are shown in Table1, together with the estima-
ted standard deviations of the parameter estimates.

It was found thatc2 was not significantly different from zero, and it was there-
fore excluded from the final estimation.

In the model presented it is not possible to estimate the mean level of the non-
measured deposited pollutants̄XCOD andX̄SS . In the estimations these were
fixed at zero, meaning thatXCOD andXSS are differences from unknown
mean values. This does not put any limitations on the use of the model, as it is
still possible to quantify the amount of pollutants in a first flush.

Validation of the resulting model was done by cross-validation, i.e. by apply-
ing the model on a data set (the validation data set), which differs from that
used for the parameter estimation. Using all the estimated parameter values,
except for the initial states, the initial values of the states for the validation
data set were found by the estimation software. In Figures1 and2 the mea-
sured and simulated pollutant mass flows are shown. They are seen to be in
good agreement. Furthermore tests on the white noise assumption based on
the autocorrelations and on the cumulative residual periodograms were carried
out. It was seen that the white noise assumptions were not perfectly satisfied,
but since the cross-validations shown in Figures1 and 2 are very fine, it is
concluded that the model describes the data well.

In Figures3 and4 the estimated amounts of deposited COD and SS are shown
for the estimation data set and for the validation data set, and it is clear that
COD and SS are deposited in dry weather periods and flushed out during rain
incidents. From Figure4 it appears that the amount of COD first flush during
the rain incident on April 3rd is approximately2500 kgO2 and that the SS
first flush is approximately1800 kgSS. A comparison of these amounts with
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Table 1. Maximum likelihood estimates of the parameters of the system.
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the mean loads of COD and SS to the WWTP of5030 kgO2/24h and1527
kgSS/24h shows that this first flush contains approximately half a 24-hour
load of COD and 20% more than a 24-hour load of SS. This is considered
realistic, as it is expected that COD stabilizes in the sewer depots. When COD
stabilizes in the sewer the amount of COD in a first flush compared to the
normal load of COD will be smaller than the amount of SS compared to the
normal load of SS, as SS are not expected to stabilize between rain incidents.
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Figure 3. Estimated amounts of COD and SS deposits in the sewer system -
estimation data set.

The time constantsτCOD = −1/aCOD andτSS = −1/aSS are found to be
τCOD = 18.4h andτSS = 27.8h. This means that after a considerable change
in the flow, the masses of COD and SS in the sewer depots will reach 63% of
the equilibrium in 18.4 and 27.8 hours, respectively. The time constants are
thus found to be reasonable.
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Figure 4. Estimated amounts of COD and SS deposits in the sewer system -
validation data set.

Conclusion

In this paper a stochastic grey box model of the deposition of pollutants in the
sewer system and on impervious areas of the catchment is proposed. Further-
more, the model provides a characterization of the influent wastewater to the
WWTP. The parameters of the model are estimated using the maximum like-
lihood method. The modelling is based on measurements of concentrations of
COD and SS, which are calculated from measurements of UV absorption and
turbidity. It is concluded that the models, which relate the measurements of
UV absorption and turbidity to COD and SS concentrations, describe the rela-
tions well in dry weather situations, and it is assumed that it is reasonable to
extrapolate to rainy conditions.

Using the grey box approach, it is possible to identify a model for a com-
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plex dynamical system based on simple physical assumptions combined with
statistical modelling tools. The model is formulated in continuous time with
discrete time measurements and due to the rather small number of parameters,
the model is operational for on-line applications.

The model makes it possible to estimate the amount of COD and SS in a first
flush during a rain incident. It is found that these amounts are dependent on the
time interval since the previous rain event and on the intensity of the current
rain.
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Abstract

Using a compact measuring unit with on-line meters for UV absorption and
turbidity, it is possible to determine concentrations of organic load (chemical
oxygen demand and suspended solids) anywhere in a sewer system. When
measurements of the flow are available as well, the pollutant mass flow at the
measuring point can be calculated.

The measured data are used to estimate different models describing the load
of pollutants in the sewer. A comparison of the models shows that a grey-box
model is most informative and best in terms measured by the multiple corre-
lation coefficient. The grey-box model is a state-space model, where the state
represents the actual amount of deposition in the sewer, and the output from
the model is the pollutant mass flow to the wastewater treatment plant. The
model is formulated by means of stochastic differential equations. Harmonic
functions are used to describe the dry weather diurnal load profiles. It is found
that the accumulation of deposits in the sewer depends on previous rain events
and flows.

By means of on-line use of the grey-box models, it is possible to predict the
amount of pollutants in a first flush at any time, and hence from the capacity
of the plant to decide if and when the available detention basin is to be used
for storage of wastewater. The mass flow models comprise an important im-
provement of the integrated control of sewer and wastewater treatment plant
including control of equalisation basins in the sewer system. Further improve-
ments are expected by the introduction of an additive model where dry weather
situations and storm situations are modelled separately before addition to the
resulting model.

Key words: Pollutant deposition, sewer system, first flush, grey-box models,
statistical identification, on-line measurements.

Introduction

On-line measurements of organic pollution in terms of biological, chemical
or total oxygen demand (BOD, COD or TOD) and suspended solids (SS) by
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means of UV absorbance and turbidity sensors are now well described (Dobbs
et al., 1972; Mrkva, 1975; Kanaya et al., 1985; Ruban et al., 1993; Nowack
and Ueberbach, 1995; Matsché and Stumwöhrer, 1996; Reynolds and Ahmad,
1997; Wass et al., 1997). When on-line measurements of COD and SS are
available a better characterization of the wastewater can be achieved, and this
leads to a better understanding of the processes in the sewer system.

The sewer system is often modelled by means of deterministic modelling as a
configuration of storage volumes connected with pipes of different dimensions
(Mark et al., 1995; Dempsey et al., 1997; Heip et al., 1997; van Luijtelaar
and Rebergen, 1997). As these models are formulated as a large collection
of differential equations with many parameters, it is difficult to estimate the
parameters on the basis of available measurements.

Data based models are also common in the literature (Capodaglio, 1994; Delleur
and Gyasi-Agyei, 1994; Ruan and Wiggers, 1997; Young et al., 1997). These
models have few parameters, which can then be estimated on the basis of avail-
able data. However, as the models are most often formulated in discrete time,
the parameter estimates depend on the sampling time.

In this paper a data based grey-box modelling approach is used. A grey-box
model is a physically based macroscopic model with stochastic terms to count
in uncertainties in model formulation and measurement values. The introduc-
tion of stochastic terms enables maximum likelihood estimation of the model
parameters. The maximum likelihood method provides estimates of the vari-
ances of the parameter estimates, which are used to evaluate the uncertainty of
the parameters. The proposed models are formulated here in continuous time.
Measurements of pollutant mass flows in the inlet to a wastewater treatment
plant (WWTP) are modelled by means of models of differing complexity. Pol-
lutant deposition in the sewer can for instance be included, to make it possible
to quantify the amounts of pollutants in a first flush.

The measurement system

A compact portable measuring box, developed by Krüger A/S, Denmark, has
been used to collect measurements of UV absorption and turbidity from the
inlet to the Aalborg East wastewater treatment plant in Northern Jutland, Den-
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Figure 1. The measurements of flow, UV absorbance and turbidity.

mark, in the late 1997 and in the beginning of 1998. The Krüger measuring
box consists of a Grant SQ-1003 datalogger, a Dr. Lange UV absorbance sen-
sor model LSV 109 and a Dr. Lange SOLITAXplus LSV 121 turbidity sensor.
The Aalborg East WWTP is equipped with the STAR control system (Nielsen
and Önnerth, 1995; Önnerth and Bechmann, 1995) which supplies estimates of
the inlet flow, based on measurements from the inlet pumping station. Figure
1 shows the data used in the present work. Laboratory analyses of COD and
SS are also available.

Models of the pollution concentrations and fluxes

The relationships between on-line measurements of UV absorbance (A) and
turbidity (T ) and laboratory analyses of COD and SS concentrations (CCOD

andCSS, respectively) are assumed to be:

CCOD = αCODA+ βCOD (1)

CSS = αSST + βSS (2)
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whereαCOD, βCOD, αSS andβSS are parameters, which have to be estima-
ted on the basis of measurements ofCCOD, CSS, A andT , as the parame-
ters depend on the actual operating conditions and the wastewater composition
(Dobbs et al., 1972; Mrkva, 1975; Kanaya et al., 1985; Ruban et al., 1993;
Nowack and Ueberbach, 1995; Matsché and Stumwöhrer, 1996; Reynolds and
Ahmad, 1997; Wass et al., 1997). When these parameters are estimated, it is
possible to consider the observation at timet of pollution flux:

y(t) = Q(t)C(t) (3)

with Q(t) andC(t) denoting the flow and the pollution concentration (CCOD

orCSS), respectively. This quantity can be modelled using:

y(t) = ŷ(t) + ε(t) (4)

Hereŷ(t) is the predictable part of the model, and the residualε(t) is a stocha-
stic part, which is the difference between the data observed and the prediction
obtained from the model.

The first approach considered is to model the pollution flux using a fixed diur-
nal profile expressed as ann-th order harmonic function with a 24 hour period
(model 1):

ŷ(t) = a0 +
n∑
k=1

(
ak sin(2πk

t

24h
) + bk cos(2πk

t

24h
)
)

(5)

wherea0, ak, andbk (1 ≤ k ≤ n), are the unknown parameters.

Another approach is to model the flux as a mean value and a term proportional
to the flow (model 2):

ŷ(t) = c0 + c1Q(t) (6)

wherec0 andc1 are positive parameters.

These two approaches can be combined to (model 3):

ŷ(t) = a0 +
n∑
k=1

(
ak sin(2πk

t

24h
) + bk cos(2πk

t

24h
)
)

+ cQ(t) (7)
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Note that the parameter values of the Fourier expansion in equations (5) and
(7) are in general not the same, as some of the harmonic variation iny(t) is
most likely explained by the harmonic variation ofcQ(t).

These approaches all result in static models.

The final approach considered is model 4 which is a dynamic model formulated
as a state-space model. This model takes the deposition of pollutants in the
sewer system and on impervious areas of the catchment area into account.

The model is based on the assumption that pollutants deposit gradually in dry
weather and that the deposited pollutants are flushed out during rain incidents
and into the inlet of the treatment plant. Letx(t) denote the deposition of pol-
lutants at timet. Then a simple first order linear ordinary differential equation:

dx̂
dt

= a(x̂− x̄) + b(Q− Q̄) (8)

can be used to describe the dynamics of the pollution deposition. The time
derivative ofx̂ is the estimated growth rate at which pollution is built up in the
sewer, and̄x andQ̄ are the mean values of̂x andQ. The parametersa and
b are assumed to be negative, and hence a flow larger than the average flow
during the period will decrease the growth rate and a flow lower than the mean
flow will increase the growth rate. Similarly a deposited amount larger than
the mean will decrease the growth rate, and vice versa.

The pollution flux observed at the measuring point in the inlet to the WWTP, is
assumed to consist of a fixed diurnal profile, which describes the pollutants that
enter the sewer system, minus a contribution to the depositions in the sewer.
This is formulated in the observation equation:

ŷ(t) = a0 +
n∑
k=1

(
ak sin(2πk

t

24h
) + bk cos(2πk

t

24h
)
)
− dx̂

dt

= a0 +
n∑
k=1

(
ak sin(2πk

t

24h
) + bk cos(2πk

t

24h
)
)

− a(x̂− x̄)− b(Q− Q̄)

(9)

Besides a better description of the available data, this approach also provides
information about the practically unmeasureable amount of deposits in the
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sewer and impervious areas of the catchment. Hence, besides the parameter
estimates, the model also provides an estimate ofx − x̄. This means that the
model does not give information about the actual deposition levelx, but only
about the difference from the mean level of deposition. This does not pose any
practical limitations on the use of the model, as, for instance, it is still possible
to quantify the amount of pollutants in a first flush.

All the proposed pollution flux models can be applied to both SS and COD
flux.

Estimation methods

The parameters of the concentration models (1) and (2) as well as the param-
eters of the static pollution flux models (5), (6), and (7), can be estimated by
ordinary least squares methods, as these models are all linear in the parameters.

The method used to estimate the parameters of the dynamic pollution flux mo-
del (4) and (8) – (9) is a maximum likelihood method for estimating parameters
in stochastic differential equations based on discrete time data given by (4).
For a more detailed description of the method refer toMadsen and Melgaard
(1991) or Melgaard and Madsen(1993).

In order to use the maximum likelihood method, some stochastic terms have
to be introduced. Hence, the first order differential equation (8) turns into a
stochastic differential equation, where the continuous time equation describing
the dynamics of the pollution deposition can be written as the so-called Itô
differential equation (Øksendal, 1995)

dx(t) = f(x, u, t)dt+ g(u, t)dw(t) (10)

wherex is the state variable,u an input (e.g. control) variable,w a standard
Wiener process (see e.g.Kloeden and Platen(1995)), andf andg are known
functions. The functiong(u, t) describes any input or time dependent varia-
tion related to how the variation generated by the Wiener process enters the
system. Note, that in order to illustrate the flexibility of the method equation
(10) represents a generalization of the ordinary state equation (8).
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For the observations we assume the discrete time relation

y(t) = h(x, u, t) + e(t) (11)

wheree(t) is assumed to be a Gaussian white noise sequence independent of
w, which can be seen as a generalization of (4) and (9). All the unknown
parameters, denoted by the vectorθ, are embedded in the continuous-discrete
time state space model (equations (10) and (11)).

The observations are given in discrete time, and, in order to simplify the nota-
tion, we assume that the time indext belongs to the set{0, 1, 2, ..., N}, where
N is the number of observations. Introducing

Y(t) = [y(t), y(t− 1), . . . , y(1), y(0)]′ (12)

i.e. Y(t) is a vector containing all the observations up to and including time
t, the likelihood function is the joint probability density of all the observations
assuming that the parameters are known, i.e.

L′(θ;Y(N)) = p(Y(N)|θ)
= p(y(N)|Y(N − 1),θ)p(Y(N − 1)|θ)

=
( N∏
t=1

p(y(t)|Y(t− 1),θ)
)
p(y(0)|θ)

(13)

where successive applications of the ruleP (A∩B) = P (A|B)P (B) are used
to express the likelihood function as a product of conditional densities.

In order to evaluate the likelihood function it is assumed that all the conditional
densities are Gaussian. In the case of a linear state space model as described
by (4) and (8) – (9), it is easily shown that the conditional densities are actually
Gaussian (Madsen and Melgaard, 1991). In the more general non-linear case
the Gaussian assumption is an approximation.

The Gaussian distribution is completely characterized by the mean and covari-
ance. Hence, in order to parameterize the conditional distribution, we intro-
duce the conditional mean and the conditional variance as

ŷ(t|t− 1) = E[y(t)|Y(t− 1),θ] and

R(t|t− 1) = V [y(t)|Y(t− 1),θ]
(14)
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respectively. It should be noted that these correspond to the one-step predic-
tion and the associated variance, respectively. Furthermore, it is convenient to
introduce the one-step ahead prediction error (or innovation)

ε(t) = y(t)− ŷ(t|t− 1) (15)

For calculating the one-step ahead prediction and its variance, an iterated ex-
tended Kalman filter is used. The extended Kalman filter is simply based on
a linearization of the system equation (10) around the current estimate of the
state (seeGelb (1974)). The iterated extended Kalman filter is obtained by
local iterations of the linearization over a single sample period.

Using (13) – (15) the conditional likelihood function (conditioned ony(0))
becomes

L(θ;Y(N)) =
N∏
t=1

(
1√

2π
√
R(t|t− 1)

exp(− ε(t)2

2R(t|t− 1)
)

)
(16)

Traditionally, the logarithm of the conditional likelihood function is considered

logL(θ;Y(N)) = −1
2

N∑
t=1

(
logR(t|t− 1) +

ε(t)2

R(t|t− 1)

)
+ const (17)

The maximum likelihood estimate (ML-estimate) is the setθ̂, which maxi-
mizes the likelihood function. Since it is not, in general, possible to optimize
the likelihood function analytically, a numerical method has to be used. A
reasonable method is the quasi-Newton method.

An estimate of the uncertainty of the parameters is obtained by the fact that the
ML-estimator is asymptotically normally distributed with meanθ and covari-
ance

D = H−1 (18)

where the matrixH is given by

{hlk} = −E
[

∂2

∂θl∂θk
logL(θ;Y(N))

]
(19)
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An estimate ofD is obtained by equating the observed value with its expecta-
tion and applying

{hlk} ≈ −
(

∂2

∂θl∂θk
logL(θ;Y(N))

)
|θ=θ̂

(20)

The above equation can be used for estimating the variance of the parameter
estimates. The variances serve as a basis for calculating t-test values for test
under the hypothesis that the parameter is equal to zero. Finally, the correla-
tion between the parameter estimates is readily found, based on the covariance
matrixD.

The estimation methods are implemented in the CTLSM program, which are
available from http://www.imm.dtu.dk/∼hm/.

Results and discussion

The parameters of equations (1) and (2) are found by linear regression. It
turned out thatβCOD andβSS were insignificant, and therefore they were eli-
minated in the final estimation. The estimated parameters and their standard
deviations are shown in Table1. The degrees of explanations (multiple corre-
lation coefficients) of the COD and SS concentration models areR2 = 0.98
andR2 = 0.97, respectively.

Parameter αCOD βCOD αSS βSS

Unit gO2/m
3

m−1 gO2/m3 gSS/m3

FTU gSS/m3

Estimate 10.57 – 3.05 –
Standard deviation 0.40 – 0.13 –

Table 1. Parameters of equations (1) and (2). Theβ parameters are insignifi-
cant and are therefore not estimated.

For the models, which include a diurnal profile modelled as a harmonic func-
tion (models 1, 3, and 4), it was found that second order harmonic functions
were suitable, as the higher order coefficients were insignificant. In Tables2
and3 it can be seen that some of the parameters of the harmonic functions are
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insignificant, as their estimated values are smaller or comparable in absolute
values to their estimated standard deviations. Especiallyb1 of COD flux model
3, b1 of SS flux model 3 andb2 of SS flux model 4 are very uncertain. Usually
insignificant parameters should be excluded from the final estimation, to make
the estimation of the remaining parameters better. However, we have chosen
to include these parameters for comparison with the other models.

Comparison plots of measured and modelled pollution fluxes of the 4 models
are shown in Figures2, 3, 4, and5. Note, that the modelled pollution fluxes
shown in the figures are not one-step ahead predictions, but simulations from
the estimated models. The simulations are based only on the measured input to
the models, which is time of day (models 1, 3, and 4) and inlet flow (models 2,
3, and 4). In Tables2 and3 the parameter estimates of the proposed models are
listed, and in Table4 the correlations between measured and simulated fluxes
R2 of the models are listed.

Model R2

COD model SS model

1 0.39 0.15
2 0.32 0.69
3 0.51 0.69
4 0.61 0.76

Table 4. Degrees of explanation of the different models.

When comparing Figures2, 3, 4 and5, it is seen that the simple harmonic mo-
del 1 is good at describing most of the dry weather situations, but not the wet
weather situations. Models 2, 3 and 4 are better than model 1 at following the
peaks in pollution flux in wet weather, as they include a term proportional to
the flow. Besides a better correlation between measured and modelled pollu-
tant fluxes expressed by the degree of explanationR2, application of the dyna-
mic model provides information about the pollutant depositions in the sewer.
In Figure 6 the estimated deviations from the mean levels of COD and SS
deposits are shown. From this figure it is seen that pollutants build up in the
sewer during dry weather periods and are flushed out during rain. The amounts
of deposits in a first flush can also be quantified on the basis of Figure6: The
first and second rain incidents contain approximately 3000 kgO2 (COD) and
6000 kgSS which are 14% and 63% of the diurnal load of COD and SS, re-
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spectively. As it is expected that deposited COD stabilizes in the sewer this is
considered realistic. The stabilization of COD will lead to a smaller amount
of COD in a first flush compared to the normal load of COD than the amount
of SS compared to the normal load of SS, as deposited SS are not expected to
stabilize in the sewer.

The time constants of the dynamic COD and SS models are−1/a = 11.4h and
−1/a = 83.9h, respectively. This means that after a considerable change in
the flow, the COD and SS depositions will reach 63% of the steady state level
in 11.4 and 83.9 hours, respectively. The dynamics of the COD deposition is
thus about 7 times faster than the dynamics of the SS deposition.

As the data used for estimating the models are dominated by dry weather situ-
ations, the fluxes are underestimated during rainful events. A separation of the
models into dry weather models and storm models, which are added to each
other, might be a significant improvement.

Conclusions

Linear relationships between UV absorption and COD and between turbidity
and SS are derived. These relationships are used to compute the COD and
SS concentrations from on-line measurements of UV absorption and turbidity.
Using available measurements of the flow in the inlet to Aalborg East WWTP
the pollution flows of COD and SS are used to estimate models of differing
complexity. It is shown that the estimated dynamic grey-box models, which
include the deposition and flush out of pollutant masses in the sewer, describe
the data better than the other models proposed. Furthermore, these dynamic
models estimate the amounts of deposits in the sewer at any time. Hereby
the amounts of pollutants in a first flush are found. This information is very
useful when control algorithms for the use of the available detention basin at
the WWTP are designed. However, when the models are to be used to enable
better operational control of available detention basins, predictions of the was-
tewater flow to the WWTP are required. When flow forecasts are available, the
models suggested can be used to predict the pollutant load with the same time
horizon as the flow predictions.

With degrees of explanation (multiple correlation coefficients)R2 = 0.76 and
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Figure 2. The pollutant flux modelled as a diurnal profile. Solid lines: mea-
sured flux, dashed lines: modelled flux.
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Figure 3. The pollutant flux modelled as proportional to the flow. Solid lines:
measured flux, dashed lines: modelled flux.



UrbanWater, 1(1), PP. 71–78, 1999 99

Date (1998)

C
O

D
 fl

ux
 (

kg
 O

2 
/ h

)

0
20

0
60

0
10

00
14

00

11 Apr 16 Apr 21 Apr 26 Apr 01 May 06 May 11 May

Date (1998)

S
S

 fl
ux

 (
kg

 S
S

 / 
h)

0
20

0
60

0
10

00

11 Apr 16 Apr 21 Apr 26 Apr 01 May 06 May 11 May

Figure 4. The pollutant flux modelled as a diurnal profile plus a term propor-
tional to the flow. Solid lines: measured flux, dashed lines: modelled flux.
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Figure 5. The pollutant flux modelled by a dynamic grey-box model. Solid
lines: measured flux, dashed lines: modelled flux.
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Figure 6. Estimated depositions of COD and SS in the sewer and on impervi-
ous areas.

R2 = 0.61 for the dynamic grey-box COD and SS flux models, respectively,
there are still variations in the data that are not described by the models. Hence,
there is still a need to develop better models. Improvements could be a sep-
aration into dry weather models and storm models, and the introduction of
limitations on the depositions in the sewer and on impervious areas. However,
introduction of limitations on the depositions will require measurement data
that covers the limits sufficiently to estimate the parameters that describe the
bounds.
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Abstract

The use of aeration tank settling during high hydraulic loads on large wastewa-
ter treatment plants has previously been demonstrated as a reliable technique
and proven valuable. The paper proposes a simplified deterministic model to
predict the efficiency of the method. It is shown that a qualitatively correct
model can be established. The simplicity of the model allows for on-line iden-
tification of the necessary parameters, so that no maintenance is needed for use
of the on-line model for control.

The practical implementation on 3 plants indicates that implementation of
STAR with ATS control gives 50% increase of plant capacity for 3% extra
cost.

Key words: Wastewater treatment, modelling, on-line control, hydraulic capa-
city, stormwater control, activated sludge.

Introduction

The settling in aeration tanks is often a problem in activated sludge wastewater
treatment plants. Especially for low loaded plants or during anoxic conditions
during nutrient removal correct mixing intensity is important. Traditionally,
these problems are solved by introduction of mixers or by installation of excess
aeration capacity in the tanks to assure homogeneity in the reaction tanks.

During recent years more controllers are accepting partly settling in the ae-
ration tanks during intermitting aeration, as presented at IAWQ ICA Work-
shop 1997. Other controls are today emphasizing on intentional settling in the
aeration tank (Bundgaard et al., 1996) to increase the hydraulic capacity of
the plant. AsWett et al.(1997) demonstrated, introduction of mixing in the
denitrifying clarifiers has no effect on the reaction rates. Similar experiences
have been reported in aeration tanks with intentional settling (Bundgaard et al.,
1996).

As there is no negative effect on reaction rates by no mixing and the hydraulic
capacity can be increased, there is a potential to save energy and improve plant
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capacity by use of aeration tank settling in activated sludge plants. Thus, many
mixers might be saved in future plants.

To be able to design the controllers for these processes, it is necessary to be able
to predict when and how much sludge settling will occur in the tanks during
stop of aeration. Then it is possible to model the effect on transport of sludge
to clarifiers, and hence the hydraulic capacity of the plant can be calculated. To
adjust the capacity to predicted needs, the periods of settling can be adjusted,
and in alternating plants the settling can be further expanded by intermediate
phases where settling is taking place in the whole volume as shown in Figure
1.

Figure 1. Dynamic phase length control schemes for STAR control.

In the following a simple model for settling in aeration tanks is proposed. The
model is a little different for alternating and recirculating systems. However,
the aim is to describe a model, which can be used for design and adjustments
of the control strategies and which can obtain 30 – 100 percent extension of
the hydraulic capacity for the plants.
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Theory for modelling

The sludge settling starts when the turbulence in the tanks is reduced after
stopping both aeration and mixing. When the settling starts, the formula for
hindered settling dependent on the mixed liquor suspended solids, MLSS, in
the interface is proposed as a two-layer model with dynamic layer heights. The
upper layer is assumed to be clear water while the lower layer is assumed to
contain all the initial sludge content which concentrates as the sludge layer
height decreases during the settling period.

The settling rate model for sludge proposed byVesilind (1979) and quantified
by Härtel and Pöpel(1992) is used:

vSS = vS,0e−nvSS (1)

where:

vSS andvS,0 are the actual and the unhindered settling rate of sludge particles,
respectively, andnv is an empiric concentration effect factor.

The modelling of the sludge blanket depth,dSB, can be done by integration of
the settling rate over time:

dSB =
∫ t

t0

vSSdt (2)

The relevant sludge concentration starts at the MLSS value in the aerated tank
and increases during the settling as sludge concentrates towards the bottom.

The starting timet0 is when the turbulence is reduced.

To predict the outlet SS from the tanks in non-ideal full-scale plants the details
of the inlet, outlet and tank geometrical design must be included in the model.

As a first simple model for SS in the top weir outlet of the aeration tank and
inlet to the clarifier,SS out, can be made as a calculation of suction depth,dsuct.
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Figure 2. Parameter definition for modelling effluent SS.

The suction depth is predicted for the specific outlet and the concentration is
modelled as:

SS out =
dsuct− dSB

dsuct
SS bl (3)

Of course, the suction depth is varying with the flow rate, and the distribution of
the actual flow is not proportional with the depth. These unmeasurable factors
are modelled by data fitting to full-scale measurements.

Physical model

Alternating systems

In the alternating system typically two tanks are available. As a rule only the
last tank before the clarifier is relevant for settling. The inlet will normally be
from an adjoining tank as seen in Figure3, and the inlet velocity and distribu-
tion is of paramount importance for the efficiency of the settling as well as the
outlet distribution as it is in other clarifier designs.
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Figure 3. Physical description of outlet modelling in settling aeration tanks in
an alternating plant.

Apart from simple ideal settling the model must include the reduced efficiency
of the aeration tank as clarifier because inlet and outlet is not optimal. Further
the storage of sludge on the bottom will limit the capacity for settling after
some time in the same phase, as there is no sludge removal from the aeration
tanks during the phases.

The inlet turbulence must be adequate enough to distribute the incoming wa-
ter sufficiently in the tank under settling operation to avoid short-circuiting.
For the modelling, the limitation in settling efficiency is simplest described by
reducing the efficient volume of the aeration settling tank.

The outlet is more important for the time distribution of the aeration tank effi-
ciency for settling. The outlet is assumed to be via a weir, and the suction depth
is a function of outflow. As shown in Figure2 the concentration of sludge in
the outlet is dependent on the sludge blanket level and the SS concentration
under the sludge blanket that is sucked out in the effluent from the tank.

The sludge build-up and concentration profile on the bottom is modelled as
a single layer model, but to be able to fit the model to practical experiments
a virtual bottom is assumed, and the sludge concentration below the sludge
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blanket and the virtual bottom is assumed homogeneous.

With these assumptions we have a simple model for the concentration out of
an aeration tank at any time dependent on present and previous load and on the
period since the settling started as shown in Figure7.

Recirculating plants

In recirculating plants the settling can take place in the effluent part of the
aeration tank. Apart from the stopping of the aerators in intervals, the priority
can be to stop the effluent end aeration grids as shown in Figure4 to obtain
settling in the outlet end. The return of sludge can use the existing recirculation
system.

��� �����	��
�����

�����	��������

��������� �!"!

Figure 4. Physical description of outlet modelling in a recirculating plant.
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Plant capacity

The capacity of the clarifiers is often the limiting factor during rain events.
In stationary situations, the capacity of the clarifiers, according to normal de-
sign rules (like the ATV rules), is inverse proportional to the sludge volume
index,SVI , and the concentration of suspended solids,SS . Billmeier (1986)
describes the steady state hydraulic capacity of the clarifiers as

Q =
Vclarifier

SS outSVI k
=

K

SS out
(4)

wherek is a proportionality factor, specific for a given plant design, and

K =
Vclarifier

SVI k
(5)

is a plant specific value for a given sludge quality.

Hence, at a plant with a given clarifier volume and sludge volume index, the
hydraulic capacity of the plant is inverse proportional to the suspended solid
concentration out of the aeration tank as shown above.

By introducing the aeration tank settling (ATS) operation before and during
rain, the necessary clarifier volume is reduced as illustrated in Figure5 taken
from Nielsen et al.(1996).

Practical test

To test the model, the data from a full-scale application at Aalborg East WWTP
shown in Figure6 are used.

At present this configuration is used on 3 alternating plants serving approx
700.000 pe in Scandinavia. At minor rain events the model and reality look



110 PAPER D

����
����
�
	�
���
����
��
����
��

�
��
���

����
���

�

����
�
�
��
����
���
��

�

 "
!

 "
!

#�$ "
!

% $
 "
!

&�'(*
)

(�'(�
)

+-,
.0
/214
353

6875
9;:�
6

6=<>
9<?
6

@BAD
C"
E�FH
G5G

IJAD
C"
E2F4
G5G

Figure 5. Required settler volume for two control control schemes (Nielsen
et al., 1996).



Design, Operation and Economics of Large WWTPs 111

����
����
�	�


����
����
�	��
���	
��
� ��
���	
����
����

���
���

� �	
����
����
��
��	
����
�

����
����
�� �
�	�"
!#
��$�	
���%�
���
�

&�' &�'

&�'

&)
(+
*

,

-
-

.0
/21�
3545
6�75
896�
8:3<
;�=>
893?
.A@C
B�3A
DE>FG
@5DH6�
8

IK
J�FL
FG;�
79>@L
@�75
8M
7�>DE
N"@5
DH6

O
/2=
1589
PQ6S
R9=@�
7�TU
6�D

VC
W	XY
;�35
4�X5
@�DH6

Z\
[ 1�
N�R�
>8Q>
D^]

_`
B�@�
a�1�
=>3Y
@�DE
>;�7b
DH@Q
7QT

c�d

egff
hikjm
lkn

egffo
hipjm
lqn

r l�fo
hipjm
lqn

s
t

t

u u

Figure 6. Description of the Aalborg East alternating WWTP.
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as shown in Figure7 below. Compared to conventional extension of clarifier
volume, the use of control to extend the capacity can be achieved by typically
1/10 of the cost.

Figure 7. Measured and modelled MLSS out of the aeration tanks.

The modelled and measured MLSS out of aeration tanks during storm events
with settling in the aeration tanks are shown in Figure7.

As it can be seen the modelled MLSS is nearly 45 minutes ahead of measured
values. This is due to delay from: 1) SCADA system, 2) Rotation in horizontal
channels and 3) delay from stop of micro-turbulence after stop of aeration and
mixers, all of which are not included in the model.

Equal results are experienced from other alternating plants. Control has been
introduced on a recirculating system at the Sydkysten WWTP, but they have
not been documented on-line yet. However, it has been experienced that the
return sludge flow must be reduced proportionally by the length of the aerator
stop periods to maintain constant concentration in return sludge (Nielsen and
Önnerth, 1995), so a significant but smaller effect will be obtained.

Discussion

It is seen that the proposed model is qualitatively correct. Its quantification is
sufficient for most control, however there are some empirical constants, which
are only adjustable from practical fitting based on on-line data. Although these
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constants are explained above, as having a physical meaning, they are only
found from data fitting to experiences during rain events.

However, experiences show that the model can be transferred from one plant to
another. Only small adjustments, and update to actual MLSS concentration and
SVI is needed, hence practical experiences from one plant can be transferred
to another similar plant, and the on-line update can be obtained from the first
rain event experiences.

By use of the model and the prediction of flow from rain gauges or sewer
system it is possible to predict the needed efficiency of the ATS control and
optimize the organic versus hydraulic capacity of the plant.

Conclusion

Aeration tank settling is a robust and reliable technique, which by use of mo-
dels can be designed and controlled to perform efficiently, in alternating plants
to increase their hydraulic capacity with 30 - 100% within a few hours.

The use of the same model methodology can predict the hydraulic capacity
for recirculating plants. When further experiences of the methodology of the
settling sludge and recirculation of the sludge are collected from full-scale, the
standard design technique will be extended to cover most plug flow and other
recirculating activated sludge plants too.
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Abstract

A model of the concentrations of suspended solids (SS) in the aeration tanks
and in the effluent from these during Aeration Tank Settling (ATS) operation
is established. The model is based on simple SS mass balances, a model of the
sludge settling and a simple model of how the SS concentration in the effluent
from the aeration tanks depends on the actual concentrations in the tanks and
the sludge blanket depth.

The model is formulated in continuous time by means of stochastic differential
equations with discrete-time observations. The parameters of the model are
estimated using a maximum likelihood method from data from an alternating
BioDenipho wastewater treatment plant (WWTP).

The model is an important tool for analyzing ATS operation and for selecting
the appropriate control actions during ATS, as the model can be used to predict
the SS amounts in the aeration tanks as well as in the effluent from the aeration
tanks.

Key words: Aeration Tank Settling, mass balance, grey-box models, statistical
identification, on-line measurements.

Introduction

With the introduction of advanced optimising control systems at wastewater
treatment plants (Nielsen and Önnerth, 1995; Önnerth and Bechmann, 1995)
the demand for mathematical models of the important processes in wastewa-
ter treatment plants is increased. The Aeration Tank Settling (ATS) principle
introduces settling periods in aeration tanks of alternating plants and enables
increased amounts of suspended solids (SS) to be stored in the aeration tanks
during rain storms. ATS increases the hydraulic capacity of the WWTP, but
complicates the prediction of the SS concentration in the effluent from the ae-
ration tanks, compared to dry weather operation. During dry weather operation
the aeration tanks are fully mixed, and the SS concentrations in the effluent are
equal to the SS concentrations in the tanks, but during ATS operation the ef-
fluent comes from an aeration tank where the sludge settles. Hence, the SS
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concentrations in and out of the aeration tanks are not equal during ATS ope-
ration.

To minimize the amounts of SS in the effluent, predictive models of the SS
concentrations are needed. InNielsen et al.(1999), a model of SS in the aera-
tion tanks and in the effluent from these is proposed. The model consists of 3
submodels: 1) A simple mass balance model for the SS concentrations in the
aeration tanks, 2) a sludge settling model and 3) a model for the SS concentra-
tion in the effluent from the aeration tanks. Here, the model is reformulated by
means of stochastic differential equations, and the parameters are estimated by
a maximum likelihood method.

Vesilind(1968, 1979) proposed a sludge settling velocity model of exponential
form. During recent years, several refinements to the original model have been
proposed, see e.g.Grijspeerdt et al.(1995); Dupont and Dahl(1995); Ekama
et al. (1997). In the proposed models several layers in the settling tank are
incorporated to permit the calculation of SS profiles over the tank depth and
predict the SS concentrations in the return sludge and in the effluent from the
clarifier.

Here, the original Vesilind model combined with a simple suction depth model
is used to enable prediction of the SS concentration in the effluent from the
aeration tank. In order to make the model applicable for real time control
purposes, only two layers of variable height in the aeration tank are considered.

Dry weather and ATS operation

In an alternating WWTP, the aeration tanks are composed of pairs of inter-
connected tanks. The wastewater is directed to one of the tanks, through the
connection between the tanks and out of the second tank. In dry weather si-
tuations the tanks are fully mixed to enable optimal nutrient removal. The
incoming wastewater is directed to an aeration tank with anoxic conditions,
and thus with denitrification. The other tank from which the effluent is taken
is aerated and is hence a tank with nitrification. Depending on the state of the
processes in the aeration tanks, the flow path is changed.

During rain storms ATS operation is activated. When the WWTP is in ATS
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operation, the aeration scheme is changed so that the influent is directed to an
aerobic nitrification tank, and the effluent is taken from an anoxic denitrifica-
tion tank. When the mixers are switched off in the anoxic tank, settling occurs.
When the sludge settles in the tank that discharges to the clarifier, the SS con-
centration in the effluent is lower than the average concentration in the aeration
tank. Hereby more SS can be kept in the aeration tanks compared to dry wea-
ther operation at the same time as the SS load to the clarifier is decreased.

It is crucial that as much SS as possible is kept in the aeration tanks during the
rain storm and not transported to the clarifier, as an increased SS concentration
in the aeration tank effluent will limit the hydraulic capacity of the clarifiers,
and thus lead to an SS increase in the effluent to the receiving waters.

By introducing intermediate phases with settling and anoxic conditions in both
tanks, the SS concentrations in the effluent from the aeration tanks can be fur-
ther reduced. By proper control of the flow path and the settling, the SS con-
centration out of the aeration tanks can be optimized, so that the control does
not limit the organic capacity of the plant unnecessarily.

Based on measurements and predictions of the influent flow to the WWTP the
ATS operation is activated. The use of flow predictions makes it possible to
prepare the plant for the increased storm flow, before the storm water actu-
ally enters the WWTP. At Aalborg West WWTP, from where the data used
here originates, the influent flow prediction horizon is approximately one hour.
Before the influent flow is increased, the recirculation of sludge from the se-
condary clarifiers to the aeration tanks is increased. Hereby SS is decreased in
the clarifiers and increased in the aeration tanks. Furthermore, the hydraulic
load to the aeration tanks and clarifiers is increased. When the storm water
arrives at the plant, the recirculation flow is decreased to a lower level.

Theory

In Figure 1 the flow through the aeration tanks and clarifiers is illustrated.
The black and grey lines illustrate alternative flow paths through the aeration
tanks. The influent flow and the recirculation flow are denotedQi andQr,
respectively.Xssi, Xssr andXssoutatdenote SS concentrations in the influent,
the return sludge and the effluent from the aeration tanks to the secondary
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Figure 1. Flow path through aeration tank pair in an alternating WWTP.
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clarifers. The dynamics of the water amounts in the aerations tanks are not
considered, i.e. it is assumed that the flows to and from each of the aeration
tanks are the same (Qi + Qr). Furthermore, the SS concentration in the flow
between the two aeration tanks is assumed to be the average SS concentration
in the feeding tank. When the feeding tank is fully mixed, this assumption is
fulfilled, but when settling occurs it is an approximation.

The mass balance equations for each of the aeration tanks depend on the actual
flow path designatedfp. Whenfp = 1 the influent flow is directed to aeration
tank 1, and the effluent flow is taken from tank 2.fp is 0 when the opposite
flow path is applied. WithVat, Xssm1andXssm2denoting the volume of each
of the equally sized aeration tanks and the average SS concentrations in tank 1
and 2, respectively, the mass balance equations can be established.

Forfp = 1 the mass balance equations for the aeration tanks are:

dXssm1

dt
=
QiXssi +QrXssr− (Qi +Qr)Xssm1

Vat
(1)

dXssm2

dt
=

(Qi +Qr)Xssm1− (Qi +Qr)Xssoutat

Vat
(2)

Forfp = 0 the mass balance equations are:

dXssm1

dt
=

(Qi +Qr)Xssm2− (Qi +Qr)Xssoutat

Vat
(3)

dXssm2

dt
=

(QiXssi +QrXssr)− (Qi +Qr)Xssm2

Vat
(4)

The flow path variable can be used to combine equation (1) with (3) and equa-
tion (2) with (4) into one equation per aeration tank:

dXssm1

dt
= fp

QiXssi +QrXssr− (Qi +Qr)Xssm1

Vat

+ (1− fp)
(Qi +Qr)Xssm2− (Qi +Qr)Xssoutat

Vat

(5)

and:

dXssm2

dt
= fp

(Qi +Qr)Xssm1− (Qi +Qr)Xssoutat

Vat

+ (1− fp)
(QiXssi +QrXssr)− (Qb +Qr)Xssm2

Vat

(6)
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atd

atd dsb

dat

dsb

- ssmXX       =X     = ssslss

ssX     = 0

Figure 2. Two layer model of settling in an aeration tank.

When mixing is stopped in an aeration tank, the suspended solids settle. A
simple two layer model, where the water in the layer above the sludge blanket
is assumed to be clear water, and the layer under the sludge blanket is assumed
to contain all the SS fully mixed, is used. The settling velocity for the sludge
blanket is modelled according toVesilind (1968) as:

ddsb

dt
= V0 e−nvXsssl (7)

wheredsb andXsssl denote the sludge blanket depth and the SS concentration
in the sludge layer, respectively, see Figure2, andV0 andnv are sludge vol-
ume index (SVI ) dependent parameters. For simplicity we use the expressions
found byHärtel and Pöpel(1992):

V0 = (17.4 e−0.0113SVI +3.931)
m
h

nv = (−0.9834 e−0.00581SVI +1.043)
l
g

(8)

If sludge blanket depth measurements are available,V0 andnv can be estima-
ted.

As the volume of the sludge layer is(dat− dsb)Vat/dat, the average SS concen-
tration in the sludge layer is:

Xsssl =
dat

dat− dsb
Xssm (9)

whereXssm is the average SS concentration in the aeration tank.
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When the tank is fully mixed, the sludge blanket depth is 0. When mixing is
switched ondsb tends towards zero, which is modelled by:

ddsb

dt
= − 1

τmix
dsb (10)

whereτmix is a mixing capacity dependent time constant.

Introduce the mixing signalsm1 andm2 for aeration tank 1 and 2, respectively.
The mixing signals are 1 when the corresponding aeration tank is mixed and 0
otherwise. The signals can then be used to combine the settling equation (7)
with the mixing equation (10) for each of the aeration tanks:

ddsb1

dt
= l(m1)(− 1

τmix
dsb1)

+ (1− l(m1))V0 e−nvXsssl1

(11)

and:

ddsb2

dt
= l(m2)(− 1

τmix
dsb2)

+ (1− l(m2))V0 e−nvXsssl2

(12)

Here, the aeration tank number is introduced on the sludge blanket depth and
average SS concentration variables so thatdsb1, dsb2, Xsssl1andXsssl1desig-
nates the sludge blanket depths and average SS concentrations in aeration tank
1 and 2, respectively.

The SS concentration in the effluent from an aeration tank is modelled as a
function of the suction depth,dsuctand the SS concentration in the sludge layer:

Xssoutat=

{
dsuct−dsb
dsuct

Xsssl for dsuct≥ dsb

0 otherwise
(13)

The suction depth is expected to depend on the flow and is modelled as:

dsuct = d0

(
Qi +Qr

Q0

)bsuct

(14)

whered0 andbsuct are positive parameters andQ0 = 1000 m3/h. Combining
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Figure 3. The logistic function fora = 0 and differentb values.

(9) and (13) yields

Xssoutat=
dsuct− dsb

dsuct

dat

dat− dsb
Xssm

=
1− dsb/dsuct

1− dsb/dat
Xssm for dsuct> dsb

(15)

To enable smooth changes inXssoutatwhen the pointdsuct = dsb is passed a
smooth threshold function is introduced. Here, the logistic function:

l(x) = l(x, a, b) =
1

1 + e
a−x
b

(16)

is used. Forx = a the logistic function is 0.5, i.e. the value ofa determines the
midpoint of the switch between 0 and 1. By appropriate selection ofa andb the
change between 0 and 1 ofl(x, a, b) can be controlled. In Figure3 the logistic
function is shown fora = 0 and 3 different values ofb. In the followingb > 0
is assumed.

The logistic function (16) is used to calculateXssoutatwhile the flow path vari-
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able is used select the discharge tank:

Xssoutat= fp

(
l(dsuct− dsb2)

1− dsb2/dsuct

1− dsb2/dat
Xssm2

)
(1− fp)

(
l(dsuct− dsb1)

1− dsb1/dsuct

1− dsb1/dat
Xssm1

) (17)

As dsuct is only dependent on the flow, there is no need to consider different
suction depths for each of the aeration tanks.

In order to use a matrix notation, introduce the state vectorX, the input vector
U and the observation vectorY :

X = [Xssm1, Xssm2, dsb1, dsb2]′

U = [fp,m1,m2, Xssr, Qi , Qr]′

Y = [Xssm2, Xssoutat]′
(18)

Here, it is assumed that aeration tank 2 is equipped with a suspended solids
sensor.

By use of the vector functionf(X,U , t) the mass balances and sludge blanket
depth equations can be expressed in a vector differential equation:

dX(t)
dt

= f(X,U , t) (19)

wheref(X,U , t) is easily constructed from equations (5)–(12) and (18).

The measurements are described by the observation equation

Y (t) = h(X,U , t) (20)

whereh(X,U , t) is constructed from equations (17) and (18).

To count in uncertainties in the model formulation and to enable use of the
maximum likelihood parameter estimation method, stochastic noise terms are
introduced. Hence, equation (19) turns into a stochastic differential equation,
where the continuous time equations describing the mass balances and the
sludge blanket depths in the aeration tanks can be written as the so-called Itô
differential equation (Øksendal, 1995):

dX(t) = f(X,U , t) dt+G(X,U , t) dw(t) (21)
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where the stochastic processw(t) is assumed to be a standard vector Wiener
process (see e.g.Kloeden and Platen(1995)). The functionG(X,U , t) de-
scribes any state, input or time dependent variation related to how the variation
generated by the Wiener process enters the system.

Here,G is assumed to be a constant diagonal matrix:

G(X,U , t) = G =


σss 0 0 0
0 σss 0 0
0 0 σsb 0
0 0 0 σsb

 (22)

Hereby, the covariance ofG dw(t) becomes

Σ = GG′ =


σ2

ss 0 0 0
0 σ2

ss 0 0
0 0 σ2

sb 0
0 0 0 σ2

sb

 (23)

The observation uncertainties are included in the observation equation:

Y (t) = h(X,U , t) + e(t) (24)

where the terme(t) is the measurement error, which is assumed to be a zero
mean Gaussian white noise sequence independent ofw(t) and with covariance
matrix:

V (e(t)) =
[
σ2

ss2(t) 0
0 σ2

ssoutat(t)

]
(25)

Estimation method

The method used to estimate the parameters of the model (21)–(22) and (24)
is a maximum likelihood method for estimating parameters in stochastic diffe-
rential equations based on discrete-time data given by (24). For a more detailed
description of the method refer toMadsen and Melgaard(1991) or Melgaard
and Madsen(1993).

All the unknown parameters, denoted by the vectorθ, are embedded in the
continuous-discrete time state space model (21) and (24).
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The measurements are given in discrete time, and, in order to simplify the
notation, it is assumed that the time indext belongs to the set{0, 1, 2, ..., N},
whereN is the number of observations. Introducing

Y(t) = [Y (t),Y (t− 1), . . . ,Y (1),Y (0)]′ (26)

i.e. Y(t) is a vector containing all the observations up to and including time
t, the likelihood function is the joint probability density of all the observations
assuming that the parameters are known, i.e.

L′(θ;Y(N)) = p(Y(N)|θ)
= p(Y (N)|Y(N − 1),θ)p(Y(N − 1)|θ)

=
( N∏
t=1

p(Y (t)|Y(t− 1),θ)
)
p(Y (0)|θ)

(27)

where successive applications of the ruleP (A∩B) = P (A|B)P (B) are used
to express the likelihood function as a product of conditional densities.

In order to evaluate the likelihood function it is assumed that all the conditio-
nal densities are Gaussian. In the case of a linear state space model, it is easily
shown that the conditional densities actually are Gaussian (Madsen and Mel-
gaard, 1991). In the more general non-linear case, as described by (21) and
(24), the Gaussian assumption is an approximation.

The Gaussian distribution is completely characterized by the mean and covari-
ance. Hence, in order to parameterize the conditional densities in (27), we
introduce the conditional mean and the conditional covariance as

Ŷ (t|t− 1) = E[Y (t)|Y(t− 1),θ] and

R(t|t− 1) = V [Y (t)|Y(t− 1),θ]
(28)

respectively. It should be noted that these correspond to the one-step prediction
and the associated covariance, respectively. Furthermore, it is convenient to
introduce the one-step prediction error (or innovation)

ε(t) = Y (t)− Ŷ (t|t− 1) (29)

For calculating the one-step prediction and its variance, an iterated extended
Kalman filter is used. The extended Kalman filter is simply based on a line-
arization of the system equation (21) around the current estimate of the state
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(seeGelb (1974)). The iterated extended Kalman filter is obtained by local
iterations of the linearization over a single sample period.

Using (27) – (29) the conditional likelihood function (conditioned onY (0))
becomes

L(θ;Y(N))

=
N∏
t=1

(
(2π)−m/2 detR(t|t− 1)−1/2 exp(−1

2ε(t)
′R(t|t− 1)−1ε(t))

) (30)

wherem is the dimension of theY vector. Traditionally the logarithm of the
conditional likelihood function is considered

logL(θ;Y(N))

= −1
2

N∑
t=1

(
log detR(t|t− 1) + ε(t)′R(t|t− 1)−1ε(t)

)
+ const

(31)

The maximum likelihood estimate (ML-estimate) is the setθ̂, which maxi-
mizes the likelihood function. Since it is not, in general, possible to optimize
the likelihood function analytically, a numerical method has to be used. A
reasonable method is the quasi-Newton method.

An estimate of the uncertainty of the parameters is obtained by the fact that the
ML-estimator is asymptotically normally distributed with meanθ and covari-
ance

D = H−1 (32)

where the matrixH is given by

{hlk} = −E
[

∂2

∂θl∂θk
logL(θ;Y(N))

]
(33)

An estimate ofD is obtained by equating the observed value with its expecta-
tion and applying

{hlk} ≈ −
(

∂2

∂θl∂θk
logL(θ;Y(N))

)
|θ=θ̂

(34)

The above equation can be used for estimating the variances of the parameter
estimates. The variances serves as a basis for calculating t-test values for tests
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under the hypothesis that the parameter is equal to zero. Finally, the correla-
tion between the parameter estimates is readily found based on the covariance
matrixD.

Unreliable measurements are handled by adjusting the variance ofe(t). When
an unreliable observation is encountered, the corresponding observation vari-
ance is considerably increased. As the extended Kalman filter uses the ob-
servation noise variance and the intensity of the Wiener process, that count for
state noise, the unreliable observations are taken into account by the estimation
procedure.

Results and discussion

Aalborg West WWTP, from where the data used for the estimations originates,
has three aeration tank pairs, which are controlled in an identical way, except
for a time delay between the tank pairs. The master tank pair consists of aera-
tion tanks 5 and 6, of which tank 6 is equipped with an SS sensor. The flow
path and mixing of tanks 3 and 4 are delayedTd = 12 min in relation to tanks
5 and 6, and tank 1 and 2 are delayed furtherTd. To include all 6 aeration tanks
in the model, it is extended with equations for the 4 additional tanks. The flows
to and from each tank pair are reduced to a third of the total flows, and the time
delay between the tank pairs is taken into account in the flow path and mixing
signals to the respective tank pairs. The resulting SS concentration out of the
aeration tanks is the average of the SS concentrations out of the 3 tank pairs.
The Aalborg West WWTP model is thus a 12 state non-linear model with 2
observations,Xssm6andXssoutat.

The measurements of the average SS concentration in aeration tank 6 are only
reliable when the tank is fully mixed. This is taken into account by adjusting
the variance ofe(t) according to the mixing of aeration tank 6. When the tank
is not mixed,σ2

ss6(t) is large (ideally∞) compared to the value ofσ2
ss6(t) when

the tank is mixed.

Aalborg West WWTP is equipped with a STAR (Superiour Tuning And Re-
porting) control system (Nielsen and Önnerth, 1995; Önnerth and Bechmann,
1995), which optimizes the operation of the plant. In the STAR system, mea-
surements are fetched and control actions are computed every 6 minutes. This
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turned out to be a too short sampling time for the estimation procedure, hence,
the data was re-sampled to a longer sampling period. Furthermore, it turned
out that there was a significant time delay between the input variables (the flow
direction, the mixing signals and the flows and concentrations to the aeration
tanks) and the output variables (SS concentrations in aeration tank 6 and out
of the aeration tanks). The time delay was found to be 0.8 h, and the new
sampling interval selected was 0.2 h.

The parameters of the model were estimated on one data set and the resulting
model was cross validated on another data set. It was not possible to estimate
the sludge settling model parametersV0 andnv and the parameters of the suc-
tion depth modeld0 andbsuct simultaneously. This is due to the fact that these
two sub-models are closely correlated, as a change in the sludge settling model
will be compensated by an equivalent change in the suction depth model. The
SVI for the estimation data set was 142, hence the sludge settling parameters
found from (8) are

V0 = 7.43 m/h and nv = 0.612 m3/kg SS (35)

The SVI for the validation data set was 177, which gives the corresponding
sludge settling parameters

V0 = 6.29 m/h and nv = 0.691m3/kg SS (36)

By inspecting the data before the estimation was carried out, systematic errors
in the SS concentration measurements were observed. As it is not possible
from the available measurements to detect which of the measurements that
are correct, it was decided to useXss6 as the reference. The errors on the
measurements ofXssoutatwere included in the model as offset errors, even
though other methods could be applied. For the errors in the return sludge
measurements both an additive and a multiplicative form were tried out. It
was found that both types gave similar results, and the multiplicative form was
used in the final estimations. The bias onXssoutatdesignatedXssout,band the
factor onXssr designatedXssr,f were estimated simultaneously with the other
parameters.

The influent SS concentrationXssi was sought estimated as constant during the
period considered. This parameter was, however, found to be insignificant, and
therefore excluded from the final estimation.

The estimated parameters as well as their estimated standard deviations are
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shown in Table1. All the parameters exceptσ2
ssoutatare estimated with small

standard deviations. The estimate ofσ2
ssoutatis thus uncertain.

The measured and modelled SS concentrations are shown in Figures4 and5,
for a part of the estimation data set and the validation data set, respectively.
The mixing signal for aeration tank 6 is included in theXss6graphs to indicate
the validity of theXss6measurements, as these are only reliable when mixing
is on. Note that the modelled SS concentrations are simulations based only
on the input variables to the model, and not one-step ahead predictions, which
use the measurements of the output variables at every time step to predict the
output at the next time step.

For the validation data set theV0 andnv parameters for bothSVI = 142
(the estimation data set value) andSVI = 177 (the validation data set value)
were tried. The best result was obtained with the parameter values for the
estimation data set, hence, these values were used to make the graphs. The
fact that the values ofV0 andnv for the estimation data set performed better
with the validation data set indicates that the sludge settling model, the suction
depth model and theXssoutatmodel are interdependent. These should thus be
regarded as a single sub-model, and not independent sub-models. The model
is found to perform well as regards the SS concentrations in aeration tank 6
for both the estimation data set and the validation data set. The simulated
SS concentrations in the effluent from the aeration tanks are not as good for
the validation data set as for the estimation data set. This indicates that the
combined model consisting of the sludge settling model, the suction depth
model and theXssoutatmodel could be refined.

The estimation method relies on the assumption that the observation noise is
white. The validity of this assumption is checked by use of cumulative residual
periodograms, see Figs.6 and7. As only the observations ofXss6 in aerated
periods are reliable, the non-aerated periods result in residuals that can not
be considered to be generated by a white noise process. Hence, the cumula-
tive residual periodograms are shown only for theXssoutatobservations. The
confidence limits for the periodograms are calculated using the Kolmogorov-
Smirnov test principle (Kendall and Stuart, 1979; Box and Jenkins, 1976). As
the periodograms are between the confidence limits, theXssoutatresiduals can
be considered to be white noise. Note that the confidence band for the valida-
tion data is wider than for the estimation data. This is caused by the fact that
the estimation data set contains more observations than the validation data set.
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Conclusions

A model for the SS concentrations in and out of the aeration tanks in an alter-
nating WWTP is proposed, and the parameters are estimated using the maxi-
mum likelihood method.

The estimated model shows good agreement between simulated and measured
SS concentrations in the aeration tanks and in the effluent from these at Aal-
borg West WWTP. However, improvements are still possible. The sub-models
for the sludge settling velocity, the suction depth and the SS concentration out
of the aeration tanks are subjects for refinements, and the model should be
tested under conditions with more flow variation as well as at other WWTPs.
Furthermore, the inclusion of the secondary clarifiers in the model is an im-
portant improvement, as the objective is to keep the effluent to the receiving
waters to a minimum.

Due to time delays in the aeration tanks the model simulations are 0.8 h ahead
of the measurements. Combined with an influent flow forecast horizon of ap-
proximately 1 h, the SS concentrations out of the aeration tanks can be pre-
dicted almost 2 h ahead. This horizon is considered to be sufficient for select-
ing the optimal control action.

The proposed model is a valuable tool for designing control algorithms for
ATS. By applying the models, it is possible to forecast the SS concentration
in the effluent from the aeration tanks. The predictions can be used to choose
the best control action, i.e. whether to change the flow direction and switch
aeration and mixing on or off, within the limitations, caused by the nutrient
removal processes.
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Abstract

Aeration Tank Settling (ATS) operation is introduced at alternating wastewa-
ter treatment plants (WWTPs) to increase the hydraulic capacity during rain
storms. A recently developed dynamic grey-box model of ATS as well as a dy-
namic model of dry weather operation is used to quantify the benefits of ATS
operation in terms of increased hydraulic capacity on a large Danish alternating
Bio Denipho WWTP.

A real time control algorithm for optimal selection of operating mode based on
model predictions of the SS concentrations in the aeration tanks is proposed.

The economic value of ATS operation is estimated by a calculation of the price
of a detention basin capable of handling nearly the same amount of water as
the increased hydraulic capacity entails.

Key words: Aeration Tank Settling, model based predictive control, grey-box
models

Introduction

In an alternating wastewater treatment plant (WWTP) the aeration tanks are
composed of pairs of interconnected tanks. The influent to the aeration tanks
is directed to one of the tanks, through the connection between the tanks and
out of the second tank to the secondary clarifier. During dry weather peri-
ods, the tanks are always fully mixed to enable optimal nutrient removal. The
tank which receives the incoming wastewater is in anoxic denitrification mode,
while the other tank, which delivers effluent to the secondary clarifier, is oper-
ated in aerobic nitrification mode.

During rain storms, the wet weather flow often exceeds the capacity of the
clarifier, and the usual approach to this situation is to store the excess water
in detention basins and/or bypass the biological treatment part of the WWTP.
Another approach is to handle the excess water in the biological part of the
WWTP by increasing the secondary clarifier volume, e.g. by using available
storm water tanks for sedimentation (Carrette et al., 1999). Yet another way to
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Figure 1. Flow path through aeration tank pair in an alternating WWTP.
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increase the hydraulic capacity of the biological treatment during rain storms
is to introduce aeration tank settling (ATS) operation1 (Bundgaard et al., 1996;
Nielsen et al., 1996, 1999).

When ATS is active, the aeration scheme is changed, so that the aeration tank
that receives influent is aerated and the other tank not. By stopping the mixers
in the non aerated tank, sludge settling is made possible, which enables an
increased amount of SS to be held in the aeration tanks. Hereby, the SS load
to the secondary clarifier can be reduced, and hence the hydraulic capacity
increased. The effect of ATS can be increased by introducing an intermediate
phase with settling periods in the tank that receives influent, to start the sludge
settling before the flow path is switched. ATS operation thus consists of the
four phases illustrated in Figure2.

The benefits of ATS are better wastewater treatment during wet weather pe-
riods and economics compared to building storm water tanks (Boonen et al.,
1999).

When a rain storm can be predicted ahead of the arrival of the storm water
at the WWTP, the prediction horizon can be used to transport SS from the
secondary clarifer to the aeration tanks, and hereby further increase the effect
of ATS control.

The selection of the lengths of the periods with aeration in one of the tanks
(main phases) and the periods with no aeration at all (intermediate phases) du-
ring ATS is a trade off between two objectives: 1) to keep as much suspended
solids in the aeration tanks as possible, and 2) to obtain optimal aeration capa-
city. Long main and intermediate phase lengths fulfil the first objective, while
shorter main phases and no intermediate phases satisfy the second objective.
Hence, it is important to choose the phase lengths to ensure that the needed
hydraulic capacity is available with minimum limitation of aeration capacity.
To utilize the available hydraulic capacity of a given plant with given sludge
characteristics and sludge amounts, the sludge storage capacity of the clarifier
must be used. It is assumed that the sludge storage capacity can be quantified
in terms of how much sludge from the aeration tanks that can be stored in the
clarifier without limiting the hydraulic capacity.

1ATS is patented by Krüger A/S
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Theory

A grey-box model of the suspended solids (SS) concentrations in and out of
the aeration tanks of an alternating WWTP during ATS operation has recently
been developed (Bechmann et al., 1999c; Nielsen et al., 1999). The model
consists of 3 submodels: 1) A simple mass balance for the SS concentrations
in the aeration tanks, 2) a sludge settling model, and 3) a model for the SS
concentration in the effluent from the aeration tanks.

In Figure1 an aeration tank pair composed of the aeration tanks AT1 and AT2
as well as the secondary clarifier is illustrated. The mean SS concentrations
in AT1 and AT2 are designatedXssm1andXssm2, whileXssi, XssoutatandXssr

denote the SS concentrations in the incoming wastewater, in the effluent from
the aeration tanks to the secondary clarifer, and in the return sludge flow, re-
spectively.Qi , Qr, andQw, denote the incoming wastewater flow, the return
sludge flow and the excess sludge flow, respectively.

When the incoming wastewater is directed to AT1, and the effluent is taken
from AT2, the mass balance equations are:

dXssm1

dt
=
QiXssi +QrXssr− (Qi +Qr)Xssm1

Vat
(1)

dXssm2

dt
=

(Qi +Qr)Xssm1− (Qi +Qr)Xssoutat

Vat
(2)

whereVat is the volume of each of the equally sized aeration tanks.

For the opposite flow direction, the mass balance equations are

dXssm1

dt
=

(Qi +Qr)Xssm2− (Qi +Qr)Xssoutat

Vat
(3)

dXssm2

dt
=

(QiXssi +QrXssr)− (Qb +Qr)Xssm2

Vat
(4)

The sludge settling in an aeration tank is modelled by a simple two layer model,
where the layer above the sludge blanket is assumed to be clear water, and the
layer under the sludge blanket contains all the SS fully mixed, see Figure3.
The sludge blanket settling velocity is modelled according toVesilind (1968):

ddsb

dt
= V0 e−nvXsssl (5)
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Figure 3. Two layer model of settling in an aeration tank.

wheredsb andXsssl denote the sludge blanket depth and the SS concentration
in the sludge layer, respectively.

The average SS concentration in the sludge layer is

Xsssl =
dat

dat− dsb
Xssm (6)

whereXssm is the average SS concentration in the aeration tank anddat is the
aeration tank depth.

The SS concentration in the effluent from the aeration tank is assumed to de-
pend on the suction depthdsuct, and theXsssl:

Xssoutat=
dsuct− dsb

dsuct
Xsssl (7)

wheredsuct is flow dependent and modelled as:

dsuct = d0

(
Qi +Qr

Q0

)bsuct

(8)

whered0 andbsuct are positive parameters, andQ0 = 1000 m3/h is a normali-
zing constant.

Introduce the loss of mean SS concentration in the aeration tanks during the
period fromt = t0 to t = t1:

∆ssat= X̄ssm(t0)− X̄ssm(t1) (9)

where

X̄ssm(t) =
Xssm1(t) +Xssm2(t)

2
(10)
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is the average SS concentration in the aeration tanks at timet.

When it is assumed that the SS amounts that enter the aeration tanks from
the influent and that come from sludge growth are equal to the SS amounts
removed from the system with the excess sludge and with the effluent to the
recepient, the increase in the SS concentration in the secondary clarifier is:

∆sssc=
Vat

Vsc
∆ssat (11)

whereVat andVsc denote the total volume of the aeration tanks and the secon-
dary clarifer, respectively.

From (11) it can be seen that∆ssatis a measure of the increase of SS in the se-
condary clarifier. At a given operating point (return sludge flow, effluent flow,
sludge characteristcs etc.) the secondary clarifier is only capable of handling a
limited increase of SS, before the SS concentration in the effluent to the receiv-
ing waters is increased to an unacceptable level. Hence,∆ssatmust be limited
to a certain level, dependent on the WWTP considered and its operational state.

Dry weather operation

During dry weather operation the aeration tanks are fully mixed, hence,Xssoutat

= Xssm2when the effluent is taken from aeration tank 2, andXssoutat= Xssm1

when the opposite flow path is used. Thus, when the wastewater is directed to
aeration tank 1 and effluent is taken from aeration tank 2, the dry weather mass
balance equations are

dXssm1

dt
=
QiXssi +QrXssr− (Qi +Qr)Xssm1

Vat
(12)

dXssm2

dt
=

(Qi +Qr)Xssm1− (Qi +Qr)Xssm2

Vat
(13)

Note that the mass balance equations for AT1 during ATS operation (equation
(1)) and during dry weather operation (equation (12)) are the same, but that the
corresponding equations for AT2 (equations (2) and (13)) are not the same.

When it is assumed that the SS concentrations in the two aeration tanks as well
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as their time derivatives are approximately equal, ie:

Xssm = Xssm1= Xssm2 (14)

dXssm

dt
=

dXssm1

dt
=

dXssm2

dt
(15)

the addition of (12) and (13) yields

dXssm

dt
=
QiXssi +QrXssr− (Qi +Qr)Xssm

2Vat
(16)

which for constantQi ,Qr,Xssi,Xssr andVat has the solution

Xssm(t) =
QiXssi +QrXssr

Qi +Qr

(
1− e−

Qi+Qr
2Vat

(t−t0)
)

+Xssm(t0) e−
Qi+Qr

2Vat
(t−t0)

(17)

Hence, the loss of SS concentration in the aeration tanks during dry weather
operation during the period fromt = t0 to t = t1 is

∆ssat= Xssm(t0)−Xssm(t1)

=
(
Xssm(t0)− QiXssi +QrXssr

Qi +Qr

)(
1− e−

Qi+Qr
2Vat

(t1−t0)
)

(18)

The steady state solution to (16) is easily found to be

Xssm,ss=
QiXssi +QrXssr

Qi +Qr
(19)

with the corresponding SS concentration loss

∆ssat= Xssm(t0)− QiXssi +QrXssr

Qi +Qr
(20)

Choice of operating mode

During a storm situation the main objective is to avoid sludge flight to the re-
cepient, and the secondary objective is to enable optimal biological treatment
of the incoming wastewater. Hence, the operating mode that prevents unac-
ceptable SS concentrations in the effluent and enables best possible biological
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treatment should be chosen. This choice can be made on the basis of pre-
dictions of the loss of SS concentration in the aeration tanks for the possible
operating modes. The model of ATS operation can be used to predict the loss
by simulation for a sufficient time to reach steady state conditions, while equa-
tion (20) is used to predict the dry weather operation loss. When the acceptable
loss for the WWTP considered is known, e.g. from experience from previous
rain storms, the optimal operating mode can be selected. As the SS concen-
tration loss predictions can be computed offline for different combinations of
flows, concentrations and operating modes, the real time control algorithm can
be established by feedback fromQi ,Qr,Xssr and the initial SS concentrations
in the aeration tanks, e.g. implemented in a look-up table.

Results and discussion

The Aalborg West WWTP in Northern Jutland, Denmark, was used to estimate
the model for the ATS operation (Bechmann et al., 1999c), and hence it is used
for the analyses carried out here.

The maximum loss of average SS concentration in the aeration tanks during
dry weather operation as well as ATS operation was calculated for varying
flowsQi andQr, varying return sludge concentrationsXssr and varying initial
average concentrations in the aeration tanks. The simulations of ATS operation
were run for a time span of approximately 24 hours in order to enable the ATS
operation to reach steady state conditions.

In Bechmann et al.(1999c) it was found that the SS concentration of the was-
tewater entering the aeration tanks was insignificant. ThereforeXssi was fixed
at 0 in all the computations.

In Figure4 the SS concentration losses for different operating modes are shown
as a function of the influent flow. The initial SS concentration in the aeration
tanks wasX̄ssat = 4 g/m3, the return sludge concentration wasXssr = 10 g
SS/m3, and the return flow wasQr = 2500 m3/h, as these values are typical
for a rain situation at Aalborg West WWTP. At this plant, the acceptable loss
is empirically found to be∆ssat= 0.7 g SS/m3, hence a horizontal line for this
value is included in the figure. Note that the influent flow varies from low dry
weather flow to very strong storm flow (2000 m3/h to 16,000 m3/h), and that
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Figure 4. Loss of SS concentration in the aeration tanks for different operating
modes. Mpl and Ipl denote the lengths of the main and intermediate phases of
ATS operation, respectively.

the upper physical limit of the plant is approximately 12,000 m3/h. When the
flow exceeds this limit, the WWTP is flooded.

The uppermost curve in Figure4 is the dry weather operation curve. The 5
curves below are all for ATS operation, with increasing ATS efficiency to-
wards the lowest curve. Each of the 5 ATS curves represents an ATS operating
mode, in terms of lengths of main and intermediate phases. The ATS efficiency
increases with increasing phase lengths. The first three ATS curves represent
operating modes with no intermediate phases but with increasing main phase
lengths. In the last two ATS operation curves, intermediate phases are intro-
duced. It is clearly seen that the introduction of a 0.5 hour intermediate phase
increases the efficiency considerably. However, 1 hour intermediate phases do
not result in the same increase as the first 0.5 hour intermediate phases. This is
because the sludge settles faster in the first 0.5 hour of a settling phase than in
the next 0.5 hour, as the SS concentration in the sludge layer increases as the
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sludge settles, c.f. equations (5) and (6).

When the operating mode is to be chosen, the algorithm is to select the opera-
ting mode with the uppermost curve in Figure4, but not above the∆ssat= 0.7
g SS/m3 limit. Then the best possible biological treatment without sludge flight
will be performed.

From Figure4 it is seen that the hydraulic capacity of Aalborg West WWTP
during dry weather operation is 6000 m3/h. The lightest version of ATS ope-
ration with a main phase length of 1 hour and no intermediate phase increases
the hydraulic capacity to 8000 m3/h and the strongest version of ATS opera-
tion with a 2-hour main phase and a 1-hour intermediate phase increases the
hydraulic capacity to beyond 16,000 m3/h, which is far more than the physical
limit of 12,000 m3/h.
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Figure 5. Results from 2 different weekends. Left plot: a dry weather weekend.
Right plot: a wet weather weekend.

In Figure5 measurements from two weekends are shown. To the left is a dry
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weather weekend with dry weather operation of the plant and to the right a wet
weather example with ATS operation during some of the period (from Octo-
ber 2nd 10:14 to October 3rd 14:08, and October 3rd 11:44 to 14:08). The
algorithm controlling the phase lengths of ATS operation is an earlier devel-
oped version than the one proposed here. The uppermost graphs show the
influent flow to the aeration tanks as well asQbypass, which is the part of the
total inflow to the WWTP that bypasses the biological treatment. In the middle
graphs, the SS concentration in the effluent from the aeration tanks and in the
effluent from the WWTP are shown. In the bottom graphs the ammonia and
nitrate concentrations in aeration tank 6, as well as the total nitrogen concen-
tration (the sum of the ammonia and nitrate concentrations) in this tank are
shown. The wet weather example shows that the WWTP is actually capable of
handling a flow of approximately 11000 m3/h. Part of the total inflow to the
WWTP bypassed the biological tanks so that the plant was not flooded. Fur-
thermore, it can be seen that the storm situation with ATS operation causes the
ammonia, nitrate and hence total nitrogen concentrations to increase to levels
considerable higher than during dry weather. However, the nitrogen concen-
trations are below the Danish criteria for the plant (8 g total nitrogen per m3 on
an average).

Economic advantages of ATS operation

Assuming that the combined system of sewers and a WWTP should be able
to handle the increase in the influent flow from 6000 m3/h to 12,000 m3/h for,
say, 5 hours. Then the detention basin volume required is

5 h · 6000 m3/h = 30, 000 m3 (21)

The cost of building detention basins is estimated to be between 100 and 500
Euro per m3, hence, a 30,000 m3 detention basin costs between 3,000,000 and
15,000,000 Euro!
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Conclusions

ATS operation can be used to increase the hydraulic capacity of the WWTP and
hereby decrease the need for bypassing the biological treatment facilities of
the WWTP or adding detention basins. Compared to constructing (additional)
detention basins the cost benefit of introducing ATS operation is extremely
good. Furthermore, ATS operation does not require extra space (which is not
necessarily available), does not require cleaning facilities, and does not smell
bad when not in operation.

Furthermore this paper has shown how dynamic models of ATS and dry wea-
ther operation can be used offline to establish and update a lookup table to
select the optimal operation strategy at the actual operating conditions in a real
time control system.

The model types used here can be applied to other types of plants and operation
modes, cf.Boonen et al.(1999); Carrette et al.(1999); Nielsen et al.(1999),
and hence to develop optimal control algorithms for different plants.

Incorporation of flow and pollution flux predictions of the influent to the WWTP
enables further on-line optimization of the operation, as it is then not necessary
to control the ATS phase lengths according to steady state conditions, but only
according to the predicted conditions.

To predict the limiting value of the loss in the SS concentrations in the aera-
tion tanks and thus the corresponding increase in the SS concentrations in the
secondary clarifier experience with the WWTP considered is required. The
inclusion of a model of the clarifier to enable better prediction of the SS con-
centrations in the clarifier and when sludge flight will take place can further
increase the benefits of ATS operation, as it is expected that a clarifier mo-
del will make it possible to operate the WWTP even closer to the point where
sludge flight occurs.
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