VOLATILITY MODELLING

IN THE OPTION AND
BOND PRICING FRAMEWORK

Finn Kroijer

LYNGBY 1995
IMM-EKS-1995-34



ISSN 0909 6264

Trykt af IMM - DTU



Foreword

The increasing interest in the financial derivative markets has, in part, been a result of
institutions becoming more confident in their use of advanced financial instruments,
developing financial strategies which allow the element of risk to be monitored.

This development has lead to a growing interest in the mathematical methods, that
can be applied to create a pricing framework. This project is concerned with math-
ematical methods used to price options and bonds. The project is therefore divided
into two seperate sections, one with analysis of option pricing and one with the anal-
ysis of bond pricing.

One of the frequently used mathematical frameworks to price options is the Black-
Scholes model. This model suffers from biases due to certain assumptions in its
derivation.

This part of the project analyses a method to remove one of these biases which the
Black Scholes model contains. The analysis is carried out with the initiative of Bar-

lays de Zoete Wedd Securities Limited (BZW) in London.

The mathematical methods used to price bonds are partly based on the assumed
behaviour of the interest rate. This part of the project analyses the implied interest
rate from observed bond prices, using a specific bond pricing formula. The analysis
is carried out with the initiative of Unibgrs in Copenhagen, who have provided infor-

mation and data to make it possible
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Chapter 1

Introduction to option pricing

1.1 Description of two basic option contracts

The simplest option contracts traded on the financial markets are the European Call
and the Furopcan Pul options.

A European Call option is a contract that gives the owner the rigth to,

- at a prescribed date in the future, named the expiry date (also called maturily),
- purchase a set amount of a prescibed asset known as the underlying asset,

- for a prescribed amount, called the strike price.

The owner posses the right to purchase, it is not an obligation to do so. In mathe-

matcal terms the value of a European Call option at the expiry date is given by,
Vean = maz(S — E,0)

where S=asset price and E=strike price.

A Put option gives the owner a rigth to sell a prescribed amount of the asset at the

7 i



3 CHUAPTER 1. INTRODUCTION TO OPTION PRICING
expiry date. The value of such an contract at the expiry date is given by,

Vipw = mar(F - S,0)

1.2 Biases of the Black Scholes equation

When pricing options, the Black Scholes (BS) equation is a well known framework,
that gives a very llexible way of evaluating many different derivative products such
as options. llowever in its derivation cerlain assumptions are made, some purely
mathematical approximations, others about the market in which the underlying asset
is traded. One of the assumptions about the market for the underlying asset is to be
investigated in this part of the project. The derivation of the BS equation is based

on the random walk that takes the form

dSs

T = odX + pdt (1.1)

where S is the price of the underlying asset, o the volatility (vol) of the underlying
assel and g the growth of the asset. In the further derivation a portfolio IT consisting
of one option and a number —A of the underlying asset is constructed. The jump in

the value of this portfolio in one time-step is
dll =dV — AdS (1.2)

Now applying Itd’s lemma to V so that

v 2@ v
dv :0‘7;‘ dX 4 (s 4 L@V D

os a7 ger T g (-3

and formula (1.1) and (7.4) it is found that 1 follows the random walk

W, 0
Al = n‘»(;)) — AYIX (S L 1o :,t_,vzg._‘_"

To eliminate the random term d X, so that the risk is eliminated in d1T we set A = o—v

This means that the growth y cancels out. Hence the BS equation takes no account
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ol the growth of the asset itsell. The o term is the vol of the assel, and it as ansumed
to be constant. The consequence of these assnmptions is, that the BS model cannot
incorporate personal opinions of growth.

When pricing with BS these assumptions lead to mispricing. Observations in the

v value with
BS

market
valuc

E S

Figure 1.1: Biases with BS for Call options

market show that these assumptions lead to a tendency for Call options to be over
priced in-the-money (when § > E) and underpriced out-the-money (when E > §),
as it can be seen on figure 1.1. This tendency is vice versa for Put options.

This mispricing has a certain character that can be described by the relation between
strikes and implied volatilities. By ’implied volatility’ is meant the BS volatility im-
plied by an option price observed in the market. The relation between strikes and
implied volatilities forms a smile as is can be seen on figure 1.2, which for a set asset
price exibits the underpricing out-the-money and over pricing in-the- money for a

Call.

implied volatility

strike price

Figure 1.2: The volatility smile
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1.3 Objective

The smile effect exhibits certain trends that give good background for deeper analysis.
T'wo trends are particular noticeable. One trend can be described by the smile effect
getting less conspicuous as time to expiry increases. The other trend is, as earlier
mentioned, that the smile depends on whether the option is in- or out-the-mmoney.
These characteristics make a good foundation for investigating the possibilities of
obtaining a deterministic function for vol dependent on asset price and time, to take
some account of the mispricing by BS with constant vol.

A first step is to analyze the information than can be retrieved from the market. The
actual observed prices in the market can be used to calculate the vol that should have
been used, to price the options correctly with the BS equation. This gives a set of
vol for different strikes and expiry dates. Through the analysis of the smile effect it
shows that these vol are correlated.

Using this data as background, the task will be to deduce a deterministic vol function
that leads Lo a BS valuation framework that takes the smile effect into account. The
measure of success on this task is how close the values obtained with this framework,
get Lo the prices observed in the market.

Such a framework can improve the evaluation of different derivative products, to con-
struct a more consistent pricing framework. The last section of Part I will therefore
contain the pricing of different options and comparing them with values obtained

with constant vol.

When assuming vol to be deterministic instead of constant the BS equation changes.

To see the effect of this, a short derivation is given in the next section.
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1.4  Derivation of BS with deterministic volatility

Let Vo be the value of an option as a function of assel. price S and time t: V(S,1), so
that V(S 4+ dS,t +dt) = dV expanded as a Taylor serics is

' )
N st My 11’—‘45* (1.1)

/ —
V=735 o 2952

Now the random walk with deterministic vol is
Lf:: = pdl - o (S, t)dX (1.5)
= (Spdt + So(S,t)dX)?
= §%pdi® + 20 (S,0)dX? + 25%po (S, 1)dLdX .
Now dX = O(V/dt) so to O(dt)
dS? = $%*(S,1)dX>.
In fact dX? — dt for small dt, hence
dS? = §%¢*(S, t)dt. (1.6)

Substituting (1.5) and (1.6) into (1.4)

av av (')V 2 2 av
= Sa(S,l)=—=dX + 3 l It. .
dv S'a(S',I)(,)Sd/\ +(S/tas |- 9 a*(S, )()q ) (1.7)
Setting up a portfolio by
MnN=V-AS (1.8)

where —A = number of underlying assets, and letting —A be constant in one timestep
dt we obtain

dll = dV — AdS.

Hence using (1.7) for dV and (1.5) for dS, a random walk for dIT is obtained

av
as

v (')V

dll._a(St)S(aV A)dX + (rS5= 557t 0

+ 02(5 1)8?— - rAS)dl.  (1.9)
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To climinate the random term d X and thereby the risk in the portfolio 11, we let
A= ‘(’,—‘5, rlldt = dIl (r = inlerest rate) and using (1.8) we obtain BS with o(S5,t)
from (1.9)

IV 1, L0V v
- - S —_— Y= — = .
0 +20( 0)S (').5'2+1S(')S V=0 (1.10)

When comparing this equation with BS with constant vol, it can be seen that only

. Y3
the coefficient of 2% changes.
957 &



Chapter 2
Volatility analysis

2.1 Implied volatility

The only parameter in the BS pricing formulae that can not be observed in the market
is the volatility of the assct price. To obtain this information with BBS, the known
option prices obscrved in the markel are used Lo calculate what the vol should have
been to equal the actual price observed (this procedure naturally assumes constant
vol). To obtain the implied vol the following procedure is applied. The solution of

formula (1.10) where V is the value of Europcan Call option is
V(S,1) = SN(dy) — Ee "N (d,) (2.1)

where

[V(I) = ‘/;;r_\/_’ e—%‘y:dy

_ log (S/E) + (r + 3a)(T — 1)

4 oV/T =1
L o (S/E) + (r — Lo?)(T - 1)
Uy =

oVl —1t

For this purpose S, Ee~"(T=*) V/(§, 1) are known constants. Now o cannol be obtained

explicitly but is approximated by solving the equation :
f(o) = SN(di) = Ee™T=ON(dy) — V(S,1) = 0

13



1 CHAPTER 2. VOLATILITY ANALYSIS
using Newton'’s method to give the iteration

S(ou)
J'(on) '

Tppy =0y —

where

Lddy ON 1 Ody ON 011
(o) = ST — pemr-0Z2 88 _ 0
Ion) ¢ do ddy Do

da Dd,
In this case the portfolio 1 contains an option. This derivative gives the options
sensitivity to volatillity, and it is normally referred to as the vega. This can for a
European Call or Put option, be simplified to,

J'(en) = SVT - t%?—N (2.2)
30' ()(l]

This method for retrieving the implied vol clarifies the relationship between the value
of the option and the vol of the asset. In the following section the implied vol will

take an essential part in analysis of volatility.

2.2 The volatility matrix

On the London Stock exchange, the index ftsel00 is recognized to be a good measure
of the general stock market level. The options traded on the ftse100 are some of the
most liquid options on the English equity market and they are traded with the most
broad variely of strikes and maturities. A careful analysis of the market prices of
these options is therefore contributing to important information to estimate prices of

new issued fLsel00 options.

At BZW this information is analyzed through the implied vol of the ftse option prices,
observed in the market. This procedure is carried out daily for call and put options
for all different strikes and maturities. The procedure is based on closing prices on
the business day before. This procedure is carried out for options on the fise, DAX

(Deutehe Aktie Index) and other indices, but only options on the ftse100 index are
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relevant for this project. The implied vol are collected into a “Volatility Matrix™
(VM) as scen on the table l);~|0\\'. Due to Put - Call parity the same implied vol will
be obtained for Put and Call. This example shows a sample VM from, say 24 May
1994, As mentioned carlier a VM dated 24 May 94 is actually based on closing prices

from 23 May 94. Bach element in the VM represents the implicd vol of a contract.

" 9115313- +* 100 ]
Month to maturity || -30 | -20 | -10 | -5 0 5 10 | 20 30
1 31.0 [ 2581220 17.5|17.0 | 15.6 [ 15.0 | 13.9 | 12.9
3 24.7121.8 1 18.6 [ 17.3 | 15.9 | 15.7 | 14.6 | 14.2 | 13.2
12 2231199 1182 [ 174 | 16.8 | 16,4 | 16.0 | 15.4 | 14.3
24 21.7119.6 1184 | 17.6 | 17.0 | 16.6 | 16.3 | 15.9 | 15.0
36 212 ({19.6 | 184 | 17.717.3 | 16.9 | 16.9 | 16.6 | 15.9
18 20.6 [ 19.3 11841176 | 17.317.3(17.2(16.8 ] 16.4
60 204 (19.3|18.6 [ 18.1 [ 17.8 | 17.8 | 17.4 |17.4 | 16.8

Table 2.1: The volatility matrix

The x-label gives the strike relative to the asset price, so that for a Call option 30
can be translated as the option being 30% in-the-moncy, meaning that if the option
expired that day it would pay 30% of the asset price. For a Put option this relation
is vice versa so that -30 can be translated to 30% in-the-money, only 0 at-the-money
is equal for Call and Put.

On the y-label is time to maturity in months, ‘The options are issued with several
different maturities. This means, that, eg the row of oplions with 36 month to ma-
turity can be options just issued or options that have been recorded two times before
in the VM, at 48- and 60 month maturity.

The index changes from day to day. This has the impact on the VM that the different

strikes do not necessarily fit into the x-labels. Correspondingly there is a problem
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with fitting into the y-labels as time goes by, This occurs because the options only
are issued once a month, and so it is rare for there to be an option with exactly an
integral number of months to run to fit the y-label.

Both of these biases are corrected for, so that the x- and y-labels are kept consistently
the same regarding the time of recording. The correction methods are not relevant
to this project, as only one VM is taken into consideration. The reason for this sim-
plification is due to the fact that the VM does not change considerably over time,
meaning that the impacts on the results retrieved from the VM in this project, only

would give minor changes.

The VM informs about the implied volatilities for options with strikes in the range
of £30% relative to the asset price at the time of recording. This means, that over
time, where strikes remain the same, the asset price changes. That effects the infor-
mation the VM is based on. The implied volatilities noted under x-label 10 in the
VM today is retrieved from options with a strike (and different maturities) relative
to the current asset price, in a month time where the asset price have changed, the
x-label 10 in the VM will based on implied volatilities for options with a strike that
is dilferent. The influence of this, is that the information that the VM is retrieved
from changes as the asset price changes with time. To fit the VM this must satisfy

the formula

Solt) — E
100 + 2022 = —30,-20,..,30
* Su(l) p p

so that the options that gives the information to fill the VM as time goes by must

have strikes I that satisfy

. P
7 =S8 -—
! W(t)(1 100’

The consequence of this, is that an option issued today with strike Eo, and where the

asset price is Sy will be "moving” around in the future VM’s x-labels satisfying the
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relation
(So+ AS) = Iy
So+ AS

100 +

=p

The conclusion is that because this relation does not correspond to the linear relation
there is between asset price and the value of an option, the VM, can over time only
be used to price options with determined strikes, and not option that are described

by their relation to asset price.
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Chapter 3

Theoretical background

3.1 Surface fit for volatility matrix

For evaluating options with BS with a variable vol, the discrete 63 observations in the
VM must be approximated by a smooth interpolation method that can minimize the
differences between the observations and the derived continuous function. To make
the best possible background for choosing a surface fit method, a 3D-graph of the
VM is made, se graph 3.1 on next page .

The graph shows that fitting the data points to a model that is a linear combination
(namely a+bS+ct) not would be advisable, rather a linear combination of M specified

basis functions X(S,t). The function can therefore be written as.
o(z) = a1 + a2 Xo(2) + oo + ar Xi(2), 2 =(S5,1)

The general form being
M
o(z) = Z ap Xi(2))
k=1
It is important to notify that the basis functions can be nonlinear in z. The most
{lexible method to obtain the coeflicients is the use of the least squares method ref
[20]. By defining a cost function

\/2 _ Z Yi — Zf{—.l ap Xy(2;) :

wy

-

19



20 CHAPTER 3. THEORETICAL BACKGROUND

ABOVE 30.0
27.0-30.0
240-27.0
21.0-24.0
18.0-21.0
15.0-18.0
12.0-15.0

9.0-120
60- 9.0
3.0- 6.0
BELOW 3.0

1
L]
]
|
[ ]
]

Figure 3.1: VM from 24 May 94

where N is the number of data points, in this casc N = 63. w; is the standard
deviation on the measurement of the ith data point. In this case "—1,- is used as a
weight so that the data points with the least importance in the approximations will
be given the largest values of w;. This weight is relevant because certain arecas in the
VM often only is based on information from either very small or no trading volume. In

the further analysis this means that the pricing of these options with a deterministic

volatility have less importance. The w; for this purpose can be observed in the table

helow.
L lI S2E 100

Month to maturity |[ -30 | -20 | -10 | -5 |0 | 5| 10 { 20 | 30

1 2 1 | U T Y O (-

3 2 1 | T T O I O O O O I

12 2 1 L {11142

24 21 2 2 |2 |2(2(2 |22

36 20212122212 (2/|2

48 4 | 4 4 |4 (4141444

60 4 4 4 (414144414
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For the use of minimizing x? define a 3 dimensional matrix of N+ M + [, components.

/‘.‘jl _ ‘\j(;n;,)

,  where ;1 =5, xp=1
w;

Also define a vector b ol the length N by

Yi
by = =
w;
and denote the M vector whose components are the parameters to be fitted, a, ...... SUM,

by a. There are several different methods to find the minimum of x2, the method
used in this case is a solution by the use of normal equations. The minimum of x? is

found where the derivatives with respect to all M parameters ax vanish. This gives

N M
1
0= Z ;ﬁ I:?/i - Z(lj‘\’j(.‘l:,')] ,\’k(;lf,') k=1,..,.M (3|)
i=1 "1 J=1
Interchanging the order of summations, (3.1) can be written as
M
D akja; = fi (3.2)
=t

where the numbers

N X(wi) X (i)

agj = X_; - (3.3)
form an M * M matrix, and
Ny Xe(w
P = ; ——u%——) (3.4)

a vector of size M. Equations (3.1) and (3.2) are referred to as normal equalions of
the least squares method.
They can be solved for the vector a of M parameters, and the system that has to
be solved can be written as a-a = f or more conveniently (AT-A)-a = AT-b. This
system can be solved by several different standard methods. In this case Gauss-Jordan
elimination has been used.

The solution of the system have been written in a C++4 computer program (sce
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appendix A). The program has been constructed so that the number and shape of
the basis functions are user defined. This gives the atmost flexibility in obtaining a
close approximation. The variables S and t used in this approximation is from the
VM.

So— S
So

Spel = %100 (3.5)

the subscript rel is used for relative (=30 < S,y < 30), and tis the time to maturity
in month. The data points used for approximation, have been taken from a VM
24 May 94, the one in graph 3.1. Intuitively the graph 3.1, looks like some sort of

paraboloid of the form
u U 2 "
(Sreiyt) = @y + aaSper + ast + s S7, + ast® + agSreat

By changing the basis functions, one at a time, to satisfy a local behaviour such as
the rapid increase as t tends to 0, and Sy, tends to -25%, an approximation of the

following form was obtained :

Q 1) = + S + S‘l + t'l+ Sv'f'l + ‘5’1'6’1 2 (JG
a(Syets ) = @y + apSret + @3Sy + @y s T2 [ ) .6)

With the values for « given in table 3.1.

ay | 16.592607

ay | -0.068240

az | 0.001144

ay | 0.021546

as | -0.673210

ag | 0.056017

Table 3.1: optimal coefficients
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The error of this approximation was

N
S0 (Srety t) — i) = 18.1176

i=1

E£N=1 Ia(Sreh t) - yll
N

=0.2875

23

(3.7)

(3.8)

The information given in the VM only covers values of —30 < Sret < 30 and | <

15.0 -

12.0 -

9.0 -

6.0 -

3.0-
BELOW

Figure 3.2: approximated vol

30.0

-30.0
-27.0
-24.0
-21.0

18.0
15.0
12.0
9.0
6.0
3.0

t < 60. For the valuation of options, o(S,e,t) needs to be defined for 0 < S,o < 0o

and 0 < ¢ < 60. The most reasonable assumption is to let the surface continue with

constant values at the boundaries given by the VM, so that
for S < =30 :0(Sra,t) = 0(=30,1)

for S>30 :0(Se,t)=0(30,1)

for t<1 :0(Sre,t) = (Srery1)
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Jor t>60 :0(S.a,t) = 0(Sa,60)

These assumptions gives the surface on graph 3.2

3.2 Solving BS with deterministic volatility

The standard BS with constant vol can be transformed into the heat equation. In
this case where vol is a variable a numerical solution after two basic transformations
is preferred. From the derivation of BS w'ith deterministic volatility, the equation
(1.10) is given

BV
(?l

1 LRV AV
S0 (S, )8 5 S e —rV =0 (3.9)

For a Luropean call the boundary and initial conditions are given by figure 3.3.

S
V=S-Ee "™ S
V=S-E
____________________________________ E
V=
V=0 ¢
0 T

Figure 3.3: bc and ic for European Call

To remove the source term —rV we transform with
V(S,t) = re”"TDy(s,t)

and obtain

du l . 0%u Ou
ot S8 et S5 =0

This is the Kolmogorov equation, and it is a backward parabolic partial differential

equation. To make the equation more convenient for a numerical treatment, it is
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transformed into a forward pde by
t =T ~7r dl = —dr
which leads to
du 1, 9u Ju
— = =0}, T = 7)8%— 45— 3.
or =37 ST =S ae Sy (3.10)

The boundary and initial conditions changes after the transformation to figure 3.4 on
next page. Formula (3.10) and the transformed conditions makes the background for

the numerical approach.

u=(S-Ee ™)™ s,

u=(S-E)e ™

u=0

0 T tau

Figure 3.4: transformed bc and ic for European Call

3.2.1 Crank-Nicolson

The Crank-Nicolson scheme refl [15], [16] approximates the second space derivative
by a half explicit and a half implicit difference. The derivative with respect to time

is approximated by a forward difference. Now denoting the approximation to u by
Ul =u(jAS,nAr)

where JAS = Spaz and NAT =T

The Crank-Nicolson scheme for (3.10) can therefore be written as

DUl 1 a3 (a V83U 4 (02)%8307) 1 (DasUP*' + BosUT)
A MPRLRY - + 18- ,
Ar 27 (AS) 2 AS

(3.11)
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where

l. Jutl Uu
Ap U =2 "5

At
4 Uy, =207 + U
Sy = it J )t
SUJ (AS)?
U, - U
N = 1 =1
Bosl; 205

Separating the scheme into U™ and U™ leads to
__L_\_TZJ_ el 2i _ nt1 Ar g"H)2 ndl _ ﬁé ntl 2_1 n41
A5 4 ((":' a5 UiE (Asyz( VS Ut = Reg (@ as ) Ui

AT S S Ar 1 A S
=2z (e —r)up, + (1- A Lemest)ur - 225 (e Sy Y upy, 312)
AS 4 AS (AS)?22 AS4 AS

3.2.2 Stability and convergence

Stability

"The local stability of this scheme can be examined by dropping in a Fourier mode
UP =2"e,  A=ed", (=mrAS

Substituting this mode into (3.11), dividing by Ul and for simplicity assuming that

a}'“ = o} gives
- n 'l At
A=1—(14A)2(})S? (AS)’ +z(1 + A)rS,AS.szn( (3.13)
Now denoting
n\2 G2 . 2§ _.c. BT
a=2(a})S; (AS)"‘sm L b= rS]ASsmC

and after some simplification the stability condition |A] < 1 can be seen satisfied by

1 —4a + 4a? + b?
1Al 1 +4a +4a?2 + 12 s1 Ve,

hence the scheme is unconditional stable. The assumption that o;‘“ = o} can be
justified by the fact that for any realistic volatility function o(S,t) the difference will
be bounded by a constant k satislying |o*! ~ all Sk << 1, Vj,nso that formula

(3.13) still holds.
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[
-1

Convergence
To calculate the truncation error, u is expanded in a Taylor series. When using a
six point Crank-Nicolson scheme. the series is expanded around the center of the six

mesh points (sj, Tuy1y2). Using the same superscript /subscript for w as well as {/ gives

b 1 11 n41/2 )
Wit = lu+t -Aru, + (5 Ar)up, 4 - ( AT) Uppr + . (3.14)
2 22 ;
" 1 11 ) n+1/2
uf = [u-— EATU, + §(§AT) Upy — —( AT) Urrr + .. (3.15)
J

Using these expansions for expanding (3.11), and assuming a;'“ = ¢} the following

expressions are obtained

T, Aypruy _ 0.3%(53“"“ ) —; 3(Bosuit! + Agsut) (3.16)
At J (AS)? AS
where a? = %S}(a;‘)’ and b; = rS;, further expansion gives
1
Ayruf = Atu, + ﬁ(AT)au", + ... (3.17)

%(63;11"'” + 65u}) = (AS)’uss + ——(AS)‘usqss + = (AT)’(AS) Ussrre..  (3.18)

2
Aosu;-"H + Aosu;‘ = ZAS‘MS + E(AS)SUSSS + ... (31())

Substituting formulae (3.17), (3.18) and (3.19) into (3.16), reduces the truncation

error to

" l l
»Ij;i-l/? (AT) ( —USSSS +()J(“ll~,o,g) (320)

| ,
a;‘gnss,,) - (AS)Ha" 515

2 Uprr —
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This shows second order accuracy in space and time. Now proving convergence by

introducing the maximum error
E" smaz{|c}], §=0,1,..,J}, ef = U} —uf.

Substituting E" into (3.20) and assuming there exist a bounds Mssss, Mss,r, Msss

for Jussssl, |ussre|, Jusss|, a simple induction argument can be used to obtain

5 lessss +b; Msss)] tp, t€[0,tp). (3.21)

1 1
5 < (@ More — a5 M5, - (A5

This shows that the scheme gives quadratic convergence in space and time.

3.2.3 The Thomas algorithm

Denoting the coefficients for U in (3.12) so that

—a UMY 4 iy gt — (3.22)

P B ]

where
__ nfrn nym nrm
4} = oGU + BYUT + 7} Uy

This system of equations can now be solved with the Thomas algorithm. Now usin
y q

(3.22) and the given initial and boundary conditions.

be : Upy=0 Uy =(S=FEe e
ic: S<bk Ul=0 S>E U?=S-L.

With these conditions, a forward elimination given by

ntl o _‘_an»f—lF_ni-!l

o 7 AlS . y =
B = BT ar . Ao B = G (]w.mJEv.lﬂ’ fori=12.J - 13.23)
2 J ) =
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subject to the condition gntl =, Fj"“ = 0 Now a backward substitution of the
form

Ui=EUip+F; for j=J-1,..,2,1.

To avoid a build-up of errors in the back substitution, the following condition must,

be satisfied
Bi 2 |l + ;| B >0

This conditions can be seen satisfied by substituting in the coefficients and obtaining
the final condition
Ar 1 At 1
1 (g H 'ZSZ > (ot ZSZ
( t Gepaln ) 2 Goyz @)
The Crank-Nicolson scheme was implemented in a Fortran program (see appendix

B).

3.2.4 Computing time and accuracy

To obtain a reasonable balance between computing time and accuracy of the num-
merical approximation, a few experiments have been carried out.

The results have been benchimarked with results obtained with BS solved with for-
mula (2.1) using NAG routines ref [17] for the cumulated normal distributions, so
that the results are accurate to machine accuracy around 10~'3. The Crank-Nicolson
(CN) scheme have been solved with constant vol.

A Call option with data

E =100, So=100, T =5 years o =0.20

has been used for benchmarking. The reason for using an option with a 5 year
maturity is, that when the vol function is to be derived, all values for options with
the same strike but with the 7 different maturities in the VM can be solved in one
numerical procedure. This means that using the longest dated option will be a good
indicator for determining the best balance between number of steps and computing

time.
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The valuation 4.CN is a scaled version of the option, carried out to test the nature of
the convergence. That naturally means that the result have been multiplied by 500
to match the magnitude of the other values.

The column ’comp time’ is the time it took to run the program on a Sun SPARC

station 1+, running with SunOS 4.1.3_U1B operating system.

Method E So | Smar | J (spacesteps) | N (timesteps) L"“,-:":‘i comp time
1.BS 100 | 100 | N/A N/A . N/A 0 2 sec
2.CN 100 | 100 | 500 500 1000 -8.3305E-4 81 sec
3.CN 100 | 100 | 1000 500 1000 -7.5291E-4 81 sec
4.CN 0202 1.0 500 1000 -8.3305E-4 81 sec
5.CN 100 | 100 | 500 1000 1000 -8.7421E-4 155 sec
6.CN 100 | 100 | 1000 1000 1000 -8.6121LE-4 155 sec
7.CN 100 | 100 | 500 500 2000 -3.8464E-4 167 sec
8.CN 100 | 100 | 1000 500 2000 -3.0421E-4 167 sec

From the table it can be inferred that a good accuracy together with a reasonable
low computing time is obtained with 2.CN. This set of data (So, Smazy J, N) will be
used in the further analysis.

The graphs below show a Call and a Put with £ =100, So = 100.

i
//W % ;// 7
/01/45/5’
100
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920
- 80
- 70
60

- 60
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Figure 3.5: Value of European Call and Put
3.3  Put-Call parity

A Put and a Call option with the same strike are correlated through their underlying

asset with the Put-Call parity, given by

S+ P - C = B0

where P and C are the value for Put and Call options.

To investigate whether this relation is satisfied when the BS is evaluated with a
deterministic volatility, an example is carricd out. This is accomplished with a Put,
and a Call option with So = 100 and E=100 for the different maturities given in
the VM. The vol func (3.6) with coefficients from table 3.1 has been used. Now for
convenience define L = S+ P — C — Ee~"(T-1) and noting maturities in months. For
BS with constant volatility L=0. To avoid the influence of errors in the numerical

solution between the different maturities, the relation T/N have been set. constant.

T maturity 60 48 36 24 12 3 1
L -1.314E-2 | -1.316E-2 | -1.316E-2 | -1.36E-2 | -1.315E-2 | -1.3155E-2 | -1.315E-2
N timesteps 2000 1600 1200 800 400 100 33

The table shows that L remains constant regardless of maturity. The error that
does occur is due to an error in the numerical solution, hence BS with deterministic

volatility satisfies the Put-Call-parity.
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Chapter 4

Volatility function

4.1 Method for deriving deterministic volatility

The VM informs about what the vol should have been if the option were to be priced
correctly with BS.

It is a reasonable assumption that there is a correspondence between the different vol
obtained in the VM (where vol is changing with E and time, and S is constant), and
a vol dependent on S itself and time. The justification of this relationship is that in
both cases, vol is an informer of the market level. It is therefore natural to exploit the
possibilitics for deriving an approximation of vol dependent on varying § and time,
from the implied vol in the VM. Since there is no directly interpretations between
the two different vol, it will be very important to find the most consistent method
of approximation to avoid arbitrage possibilitics. The VM contains 63 implied vol,
this mcans that the actual values of all the different strikes and maturities can be
obtained by the BS.

The problem can now be stated as follows.

33
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At a certain time t=0, a set of option values are given

Vi_(,-’(b'u, 15,15), O for "observed” (4.1)
with Vi =max(§-E) at t="T; (4.2)

for a Call. The task is to find a function a(S,1) such that solving

2
%_‘l/ + —;—az(s,l)S?Q——‘—/— + rSa—V -rV=0

a5? as
with final conditions (4.2) get as close as possible to the given values (4.1). One way

of doing this would be to

minimize Vi =

(V2 (S0, iy T3) = Vig(S, B, Ty 0(5,00)]) (43)

M~
MQ

I
[}

J=1i=1

Certain assumptions are necessary for deriving such an approximation, these will
be clarified underway.
The restriction on the use of (S, t) in the valuation of options, is that it is only based

on information in a certain area around Sy, since the VM only is defined for

So— 8
~30 <
30 < 3

0

<30

The method used will first be applied to Call options with the nine different strikes,
and afterwards to Put options with the same nine strikes. The reason for this proce-
dure is that Call options with strikes that are higher than Sp and with short maturities
will have very small values. Consequently any method used will suffer from the fact
that errors in the numeric approximation bias the solution. Using both Call and Put
options, means that vol function will be valid for the whole surface, defined by the
VM. The following approaches will all start using Call options. The philosophy is
that if a method is not applicable for a Call option, the obtained vol function will

lose its generalily, and hence value.
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Due to the fact that the use of Call and Put options will lead to corrections on Lthe vol
function in arcas, that in cach case is reasonably known beforchand, a weight could
be introduced in formula (4.3). The reason for not. doing so, is Lhat these correction
arcas have to cover as much as possible of the whole volatility surface, and hence it
is not possible to make any statements aboul how much each of the correction arecas
have to cover. Using a weighting, might therefore prevent this development.
Dividend is not incorporated in these valuations, although there is a dividend on the
ftse it will not change the optimal vol function since the dividend for later valuations
will be approximated as a continuous dividend yield.

The methods used will be bounded by certain restrictions, some more obvious than

others.

4.1.1 Path dependence

Using BS with deterministic volatility leads to a path dependence that gives restric-
tions on further use of implied vol. To prove this a small example is given.

Using an arbitrary vol function given by 0(Sret), Srer from (3.5)

Srcl S —-30 — U(S,-e[) =0.21

(18 — éSnl)

=30 < Syt <30 = 0(Sret) = 160

(4.4)

Sret > 30 = (S,) = 0.145

the example is carried out for a European Call, with r=5%, E=100, S, = 90 and is

solved with the Crank-Nicolson solver.

N (timesteps) | T (years) | V (value) | gimp (implied vol)

2000 1.00 4.5802 0.185504

1000 0.50 2.0325 0.185699
500 0.25 0.7303 0.185851




36 CHAPTER 4. VOLATILITY IFUNCTION
the g decrease as 1" increase, this can be extended to the limit
Timpt = 0,145 as T — o0

This limit occurs because as $ — 0o Sy — —00, hence as can be seen from formula
(4.4) 0(Sre) = 0.145 so that the implied volatilty goes toward this value. This path
dependence means that further use of implied vol in the derivation of a deterministic
vol will lead to mispricing. Although this example is carried out for volatility being
a function of asset price only, the small changes in oy, show that the use of the
volatility function (3.6) with coefficients in table 3.1 is a good starting point for an

iterative scheme.

4.1.2 The parametric form

The vol function (3.6) is used in a parametric form so that the variable Sret = 1008
and ¢ = 7% 12. This paramelerisation is necessary because the vol function is derived
with the variables from the VM where S, = %;—S * 100 and t = time to malurity
in months. This rescaling gives the volatility surface shown on figure 3.2. When
finding an optimal vol function, only values for one asset price Sp = 100 is used in the
optimization. The consequence of this is, that when using an optimal vol function in
the further analysis, the parameters must be scaled so that Sy = 100.

The derivation of the vol function means, that it essentially only will be applicable for
investigating option values for one asset price at a time. Therefore when obtaining

a whole surface of option values as a function of S and t, its accordance with, what

would have been observed in the marked, will be difficult substantiate.

4.1.3 Secant method

For making the problem applicable for root seeking methods, define the function

Vi3 (So, B, 1)) = Vi (S, Ei, Ty, 0(S5,8)) = 0
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Vi (a(S.h)
o

To avoid the derivation and caleulation of 230 () ) using Newton’s method,

the Secant method is used in the form

(Un —On—) )

(Vij(on) = Vij(0n-1))

Onyl =0y — [‘:? - ‘/U(au)}

In this approximation two initial guesses of vol functions are needed for the first itera-
tion n = L. The first iteration will then give 63 new vol (o3) that will be used as data
points for a new surface fit accomplished by the least squares method described car-
lier. This surface will then take the o, position in the following iteration leading to 63
new vol etc. The procedure is continued until convergence is obtained. For making
optimal guesses on initial vol functions the following values of V., have been ob-
tained. Only differences from the function (3.6) and values of ay,a,, ..., ag from table

3.1 have been noted. The table shows that the vol function used to approximate the

vol function coefficients Vinin

formula (3.6) table 3.1 5.5644

formula (3.6) | table 3.1, a1=1.05*16.5926 || 4.8951

formula (3.6) | table 3.1, a1=0.95%16.5926 || 22.7720
4

o=0.20 given in formula 54.

formula (4.4) given in formula 9.0974

Table 4.1: initial parameters

implied vol in the VM gives a good initial guess for the secant method. This means
that the formula (3.6) will be used to fit new data points from each iteration, unless
the new data points are significantly different so that a new function is required.
Two specifications are nceded in using the secant method for this problem.

1. To avoid the biases in the area where the value of option is very small, a minimum
difference is required to resct the vol, clse it will remain the same.

2. Only 15% of deviation between the old and new vol is allowed.
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The results from the secant method have been written into table 4.2 below.

least squares oo oy oy oy
a 16.5926 16.5926 | 1.05*16.5926 | 18.7684 | 20.9918
aa -0.0682 -0.0682 -0.0682 -0.0554 | -0.00795
ay 0.0011 0.0011 0.0011 0.00067 | -0.00151
ay 0.02154 0.02154 0.02154 0.00149 | -0.02388
ag -0.6732 -0.6732 -0.6732 -0.4136 | -0.17758
as 0.0560 0.0560 0.0560 0.00687 | -0.0298
formula (3.7) 18.1176 N/A N/A 23.6463 | 28.2487
formula (3.8) 0.2875 N/A N/A 0.3753 | 0.4483
Vinin (4.3) 5.5644 5.5644 4.8951 18.7962 | 60.8396

Table 4.2: results from secant method

It can be inferred from the table that the secant method gives a Vj;,, that diverges.
Although only two iterations have been shown in this table (g2, 03) the last iteration
gives a V,,i, that is ten times larger than V,,;, for oq, the method will therefore never
converge. The change in the coeflicients a,, as, ...., ag shows that the method almost
leads to a constant vol. The two rows containing the errors in using the least squares
method (formula (3.7), (4.3)) shows that the vol function (3.6) makes a sufficient
background for approximating the new data points, because these errors does not
increase remarkable from the initial approach.

The conclusion is that the secant method not is applicable for this problem. The
reason for this, is that the method corrects the vol at discrete points, so that the
difference between a real value and an approximated value leads to a correction in
the vol only at the point of valuation. The consequence is that the method eventually

leads to a constant vol, this also shows to be the case.
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4.1.4 Functional derivative

In obtaining the optimal initial vol functions for the secant method, it showed to be
possible to attain a rclation between the change of Vi, with respect to change in a;.

This can more rigourously be stated to find some relation in the form.

(I)Vmin 1
W = z[‘/rnin(a("h“vﬂ'k + [P "’G)) - ‘/min(a(("l\ "'v”'G))]

where € = /u = 1077, u being machine accuracy. This approach can be obtained
with the NAG-routine EO4JAT ref [17], but it requires a continuous first and sccond
derivative of the function o(ay,..,as). That condition is not satisfied in this case,
since the surface have been assumed to continue constantly out of the houndarics,

hence the first and second derivatives are discontinuous at the boundaries.

A similar approach can be obtained by a small change in the computer program
(appendix B). By changing the parameters a,, as, ..., ag one at a time the derivative

Vi

daxda, 7P
can be approximated discretely, so that the optimal set of cocfficients will be derived
from a procedure that picks up the minimum V,,;, from cach surfaces with the axis
ar, @p. Pigure 4.1 shows such a surface and its contour diagram, where an optimal
relation between a; and a4 is found for the vol function using a Put option. The
contour diagram shows the V,,;, for the whole surface as this can not he seen on the
graph. The coeflicients are investigated in the area ay & 200% and a4 + 60% The
computing time required for calculating a surface with 7 different @y and 11 different
a,, giving a surface of 77 V,;,, is approximately 8 hours on a SUN SPARC station
14+. The optimal procedure would be to obtain all six derivatives in one procedure
so that the absolute minimum of Vi, for the vol func (3.6) could be obtained. This
is due to the amount of computing time required for this process not possible within

the reach of this project. The restriction on this procedure is, that it is limited to
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only deal with one function, meaning that if the optimal vol function has another
shape it will not be discovered by this method.

To obtain a vol function that is valid for the whole area of interest (Sp £ 30%), the
procedure needs Lo be carried out with Call options and Put options with the same
strikes. The reason for this is, as mentioned earlier, that the procedure will not adjust
the vol function for low Sg using Call options, and vice versa for Put options. The
final result will therefore be two vol functions where the vol func obtained using a
Call will be used for pricing options where So > E, and the vol func obtained with a
Put is used for option pricing with So < E. The coefficients for the vol function (3.6)

(repeated below) leading to a minimal V., is given in table (4.3).

Sye Sret \*
0’(‘315‘,[) =a + a2svel + ("’Syel + a4l2 +as (t _|_12) +as (t +l‘))

This gave the [ollowing results for Call and Put options with So = 100,

TN

.

ERLiN

" o

a) b)

Pigure 4.1: a) V., surface, b) Contourplot.
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Vinin (Call) = 3.096077  Vinin(Put) = 2.760749

The tables 4.4 a,b on the next page show

Vi§ = Vi(o(5,1)
v
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Coef from table 3.1 Call relative Put relative
a) 16.592607 17.007422 1.025 17.00742 1.025
y -0.068240 _0.0“324'(')“ .4 1.0 A-(D.()7!’)()64 . Wll
ay 0.001144 0.001144 1.0 0.001144 1.0
ay 0.021546 0.019205 | 0.891 0.020357 | 1.058
as -0.673210 -0.693106 1.03 -0.693406 1.03
ag 0.056017 0.056017 1.0 0.056017 1.0

Table 4.3: optimal coeflicients for V,,;,

where numbers < 0.01 have been marked with bold. The sum of the relative error

gave,
T 2 Vi = Vij(a(S,t
>3 —;V’gu =3.794378 Call
J=1=1 9

do=9.111E9 Put

The enormous difference in the sum of relative errors occurs solely because of the
error in the upper left corner of table 4.4 b, which is deeply out of the money with
a short maturity, and therefore the least relevant value to minimize with the Put
option. Comparing the numbers marked with bold in the two tables shows where
cach of the vol functions are applicable. The area around at-the-money with short
maturity, does not go below 1%, hence none of the vol function can be used in this
area.

In figure 4.2, the graphs of the two tables can be seen. It must be notified that either
of the two axis are equidistant. This means that the axis "T —¢” in the graphs going
from 1 to 7 correspond to the 7 different maturitics in the VM. The "100-S” axis
going from -30 to 30 has the 9 different strikes in the VM, with equal distances in the
graphs. The reason for not interpolating this into equal distances, is that the quite
rapid changes in the short maturitics not would be noticeable. Only relative errors

smaller than £10% have been shown on the graphs.
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VOLATILITY

FUNCTION

=]

iuma'- + 100, Call

Scon
Tt -30 -20 -10 -5 0 5 10 20 30
I || 0.97966 | 0.82228 | 0.20644 | -.08390 | -.10038 | -.01921 | -.00391 | -.00155 | -.00101
3 0.49376 | 0.21010 -.01513 -.05354 -.05184 -.01832 | -.00587 | -.00124 | -.00081
12 1/ 0.14889 | 0.01466 | -.01753 | -.02362 | -.02211 | -.00906 | -.00647 | -.00217 | -.00098
24 0.12056 | 0.02425 -.00789 -.01980 -.01660 | -.00685 | -.00371 | -.00250 | -.00162
36 0.08468 | 0.01101 =.00702 | -.00870 | -.00992 | -.00618 | -.00253 | -.00122 | -.00114
48 0.05250 | 0.00224 | -.00793 | -.01002 | -.00729 | 0.00092 | 0.00220 0.00087 | -.00046
60 0.03436 | 0.00211 | -.00274 | -.00681 | -.00277 | 0.00340 0.00234 | 0.00331 | 0.00063
I b " Sepnai=E 4 100, Put

T-t -30 -20 -10 -5 0 5 10 20 30

1 0.00148 | 0.00280 | 0.00692 | -.00312 | -.10561 | -.32934 -1.0481 | -83.125 | -.9FE+409
3 0.00290 | 0.00453 | 0.00049 | -.01507 | -.06686 | -.11297 | -.20395 | -1.2207 -17.483
12 |1 0.01302 | 0.00287 | -.00848 | -.02180 | -.04162 | -.03183 | -.05349 | -.11156 -.88810
24 || 0.03084 | 0.01064 | -.00834 | -.03217 | -.04387 | -.02676 | -.02010 | -.05564 | -.31360
36 || 0.03742 | 0.00683 | -.01177 | -.01961 | -.03274 | -.02905 | -.01206 | -.00104 | -.04404
418 0.03326 | -.00017 -.01807 -.03182 | -.02953 | 0.01045 | 0.03078 | 0.05203 | 0.03640
60 || 0.02851 | -.00042 | -.00965 | -.02565 |-.01318 | 0.02702 | 0.03197 | 0.10323 | 0.10591

Table 4.4: a,b Results from optimal vol function

Call, Put

The tables and graphs shows that minimization with the Call option gives a

much more homogeneous surface than the Put option. This difference occurs for

two reasons, firstly hecause more time was spent on optimizing the vol function

for the Call option, and secondly, as it can be seen on the graphs 3.5, the value

of a Put option in the limit is V(Put) — 0 as  — oo whether for a Call it is

V(Call) = 0o as t — oco. This means that the arca where the options has a value

that can be used to correct the vol function is smaller for a Put- than a Call option.

This procedure of minimization was stopped, when these reasonable results was at-

tained, meaning that a better sct of coeflicients giving a smaller V,,;,, probably exists.
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Figure 4.2: Graph for Call (top) and Put

The results described here will be used in the further analysis, notifying the fact, that
in certain areas of the vol surface it will not be advisable to use the vol functions to
price options, because the error is to big. This means that certain kind ol options

will be uninteresting to price with the vol func.
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Chapter 5

Pricing with volatility function

5.1 Parameter estimation

To make the evaluation as realistic as possible, the parameters interest rate and divi-
dend must be estimated empirically from information dated around the 24 May 1994
which is the date of the VM used to approximate the vol functions. These parame-
ters will be assumed constant regardless of time or maturity of consideration, but, will
make the most realistic background for valuation of options on the 23/5-94 and with
expiry 21/9-94, a 4 month maturity. Estimating the parameters around that date,
will make it possible to benchmark the prices on options obtained with deterministic

volatility, and the actual observed prices in the market.

Dividend :
This table contains the 13 dividends paid. on the ftse100 in the time between 23/5-94
and 21/9-94. The 23/5-94 is used because the VM, from 24/5-94 is based on closing

prices on the 23/5-94.

6/6 | 20/6 | 4/7 | 18/7 | 25/7 | 1/8 | 8/8 | 15/8 | 22/8 | 30/8 | 5/9 | 12/9 | 19/9

11.705 | 5.051 | 1.838 | 3.576 | 7.116 | 1.156 | 7.032 | 4.000 | 0.756 | 1.602 | 1.843 | 1.709 | 9.23

The estimate of an annualized average of the dividend is obtained by

213=1 D,
fmie oo =0. 711
TS Dy = 0.05449

45
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where the {tse100 on 23 May 94 was S=3108.4. There are 122 days between 23/5 -
21/9 and 365 days in 1994 this gives T=122
To incorporate a continuous dividend yield in BS ref [5] changes (3.10) into

ou

_1 2(¢ 1 2
97 = 3° (S, T—r1)S8

O*u

Ou
952 + ('I' - DO)S% (5.1)

The initial and boundary conditions remain the same, so that the Crank-Nicolson

solver only changes slightly. The solution of .BS with constant volatility changes to
V(S,1) = SemPUIN(dy) — Ee "IN (dy)

where d; and dy change to

= log (S/£) + (r — Do + 30*)(1' - t)
' oVT -1t

_ log (S/E) + (r — Do — 0*)(T — 1)

1
“ o1 —1t

Interest rate :

For making the most realistic estimation of the interest rate, the period rate closest
to the 4 month maturity will be used in an annualized form. The 6 month LIBOR. at
the 23 May 94 R = 5.3125%, annualizing this interest rate by eT =14 RT, which

gives

r =0.0526588

In the further analysis a small computing time will be less important, therefore will a
more accurate version ol the Crank-Nicolson solver be appropriate. I'rom subsection
(3.2.4) the table shows that using Spe = 10 * S, J=500 (spacesteps), N=2000

(timesteps) gives a good accuracy.
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5.2 Option pricing

5.2.1 Benchmarking with observed values

The information provided from BZW to carry out the benchmarking with observed
prices, is 9 Call option prices on the ftsel00, observed on the closing of the market
23/5-94, all with maturity 21/9-94. The results obtained are given in table 5.1 below.
The BS values use the volatilitics obtained with the coefficients given in table 3.1.
The first three strikes are out-the-money so to obtain these V(o(S5,1)) the coefficients
obtained with the the Put options have been used. The last six strikes are in-the-
money, hence the coeflicients obtained with the Call options have been used. The
ftse100 on the 23/5-94 have been used as So

The results show that the observed values are different from the ones obtained with
BS, this should not be the case since the implied volatilities from that day have been
used to calculate the BS values. The reason for this bias is most likely due to lack of
information in how to obtain the implied volatilitics in the VM, so that this procedure
could be used backward to obtain the observed values. This lack of information could
be the procedure on how to interpolate the implied vol into the x- and y-labels in the
VM. This interpolation is essentially carried out when making a surface fit to the 63
data points in the VM. If the interpolation used in this project deviates remarkable
from the one used to actually obtain the VM, errors will be inevitable.

The conclusion on this matter is that the remaining part of the pricing will be carried
out on the basis of comparison between BS values with constant volatilitics from the
vol func using coefficients in table 3.1, and values obtained with the vol functions.
This does not mean that the vol function loose its generality, but only that the values
used for benchmarking will be different. The graph 5.1 shows z‘—’ﬁ_—“,;('sﬂﬂn where
the option evaluated has E=94.09. At S=100 on the graph, the relation between I
an S correspond to the option with E=2925 on the 23/5-94 where the ftsel00 was

3108.4, meaning the option is 5.9% in-the-money. The Vps is solved with a constant
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volatility from the VM at T=4 years and S=100, obtained with the vol function using
cocllicients [rom table 3.1. The V(a(S5,1)) is computed with the vol func derived with
Call options. This means that the surface shows the difference between constant- and
deterministic volatility, where the constant volatility is chosen so that the relative

difference is minimal at T=4 and S=100.

Strike 33256 | 3225 | 3125 3025- | 2925 2825 2725 2625 2525

% in-the-money || -6.96 | -3.75'| -0.53 2.68 5.90 9.11 12.33 15.55 | 18.77
Observed price 31 57.5 98.5 154 223 301.5 | 387.5 | 480.5 | 580.5

V(a(S,1)) 51.87 | 76.74 | 112.50 || 160.89 | 222.63 | 298.26 | 383.63 | 476.13 | 572.21

BS value 5113 ] 76.04 | 109.53 || 167.14 | 219.21 | 295.01 | 381.63 | 475.06 | 571.77

Table 5.1: results from benchmarking

S
&

ABOVE 0.050
0,040 - 0.050
0.030- 0.040
0,020 - 0,030
0,010 - 0,020
0.000- 0,010
-0.010- 0.000
0.020 - -0.010
-0.030 - -0.020
-0.040 - -0.030

BELOW -0.040

NEGEEENNE [

Figure 5.1: relative difference, E=94.09

5.2.2 Down-and-out call

The down-and-out option is a barrier option that ceases to exist if the underlying
asset reaches a certain level, denoted by B. In this project the down-and-out Call

option have been evaluated, in the two cases B < E and B > . The payoll of such
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V=S-E

V=0

Figure 5.2: down-and-out barrier, B > F
an option for B > E can be seen on figure 5.2.
casel: B< E

"This option can be priced with the Crank-Nicolson solver by changing the boundary,

and initial conditions,

be : S<B U;j=0 Uj=(S—FEe )™
ic: S<E U)=0 S>E U)=S-E.

When pricing with BS constant volatility, a small trick must be applied. The price of
a down-and-out Call option is equal to the price of a Call subtracted the price of the
correspondent down-and-in Call option. The price of an down-and-in option solved
with BS is

Se”PT(B/S)N(y) — e T(B/S)**N(y — oV/'T)

where ,
- — & . Wn[B*ISE
NELES S
o

In this case E=90, B=80, and the volatility for the analytic BS solution were obtained
at t=12 months and S, = 10 in formulae (3.6). The results obtained in this case

can be seen on the two graphs on next page.
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0.030 - 0,035
0,025 - 0,030
0.020 - 0.026
0.016 - 0,020
0.010- 0,015
0.005 - 0.010
0.000 - 0.008

BELOW 0.000

(] ABOVE o0.045
{C] o0.040-0045
EE  o0.035-0040
BB 0030-003
Bl 0025-00%
BB  o0.020-0025
EER o.015-0020

0.010-0015

0.005 - 0.010
B8  o0.000-0005
Bl eELow 0.000

Iigure 5.4: Vgs — V(o(S5,1)).

case 2: B> L
The reason for solving the rather unusual case B > S is, that the option is bounded
to pay out a minimuin of B — F at expiry, hence the value of the option in the area
S > B will always be in-the-money. This means that when using the vol function it
will only be applied where the error was small, see table 4.4.

In this case the boundary and initial conditions change to

be : S<B Uj=0 Uy=(S—FEe ™)
ic: s<B U)=0 S>B U)=5-F.

Since the analytic solution assumes that £ > B, it will not be applicable for this

case. This means that both constant and deterministic vol will be solved with the
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Crank-Nicolson solver The volatility chosen for solving BS, was for t=12 months and

and Sy, = 20 in formulae (3.6). This results can be seen on the two graphs.

10-20

B
BB secow 10

-
w2 t

s

ABOVE 0.045
0.040 - 0.045
0.035 - 0.040
0.030 - 0.035
0.025 - 0.030
0.020-0.025
0.015 - 0.020
0.010-0.015
0.005 - 0.010
0.000 - 0.005

BELOW 0.000

]
L
]
]
[ ]
[}
L

Figure 5.6: Vgs — V(o(S,1)).
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Chapter 6

Final remarks

The vol function has been biased due to several steps and assumptions in its deriva-
tion. When using the least squares method to fit the data points in the VM, the
nature of this method has the consequence that error for such a large set of data
points is inevitable. Therefore when using the initial vol surface to obtain values for
evaluating BS with constant. volatilities, and assumimg these are the observed values,
two dimensions of error will be passed on in further analysis. The error in the surface
fit, will lead to an optimal V,u;s, that is based on observed values that are not 100%
correct. The second error is that the vol function takes a certain path between the
discrete values in the VM. This path might not be similar to the path that would
occur if information were available.

A suggestion for improvement would be to obtain the vol surfaces, using a method
that would give smaller errors. Such a method might be cubic spline interpolation.

This method would fit the data points exactly, to eliminate one of the errors.

When initially using the secant method to obtain a vol function, the very time con-
suming procedure, means that its lack of applicability fitst was discovered after a
considerable amount of the project time was dedicated to it. The consequence of

this was, that when a successful method was applied the time available for iterations
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to obtain an overall practicable vol surface was limited. This gave restrictions when
pricing options so that certain contracts would be uninteresting to price due to that
the area where such options are interesting to examine, would contain too large er-
rors.

The results of the pricing with the vol function show that a quite large dillerence
between constant and variable vol is obained. Some of the relations between the
constant vol and vol function can be traced in the graphs, while some of the local
behaviour in the graphs seems difficult to explain.

The time a vol function will be practicable to price options, depends on how much
the VM changes over time. For a long period of time it may be reasonable to assume
the VM to be constant, but for a shorter period a certain trend might be conspicuous,
so that an even more consistent pricing method may be obtained if this is taken into

consideration. These thoughts are beyond the scope of this project.



Chapter 7

Introduction to Bond pricing

7.1 Description of bond contracts

A bond is a contract that gives the owner a prescribed amount on a known date in the
future, called the maturity date (t = T'). When a bond changes hands the new owner
pays for it when the contract is being transferred to him. A bond may pay out a divi-
dend (called a coupon) at fixed times during the life of the contract. These bonds are
known as coupon bonds. Bonds that pay no dividend are called zero-coupon bonds.
The latter is easier Lo model and extensive literature may be found on this topic.

Evaluating a, say, zero-coupon bond that pays out DKr 1000 in 10 years from now,

corresponds to asking the question ;
How much would one pay today to receive a guaranteed DKr 1000 in 10 year’s time ¢

The answer to this question depends on how much the amount will return from a
bank deposit recciving an interest rate. If the bank interest rate implies that the
amount accumulates to more than DKr 1000 in 10 years, one would rather deposit in
the bank than invest in the bond.

A bond can therefore be described as an interest rate derivative product, so that the
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price of a bond depends on time to maturity and the interest rate. The notation
P, T, r), for the price at time t, expiry at time ‘T and interest rate v, will be used in

the further analysis.

7.2 Derivation of the bond pricing formula

Supposing that the interest rate follows a one factor stochastic differential equation

of the general form
dr = p(r,t)dt + o(r,t)dw, (7.1)

where w is a continous Brownian motion (ref [3]). The functions g, o are the instan-
taneous drift and standard deviation, of the process r(t).
Now setting up a portfolio Il containing one bond with price P, and maturity T}, and

a number —A of a bond with price P, and maturity T3, we get
M=P —-AP,.

Now using It6’s lemma for P, given by

apP 0P l 62P apr apP opP 1 ,0*P

we can obtain an expression for the change in the portfolio in a time step di by

P, IP, 1 ,0*P di— (01)2 P, 1 ,0°P, “)

—dt (1.2)

Ut Tt g Ut Gt T

where A is held constant during the time step dt. Now by eliminating the random

dIl =

component dw in dIl we can obtain a deterministic expression where there is no

risk. This will naturally create an optimal situation for investment purposes. So by

choosing
6P,/E)Pg
ol or’
s0 that
P apP, [ or 02
Py, 1,9t / ary 1,00, )
R A . - it .
a ot +‘2 on? ap/a ot +2a o2 ¢ (7.3)
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The change in the portfolio is now risk-free. This means that the return on the

portfolio is equal to the risk-Tree interest rate, so that

ar
—_ )
T rP,
in addition risk-free change means that
1 ,0*°P
2% o =
"This means that dIl can be written as
or
dll =r|P — Py | dt =rlldt. (7.4)
an/ar

Now using (7.3) and (7.4) and gathering all terms in P, on the left-hand side and all

terms in P on the right-hand side we find that

apP, 1 ,0°P o~ (0P, 1 62P2 /('?Pz
<_0t—+§a or? -rh o ~\ a +20 —rh

This equation contains two unknowns P, and P,. Since the left-hand side is a function
of Ty and the right-hand side a function of T3, thus this equation only makes sense if
there is independence of maturity dates. Hence the subscript on P can be dropped,
and a shorter notation may be introduced
aP 1 ,0°P aP
—+ -0t - — = I(n,t). 7.5
(0¢+2 ar? r)/ar () (7.5)

Now specify the function I(r,t) as
I(rt)=0)—p, (7.6)

The unknown function A(r,t) will be explained later in the derivation. Using (7.5)
and (7.6) the zero-coupon bond equation is given by

i) 1 ,0°P
el —_—— . 7.7
a0 + - 2% o7 +(p - m\) rP =0 (7.7)

To solve this equation boundary conditions and final conditions at (t = T) must be

applied. The boundary conditions depends on y and @, and they will therefore be
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dependent on the choice of the spot rate model (7.1). Final conditions corresponding

Lo payout at maturity (¢t =T'),
P(t,T,r)= M.

The unknown function A given in (7.6) can be explained by isolating #2E in for-
mula (7.7) and substitute this expression into [t6’s lemma given in (7.2). From this

derivation the following expression is obtained
P
dP —rPdt = p%(dw + Adt) (7.8)
-

This expression may be interpreted as follows; in return of accepling an extra risk
dw the portfolio profits by an extra Adt. For this reason the function lambda(r,t) is

called the "market price of risk™. It is quite common (ref [24], [13]) to write A(r,¢) as
A t)=EZT (7.9)
o

where 7 is the current spot rate.

7.3 Objective

When pricing bonds the shapes of the functions o and g that enter into the interest
rate model (7.1) must be determined. Various models can and has been suggested to
model the nature of the interest rate. The next step in retrieving a valid nodel for
bond pricing is to estimate the parameters that take part in this model. A natural
way to estimate these parameters would be to use a data set of previous interest rates.
This would lead to a model, giving the best possible representation of the interest
rate.

When the interest rate model is used to price bonds, a model developed from a data
set of previous interest rates would exhibit the biases that occur in the approximations
wied to devive the bhond pricing cquation, The consequence of this is that regardless

of how good the model is to model interest rates it would lead to biases when pricing
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o

honds.
Ou this baekground it would he more reasonable to model the interest rate implied
by the bond pricing formulac. The task is therefore, to estimate the parameters in a

given interest rale model, from a sel of observed hond prices.
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Chapter 8

Theoretical background

8.1 Interest rate model

The interest rate model used in this context, is the simple case where u(r,t) = 0
and o(r,1) is assumed to be constant, in the spot rate model (7.1), so that it can be
written as

dr = odw. (8.1)

This is a random walk and ¢ is called the volatility of the interest rate. The solution
of (8.1) can easily be found to give
r(t) =ro+ow(t), ro=r(ty), w(to)=0. (8.2)

It follows that w(y) = 0 because w is a Wiener process (ref [12]). Now if we set
the "market price of risk” A = 0 in (7.7) and use the interest rate model (8.1), the

zero-coupon bond equation changes into

arP 1 ,90°P
¥ + Eazm —-rP=0. (8.3)

8.1.1 Solution of the bond pricing equation

Now assuming that the solution of (8.3) is of the form
P(t,T,r(t)) = Me~(T-OR(T) (8.4)
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where P(¢,T,7(t)) is the price of a bond at time ¢, maturity at time 7' and a known
spot rate r(¢) at time £. M is the payout at maturity T, so that P(T, T, r(t)) =M.

R(L,T) is the term structure of interest rate. Substituting (8.4) into (8.3) leads to

R(t,T)+ (T — z)d—’%’tﬂ + %a" —r(t) =0.

This is an ordinary differential equation and it is solved by
1, .
R(t,T)) =r(t) - 60’('1‘ —1)%
Hence the price is given by

P(t,T,r(t)) = Me~ T (0)=geX(T-1)?) (8.5)

8.2 Stochastic representation of the bond price

The price of a zero-coupon bond can also be represented as the expected value (ref

[6], [7], [24]). The price of a zero-coupon bond can generally be written on the form

—lg = p(r,t)dt + o(r, t)dw. (8.6)

The market price of risk A given by formula (7.9) can be substituted into (8.6) ob-

taining
ﬂPf = (r(t) + Ao)dt + odw (8.7)

The next step is to eliminate the market price of risk from occuring explicitly in the

price process. This is obtained by transforming w into
5(0) = w(t) + [ Ms)d (88)
w(t) =w /o (s)ds, .
therefore substituting formula (8.8) into (8.7) leads to

‘%P = r(t)dt + odid (8.9)
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The transformation leads to a price process where the deterministic part of P only
depends on (1), By solving (83.9) the price of a zero-coupon bond can be found.

Using the carlier final condition P(T,T,r(t)) = M, the solution is found to be
< T d
P(,T, (1) = ME{e™ L £y, (8.10)

where I s the expected value with respect to w and F, means conditioned on the
information up to time {. The solution to (8.10) depends on the choice of interest

rate model. Using a general one factor model given by

dr = (n()r + 0(t))dt + o(t)dw (8.11)

where the functions 3(t),0(1), o (1) are deterministic and bounded by [0,c0[. In this
general model it is not assumed that r(t) is not equally bounded and this rather ob-
vious requirement does not follow from the bounded functions due to the unbounded

stochastic part, dw. The solution is given by
t i 8 A _r
r(t) = e "('j')d'/’{r(to) + /to e o "("’)d'l’e(s)ds + /to e o "(d’)‘w’a(s)dw}
The solution of (8.10) is given by

P(t,T,r(1) = Meap(=B{ | r(r)dr| 7} + V([ r(r)dr|F}) (8.12)
B {/tTT(T)dTIJ:‘} =r /tT D gy 4 | ! J e P (s)dsau(8.13)

~ T T T u
d 2
A r(ryar|Fy = [ ( [ (e 199 (5) ) ds) (8.14)
If we set 5(t) = 0, 0(t) = 0 and o(t) = o the interest model given in (8.1) is obtained.
Now substituting into (8.12) the zero-coupon bond price is obtained
P(t,T,r(t)) = Me~(T-0- (=32 (T-07%) (8.15)

It can now be scen that the bond price (8.5) that was found by solving (8.3) is identical

to the bond price (8.15) found by solving (8.10) using (8.12).
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8.3 Coupon bond pricing

A coupon bond, pays out a known amount of cash on certain dates in the life time
of the bond. These bonds can easily be priced as a sum of zero-coupon bonds.

A coupon bond that pays out 3 coupons ¢, and M at expiry can be priced by

c+M
C Cc
] L
t T, T T
P(LTyr(1) ' :
cP(t,T2,r(1)) i '

(c+M)HP(L,'T,r(1)

Figure 8.1: The cashflow and way of pricing a coupon bond

P, Tn,r(t)) = ci P(t, T, r(t)) + MP(L, Tn,r(2)).

n=1
Using (8.5) this can also be written as
N
P(t,Tn,r(t)) =c Y e~ (Ta=0(r(O)=g* (Tu=1)?) 4 A/Ie‘(TN_‘)('w_;‘"7(7'"‘”1), (8.16)
n=1
where N = 3 or generally the number of coupons. The value of the coupon bond at
time ¢ (se figure 8.1) is therefore the value of the first coupon that is payed out at
time T} plus the value of the second coupon payed out at time 1y ete. The graph 8.2
is an example of a coupon bond. The jump in the price represents the payout of a
coupon.
When estimating parameters the price of a coupon bond is a substantial extension
from the zero-coupon bond (8.5). Most literature dealing with estimation of param-

cters only consider with zero-coupon bonds (ref [26), [24], [11)).
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COUPON BOND PRICING

‘eoupon.dat ——

° ) 100 180 200 280 300

Figure 8.2: Prices from 2/8-94 to 8/9-95 for 6% Danske Stat St.Laan 1996
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Chapter 9

Parameter estimation

9.1 The genecralized approach

The problem can be stated as follows

Assuming that the interest rate follows a Brownian motion
dr = gdw (9.1)
that easily can be solved so that
r(t) = ro + ow(l). (9.2)
Now using formulac (9.1) an expression for the price of a coupon bond can be derived
so that

N
P(t,Ty,r(t) =c. ¢~ (Tn=00 (=32 (Ta=0)") 4 pro~(Tn=0(r(0)-}o*(Tn—1)?) (9.3)

n=1
With certain discrete equalized time steps, a set of different coupon bond prices are

given
P(ti,Tn;) O for "observed” (9-4)
The task is to estimate the parameters ro and o in formula (9.2) such that the

estimated prices given by formula (9.3) are as close as possible to the given values

(9.4).
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lu general terms this problem can be formulated as

minimize e = Y37 (PO, Tng) = P Ty, (1))

[
This representation of the problem is so general that a numerous of different methods
can be suggested. In carlier approaches to this problem (ref [2]) the least squares
method has been used, but this method does not necessarilly incorporate the fact
that it is parameters in a stochastic differential equation that needs to be estimated.
Furthermore it seems that various implementation of a (weighted, generalized, non-
linear or ordinary) least squares method fail to take advantage of the fact that the
volatility o appears in the continuous time interest rate model (9.1) as well as in the
discrete time bondpricing model (9.3).
A more intelligent approach would be to seek some sort of likelihood function for the
bond price (ref [1]). This leads us to investigate the use of existing tools developed

to solve similar problems in the technical sciences.

9.2 The use of CTLSM

CTLSM is short for Continuous Time Linear Stochastic Modelling, and it is a software
package that can be used to estimate parameters in stochastic dilferential equations
based on discrete time observations. It must be emphasized that this section is an
explanation of the adaption of ctlsm to this problem and not a general manual (ref [8]
, (18], [9]). The software package can be used for both linear and nonlinear models.
In this case nonlinear models will be implemented. The stochastic state space model

considered by ctlsm for nonlinear models is given by
dX = f(X,U,0)dt + dw(t) (9.5)

where f is the drift term, X is the state space vector describing the system at time
t and U is the input vector. The state space of a process is the set of possible values

ol an individual X, in discrete time or X (1) in continuous time, The term w(t) is
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the noise of the process and this term is stochastic with independent increments it
is assimed Lo be a Wiener process. Fiquation (9.5) is the stochastic non-linear state
space model in continuous time.

In this case the state space model is used to model the spot rate given by (8.1), so
that X =r, f = 0. When using ctlsm it is assumed that the function f(X,U)is
non zero (f(X,U) # 0). The consequence of this is that (8.1) cannot. be represented

by ctlsm, so that the state space model uscd takes the form

dr = ardt + dw(t), f(X,U)=ar (9.6)

The constant, a will bhe assigned a very small value so that the consequences of the
undesirable term will be minimized. The order of disturbance that @ causes in the
estimation will be determined. Y is the measurement cquation in discrete time, it

has the general form for nonlinear estimation

Y (t) = h(X,U, 1) + e(), (9.7)

In this case ¥'(¢) is the observed bond prices, and h(X,U,1) is the coupon bond
pricing formulac given by (8.16). e(t) is the measurement error, that is assumed
to be Gaussian distributed with mean zero and covariance o2 w(t) and e(t) are
assumed to be mutually independent. To fit the parameters in equation (9.7) to this
case we set X = r(1) and U will be specified in the next section. Equation (9.7) for

this purpose therefore takes the form

Y (t) = P(t,T,r(t),U) + e(l) (9.8)

The vector Y (1) is the observed prices on diffcrent coupon bonds at time t. The
reason for using different coupon bonds is to use their correlation, to make the best,

possible estimate of the parameter in the underlying nonobservable interest rates.
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9.2.1 Disturbance from parameter «

To estimate the magnitude of interruption that the constant @ from (9.6) causes in
the estimation of the bond price, a small piece of algebra is necessary. Using the one
factor model (8.11) where we set g(t) = a, 0(t) = 0 and o(t) = o so that the model
(9-6) is reproduced. Now if we implement this model into the two moments contained
in the stochastic representation of the bond price given by (8.12), we can give an
estimate of the deviation in the price, as a result of the presence of «. Now the first

moment £ given by (8.13) expanded as a Taylor series to O(a)
. T T ey 1 .
E{/ r(r)dr| )} = 1-(5)/ el M du = r(t)(T = 1) + 5(T — )%a).  (9.9)
t t §a
The second moment given by (8.14) expanded as a Taylor series to O(a)
N Y . T 1 Rt
v . Y JFade g A g AR o a2
i {[ r(r)drlR) = [ ([ el ot g du)?)ds /' (a((l )+ 5= s) a)) 49.10)

From the equations (9.9) and (9.10) it can be seen that if we let a — 0 the effect on

the price can be neglected.

9.2.2 Conditions on the coupon bonds

The parameter estimations is made from prices on Danish Government bonds (in
danish "Danske Stat St.Laan”). These bonds pay out a coupon once a year. The size
of the coupon is constant throughout the lifetime of the bond. At maturity the bond
pays out a coupon and the amount M, se graph 8.1.

Certain conventions are combined with buying Danish government bonds. The day
of settlement is 3 business days after the day of agreement, see graph 9.2. Business
days are days where the banks are open. In the last 30 "bond days” before a coupon
is payed out, a new owner will not receive the coupon. By "bond days” is meant a
year that is divided into days in which interest rale is paid. This "year” is divided
into 12 months each containing 30 days. So that the full "year” is 360 days. When

the calendar year is transformed into "coupon days” months containing 31 days are
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day of agreement

day of settlement
l t
3 30
business days bond days

Figure 9.1: conventions on Danish government bonds

cut one day short and February is extended by 2 days. The 3 business days between
agreement and settlement, is not relevant to this project, since it is the price at the
day of payment that is being modelled.

Interest rates are as earlier described paid on a 360 days/year basis. The consequence
of this is, that when the parameters in the interest rate model (9.6) are estimated,
they will be retrieved from observed bond prices on business days. Business days are
the days where the banks are open, and they are based on a calendar year with 365
days. To match up the dimensions of these two calendars, bond price observations
on the last day in months containing 31 days should be dropped and in February the
observation set would be two days short of observations.

It has been choosen to neglect these adjustments of the observations. This choice has
been made for supporting a statistical as well as practical point of view not to rule
out observations. It is also being reinforced by the fact that there are no observations

on weekends.

9.2.3 Input parameters

When using ctlsm the set up is divided into three parts that each have their own input
file. In the file ”Defsys.I” (Appendix C) the state space model and the observation

formulae are specified. In the file ”Global.h” (Appendix D) the number of parameters
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that take part in the model must be specified. In the file "readin™ (Appendix ) the
initial values of the parameters are specified, in this case rg, % and o2.

The design of the parameters in (9.8) have to satisfly the conditions explained in the
previous section. This means that when a bond change hands in the last 30 "bond
days” before a coupon is payed out, the price drops the size of the coupon on the
day before the last 30 "bond days”. The incorporation of this has been handled by
letting u; the first element in U in (9.8) be the time to the first coupon is payed out,
see graph 9.2. uy is a trigger that is multiplied by the firstcoming coupon, equivalent
to the first term in the sum in (8.16). When the last 30 "bond days” are reached the
trigger turns off uy = 0.

When using ctlsm it is required that the observations are spread out with equal

u 1
TI
0 | :
T,
U, .30 bond days
1
t
0

Figure 9.2: Inputs on the u vector

distances in time. In this case there are no observations on weekends and holidays,
these will be treated as missing values. A missing value is predicted based on the
current model and the earlier observations. This is carried out in a very simple manor

by replacing values at time ¢ with the values at time ¢-1.
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In this case there are recorded one observation per day, stretched out over a period
from 2/8-94 to 8/9-95. This gives 282 observations over the whole period. The
missing values in weekends and holidays are predicted by ctlsm which results in 402
observations (see Appendix D).

The parameter « in (9.6) have been set to a = 1d — 38 in "Defsys.[” (Appendix C)
throughout all the estimations. The typical initial values of ry, 6% and &2 are given

in the last couple of lines in "readin” (Appendix E).

9.2.4 Presentation of results

Since it is the first time that ctlsm has been used for such a highly non lincar ob-
servation formulae (9.8), it is advisable to compare estimations based on one bond

price at a time. It can be inferred from the table that the 7 for the different bonds

H Estimated paramecters
Bond specification fo &? o2

9% Danske Stat St.Laan 1996 0.684158e-1 | 0.230831e-6 | -0.398046e-8

6.25% Dauske Stat St.Laan 1997 || 0.692748e-1 | 0.216722e-6 | -0.250063¢-9

6% Danske Stat St.Laan 1996 0.664874e-1 | 0.250114¢-6 | -0.720442¢-4

9% Danske Stat St.Laan 1995 0.656192¢-1 | 0.331641e-6 | -0.100815¢-10

5.25% Danske Stat St.Laan 1996 || 0.674819e-1 | 0.208351e-6 | -0.940145e-8

Table 9.1: Estimation of parameters [rom single dataserics

arc quite equal. The estimates on & deviates a little more, particularly 9% Danske
Stat. St.Laan 1995” diverge {rom the other values. This is most probably caused by
the fact that this is the bond with the shortest time to maturity, and these bonds are
traded in small volumes so that the observations that the results are based on not
are very representative.

The estimates for &2 are all negative. This should theoretically not be possible but it
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only reflects the fact that the limits for which values 62 can take have been specified

as —1d — 7 < 6% < 1dl. The t-test that ctlsm makes for the different parameters
shows that the probability of 62 = 0is Pr(> |t]) = 0.997 on average for the 5 different
bonds. This is significantly proof for accepting the results and conclude that ctlsm is
a well qualified program to solve this problem.

The next step in using ctlsm is to estimate the parameters over a cross section of
bouds. This must be attained since the bonds arve correlated by the fact that they

are priced with the same formulae derived from one interest rate model.

A cross section of three bonds have been made, with the following results
fo = 0.664876e — 1 6° = 0.243401e — 6

The values of #g and &2 are quite similar to the ones obtained in (9.1), but the dis-

@

r Bond specification )

9% Danske Stat St.Laan 1996 | 0.439369¢0

9% Danske Stat St.Laan 1995 | 0.138900¢-1

6% Danske Stat St.Laan 1996 | -0.296877¢-12

Table 9.2: Estimation of parameters from 3 dataseries

similarity in 62 suggests that the interest model (9.1) is insuflicient. "This is reinforced
by the relative large values of &2 for the first two bonds, the last value is alinost zero,
but negative. The cause of the appearance of a negative value is similar to the cause
explained under the estimation from single dataseries.

Estimating parameters using cross sections of bonds shows to be a slow process, since
the estimations with ctlsm is quite time consuming. In addition ctlsm is very sensitive
toward the initialization of parameters in "readin”. A numerous amount ol estima-
tions breaks down before a right composition of initial values of parameters results in

a successfull estimation.
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Final remarks

The results have shown that ctlsm is wellsuited for solving this problem. The simplic-
ity of the interest rate model used has given the best possible foundation for relrieving
results. It is, however a fact that the estimated parameters indicate that the model
is insullicient, by being to simple. In this context it is worth mentioning that there
are good prospects for using this software package to estimate parameters in more
wellsuited interest rate models than the one used in this project. A suggestion might

be models snch as the "mean reverting process” given by
dr = ¢(0 — r)dt + odw. (10.1)

where ¢ is the adjustment time coefficient, # is the mean and o2 the variance of the
Brownian motion.

The time consuming process of guessing initial values of parameters that leads to a
succesfull estimation have meant that the quantity of results are quite sparse.
Considering the renowned CIR-models (ref [24], [2]) and others, where o in (10.1) is
a function o(r,1), an obvious improvement of ctlsm would be to let the state X in
(9.5) enter into the stochastic term o(r, ).

A last remark must fall on the overall satisfactory achievement of estimating param-
eters in a continous stochastic differential equation based on observations in discrete

time, modelled with a highly nonlincar model.

(6}
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Appendix A

Least squares method

This program is a self updated version of the code given in
"Numerical Recipes in C", specificaly the extension from one
to two dimensions. The program is written in an Object Orien-
ted vay to give the most flexibility in definition of variab-
les.

#include <stdio.h>
#include <math.h>
#define SWAP(a,b) {temp=(a);(a)=(b); (b)=temp;}

class Vector

{

public:

int dimensions;

float *v;
Vector(int n);

3

Vector::Vector(int n)
{
dimensions=n;
v=new float[n];
for(int i=0;i<dimensions;i++) v[i]=0.;

class Matrix

{

public:

int dx,dy;

float **m;
Matrix(int x,int y);

77
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Matrix::Matrix(int x,int y)
{

dx=x; dy=y;

m = new float *[dx];

for (int i=0;i<dx;i++)

m[i] = new float [dy];

for (int j=0;j<dx;j++)

for (i=0;i<dy;i++)
m[i] [j1=0.;

}

void gaussj(Matrix *a,Vector *b)

{
int *indxc, *indxr, *ipiv, n;
int i, icol, irow, j, k, 1, 11;
float big, dum, pivinv, temp;

n = a->dx;

indxc = new int[n];
indxr = new int[n];
ipiv = new int[n];

for (j=0;j<n;j++) ipiv[j]l=0;
for (i=0;i<n;i++)
{
big=0.0;
for (j=0;j<n;j++)
{

if (ipiv[j] t'= 1)

{
for (k=0;k<n;k++)
{
if (ipiv[k] == 0)
{
if (fabs(a->m[j][k])>=big)
{
big=fabs(a->m[j] [k]);
irow=j;
icol=k;

}
else if (ipiv[k] >1) printf(“gaussj:singular Matrix-1");

}



}
}
(ipivlicol])++;
if (irow !'= icol)
{

for (1=0;1<n;1++)
SWAP(a->m[irow] [1],a->m[icol] [1])
SWAP(b->v[irow],b->v[icol])

}

indxr[i)=irow;
indxc[il=icol;
if (a->mlicol][icol]==0.0) printf(“"gaussj: Singular Matrix-2");
pivinv=1.0/a->m[icol] [icol];
a->m[icol] [icol]l=1.0;

for (1=0;1<n;1++)
a->m[icol] [1]*=pivinv;
b->v[icol] *= pivinv;

for (11=0;11<n;11++)
{

if (11 != icol)
{
dum=a->m[11] [icol];
a->m[11] [icol]=0.0;
for (1=0;1<n;1++)
a->m[11][1] -=a->m[icol] [1]*dum;
b->v[11]-=b->v[icol] *dum;

}
}
}
for (1=n-1;1>=0;1--)
{
if (indxr[1] '= indxc[1])

{
for (k=0;k<n;k++)
SWAP(a->m[k] [indxr[1]],a->m[k] [indxc(1]]);
}
}
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void basis_functions(Vector *afunc,float s, float t)
{

afunc->v[0]=1.;

afunc->v[1]=s;

afunc->v[2]=pow(s,2.);

afunc->v[3]=t;

afunc->v[4]=s/(t+2.);

afunc->v[5]=pow(s/(t+2.),2.);

}

void 1fit(int ma,Vector *x,Vector *s,Vector *y,Vector *sig,
Vector *a)

{

int 1i,j,k;

Vector afunc(ma);
Matrix alpha(ma,ma);

for (j=0;j<ma;j++)

for (k=0;k<ma;k++)

{

for (i=0;i< (x->dimensions) ;i++)

{

basis_functions(&afunc,x->v[i),s->v[i]);

" alpha.m[j] [k]+=(afunc.v[k]l*afunc.v[j])/pou(sig->v[i],2.);
if (3j==0) a->v[k] += y->v[i]l*afunc.v[k]/pow(sig->v[i],2.);

}
}
}
gaussj(&alpha,a);
}

void user_interface(int *ma,int *ndata)

{

printf("Surface fit for volatility data\n\n");
printf("Enter the number of points : ");

scanf ("%d",ndata);

printf("Enter the number of coefficients to fit : ");
scanf ("%d",ma);
}

void read_file(Vector *s,Vector *t,Vector *v,Vector *sig)
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{
FILE *fptr;
fptr = fopen("a:tswvalu.txt","r");

FILE *fptk;
fptk = fopen("a:a_new2.dat","r");
for (int j=0;j<s->dimensions;j++)
{

// sig=>v[jl=1.;
fscanf (fptr,"Uf %Uf Zf\n",&(t->v[j]),&(s-)v[j]),&(sig-)v[j]));
fscanf (fptk,"%f\n",&(v->v[j]));
}

fclose(fptr);
fclose(fptk);
}

void results(int ma,Vector *s,Vector *t,Vector *v,Vector *a)
{

float sum,error;

Vector afunc(ma);

for (int j=0;j<ma;j++) printf("\nald = %f",j,a->v[j1);
error=0.0;
for (int i=0;i<s->dimensions;i++)
{
basis_functions(&afunc,s->v[i],t->v[i]);
sum=0, ;

for (j=0;j<ma;j++)
sum += afunc.v[jl*a->v[j];
error+=fabs (sum-v->v[i]);
}

printf("\n\n error = f average error = 4f",error,error/s->dimensions) ;

}

void main(void)

{

int ma,ndata;

user_interface(&ma,&ndata);

Vector a(ma),s(ndata),t(ndata),v(ndata),sig(ndata);
read_file(&s,&t,&v,&sig);
1fit(ma,&s,&t,&v,&sig,&a);
results(ma,&s,&t,&v,&a);

}
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Appendix B

BS with vol function

Valuation of Call option with volatility being a deterministic function
of time to maturity, and assetprice. A constant dividend yield is
incorporated

IMPLICIT NONE

DOUBLE PRECISION ds, T, E, Smax, r, dtau, D, vol(O:nx,O:ny),
& a0, al, a2, a3, a4, a5, D, value(O:nx, 0:ny)

INTEGER Jmax, Nmax

PARAMETER nx=500, ny=2001

COMMON /BLOCKA/ value
COMMON /BLOCKB/ vol

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe
SETTING VALUES

T = 0.33150684d0
Nmax = 2000

Jmax = 500

Smax = 1000.0d0

E = 91.4505843d40
r = 0.052662d0

D = 0.0552908d0
coefficient for vol func
a0 = 17.0074240

al = -0.0750644d0
a2 = 0.00114440
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a3 = 0.020357406d40
a4 = -0.6934063d0
ab - = 0.056017d0

CCCCCCCCCCCcccccccecccecececeecececececee

step size determined

dtau = T/Nmax

ds = Smax/Jmax

CALL VOLATILITY(a0,al,a2,a3,a4,a5,Nmax,Jmax,ds,dtau)
CALL CRANK(Jmax, Nmax, E, r, D, ds, dtau)

CALL RESULT

STOP

END

CCCCCCCCCCCCCCCCcCCcccecccceeceecececeeccececececccececceccececccecceccececeeccecceccececceccceccccecccce

SUBROUTINE VOLATILITY(a0,al,a2,a3,a4,a5,Nmax,Jmax,ds,dtau)
Reading in the volatility for each knots into vol(j,n)

DOUBLE PRECISION vol(0:nx,0:ny), sr, tr, tau,
& a0,al,a2,a3,a4,ab,ds,dtau
INTEGER n, j

COMMON /BLOCKB/ vol
do 100 n=0, Nmax+1, 1
tau=n*dtau
do 110 j=1, Jmax-1, 1
s=j*ds
cccceeecececcceececccccecececeececccccececcecececccee
VOLATILITY FUNCTION
sr=100.0d0-s
tr=taux12.0d0
if (sr .GT. 30.0d0) then

sr=30.0d0
endif
if (sr .LT. -30.0d40) then
sr=-30.0d0
endif
if (tr .LT. 1.0d0) then
tr=1.0d40
endif
vol(j,n) =(a0 +al*sr +al2*sr*sr +a3*tr +ad*sr/(tr+2.0d0)
& +ab*sr*sr/((tr+2.0d0)*(tr+2.0d40)) ) /100.040
CCCCCCCCECCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe
110 continue

100 continue



RETURN
END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE CRANK(Jmax, Nmax, E, r, D, ds, dtau)
DOUBLE PRECISION vol(O:nx,O:ny), Ej(O:SOO), Fj(O:SOO),
& U(0:500), Up(0:500), 0j, alpha, beta, gamma,
& value(O:ny, O:ny), s, tau, r, D, E, ds, dtau
INTEGER n, j
COMMON /BLOCKA/ value
COMMON /BLOCKB/ vol

€CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCECCCET
Initial conditions for Thomas algorithm
Ej(0)=0.0d0
Fj(0)=0.0d0
€CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe
Initial conditions (maturity)
do j=1, Jmax
s=j*ds
U(j)=s - E
if (s .LT. E) then
U(j)=0.0d0
endif
enddo
CCCCCCLCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe
Crank Nicolson solved with Thomas algorithm
do 200 n=0, Nmax, 1
tau=n*dtau
do 210 j=1, Jmax-1, 1
s=j*ds
CCCCCCECCCCCCCCCCCCCCCCECECCCCCCCCCCCCCCT
boundary conditions at s=0 and s=Smax
U(0)=0.0d0
U(Jmax)=exp(-r*tau)*exp(r+tau)
CCCCCCCCCCCCCCCCCCCCCCCECCCCCCCCCCCCCCCCT
coefficients alpha, beta, gamma for timestep n
alpha =0.25d0*s*(dtau/ds)*(vol(j,n)*vol(j,n)*s/ds-(r-D))
beta =1.0d0-(dtau/(ds*ds))*(vol(j,n)*vol(j,n)*s*s)*0.5d0
gamma =0.25d0*s*(dtau/ds)*(vol(j,n)*vol(j,n)*s/ds+(r-D))
€CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe
Start of Thomas algorithm
0j = alpha*U(j-1) + beta*U(j) + gammaxU(j+1)
CCCCCCLCCCCCCCCeCCCCCCCCCCCECCCCCCCECECCCCCCCCe
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220
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alpha, beta, gamma for n+1 (note beta have a sign changing)

alpha=0.25d0*s*(dtau/ds)*(vol(j,n+1)*vol(j,n+1)*

s/ds-(r-D))

beta =1.0d0+(dtau/(ds*ds))

*(vol(j,n+1)*vol(j,n+1)*s*s)*0.5d0

gamma =0.25d0*s*(dtau/ds)*(vol(j,n+1)*v01(j,n+1)*

s/ds+(r-D))

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCecce

Ej(j) = gamma/(beta-alpha*Ej(j-1))

Fj(j) = (0j+alpha*Fj(j-1))/(beta-alpha*Ej(j-1))
continue
CCCCCCCCCCCLCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCECCCCCe
boundary conditions for Up at s=0 and s=Smax
Up(0) = 0.0d0
Up(Jmax) = exp(-r*(tau+dtau))*exp(r*(tau+dtau))
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCECCCCCCCCCCCCCCCCCCECee
Backward swep
do 220 j=Jmax-1, 1, -1

Up(j) = Ej(3)*Up(3+1)+Fj(j)
u(i) = up(j)
value(j,n)=U(j)*exp(-r*tau)
continue
continue
CCCCCCCCCCCCCCCCCECCCCCCCCCECCCCCCCCCT
RETURN
END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCLCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe

500

SUBROUTINE RESULT

DOUBLE PRECISION value(O:nx, O:ny)
INTEGER n, j

COMMON / BLOCKA/ value
open(7,file=’EIG.DAT’)
write(7,500) ((value(j,n), j=2, 100, 2), n=0, 2000, 50)
write(6,*) value(50,2000)

format (1x,£f15.7)

close(7)

RETURN

END
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Defsys.f

This is the print of the file Defsys.f that is a part of CTLSM.
In this file the state space model and observation equation is

specified.
c o(#)Defsys.f 1.7 12/04/91

subroutine defsys(x, nx, xm, id, nparam, xpO, xp, wo, t, a, b, c,

$ d, r1, r2, kf, n, m, s, kalm, naver, nn, £, h)
[ Uy -—— --c
c Specify the actual dynamic system. c
c c
c dx = a*x*dt + b*uxdt + dw ; Eldw*(dw)’] = r1 c
c c
c Yy = c*x + d%u + e ; Efex(e)’] = 1r2 c
c c
c x: The parameter vector. c
c t: The sampling time. c
c a: The matrix a(n,n). c
c b: The matrix b(n,m). c
c c: The matrix c(s,n). c
c d: The matrix d(s,m). c
c r1: The matrix ri(n,n). c
c r2: The matrix r2(s,s). c
c kf: The matrix kf(n,s). c
c c
CE======mnoomm SESsssz=szsz=soss C
c if nonlin=2 : [
c c
c dx = f(x,u) + dw c
c ¥y = h(x,u) + e c
c c
c then specify: f(x,u), h(x,u), a=df/dx, c=dh/dx c

87
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c and skip: b, d c
s S S S S SS SSS SsSS S S S ES S s S S SEs S S S S S Ss==ss= == =SS=S=s===x= Cc
c c
c USAGE: c
c c
c Specify the system matrices in terms of x (variances c
c should be assigned the largest index of x). c
[ The samplingtime is Tsamp. c
c-=-=- - T e e e e e c
implicit none
c
integer i, j, nx, nparam, n, m, s, kalm, naver,
$ id(nparam), nn
c
double precision x(nx), xm(nparam), t, Tsamp, xpO(n), xp(n),
$ uwo(m), a(n, n), b(n, m), c(s, n), d(s, m),
$ ri(n, n), r2(s, s), kf(n, s), f(n), h(s)
c
L
c
j=1
do 56 i = 1, nparam
if (id(i) .ne. 0) then
xm(i) = x(j)
i=3i+1
end if
continue
if (nn .eq. 1) goto 8
c
€ et ie e eieeaieae ettt ettt e e e e e e
c Samplingtime
Tsamp = 1d0
[
t = Tsamp*naver
c
€ it iieeecaeeatae ettt e et e et
c initial states.

O 000000

xp0(1) = xm(1)
xp0(2) = xm(8)

Specify the actual dynamic system,

if (nonlin = 1) the matrices: a,b,c and d (not r1, r2 or kf) may
be dependant on the state vector: xp, and the input: uo(1)
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8 continue

(o}
a(l, 1) = 1d4-38
c a(l, 2) = -xm(2)*xp(1)
c a(2, 1) = xm(4)*xp(2)
c a(2, 2) = xm(4)*xp(1) - xm(5) - 2d0*xm(6)*xp(2)
Cc
c bond 5035
c(1, 1) = -uo(1)*uo(3)*9d0o*
$ exp(-uo(1)*(xp(1)-1d0/640*xm(2)*uo (1)**2d0) ) -
$ 9d0* (uo(1)+1d0) *
$ exp (- (uo(1)+1d0)* (xp(1)-1d0/6d0*xm(2) * (uo (1) +1d0) *%2d0) ) -
$ (9d0+100d0) * (uo (1) +2d0) *
$ exp (- (uo (1)+2d0)* (xp(1)-1d0/6d0*xm(2) * (uo (1) +2d0) **2d0) )
Cc
c bond 7916
c(3, 1) = -uo(2)*uo(4)*6d0*
$ exp(-uo(2)*(xp(1)-1d0/6d0*xm(2)*uo(2) **2d0) ) -
$ (6d0+100d0) * (uo(2)+1d0) *
$ exp(-(uo(2)+1d0)* (xp(1)-1d0/6d0*xm(2) *(uo(2) +1d0) **2d0))
Cc
c c(1, 2) = 0do
c c(2, 1) = o0do
c c(2, 2) = 1do
Cc
£(1) = 0d0
c £(2) = (xm(4)*xp(1)-xm(5)-xm(6)*xp(2))*xp(2)
Cc
c bond 5035
h(1) = uo(3)*9d0*exp(-uo(1)*(xp(1)-1d0/6d0*xm(2)*uo (1) **2))+
$ 9d0*
$ exp(-(uo(1)+1d0)*(xp(1)-1d0/6d0*xm(2)*(uo(1)+1d0)**2d0))+
$ (9d0+100.0d0) *
$ exp(-(uo(1)+2d0)*(xp(1)-1d0/6d0*xm(2)*(uo(1)+2d0)**2d0))
C
c bond 7916
h(3) = uo(4)*6d0*exp(-uo(2)*(xp(1)-1d0/6d0*xm(2) *uo (2) **2))+
$ (6d0+100d0) *
$ exp(-(uo(2)+1d0)*(xp(1)-1d0/6d0*xm(2) *(uo(2)+1d0)**2d0))
Cc
c h(2) = xp(2)
LT T T
[ Variances (if kalm = 0).

if (nn .eq. 1) goto 99
if (kalm .ne. 1) then
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do 101 =1, n
do 10 j =1, n
10 ri(i, j) = 0.0do

xm(2)
xm(10)

ri(1, 1)
ri(2, 2)

do 201 =1, s
do 20 j =1, s
20 r2(i, j) = 0.0d0

r2(1, 1) = xm(3)
r2(2, 2) = xm(4)
r2(3, 3) = xm(5)
r2(4, 4) = xm(6)
r2(5, 5) = xm(7)

[-3
<]
[&)
o
"
L

=1, n
do 30 j 1, s
30 kf(i, j) = xm(nparam-n*s+j+s*(i-1))
end if
99 return
end



Appendix D
Global.h

This is the print of the file Global.h that is a part of CTLSM.
In this file the number of parameters is given.

c @(#)Global.h 1.8 12/04/91
= e e
c Major global parameters.
c
c maxobs: Maximum number of observations.
c nparam: Number of parameters in model, incl. noise terms.
[ n: Order of the system of differential equations.
c m: Number of inputs.
c s: Number of outputs.
Cm == e
integer maxobs, nparam, n, m, s
c
== = = e
parameter ( maxobs = 402 )
parameter ( nparam = 6 )
parameter (n=1)
parameter (m=10)
parameter (s=4)
G e e ——————
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Appendix E

readin

This is the print of the file readin that is a part of CTLSM.
In this file the options for the estimation is specified. The
initial guess of parameters and minimum and maximum values
for each parameter are specified.

------ Options------- Q(#)readin 1.2 12/17/92 ——sem—em—
’bondcros’ #01 filename for output files (max 8 characters).
] #02 number of input records to be neglected.
0 #03 the output series will be moved the number of samples.

1 #04 the number of samples to be averaged.

1 #05 the k-step prediction used for estimation.
0 #06 order of interpolation between inputs (0/1).
0 #07 no action (0), mean removed (1), linear trend removed (2).
0 #08 estimate variances (0) or kalman gain directly (1).
2 #09 lin. timeinvar./lin. timevar./non-linear system (0/1/2).
1d1 #11 initial variance scaling.
0 #11 optimize (0), calc. hessian (1) ,output w/o optimize (2).
2000 #12 maximum number of function calls in optimization.
------ Names for inputs and oUtputs=-=—-===-mmmmm e
SAr:-=—--=-=-- name(max 13):========-ceo-oeo -—-- ---

1 'taul '

2 "tau2 ’

3 "kupont '

4 'kupon2 '

5 'prisi ’

6 ’Pris2 !

------ Parameters == - e e el
Snr:-===--- name:------ ini.value:----- min:---- max:---- (0/1/2) :--std.dev. : -
------ Initial states=---=--==c=cmooo —————- - —e————-

1 'r-ini ’ 9d-1 1d-4 2d1 1
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------ Variances or kalman gaim---==-=-==--mmmm o
2 's117°2 ' 74-3 2d-10 1d1 1
3 'se2”2 ' 1d-2 -1d-7 1d1 1
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