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Preface

This thesis has been prepared at the IMSOR group of the Institute of Mathemati-
cal Modelling (IMM), the Technical University of Denmark, in partial fulfillment
of the requirements for the degree of Ph.D. in engineering.

The thesis discuss different aspects of the problem of estimating the visual mo-
tion given a sequence of images. The treatment of the subject is not exhaustive,
nor detailed, but is intended to provide an insight in motion detection by selected

theory and examples.

A basic knowledge in the areas of image processing and statistics is required by
the reader.

Lyngby, April 1994

Rasmus Larsen
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Summary

The problem of estimation of visual motion from sequences of images has been
considered within a framework consisting of three stages of processing

First the extraction of motion invariants, secondly a local measurement of visual
motion, and third integration of local measurements in conjunction with a priori
knowledge.

We have surveyed a series of attempts to extract motion invariants. Specifically
we have illustrated the use of local Fourier phase. The Fourier phase is shown
to define the local shape of the signal, thus accurately localizing an event.

Different strategies for local measurement of motion under an assumption of
translatory motion has been considered. Furthermore we have described meth-
ods for quantifying the directional certainty with which we have measured the
local displacement. A method based on local estimation of the spatio temporal
orientation is generalized to give a continuous description of certainty of the
estimated motion. Examples on application of the techniques are given.

With respect to integration of local measurements, we have surveyed different
techniques within a Bayesian framework. Generalization of prior distributions
using 2-D Markov random fields are given. In particular we have investigated
the use of smoothness of the second order derivatives, and the use of edge model
and prior distributions for the field that favor discontinuities to characterize the
motion field.

Vi

viii

A succesful implementation of a temporal interpolation in a sequence of ¢
satellite images based on the estimated motion field is shown.
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Resume

Estimation af den synlige bevaegelse i sekvenser af billeder er blevet behandlet
som en proces bestade af tre trin.

Forst udveelgelsen af en beveegelses invariant, dernaest en lokal observation af
den synlige bevaegelse og for det tredje integration af disse lokale observationer
under hensyntagen til a priori viden.

Der er givet en oversigt over forsgg pa definere en beveegelses invariant.
Specielt illustreres anvendelsen af den lokale Fourier fase. Fourier fasen vises
at give en formbeskrivelse af signalet, hvor ved en haendelse preecist bliver
stedfaestet.

Der gives en oversigt over forskellige strategier til at estimere den lokale be-
veegelse, under en antagelse om at beveegelsen lokalt kan beskrives som en
translation. Desuden beskrives der metoder til at kvantificere den retnings-
bestemte sikkerhed hvor med den observerede forskydning er bestemt. En
metode baseret’dakal estimation af den spatio temporale orientering er blevet
generaliseret til at give en kontinuert beskrivelse af den estimerede bevaegelse.
Der gives eksempler’panvendelse af disse teknikker.

For savidt anga integration af de lokale observationet, gigies der en oversigt
over forskellige teknikker indenfor rammerne af Bayes paradigme. Forskellige
generaliseringer af a priori fordelinger under anvendelse af Markov felter gives.

Specielt undersgges anvendelsen af glathed af anden ordens aflededt
vendelsen af modeller for diskontinuiteter og a priori fordelinger der fave
diskontinuiteter i bevaegelsesfeltet.

En implementering af en tidslig interpolation i en sekvens af vejrsatellitk
baseret palet estimerede bevaegelsesfelt vises.

Rasmus Larsen
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Chapter 1

Introduction

1.1 Visual Motion

This thesis is concerned with the estimation of visual motion in sequences of two
dimensional images. Rather than stating hypotheses regarding the importance
of the perception of visual motion to humans, we will focus on applications of
motion estimation in image sequences.

The term visual is used in the title to emphasize that the motion estimation is
restricted to the two dimensional projections of the in general three dimensional
trajectories of moving objects. The collection of these two dimensional velocities
is commonly referred to as the 2-D motion field, or the optical flow.

The estimation of the motion field is interesting for a number of applications.
Of course the motion field holds a great deal of information about the three di-
mensional surface structure of objects, such as depth and orientation, the relative
motion between objects and camera, and the relative motion between objects.
The segmentation of moving objects might be of interest in a surveillance sys-
tem.

2 Chapter 1. Introduct

Another application for the computation of the motion field is image s&
compression. It is evident that if we can utilize the repetition of spatial |t
in time sequences of images, e.g. video signals, in a data compres
should be able to obtain better results, than if the compression was res
considering one frame at a time. In order to identify the repetitions, he
we need the motion field.

In a situation almost contrary to the one above the motion field can ¢
in order to perform a temporal interpolation in a time sequence of i
Given a crudely sampled sequence the perceived motion might be conl
disturbed by large displacement between images. This situation arises a
later show in images from a meteorological satellite. Due to a narrow bai
in the satellite to earth communication we only get one image every he
Other applications of this type include the production of animated cartd
a temporal interpolation scheme, where the animator only would be requ
produce every fifth or tenth drawing, we should be able to considerably
production time.

A last example of the usefulness of the motion field is image enhanceme
evident that repeated measurements can reduce estimation variance.e
measurements in the form of a time sequence of images of an object |
used for enhancement or resolution improvement if motion between frax
known.

1.2 Detection of Visual Motion

In order to pursue the estimation of motion estimation, we need to c
motion invariant, a feature the relates the projection of a surface poirt
image plane at one time to the projection of the same point in the fo
image(s).

Secondly, we must define a method of tracking this motion invariant, or
from image to image. As we will later discover this process is concernt

Rasmus Larsen



1.3 Outline of the Thesis 3

considerable ambiguity. In general image sequences we can not define a motion
invariant that has a unique match from image to image at all positions.

This problem is helped by an assumption that real world objects generally are
coherent and move, or evolve, in constrained ways, thus causing motion fields
to exhibit certain regularities. So the third step we will concern ourselves with is
an integration of ambiguous matches given by the second step using assumptions
of regularity.

1.3 Outline of the Thesis

Chapter 2 gives an overview of different approaches to defining a motion in-
variant. These include intensity, derivatives of intensity, local patterns, feature
points, and curves, and finally a shape measure based on the Fourier phase.

In Chapter 3 we deal with the matching problem. How can we link points

in subsequent images, and how can we describe the ambiguity in the match.
A variety of methods within the classes of region based matching techniques,
spatio-temporal gradient methods, methods based on frequency analysis, and
feature tracking are described. Examples will be given in Chapter 4, where we
will introduce a method using the Fourier phases as invariants, combined with
a tracking process based on spatio temporal gradients. Furthermore we will
introduce a feature tracking method based on the Euclidean distance transform.

Methods to integrate the ambiguous matches will shortly be surveyed in Chap-
ter 5. Following this we will introduce Markov random fields as a means of
integrating the matches with statistical models of the regularity of the motion
fields. In Chapter 6 we will illustrate this by an example of temporal inter-
polation in Meteosat weather images based on the estimation of the motion
field. In addition to this we will show some applications to motion based object
segmentation.

fuEl Image Analysis Group
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1.4 Notation and Symbols

We will briefly outline some of the mathematical notation used throughc
thesis. In general, we will denote scalars using lower case letters, ana
using bold lower case letters, eg.= (z,y)T, wherez” denotes the transg
of . Matrices will be denoted using upper case bold letters, e.g. the
A which may consist of the elemenis; wherei, and j denote the row r
column number of the element, respectively.

In general, we will user = (z,y)” to denote the spatial coordinates, an
denote the temporal coordinate. The intensity function, (or image) b€ing
The corresponding coordinates in frequency space wikt be(k1, ko, k3)T. F
the Fourier transformed functions we will use calligraphic lett@(&;), andw
will use j for the complex unit.

In general, though small deviations occur, we will use= (u,v) to denc
the image velocity. The concept of normal flow, which will be defined
is denotedy = (u,v)T. Some times we will index the flow using the |
number, i.e.u; = (u;,v;)T, at other times we will prefer a notation base
indexing the points, i.ewu(z;,y;) = (u(z;, v;), v(zi, ;)T

In the context of statistics will use the usual upper case bold letter for sti
variables, e.gX. The expectation will be denotdd. An estimator will usud
be identified by a hat, e.g:. "Probabilities will be indicated by uppercage
e.g. P(X =), where as probability density functions are denoted using
casep’s, e.g. p(x).

The Euclidean norm will be denotéf ||, and the p-nornj| - ||,.-

Differentiation will sometimes be denoted by subscripts, d.gis the part
derivative ofI with respect taz, in other places we will us%.

Rasmus Larsen



Chapter 2

Motion Invariants

In order to perceive the displacements occurring in a sequence of images we
need to define motion invariants, i.e. observable properties that we expect to
be conserved over time and space. Of course, this is a problem common also
to stereopsis, registration etc. This chapter gives an overview of such motion
invariants.

2.1 Intensity and Intensity Derived Properties

Early methods such as the one described by Horn & Schunk (1981) worked
directly on the measured intensity, assuming the brightness of a moving point
being conserved over time. Fennema & Thompson (1979) used defocused im-
ages, i.e. Gaussian filtered, in order to reduce the noise in the gradient estimates,
which were based on the Sobel operator.

Time varying illumination, however, poses a problem for these methods based
on the conservation of intensity. In natural images this illumination problem
is quite common, due to time varying light sources, e.g. the sun, and relative
motion of camera, scene and light source.

6 Chapter 2. Motion Invaria

To overcome this illumination problem, and at the same time reduce |
number of implementations have used bandpass filtered intensity as the
invariant.

Singh (1991) uses the difference-of-Gaussians as suggested by Burt (16
puted on each image separately

1 expl(a® +y?)/(203)) | 1 expela’ +y?)/(203))

2

K =
(z,y) 2 o? 2m o5

@.

Others have used the related Laplacian-of-Gaussian operator, also k
the Marr-Hildreth operatory?G, to generate a bandpass filtered signal @
image

1 22+ 42 22 + 42 ,
V2G(z,y) = — (l @Téy) exp(@sz) (2

Buxton & Buxton have implemented a spatio-temporal extension of t
placian-of-Gaussian operator, (Murray & Buxton, 1984).

Duncan & Chou (1992) employed the second derivative in time of the te
Gaussian smoothing function

243
S = 60 = @_\/SE(l ©25%1?) exples®t?) (-

2.2 Feature Points

Corner points, e.g. the projection of the vertices of a polyhedron, or p
high curvature on surface markings, may be regarded as projectionsr
features whose appearance is invariant to rigid motion. In some senses
applies to the boundaries of objects. The methods of this group aim at &
feature points in subsequent images to be matched at a later stage.

These point and curve extraction methods are closely related to the as
of locations where motion can be estimated accurately. We will review if
corner and curve extraction methods in this context in Section 3.2.

Rasmus Larsen



2.3 Fourier Phase 7

2.3 Fourier Phase

The Fourier phase, or rather the windowed Fourier phase, holds information
of the position of the structure within the window. This follows from the the
well known property of the Fourier transform that a shift in the spatial domain
corresponds to a shift of phase in the Fourier domain. Consider the infinite
signal, I(z), whose Fourier transform i&(k). Then the Fourier transform of
the shifted version given by, (z) = I(z <s) is

T.(k) = /_ " () explesj2rkz) dz = explej2nks) T(k) (2.4)

This is further illustrated in Figure 2.1. As the phase is independent of the
contrast, which is measured by the magnitude of the Fourier transform, the
illumination problem is eliminated by using the phase as the conserved property.

For a multi-dimensional signal, e.g. an image (2-D) or an image sequence (3-
D), Knutsson (1982) has shown that we can define the phase corresponding to a
quadraturé&filter as the quotient between the odd and the even part of the filter.
We will briefly review the filter design and phase definition of Knutsson.

A real valued image](x), has an Hermitian Fourier transform
Z(k) =Z7(<k) (2.5)
where x denotes the complex conjugate. From this property it follows that

measurements need only be done in one half plane of the Fourier domain.
Knutsson suggested a quadrature filter given by its frequency function

Ikl

Flk(ERe)2A i k.m, >0 (2.6)
0

Qp(k) = {

otherwise

1Quadrature means integration, e.g. the quadrature of a circle. In this context it is used because
either component of the quadrature filter pair is the integral of the other. This becomes evident if
we think of the pair as a sine and a cosine function

fuEl Image Analysis Group
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@¢=0 b) ¢ =<7

Figure 2.1: The two intensity patterns are generated using a sine-function
period equal to the side length of the image. The images have identical Fc
magnitudes. But the Fourier phases corresponding to the frequency o
sine-function are 0 ane>7, respectively. Thus indicating the position of tf
structure.

Rasmus Larsen



2.3 Fourier Phase 9

Figure 2.2: The Lognormal function. The center frequency is 1.1 and the
bandwidth is 2 octaves.

whereF' is a bandpass function, that determines at which scale the filter has its
sensitivity, n,, is the direction of the filter, andl is a parameter that specifies
the angular bandwidth of the filter.

The quadrature filter can be separated into an odd and an even part
Qp(k) = Hpe (k) + Hpo(k) (2.7)

where

Hyl) = Hyo(k) = SE(RIC T
Hyll) = (k) = SPORDCTTE P siong ) 28)

Knutsson suggested the following lognormal function as the bandpass function
in Equation (2.6)

(k) = exples Iogz(%)wz l0g(2)) (2.9)

fuEl Image Analysis Group
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@) (b)

Figure 2.3: The spatial lognormal filter. (a) The real even part of the filter.
The imaginary, odd part of the filter.

whereky is the center frequency of the filter, aftlis the bandwidth meast
in octaves. In Figure 2.2 a plot of the lognormal function is shown. Na
that the angular function varies as &), whered is the angle betweer
frequency and the main direction of the filter.

In Figure 2.3 a spatial realization of the one dimensional lognormal qua
filter pair is shown. From this figure it is evident that in normal image prox
terms the even filter is an edge detector and the odd filter is a line dete

Applying the odd and even filter as convolutions between the image a
spatial transformsh,. andh,,, yields the output

ap = Qpe * J4po (2.1

where, denoting convolution with a

Qpe(m) hpe (z) * I(z)
dpo(®) = Cfhpo(x) * I() (2.1

Rasmus Larsen



2.3 Fourier Phase 11

The magnitudep(x), and phaseg(x), of the filter are then defined as

p@) = la,| =1/dh(x) + g5, ()

¢(x) = arg@,) (2.12)

This polar representation of phase is illustrated in Figure 2.4. The phase value of
each shape is represented by a point on the unit circle. The arc length between
points is a measure of difference between the two shapes. Using phase modulo
27 we have a continuous description of shape.

In (Weng, 1993; Langley, Atherton, Wilson, & Larcombe, 1991) implemen-
tations of the windowed Fourier phase as a conservation property for image
matching is described. Fleet & Jepson (1990), Fleet, Jepson, & Jenkin (1991)
have described the use of the Fourier phase in motion analysis.

fuEl Image Analysis Group
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@¢p== b o=73 ©¢=%
do=m (e) M d=0
@) ¢ =% (h) ¢ =7 0) ¢=<%

Figure 2.4: The correspondence of the windowed Fourier phase to diffe
shapes. (a) Concave falling. (b) Falling step edge. (c) Convex falling.
Negative peak. (f) Positive peak. (g) Concave rising. (h) Rising step edge
Convex Rising. These examples serve to illustrate the rich geometrical me
of phase. The position of the phases in the plots is shown on the unit circ

(e).
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Chapter 3

Local Measurement of Visual
Motion

In general image sequences the velocity field shows complex variation, spatially
as well as temporally, across the image. This is due to independently moving
objects, rotation, dilation etc.

In order to obtain a good resolution of the velocity field it would appear necessary
to restrict our velocity estimation to local computations.

Localization of the measurements ensure several things. First of all, with narrow
apertures smoothly varying velocity fields can be estimated based on transla-
tional image velocity, as opposed to more complex descriptions needed for larger
neighborhoods. Secondly, localization ensures good resolution of the velocity
field, that is to say we have isolated events, so that the measurement is relevant
within the entire aperture. Finally, localization helps to isolate effects due to the
occurrence of multiple events in close proximity, meaning that we can minimize

1we use the word aperture to denote the neighborhood of a point from which we draw information
of the local event

13
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the effect of occlusion on the estimation of the velocity field, and we ca
disjoint objects independent.

3.1 The Aperture Problem

As much as we need localization, restricting measurements to narrow a
i.e. spatio-temporal neighborhoods, often results in the measuremer
based on one-dimensional intensity structures (edges and/or lines). In:
we can only determine the component of the velocity orthogonal to the i
contour reliably. This is commonly known &ise aperture problemThe tel
was introduced by Marr & Ullman (1981). In Figure 3.1 the basis of the a
problem is outlined. The figure shows a rectangle translating at velac
two points in time. However, within the two marked apertures we cd
determine the component of the velocity that is perpendicular to the u
The component of the velocity orthogonal to the intensity contour, denet
referred to as the normal velocity or component velocity. Lettingenote |
unity vector perpendicular to the contour, the relation to the velocity i
by 1 = (uTn)n.

In general the aperture problem exists in neighborhoods of the image ¢
that have a one dimensional structure, and neighborhoods that have nol
at all, that is in homogeneous areas. On the other hand, in image ¢
neighborhoods that exhibit two dimensional spatial structures, such as
corners or various textured regions, we can reliably extract the true \
These points though in general sparsely distributed over the image I
portant information on the estimation of velocity. In Figure 3.2 we car
neighborhood containing a one dimensional structure in a real image ¢
that suffers from the aperture problem, as well as a neighborhood that ¢

It is evident at this point that local velocity estimation algorithms that are1
distinguish between, or even quantify, the nature of the neighborhood,
the estimated velocity - component velocity or not - should be more sut
than algorithms that can not.

Rasmus Larsen



3.2 Identification of Corners and Curves 15 16

o
)

Figure 3.1: The rectangle is translating at veloaity Within apertures along
the contours, however, it is only possible to determine the component of the
flow perpendicular to the contour

3.2 ldentification of Corners and Curves

In general, motion estimation techniques fall within one of two classes. The
first class is generally referred to as token matching or correspondence analysis.
Methods from this class have appeared in essentially two flavors. Either they aim
at extracting points, e.g. corners, or curves, e.g. edges, at which some motion
estimation technique should be applied, or they aim at tracking extracted points
and curves in subsequent images. The methods of the second class apply their
estimation technique at every point in the image.

As mentioned previously corners have the property that their motion can be
directly computed based only on measurements made at the corner, or to pu it
more accurately in a small neighborhood of the corner. Furthermore corners
can be regarded as projections of scene features whose general appearance is
invariant to rigid motion, e.g. an image corner can be the projection of the
vertex of a polyhedron, or of a point of high curvature on the boundary of a
surface marking.

fuEl Image Analysis Group
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(b) (© (d)

(e) ® ()

Figure 3.2: (a) Part of a frame from the Hamburg Taxi Sequence produs
the University of Hamburg. Three local neighborhoods containing a m
line, a moving corner, and a homogeneous area respectively, have been
The three neighborhoods are shown at two instances in time. (b),(e) Fr
neighborhood containing the single moving contour it is only possible to e
the normal velocity, i.e. the velocity perpendicular to the contour. (c),(f) |
case of the neighborhood containing the intensity corner we can extract t
velocity. (d),(g) In the case of homogeneous neighborhoods no reliable v
can be estimated.

Rasmus Larsen



3.2 Identification of Corners and Curves 17 18 Chapter 3. Local Measurement of Visual M

Although curves corresponding to object boundaries, or surface marking bound-
aries, do not locally constrain the true image flow, they can still provide us with
important information about the motion.

We will briefly review some corner and curve detection techniques presented
in the literature. The presentation is not intended to be exhaustive, nor to be
detailed. This feature extraction is not only of interest in motion estimation
applications, but also in general scene analysis and stereo matching.

3.2.1 Extraction of Points

Some methods attack this problem by first extracting edges as a chain code
and then searching for significant turnings in the edges, i.e. points of high
curvature. Let the spatial coordinates hey). Assuming the curve to be
regular and choosing a sufficiently small neighborhood, we can without loss of
generality define the curve, given by the pixels of the chain code, as a function
y of z within the neighborhood. The curvature of this plane curve is given by

- oz
e G

Other methods work directly on the grey level images. A measure of cornerness
can be defined as function of the gradient and the rate of change of the gradient.
The corners are then found by a threshold. Beaudet (1978) proposed an operator

called DET given by the second order derivatives of the intensity functian). _ _ _
Figure 3.3: The grey level pattern is generated as the 2-D step furdgtion) =

H(z)H((y), whereH is the Heaviside function, blurred by a 2-D Gaussian w
standard deviation 1.5. The curvature along the intersection line is non

] around the point$® and B. At the promontory poinf the curvature attains it:
The corners are found by a threshold of the absolute value of this operator. In maximum and aB it attains its minimum.

the vicinity of a corner DET will respond (with opposite signs) on both sides of
the edge. The DET operator is related to the Gaussian curvatyrgiven by
Equation (A.6) as follows

DET = LI,y — I2, (3.2)

DET

- (L+12+12)2 33

fuEl Image Analysis Group Rasmus Larsen



3.2 Identification of Corners and Curves 19

Nagel (1983) describes an operator based on the Gaussian curvature, developed
by Dreschler and Nagel. Assume a grey level intensity corner with high values
inside the corner and low values outside the corner, as can be seen in Figure 3.3.
Along the intersection curve correspondingate 21 one of the principal cur-
vatures is identically 0. Therefore the Gaussian curvature is likewise identically
zero. Along the intersection curve drawn in the plot, the Gaussian curvature
will be nonzero around the promontory poiRtand around the bottom point

B. At the promontory point one of the principal curvatures corresponds to the
flattening of the intensity from the steep ascent to the constant plateau. The
other principal curvature corresponds to the changing orientation of the gradient
projection into ther — y-plane, i.e. to the corner. Since the osculating circle
corresponding to both principal curvatures has its center below the surface, the
Gaussian curvature will be positive. At the bottom point the principal curvature
corresponding to the corner will have the same sign @ athe other principal
curvature, however, corresponds to the flattening of the descent to the constant
base value. The center of its osculating circle is located at the viewers side of
the surface. Since the centers are on different sides of the surface, the principal
curvatures will have opposite signs, and the Gaussian curvature will be negative.

The algorithm then consists of

1. Determine Gaussian curvature
2. Find location of extremal Gaussian curvature

3. Match locations of maximum positive Gaussian curvature, such &s
points of minimum negative Gaussian curvature, sucisas

4. Select the point of the curve betweerand B that has a principal curva-
ture equal to zero. This is the corner point.

Nagel (1983) consequently refers to the Gaussian curvature as the product of
the principal curvatures. However one may note that in Equation (3b) on page

89 of (Nagel, 1983), the product of the principal curvatures is defined as the

DET operator and not the correct expression given in Equation (3.3).
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In the approach described by Kitchen & Rosenfeld (1982) a measure of
ness is defined as the rate of change of the gradient direction along ¢
contour multiplied by the local gradient magnitude. The direction of the g
is given by

6 = arctan(,, I,,) (3-

The partial derivatives of are

Ia:yl:t — I:l:a:]y

0, =
I2+17
— Iyyjl_llyly I
T TEvn (3

Now, the gradient is directed across the edge, so the veetgr I;) is direct
along the edge. Projecting the rate of change of the gradient angle &
edge, and multiplying the result by the gradient magnitude, yields the f@
measure of cornerness

_ a5+ Iy IZ = 205y Iy I
I2+12

c (34

which is closely related to the curvature along the edge, i.e. perpend
the gradient. Using Equation (A.5) we find the curvature along the edg

(ely, 1) (&ly, I)"

\JI2+12 (/12 + 12
_ Lo D2+ 1y 12 21, 1,1, 3
(I12+12)\/1+12+12

G 'H

Noble (1988) evaluated the Plessey corner detector, which consists of
lowing steps
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1. Calculate the partial derivatives &fz,y), I, and 1,

2. Compute the quantitieg?, 17, andI, I, at every pixel

3. Compute the locally weighted averagég), (I7), and (I, I,)
4. Evaluate the eigenvalues; and \,, of the matrixA, where
2

(I1,) (1)
If both eigenvalues are large, declare a corner

In Plesseys implementation the cornerné€$sis calculated as the ratio

o = traced) _ M+ X\
PTodet(A) T Ao

(3.9)

and a corner is marked @), is small. Using differential geometry Noble (1988)
showed thatC, is inversely proportional to the square of the curvature in the
direction perpendicular to the gradient, i.e. similar to the approach of Kitchen

& Rosenfeld (1982).

On a detailed comparison and an analysis of the these techniques the reader is
referred to (Deriche & Giraudon, 1993). Deriche & Giraudon (1993) further-
more describe methods to improve the localization of the corner based on the

techniques above.

3.2.2 Extraction of Curves

Curves can be extracted from images in a multitude of ways. A classic edge
detector is the recursive implementation of the Canny-filter by Deriche, (Canny,
1986; Faugeras & Papadopoulo, 1993). In the literature of motion estimation
a popular method for curve extraction is the use of the zero crossings of the
Laplacian-of-Gaussian, see Equation (2.2), (Hildreth, 1984; Wahl & Simpson,
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1990). As pointed out by Weng (1993) the extraction of the zero crossi
tours of the Laplacian-of-Gaussian filter is equivalent to the extracting ¢
of the phase images corresponding to phdsemnd <7, see Figure 2.4. T
is not surprising as the even component of the quadrature filters, Figur
resemble the "Mexican hat" shape of the Laplacian-of-Gaussian.

3.3 Local Motion Estimation Techniques

Most previous approaches to the estimation of image velocity can be cat
into of one the following four groups

 region based matching
 gradient based

« frequency based

« feature tracking

All these methods are based on local estimates of image translation.
briefly review these four basic techniques.

3.3.1 Region Based Matching Techniques

Region Based Matching Techniques assume conservation of the locall
tion of intensity. The velocity at a given point is found by determinif
displacement yielding the best match between an image region in one fr
regions in subsequent frames. The best match is given by some match
or metric, which can defined in many different ways as described by
feld & Kak (1976). We could for instance use the sum of squared dista
the intensity values within a region, the sum of absolute values, the mi
absolute difference, etc. In the following we will use the cross correlatic
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Consider two real, discrete two dimensional functiodg(x) and Z,(x). The
autocovariance and the cross covariance functions are given by

Cu(,€) = E{(Zi(z) en(@))(Zi(z +£) cnz +£))}
Cra(z, §) E{(Z1(z) om(@)(Za(z + &) <na(z +£))},

respectively, wherd denotes expectatioq,is a displacement vector, ang(xz)
and n,(x) are the (weighted) function means. The function variances are the
zero lag autocovariances. The cross correlation function is then defined as

ClZ(ma é-)

rid® ) = ) Catw T E.0)

(3.10)

The cross correlation function gives us a measure of similarity between the two
functions at given lags. Let the two signals be the image intensifi@s,t1)

and I(x, t;), at timest; andt,. Given a two dimensional windowing function,
w(z), centered at (@), the estimated weighted cross correlation function of the
intensity field at timeg; andt; is

T12(e, £) =

Z]. wl@—a;)(I(@;,t1)—n(;,t2))I(e;+€,t2)—N(e;+€,t2)) (3.11)

(X2, w@—) U@ t) i@ b)Y w@+é—e;)I @+ t2)— i) +€,t2)?)

1y
2

where the sums are taken over all spatial positionséadt) is the local spatial
intensity field mean at time

@)= e 3wl ) (), 1) (3.12)
> N2

jw(m S

The region in the first image to be matched to the second image is given by
the windowing functionw(z). To minimize the computational load the match
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measure is normally only calculated at lags smaller than an expected n
displacement. The maximum cross correlation measure has been used
& Simpson (1990).

Some may think that the region based matching techniques are inherer
on two images only. Obviously, this is not true as the region being m
defined byw(z) in Equation (3.11), without any problem what so ever ¢
extended to be a function of temporal as well as spatial position. The
Equation (3.11) then being over all spatio-temporal positions.

Obviously the aperture problem will arise when the local intensity st
is effectively one-dimensional. In this case the match measoreasu tt
cross correlation, as a function of the displacement will give rise to g
without a clearly defined maximum. In Figure 3.4 we show the behaw
the cross correlation function in the three neighborhoods marked in Fig
The surfaces were generated using a 5 x 5 pattern tile with equal weigl

It is evident that this could cause grave errors if not dealt with propert
maximum cross correlation in itself enables us to identify the type off
borhood. In order to deal with this problem we could try to ensur
one-dimensional structures would not occur within our pattern tile. Thid
normally be impossible, either because no knowledge of the size of st
being observed is available, or because this would violate the assum
translational velocity. Furthermore large pattern tiles are often conside
practical due the large computational cost associated with them. Sow
need is a way to quantify the nature of the neighborhood, or more pre
measure of the directional confidence in the estimated displacement.

Anandan (1989) suggested that we use confidence measures based ol
curvature of the match measure surface at the point of the best mat
evident from Figures 3.4(a) - 3.4(c) that the curvature of the cross cot
function along a particular direction is large, respectively small, if the
sponding component of the displacement vector is well defined, resgd
undefined. For a formal definition of curvature see Appendix A.

As can be seen in Appendix A the curvature of a surface at a point
determined given the principal curvatures and the associated principal di
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1 05 0 05 1

Cross Correlation
1 05 0 05 1

Figure 3.4: The cross correlation functions for the three neighborhoods shown in
Figure 3.2. (a) In the line case, the the cross correlation function has a dominant
ridge, displacements along the ridge have equally good matches, i.e. due to the
aperture problem we can only determine the displacement reliably perpendicular
to the ridge (contour). (b) The cross correlation function calculated at the grey
level intensity corner on the other hand yields a distinct peak, thus providing us
with an unequivocal displacement estimate. (c) In the homogeneous neighbor-
hood the cross correlation function shows little variation, and low correlations,
suggesting that no reliable match can be obtained.
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Line Corner
pn | (-0.42,1.91) (1.22,0.31)
K1 0.48 0.26
K2 0.0043 0.079
ny | (0.99,-0.11) (0.99, 0.08
ny | (0.11,0.99) (-0.08, 0.99

Table 3.1: The estimates of the displacements, the principal curvatures ar
principal directions are based on a least squares fit of a quadratic surfac
5 x 5 segment of the respective cross correlation functions. The vector
in a row-column coordinate system, with origin in the upper left corner of
image.

The first and second principal directions are those two (perpendicular) di
at which the normal curvatures are maximum and minimum, respectiw
the principal curvatures are the curvatures in those directions. It is evic
at a point along an edge in the image the maximum principal directionk
oriented in a direction normal to the edge, and the minimum principal di
will be oriented along the edge. Furthermore the maximum curvaturet
large and the minimum curvature will be small. At points in homoge
areas both principal curvatures will be small, and at points on contod
high curvature, e.g. intensity corners, both principal curvatures will be It
a measure of error between the true flaw,and our observationy, might b

E = k1((u &p) - 1) + ka((u &p) - no) (N
where k1 and k, denote the principal curvatures, and andn, the princig

directions.

Sub-pixel accuracy can be achieved by interpolation in the cross ca
function or by fitting the observed correlations to an appropriate mod
a quadratic function. For the two structured neighborhoods of Figuret
estimates of the displacement, the principal curvatures and principal di
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are summarized in Table 3.1. In the line-case we observe high curvatd®e, 0

in the direction perpendicular to the contour,9® «<0.11), and low curvature,
0.0043, along the curvature. In the corner-case both principal curvatures are
relatively high, 026, and 0079.

Singh (1991) argued that the use of the principal curvatures at the maximum of
the correlation surface is not an optimal approach. If for instance more than one
maximum occurs within the search window Anandan’s algorithm will assign
high confidence to the largest of the two maxima, if the principal curvatures at
this point are high. Using an error function based on the sum of squared dif-
ferences (SSD) he defined the following (mis)match measure, which he termed
the response distribution

R, &) =exp| €k Y w(x oz;)(I(x),tr) <I(z; +£,12))° (3.14)

J

Interpreting the response distribution as a frequency distribution in veldgity,
space, i.e the response in a point depicting the likelihood of the corresponding
velocity, he estimated the true velocity and a covariance matrix based on the
entire match area given hy.

3.3.2 Gradient Based Techniques

Techniques based on establishing a relation between the velocity and the spatio-
temporal gradients of the image intensity are called gradient based techniques.
These techniques generally assume conservation of image intensity, that is the
observed intensity of an object point is constant over time. Letting the intensity
at point &,t)” in space-time be denotef{z,t), and the image velocity at

that same point be denotes(z,t) = (u(x,t),v(x,t))T, or for shortI and

u = (u,v)T, then following Horn & Schunk (1981)

I(x,t) = I(x + dx,t + 6t) (3.15)
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Expanding the right side of Equation (3.15) as a Taylor series abou)’(, ar
discarding terms higher than first order, we find that

I(x+dx,t+0t) =

I(a,t) + 2§ED 5 + 2LELD gy + D11 (3.1

By combining Equations (3.15) and (3.16), dividing through withand gor
to the limit, we find

Lu+ILy+1, =0, (3.1

wherel, = &4 1, = 28D andr, = 2ED. As Equation (3.17) constr
the velocity,u, to a line in ,v)-space, it is often referred to as the gra
constraint equation, or motion constraint line. Directly from Equation’
only the normal velocityy = (1, v)”, can be determined. This is given b

=

2412 (L, L)) (3.1

(u,v) =

The motion constraint line and the normal velocity are illustrated in Figt

So further constraints are necessary. Almost all approaches couple tli
ent constraint with an assumption that nearby points move in a similare
According to Kearney, Thompson, & Boley (1987) this combination is it
eral accomplished in one of three wayGlobal optimizationtechniques wit
minimize an error function based on the gradient constraint and an |
tion of global or piecewise smoothness over the entire image, (Horn & §
1981; Nagel & Enkelmann, 1986). We will return to these global smoc
approaches in Chapter %.ocal Optimizationtechniques that combine a s
constraint lines to obtain a solution for optical flow, (Fennema & Thor
1979; Nagel, 1983; Kearney et al., 1987; Paquin & Dubois, 1983;1Bia8
Aisbett, 1989; Schunk, 1989).
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(T8Y)

ku+Ilyv+1 =0

u

Figure 3.5: The Gradient Constraint Equation (3.17) constrains the velocity to
a line in @, v)-space. The normal velocitys(v) given by Equation (3.18) is
perpendicular to the motion constraint line.

Some local optimization techniques produce additional constraint lines using
higher order derivatives, (Arnspang, 1988; Uras, Girosi, Verri, & Torre, 1988).
If we assume that the image motion is translational, i.ev) constant in a
neighborhood of ¢, t), Equation (3.17) gives the following constraints by dif-
ferentiation

I I I
[ T yT u+( tr ) :0, (319)
Izy Iyy Ity
2 2 2 2
where I, = 2 g(za;,t), Iy = aalz(:gg;t)' Iy, = 661y(§a;t)' and I, = 2 é(qjg’t)' If

the neighborhood shows significant second order spatial intensity variation, e.g
at grey level corners as in Figure 3.2(c), Equation (3.19) will constrain both
components of the velocity. Moreover the second order derivatives can be used
to characterize the degree of two-dimensionality of the local neighborhood, thus
indicating whether the velocity estimate is constrained in two dimensions, or just
in one dimension, as in the case shown in Figure 3.2(b). This is analogous to
the use of curvature of the match measure surfaces in the region based matching
techniques to calculate a directional confidence in the flow estimate.
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(@) (b)

Figure 3.6: This illustrates phase wrap around. (a) This is the ninth images i
Meteosat sequence. The original image has had its resolution reduced a
4. (b) This is the Fourier phase calculated from a spatio-temporal quadr
filter with the spatio-temporal orientation.® 0.0, 1 +\/§). Note that the phase
wraps around, black and white correspond to almost equal shapes.

Another method to introduce further constraints is to combine a set ot
constraint lines, Equation (3.17), in a small neighborhood, for examf
polynomial in @,v) by a least squares fit, (Kearney et al., 1987; Pac
Dubois, 1983; Aisbett, 1989; Bigy 1988), or by clustering of lines to a
blurring in the vicinity of motion boundaries, (Fennema & Thompson,!
Schunk, 1989).

When applying the gradient based methods to phase images, computs
scribed in Section 2.3 problems arise owing to the fact that it is phasel
27 that we assume to be conserved. In Figure 3.6 this effect is illustrata
bright and very dark values correspond to phases a little lessntlzard a lit
larger thanem, respectively. The shapes however are close.
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We apply a set of orientation and scale specific quadrature filters each returning
a complex valued output

R(z,t) = p(z,t) expGo(z, t) (3.20)

p(z,t) and ¢(x,t) denote the magnitude and phase of the filter respectively.
The velocity in the direction of the iso-phase contour, i.e. the normal velocity,
is in accordance with Equation (3.17) given by

<:>¢)t(mat)
= ——=V(x,t 3.21

ZCD A ©20
where Ve(z,t) = (¢z(x,t), ¢y (z,t)). The phase derivatives are calculated as
follows

Im(R*(z, 1) R, (z, 1))

9@ 1) = R, D

(3.22)

thus avoiding problems concerning phase wrap around.

The outputs from the set of filters are combined to yield the local velocity
estimates in the same way as several motion constraint lines can be combined
as described in the previous sections. The magnitude of each filter output is
used as an weight or certainty of the corresponding velocity.

3.3.3 Methods based on Frequency Analysis

As motion estimation in image sequence can be viewed as identification of
patterns repeating themselves over time it is natural to try to describe the motion
analysis in the Fourier domain.

Consider a one dimensional intensity pattern, e.g. an line, translating through
time. In the spatio-temporal domain this corresponds to a neighborhood con-
sisting of iso grey level planes. Let these planes be given by their unit normal
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y(z)

t(zq)

ko
k
Ky

X(z9)

Figure 3.7:ko is the unit normal vector of the plane generated by the transla
line. The direction of normal flow is found as the projectionkef onto the
(21, z2)-plane.

vector, ko = (kou, ko2, ko3)”, we will refer to this vector as the spatio-tem
orientation of the local neighborhood. For notational convenience we ¥
z = (21, 22, 23)T for the spatio-temporal coordinates’(, t)”. The local intend
pattern is then given by

I(z) = J(k 2) (3.2

The correspondence between the spatio-temporal orientation and thg
velocity of the line is illustrated in Figure 3.7. The normal flawis foundk
taking the outer product of the orientation vectks, and the projection d
the (z1, z2)-plane of the orientation vector rotated°9@&.

k> = (o1, ko2, kos)™ %

\/kZ +k2 \/k2 +k:2 -
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kosk kosk /
PN 0301 AN 0302 ’ kgl+ kgz
\/kgl + kg, \/k(z)l + kg,

The length is determined by setting the temporal coordinate equal to 1, thus

<=>k‘03 T
u = ——(koz, ko2) (3.24)
kg, + k&,

Using the rotated orthonormal coordinate system

ko1 ko2 kos kT
PN ko2 ko1 0 %
C = \/kktz)ll:kgz \/12314:’32 z= k%_' 2 (325)
& loikos & lozkios \/m k2
Vkortks, VRt

we find the Fourier transform adf(z) to be

I(k)

/ I(z) expey(kT 2)) dz

/ J(¢2) expesj (kK koCy + kT ks + kT kaCs)) dC
T ko) 6(kT k) (k) (3.26)

where 7 is the Fourier transform off, and§ is Dirac’s delta. From Equa-

tion (3.26) it follows that all the non zero Fourier coefficients are concentrated
on a line through the origin, the line is the intersection of the two planes,

koik1 <kooka = 0, andkoikosks + kozkoskz = (k3 + k3,)ks.

Similarly, we can develop an expression for the Fourier domain in the case of a

two dimensional spatial patterd(z1, z»), translating with velocityu = (u, v)7,
i.e the image sequence is given by

I(z) = J(21 ©uzs, 22 ©v23) (3.27)
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The Fourier transform of (2) is

Z(k)

/ J (21 ©uzs, 22 Svzs) expley(zTk)) dz

T ks, k2) / exp(eyi(uzs, vza) ks, ka)T) expleyizaks) dza
J (k1, k2) 6 (uky + vkz + k3) (3.2

where J (k1, k2) is the Fourier transform of(z1, z2), and§ is Dirac’s del
From Equation (3.28) we see that the non zero Fourier coefficients aret
trated on a the plane given hyk; + vk, + k3 = 0, i.e. the plane through
origin given by its normal vectoryT, 1).

Interpretation of the Fourier Domain

From Equation (3.26) it follows that the detection of the normal flow t
transformed into the detection of a line in the Fourier domain. Viewh
Fourier coefficients as a mass distribution Big(1988) calculated the in¢
(or variance) with respect to the axis given by the three dimensional uni
ko

V (ko) = / d?(k, ko)|Z(k)|?dk (3.2

The problem then is to find the direction yielding the minimum inertid
Euclidean distance between a pokaind the axis given by is

&k, ko) = ||k < (kT ko)kol||? = kg (kT Ik <kkT)ko (3.3
Thus
V (ko) = kg (trace@)I < A)ko 3.3
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where the elements of the matrix are given by

a;j = / kik;|Z(k)|*dk = 4—71r2 o dz (3.32)
The second identity is obtained using Parseval's Theorem and the fact that differ-
entiation in the spatial domain corresponds to multiplication by the respectively
coordinate in the Fourier domain. Now it is evident that the minimum inertia
given by the eigenvector corresponding to the largest eigenvaludfoBigin
(1988) and Hansen (1991) developed confidence measures for the optimality of
the orientation estimate based on the relation between the eigenvalues.

Obviously, in the case of a pure translation of a perfectly one dimensional signal
the matrix A will have only one non zero eigenvalue, and the corresponding
eigenvector will be £, 2L, 2L). This in combination with Equation (3.24),

give us a direct correspondence to the motion constraint Equation (3.17) derived
using the gradient based techniques. Furthermore, computing the weighted sums
of the products of the derivatives in a small neighborhood to oh#icorre-
sponds exactly to the combination of constraint lines in a small neighborhood
as described in Section 3.3.2. Similarity also exist with the methods for corner
detection by Noble (1988), described in Section 3.2.1.

The frequency analysis based method suggested bynB(9888), however,
suffers from a serious drawback, namely phase dependency. When sampling the
inertia tensor of the Fourier domain, Equation (3.29), i.e. obtaining a description
of the local neighborhood, we should use filters that collect the energy from
Fourier domain irrespectively of this energy originating from a line, an edge, or
any other of the shapes shown in Figure 2.4.

Knutsson (1989) developed a method with the purpose of orientation estima-
tion based the quadrature filters of Section 2.3. These filters have exactly the

et the eigenvalues afA be labeled\; > X, > A3 > 0, and the corresponding eigenvectors
u1, up, andus. SinceAu; = Aju; we obtain

(trace@) — A)u; = Ajuj,with  X; = A1+ A2+ A3) — Aj (3.33)

From this equation it is evident that the matricdsand traced)I — A share the same eigenvectors.
The relationship between the eigenvalues stem from tce(A\; + Ao + A3.
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property of phase independence. According to Knutsson we need a
quadrature filter pairs symmetrically distributed over the orientation spat
three dimensional ca&eln order obtain a symmetrical distribution of ori
tion we need 6 filters, as the only possible number of filters is given by #
number of vertices or faces of a diametrically symmetric regular polyl
leaving only the numbers 3, 4, 6, and 10.

The center axes of a realization of the 6 filters are given by these unit

kl = cC ( a, 07 b )T
k2 = cC ( ~a, 07 b )T
ks = c (b a 0 )
ks c ( b, ~a, 0 )T (33
ks = ¢ ( O b, a )T
kG = cC ( 07 ba «a )T

wherea = 2, b = 1 ++/5 andc = (10 + 2/5)"2. Using 6 quadrature fil
with a radial function varying as cosine squaret< 1 in Equation (2.6))t
estimator for the orientation tensor is given by

T

1
PRRACER)
P

K

v kykl (3.3

whereg,, is the output from the quadrature filter K, is the orientation ten
associated with the quadrature filigrk, is the unit vector defining the ce
axis of pth filter. I is the identity tensor.

Other noteworthy implementations of a frequency based motion estima
cludes (Adelson & Bergen, 1985; Heeger, 1987).

2Consider the case of havingﬁvf1 quadrature filters, having symmetry axes passing throl
corners of a cube iV dimensions. Consider further the contribution to the filters from freq
on a line through the center of two opposing cube faces. Since the angle between the lir
filter axis is the same every filter will yield the same output. Consequently using this set
we can not determine which set of faces the line is passing through. Consequently we h

more than &~ filters.
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3.3.4 Feature Tracking

Having detected a number of image features, i.e points and/or curves, in subse-
guent images the task is now to establish a correspondence and thereby find the
motion of the features.

Waxman, Wu, & Bergholm, (Singh, 1991), argued that the gradient based tech-
niques applied to the points of zero crossings of the Laplacian-of-Gaussian
would fail because neither the intensity nor the intensity derivatives are truly
conserved. Having extracted the contours, i.e. having generated a binary edge
image, they convolved these binary images with a spatio-temporal Gaussian,
thus creating what they called activation profiles. They then applied a gradient
based technique to these activation profiles.

A widely used technique is that of active contour models or snakes introduced
by Kass, Witkin, & Terzopoulos (1988). From a crude initialization the snake
evolves in a energy minimization scheme under the action of so called internal
and external forces. Representing the snake position by the following parameter-
izationwv(s) = (z(s),y(s)), s € [0,1] we can write the snake energy functional

as

1
Egnake= /o Ejpt(v(s)) + Eimage('u(s)) + Econ(v(s)) ds (3.36)

where Ej; represent the internal forces of the snake. These forces impose a
piecewise smoothness, and are usually defined as a weighted sum of the first
and second derivative of the position.

2

+B(s) d®v(s)

ds?

ds

Eint(2(s)) = as)

2
‘ (3.37)

‘ du(s)

The image image forces can be expressed as the weighted combination of three
terms

Eext = wiineEline * wedgefedget wtermfterm (3.38)
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The edge, line, and termination forces are forces that aim to attract tk
to certain features of the image, e.g lines, edges , and points. Theg
might be constructed from any of the point and curve measures ok
in Section 3.2. Kass et al. suggested a functioﬁghge: || VI(z,y)
that would attract the snake to contours with large image gradients,
as one based on attraction to the zero crossings of the Laplacian-of-G
Ejine = €IV?G(z,y) = I(z,y)||> In order to attract the snake to termim
line segments and corners they suggested a functional based on cun
setting Eterm equal to the curvature in the direction perpendicular to tk
dient as given by Equation (3.7). In their derivation of the curvature, he
they made an error, see equation (8) on page 327 of (Kass et al., 198¢

The last term of the snake forces is the external constraint functiona
functional specifies external forces attacking the snake. In particulark
might be attached by a spring to a fixed point or to another snake. Such
between the pointg; andz, can be created by the terficon = <k||z1 x|

The energy minimization is then performed in a stochastic relaxation s
In the application of snakes to motion estimation Kass et al. (1988) W
contour found in the previous image as initialization for the current im&
inter frame constraints where used. Inter frame constraints imposing c¢
over time may improve the convergence rate and robustness of the res

Other implementations of this algorithm include Herlin & Ayache (1992)

Deriche & Faugeras (1990) described a Kalman filtering based approac
segment tracking. The correspondence between segments in the search
done based on Mahalanobis distance between chosen attributes of the
e.g. orientation, length.

Finally, distance maps can be used for efficient matching in binary imaz
proposed by Barrow et al, (Ragnemalm, 1993). Borgefors (1988) has
an efficient algorithm using pyramid structures.

The general technique for matching two binary images, containing the &
features, e.g. edges and corners, has been described by Borgefors:
follows. First a distance map is generated for the first image. In the c

Rasmus Larsen



3.3 Local Motion Estimation Techniques 39

map each non object pixel is given a value that is a measure of the distance to
the nearest object pixel, i.e edge. The object pixels get the value zero. Now, at
every position in the binary second image a template is matched to the distance
map of the first image. The match measure is a an average of the distances
from the distance map corresponding to the edge positions in the template. The
smoothness of the distance map allows a relatively fast hill climbing search for
the optimal match, (Ragnemalm, 1993).

fuEl Image Analysis Group
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Chapter 4

Examples of Motion
Measurement

In this chapter we will present three motion estimation techniques. First an

extension of an algorithm based on the local spatio-temporal orientation de-

scription suggested by Knutsson (1989). We propose a continuous measure of
directional certainty of the extracted flow.

Second, we will use conservation of the local Fourier phase in a humber of
directions at each point in the image sequence to estimate the image flow. Fur-
thermore we will extract a directional confidence in the estimated flow.

In the third example we will describe how the Euclidean distance transform can
be used to match points corresponding to different time instances of particles
flowing in a fluid. In this special case a the imagery consists of a double exposed
image.
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4.1 A Method Based on 3-D Orientation Estimatia

The following method for extracting information about the motion in a
temporal neighborhood is based on the characterization of this neiglt
by a orientation tensor suggested by Knutsson, and described in Secti
As with Bigin’s approach the orientation tensor can be evaluated by ar
value analysis. Lef; > X2 > A3 > 0 denote the eigenvalues @f, and |
e; = (e;1,ei2,e:3)7 be the eigenvector corresponding Xg Haglund (195
distinguish between the three cases

1. A1 >0; A2=X3=0;
This case corresponds to a neighborhood that consists of iso-gr
planes, i.e. a one dimensional spatial pattern translating through

2. 01=X>0; X3=0;
This case corresponds to a neighborhood that consists of iso-gr
lines, i.e a two dimensional spatial pattern translating through timi

3. MM=X=X3>0;
This case corresponds to an isotropic neighborhood, i.e. the el
homogeneously distributed in the neighborhood as for instance in ¢
of white noise.

In order to discriminate between these three cases Haglund computec
lowing "probabilities" for each case

_ )\1<=>)\2
P = M
_ )\2<:>)\3
b2 = M
_ A3
b3 = )\—1
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and subsequently chose the case having the highest probability. In the first case
normal flow is calculated using Equation (3.24) as

€
n= 27132(611, e1n)” (4.1)

efpten
In the second case the two eigenvectors corresponding to the the two largest
eigenvalues are contained in the plane of the nonzero Fourier coefficients. Con-
sequently a normal vector to this plane is the third eigenvector. According to

Equation (3.28) we can estimate the true flow by
1 T
u = —(631, 632) (42)
€33

In the third case no velocity is computed.

4.1.1 Extension to a Continuous Description

We propose a representation of the local velocity along with an estimate of the
directional certainty of the velocity.

Evidently an eigenvector corresponding to a non zero eigenvalue constrains the
motion in one direction. If we have only one non zero eigenvalue the motion is
constrained only in one direction, namely in the direction given by the normal
flow, as computed by Equation (4.1). In the case of two non zero eigenvalues,
each of the eigenvectors corresponding to these eigenvalues will impose a linear
constraint on the motion. The confidence we should have in each of these linear
constraints is given by the relation between the eigenvalues. The constriction
of the true flow by two linear constraints is illustrated in Figure 4.1

The point of intersection between the two constraint lines given by the normal
flows pq = (u1, nu1)™, andp, = (uz, nup)’ is
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Ha Mo

Figure 4.1: The true flowu, is constrained by the linear constraints given
the two normal flowsp,, and .

va(uf +vd) Sva(us +v3)
H1V2 Sy
( 2 4 2) o ( 2 4 2)
- Hi\pa T Vp) 2\ T V)
piv2 <= pov1

[~3}

(4.

We can furthermore determine the perpendicular distance of the truel
either of the constraint lines, this is given by

)T Hi

[

Pure translatory motion, no noise present, and perfectly designed filt
result in the least eigenvalue being zero. Deviation from these three p
will cause the third eigenvalue to be non zero. This suggests using a ca
measure for each of the linear constraints based on the difference of
responding eigenvalue and the least eigenvalue. Furthermore, a norr
of this difference should be made. This is evident as a high noise ft
step edge measures the motion just as well as a lower step does. We

di = [|(u & p, I, i=12 (44
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the following confidence measure for each of the linear constraints given by the
eigenvectors corresponding to the two largest eigenvalues

_ A &3

Ci A\ y = 1’ 2 (45)

This confidence measure approaches zero when the difference of the corre-
sponding eigenvalue and the least eigenvalue approaches zero, and it attains its
maximum value of one, when the least eigenvalue is zero, and the corresponding
eigenvalue is the largest, or is equal to the largest eigenvalue, respectively.

The distribution of this estimator for the true flow= (u, v) will in general by
a complex one, cf. Anderson (1984) on the distribution of principal components
vectors. Specifically it will not be normal.

A statistical approach to defining the confidence measures above would be
through simulations. We will give an example on such a simulation. Let a
grey level corner be the blurred product of to Heaviside functions, as the one in
Figure 3.3. Let a spatio temporal neighborhood be generated by translating this
pattern with constant velocity (8 0.5). And let the three dimensional pattern

be further corrupted by independent identically distributed Gaussian noise. We
have generated a 1000 realizations of this and computed the true flow as given
by Equation (4.3). The estimated true flows are shown in Figure 4.2.

Simulations like this can be used to indicate the reason in using confidence
measures as the one in Equation (4.5).

Since the corner was aligned with the coordinate axes we would have expected
that the estimates were symmetrically distributed around the diagonal. The

reason for this not being so might be due to our disccarding the third eigenvector.

The noise free pattern should result in only two non zero eigenvalues. Due to

noise, however, we will in general observe that all of the eigenvalues are non

zero. In some cases the noise induced eigenvalue will be greater than one or
two of the eigenvalues corresponding to the signal. So by always discarding

the eigenvector corresponding to the least eigenvalue and always using both the
eigenvectors corresponding to the largest eigenvalues, we might have induced
this bias.
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Figure 4.2: In this figure we see a scatterplot of the estimated true flow in :
realization of a translating grey level corner.
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4.2 A Method Based on Conservation of Fourier
Phase

We will now show an implementation of a local motion estimation based on
conservation of the Fourier phase in a number of spatio temporal directions as
measured by a set of quadrature filters. We will furthermore introduce a measure
of confidence in the estimated normal flow corresponding to a certain direction
based on the quadrature filter output magnitude.

4.2.1 Fourier Phase as a Motion Invariant

We will first illustrate the Fourier phase as an motion invariant. The Fourier

phases are calculated using the quadrature filters described in Section 3.3.3.

We have used a set containing six filter pairs given by the directions in Equa-
tion (3.34), the filter pairs have a center frequency of 1.1, and a bandwidth of
two octaves. We have applied them as 11 x 11 x 11 rotation symmetric spatio
temporal convolution kernels.

These quadrature filters have been applied to the Hamburg taxi scene, of which
6 images are shown in Figure 4.3. The output from the first filter is shown in
Figure 4.4. The total set can be seen in Appendix B. The filter outputs have
been color coded with the filter output magnitude shown as intensity, and the
phase on a circular color scale.

From these images we get a very good illustration of the motion invariance of
the Fourier phase. The color of specific shapes, i.e. curves, and corners of the
moving cars, is seen to be conserved over the images, i.e. over time.
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Figure 4.3: In this Figure, 6 images from the Hamburg Taxi scene is showi
the first column it is image numbers 5, 7, and 9, and in the second colur
is image numbers 11, 13, and 15. Note that we have four moving object
car going from left to right, a car going from right to left partly shaded by
branches of a tree, a car turning a corner and moving long the diagonal
the lower right to the upper left, and finally a pedestrian on the sidewalk in
left side of the image.
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Figure 4.4: Quadrature filter output from filter number 2 of Equation (3.34).
This filter is tuned to the spatio-temporal directiogs®, 0,1 + 1/5), i.e. to

movements in the x-t plane going slowly from left to right, as the movement of
the van that is partly shielded by tree branches in the right side of the image.
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Figure 4.5: This is the normal flow of the van coming in to the image from
right as calculated from the phase from the second quadrature filter at the
corresponding to the seventh image in the sequence. The flow field has
subsampled by a factor two.

4.2.2 Motion Estimation in Phase Images

In order to estimate the motion in the scene we will apply a gradiere
technique to each of the phase images. We will use rotation symmetri
temporal gradient filter realized as 7 x 7 x 7 convolution kernels. To om
the problem of phase wrap around we use Equation (3.22) when compi
gradients. Equation (3.21) then gives us the normal flow. In Figuret
normal flow of the van coming into the image from the right as seen ut
phase from the second quadrature filter is shown at the time correspo
the seventh image in the sequence.

At every point we have a normal flow estimated for each of the 6 qua
filters. Each of these normal flows corresponds to a constraint line in |
space. We will estimate the true flow by the point in velocity space tl
the least sum of weighted squared distances to these constraint linesz
formulate the distances from a point in velocity space to the constra
either in terms of the phase gradients, or in terms of the corresponding
flow. Letting the gradient of the phase of tiph filter output be dene
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(8¢p O0¢p O¢p
_695 ' Oy ? ot
distance is

)T, and the corresponding normal flowy, = (up,vp). Then the

a¢pu+ 6¢pv+ ag;z)|

d=-%_% : (4.6)
VG + (G2
and
<:> .
g= WOH) Byl (4.7)
IPH

respectively. Furthermore, we will use a weight function based on the filter out-
put magnitude in order reduce the influence of unreliable velocity measurements.
Assuming a non uniform distribution of magnitudes over the filters at a points
in structured neighborhood, and a uniform distribution in noisy areas, we will
use a function that assigns the magnitude normalized by the total energy at the
point, i.e. the sum of all filter outputs. Denoting the filter output magnitudes,
pp, We find

_ _Pp
w., = 4.8
S (4.8)

In the case of the taxi scene this results in the flow shown in Figure 4.6. As can

be seen we have successfully extracted the movements of the three moving cars.

It should emphasized that no prior knowledge of the moving objects has been
used. It is evident that using prior knowledge, e.g of the shape and/or the type
of movement to expect, more information might be extracted. We will illustrate
the use of a model of the type of movement to expect in a Bayesian scheme in
Chapter 5.

4.3 Measurement of the Flow in Fluids

In this section we will present an algorithm for the estimation of the flow in fluids
using the Particle Image Velocimetry (PIV) technique. The algorithm is based on
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Figure 4.6: This is the result of a gradient based method applied to a s
directional Fourier phases with the purpose of estimating the motion. All c
putations are local. We have successfully extracted the velocities of the
moving cars.

Rasmus Larsen



4.3 Measurement of the Flow in Fluids 53

the distance transform. It differs, however, from previously reported algorithms
for matching using distance transforms, (Borgefors, 1988; Ragnemalm, 1993),
due to the nature of the imagery.

4.3.1 Particle Image Velocimetry

The Particle Image Velocimetry technique is investigated at the Institute of
Physics, and the Department of Fluid Dynamics at the Technical University of
Denmark. The technique is developed for measurement of motion in fluids. The
basic technique consists of inserting seeding particles in a fluid, then recording a
double exposed image of an illuminated plane. Each particle should be exposed
twice in the resulting image. Given the time between exposures, and at a match
between particles it is possible to compute the velocities. For a description of
an experimental setup the reader is referred to Westergaard, Kock, Larsen, &
Buchhave (1993). This report further describes an approach to the measurement
of the velocities based on the local Fourier transform, which is a particularly
slow algorithm. A need for a faster algorithm has been expressed.

4.3.2 Initial Studies

Given two object points of distancel2n two dimensional space, what does
the distribution of the distance from any other position, the distance map, to the
nearest point look like? In Figure 4.8 we see three iso-distance curves.

For the curves corresponding to distances less than or equalttee length

or the curves are trivially seen to be#, wherez is the actual distance to an
object point. For the curves corresponding to distances excedding have

to subtract the length of the circle segments that are not part of the iso-curve.
We find the following function, a plot of which is seen in Figure 4.9

4rrx for z<d

4z(r <arccosg)) for = >d (4.9)

r={
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Figure 4.7: This is an image recorded using the PIV technique in a low s|
wind tunnel having a turbulence generating grid in the inlet. The flow is fr
right to left. A disturbance is generated by a fence on the wall. The satur:
is due to non separated particles.
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Figure 4.8: In this figure three iso-curves in the Euclidean distance transform
are shown in an image containing two points.
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Figure 4.9: In this figure the functiofi of Equation (4.9) is seen.
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From this figure it is evident that the half distance between points is identified
by a peak in the histogram of the distance transformation.

This, however, only constrains the speed of the movement, and not the direction.
First of all it is evident that we can only determine the direction modylas

we can not identify which of the points corresponds to the first occurrence of

the particle. In order find the direction we can make use of another property of

the midpoint between object points. It is located on a watershed in the distance
map. This is illustrated in Figure 4.10.

4.3.3 The Algorithm

Given a continuous distance transformation, identification of the peak in the
histogram, Figure 4.9, should be quite straightforward. Due to the discrete
nature of digital images, however, some problems occur. The discrete grid only
allows for some distances in our distance map. An isolated pixel has 4 pixels
of distance 1, 4 pixels in the distang&2, 4 pixels in the distance 2, 8 pixels in

the distance/5, 4 pixels in the distance 3, and so forth. So for small distances
between object pixels compared to the unit distance of the grid, the peak in the
histogram given by a typical half distance between object pixels might easily be
confused with peaks due to the discrete nature of the imagery, such as the one
corresponding to the distanaés.

We therefore propose to normalize the histogram with the nominal occurrence
of the distances in the distance map corresponding to a single object pixel in
infinite space.

We will illustrate this on a artificially generated PIV image. The image is shown

in Figure 4.11. This image has been generated by randomly distributing pixels
within a 512 x 512 frame, then replicating each pixel in a position 4 rows below

and 4 columns to the right.

The histogram of this images normalized as described above is shown in Fig-
ure 4.12. We can compare this to the normalized histogram of the distance map
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Figure 4.10: In this figure we see the distance map for the two points in
ure 4.8 shown as a grey level image. Super imposed on the distance ms
iso-distance curves corresponding to the half distance between points is s
in white, and the watershed of the distance map is shown in light grey.

evident that the two curves intersect in the midpoint between object points
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resulting from an image containing points distributed randomly with a probabil-
ity twice as high as the one used to generate the one in Figure 4.11. Such an
image is seen in Figure 4.13, and its normalized histogram is seen in Figure 4.14.

It is evident that the simulated PIV images shows an under representation of
occurrences of pixels having the distance to the nearest object equés,to
which is exactly half the distance between the the pixel pairs. This is further
demonstrated by normalizing the the histogram corresponding to the random
distribution of pairs of points with the histogram corresponding to the totally
random distribution. This is shown in Figure 4.15. The under representation of
points having distance/8 is clearly seen,as well as an under representation of
points having the distancg/10.

We have thus successfully identified the shift and thereby the speed of the
particles in a simulated double exposed image of particle flow.

Figure 4.11: A simulated PIV image. Pixels are distributed randomly and |
replicated in a position 4 rows below and 4 columns to the right. The ok
pixels are shown in black on a white background.
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Figure 4.12: This is the histogram of the Euclidean distance transform of the
image in Figure 4.11, where the number of occurrences of each distance is
normalized by the number of occurrences of the distance in a distance map
corresponding to a single pixel in infinite space. The histogram has further been
normalized by the number of pixels in the image.
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Figure 4.13: This image contains points randomly distributed the plane wi
probability twice as high as the one in Figure 4.11.
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Figure 4.14: This is the histogram of the Euclidean distance transform of the
image in Figure 4.13, where the number of occurrences of each distance is
normalized by the number of occurrences of the distance in a distance map
corresponding to a single pixel in infinite space. The histogram has further been
normalized by the number of pixels in the image.
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Figure 4.15: This is the normalized histogram corresponding to the ran
distribution of pairs of points, that are displaced by 4 rows and 4 colur
normalized with the normalized histogram corresponding to a totally ran
distribution of points. Under representation of points in the distance map he
distances\/8, as well as\/10 are easily identified.
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Chapter 5

Integration of Local
Measurements

As described in the previous chapters, the local measurements of motion often
do not constrain the true flow fully due to the aperture problem. This results
in unsatisfactory flow fields in the case of image compression and temporal
interpolation. In order to remedy this problem, and to lessen the effect of noisy
observations, an assumption of global or piecewise smoothness is often applied.

In this chapter we will review some of the techniques used to propagate mea-
surements of local motion at points of well defined motion to areas of less well
defined motion. In particular we will describe the use of the framework given
by the Bayesian Paradigm in combination with a class of models called Markov
random fields.

5.1 Deterministic Techniques

We have already touched upon one of the techniques to integrate measurements.
In Sections 3.3.2 and 3.3.3 methods that involved computations of the local
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flow by combining neighboring measurements under the assumption .
constancy or of some parametric model, e.g linear and quadratic mode
described.

Horn & Schunk (1981) suggested a global smoothness constraint on thd
field, which resulted in a compromise between a error derived from the
constraint Equation (3.17)

E=Tu+lyv+1; (5.

and a motion smoothness error given by the partial derivatives of the
field with respect to the spatial coordinates

2 _ (9u)2 du 2 )2 ov 2 L
€= (55)"+ (a—y) +(52)+ (a—y) (5-
The total error to be minimized is then given by

E(u) = //(Ebz +a2E2%)dx dy (5.

where the integration is performed over the entire image. Nagel & Enk
(1986) extended this method proposed by Horn & Schunk by introdt
space variant smoothing. They suggested the following "oriented" smc
constraint

£2 = trace(Vu)T W (Vu)) (5

where Vu expresses the partial derivatives of the two velocity compon
a matrix form

du Qv
Vu = % % (5!
0y 0Oy
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andW has a structure given by

W = 113 <:>I€”Il/ :| + 2 |: Ia%z + Izzy Iﬂ?y(lzz +Iyy) (5.6)

el I, I? Ly(Low + L) 12, +12,
This change in the smoothness, i.e. usifignstead of the identity matrix used
by Horn & Schunk, has the following effect. At points with strong second order
variation, e.g. corners, the smoothness constraint is enforced weakly, and in the
vicinity of points with strong first order variation, e.g. at edges, the smoothness
constraint is enforced strongly along the contour and weakly across the contour.

The approach of Nagel is one one way of overcoming the problem of over
smoothing at motion boundaries. Hildreth (1984) proposed a technique accord-
ing to which she only calculated local motion estimates at intensity contours,
and then subsequently only applied a smoothness constraint along these con-
tours. For each contour she minimized the following curve integral with respect
the velocity along the contous,

ow = [ ((3)°+(3:)°) +5 ((wen)- 1t ) ds 67)

wheres is the curve length, ang is the measured normal flow. The normal
flow measurements were done using a gradient based technique, but in principle
any local measurement could have been used.

Simpson & Gobat (1993) have suggested a smoothing procedure based on vector
median filtering. They applied a region based matching technique using the
maximum cross correlation to estimate the local velocity. Initially points having
multiple correlation peaks in the cross correlation function, e.g. points along
contours where only normal flow can be extracted, where replaced by a local
vector median. The purpose of this being to obtain an estimate of the true
flow. Following this correction an iterative vector median filtering is applied.
Simpson & Gobat successfully used this algorithm to compute flow estimates
of the oceanic flow as seen in sequences of satellite data. The vector median
filters are described in (Astola, Haavisto, & Neuvo, 1990).
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5.2 Stochastic Approaches

Since the paper by Geman & Geman (1984) on stochastic relaxatiot
distributions, and Bayesian restoration, the literature has exploded wit
cations of the Bayesian paradigm in image analysis and image procest
Bayesian paradigm is a framework for incorporating stochastic models ¢
phenomena into a very general set of tasks. We will give a short ret
Bayesian approaches to motion estimation. First we will, however, give
review of the Bayesian paradigm and Markov random fields.

5.2.1 Bayesian Paradigm

The Bayesian paradigm may be described in four successive stages
1989).

1. Construction of a prior probability distributiaf(x) for the phenomen
X, that we want to make inferences about. This distribution shoy
ture our general and scene specific knowledge. In practice we
expect to model global features of the true image, so we should |
trate on modelling the local characteristics. For instance, neark
values tend to be similar, adjacent labels are usually the same, ar
boundaries are generally continuous.

2. Formulation of an observation mod&(y|z), that describes the di
bution of the observed imageég given any particular realization «
the prior distribution. This step is governed by physical or sta
considerations concerned with the observation device.

3. Combination of the prior distribution and the observation model if
posterior distributionP(xz|y) by Bayes theorem

P(y|z)P(x)

P(z|y) = P

(5.
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P(x|y) is the distribution of the phenome given the observed images
y. P(y) is the prior probability of the observed image, and is generally
not required.

4. Drawing of inferences about the visual phenomenon based on the posterior
distribution. This resembles traditional forms of regularization, i.e. faith
in the data is balanced against the regularities of the prior.

5.2.2 Markov Random Fields and Gibbs Distributions

Before entering into a discussion of motion estimation techniques we will review
the class of models known as Markov random fields. We will consider discrete
as well as continuous models, as both have been used extensively in motion
analysis, (Murray & Buxton, 1987; Konrad & Dubois, 1992; Heitz & Bouthemy,
1993). For more thorough discussions on Markov random fields and the related
Gibbs random fields the reader is referred to Geman (1990), Dubes & Jain
(1989), Ripley (1988).

Graphs and Neighbourhoods

As we will be studying the the distribution of random phenomena on a spatial
arrangement of points, we will start by some useful definitions from graph
theory. This discussion will be strongly adapted to our needs.

Definition 1 Let S = {so, 51, ..., s(w—1)} be a set of sites. Aeighbourhood
systeng = {G,, s € S} is any collection of subsets &f for which

1. s¢G,
2. reGs&s5€@G,

G are theneighborsof s. O
We will use the notation ~ j to denote that the siteisandj are neighbors.
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Definition 2 A clique C is a subset of the set of sitésfor which every p

of sites are neighbors. |

Single pixels are also considered cliques. The set of all cliques is dalle

In the sequel we will consider the following three cases of neighbourho
tems.

Case 1:S=X,,, Xn.nisthem xn integer lattice representing the gr

which our images have been sampled, i.e. the pixel sites for the i
process. We are interested in homogeneous neighbourhood systems

F. {F;li=0,..,me1,j=0,..nel}
Fiy = {(kD|(k<i)?+Uej)?<c}

Notice that the sites at or near the boundary of the lattice have fewer n
than the interior points. This is the so-called free boundary model.
models include the toroidal model, which corresponds to first roll
lattice as a tube and then connection of the ends of the tube to

Figures 5.1(a) and 5.1(b) show the (interior) neighbourhood configura
c¢=1andc =4. In Figures 5.1(c) and 5.1(d) cliques corresponding ton
neighbourhood systems are shown. |

Case 2:5=D,,, S =Dy, isthe dual lattice ofX,, ,. The sites ofD,,

are the midpoints of each vertical or horizontal pair of pixels, and thy
resent possible locations of edge elements. In Figures 5.2(a) and %
(interior) neighbourhood configurations for a horizontal and a vertic
element are shown in one system. In Figures 5.2(c) and 5.2(d) the ne
hood configurations are shown for another system. |

Case 3:5=X,,,UD,,, This is the setup for a combined pixel ant

process. The pixel neighbors of sites fin,, ,, might be the two pixels
each side, and hence each pixel has four line neighbors. |
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Figure 5.1: Neighbourhood systems and cliques for the pixel process. (a),(b) The
neighbourhood configurations for (interior) points. The points marked with the
symbolo are the neighbors of the point marked «. (c) The cliques corresponding
to the neighbourhood configuration in (a). (d) Some of the additional cliques
corresponding to the neighbourhood configurations in (b). This neighbourhoods
contains 24 cliques in all.

fuEl Image Analysis Group

72

Chapter 5. Integration of Local Measurer
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Figure 5.2: Neighbourhood systems for the line process. Together with
line sites, denoted by x, we see the pixel sites marked .by(a),(b) these
are the neighbourhoods for line sites between a vertical pair of pixels, a
horizontal pair of pixels as used by Geman & Geman (1984). (c),(d) t
are the neighbourhoods for line sites between a vertical pair of pixels, a
horizontal pair of pixels as used by Konrad & Dubois (1992).
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Gibbs Measures and Markov Random Fields
We shall now consider probability distributions on lattices and graphs. We

will restate the definition of Markov random fields and Gibbs measures, and a
theorem that shows an equivalence between these two.

Let there be given a neighbourhood systéns {G,}, on a set of sitess =
{50, -.-;8n—1}. We consider any family of random variables indexed%y.e.

X ={X;|s € S} (5.9)
The state space may be ordered, e.g
A={0,1,...,L &1}, (5.10)
or unordered, e.g.
A = {red yellow, green}. (5.11)
We letQ denote the set of all possible configurations
Q={w= (s, .., Z5,,_,) | 5, €EA,0< i < n} (5.12)
As usual, the ever{ X, = z5,, ..., X5, , = zs,_,} IS abbreviated X = w}.
After these preparations we introduce the Markov random field in the following
definition

Definition 3 X is anMarkov Random Field (MRRyith respect tog if and
only if
1. P(X =w)>0, forallw € Q

2. P(X; =zs|X, =z, v #8) = P(Xs = z5| X, = z,7 € Gy)
forall s € S, andw € Q.
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It should be noted that any random field satisfying the first "positivity" cot
is a Markov random field, if we can specify a neighbourhood large ent
encompass the conditional dependencies of the second condition. The
these models in image modelling lies in that we can specify prior modd
neighbourhood that are small enough to allow for reasonable compt
loads, yet at the same time they are rich enough to model interesting
of images (or fields), (Carstensen, 1992). Furthermore it should be poi
that although the conditioning in the second condition of the definitioc
the state in neighboring sites only, it is perfectly possible to obtain long
correlations.

We next consider a so-callgebtential Let C' be a clique, and let all clig
given by the neighbourhood systein= {G,} be denoted’. For allC € C w
assume we have a function

Voe:Q— R (5.1
with the property thatVo(w) only depends on the states in the sitest

clique C. The family of functions{V¢|C € C} is called a potential. Givert
potential we can constitute thenergy function

Uw) =) Vo) (5.1

cecC

This leads to the following definition of the Gibbs measure.

Definition 4 The Gibbs measurénduced by the energy functioli is

P(X =) = explel )/ T)

whereT is a control parameter usually referred to as temperature,
normalizing constant
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Z =" expU(w)/T)

we

is called thepartition function |

The Gibbs measure has been extensively used in statistical physics to express
the probability of a system with many degrees of freedom being in a certain
state with a certain energy, mainly because it maximizes the entropy

&Y p(w)log(p(w))

weR

among all distributions with the same expected energy. As entropy is a measure
of uncertainty, the Gibbs measure is the probability distribution that for a given
energy maximizes uncertainty.

The temperaturd” controls the "peaking" of the probability density function.
As T tends to infinity the distribution tends to a uniform distribution among all
states. AsI’ tends to O the distribution tends to a uniform distribution among
the minimum energy states.

In general the partition function is impossible to compute due the usually enor-
mous number of configurations . It turns out, however, that very often we
need not compute exact probabilities, ratios between probabilities suffices, and
then Z is cancelled.

The Markov random fields and the Gibbs measure are related through the fol-
lowing theorem.

Theorem 1 (Hammersley-Clifford). LeG be a neighbourhood system, Then
X is a Markov random field with respect if and only if P(X =w) is a

Gibbs distribution with respect tg. |

A simple proof is given by Geman (1990). This equivalence is important because
it provides us with a simple way of specifying Markov random fields, namely by
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specifying potentials, which is easy, instead of local characteristics for \
is hard to establish consistence of the joint distribution. Furthermore th
measure gives us a joint distribution Af.

Finally, we shall make remarks on some extensions of the descripti@
above. For simplicity it was assumed that all sites had a common stat
Without any problems we can extend this to a site-dependent state spat
is appropriate when S consists of both pixel and line sites as describé
previous section.

The extension from a one dimensional Markov random field to multi
random fields is also straightforward. A multivariate random field can
duced to a univariate random field by redefining the state space. Co
p-dimensional processy, = (XM, ..., X®). If the cardinality of theith can
ponent isL;, then we construct a single state space WifhL; states whi
each state is a-tuple @b, ...,z). This will be needed for our purpose
we in some cases aim to model the velocity field as a Markov random

The description has only been given for a finite state space. It is, I
possible to extend to the case &f having a countable number of outcc
as well as the case of; having a continuous distribution. In the first cas

3" expel (w)/T)

weN

must be finite, and in the second case exp(w)/T") must be integrable.

5.2.3 Prior Distributions

In this section we will describe some of the choices of prior distributia
motion estimation in the literature. In general we can choose to mt
joint distribution of velocity vectors by using a pixel prior, or we can ch
labeling prior, with the purpose of segmenting different moving objects
the image field. Template priors can be used when we want to make ir
about geometrical shapes in the image, e.g. in the case of contour |
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Finally we can incorporate a description of discontinuities in the velocity field
by including edge models.

Pixel Priors

A very useful class, and the most widely used, of pixel priors are based on
differences between neighbors. Besag (1989) presented this class of distribution
in the univariate case, given by their energy function

U) =) #zi &) (5.15)

inj
where¢ is a specified function satisfying
d(w) = p(sw), ¢(w) increasing withjw| (5.16)

If furthermore¢ is convex and differentiable, computational advantages can be
obtained. Joint distributions defined by Equation (5.15) are improper in the sense
that they are non-integrable, and thus can not be normalized. The impropriety
arises because Equation (5.15) only addresses differences, the overall level of the
process being unrestricted. They do however have a perfectly proper conditional
density

P(zi]2j,§ 71) o expe Y | ¢z ©2;)) (5.17)
JjEG;
whereG; is the neighbourhood of

These models bear resemblance to some of the integrations described in Sec-
tion 5.1 in the sense that the partial derivatives of the velocity field can be
implemented as differences between pairs of pixel values.

In the following we will be concerned with the modelling of a two dimensional
vector fieldu = {u;,i € S}, whereS is the sites of our lattice. Note that
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we have left the cumbersome double indexing of the sites in favor of al
simple numbering. The coordinates of sitaill be denotede; = (z;, y;).

In the context of surface reconstruction Terzopoulos (1986, 1988) descw
energy functions In the two dimensional case they correspond to

Ui(u)

/(ui +u§ +v§ + vi) dz dy, (5.1

Us(u)

/(uiw + 2u325y + ugy +02 + 2v§y + vsy) dz dy, (5.1

where the integration is performed over the entire image. The first €
is recognized as the measure of continuity used by Horn & Schunk
Equation (5.2). If the partial derivatives are implemented like this

wy, = w(z; +1y;) cw(;,y;)

wy = w(z,y + 1) Sw(w,y;)

Wy = w(z; + Ly 2wz, yi) +wlw ©1,y:) (5.2
Wyy = w(z, Y + 1) S2w(zs, vi) + w(w, vy 1)

wzy = w(z; + Ly +1)Sw(w,y + 1) Swz; +1,y:) +w(z;, yi)

wherew can be substituted for either, or v, the priors corresponding to E
tion (5.18) and (5.19) can be implemented using the neighbourhoodn
given by the neighbourhoods shown in Figures 5.1(a) and 5.1(b), respy

1These models are the two lowest order cases of the two-dimensional generalized sj

tional, ,
m am
o= [ (1) (Griggims) v
i=0

For the first model, attained far=1, the functional is proportional to the small deflection ¢
of a membrane. The associated Euler-Lagrange equation is Laplace’s eqéatiom,= 0, whe
Au = ugy + Uyy. For the second model, attained fer=2, the functional is proportione
the small deflection bending energy of a thin plate. The associated Euler-Lagrange equd
biharmonic equationAzu =0, whereA?y = Ugzrr + 2WUggyy + Uyyyy.(TErzopoulos, 198
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For the two models, the discrete version of the energy function becomes upon
substituting (5.20) into (5.18) and (5.19), respectively

Us(w) = Y V3 (u, i) + ) V3 (). (5.21)
Up(u) = > Vi (u,i) + > V3 (u,i) + Y Va(u,i), (5.22)

The potential§/}, V', VI, V¥, andV, corresponding to the multi pixel cliques
shown in Figures 5.1(c) and 5.1(d) are given by

Vi) = |u(zi+l,y)eul,y)|?

Vzv(uvi) = ||u($layl+1)<:nl’(xuyl)||2

Vi(u,1) = |luzi+1y)S2u(zi, yi) tu(z <l y:)|? (5.23)
V3”(u,i) = ||u(xi7yi+1)<:>2u(wiayi)+u(xiayi<:>l)”2

Va(w,i) = |lu(@+Ly+Deulz;, yi+1)eu(z; +1, y;)+u(z;, y;)|12

where|| - || is the Euclidean norm.

The energy function in Equation (5.21) corresponds to an intrinsic Gaussian
autoregression, Besag (1989). These Gaussian priors seem well suited when the
flow is known to be smooth, but they will be unsatisfactory in the presence of
discontinuities, which they will smear out.

Gaussian priors for vector field modelling have been used by Konrad & Dubois
(1992)

An alternative to the Gaussian pixel prior in the univariate case is the median
pixel prior given by the energy

UR) =Y |(zi ©2)l (5.24)

ing

The conditional distribution of Markov random field corresponding to this energy
function has its mode at the median of the neighbotfig rather than at the
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mean, as was the case for the Gaussian pixel prior. This property r
attractive for fields with discontinuities. The energy function, however,
differentiable for this prior.

The univariate case can be generalized to the multivariate case by t
| - |li-norm. In fact, we might generalize further and introduce [thd,-norr

U) = |[(u; su))|p, 1<p<2 (5.2

]

The generalization has been introduced in the univariate case by Bo:
Sauer (1993).

Other approaches to avoid the smearing of discontinuities attained by tt
sian prior include the following function suggested by Blake & Zisserme

U(z) =Y _(min{z; <z, 7})? (5.2

in g

where is a threshold parameter. Due to the non convexity of this ful
any estimation in the posterior function relies heavily on the method u
minimization.

Label Priors

When the image sequence in question contains different moving objectg
want to make inferences about the movement of the objects, we need ta
a segmentation as well as a velocity estimation. One way of doing th
apply a Markov random field with a label prior. As mentioned above th
prior should incorporate the assumption that adjacent pixels tend to b
the same object. Bouthemy & Franis (1993) describe an approach bas
the following energy function

Ule) =) _nl&d(eie))) (5.2

invj
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Wheree = {e;,i € S} is the label fieldyy > O is a predetermined parameter,
and d is Kronecker’s delta. Bouthemy & Fraois used the binary cliques in

a second order neighbourhood, (3 x 3). As described by Carstensen (1992)
using only binary cligues we can not model structural differences between the
phases. In order to do this we need cliques containing odd numbers of pixels.
So in would seem appropriate in this case, where structural differences between
moving objects on a non moving background seems likely, that such cliques
should be used. For instance based on the morphological Markov random fields
described by Carstensen (1992).

Template Priors

Template priors are prior distributions that describe the geometrical relations in
objects. We have touched upon this in Section 3.3.4, where we made inferences
about the geometry of a contour based on the prior information given by the
estimated position in the previous image. We might also use a template prior
that describes our prior knowledge of the shapes we are observing. For instance
Kervrann & Heitz (1993) have applied such an algorithm to the tracking of a
hand.

Inclusion of Edge Priors

The inclusion of edge priors is a way to cope with discontinuities in the field.
This is the situation described by Case 3, where we are considering a pixel/label
process coupled with a line process. The prior distributions should be generated
satisfying for instance that adjacent pixels have similar values, or labels, and
boundaries are continuous. We will now consider a coupled pixel and line
process, 4,1). We will index the pixel process by and use the index; for

the line process, whetig denotes the position between pixélsnd;j. Geman &
Geman (1984) suggested a neighbourhood system, where the pixel process had
the neighbourhood system given by the four nearest pixel neighbors, as seen in
Figure 5.1(a), supplemented with the four edge positions given by the midpoints
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of the four binary pixel cliques. The line process had the neighbourhoods
given for the horizontal and the vertical case in Figures 5.2(a) and 5.2
will consider the case of a continuous state space for the pixel proce:
binary state space (line on/off) for the line process.

[ 1 line on

bij = { 0 line off (-2
For the Gaussian pixel prior in the 4-nearest neighbors system this cé
following modified energy function

U, 1) =) ||(u; ©u))|[2(L i) + Y Ve ) (5.2

i~ c

wherec; is the index for the line cliques. They only considered the four e
cross shaped cliques. The potentials are given for the different configuri
these in Figure 5.3. These line field potentials characterize the local pt
of the boundaries.

Geman & Geman (1984) also suggested line processes having state §
cluding different orientations of the discontinuity. Besag (1989) prefet
line sites of the honeycomb lattice generated by using a hexagonal pix
To overcome problems of micro edges being generated at fuzzy bot
Konrad & Dubois (1992) suggested larger neighbourhood for the line :
and used a potential that punished parallel lines. Geman, Geman, Gra
Dong (1990) tried to overcome that problem by defining line sites and
bourhoods on a coarser scale than the pixel process.

5.2.4 Observation Models

In the these cases of motion estimation the observations are usually con
of local velocity estimates based on the measured intensity values. T
nigues for obtaining these local observations are described in Chapté
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[ J [ ] [ J [ J [ J | [ ]
[} [ ] [ J [ J [ J | [ ]
(@) 0.0 (b) 2.7 (c) 0.9
[ ] o [ [ ] [ | [
[} [ ] [ J [ J [ J | [ J
(d) 1.8 (e) 1.8 2.7

Figure 5.3: Potentials associated with various configurations (up to a rotation):
(a)-(f) four-element cross shaped cliques; (—vector site, — —line element "on").
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observation models for the continuous pixel priors are based on asst
such as normal distribution of the difference of the displaced intensity
(Konrad & Dubois, 1992), i.ed = I(z,t) I(x +u,t + 1) € N(u,<>). Othe
use normal distribution of the residual of the gradient constraint Equatior
i.e. d= (I, I,)u+I € N(uc?.

In the case of the label prior, one might use an assumption of norm
the difference to a local estimate of the object velocity based on the
segmentation from the previous image, (Bouthemy & Fo#)c1993).

5.2.5 Maximum a Posteriori Estimates
The maximum a posteriori estimate of u given observationg is defined |
4 = arg maxp(u|y) (5.3

If the prior model and the observation model both are described by Gibi
sures, so is the posterior model. The maximization of the posterior prd
is transformed into the minimization of the sum of the energy functia
the prior distribution and the observation model. This usually involvesg
computational cost due to the high dimensionality of the parameter spa

Iterated Conditional Modes

The iterated conditional modes (ICM) algorithm, (Besag, 1986), consis
series of sweeps over the sites of the process, in which each site visite
to the value that maximizes the conditional probability given the obser
y, and the current reconstruction elsewhere

u; = arg maxp(u;|y, g\ ;) (5.3
Convergence is only guaranteed if the energy function of the posterio

bution is convex. In not, an ICM scheme is likely to get trapped in ¢
maximum of the posterior density.
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Simulated Annealing

A simulated annealing scheme to obtain the maximum a posteriori estimate in a
non convex posterior density was given by Geman & Geman (1984). The idea
is that we for a fixed temperatuf@ simulate in the distribution

pruly) < (p(wp(y|w)* (5.32)

by means of the Gibbs sampler, i.e. at each update we select a new value at a site
by randomly selecting a new value from the conditional distribution given the
neighbors and the observations. The simulations will allow states with higher
energy which enables us to escape local minima. If we decrease the temperature
slowly we will finally end up in the maximum a posteriori estimate. For details

on the algorithm the reader is referred to Geman & Geman (1984), Aarts &
Korst (1989).
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Chapter 6

Examples on Integration of
Local Measurements

In this chapter we will present some examples of model based integration of
local measurements of motion.

In the first example the local measurements of image flow based on the 3-
D orientation estimation technique described in Section 4.1 in a sequence of
images from the Meteosat satellite, are integrated using a Markov random field
with a pixel prior. We will apply priors that involve continuity of the partial
derivatives of the first order, as well as the second order. The use of second
order derivatives is a generalization of the implementation of Konrad & Dubois
(1992), who used energy functions based on first order derivatives as priors for
motion fields, and the implementation of Kass et al. (1988), who used energy
functions based on second order derivatives as priors for curves.

The second example serves to illustrate how it is possible to handle image motion
discontinuities, either by choosing pixel priors that favor this, or by including
edge priors. The first example is a realization of a model including a line process
described by Konrad & Dubois (1992). We will, however, combine it with an
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observation model based on the spatio temporal orientation observatid
second example we will show a generalization of an algorithm for uni
reconstruction by Bouman & Sauer (1993). The priors of this algoritl
based on the-norm of pixel value differences. We will generalize this t
estimation of the two dimensional motion field.

6.1 Temporal Interpolation in a Meteosat Satelli
Sequence

6.1.1 Background

Meteosat is a geostationary satellite belonging to the European Space
It is positioned over the Eastern Atlantic Ocean, (Colwell, 1983). The s
covers Europe, Africa, and the Atlantic Ocean. Due to limited bandwidtt
not transmit more than one image every 30 minutes. The satellite has
and a thermal channel, and it scans the surface of the earth in concentri

The images obtained from the satellite are used in preparation of weatl
casts, as well as illustration in TV weather reports. We have received 14
of a sequence from the satellite covering Europe by the Danish Meteor
Institute (DMI). The images have been rectified by DMI so that they
correspondence with commonly used maps. The spatial resolution is 4
pixels with a 8-bit grey scale resolution.

In Figure 6.1 and 6.2 some of the images from the sequence are sho
evident that due to the rotation of the earth relative to the sun, the visual
is of little use when the earth is positioned between the sun and the
Because of this we will consider only the thermal images. Note also the
in the upper right corner which is due to the rectification.
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Figure 6.1: Images number 2, 4, 6, 8, 10, and 12 from the visual channel of the
Meteosat sequence. Note that as Europe rotates away from the sun we loose
signal.

Figure 6.2: Images number 2, 4, 6, 8, 10, and 12 from the thermal chann
the Meteosat sequence.
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6.1.2 The Algorithm
Prior Distribution

We choose to model the motion using a Markov random field. Although the

clouds are expected to deform over time, we will assume that they evolve in
such a coherent way that we can use the energy functions in Equation (5.21)
and (5.22), i.e

P(u) x exp(
B Y lum+ 1, y) Sulzs, y) I + Julzs, yi+ 1) eu(zi, )|
&B2 Y [lluzi+1, yi) S2u(w, yi) +ulz; 1, y;)|| %+ (6.1)
2lju(zi+1, yi+ 1) eu(z, yi+Deulz+1, yi) +u(z, y;) | >+
lw(zs, yi +1)e2u(z;, ys) tulz;, y; <1)|1%)

This Gibbs distribution corresponds to a Markov random field, with a third order
neighbourhoodg; is seen to control the penalty of high values of the gradient,
and G, high values of the second order partial derivatives.

Observation Model

Due to the assumed smoothness of the motion field we will estimate the motion
on a coarser scale than the original. We choose to subsample the original images
by a factor four.

We use the algorithm for local measurement of the motion field based on the
estimation of the local orientation in the spatio temporal domain, which was
described in Section 4.1. The quadrature filters used have been implemented as
11 x 11 x 11 convolution kernels. The filters have a center frequencylof 1
and a bandwidth of two octaves, which by a visual inspection corresponds to
the motion in the image sequence.
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Given the true motion field:, we now specify an observation model for
local measurementg,. We will do this by a conditional Gibbs distribution

2
P(ylu) o« explea Y cipd%) (6.

i k=1

where d;; is the difference between the projection of the true flow ot
normal given by thekth eigenvector at théh pixel and the normal flow it -
as described by Equation (4.4}, is the certainty measure correspondi
this normal flow given by Equation (4.5).

Posterior Distribution

The a posteriori distribution
P(y) < P(y|u)P(u) (6.

is obviously a new Markov random field, that reflects a trade-off b
smoothness of the field and our trust in the local measurements. The &
the posterior distribution is given by

U=a}, Zzzl cinda,*
B Y illlw(ei+1, yi) Sulw:, yi)l|? + |ulws, yi+ Dz, y:)|| 21+
B X illlu(@i+1, yi) e2u(ms, yi) +u(z: 1, y;)||*+ (6+
2wl +1, y;+1)cu(w;, yi+ 1)z +1, ;) +ulz;, y;)|| >+
||u(xl, y; t 1)®2u(xi, yi)+u(xi, Y <:>l)||2]

In this energy function we can control the properties of estimated motic
The smoothness is controlled I8y, and 3z, and the faith in data is contre
by a.

We can now apply a maximization scheme to the posterior distribution i
to obtain the maximum a posteriori estimate of the motion field as desc
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Section 5.2.5. This has been implemented using Besag (1986)’s ICM, as well
as a conjugate gradient descent routine. The ICM routine has the advantage of
being implementable of a parallel computer due to the local approach as opposed
to the global approach of a gradient descent routine.

6.1.3 Results of the Motion Field Estimation

Figures 6.3 and 6.4 show the estimated motion field corresponding to image
number eight in the sequence. The motion field has been subsampled by a
factor two. For the first field we used the parametgrs= 0.75, 5, = 0, and

a = 0.25, and for the second we used the paramefgrs 0.5, 8, = 0, and

a = 0.5. In both cases we iterated until the average change of the flow vectors
during one sweep of the entire image was belo@0Q. This corresponded to

91 and 97 ICM iterations, respectively.

In Figures 6.5 the motion field estimated using the paraméers0, 8, = 0.5,

anda = 0.5, i.e. a prior energy function penalizing second order derivatives
only is seen. When compared to Figure 6.4 it is evident that this model model
allows more abrupt changes in the field. The combined model in Figure 6.6 has
properties of both models.

6.1.4 Temporal Interpolation

In order to produce temporal interpolation between two images in the sequence,
we take the weighted average of the extrapolation of each image (one forwards
and one backwards). The weights are inversely proportional to the time differ-
ence to the original image.

We extrapolate from the original images using the estimated flow field, the
thus generated image is sampled to the original grid using a nearest neighbor
interpolation.

In Figure 6.7 we see the result of a temporal interpolation between images
number 7 and 8 in the original sequence.
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Figure 6.4: The flow field corresponding to image number eight in the Meteosat
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Figure 6.5: The flow field corresponding to image number eight in the Mete

sequence. The parameters used wire 0, 3, = 0.5, anda = 0.5.
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Figure 6.6: The flow field corresponding to image number eight in the Meteosat

sequence. The parameters used ware 0.25, 3, = 0.25, anda = 0.5.
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Figure 6.7: A temporal interpolation between images number 7 in the uppe
corner and image number 8 in the lower right corner.
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6.2 Handling Discontinuities

In this section we will present some approaches to the estimation of piecewise
continuous motion fields. We will use the combination of the pixel process
described in the previous section and a line process as described by Konrad &
Dubois (1992). Again we will use an observation model based on the estimation
of the spatio temporal orientation.

6.2.1 Inclusion of a Line Process
Prior Distribution

We will use a pixel process with a two dimensional continuous state space
coupled with a binary line process, as described in Section 5.2.2. For the pixel
process we will use an energy function that penalizes high values of the first
order spatial derivatives, only this should not be enforced across discontinuities.
In order to obtain this we will use a neighbourhood system for the pixel process
given by the four nearest neighbors of a pixel supplemented with the four edge
positions given by the midpoints of the four binary pixel cliques. This can be
seen in Figure 6.8.

As for the line field model we will use neighbourhood system suggested by
Konrad & Dubois (1992). This system consists of the system we described in
Section 5.2.2 expanded to include cliques that enable us to penalize parallel
lines, i.e. double edges. This second-order neighbourhood system is shown
in Figure 6.9. Note that we, due to having both horizontal and vertical line
elements, have two neighbourhood systems, see Figures 6.9(a) and 6.9(b). There
are two types of four element line cliques. The cross-shaped cliques from
Figure 6.9(c) are used to model the shape of motion boundaries, whereas the
square-shaped cliques from Figure 6.9(d) are used to inhibit isolated vectors.
The two-element horizontal and vertical cliques in Figures 6.9(e) and 6.9(f) are
used to prevent double edges. We will let the line process take the value 1 in
case of a discontinuity present, and 0 if no discontinuity is present.
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[
X [ ]
[ X [ ] X [ ] X [ J X [ J
X [
[ J

@ (b) ©

Figure 6.8: (a) First-order neighbourhood system for motion fielaith dis-
continuitiest; (b) vertical cliques; (c) horizontal cliques (s—vector site, x—li
site).

The potentials associated with the various two- and four-element clique i
rations are tabulated in Figure 6.10. Note from Figures 6.10(a)—6.10(fw
apply small penalties for straight lines and high penalties for intersectid
square shaped clique configuration potential in Figure 6.10(g) prohibite
points. Figures 6.10(h)-6.10(k) show potentials to penalize double edg

This results in the following prior distribution

plu,l) o expets Y [[(us @uy)|PA i) 8 Y Ve, (1) (6

i~g c

whereV,, is the clique potentials shown in Figure 6.10, and the sum is &
cliques.

Observation Model

For the pixel process we will employ the same observation model ak
Meteosat case in the previous section.
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[
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Figure 6.9: Second-order neighbourhood system for the line process. (a) Hori-
zontal line element; (b) Vertical line element; (c),(d) Four-element cliques; (e),(f)
Two-element cliques; (s—vector site, x—line site).

We will, however, include a term that reflects that motion discontinuities in
general will coincide with positions with dominant orientations, e.g edges. The
observation model thus becomes.

61+cz (6.6)

P(y|u,l) x eXp((:)alz Zc,kdzk Sap Z

Posterior Distribution

The energy function of the posterior distribution is the sum of the energy func-
tions in Equation (6.5) and (6.6). From the description above we can see;that

fuEl Image Analysis Group

102 Chapter 6. Examples on Integration of Local Measure
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Figure 6.10: Potentials associated with various configurations (up to a rota
(a)-(f) four-element cross shaped cliques; (g) four element square shaped c
(h)-(k) two-element cliques (s—vector site, — —line element "on").
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controls the faith in our local measurements of motiap,controls the penalty
for setting a discontinuity3; controls the piecewise smoothness of the motion
field, and3, is a control parameter for the discontinuity configurations.

Due to the presence of discontinuities in the field the MAP estimation results
in a object function with many local extrema. To handle this we will employ a
simulated annealing scheme as described in Section 5.2.2.

Results

In order to demonstrate the ability of this scheme to estimate discontinuous
motion fields, we will use the sequence shown in Figure 6.11. In Figure 6.12
the problems concerning discontinuities is shown. The motion field has been
estimated using the model without a line process. It is evident that we have
considerable over smoothing at the motion edges.

In Figure 6.13 we see the estimated flow field using the model including the
line process. It is evident that we have obtained a good distinction between
the moving patch and the background. The estimated discontinuities are seen
in Figure 6.14. One effect of the process is that it tends to isolate some local
measurements at the motion borders. These isolated local measurements are
typically subject to grave errors, because of the ambiguous neighbourhoods.

T .-,

. -.]_l! ..:._ -'I.ll-

Figure 6.11: This image sequence is generated from two textures fron
Brodatz (1966) catalog. We have a patch of expanded mica on a backgl
consisting of pressed cork translating along the diagonal of the image w
constant velocity of (11). In this figure images numbers 1, 4, 7, and 10 frc
the sequence are shown.
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Figure 6.14: These are the estimated discontinuities in the motion field.
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6.2.2 Using a Pixel Prior Based on the-norm
Prior Distribution

Since the problem of the Gaussian pixel prior whose energy function is s
Equation (5.21) consists of over smoothing at the edges, as shown in Fig
we might consider a pixel prior that handles discontinuities better. Thee
pixel prior has its mode at the median, which should make it able to
edges. A more general prior, however, is the one whose energy fur
based on the-norm

p(u,1) o exp@B D [|(wi uy)p),  i<p<2 (6.

i~ g

This prior furthermore has the nice property of being differentiablepfor 1

Observation Model

For the pixel process we will employ the same observation model as im
previous cases. The observation model thus becomes.

2
P(ylu) < explea Y "> cirds,) (6.

i k=1
Posterior Distribution

The energy function of the posterior distribution is the sum of the energ
tions in Equation (6.7) and (6.8). From the description above we can
a controls the faith in our local measurements of motion, @ndontrols t
smoothness of the motion field.

We have employed a gradient descent routine to the maximization of th
rior probability.
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Results

Again we will use the sequence shown in Figure 6.11 in order to demonstrate

the ability of this scheme to estimate discontinuous motion fields.

1.1, respectively,

0.5 is shown. It is clearly seen that

In Figures 6.15 and 6.16 the motion field usjng 1.2, andp

along with the parameters

0.5, andg

the the motion discontinuities are better preserved than when we used using the

Gaussian prior. The result of which was shown in Figure 6.12.

One effect of the ability of this model to preserve edges is that isolated mea-
surements with high certainty and deviating values are not smoothed away.

Figure 6.15: This is the motion field estimated using the pixel prior basec

= 0.5.

0.5, andg

We see that the motion field is less smoothed at the motion boundaries th

the case of the Gaussian prior used in Figure 6.12.

the p-norm. We have usegl = 1.2, and the parameters

Rasmus Larsen
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1.1, and the parameters = 0.5, and( = 0.5.

We see that the motion field is even smoother than in the cape=df.2
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Chapter 7

Conclusion

Motion is an important characteristic for visual phenomena. The literature con-
tains a multitude of descriptions of attempts to estimate the visual motion as
perceived in a sequence of images. This thesis contains a contribution to these
attempts by going through selective theory and practical applications.

7.1 Summary

We have based our analysis on a framework consisting of three stages of pro-
cessing

1. Extraction of motion invariants.
2. Local measurement of visual motion.

3. Integration of local measurements in conjunction with a priori knowledge.

We have surveyed a series of attempts to extract motion invariants. Approaches
that extract sparsely distributed points and curves, as well as approaches that

113

114 Chapter 7. Conclu

aim at providing dense fields of invariants have been considered. Sp¢
we have illustrated the use of local Fourier phase, estimated in a nu
directions evenly distributed in the spatio temporal domain. The phasd
attractive property of precisely localizing an event. Methods based on i
and derivatives of intensity have also been considered.

With respect to locally measuring the visual motion we have surveyet
ods based on region matching, gradient approaches, frequency appros
feature tracking. In particular we have described techniques for quantifs
directional certainty with which we estimated the local motion. In two
one based on the conservation of bandpass filtered intensity used in a ¢
based estimation method, and the other one based on the conservation
phases as estimated using a set of quadrature filters, we have suggeste
of certainty.

We have applied an algorithm based on the conservation of Fourier pha
a gradient based technique to the estimation of the visual motion in a
scene containing moving vehicles. Without the use of a prior knowledges
assumption of the motion being on a scale comparable with the spatial re
we have identified the moving vehicles by their motion.

The, in motion analysis, seldom used distance transformation has bees
in a feature tracking scheme. We have described a new algorithm, v
a special kind of double exposed images can be used to estimate the
Spatial coherence in the flow is assumed. The double exposed imi
produced using a technique for estimating flow in fluids called Particle
Velocimetry.

With respect to integration of local measurements of visual motion w
surveyed different approaches within a Bayesian framework. The dec¢
contains generalization of univariate Markov random fields models to
mensional Markov random fields used to characterize motion fields. 3
integration of measurements are based of a smoothing that penalizes f
derivatives of the field. We have investigated how we might use secor
derivatives, and how this affects the estimated fields.
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Furthermore, we have described techniques to overcome the problem of over
smoothing at motion discontinuities. A technique based on the estimation of a
coupled pixel and line process in a Markov random field setting combined with a
local measurements technique based of the spatio temporal orientation has been
implemented. We have also investigated prior distributions of the motion field
that tend to preserve motion boundaries, this includes a generalization to the
multivariate case of a technique used in image restoration based pmthren.
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Appendix A

Curvature

The term curvature is a quantitative characteristic of the degree to which some
object, e.g a surface, deviates from some other object, e.g the tangent plane of
the surface. Specifically we want to use the curvature to quantitatively describe
the local intensity patterns of an image in terms of homogeneity, collinearity,
cornerness. Let us consider the surfafee) in three-dimensional Euclidean
space associated with the grey level intensity ima@e

S(z) = (z, I(z)) (A1)

The concepts of curvature which we will be examining are connected with
deviations which are small to the second order; hence we will asSunoebe
a C?-surface.

The squared distance between two infinitesimally close poiitauid (& + dx)
on the surfaceS can be expressed by

E F

- 3.7
dsSdS =dz [F G

] dz (A.2)
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where the elements of the matrix which we will den6ieare defined as

E = 8,8,
F = 8,8,
G = 8,8,

This equation is known as the first fundamental form of the surfee). F
the surface given by Equation (A.1) the coefficieftsF', andG reduce to

E = 1+I(z).(x)
F = L(z)(x)
G = 1+[(x)l,(x)

The first fundamental form gives the distance between the two pairde
x +dx measured on the tangent plane of the surface. dh order to desct
how the surface curves at we will consider the distance perpendicular |
tangent plane at of a point on the surface at + de. This distance tof
second order iz is given by

L M

- 3.7
<dSdN =dx [M N

] dzx (A

where N is a positive normal unit vector to the surfacerat

S, %8,

N= ——
[EFRE

(A.:

and the elements of this matrix which we will dendte are defined as
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L = NS,
M = NS,
N = NS,

Equation (A.3) is known as the second fundamental form of the sulSée¢.
For our surface given by Equation (A.1) the coefficiehtsM, and N reduce
to

Iz (x)

V31t (2)?+ 1, (x)?
Ipy(x)

V31t (x)?+ 1, (x)?
Lyy(x)

V1+ L (x)? + I(x)?

Now, at each point of the surfacs, the normal curvature in the direction
given bydz is the ratio between the second and the first fundamental form.

_dz"Hdx

* T de” Gda (A5)

Of special interest is the minimum and maximum values of curvature and the
directions in which these are attained. These curvatures are normally referred to
as the principal curvatures and the principal directions of the surface. Evidently,

they are given by the eigenvalues and eigenvector& ofvith respect toG.
Trivial computation leads to

Kmax H+\/H2¢>K

fuEl Image Analysis Group
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where the coefficient$l and K denote the Gaussian curvature and mee
vature, respectively

LN &M?

EG &F?
_ 1EN+GL&2FM A
T2 EG & F2 '

The Gaussian and mean curvature can easily be expressed as the pr
the mean of the principal curvatures

K = Kmax$min
H = Kmaxt Kmin
2

which is equivalent to saying that and H are the determinant and hat
trace of the matrbxG ' H.

In the case of a stationary point on the surface the Gaussian and mean|
are, respectively

Kstat = Izac(m)lyy(m) <:>Iavy(m)

2Uea(@) + Ly ()

Hstat
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Appendix B

Phase Images

This appendix contains the quadrature filter outputs of 6 filters described in
Section 3.3.3 applied to the Hamburg taxi sequence. The six images shown
for each filter corresponds to the images of the original sequence shown in
Figure 4.3. The images are shown with the magnitude of the filters as intensity,
and the phase shown on a circular color scale.
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Figure B.1: Quadrature filter output from filter number 1 of Equation (3.3
This filter is tuned to the spatio-temporal direction @21 ++/5), i.e. to move-
ments in the x-t plane going slowly from left to right.
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Figure B.2: Quadrature filter output from filter number 2 of Equation (3.34). Figure B.3: Quadrature filter output from filter number 3 of Equation (3.3
This filter is tuned to the spatio-temporal directiogq, 0,1 + +/5), i.e. to This filter is tuned to the spatio-temporal direction (5, 2, 0), i.e. to contours
movements in the x-t plane going fast from right to left. in the x-y plane that go in the direction from the upper left to the lower rigl
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Figure B.4: Quadrature filter output from filter number 4 of Equation (3.34).

This filter is tuned to the spatio-temporal direction (:b/{_S, <2,0), i.e. to Figure B.5: Quadrature filter output from filter number 5 of Equation (3.:
contours in the x-y plane that go in the direction from the lower left to the This filter is tuned to the spatio-temporal direction 16+ /5, 2), i.e. to move-
upper right. ments in the y-t plane going fast downwards in the image.
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Figure B.6: Quadrature filter output from filter number 6 of Equation (3.34).
This filter is tuned to the spatio-temporal direction 10+ /5, <2), i.e. to
movements in the y-t plane going slowly upwards in the image.
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