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Summary (English)

The goal of this thesis is to make an objective evaluation of the human iris colour
and structure, in order to extract quantitative measures for DNA correlation.

In order to ful�l this goal the iris region was extracted from high resolution eye
images provided by the Department of Forensic Medicine, Section of Forensic
Genetics. Inspired by a method proposed by John G. Daugman we have suc-
ceeded in extracting the iris region. Furthermore the eyelid boundaries were
located using a pixel classi�cation with a Markov Random Field approach. We
were able to locate the pupil boundary and iris boundary correctly in 75.0% and
96.4% of the cases and the upper and lower eyelid boundaries in 76.6% and 73.0%
of the cases, respectively. The total percentage of correctly extracted irises is
64.3% using a Dice Coe�cient of 0.92 for comparison with human annotations.

The evaluation of human eye colour was performed by generating a colour clas-
si�er, an explanatory ratio, and by performing a colour based image clustering.
The colour classi�er was trained on subjective evaluations of human eye colour,
and the percentage of correctly classi�ed images was 65.4%. We have calculated
a ratio explaining the amount of blue and brown coloured regions in the iris,
which has shown to be a promising continuous measure for iris colour since it
clearly distinguishes between blue and brown eye colour. The colour based im-
age clustering is a data driven approach, where the division into colour groups
are very robust compared to a subjective evaluation. The image groups gen-
erated follow the general perception of eye colour being divided into groups
ranging from blue, through intermediate, to brown. This is in agreement with
the knowledge about DNA.
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A minor study of human perception of eye structures was conducted, resulting
in Fleiss' Kappa values between 0.23 to 0.56 for di�erent structures.

A structure based image clustering was performed in order to generate a data
driven evaluation of iris structures. The result is a division into three groups,
one consisting of very smooth eye images, one consisting of eye images with a
high amount of structure and one consisting of images with a large re�ection
area. This division is very promising regarding a DNA correlation. However
some images were incorrectly clustered, which makes us question the result.



Summary (Danish)

Målet med denne afhandling er at udvikle en metode til objektiv evaluering af
det menneskelige øjes farve og struktur, samt at udtrække kvantitative mål til
brug ved korrelation med DNA.

For at opnå dette mål blev iris informationen udtrukket fra en række højt oplø-
selige øjenbilleder udleveret af Retsmedicinsk Institut, Retsgenetisk Afdeling. Vi
har, inspireret af en metode udviklet af John G. Daugman, succesfuldt udtrukket
irisregionen. Derudover har vi været i stand til at lokalisere øjenlågsgrænserne
på baggrund af en pixelklassi�cering, løst ved brug af Markov Random Fields.
Vi har succesfuldt lokaliseret pupillen, iris, øvre og nedre øjenlåg i henholdsvis
75, 0%, 96, 4%, 76, 6% og 73, 0% af tilfældene. Den totale succesrate for hele
irisudtrækningen er 64, 3% ved brug af en Dice koe�cient på 0,92 som sammen-
ligning med menneskelige annoteringer.

Evalueringen af øjenfarve blev foretaget ved at generere en farveklassi�cering,
en forklarende ratio og ved at udvikle en farvebaseret billedgruppering. Farve-
klassi�ceringen blev trænet på baggrund af subjektive vurderinger af øjenfarve.
Procentdelen af korrekt klassi�cerede billeder var 65.4%. Den udregnede ratio
mellem blå og brune regioner i iris har vist sig at være et lovende mål for iris-
farve, idet en klar skelnen mellem blå og brun øjenfarve er tilstede.

Den farvebaserede billedgruppering er en datadreven model, hvor opdelingen i
farvegrupper er mere robust sammenlignet med den trænede farveklassi�cering.
De resulterende farvegrupper følger den generelle opfattelse af øjenfarve, inddelt
i grupper gående fra blå, over mellemliggende til brun.
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Et mindre studie af den menneskelige opfattelse af øjenstrukturer blev udført
med resultat i Fleiss' Kappaværdier på mellem 0,23 og 0,56 for forskellige struk-
turer.

En strukturbaseret gruppering blev udført for at generere en datadreven evalu-
ering af iris strukturer. Resultatet er en opdeling af strukturer i tre grupper, en
bestående af meget glatte øjenbilleder, en anden bestående af øjenbilleder med
stor mængde struktur og en tredje bestående af øjenbilleder med store re�ek-
tionsområder. Denne opdeling er lovende i forbindelse med DNA korrelation.
Dog skal det bemærkes, at nogle billeder bliver ukorrekt grupperet, hvilket får
os til at tvivle på resultaterne.



Preface

This thesis was prepared in collaboration with the Department of Informatics
and Mathematical Modelling at the Technical University of Denmark and the
Department of Forensic Medicine, Section of Forensic Genetics. It ful�ls the
requirements for acquiring an M.Sc. degree in engineering for Medicine and
Technology.

The thesis deals with extracting colour and structural information from the iris
using high resolution eye images. The thesis is made on the basis of eye images
received from the Department of Forensic Medicine, Section of Forensic Genet-
ics. The main focus is to provide the Department of Forensic Medicine, Section
of Forensic Genetics with relevant parametrisations of colour and structure of
the iris.

The thesis consists of this assignment, implementation code, a graphical user
interface (GUI) platform for evaluating iris colour and annotating structures and
a poster presentation that was presented at the annual Medico Bazar arranged
by Medico Innovation 1. The code from the implementations, along with the
GUI and the poster, is available on the CD-ROM provided with this thesis. The
contents of the CD-ROM are seen in Appendix E.

Lyngby, 29-February-2012

Stine Harder & Susanne Rytter Christo�ersen

1http://www.medico-innovation.dk/

 http://www.medico-innovation.dk/
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Chapter 1

Introduction

1.1 Human Genetic Evolution and Physical Traits

If looking at humans across the world it is easily appreciated that several dif-
ferences in appearance exist. Take for example, the di�erences between ethnic
populations such as Europeans, Asians, Native Americans and Africans. His-
torically seen, the ongoing evolution of the modern human originates 200.000
years back to the geographical region of Africa. In this region of the world most
genetic variations are found, and research has shown that the geographical ex-
pansion of humans has its origin on this continent [4]. The genetic variations
among populations is a result of adaptation to a constantly changing environ-
ment and selective events occurring over the last 200.000 years. These events
have resulted in demographic changes and the geographical expansion of hu-
mans into other parts of the world, creating di�erent ethnic populations around
the world [4].

Each ethnic population has di�erent traits contained in the population, but in
general all humans di�er by having unique traits. Scientists around the world
have for many years made a successful e�ort to de�ne the human evolution on a
molecular level. The unique traits of every human being are found to be mainly
speci�ed through genetic variations that are inherited through generations [1].
This knowledge has been used in several research areas, for example to identify
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inherited diseases, identify ancestry, predict health issues, and so forth.

The visual uniqueness of humans is expressed through the physical traits, such
as hair colour, skin colour, eye colour, height, weight and several other traits.
Such visible traits are called external visible characteristics (EVC) [35, 17].

1.2 Forensic Genetics

In the �eld of forensic genetics, the main goal is to identify a person from a
sample of genetic material. The main usage of identi�cation procedures using
deoxyribonucleic acid (DNA) material is constituted in paternity cases, immi-
gration cases and crime cases. The interesting �eld regarding this thesis is the
use of DNA for crime cases. When a crime is committed, the police author-
ity collects di�erent kinds of e�ects from the crime scene. If present, part of
the e�ects might encompass DNA material. This DNA sample is analysed and
compared to the criminal DNA register. If no match is found, there is a need
to �nd a suspect in order to make a comparison between the suspect DNA and
the DNA sample from the crime scene.

This thesis is the �rst step towards generating an objective tool for the authority
to use in cases where there is no suspect to compare to the DNA sample. The
idea is to be able to predict some EVCs of the suspect based on the DNA from
the crime scene. It would be a great tool for the police to be able to predict for
example entire facial characteristics of the suspect. This would help the police
by either restricting a large pool of suspects or by con�rming human eyewitness
statements.

1.2.1 Estimation of EVCs

The road towards predicting appearance from a DNA sample is long, since
�nding the link between an EVC and genetics is not an easy task. One of
the main di�culties when estimating EVCs from genetic material is that the
traits are very complex on a genetic level, due to the fact that most EVCs are
inherited as a polygenic trait. Thus several genes constitute the phenotype [12].
In general the human facial characteristics are of great interest when identifying
people. One very interesting EVC is the colour and structure of the human
eye. Since the human perception of iris colour is a combination of the colour
and the underlying structures, both colour and structures are valuable traits if
identi�able in the genome.
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Much of the current research on linking genetic material to iris colour is based on
subjective classi�cations of the colour content, performed by quali�ed experts
in the �eld of eye research [35, 23]. The subjective classi�cations are compared
with genetic material and in this way the genes that constitute the iris colour are
identi�ed. This result in a classi�cation that cannot be replicated, since people
perceive colour di�erently. A main interest is therefore to create an objective
method to classify iris colour and structure. An objective method can improve
the identi�cation of genetic material by omitting subjective classi�cation that
cannot be validated by third parties.

To the best of our knowledge, no previous research has focused on the subject
of linking iris structures to genetic material, why the subject is a completely
new area of research.

Looking at the human eye, the perceived EVC is the colour of the iris. The iris
colour is the most visible characteristic of the eye, but when investigating the
iris further it is seen that even more physical traits are present in the structure
of the iris. In order to understand the colour perception of the iris a short
introduction is presented.

1.2.1.1 The human iris

The outer anatomy of the eye are seen in Figure 1.1 which shows an example of
an eye image. The arrows indicate speci�c structures of the outer anatomy of
the eye, along with a re�ection from the camera �ashes. These re�ections are
present in all of our eye image data.

The general conception of iris colour is that the perceived colour is ranging
from the lightest blue to the darkest brown, where the shades between blue and
brown is a result of limited pigmentation content, iris thickness and cell density
[32]. However, this conception is not widely used due to the highly subjective
assessment of iris colour that makes it di�cult to distinguish iris colour into a
high number of categories. A scale of blue, green-hazel and brown is therefore
often used [32]. Seen from a genetic point of view these groups have a speci�c
construction of the DNA, also called the genotype.

The complex tissue structures of the iris have been investigated by many re-
searchers and a series of di�erent characteristic structures are de�ned. In general
four widely used structures are: Fuchs Crypt's, Nevi dots, Wol�in nodules and
so-called contraction furrows, see Figure 1.2 for an illustration. A Fuchs Crypt
is described as �recessed folds of the iris tissue radiating out from the pupil�
[26], contraction furrows are described as �circular folds around the iris� [26],
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Figure 1.1: Illustration of the outer anatomy of the human eye

Wol�in nodules are described as �lightly pigmented spots around the periphery
of the iris� [26] and Nevi dots are generally de�ned as pigmentation placed on
the surface of the iris structures [32]. These speci�c structures constituting the
unique biometric makers of the iris are what makes it possible to think of the
iris as a �ngerprint.

1.2.2 Goal of the thesis

From the previous sections it is clear that there is a need for a thorough investi-
gation of the iris colour and structures in order to predict colour and structure
from a DNA sample. A collaboration between the Department for Mathemat-
ical Modelling at the Technical University of Denmark and the Department
of Forensic Medicine, Section of Forensic Genetics makes it possible to start
solving the task. Our thesis is the �rst step in the process, and the main result
from the thesis should be an objective and quantitative evaluation of the colours
and structures of the iris. Subsequently the Department of Forensic Medicine,
Section of Forensic Genetics will make a correlation between the objective mea-
surements extracted from the iris and the corresponding DNA sample.

For this thesis a number of eye images were given as will be described in Chapter
2. These images contain skin, sclera, eyelashes, eyelids and of course the iris
and the pupil. The interesting part of the images is the iris area, and therefore
the �rst part of this thesis will be concerned with extracting the iris region.
The task of extracting the iris region can be partitioned into two major steps.
The �rst step is to locate the iris boundaries, as explained in Section 3.1. The
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(a) Fuchs Crypts (b) Nevi dots

(c) Wol�in nodules (d) Contraction furrows

Figure 1.2: a) Arrows indicating Fuchs Crypts b)Arrows indicating nevi dots
c) Arrows indicating Wol�in nodules d) Arrows indicating con-
traction furrows. All four images are taken from [32]

second step is to locate the eyelid boundaries, since the eyelids often occlude
the iris area, see Section 3.3. However this can be a di�cult task, since the
eyelashes often occlude the eyelid boundaries and since a high variation in eye
colour exist.

In order to make a quantization of the iris colour a colour classi�cation method
is proposed. The colour classi�er should be able to classify an eye image into
the same class every time, so that results can be replicated. The colour clas-
si�er is explained in Chapter 4. The objective colour classi�er is a step in the
right direction towards obtaining a reliable parametrization of the iris colour for
correlated with genetics.
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Another interesting quantization measure could be a ratio describing the amount
of blue and brown in the eye images. Our belief is that a ratio between the brown
and the blue areas in an eye would be an appropriate measure, see Chapter 5.

A goal of this thesis is also to investigate the various structures in the iris. This
is done by examining the operator variance between humans for a number of
prede�ned structures, see Chapter 6.

The approach used for investigating the structures in the iris is a data driven
clustering approach, see Chapter 7. This approach has multiple goals. The �rst
goal is to be able to locate groups of irises with similar colour or structure,
which could be correlated with DNA samples by the Department of Forensic
Medicine, Section of Forensic Genetics in order to investigate the genetics. The
second goal is to investigate whether the amount of structures is dependent on
the iris colour, which is of interest for the Department of Forensic Medicine,
Section of Forensic Genetics.



Chapter 2

Data Acquisition and
Preprocessing

The image data was acquired from the Department of Forensic Medicine, Section
of Forensic Genetics, who in collaboration with Glostrup Hospital and Bispe-
bjerg Hospital has taken a wide span of high resolution digital images of patient
eyes. The images were taken with the following camera and camera settings;
Canon Eos 5D Mark II, Canon Macro Lens 100mm 67Ø. 1:2.8 L IS USM, Canon
Macro Twin Lite MT-24EX,ISO 800, Shutter 1/100, AV 18. The data were saved
in raw format with a size of 5634× 3753 pixels. An illustration of the camera is
seen in Figure 2.1.

The images were taken at the hospitals, by employees from the Department of
Forensic Medicine, Section of Forensic Genetics. They were acquired by a hand
held camera as illustrated in Figure 2.2. For an optimal image of the eye it is
important that the patient concentrates on keeping the eyes wide open, thereby
minimizing occlusion of the iris from the eyelids and eyelashes. This is, however,
a demanding task, and the patients were therefore instructed not to physically
force their eyes open.

Preprocessing of the images were done in order to make the image size compat-
ible with matlab. The images were converted to white balanced JPG images,
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(a) Camera viewed from the front (b) Camera viewed from the side

Figure 2.1: The camera used for image acquisition

Figure 2.2: Photo of the camera in use. The image illustrates the camera
position during image acquisition
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using a Canon provided software, the Digital Photo Professional (DPP)2. A
conversion of the images to reduce the size of the Portable Network Graphics
(PNG) images, using the AnyPic Image Resizer Pro program3 was performed.
The reduced image size was 639 × 426 pixels. A total of 275 images were
provided for the project. Since many of the tasks during the thesis needs both
training images and test images, and because we needed a �nal group of images
for validation, the 275 images were divided into three groups. The group for
training contains 100 eye images, the group for testing contains 64 eye images
and the group for validation contains the remaining 111 eye images. The three
groups of eye images are from now on referred to as training data, test data and
validation data, respectively.

2Available from http://www.canon.dk/For_Home/Product_Finder/Cameras/Digital_SLR/

eos30d/software/
3Available from http://www.batchimageconverter.com/image-resizer-pro/

http://www.canon.dk/For_Home/Product_Finder/Cameras/Digital_SLR/eos30d/software/
http://www.canon.dk/For_Home/Product_Finder/Cameras/Digital_SLR/eos30d/software/
http://www.batchimageconverter.com/image-resizer-pro/
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Chapter 3

Iris Extraction

In order to analyse the iris, the iris region has to be located and extracted from
the eye images. When looking at an eye images, two iris boundaries can be
de�ned, one for the boundary of the pupil and one for the boundary of the iris,
see Figure 1.1. These boundaries will throughout this thesis be denoted as the
inner boundary and outer boundary of the iris.

Previously, other researchers have extracted the iris region from an image,
mostly in order to perform biometric iris matching. The leading researcher
in the area is John G. Daugman, who developed a biometric person identi�ca-
tion system based on iris analysis. Our approach for extracting the iris is in
some aspects very similar to the method of John G. Daugman. The basic idea
for iris extraction is to �t a circle to the gradients of the inner and outer iris
boundaries [5, 7].

However, for our eye images �tting a circle is not enough, since the iris is often
occluded by the eyelids. Looking at Figure 1.1 it is seen that the outer bound-
ary is occluded by the upper and lower eyelids, which is often the case. The
occlusion from the eyelids adds another task to the iris extraction procedure,
namely the detection of the eyelid boundaries. Furthermore, our eye images
contain re�ections from the camera �ashes, see Figure 1.1, which should also be
accounted for.
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This chapter on iris extraction consists of a short explanation of the method
proposed by John G. Daugman, upon which our implementation of the method
will be explained. Our implementation consists of several steps: the inner and
outer boundary detection, a radial transformation of the iris region, a description
of how we account for the re�ections from the camera �ashes, and a description
of how we detect the eyelid boundaries.

3.1 Inner and Outer Boundary Detection

Our method for detecting the inner and outer iris boundaries is inspired from
the method proposed by John G. Daugman. In order to ease the iris extraction
procedure, the eye images are converted into gray scale images.

3.1.1 Iris extraction - John G. Daugman

John G. Daugman has developed a very known and acknowledged method for
iris extraction [5, 7]. He takes advantage of the fact that the inner and outer
boundaries are circular and that there is a di�erence in pixel intensity between
the pupil and the iris and between the iris and sclera regions. John G. Daug-
man's method is therefore to �nd the highest sum of gradients on a circle.

The method of John G. Daugman is based on:

max(r, x0, y0)

∣∣∣∣Gσ(r) ∗ ∂

∂r

∮
r,x0,y0

I(x, y)

2πr
ds

∣∣∣∣ (3.1)

where I(x, y) is an image, ds is a circular arc with radius r and center coordinates
(x0, y0). The symbol ∗ denotes convolution and Gσ(r) is a Gaussian smoothing
function with scale parameter σ [5, 7].

Equation 3.1 basically states that the inner and outer boundaries are found by
searching the eye image for the highest sum of gradients on a circle. The search
is performed by changing the center coordinate and radius. The sum of gradients
is calculated on a Gaussian smoothed image, since an eye image contains many
small structures that could be detected as circular edges otherwise.

According to John G. Daugman both inner and outer boundary of the iris should
be located using Equation 3.1. When the iris boundaries have been extracted,
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John G. Daugman suggests a similar approach in detecting eyelid boundaries.
The eyelid detection is based on curvilinear edges, and the proposal by John G.
Daugman is to sum along an arc instead of a circle. An example of his result is
seen in Figure 3.1, where it is seen that the iris region has been isolated from
other image regions.

Figure 3.1: Result from iris extraction by John G. Daugman. Taken from [5]

John G. Daugman has developed a biometric iris measure for person identi�ca-
tion. The result of his work therefore focuses on the quality of the iris matching
and not on the quality of the detection of the iris boundaries. The accuracy of
the boundary detection has therefore not been found reported.

3.1.2 Inner and outer boundary detector

In this section our method for detecting the inner and outer iris boundaries
will be explained. Our method for iris extraction is based on the method pro-
posed by John G. Daugman [5] [7], although some di�erences are present. The
method proposed by John G. Daugman is highly optimized according to per-
formance time, which complicates the implementation. Our approach is more
straight forward, which is possible since the time aspect is not critical for our
implementation.

Our implementation of the method proposed by John G. Daugman follows the
basic idea very closely, while avoiding the more complicated optimizations per-
formed by John G. Daugman [7]. As explained in Section 3.1.1 the basic idea
is to �nd the two maximum sums of gradients on a circle, corresponding to the
inner and outer iris boundaries, respectively. In order to avoid noise components
in the image, such as small structures in the iris, the summation of gradients is
performed on a Gaussian smoothed image.
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The �rst step of the implementation is to make a Gaussian smoothing of the
eye image. The probability density function of a Gaussian is expressed as:

g(x) =
1

σ
√

2π
exp−

x2−µ2

2σ2 (3.2)

where x is the data, µ is the mean and σ is the standard deviation [25].

Our implementation uses a Gaussian �lter with a standard deviation σ = 3, see
Figure 3.2. Multiple values for standard deviation have been tested with the
algorithm, which has shown that the choice is critical for the implementation.
In order to keep the performance of the algorithm high, the standard deviation
should be in the range σ ∈ [2.5, 3.5].

Figure 3.2: Left: Gray tone eye image. Right: Gaussian smoothed image,
σ = 3

After performing Gaussian smoothing of the image, the sum of gradients on a
circle should be calculated. This task can be divided into three steps: �rst �nd
the sample positions on the circle, then calculate the gradient value for each
position and �nally make a summation of the values.

The positions (x, y) on a circle for a given center coordinate (x0, y0) and radius
r is de�ned as:

x = r cos(∆θp+ 90) + x0 (3.3)

y = r sin(∆θp+ 90) + y0 (3.4)

where ∆θ is the angular step size and p ∈ [0, 360
∆θ ]. If a position on the circle is

located between pixels, a bilinear interpolation is performed.
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The gradient value should be calculated for every sample position on the circle.
Since the gradients are calculated in di�erent directions dependent on the po-
sition on the circle, an analytical di�erentiation cannot be made and instead a
�nite di�erentiation is used. The gradient value dg

dr for a given position (x, y)
can be calculated as:

dg

dr
=
f(r + 1)− f(r)

1
(3.5)

where f(r) is the pixel value for a given radius r and f(r+ 1) is the pixel value
one radial step away from r.

Finally a summation of gradient values, G, should be calculated. The summa-
tion of gradient values is given by:

G =
∑
p

g(x, y) (3.6)

where (x, y) are the sample positions on a circle given by Equation 3.3 and 3.4.

The gradient sum for a circle can now be calculated and the �nal step in the
process of locating the boundaries is to �nd the maximum gradient sum by
changing the center coordinate (x0, y0) and radius r:

max (G(r, x0, y0)) (3.7)

3.1.2.1 Optimization of processing time

Locating the circle with the highest gradient sum (e.g. the pupil boundary) can
be a computational and time consuming task if gradient sums should be calcu-
lated for all image possible center coordinates and radii. Therefore it would be
valuable to �nd a method that optimizes the processing time but still keeps the
performance high. In this section two methods are explained, one for optimizing
the search for center coordinate and one for optimizing the search for radius.
Both methods are implemented into the algorithm.
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Center coordinate search The task of locating the center coordinate is a
task of locating a global maximum. The Steepest Descent method [10] would
be an obvious choice, since it is a fast method to locate a local minimum or
maximum. However, since the search function is not smooth, see Appendix A,
the Steepest Descent method is not appropriate. Another method is therefore
sought.

The method used in our algorithm reduces the processing time by calculating the
gradient sums for a reduced amount of pixels. The idea is to start by calculating
the gradient sums for a small number of pixels and then narrow the region of
interest to an appropriate area around the pixel with the highest gradient sum.
The procedure should then iterate until a small region of interest is located, and
the gradient sum would then be calculated for all remaining pixels. In this way
one pixel accuracy is obtained and computational e�ort and time is reduced.

For our implementation the horizontal and vertical step sizes are chosen as
number of columns

10 and number of rows

10 . After each iteration the search region is
decreased to a fourth of the previous size of the search region. This was chosen
in order to lower the processing time while maintaining the detection rate. Since
the step size between the pixels is dependent on the size of the region of interest,
the step size is also decreased. After each iteration, the pixel with the maximum
gradient sum is found, and the search region is con�ned to a region around this
coordinate. For the last iteration the gradient sum is calculated for all pixels
in the small region of interest. The method is illustrated in Figure 3.3 a). The
result of locating the outer iris boundary is seen in Figure 3.3 b). Obviously the
outer boundary has been located, and the processing time has been decreased
drastically.

(a) Illustration of method (b) Result of method

Figure 3.3: a) Illustration of the center coordinate search for the outer bound-
ary. The red dots indicate the sample pixels, the red squares in-
dicate the region of interest and the blue dot indicate the located
center coordinate. b) Result from locating the outer iris boundary
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Radius search The approach used for optimizing the processing time with
respect to the radius search is very alike the method used for the center coordi-
nate search. The method is to calculate the gradient sum for a small number of
radii, illustrated as the red circles in 3.4 a), and then narrow down the search
area, illustrated as the magenta circles in 3.4 b). The circular gradient sum is
then calculated for all radii in this restricted search area.

The radial step size is 10 pixels in the �rst run, and the new search area is chosen
so that there are 10 pixels on both sides of the circle with maximum gradient
sum. Figure 3.4 a) and b) illustrate the method, and c) shows the result when
locating the inner boundary radius for the correctly given center coordinate.

(a) First run (b) Second run (c) Result

Figure 3.4: Illustration for radius search for inner boundary. Red circles in-
dicate the sample radii, black circle indicates radius with highest
gradient sum, magenta circles indicate the sample radii for the
second run, blue circle is the �nal result

3.1.2.2 Restrictions for inner and outer boundary

Eye images contain many gradients beside the gradients for the inner and outer
iris boundaries. Very dark eyelashes is an example of a structure that creates
large gradient values. These large gradients make the task of extracting the
iris much more di�cult. In order to make the implementation more robust,
appropriate constraints are made on the size of the inner and outer boundaries.

According to [27], the diameter of the pupil varies from 1.5 mm to approximately
9 mm in a range from direct light to total darkness, respectively. We chose a
minimum pupil diameter of 1.44 mm and a maximum pupil diameter of 8 mm.
The reason for choosing such a large span of the pupil size is that our dataset
contains eye images with a pupil diameter in the entire range. Literature on
the subject of iris size is almost non-existing, but according to [20], the normal
iris diameter is 12 mm. We chose a minimum iris diameter of 11.44 mm and
an upper iris diameter of 15 mm. The choice of limits for the inner and outer
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boundaries is very critical for the implementation. These limits were chosen
since they gave the highest percentage of correctly detected boundaries for our
eye images.

Another restriction is that the outer boundary is located �rst, and based on this
result the search area for the inner boundary is restricted to be contained inside
the outer boundary. This restriction is implemented since the pupil cannot
physically be located outside the iris region.

3.1.2.3 Search cones

By inspiration from John G. Daugman [5, 7], two 90 degree cones are used
when searching for the outer iris boundary. This is done because the outer iris
boundary is often occluded by the eyelids. The 90 degree cones are illustrated
in Figure 3.5 along with the full circle used for the inner boundary search.

Figure 3.5: Left: Illustration of a full 360 degree cone. Right: Illustration of
left and right 90 degree cones

3.1.2.4 Re�ections from camera �ashes

The eye image data received from the Department of Forensic Medicine, Section
of Forensic Genetics, see Chapter 2, all contain re�ections from the camera
�ashes, see Figure 1.1. The re�ections are positioned either in the pupil region,
the iris region or on the boundary between the pupil and iris.

Since the re�ections contain very high image values compared to the surrounding
pixels, a high gradient value is present at the re�ection boundaries. The high
gradients might lead to false detections of the inner and outer iris boundaries,
and therefore the re�ections must be accounted for. An example of incorrectly
detected iris boundaries, due to re�ections, is seen in Figure 3.6 a). Figure 3.6
b) shows the correctly detected iris boundaries.
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Figure 3.6: Left: Result obtained without a mask to account for the re�ec-
tions. Right: Result obtained with a mask accounting for the
re�ections

The approach used to account for the re�ections is to generate a mask containing
the image regions containing the re�ections. By applying a simple threshold to
the eye image, a mask is produced where all pixels with a value above the
threshold are set to zero, and remaining pixels are one. The threshold was
set to 240, which is very speci�c for our eye images. In order to assure that
the entire re�ection area found is represented in the mask, the located area is
dilated.

The threshold and dilation procedure produces a mask with many areas de�ned
as re�ection areas, as seen in Figure 3.7 b). The original gray tone image is seen
in a). In order to avoid e.g. one pixel sized regions, a limit is set on the size
of the re�ection area. The minimum size is set to 10 pixels, and the resulting
mask is seen in Figure 3.7 c).

(a) Original gray tone image (b) Temporary mask (c) Final mask

Figure 3.7: a) Original gray tone image b) Temporary mask, created by simple
threshold procedure c) Final mask, created by threshold procedure
followed by a lower limit on the size of the regions

A binary re�ection mask is generated for each eye image, which is used through-
out the thesis in order to avoid using the information contained in the re�ection
areas.



20 Iris Extraction

3.2 Iris Mapping

When the inner and outer iris boundaries have been found, it is of interest to
rearrange the information contained in the iris in a useful and logical manner.
John G. Daugman [6] proposes the Rubber Sheet model, which is basically a
radial transformation of the iris region.

For the radial transformation, points are sampled in the original eye image
according to the location of the inner boundary. A speci�ed number of points
are sampled along a line from the inner boundary and outwards toward the
outer boundary and mapped onto an iris map. The vertical axis on the iris map
consists of a normalized radius, where 0 is at the inner boundary and 1 is at
the outer boundary. The horizontal axis is the angular position, starting with
0 degrees at the bottom of the circle. The next line to sample is chosen by
moving a speci�ed angular step size around the circle. The new line is sampled
in the same manner, and the procedure is continued until around the circle. The
procedure is illustrated in Figure 3.8.

The remapping of the iris image I(x, y) from raw coordinates (x, y) to dimen-
sionless coordinates (r, θ) can according to [5] be represented as

I(x(r, θ), y(r, θ))→ I(r, θ) (3.8)

The step size when sampling from the inner to the outer boundary, is changed
for each angular step. The change in step size is performed because the distance
from the inner to the outer boundary is not necessarily the same at all angular
positions. This is due to the fact that the pupil and the iris center coordinates
are not always located in the same position.

An example of a radial transformation of an eye image is seen in Figure 3.9.
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Figure 3.8: Illustration of the radial transformation. Left side shows the inner
and outer iris boundaries, as well as the sampling steps, 4r, along
the radial direction and the angular step 4θ

Figure 3.9: Left: Eye image with located inner and outer iris boundaries.
Right: Iris map, which is the result from the radial transformation
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3.3 Eyelid Detection

When looking through our database of eye images it is seen that most of the
images contain an iris region that is occluded by one or both eyelids, see Figure
3.9 a) for an example. This occlusion will result in wrong information in the
iris map resulting from the radial transformation, see Figure 3.9 b). This is a
problem since the eyelid regions interfere with e.g. the mean eye colour and
many other features. Locating the eyelid boundaries is therefore an important
task.

The eyelid boundary detection has proven to be a di�cult task. One of the main
di�culties is that the eyelashes interfere with the boundaries between eyelid and
inner eye area (sclera, iris and pupil). In order to detect the eyelid boundaries
many di�erent approaches have been tried, but most of them without promising
results. However, we have succeeded in generating a method for eyelid detection.

3.3.1 Colour representations

The opportunity to change between colour representations is important, regard-
ing both eyelid detection and other tasks throughout the thesis. Di�erent colour
representations can be useful for di�erent tasks, and one colour representation
might be appropriate for one task, but not for another. The RGB (red, green,
blue) and HSV (hue, saturation, value) colour representations are often used
in image processing, and the Commision Internationale de L'Eclairage L∗a∗b∗

(CIELAB) colour representation has been used for iris colour quanti�cation in
[9]. The basic understanding of the three colour representations is important,
and the process of converting between the representations will be skipped, since
the conversion of RGB to HSV and back can be performed by incorporated
functions in matlab, and the RGB to CIELAB and back can be performed
using the software by Mark Ruzon4.

The eye images are captured using RGB values, hence every single pixel has a
value for R, G and B. Figure 3.10 a) shows the RGB colour space, where all
colours are represented as a vector from (0,0,0) to the point given by the pixel
values. As seen in the �gure, pure red, green and blue are located in the three
respective corners. The points placed on the vector from (0,0,0) to (255,0,0)
contain di�erent shades of red, and the same is observed for green and blue.
The vector from (0,0,0), black, to (255,255,255), white, contains the gray scale
representation [24].

4Available at http://www.mathworks.com/matlabcentral/fileexchange/24009

http://www.mathworks.com/matlabcentral/fileexchange/24009
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The HSV colour space is a very intuitive colour representation. The basic idea
is that the HSV colour representation simulates a painter mixing paint. The
painter would choose a pure colour and lighten it by adding white paint or
darkening it by adding black paint. The pure colour corresponds to the hue,
the saturation is lowered by adding white to the pure colour and the intensity
of the colour is lowered by adding black paint. The value then corresponds to
value = max(R,G,B) [24]. Figure 3.10 b) shows an illustration of the HSV
colour representation.

(a) RGB illustration (b) HSV illustration (c) CIELAB illustration

Figure 3.10: a) RGB colour space 5 b)Illustration of the HSV representation
of colour 6 , c) CIELAB colour representation 7

A third colour space used to quantifying iris colour is the CIELAB colour space
[9]. The colour system was developed by the Commision Internationale de
L'Eclairage, who wanted to make a model that was able to approximate hu-
man colour vision. The CIELAB colour space is based on three di�erent chan-
nels, one for luminance and two for colour representation. The luminance, L∗

ranges from black to white, and the two colour channels, a∗ and b∗ range from
green to red, and blue to yellow, respectively6. An illustration of the colour
representation can be seen in Figure 3.10 c).

3.3.2 Pixel classi�cation

In multiple areas of this thesis a pixel classi�cation problem occurs. One prob-
lem is the task of detecting the eyelid boundaries. The theory behind pixel
classi�cation will be explained using eyelid detection as an example.

The eyelid classi�cation problem can be stated as: given a pixel value di ∈ R
5From http://www.machinevision.ca/machinevissupport
6From http://www.brighthub.com/multimedia/publishing/articles/122040.aspx
7From http://www.sapdesignguild.org/resources/glossary_color/index1.htmlcs_lab

http://www.machinevision.ca/machinevissupport
http://www.brighthub.com/multimedia/publishing/articles/122040.aspx
http://www.sapdesignguild.org/resources/glossary_color/index1.htmlcs_lab
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in the con�guration of pixels, D, in an image, classify to one of the C classes,
xc, where x is a set of random variables {xi, ...., xn}, and c ∈ {1...C} [25]. In
order to classify each pixel a classi�cation rule is needed. Often the mean and
standard deviations for each class is used and a simple way to classify is to apply
a threshold on these statistics. However, it is known that pixels are spatially
dependent, meaning that neighbouring pixels tend to belong to the same class.
We therefore want to use a method that takes the spatially dependency into
account. Markov Random Fields (MRF) is such a method and will be the basis
of all pixel classi�cations throughout this thesis.

Markov Random Fields The MRF method assumes that a pixel value can
be estimated from its neighbouring pixel values. More formally this means
that all the information needed to determine the class, xi, of a speci�c pixel
surrounded by a neighbourhood, Ni, is found in that speci�c neighbourhood
and is independent from the classes of the remaining pixels in the image.

However, the task is not to �nd the class of a single pixel, but to �nd the most
probable combination of classes for all pixels in the image con�guration, p(x|D).
p(x|D) is called the posterior distribution and is given by Bayes Theorem [8]:

P (x|D) =
P (D|x)P (x)

P (D)
(3.9)

where P (D|x) is the likelihood of the con�guration and P (x) is the prior for
the classes and P (D) is the prior for the image pixels values. In the MRF
framework the segmentation problem is solved by looking at energies. The
Bayesian probabilities can be described in form of energies using the Gibbs
distribution [3] given by

P (x) =
1

Z
e−

1
T E(x) (3.10)

where T is a temperature constant that is set to 1 and Z is a normalisation factor.
The probabilities from Bayes Theorem can be described in form of energies. The
posterior energy is given by [8]:

E(x|D) = E(x) + αE(D|x) (3.11)

where the �rst term is a smoothing term, also called the prior energy, and
the second term is a data term. The constant α is introduced as a weighting
parameter of the two terms and is chosen empirically.

The prior energy for the classes is de�ned such that neighbouring pixels are
dependent on each other. Therefore a punishment for neighbouring pixels be-
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longing to di�erent classes is introduced [18]

E(x) =
∑
i

∑
j∈Ni

δ(xi, xj)

 (3.12)

where δ(xi, xj) takes the form

δ(xi, xj) =

{
β, if xi 6= xj

0, if xi = xj
(3.13)

Since images often contain noise components, the pixel values may vary. How-
ever, the data for class c is generally assumed normal distributed with, N(µc, σ

2
c ).

Using this assumption the likelihood is given by [8]:

P (D|x) =
1√

2πσ2
c

e
(Di−µc)

2

2σ2c (3.14)

By taking the log of Equation 3.14, the likelihood is expressed by its energy
form given by [8]:

E(D|x) =
∑
i

log(σ2
c ) + (Di − µc)σ−2

c (Di − µc)
2

(3.15)

The posterior energy function can then be determined by [8]:

E(x|D) = E(x) + E(D|x) (3.16)

=
∑
i

∑
j∈Ni

δ(xi, xj) +
log(σ2

c ) + (Di − µc)σ−2
c (Di − µc)

2

 (3.17)

In our case the data value is the mean µc and standard deviation σc of class xc.

Now the framework of MRF has been set up using energy functions. In order
to solve the segmentation problem we are interested in minimizing the posterior
energy of the con�guration. One method to solve this problem is Graph Cut.

Graph Cut The Graph Cut method is an adaptation of an algorithm orig-
inally designed to �nd the maximum �ow and minimum cut [18]. In order to
perform a binary segmentation, a two class Graph Cut approach can be used.
The idea is illustrated in Figure A.2. The �gure illustrates a two class problem,
where every pixel has a neighbourhood dependency given by the edge weight,
β. Furthermore, it has a cost to be assigned to either the source or the sink.
In the case of β = 0, the minimum cut would be to choose the class with the
minimum cost for all pixels. Therefore raising the beta value will result in a
larger spatial dependency.
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Figure 3.11: Illustration of the two label Graph Cut approach. Modi�ed from
[18]

Alpha expansion Alpha expansion is a method used for MRF segmentation
of multiple classes. The basic idea of alpha expansion is to successively segment
pixels into two classes, alpha and not-alpha. The alpha class changes for each
iteration, and the method starts with an initial labelling. Alpha expansion uses
MRF and Graph Cut in order to segment the pixels, using the constraint that
pixels belonging to the alpha class cannot change class.

Training Since the human eye is very good at determining to which class a
pixel belongs, the algorithm can be trained accordingly. A basic training proce-
dure is to make human experts annotate the classes in one or multiple images.
Based on the annotations, a mean and standard deviation can be calculated for
each class. The classi�cation problem can then be solved using the mean and
standard deviation in the MRF energy functions.

3.3.3 Eyelid detection methods

Our method to avoid the eyelid areas, is to generate a mask for each iris map
accounting for the eyelid regions. An example of an iris map and corresponding
mask is seen in Figure 3.12. This section will explain how the eyelid boundaries
are located and how the mask is generated.

The �rst step in the process of locating eyelid boundaries is to change to an
appropriate colour space. The colour space should be chosen so that the dif-
ference between skin and inner eye is as large as possible. The RGB and HSV
components are seen in Figure 3.13, where it is seen that the RGB colour space
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Figure 3.12: Left: Extracted iris region. Right: Mask for the extracted iris
region

(a)

(b) (c) (d)

(e) (f) (g)

Figure 3.13: a) Eye image b) First RGB component c) Second RGB com-
ponent d) Third RGB component e) First HSV component f)
Second HSV component g) Third HSV component

is not very appropriate for the task. On the other hand, the second HSV com-
ponent look promising, since the pixel values di�er between the skin and inner
eye areas, and this component is therefore chosen for further processing.

Statistics for training In the process of detecting eyelid boundaries the ap-
propriate classes were de�ned as sclera, eyelashes, skin and iris. Since a variety
of iris colours exist, we decided that a blue and brown class would be represen-
tative for the iris regions. In order to perform a pixel classi�cation, there is a
need for prior information about the statistics for each class. The statistics used
are the mean and standard deviation for each class. The mean and standard
deviation are calculated based on human annotations of the areas for sclera,
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eyelashes and skin, as well as human annotations of the iris for blue and brown
eyes, respectively. Ten annotations of each class were made. An example of
the annotations can be seen in Figure 3.14. The mean and standard deviations,
calculated using the annotations, can be seen for all classes in Table 3.1.

Sclera Skin Eyelashes Brown Blue
Mean 0.0930 0.3566 0.4992 0.5641 0.1278
Std 0.0469 0.0756 0.0990 0.1824 0.1141

Table 3.1: Mean and standard deviation for the classes sclera, skin, eyelashes,
brown and blue

Position probability matrix When looking at the eye image data, a general
behaviour in location of the skin, eyelashes, sclera, pupil and iris is seen. This
information is used to make a prior assumption of the positions for each class.
The prior knowledge about position of the di�erent classes was obtained from
human annotations on 50 training images. An example of an annotation of an
eye image is seen in Figure 3.15. The annotated areas are used in order to
generate a matrix for each class containing prior probabilities based on position.
The 50 images that have been annotated di�er in both position and size of the
iris. The center coordinates for the 50 annotated irises are seen in Figure 3.16,
and it is seen that they di�er as much as 175 pixels in the horizontal direction
and 150 pixels in the vertical direction.

Each annotation mask is aligned with respect to the mean iris center coordinate,
and the masks are scaled with respect to the mean iris radius. The alignment
and scaling can be seen for an eye image in Figure 3.17.

After alignment and scaling of the annotation masks, a probability matrix is
generated for all classes. This is done by summing all the annotation masks for
each class, followed by a normalization. The value 0 implies zero probability

Figure 3.14: Human annotation of sclera, eyelash, skin and iris
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(a) Eye image (b) Annotation image

Figure 3.15: a) Example of an eye image b) Corresponding annotation of
pupil(white), iris(light gray), sclera(gray) and eyelashes(dark
gray). The remaining area is assumed to be skin(black).

Figure 3.16: Plot of the iris center coordinates for the 50 annotated images.
The blue star indicates the mean center coordinate

Figure 3.17: Left: Original annotation. Middle: Aligned annotation. Right:
aligned and size scaled annotation. All with mean radius marked
as red star



30 Iris Extraction

of the pixel belonging to the class and 1 implies zero probability of the pixel
belonging to any other class.

The training data contains very few eye images where the upper eyelid covers
a large part of the iris. The probability of having eyelid in the iris region is
therefore low, leading to incorrect detection of the upper eyelid boundary. In
order to account for this, we increase the probability of skin and lower the
probability of iris in the joint area. The annotated skin and iris regions are
therefore multiplied by 50 for a single set of annotation masks. The image was
chosen due to a large occlusion of the iris. The �nal probability matrices are seen
in Figure 3.18. The probability matrices, Q, are used in the MRF framework.

(a) Skin (b) Sclera

(c) Iris (d) Eyelashes

Figure 3.18: The �gure illustrates the position probability maps for the dif-
ferent classes of interest

Equation 3.17 is therefore given by:

E(x|D) =
∑
i

∑
j∈Ni

δ(xi, xj) +
log(σ2

c ) + (Di − µc)σ−2
c (Di − µc)

2

Q (3.18)

The pixel classi�cation problem using MRF is solved using Graph Cut and alpha
expansion. A result is seen in Figure 3.19.
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Figure 3.19: Left: Original eye image. Right: Result from MRF and alpha
expansion

Fitting a spline The result from the pixel classi�cation is a binary mask, see
Figure 3.20 a). The binary mask contains values of ones in the areas classi�ed
as sclera or iris (blue or brown) and zeroes elsewhere. The mask contains noise
which are seen as areas that are not part of the inner eye region. In order to
remove these components, an opening procedure is applied. Furthermore, the
binary mask has a hole in the inner eye region and in order to remove this, a
closing procedure is applied. The two steps can be seen in Figure 3.20 b) and
c).

(a) Binary mask (b) Binary mask after open-
ing procedure

(c) Binary mask after clos-
ing procedure

Figure 3.20: Opening and closing procedure for binary mask

The �nal step in locating the eyelid boundaries is to �t a spline to the upper and
lower boundary, respectively. The edges of the binary mask are found using a
canny edge detector. The upper and lower eyelid regions are extracted according
to the known iris center position and radius. A spline is then �tted to the upper
and lower edges of the binary mask, which can be seen in Figure 3.21.

The �nal result for detecting the eyelid boundaries is seen in Figure 3.22.
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(a) Spline �tted to upper eyelid (b) Spline �tted to lower eyelid

Figure 3.21: Fitting splines. The white line is the edge and the red line is the
�tted spline

Figure 3.22: Final result for the detecting the eyelid boundaries.

3.4 Human Annotations

In order to validate our results from the iris extraction procedure a golden
standard, based on human annotations of the iris boundaries, is constructed.
The annotations were made by annotating along the boundaries of the pupil
and iris, while making sure that the eyelids were avoided. The annotations of
the iris and pupil are combined into a binary image with ones in the iris area
and zeros elsewhere, an example is seen in Figure 3.23.

Figure 3.23: Left: Eye image. Right: Corresponding human annotation of iris
area
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In order to validate the results, a similarity measure, the Dice Coe�cient, has
been used. The Dice Coe�cient is given by

DI =
2|X ∩ Y |
|X|+ |Y |

(3.19)

where X is the detected iris area and Y is the annotated iris area. All of our
eye images have been annotated manually and the Dice Coe�cient has been
calculated.

3.5 Iris Extraction Results

The iris extraction algorithm, explained in the previous sections, has been run
on the 111 validation images. The results are compared to the golden standard
which is described in Section 3.4.

The Dice Coe�cient is used in order to select the images with correctly located
iris regions. The iris region is assumed to be correctly located if the Dice Coef-
�cient is above 0.92. This value was chosen from visual inspection of the results
from the training images. The result for the eye image with the highest Dice
Coe�cient and the eye image with the lowest acceptable Dice Coe�cient is seen
in Figure 3.24. It is seen that the iris region is located correctly in both images.
The percentage of correctly detected images, using a Dice Coe�cient of 0.92 as

Figure 3.24: Left: Result for highest Dice coe�cient. Right: Result for lowest
acceptable Dice coe�cient

the threshold value, is 64.3%. Six results with correctly detected iris regions are
seen in Figure 3.25 and a further selection is seen in Appendix A.3. Six results
with incorrectly detected iris regions are seen in Figure 3.26 and a further selec-
tion is seen in Appendix A.3. The �nal result does not show the performance
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Figure 3.25: Six validation images with correctly detected iris regions

of the individual tasks. This has therefore been investigated further, and the
results of the inner boundary, outer boundary, upper eyelid and lower eyelid
detection is seen in Table 3.2.
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Figure 3.26: Six images with incorrectly detected iris regions

Task Correctly detected (%)
Inner boundary 75.0
Outer boundary 96.4
Upper eyelid 76.6
Lower eyelid 73.0

Table 3.2: Individual results for the tasks performed during iris extraction
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3.6 Iris Map Generation Results

The algorithm contains a radial transformation in order to transform the iris
region in the original image into an iris map, see Section 3.2. The iris map has
a corresponding iris mask, that accounts for the eyelid regions and re�ections
from the camera �ashes. Iris maps and corresponding iris masks are seen in
Figure 3.27 for some correctly detected images, and a further selection is seen
in Appendix A.4. The iris maps and iris masks are seen in Figure 3.28 for three
incorrectly detected eye images.

Figure 3.27: Iris maps and corresponding iris masks, for six images with cor-
rectly detected iris regions

Figure 3.28: Iris maps and corresponding iris masks, for three images with
incorrectly detected iris regions
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3.7 Iris Extraction Discussion

Inner and outer boundary detection The individual results from the inner
and outer boundary search are 75% and 96.4% correctly detected boundaries,
respectively. For the inner boundary, a Dice Coe�cient is calculated in order to
compare the detected pupil area with the annotated pupil area. However, the
Dice coe�cient is inappropriate for the outer boundary, because the eyelids often
occludes the iris region. The correctly detected outer boundaries are therefore
identi�ed by visual inspection.

The performance of the outer boundary detection is very high compared to the
inner boundary detection. The inner boundary detection generally fails in four
di�erent cases. The �rst case is due to a dark iris, resulting in a low gradient
between the dark coloured iris and pupil, see Figure 3.29 a). The second case
arises for images with an oval pupil. In this case, the circle cannot be �tted
perfectly, which leads to a incorrect detection, see Figure 3.29 b). The third
case is due to the restriction that the pupil must be located inside the outer
boundary. If the outer boundary is incorrectly detected and placed such that
the pupil is located outside the outer boundary, the inner boundary will fail, see
Figure 3.29 c). In the last case the detection will fail if a large image gradient
is located as the inner boundary instead of the pupil. Figure 3.29 d) shows an
eye image with a high gradient at the eyelid boundary. Furthermore the pupil
boundary is occluded by eyelashes in the upper region. The highest circular
gradient is therefore found on the eyelid boundary, leading to an incorrect inner
boundary detection.

In order to obtain a high performance some restrictions on the size of the iris
and pupil were implemented into the algorithm. The size of the iris and pupil
diameters must be in the range [11.44, 15] mm and [1.44, 8] mm, respectively.
These restrictions make the algorithm very sensitive towards the size of the eye
in the image. The boundaries can therefore e.g. not be located in an image
containing an entire facial region, without adjusting the parameters.

Eyelid detection The detection of eyelid boundaries is very di�cult, how-
ever we succeeded in �nding a method for eyelid detection. The percentage of
correctly detected eyelid boundaries was 76.6% for the upper eyelid and 73.0%
for the lower eyelid.

The algorithm fails in a number of di�erent cases. An example is seen in 3.29 c).
The �rst case is when the inner or outer boundary detection fails. This could
for instance be when the outer boundary is located far from the iris region.
The eyelid regions are extracted according to the known iris center position and
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(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

Figure 3.29: Failed inner boundary due to a) Dark iris b) Oval pupil c) Failed
outer boundary d) Occlusion of boundary and high gradient at
eyelid boundary

radius, and will therefore be incorrectly extracted.

The second case occurs for brown eye images. It is observed that the percentage
of blue eyes among the correctly detected images are 85.9%, and the percentage
of blue eyes among the incorrectly detected images are 57.5%. Therefore we can
conclude that the algorithm perform better for blue eyes. The reason for the
higher performance of eyelid detection for blue eye images is that the di�erence
between the second HSV value for blue and skin is very high, see Figure 3.30
b). On the contrary the di�erence in the second HSV value between brown
or intermediate and skin is low, see Figure 3.30 d). Obviously it is easiest to
detect an area that is very di�erent from its surroundings. In order to raise the
percentage of correctly detected irises, the implementation should therefore be
improved for images containing brown irises.

The third case is in the detection of eyelid boundaries for the intermediate
eye images. The failure might be due to the choice of classes for the pixel
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(a) Blue eye (b) HSV second component

(c) Brown eye (d) HSV second component

Figure 3.30: Second HSV component for blue and brown eye image

classi�cation. The iris region can contain many colours from the lightest blue
to the darkest brown, but in order to restrict the number of classes we chose
only a blue and a brown class. The very low amount of correctly detected
eyelid boundaries on intermediate eye images could indicate that more classes
are necessary. The problem with the intermediate eye colours can be examined
more closely. The result from the pixel classi�cation using MRF can be seen in
Figure 3.31 b). It is seen that the upper region of the iris is classi�ed as skin
instead of iris. This is due to the fact that the intermediate eye colour resembles
skin more than the blue or brown class. The binary mask generated from the
pixel classi�cation contain a hole in the upper region, as seen in Figure 3.31 c).
Looking at d) and e) it is seen that this results in a problem with �tting a spline
to the edge of the inner eye area.

Another problem with the brown and intermediate eyes is, that they often con-
tains darker eyelashes than the blue eyes. The dark eyelashes might obscure the
boundary between iris region and skin. This gives rise to a problem since the
eyelashes resemble the dark iris region, and the boundary can therefore not be
located. The eyelid method is trained and optimized on images captured with
speci�c capturing conditions. The performance of the algorithm would therefore
be a�ected if di�erent conditions were used. The eyelid detection is very sensi-
tive towards changes in the colour balance of the images. This is due to the fact
that the eyelid detector is trained on eye images with one speci�c colour balance.
If eye images with either a di�erent capturing condition or colour balance are
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(a) Eye image (b) Pixel classi�cation (c) Binary mask

(d) Upper spline (e) Lower spline

Figure 3.31: a) Eye image b) Result from pixel classi�cation using MRF c)
Binary mask d) Fitting upper spline to edge of binary mask e)
Fitting lower spline to edge of binary mask. The red circles in b)
and c) indicates the problem area

used, the eyelid detector should be re-trained.

Images for further processing We have succeeded in developing a method
for iris extraction. In total we obtained a correct detection percentage of 64.3%.
The percentage re�ects the strictness of the Dice Coe�cient.

For further processing it is an advantage to include as many eye images as
possible. Some of the images, which were detected incorrectly according to the
chosen Dice Coe�cient, can actually be used for this purpose. These images
contain correctly detected inner and outer boundaries, and the eyelid boundaries
are found such that the extracted iris does not contain noise from the eyelids.
However, due to the incorrectly detected eyelid boundaries, the iris region for
these images is reduced, see Figure 3.32. All the images that are included for
further processing, even though they were classi�ed as incorrectly detected, are
seen in Figure 3.32 and 3.33.

Furthermore, some eye images, which have been correctly detected by the Dice
Coe�cient, are removed, since they contain small regions of skin area. The
images are seen in Figure 3.34. The images are removed in order to avoid the
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noise component from the skin area. The skin area will in�uence the statistical
measures calculated from the iris region.

Modifying the pool of images for further processing, based on the above, there-
fore results in 83 images out of the 111 validation images. That is 74.8% of the
validation images are to be used for further processing.

Figure 3.32: Incorrectly detected images, that are used for further processing
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Figure 3.33: Incorrectly detected images, that are used for further processing
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Figure 3.34: Correctly detected images, that are removed from further pro-
cessing
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Chapter 4

Colour Classi�er

The most important feature of the iris is the mean eye colour. The mean eye
colour is the only iris feature that is perceived when looking at a person face
to face. Other features of the iris are only visible when looking a person deeply
in the eyes or when looking at a high resolution eye image. It is therefore of
interest to be able to predict eye colour from a DNA sample.

In order to predict the eye colour from a DNA sample, a quanti�ed measure
for the eye colour is needed. The simplest way to quantify eye colour is by
dividing many eye images into groups of similar colour. The groups could then
be correlated with a number DNA sequences of interest, in order to locate the
associated DNA components. Other researchers have carried out this correlation
[35, 23], by using subjective evaluations of eye colour when partitioning the eyes
into groups. In this section we will explain our approach for generating an
objective colour classi�er, that can classify an eye image into the same class
each time, thereby making the study replicable.

Two di�erent approaches are tested for our colour classi�er. In order to explain
the colours in the iris map, a simple method, using statistics based on the
colours in the iris map is applied along with a more advanced method using a
histograms.

The colour classi�er is trained, using a subjective evaluation of the eye colours,
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Figure 4.1: The three incorrectly detected light brown images that are in-
cluded additionally

and the result from the colour classi�er is tested against a subjective evaluation
of another set of eye images.

4.1 Data

The data used for training the colour classi�er was the training dataset explained
in Chapter 2. The training dataset contains 100 eye images, but only 67 eye
images were accepted from the iris extraction. Therefore only these 67 eye
images are used for training the colour classi�er.

Six images were subjectively classi�ed as light brown among the 100 training
images. Only one of these six images was accepted from the iris extraction.
Therefore three eye images, that were not accepted from the iris extraction,
are included, see Figure 4.1. Without the three additional images it would be
impossible for the classi�er to classify an image as light brown if using k > 3
nearest neighbours. The three extra images will only be included in this section
of the thesis, resulting in 70 training images. The incorrect detection of the iris
region is less important in this section, since it is only related to eye colour and
not to the arrangement of structures in the iris region.

The training images were subjected to human evaluation of the iris colour by
two individuals. The six colour classes seen in Table 4.1, were de�ned in collab-
oration with the Department of Forensic Medicine, Section of Genetics.

The human evaluation of the iris colour turned out to be very di�cult, and
with inspiration from [28], a number of images were used as guidelines for the
evaluation. The images that were used as a guideline for separating the classes
are seen in Figure 4.2. In order to be classi�ed as "light brown", the image has
to be lighter than the mean brown image. The light brown image in the upper
left corner is an example. To be classi�ed as "dark brown", the image has to
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Image colour class Numerical class
Light Blue 1
Dark Blue 2

Light Intermediate 5
Dark Intermediate 6

Light Brown 3
Dark Brown 4

Table 4.1: Colour classes

be darker than the mean brown image, and the upper right is an example. The
procedure is the same for the intermediate and blue images.

Figure 4.2: Images used for human evaluation of eye colour

The training images were classi�ed according to the six classes by the two in-
dividuals. Even though the images were classi�ed using the guideline images in
Figure 4.2, the two classi�cation results di�ered in 32% of the cases. The human
evaluations for the training dataset are seen for both individuals in Appendix
B.1. The approach could be to randomly choose one of the two possible classes,
for every case where the classi�cation di�ers. Only the evaluation from one
individual was used, since choosing randomly between two evaluations would
result in a non-robust classi�er.

The data used for testing the colour classi�er was the test dataset explained in
Chapter 2. Only the 48 images that were accepted from the iris extraction were
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used. The human evaluation of the images was performed in the same manner
as explained for the training data.

The �nal results of the colour classi�er were obtained by running the algorithm
on the validation dataset explained in Chapter 2. Only the 83 images that
were accepted from the iris extraction were used. The human evaluation of the
images were performed in the same manner as explained for the training data.

4.2 Colour Classi�er Methods

An objective method for evaluating the mean iris colour could be to build a
classi�er which classi�es an image into one of the six classes given in Table
4.1. The eye image will be placed into the class most similar to the eye image,
according to a given measure. Which measure to choose depends on the task to
solve, but for a colour classi�er the measure should consider the colours in the
iris map.

Multiple measures could be appropriate for the colour classi�er, but the most
simple measure would be the mean RGB values of the iris map. A plot of
the mean RGB values for the 70 training images is seen in Figure 4.3. One
point in the �gure represents one eye image, and the RGB values are the mean
values calculated for all pixels in the iris map, except for the pixels avoided by
the corresponding mask, as described in Chapter 3. The colour of the point
represents the class that the eye image is assigned to by subjective evaluation of
the eye colour, as explained in Section 4.1. The �gure reveals some correlation
between mean RGB values and colour class, however, there is an overlap between
the di�erent colour classes.

Section 3.3.1 explains three di�erent colour representations, and according to
the theory, the HSV space would be a more intuitive colour space. The mean
HSV colour values may be the appropriate measures, and they are plotted in
Figure 4.4 in the same manner as for the mean RGB values. The �gure reveals
that the mean HSV colour values are not an appropriate measure, since the
overlap between colour classes is very high.

According to M. Edwards et. al. [9] the CIELAB is appropriate for separating
between blue and brown eye colour. The mean CIELAB values are plotted in
the same manner as for the mean RGB and HSV colour values, and the plot is
seen in Figure 4.5. It is seen that there is a correlation between mean CIELAB
values and colour class, but as for the other two colour representations there is
an overlap between the classes. Investigating a simple mean value in the three
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Figure 4.3: Mean RGB colours plotted for the training images

Figure 4.4: Mean HSV colours plotted for the training images
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Figure 4.5: Mean CIELAB colours plotted for the training images

colour spaces RGB, HSV and CIELAB, has shown that the mean value is not
appropriate as the only measure in the colour classi�er. Furthermore, it was
seen that the colour classes in RGB and CIELAB space have less overlap than
the colour classes in HSV space.

The mean eye colour does not contain enough information about the colours
represented in the iris map, and therefore a method using both mean value and
coe�cient of variance will be implemented for RGB and CIELAB space. Adding
the coe�cient of variance for each component in the colour space as a measure
for the colour classi�er adds more information about the colour content of the
iris map.

4.2.1 Colour classi�er - mean and coe�cient of variance

The measures used in this colour classi�er are the mean and coe�cient of vari-
ance calculated for each component in the colour space. Therefore six measures
are calculated for each iris map. Based on the RGB space the six measures
would be mean value for R, mean value for G, mean value for B, coe�cient of
variance for R, coe�cient of variance for G and coe�cient of variance for B.
The mean value µ [14], is calculated as



4.2 Colour Classi�er Methods 51

µ =
1

N

N∑
i=1

xi (4.1)

where N is the number of pixels and xi is the i'th pixel in the iris map.

The coe�cient of variance cv [14] is calculated as

cv =
σ

µ
(4.2)

where σ [14] is given by

σ =

(
1

N − 1

N∑
i=1

(xi − µ)2

) 1
2

(4.3)

where N is the number of pixels and xi is the i'th pixel in the iris map

A method using k-means clustering is used in order to make the mean value µ
and coe�cient of variance cv more robust. The iris map is divided into squares
of 10 by 10 pixels and the mean and coe�cient of variance are calculated for
each area. K-means clustering is used with k = 2, dividing the iris map areas
into two clusters. The pixels in the iris map belonging to the largest cluster
is then used when calculating the �nal mean and coe�cient of variance. The
procedure is performed in order to reduce the in�uence of for example small
brown areas in a blue eye. A small brown area in a blue iris map would change
the statistical values. Using this procedure, only the most dominant eye colour
is used when calculating the mean value and coe�cient of variance.

The classi�er is trained in the following way. The mean value µ and coe�cient
of variance vc are calculated in the manner explained above for all training
images. The training images are also subjectively evaluated and assigned to
one of the six classes, thereby partitioning them into six groups. After training
the classi�er, the classi�er is tested using the test dataset. A test eye image is
classi�ed by calculating the mean value and coe�cient of variance and assigning
it to the most occurring class of the k-nearest training images.
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The distance between the test image and each training image is calculated as a
sum of χ2 distances [15]:

d(x, y) =
∑
i

(xi − yi)2

(xi + yi)
(4.4)

where x is the feature vector containing mean value and coe�cient of variance
for each colour component for one training image and y is the feature vector
containing mean value and coe�cient of variance for each colour component for
the test image. In this case i = 1...6, because the number of measures in the
feature vector is 6.

The method just explained is used for both RGB and CIELAB colour space in
order to test which colour representation gives the best colour classi�er.

4.2.2 Colour classi�er - histogram using kd-tree

The colour classi�er explained in Section 4.2.1 is only using six measures, and in
this section a more complicated classi�er is explained. The assumption is that
more information about the iris map will result in better classi�cation results.

The colour classi�er is based on RGB space and the measure used for the com-
parison between training images and test image is a histogram of the iris map. A
histogram of the iris map could be generated by dividing RGB space into equal
sized squares and then counting the number of pixels in each square. However,
such a histogram assumes that the points are uniformly distributed in RGB
space. In order to conclude whether the data is uniformly distributed in RGB
space, the R, G and B values from all pixels in every iris map from the training
dataset are plotted. The plot is shown in Figure 4.6, where it is seen that the
data is non uniformly distributed.

Since the data is non-uniformly distributed in RGB space, the histogram ap-
proach has to account for this. One method is to divide RGB space into rectan-
gles of di�erent size, but with an approximately equal number of pixel points in
each rectangle. In order to divide RGB space into areas with an equal number
of pixels, a kd-tree is used [2]. The kd-tree is generated ones and the limits
for each rectangle are used to de�ne the bins in the histogram. The resulting
kd-tree is seen in Figure 4.7. As expected the rectangles are very large in the
areas, that have very few pixel points and very small in areas, that contains
many pixel points.
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Figure 4.6: Illustration of the training data in a RGB space

Figure 4.7: Illustration of the kd-tree of our training
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(a) Blue eye (b) Histogram for a) (c) Blue eye (d) Histogram for c)

(e) Intermediate eye (f) Histogram for e) (g) Intermediate
eye

(h) Histogram for g)

(i) Brown eye (j) Histogram for i) (k) Brown eye (l) Histogram for k)

Figure 4.8: Eye image and corresponding histogram for two blue eyes, two
intermediate eyes and two brown eyes

A histogram is built, using the limits from the kd-tree for all eye images in the
training dataset. Figure 4.8 shows two blue, two intermediate and two brown eye
images and their corresponding histograms. It is very clear that the histograms
di�er among the three eye colours, and this indicates that the histogram could
be used as measures in a colour classi�er.

The colour classi�er is trained by generating a histogram for all eye images in the
training dataset and by subjectively evaluating the iris colour, thereby dividing
the histograms into one of the six groups.

The colour classi�er is tested by generating a histogram for the test image,
and classifying the image according to the most occurring class of the k-nearest
neighbours. The distance between two histograms is calculated as a χ2 distance
given by Equation 4.4, with i = 1...N , where N is the number of bins in the
histogram.
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4.2.3 Result of the colour classi�er methods

In order to choose between the three proposed methods, the algorithms have
been tested. The test images was used for this purpose. The results from testing
the three approaches are seen in Table 4.2, 4.3 and 4.4. Examining the contents
of the three tables reveals that the two simple approaches, using mean and
coe�cient of variance in RGB and CIELAB space, have lower results than the
histogram approach. The highest percentage of correctly classi�ed images is
59.8% for the simple approach in RGB space and 63.5% for the simple approach
in CIELAB space. The result for the algorithm based on histograms in RGB
space is 77.7% correctly classi�ed images, for k = 2.

k 1 2 3 4 5
Error 25.0 23.3 21.6 20.7 19.3
Correct 23.0 24.7 26.4 27.3 28.7

Correct (%) 47.9 51.5 55.0 56.9 59.8

Table 4.2: Test of the method using mean and coe�cient of variance in RGB
space

k 1 2 3 4 5
Error 29 27.4 17.5 17.9 20.2
Correct 19 20.6 30.5 30.1 27.8

Correct (%) 39.6 42.9 63.5 62.7 57.9

Table 4.3: Test of the method using mean and coe�cient of variance in
CIELAB space

k 1 2 3 4 5
Error 13 10.7 12.2 12.7 14.2
Correct 35 37.3 35.8 35.3 33.8

Correct (%) 72.9 77.7 74.6 73.5 70.4

Table 4.4: Test of the method using a histogram based on RGB space

Looking at the results from the test of the three colour classi�ers, the conclusion
is that the best colour classi�er is the algorithm using a histogram approach.
The k-value for the k-nearest neighbour is chosen to be k = 2, because the
highest percentage of correctly classi�ed images.
The highest k-value tested was k = 5 because of the restricted number of eye
images classi�ed as light brown. Only three images classi�ed as light brown
were present in the training data, and choosing a k-value higher than 5 would
result in a classi�er which was not able to classify into light brown.
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Final result The colour classi�er using the histogram approach is chosen
as the �nal colour classi�er. The colour classi�er is applied on the validation
dataset, in order to get the �nal results. The validation images have not been
used for training or testing the algorithm and is therefore completely new to the
algorithm. The result is seen in Table 4.5. The percentage of correctly classi�ed
eye images is 65.4%.

Error Correct Correct (%)
28.7 54.3 65.4

Table 4.5: Final results from the colour classi�er

4.3 Dimensionality Reduction

The �nal colour classi�er is based on a histogram generated in RGB space,
and it contains 852 bins. This is a very large number of dimensions regarding a
correlation with DNA. In order to be able to correlate the histogram information
with DNA, a dimensionality reduction must be performed. A very common
method for dimensionality reduction is Principal Component Analysis (PCA),
which is a method that chooses the components with the highest variances as
the principal components [29, 13].

The idea is to perform dimensionality reduction on the histograms in order to
obtain a few components that explain most of the information in the histogram.
Since the histograms are a series of counts, the histograms follow a Poisson
distribution. The PCA method assumes normally distributed data and in or-
der to account for the Poisson distribution of the histograms, an Anscombe
transformation is performed [22]:

X → 2

√
X +

3

8
(4.5)

The transformation into PCA space is performed using a training set of 70
histograms from our training dataset. The matrix containing the 70 histograms
is the data matrix, X. The histograms in X are centred according to the mean
[29, 13], µ, of the histograms:

X = X − µ (4.6)
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A rotation is performed in order to change the coordinate system to a coordinate
system with the �rst principal axis along the direction with highest variance.
The second principal axis is orthogonal to the �rst axis and in the direction of
highest variance. The rotation results in a data representation, S, given in a
new coordinate system:

S = XL (4.7)

where L is a linear transformation matrix [29, 13].
Figure 4.9 shows the explained variance as a function of the number of principal
components. 95.58% of the variance is explained by six principal components.
Therefore we can represent the information contained in a histogram by six
principal components. This number of dimensions is suitable for correlation
with DNA.

Figure 4.9: Explained variance as a function of number of principal compo-
nents

In order to obtain the score for each of the six principal components for our va-
lidation dataset, the mean µ is subtracted and the linear transformation matrix
L is applied on each individual histogram. The two �rst principal components
are plotted for each iris map in the validation dataset in Figure 4.10.
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Figure 4.10: Iris maps plotted with �rst and second principal component

4.4 From DNA Sample to Colour Class or Syn-

thesized Eye Colour

This section will concentrate on the possibility of creating meaningful results
after a DNA correlation has been performed with the six �rst principal com-
ponents. Since the DNA correlation has not been made yet, this section is
purely hypothetical, and the results shown are based on eye images where a di-
mensionality reduction followed by a back transformation into a histogram has
been performed. The results are therefore only generated in order to show the
possibilities of the method.

Correlation between principal components and DNA can result in the ability
to predict values for the principal components. The values for the six principal
components can therefore be predicted for any new DNA sample. However,
these six values are not very easy to interpret. The idea is therefore to assign
one of the six colour classes given in Table 4.1 to a DNA sample, based on the
six principal components. Furthermore, it would be very intuitive to synthesize
the eye colour based on the six predicted principal components.
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In order to �nd a colour class or synthesize an eye colour based on the six
predicted principal components, a back transformation from PCA space has to
be made [29, 13]. The back transformation is performed by:

X̃ = SiL
′ + µ (4.8)

where i is the number of principal components used. The estimated histogram,
X̃, is therefore found by applying a reversed linear transformation of the scores
for the six principal components. Furthermore, an inverse Anscombe transfor-
mation is performed, in order to account for the Poisson distribution of the
histograms.

Colour class The histogram for the DNA sample has been generated by a
back transformation of the six predicted principal components. This histogram
can be used in the colour classi�er explained in Section 4.2.2. The percentage
of correctly classi�ed eye images is 60.2%, see Table 4.6.

Error Correct Correct (%)
33 50 60.2

Table 4.6: Final results from the colour classi�er using a histogram generated
by back transformation

Synthesizing eye colour The histogram generated by back transforming the
six predicted principal components can also be used for synthesizing eye colour.
The approach used is simply to generate an image the size of an iris map using
the histogram information. The colour chosen for a histogram bin is simply the
mean colour of the RGB area in the kd-tree. The amount of each colour is then
chosen based on the height of the histogram bins. This means that the number
of pixels of one particular colour in the iris map is given by the percentage of
counts in the given bin with respect to all counts in the histogram. The pixels
are randomly positioned in the image. Examples are seen in Figure 4.11.
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(a) Eye image 9 (b) Synthesized iris
colour

(c) Eye image 1 (d) Synthesized iris
colour

(e) Eye image 101 (f) Synthesized iris
colour

(g) Eye image 62 (h) Synthesized iris
colour

(i) Eye image 5 (j) Synthesized iris
colour

(k) Eye image 88 (l) Synthesized iris
colour

Figure 4.11: Eye image and corresponding synthesized eye colour inserted in
eye image
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4.5 Colour Classi�er Discussion

Subjective evaluation The subjective evaluation and distribution of eye im-
ages into a number of classes is a very di�cult task. The di�culties arise when
an eye image containing for example mainly blue colour with brown spots has
to be evaluated. Does this eye image belong to the blue or intermediate class?
This is a general problem when evaluating iris colour, since humans perceive
colour di�erently.

For this thesis the subjective evaluation was performed by two individuals using
the eye images in Figure 4.2 as a guideline, and the images were divided into the
six classes given in Table 4.1. The percentage of disagreement between the two
classi�cation results was 32%, which is a very high percentage of disagreement
under the given circumstances. The two individuals had guideline images, they
had experience with looking at eye images, and they had worked together on
this thesis a couple of months previous to the classi�cation. The result strongly
indicates that humans perceive eye colour di�erently, as was expected.

The very non-robust subjective evaluation makes it di�cult to train the classi-
�er. The classi�er cannot perform better than the subjective evaluations used to
train it. Our implementation is trained using only one individual's evaluation,
because the inter-individual agreement was very low. The algorithm is therefore
very dependent on this individual's perception of colour. This dependency could
be removed by having more individuals to classify the eye images.

The subjective classi�cation process is dependent on several considerations re-
garding human perception of colour, and should be thoroughly prepared. Our
evaluation process was to show eye images on a computer screen. The same com-
puter was used for all evaluations, since the colours can change between screens.
The images were shown in the same order each time. This might be a problem
since the perception of an iris colour can depend on the previously shown eye
colours. A random order of the images could be used in order to remove the
inter-image dependency. An internal control could also be applied, so that the
same image would appear multiple times, thereby removing the dependence on
the previous images.

Colour classi�er results The result for the classi�er was 77.7% of correctly
classi�ed images using the test dataset, and 65.4% when using the validation
dataset. The percentage of correctly detected eye images is not impressive,
and it is probably due to the di�culties with the subjective evaluation. Some
examples of incorrect classi�cation results along with the subjective evaluation
are seen in Table 4.7, and the images are seen in Figure 4.12. The remaining
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classi�cation results along with the subjective evaluation are seen in Appendix
B, Table B.8 and B.10. The incorrect algorithm result is often very close to the
subjective evaluation, for example for image number 35, the algorithm result is
light intermediate and the subjective evaluation is dark intermediate. Looking
at image 35 in the �gure, it can be very di�cult to determine whether the colour
is light or dark intermediate. Generally the algorithm fails in the cases where
humans have di�culties with classifying the colour.

Image number Subjective evaluation Algorithm Comparison
5 3 4 no
15 1 2 no
19 2 5 no
24 1 2 no
35 6 5 no
40 3 6 no
41 6 5 no
43 4 6 no

Table 4.7: Examples of incorrectly classi�ed eye images

(a) Eye image 5 (b) Eye image 15 (c) Eye image 19 (d) Eye image 24

(e) Eye image 35 (f) Eye image 40 (g) Eye image 41 (h) Eye image 43

Figure 4.12: Eye images with incorrectly classi�ed iris colour using the his-
togram approach

Dimensionality reduction The dimensionality reduction was performed in
order to �nd a few explanatory variables instead of the 852 bins in the histogram.
A very nice result was revealed when plotting the iris maps with respect to the
�rst and second principal component, see Figure 4.10. The plot reveals that
the second principal component seems to explain the variation between blue
and brown eye colour. The histograms built for the colour classi�er therefore
seem to contain all the information needed to explain the colour variations. The
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feature explained by the �rst principal component is not obvious, but might be
a noise component occurring due to the capturing conditions.

Back transformation The result from the colour classi�cation using his-
tograms generated from a back transformation of the �rst six principal com-
ponents is 60.2%. The percentage of correctly classi�ed images are lowered
compared to the 65.4% that was obtained for the validation dataset using nor-
mally generated histograms. This is as expected since the back transformation
from principal component values to histograms introduces an error.

The synthesized iris colour images in Figure 4.11 are very equal to the actual
iris colour. However, the random positioning of the di�erent coloured pixels
introduces a di�erence compared to the actual iris. Especially the synthesized
eye images in Figure 4.11 b) and h) have a di�erent perceived colour than the
original eye images in a) and g). The di�erence is a result of an iris containing
di�erent coloured regions. The structures and colour distribution of the iris
regions therefore seem to in�uence the perceived eye colour.
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Chapter 5

Blue vs Brown Ratio

The colour classi�er described in Chapter 4 gives an objective partitioning of
eye images into six groups. This approach eliminates the problem with human
perception of colour being di�erent between subjects, and it assures that one eye
image will be classi�ed as the same class every time. In the colour classi�er we
have also given six continuous measures, the six principal component scores, that
can be correlated with DNA. However, the six measures are di�cult to interpret
if no further processing is performed. Therefore a histogram is generated based
on the six principal components, which can be used either in the colour classi�er
or to synthesize an iris colour.

Although the colour classi�er solves some speci�c problems, a continuous mea-
sure which is more easily interpreted is of interest. Such a measure could be
correlated with DNA and help with mapping the genes, coding for iris colour.
The idea behind our eye colour measure is that the perceived eye colour is a
result of a mixture of di�erent shades of blue and brown. Therefore our measure
was chosen to be a ratio between the amount of blue and the amount of brown
in the eye image.
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5.1 Blue vs Brown Ratio Method

The ratio, RBB , between blue areas and brown areas in an eye image, is calcu-
lated based on the number of pixels classi�ed as class 1, P1, and the number of
pixels classi�ed as class 2,P2:

RBB =
P1 − P2

P1 + P2
(5.1)

The ratio spans from −1 to 1, where −1 is equivalent to an image where all
pixels are classi�ed as class 2 and 1 is equivalent to an image where all pixels
are classi�ed as class 1.

Finding the ratio between blue and brown is a pixel classi�cation problem,
and the theory used for pixel classi�cation was explained in Section 3.3.2 in
connection with eyelid detection.

The �rst step in the pixel classi�cation is to determine which colour space to
use, and whether a single component from a colour space can be used. The pixel
classi�cation is more simple if only a single component is used. The colour space
should be chosen so that the intensity di�erence between blue and brown is as
large as possible. The RGB and HSV components are seen in Figure 5.1. None of
the RGB components seems appropriate for the pixel classi�cation, since they do
not contain the wanted di�erence between blue and brown. The �rst and second
component in HSV space both contain a large intensity di�erence between blue
and brown areas. However, the �rst component contains similar values for both
the brown area and other unwanted areas and is therefore discarded. The second
HSV component is therefore chosen for the pixel classi�cation.

A prior knowledge about the mean and standard deviations for the two classes
is needed for the pixel classi�cation. This knowledge was obtained from human
annotation of blue and brown areas in two iris maps and furthermore two entire
iris maps. The four iris maps are seen in Figure 5.2. All pixels, except for
re�ection and eyelash areas, are used for the iris maps in a) and b). For the
iris maps in c) and d) all brown pixels are used in the brown statistics, and all
blue pixels are used in the blue statistics. The areas are separated with a red
line, and the re�ection and eyelash pixels are excluded. The mean and standard
deviations are calculated based on the just explained areas, and the values are
seen in Table 5.1.

The mean and standard deviations are used in the MRF energy functions for
each class. The energy function used to calculate the energies was de�ned in
Section 3.3.2 by Equation 3.17.
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(a) Iris map in RGB space (b) First RGB component

(c) Second RGB component (d) Third RGB component

(e) Iris map in HSV space (f) First HSV component

(g) Second HSV component (h) Third HSV component

Figure 5.1: Overview of RGB and HSV colour space components for an iris
map

(a) (b)

(c) (d)

Figure 5.2: a) Blue area used for training b) Brown area used for training c)
Brown and blue areas used for training d) Brown and blue areas
used for training. Red line indicates the human annotation that
separates blue and brown areas

Brown Blue
Mean 0.6270 0.1802
Std 0.1716 0.1983

Table 5.1: Mean and standard deviation for the classes blue and brown for the
second HSV component. Calculated based on four training images
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The pixel classi�cation is performed based on the energies for the two classes
and an edge weight. The edge weights are introduced in order to include a
neighbourhood dependency. The edge weights are chosen to be equal for all
neighbourhoods, because the dependency between image pixels are equal across
an image. The neighbourhood dependency can be controlled by adjusting the
edge weight, β. Figure 5.3 shows the results from MRF for three di�erent edge
weights. The results for β = 0 is a simple pixel classi�cation without neighbour-
hood dependency. It is seen that single pixel areas are avoided when adding a
neighbourhood dependency of β = 0.1 and that increasing the neighbourhood
to β = 0.3 results in more contiguous areas. The edge weight was chosen to be
β = 0.1.

(a) Iris map (b) β = 0

(c) β = 0.1 (d) β = 0.3

(e) Iris map (f) β = 0

(g) β = 0.1 (h) β = 0.3

Figure 5.3: MRF result using di�erent β values for two di�erent iris maps
shown in a) and e)
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5.2 Blue vs Brown Ratio Results

The blue vs brown ratio is calculated for all eye images in the validation dataset,
where the iris extraction is accepted. The ratios are used to generate a boxplot
for each of our six colour classes, see Figure 5.4. The class for a given image
is the subjectively chosen class. The red crosses in the boxplot illustrate the
outliers, and the median for each class is illustrated by the red bar within the
boxes.

Figure 5.4: Boxplot illustrating the distribution of the blue vs brown ratio in
the 83 validation images, evaluated from the subjective classi�ca-
tion

Since the 83 validation images might not be enough data to correlate with DNA
we have also calculated the ratios for the remaining images. The boxplot for
these ratios can be seen in Figure 5.5.

Four examples of the blue vs brown pixel classi�cation of the iris maps, are seen
in Figure 5.6. A chosen set of extra results can be seen in Appendix C.
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Figure 5.5: Boxplot illustrating the distribution of the blue vs brown ratio
for all the eye images given for this thesis, evaluated from the
subjective classi�cation

Figure 5.6: Illustrates to the left the iris map, and to the right the detected
areas for di�erent cases. White represents brown, gray represents
blue and black represent areas that are avoided using the mask
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5.3 Blue vs Brown Discussion

The blue vs brown ratio generated in this chapter is a very intuitive measure,
since the number can be directly translated into the amount of blue and brown
in the iris. The ratios have been evaluated against the subjective classi�cation
into the six colour classes given in Table 4.1. The resulting boxplot can be seen
in Figure 5.4 for the 83 validation images and for all our image data in Figure
5.5.

Looking at Figure 5.5 it is seen that the mean of the two blue groups is ap-
proximately 1. The mean of the light brown group is approximately -0.7 and
for the dark brown group it is -0.8. This clear separation of blue and brown
based on ratios gives a promising measure for use in correlation with DNA. The
intermediate groups are also separated from the blue and brown ratios based on
the means. This is necessary in order to use the ratios in correlation with DNA
of intermediate iris colours. The light and dark intermediate groups span the
entire range from blue to brown, and the two groups can be separated based on
their mean values. However, the mean of the light intermediate group is very
similar to the blue groups. This either indicates that the ratio is not appropri-
ate for separating between blue and light intermediate or that the subjective
evaluation and choice of classes is inappropriate.

The boxplots in Figure 5.4 and 5.5 are very dependent on the subjective clas-
si�cation of the eye colours. An example where the boxplot would change ap-
pearance is if our eye images had contained very dark iris colours, as seen in for
example humans of African origin. Since the eye images given for this thesis is
captured in Denmark, most of the eye images contain blue, intermediate or light
brown irises. This fact has in�uenced our perception of eye colour. Therefore
the dark brown group contains brown irises that are lighter than what would
probably have been the case if humans of African origin had been represented
in the dataset.

The general behaviour is a smooth transition of the ratios from blue, through
the intermediate, to the brown groups. This is also to be expected from the
knowledge about DNA coding for eye colour, since a clear di�erence in the
DNA between blue and brown coloured irises exists. However, the DNA coding
for the intermediate groups are still to be clari�ed. Our hope is, that this ratio
could help with identifying the genetics that result in an intermediate iris colour.

Factors in�uencing the ratio The ratios are calculated based on pixel clas-
si�cation of the iris maps. The pixel classi�cation uses a mean and standard
deviation for brown and blue. These statistics are calculated from annotated iris
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areas, which have great in�uence on the �nal pixel classi�cation and thereby the
ratios. The training statistics should therefore be calculated on a representa-
tive sample of iris colour, containing di�erent variations. Since the annotations
are based on human perception of colour, the ratio is a�ected by our choice of
training areas.

Another factor that in�uences the ratio is the choice of neighbourhood depen-
dency, β, in the MRF framework. Increasing the β value introduces a higher
neighbourhood dependency. The neighbourhood dependency is used in order to
remove individual pixels that are falsely classi�ed. However, too high neighbour-
hood dependency can result in large, interconnected and inaccurately classi�ed
areas. The choice of β value is however an estimation performed by a visual
inspection of the results.

The ratio for particularly the brown eye images is in�uenced by large re�ections
present in the image. The two primary re�ections from the camera �ashes are
accounted for in the re�ection masks, but this is not possible for these large
re�ection areas. A brown eye image, containing such a re�ection area, is seen
in Figure 5.7 left. It is seen in the pixel classi�cation result on the right, that
some of the re�ection area is incorrectly classi�ed as blue. This problem a�ects
the ratios calculated for the brown eye images, and the result is that the mean
for the two brown groups are approximately -0.7 and -0.8 instead of -1 as would
have been expected.

Figure 5.7: Left: iris map. Right: Result from classi�cation. White represents
brown, gray represents blue and black represent areas that are
avoided using the mask



Chapter 6

Human Perception of Iris
Structures

One of the main goals of this thesis is to �nd a method to investigate iris
structures. The iris structures are not perceived when looking another human
in the eye, but high resolution eye images reveal the many iris structures. It
would be of great interest if a DNA correlation could provide the possibility of
predicting iris structures from a DNA sample. In order to make this correlation,
a quantization of the structures is necessary, and this could for instance be
based on a subjective evaluation of the iris structures. However, no evaluations
of human perception of iris structures has been published. In this chapter we
have made an investigation of the human perception of a few interesting iris
structures.

For the investigation of human perception of iris structures we have developed
a GUI platform, which provides the user with the possibility to annotate some
prede�ned structures in high resolution eye images.
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6.1 Iris Structures

In corporation with the Department of Forensic Medicine, Section of Forensic
Genetics, the interesting iris structures were de�ned as the following; Nevi dots,
Fuchs Crypts, Wol�in nodules, inner ring and outer ring. Fuchs Crypts are
described as �recessed folds of the iris tissue radiating out from the pupil� [26],
Wol�in nodules are described as �lightly pigmented spots around the periphery
of the iris� [26] and Nevi dots are generally de�ned as pigmentation placed on
the surface of the iris structures [32]. A characteristic image of each of these
three structure is seen in Figure 6.1.

(a) Nevi dots (b) Fuchs Crypts (c) Wol�in nodules

Figure 6.1: Interesting iris structures

The two structures, inner and outer ring, are not de�ned in the literature but
were in collaboration with the Department of Forensic Medicine, Section of
Forensic Genetics determined as interesting structures. The two structures were
discovered by a thorough examination of the given eye image data. The outer
ring is typically seen as a dark smooth ring placed in the periphery of the iris,
and the inner ring is seen as a structural pattern that distinguish the outer part
of the iris from the inner part. Characteristic images of each of the inner and
outer ring are seen in Figure 6.2.

(a) Inner ring (b) Outer ring

Figure 6.2: Interesting iris structures
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6.2 The GUI Platform

The GUI platform has been designed so that the user can evaluate both colour
and structure of a given eye image. The eye image is loaded by pressing the
load button in the main window. This displays the image and creates a pop-up
window where the general colour of the iris should be chosen (not illustrated).
The user is asked to choose a zoom region surrounding the iris, by clicking on
the eye image. The zoom region is shown in the main window. The load and
zoom process is illustrated in Figure 6.3.

Figure 6.3: Main window for the GUI platform along with the �rst zooming
steps that the user should perform

In the lower part of the main window, the interesting structures and colours for
evaluation can be chosen. From the left, the inner ring, outer ring or extraor-
dinary area can be chosen. The extraordinary area is used for eye images with
e.g. a large brown interconnected area in a blue eye. When one of the boxes
on the left are chosen, a drop down menu is activated where the user selects a
colour. Afterwards the annotation tool is activated, and it is possible for the
user to annotate. The process is illustrated in Figure 6.4, where the outer ring
is annotated in the illustrated image. The annotated mask for the outer ring is
illustrated in the lower part of the �gure. A more speci�ed guide describing the
procedure step by step was provided to the seven individuals that performed
the evaluation and it can be found at CD-ROM provided with this thesis.
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Figure 6.4: Main window for the GUI platform showing the annotation pro-
cedure for an outer ring

6.3 Human Perception of Iris Structures Method

We had seven individuals to evaluate the 111 validation images, each person
locating and annotating the di�erent structures perceived in each eye. Since
the annotation process is very time consuming, the annotation process for one
individual was performed over several days. All seven individuals received in-
struction to the di�erent structures and to the GUI platform before they started
annotating. Furthermore, all individuals were provided with the guide for the
GUI.

Operator variance The most obvious measure to describe the agreement
between individual operators would be to calculate the overall percentage of
agreement or the e�ective percentage of agreement, where at least one individual
identi�ed the structure. However, these percentages do not re�ect the agreement
that would have appeared by chance, which would sometimes be the case [30].
The Kappa measure, which is a reliable measure for agreement is therefore used
instead, since it �indicates the proportion of agreement beyond that expected
by chance� [30]. The Kappa measure takes the form
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κ =
Po − Pc
1− Pc

(6.1)

where Po is the proportion of observed agreement and Pc is the proportion of
agreement expected by chance [30]. The proportion of agreement between the
operators is given by [11]:

Po =
1

Nn(n− 1)

 N∑
i=1

k∑
j=1

n2
ij −Nn

 (6.2)

and the proportion of agreement due to chance is given by [11]:

Pc =

k∑
j=1

1

Nn

N∑
i=1

nij (6.3)

where N is the number of images in our case, nij is the number of raters who
assigned the i'th image to the j'th category, and k represents the number of
categories, in our case two (present and not present) [11]. A Kappa value of
0 indicates that the agreement is no better than what would be expected by
chance or guessing, and a value of 1 indicates a total agreement between the
raters [30].

6.4 Human Perception of Iris Structures Results

The Kappa values calculated based on the evaluations from the seven individuals
can be seen in Table 6.1. From the table it is seen that the Kappa values for the
di�erent structures are generally below 0.5. The only structure with a Kappa
value above 0.5 is the Nevi dots with a Kappa value of 0.56.
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Structure Kappa
Inner Ring 0.36
Outer Ring 0.23
Nevi Dots 0.56

Fuchs Crypts 0.42
Wol�in nodules 0.43

Table 6.1: Kappa values

6.5 Human Perception of Iris Structures Discus-

sion

The result from the investigation of operator variance was that the Kappa values
generally was below 0.5, indicating that the probability of agreement is very low.
The Kappa value for the outer ring is 0.23, which is very close to the probability
of agreement due to chance (Kappa = 0). However, the Nevi dots have a Kappa
value of 0.56, and the probability of agreement is therefore higher than expected
by chance, which is not a convincing result.

The investigation of the human perception of the di�erent iris structures re-
veals that the structures with the lowest Kappa values are the inner and outer
ring. The reason why these two structures are more di�cult to locate than
the remaining structures could be that the structures are more loosely de�ned.
The inner and outer ring are structures determined in collaboration with the
Department of Forensic Medicine, Section of Forensic Genetics, and have not
previously been reported in literature. This di�erence, compared to the other
three structures, could have resulted in a less clear de�nition, since we had no
previous knowledge of the two structures. Fuchs Crypts and Wol�in nodules
have a similar low Kappa value, which reveals that the human perception of
the structures di�er between individuals. Nevi dots are, as stated earlier, the
structure with the highest Kappa value. The Nevi dots di�er both in colour and
in structure compared to the remaining iris, especially in blue eye images where
the brown Nevi dots are in contrast to the blue iris. This might be the reason
why Nevi dots are the structure with the highest Kappa value, and therefore
the highest inter-operator agreement.

Our result of investigating human perception of iris structure strongly indicates
that humans perceive the chosen iris structures very di�erently. Therefore it
would be impossible to build a structure classi�er based on a subjective evalu-
ation of iris structures.
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Image Clustering

Much research on the subject of iris colour evaluation is based on subjective
evaluations, e.g. [35, 17]. The subjective evaluation makes it di�cult to repli-
cate the results, since the evaluations might change between experts and even
between evaluations of the same expert. Furthermore, the subjective evalua-
tions can result in for example a non-robust classi�er, as was seen in Chapter
4. An objective evaluation of iris colour is therefore needed.

The iris structures are very di�cult to evaluate by visual inspection, as con-
cluded in Chapter 6, and furthermore, an objective method for evaluation is
more appropriate. The dependency between iris colour and structure is further-
more of interest. A totally data driven approach for clustering eye images based
on structure and colour is described in this chapter. The method is to make a
global image descriptor based on structure and perform clustering based on this
descriptor. Since iris colour is also of interest, the method will also be expanded
to include colour.

A global description of iris images is wanted in order to correlate the iris struc-
tures and thereby identify common characteristics among the di�erent irises in
our database. We look at the problem as a feature matching task that has to be
solved by developing a local descriptor for the structures. The approach has its
origin in the bag of words model, which is often used when performing object
recognition.
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The bag of words model is based on building a dictionary of words from a set
of documents [31]. This way of thinking is transferred into an image aspect by
considering images with di�erent features as the set of documents and words in
the dictionary, respectively. The bag of words model for images is illustrated in
the top part of Figure 7.1. The dictionary is built by clustering the features into
di�erent groups, where the center of the groups are used as a series of visual
words. The occurrence of each visual word in an image is placed in a histogram
that thereby describes the image information.

Figure 7.1: Illustration of the bag of words model for images along with the
images clustering procedure

The dictionary, that is built, can be used for image comparison or clustering,
as illustrated in the lower part of Figure 7.1. For each image the occurrence
of each feature in the dictionary is found and placed in a histogram describing
the image. The clustering of the images can be performed by calculating the
distances between the histograms. Many di�erent clustering methods can be
appropriate for the task.

In order to obtain the visual features, a local image descriptor is needed. Di�er-
ent local image descriptors exist, but the most commonly used one is the Scale
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Invariant Feature Transform SIFT descriptor [21]. The SIFT descriptor de-
scribes local image features using gradient images. From the gradient images a
feature histogram is built. The SIFT method results in a local feature descriptor
that is invariant to image scaling, translation and rotation. Another local im-
age descriptor is the DAISY descriptor, which in a similar way to SIFT is based
on spatial sampling of gradients. The DAISY descriptor has been shown to be
much faster than the SIFT descriptor, while having the same high performance
[34]. We have therefore chosen the DAISY descriptor.

7.1 DAISY Descriptor

A DAISY descriptor is a local image descriptor [33, 34], and it works in a way
that is similar to for example SIFT [21]. In this thesis the DAISY descriptor
is used in order to �nd similarities between images, and more speci�c it will be
used to explain structures of the iris maps.

The DAISY descriptor is seen in Figure 7.2. The basic idea is to generate an
eight bin histogram for each circle, describing the gradient content of the area
inside the circle and then concatenate these histograms into one large descriptor
of the image region. The DAISY descriptor is generated on the basis of gradient
images. The gradient images in the positive x and positive y directions are
calculated by running a simple �lter across the image. The �lter is seen in
Figure 7.3. The �lter basically corresponds to calculate the intensity di�erence
between two neighbouring pixels. Once the gradient images have been found in
the positive x and positive y directions, these can be used to calculate gradient
images for each quantized direction:

Iθ = Ix · cos(θ) + Iy · sin(θ) (7.1)

The gradient images are according to [33, 34] called orientation maps, and
the size of the image gradient at the location (u, v) for direction o is given
by Go(u, v). The orientation maps are convolved with several Gaussian kernels,
in order to obtain the circular areas. The size of the circular area is proportional
to the standard deviation, Σ, of the kernel, and the circular area is weighted
such that a gradient norm has less weight if it is far from the center of the
circle. The orientation maps are convolved with a number of Gaussian kernels
with di�erent Σ, in order to obtain all the circular areas, and these maps are
called convolved orientation maps [33, 34].

For every circle in Figure 7.2 an eight bin histogram is generated. The histogram
vector hΣ(u, v) contains the values of the convolved orientation maps, using
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Figure 7.2: The DAISY descriptor: Each circle represents a region where the
radius is proportional to the standard deviations of the Gaussian
kernels, and the "+" sign represents the locations where the con-
volved orientation maps are sampled. From [34]

Figure 7.3: Gradient �lters for �nding gradients in the x direction

standard deviation Σ, at position (u, v):

hΣ(u, v) = [GΣ
1 (u, v), ..., GΣ

H(u, v)]T (7.2)

where GΣ
o (u, v) is the orientation map Go(u, v) convolved with a Gaussian kernel

with standard deviation Σ, and H is the number of quantized directions [33,
34]. Therefore hΣ(u, v) is an eight bin histogram, containing one bin for each
direction.

The last step is to concatenate the eight bin histograms, for all the circles, into
one descriptor for the image region. The full DAISY descriptor can be de�ned
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as:

D(u0, v0) = (7.3)

[h̃TΣ1
(u0, v0),

h̃TΣ1
(l1(u0, v0, R1)), ..., h̃TΣ1

(lT (u0, v0, R1)),

h̃TΣ2
(l1(u0, v0, R2)), ..., h̃TΣ2

(lT (u0, v0, R2)),

...

h̃TΣQ(l1(u0, v0, RQ)), ..., h̃TΣQ(lT (u0, v0, RQ))]T

where lj(u, v,R) is the location with distance R from (u, v) in the direction given
by j, and Q is the number of circles [33, 34].

Since the number of circles, Q, is 25, see Figure 7.2, and the histograms to
concatenate have eight bins, the �nal image descriptor is a 200 bin histogram.

7.2 Image Clustering Method

The method used to perform clustering of the iris maps is based on the bag
of words model, using the DAISY descriptor as explained in the previous sec-
tion. Furthermore, the method will be extended to include colour. The method
consists of a training part, where the visual bag of words is build, a test part,
where the visual bag of words is used to construct a histogram for each iris
map, and a clustering part, where the iris maps are clustered, using hierarchical
agglomerative clustering.

In order to create a bag of visual words, a set of training images have to be
chosen. The training images should be representative of the entire dataset of
images, and therefore a set of images containing both brown, intermediate and
blue eye colour is chosen. Furthermore, the training images are chosen so that
they contain structures representing the di�erent variation in the irises. The
training set can be seen in Figure 7.4.

Figure 7.4: Training image
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The training image is used to create a bag of visual words. The �rst step is to
generate a large number of histograms for the training images using the DAISY
descriptor explained in Section 7.1. The implementation calculates gradient
images for four quantized directions, where the four directions used are the
positive and negative x and y directions. The modi�cation from Tola et al. [34]
was made since the results from using four directions were similar to the results
using eight directions. The histograms that are built for each circle in Figure
7.1 contain four bins, since only four directions are used. The �nal descriptor is
4 · 25 = 100 bins long.

The training process uses 40000 DAISY descriptors calculated at randomly cho-
sen pixel positions. The descriptors are clustered, using a k-mean clustering.
The number of clusters is chosen to be 400, which constitutes the number of
visual words. The actual visual words are then the center of each cluster.

The bag of visual words is now used for generating an explanatory histogram
for multiple images. For every pixel in a test image the DAISY descriptor is
applied, and the generated daisy descriptor is compared to the center of each of
the 400 clusters. The pixel is assigned to the nearest of the 400 cluster centres
using an L2-norm given by [15]:

d =
∑
i

(xi − yi)2 (7.4)

where i is the bin in the DAISY descriptor, xi is the i'th bin in the center cluster
and yi is the i'th bin in the DAISY descriptor.

Figure 7.5 shows the training image where all pixels have been assigned to a
visual word, that is one of the cluster centres.

The �nal image descriptor is then an explanatory histogram containing the
occurrence of each visual word in the image. In order to maintain some of the
spatial information in the images, the explanatory histogram is built using the
Gaussian weighting seen in Figure 7.6. For each of the Gaussian weights, a
weighted occurrence of each visual word is found, leading to an explanatory
histogram of size 400× 12 = 4800 bins. An explanatory histogram can be seen
in Figure 7.7.

In order to match images based on local structures, an explanatory histogram
has been calculated for the validation image data. A hierarchical agglomerative
(HA) clustering has been used to create groups of common structures [19]. The
distance metric used is the χ2 distance given by Equation 4.4. At the �rst level
the HA clustering �nds the two closest explanatory histograms and connects
them. Then the clustering continues to connect explanatory histograms to either
the closest group of histograms or to the closest individual histogram. The
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Figure 7.5: The �gure shows a zoomed version of the training image indicated
by the red rectangular box. The assignment of each pixel to a
visual word is illustrated in the bottom image

Figure 7.6: Gaussian weight

distance to a group of histograms is calculated as the distance to an average
histogram of the group. In this way a tree structure is built, from where it is
possible to divide the dataset into a number of clusters representing the data.
An example of a cluster tree, also called a dendrogram, is seen in Figure 7.1.

The clustering has until now only been based on the local DAISY descriptor,
and therefore only on the structures in the iris region. However, a data driven
clustering based on colour is also requested, and furthermore some of the struc-
tures might be colour dependent. A method combining structure and colour
could therefore be appropriate. For example the Nevi dots or Fuchs Crypts
seems to be colour dependent, since they can be di�cult to locate on an eye
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Figure 7.7: Example of an explanatory histogram for an image

image converted to gray scale, as seen in Figure 7.8. The gray scale iris map
shows the di�culty with di�erentiating between the Nevi dots and other dark
iris regions when colour is absent.

Figure 7.8: Example showing the colour dependence of Nevi dots. Left: Iris
map converted to gray scale. Right: Original iris map

7.2.1 Adding colour

In order to add colour to the image clustering, a vector containing the R, G and
B value is concatenated with the daisy descriptor. This is performed for each
pixel in the image, and the entire colour information is therefore used. The size
of the daisy descriptor with colour is 103, and the new descriptors including
colour are used for building the explanatory histogram. Colour is of course
added to the daisy descriptors for both training and test images. The further
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process is equivalent to the clustering without colour.

The clustering method has to be evaluated, and an appropriate number of clus-
ters have to be chosen. It is of interest to �nd a few large groups of images,
since this is appropriate in connection with DNA correlation. However, these
groups should be on such a level that the images in one cluster group have the
same general tendency with respect to colour, structure or a combination of the
two.

7.3 Image Clustering Results

The image clustering process is a data driven approach, however the clustering
that is performed has to be evaluated in order to determine the appropriate
number of cluster groups. The clustering can be seen in Figure 7.9 to 7.11 for
structure, colour, and a combination of structure and colour.

Figure 7.9: Dendrogram for structure using DAISY descriptor

In Figure 7.9 it is seen that the dendrogram for structure has three large clusters.
The number of clusters was chosen with respect to the dendrogram behaviour.
The iris maps for the groups are seen in Figure 7.12 to 7.15. It is seen that
most of the iris maps in the �rst group have a high level of structure and that
the second and third group have less structure. The second group also contains
large areas of re�ections. However, there is some images that do not seem to
belong to the group in which they have been placed. The images in group 1
contain a high amount of structure, but ten images are very smooth compared
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Figure 7.10: Dendrogram for colour using R, G and B values

Figure 7.11: Dendrogram for structure and colour combined, using both
DAISY descriptor and R, G and B values
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to the remaining images. Furthermore, two images placed in group 3, have
much structure compared to the remaining in this group. In order to be able to
evaluate the dependency between structure and colour the structure groups are
illustrated in colour in Appendix D.

Figure 7.12: Validation images clustered based on structure - group 1
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Figure 7.13: Validation images clustered based on structure - group 1
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Figure 7.14: Validation images clustered based on structure - group 2
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Figure 7.15: Validation images clustered based on structure - group 3



7.3 Image Clustering Results 93

In Figure 7.10 it is seen that the dendrogram for colour has four large clusters.
The four groups seems to be the most natural choice by looking at the dendro-
gram. The iris maps for the groups are seen in Figure 7.16 to 7.20. It is seen
that a clear division of the colour has been performed. The �rst group contains
blue eyes, the second group contains an intermediate eye colour that is mostly
blue, the third group contains intermediate eye colour that is more brown than
the second group and the fourth group contains brown eye colour.

Figure 7.16: Validation images clustered based on colour - group 1
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Figure 7.17: Validation images clustered based on colour - group 1



7.3 Image Clustering Results 95

Figure 7.18: Validation images clustered based on colour - group 2

Figure 7.19: Validation images clustered based on colour - group 3
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Figure 7.20: Validation images clustered based on colour - group 4

In Figure 7.11 it is seen that the dendrogram for the combination of structure
and colour has four large clusters. The number of clusters was chosen based
on the appearance of the dendrogram. The iris maps for the groups are seen
in Figure 7.21 to 7.26. It is seen that the group 1 contains primarily blue eye
images, along with blue eye images containing a small amount of brown. The
group seems to contain both eye images with much structure as well as more
smooth looking eye images. Group 2 contains intermediate eye colours with
much structure. Group 3 also contains intermediate eye colours but have a
more smooth appearance. Group 4 contains brown eye images with a small
amount of structure present.

The general clustering of the images based on combined structure and colour is
very similar to the clustering based on colour only. It is observed that 14 images
have changed group in comparison with the colour based clustering. 12 of these
14 images change from group 2 to group 1, which means that they change from
light intermediate to blue. The two remaining images change from group 3 to
group 2 and from group 4 to group 3, respectively.
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Figure 7.21: Validation images clustered based on a combination of structure
and colour - group 1
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Figure 7.22: Validation images clustered based on a combination of structure
and colour - group 1
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Figure 7.23: Validation images clustered based on a combination of structure
and colour - group 1

Figure 7.24: Validation images clustered based on a combination of structure
and colour - group 2

Figure 7.25: Validation images clustered based on a combination of structure
and colour - group 3



100 Image Clustering

Figure 7.26: Validation images clustered based on a combination of structure
and colour - group 4
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7.3.1 Colour approach and blue vs brown ratio

The ratios found in Chapter 5 have been divided into the four groups found by
the colour based data driven clustering. The boxplot is seen in Figure 7.27. The
general behaviour is, that the blue group has a ratio of approximately 1. The
light and dark intermediate groups span the interval between blue and brown,
but are clearly di�erent with respect to mean ratio. The brown group has a
mean ratio of approximately -0.8.

Figure 7.27: Boxplot for the colour based data driven approach
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7.4 Image Clustering Discussion

General parameters There are two main parameters that can be adjusted
in order to optimize the performance of the clustering method. The �rst param-
eter is the number of descriptors used in the training process. The descriptors
are calculated at randomly chosen pixel positions in the training image. The
performance was tested using 20000, 40000 and 60000 descriptors. The clus-
tering process was not very robust using 20000 descriptors, since the clustering
result changed for each new training. The number of descriptors was raised
to 40000, which resulted in a more robust training process and thereby more
robust clustering. The result for using 60000 descriptors was equivalent to the
result with 40000 descriptors, and therefore 40000 descriptors was chosen.

The second parameter is the number of clusters used to build the dictionary of
visual words. The algorithm was tested using 200, 400 and 600 clusters. The
performance of the algorithm was improved when using 400 clusters instead of
200 clusters. The result for 600 clusters was equivalent to the result for 400
clusters, and 400 clusters were therefore chosen.

Clustering based on structure The size of the DAISY descriptor, illus-
trated in Figure 7.2, is de�ned by determining the radius from the center of the
descriptor to the center of each circle. The size of the DAISY descriptor has
been tested using the set of radii 2, 6, 11 and 6, 12, 25. The clustering result was
more intuitive using the largest DAISY descriptor, since the clustering seems to
be divided into groups based on the general amount of structure. Therefore the
radii were chosen as 6, 12 and 25.

The result of the structure based clustering procedure, is seen in Figure 7.9.
The number of cluster groups chosen was three, since more than three groups
would result in groups containing very few images. Group 1 contains eye images
with a high amount of structure and group 3 contains smooth eye images. On
the contrary group 2 seems to be based on a re�ection in the eye images and
must therefore be considered noise with respect to a DNA correlation.

The division of images into groups containing irises with a high amount of
structure and smooth looking irises, respectively, is very promising with respect
to DNA correlation. However, there is some images that should be placed
di�erently based on a visual inspection of the cluster groups. The eight images
are seen in Figure 7.28 and Figure 7.29 a) to d). They all appear very smooth
compared to the remaining in group 1. However, some of the images contains
areas that can explain the clustering result. Image 5, 64 and 109, seen in Figure
7.28, all contain eyelash re�ections, which are probably interpreted as structure
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by the algorithm. Image 22 has a horizontal structure, even though the general
appearance is very smooth, and this structure could explain why the image was
placed in group 1. Why the clustering procedure has placed the remaining of
the eight images into group 1 is not obvious.

The images in Figure 7.29 e) and f) were placed in group 3 by the algorithm.
However, the two images contain a high amount of structure compared to the
remaining images in group 3. The reason for this is in our opinion misplacement
not obvious.

(a) Iris map for image 5

(b) Iris map for image 22

(c) Iris map for image 64

(d) Iris map for image 109

Figure 7.28: Images with explainable misplacement according to a visual in-
spection. The red circles surrounds the misplacement area.

Clustering based on colour The colour based clustering resulted in a very
nice division of the eye images into four groups. The four groups are blue, light
intermediate, dark intermediate and brown. The division of the images is much
more robust than the colour classi�er explained in Chapter 4. Furthermore, this
approach is completely data driven and not dependent on subjective evaluations
or on previously de�ned classes.



104 Image Clustering

(a) Iris map for image 30 (b) Iris map for image 82

(c) Iris map for image 86 (d) Iris map for image 91

(e) Iris map for image 28 (f) Iris map for image 32

Figure 7.29: Images that are misplaced according to a visual inspection. a)
through d) was misplaced in group 1 and e) to f) was misplaced
in group 3

The ratios found in Chapter 5 are seen in the boxplot in Figure 7.27, where
they have been divided according to the four groups found by the colour based
clustering. The boxplot reveals four very clearly di�erentiable groups. Further-
more, a smooth transition from blue to brown is present, as would be expected,
since eye colour is continuous. Comparing this boxplot to the boxplot in Figure
5.4, where the ratios were divided based on subjective evaluations, it is seen
that the data driven division of the groups seems much more appropriate. The
boxplot using the subjective evaluations has one group that spans the entire in-
terval between brown and blue, and it has multiple classes that are very similar
in mean value. The boxplot using the data driven approach divides the images
so that no groups overlap.

Clustering based on structure and colour combined The clustering per-
formed on colour and structure combined is very similar to the clustering based
on colour. However, there are 14 images that have changed group in comparison
with the colour based clustering. 12 of these 14 images changed from group 2
to group 1, meaning that they change from light intermediate to blue. The two
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remaining images changed from group 3 to group 2 and from group 4 to group
3, respectively. The conclusion is therefore, that structure does have some in�u-
ence on the resulting clustering, but the colour restricts the images from moving
to a group containing very di�erent colours.

The most promising result obtained using the data driven clustering is the colour
based clustering. The clustering result is very robust, and the groups are perfect
for correlation with DNA. The structure based clustering result is however more
inconclusive, since the results are very di�cult to evaluate visually. The clus-
tering into a group containing structure and a group containing more smooth
images is very promising. However there are some images that seem to be in-
correctly placed. Due to the di�culties with making a subjective evaluation of
the structures in the image, it is very di�cult to evaluate the result further.
We are not convinced that the two groups of structure can give a meaningful
correlation with DNA.

The clustering based on a combination of colour and structure also appears to
be very promising. The e�ect from colour versus structure seems to be nicely
balanced, since both structure and colour in�uence the result.

The structure in the eye images could be dependent on the iris colour. If the
iris structure was colour dependent, a hypothesis could be that brown irises
contained less structure, thereby appearing more smooth. However, this does
not seem to be the case for our eye images, since the tree structure based groups
contain both blue and brown images. Our validation dataset does not contain
any very dark eye images, and therefore it is impossible for us to conclude on
the colour dependency of structures. It might be the case that dark eye images
contain less structures, and that all of our validation images are simply relatively
light eye images.
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Chapter 8

Conclusion

The main goal of this thesis was to develop a method for obtaining an objec-
tive evaluation of the colours and structures of the iris. Several methods were
developed for this purpose. In order to ful�l the goal the iris region had to be
extracted from the eye images. We succeeded in extracting the iris region in
64.3% of the eye images of the validation data.

A colour classi�er was build using a subjective evaluation of iris colour in the
training process. The obtained percentage of correctly classi�ed images was
65.4% for the validation images. Since the colour classi�er was based on a
histogram with a high amount of dimensions a dimensionality reduction was
performed. The six �rst principal components explained more than 95% of the
variance and this number of dimensions was more appropriate for correlation
with DNA. However, the six principal components are di�cult to interpret.We
therefore developed a method to describe a more explanatory ratio. The ratio
explained the relationship between the amount of blue and brown in the eye.
The behaviour of the ratio corresponds to the behaviour expected from the
knowledge about DNA coding for eye colour, since a smooth transition from
blue to brown is present. The intermediate eye colours are still to be identi�ed
in the genetics, and our ratio is a promising measure for the this purpose, since
it clearly distinguish the intermediate groups.

As part of this thesis an investigation of the human perception of eye colour
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was performed. The conclusion was that the individuals had a very low degree
of agreement for all the investigated iris structures. A classi�er could therefore
not be trained on subjective evaluations of iris structure.

A data driven image clustering approach was developed in order to account for
the problems with human perception of both colour and structure. The result
for the structure based clustering was a division into three groups: one con-
taining irises with high amount of structure, a second containing smooth irises
and a third containing images with large re�ection areas. This division is very
promising regarding a DNA correlation. However there were a number of im-
ages that were incorrectly placed based on a visual inspection, which makes us
question the results. The result from the colour based clustering was very im-
pressing. The four groups created by the method, were clearly divided based on
the colour information contained in the iris, since a blue, brown and two interme-
diate groups were found. This division is more promising since it is independent
of subjective evaluations. Furthermore, these groups are more appropriate for
explaining the dataset, since no dark brown group is present due to the lack
of dark brown images. The result from the combined clustering showed that
structure does in�uence the clustering, but that the colour information restricts
the structure dependency. Whether structure and colour is dependent on each
other was not possible to conclude based on our given dataset.

In summary, we have succeed in generating a colour classi�er, a colour ratio
and an image clustering method based on both structure and colour. These
methods can be used for making a more objective evaluation of iris colours than
what have been published in the literature so far. Furthermore, the results from
this thesis might contribute to a further knowledge about the genetics of iris
structures and colours.
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Future Work

This thesis concentrates on iris extraction and an evaluation of the colour and
structures of the iris region.

The iris extraction process relies on the result from four di�erent tasks, and fur-
thermore it is dependent on the capturing conditions. The iris extraction could
be made more robust if one method could replace the four tasks performed in
this thesis. A method using textures instead of colour could make the iris extrac-
tion less dependent on the image colour and thereby the capturing conditions.
An obvious choice would be a texture segmentation method as the one used in
[16], commonly used when classifying di�erent structures in for example tissue
images.

A very interesting �eld would be to make a colour classi�er trained on objectively
classi�ed groups. A future work could be to combine the results from the data
driven clustering in Chapter 7 with the colour classi�er in Chapter 4, in order
to create a completely objective colour classi�er. The approach would be to use
the four colour classes found by the data driven clustering as training set in the
colour classi�er.

A pixel classi�cation of the iris region is of interest in order to locate the di�erent
structures in the iris. The structures of interest are for example Nevi Dots,
Wol�in nodules and Fuchs Crypts. Nevi Dots are of great interest regarding
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risk of developing cancer, and a method for extracting Nevi Dots is therefore
very desired. The pixel classi�cation using MRF, as in Chapter 5 to identify
brown and blue areas, might be a potential method for �nding Nevi Dots in
blue eyes. The extraction of brown areas could be the �rst step, followed by an
evaluation of the structures in the extracted brown spots. The Nevi Dots have
a more smooth appearance and does not follow the general structures in the iris
region, why a texture classi�cation method could be appropriate.
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Iris Extraction

A.1 Optimization of Processing Time

The most obvious method to use when searching for a local minimum in a gradi-
ent function is the method of Steepest Descent, which is a fast method to locate
a local minimum. Potentially, this method might decrease the computational
e�ort and time aspect in our implementation. The Steepest Descent method
is an acknowledged method and it has been described by many authors, e.g.
Poul Erik Frandsen et. al. [10]. The method searches for a local minimum of a
given function. The search direction is determined as the direction in which the
gradient has the highest negative value. Searching for a minimum is the same
approach as searching for a maximum, just with a sign change. In the following
we will search for the maximum.

In order to test the implementation, a simple circle image is generated, see Figure
A.1 a). In order to use the Steepest Descent method the function to maximize
should be relatively smooth. The function to maximize is, in our case, a function
with three variables, center coordinate (x,y) and radius, r. Figure A.1 b) shows
a plot of this function. In the �gure a maximum gradient sum is found for each
pixel. For all pixels the gradient sum is calculated for all radii, and the radius
with the maximum gradient is chosen. It is seen that the function has many local
maxima. These local maxima makes the task of locating the global maximum
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(a) Original circle image

(b) Gradient values

Figure A.1: a) Circle image b) Function to minimize. The gradient values on
the longitudinal axis are the maximum of the gradient sums for
all radii for that given center coordinate.

more di�cult. Using the steepest descent method to locate the global maximum
would create problems, since the method would stop searching as soon as a local
maximum was located.

A.2 Graph Cut

Given the system, illustrated in Figure A.2 top left, the �rst step is to �nd
the maximum �ow through the system, and then transfer the minimal capacity
through the system. The path of maximum �ow is lowered by the �ow size. As
seen in Figure A.2 a) top right, the path s−1−3−t has been saturated, meaning
that nothing can be transported through this speci�c path. Continuing this
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procedure, until it is not possible to transfer energy trough the system, results
in a saturated system, and the cut is placed at the position of saturation, see
Figure A.2 a) bottom right. As is seen from the �gure, the max �ow, min cut
procedure, separates the nodes 1, 2 and 4 from 3.

Figure A.2: The �gure illustrates the Graph Cut method 9

A.3 Iris Extraction Results

A sample of the results from the iris extraction method are seen in Figure A.3
and A.4. The images are de�ned as correctly detected, since they have a Dice
Coe�cient above 0.92, as chosen in Section 3.4.

Some examples of the iris extraction result are seen in Figure A.5. They are
de�ned as wrongly detected, since the Dice Coe�cient is below 0.92. It is
seen that some of the wrongly detected images actually have satisfying detected
boundaries. They could therefore be included in the further methods in our
thesis, as stated in Section 3.7.

9Lecture slides from course Advanced Image Analysis 02503, spring 2011
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Figure A.3: Eye images with correctly detected iris regions
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Figure A.4: Eye images with correctly detected iris regions
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Figure A.5: Eye images with wrongly detected iris regions
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A.4 Iris Map Generation Results

A small selection of iris maps, generated from the radial transformation, and
the corresponding iris masks are seen in Figure A.6. They are all de�ned as
correctly detected from the iris extraction.

Figure A.6: Iris maps and corresponding iris masks, for validation images with
correctly detected iris regions
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Appendix B

Colour Classi�er

B.1 Human Evaluation of Eye Colour Classes

The subjective evaluations of the images have been performed as described in
Section 4.1. The evaluations of the 100 training images are seen in Table B.1
to B.3, where yes and no indicate if an agreement or a disagreement is present.
The percentage of disagreement between the two operators is 32%.

Image number Individual 1 Individual 2 Comparison
1 2 2 yes
2 1 1 yes
3 1 1 yes
4 1 1 yes
5 2 2 yes
6 4 4 yes
7 5 6 no
8 2 2 yes
9 2 6 no
10 6 6 yes

Table B.1: Human evaluation of colour classes for the training images
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Image number Individual 1 Individual 2 Comparison
11 4 4 yes
12 4 6 no
13 4 4 yes
14 2 2 yes
15 2 2 yes
16 1 1 yes
17 3 4 no
18 2 2 yes
19 6 2 no
20 3 3 yes
21 6 6 yes
22 2 2 yes
23 5 5 yes
24 2 1 no
25 4 4 yes
26 5 5 yes
27 2 2 yes
28 2 2 yes
29 5 1 no
30 5 1 no
31 1 1 yes
32 6 2 no
33 6 6 yes
34 5 1 no
35 2 2 yes
36 2 2 yes
37 2 2 yes
38 6 5 no
39 2 2 yes
40 2 2 yes
41 2 6 no
42 2 2 yes
43 6 5 no
44 5 1 no
45 6 2 no
46 5 5 yes
47 2 2 yes
48 2 1 no
49 2 1 no
50 4 4 yes
51 1 1 yes
52 5 5 yes
53 6 5 no
54 5 1 no
55 6 6 yes
56 2 2 yes
57 4 6 no
58 1 1 yes
59 2 2 yes
60 2 2 yes

Table B.2: Human evaluation of colour classes for the training images
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Image number Individual 1 Individual 2 Comparison
61 2 2 yes
62 1 1 yes
63 2 1 no
64 6 2 no
65 2 2 yes
66 3 3 yes
67 4 3 no
68 2 2 yes
69 1 1 yes
70 5 5 yes
71 6 6 yes
72 6 6 yes
73 2 2 yes
74 2 2 yes
75 2 1 no
76 1 1 yes
77 2 1 no
78 2 1 no
79 3 3 yes
80 1 1 yes
81 1 1 yes
82 2 2 yes
83 3 6 no
84 1 1 yes
85 1 1 yes
86 2 2 yes
87 2 2 yes
88 3 3 yes
89 6 2 no
90 5 5 yes
91 1 1 yes
92 6 3 no
93 2 2 yes
94 2 1 no
95 1 1 yes
96 4 3 no
97 2 2 yes
98 1 1 yes
99 5 5 yes
100 6 3 no

Table B.3: Human evaluation of colour classes for the training images

B.2 Choosing a Colour Classi�er

In order to determine which classi�er method to use for the �nal data run, we
have tested the di�erent methods for k = 1...5, where k is the number of k-
nearest images. If there are multiple classes with the same number of images
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among the k-nearest images, the class is chosen randomly among the possible
classes. In order to account for the randomness, the methods are tested in 10
runs. The results from the tests can be seen in Table B.4 through B.6, for RGB
space, LAB space and the histogram approach in RGB space, respectively. An
average for each k = 1...5 has been calculated in order to decide upon a method.

Run 1

k 1 2 3 4 5
Error 25 24 21 19 19
Correct 23 24 27 29 29
Correct (%) 47.9 50 56.3 60.4 60.4

Run 2

Error - 26 22 21 20
Correct - 22 26 27 28
Correct (%) - 45.8 54.2 56.3 58.3

Run 3

Error - 27 22 20 19
Correct - 21 26 28 29
Correct (%) - 43.8 54.2 58.3 60.4

Run 4

Error - 24 22 21 19
Correct - 24 26 27 29
Correct (%) - 50 54.2 56.3 60.4

Run 5

Error - 22 21 22 20
Correct - 26 27 26 28
Correct (%) - 54.2 56.3 54.2 58.3

Run 6

Error - 21 22 21 19
Correct - 27 26 27 29
Correct (%) - 56.3 54.2 56.3 60.4

Run 7

Error - 22 21 20 19
Correct - 26 27 28 29
Correct (%) - 54.2 56.3 58.3 60.4

Run 8

Error - 21 21 21 19
Correct - 27 27 27 29
Correct (%) - 56.3 56.3 56.3 60.4

Run 9

Error - 23 22 22 19
Correct - 25 26 26 29
Correct (%) - 52.1 54.2 54.2 60.4

Run 10

Error - 23 22 20 20
Correct - 25 26 28 28
Correct (%) - 52.1 54.2 58.3 58.3

Average

Error 25.0 23.3 21.6 20.7 19.3
Correct 23.0 24.7 26.4 27.3 28.7
Correct (%) 47.9 51.5 55.0 56.9 59.8

Table B.4: Testing the RGB space method on 10 runs to obtain an average
performance for each k

From the tests it is seen that the highest average percentage is given by the
histogram approach for k = 2. We are therefore using this method with the
respective k on the 83 validation images. In order to get an average performance
of the 83 validation images, we have run the method 10 times. The result can be
seen in Table B.7, where it is seen that the �nal percentage of correctly classi�ed
images is 65.4%.
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Run 1

k 1 2 3 4 5
Error 29 29 18 16 21
Correct 19 19 30 32 27
Correct (%) 39.6 39.6 62.5 66.7 56.3

Run 2

Error - 26 18 18 21
Correct - 22 30 30 27
Correct (%) - 45.8 62.5 62.5 56.3

Run 3

Error - 30 16 18 21
Correct - 18 32 30 27
Correct (%) - 37.5 66.7 62.5 56.3

Run 4

Error - 24 18 18 20
Correct - 24 30 30 28
Correct (%) - 50 62.5 62.5 58.3

Run 5

Error - 26 17 16 20
Correct - 22 31 32 28
Correct (%) - 45.8 64.6 66.7 58.3

Run 6

Error - 29 17 18 20
Correct - 19 31 30 28
Correct (%) - 39.6 64.6 62.5 58.3

Run 7

Error - 29 18 18 19
Correct - 19 30 30 29
Correct (%) - 39.6 62.5 62.5 60.4

Run 8

Error - 28 18 18 19
Correct - 20 30 30 29
Correct (%) - 41.7 62.5 62.5 60.4

Run 9

Error - 31 17 20 21
Correct - 17 31 28 27
Correct (%) - 35.4 64.6 58.3 56.3

Run 10

Error - 22 18 19 20
Correct - 26 30 29 28
Correct (%) - 54.2 62.5 60.4 58.3

Average

Error 29 27.4 17.5 17.9 20.2
Correct 19 20.6 30.5 30.1 27.8
Correct (%) 39.6 42.9 63.5 62.7 57.9

Table B.5: Testing the LAB space method on 10 runs to obtain an average
performance for each k
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Run 1

k 1 2 3 4 5
Error 13 4 12 12 16
Correct 35 44 36 36 32
Correct (%) 72.9 91.7 75.0 75.0 66.7

Run 2

Error - 7 13 15 15
Correct - 41 35 33 33
Correct (%) - 85.4 72.9 68.8 68.8

Run 3

Error - 12 13 17 12
Correct - 36 35 31 36
Correct (%) - 75 72.9 64.6 75

Run 4

Error - 12 12 14 14
Correct - 36 36 34 34
Correct (%) - 75.0 75.0 70.8 70.8

Run 5

Error - 14 15 10 12
Correct - 34 36 38 36
Correct (%) - 70.8 75.0 79.2 75

Run 6

Error - 11 12 13 16
Correct - 37 36 35 32
Correct (%) - 77.1 75.0 72.9 66.7

Run 7

Error - 13 12 8 15
Correct - 35 36 40 33
Correct (%) - 72.9 75.0 83.3 68.8

Run 8

Error - 14 12 10 12
Correct - 34 36 38 36
Correct (%) - 70.8 75.0 79.2 75.0

Run 9

Error - 7 12 13 16
Correct - 41 36 35 32
Correct (%) - 85.4 75.0 72.9 66.7

Run 10

Error - 13 12 15 14
Correct - 35 36 33 34
Correct (%) - 72.9 75.0 68.8 70.8

Average

Error 13 10.7 12.2 12.7 14.2
Correct 35 37.3 35.8 35.3 33.8
Correct (%) 72.9 77.7 74.6 73.5 70.4

Table B.6: Testing the Final method based on RGB space histograms on 10
runs to obtain an average performance for each k
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Run 1

k 2
Error 30
Correct 53
Correct (%) 63.9

Run 2

Error 29
Correct 54
Correct (%) 65.1

Run 3

Error 33
Correct 50
Correct (%) 60.2

Run 4

Error 31
Correct 52
Correct (%) 62.7

Run 5

Error 32
Correct 51
Correct (%) 61.4

Run 6

Error 24
Correct 59
Correct (%) 71.1

Run 7

Error 28
Correct 55
Correct (%) 66.3

Run 8

Error 29
Correct 54
Correct (%) 65.1

Run 9

Error 26
Correct 57
Correct (%) 68.7

Run 10

Error 25
Correct 58
Correct (%) 69.8

Average

Error 28.7
Correct 54.3
Correct (%) 65.4

Table B.7: Testing the Final method based on RGB space histograms on 10
runs to obtain an average performance for each k
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In order to get an overview of where the algorithm fails, the subjective evalua-
tions are given in Table B.8 through B.10 along with the classes found for each
image by the algorithm. Where the algorithms fails, a no is written, and where
it is correct, a yes is written. The results are obtained for a run with 67.5%
correctly classi�ed images.

Image number Subjective evaluation Algorithm Comparison
1 2 2 yes
2 2 2 yes
3 6 - -
4 2 2 yes
5 3 4 no
6 5 5 yes
7 1 - -
8 - - -
9 1 1 yes
10 2 2 yes
11 2 2 yes
12 2 2 yes
13 4 4 yes
14 2 2 yes
15 1 2 no
16 1 1 yes
17 6 - -
18 6 6 yes
19 2 5 no
20 2 2 yes
21 4 4 yes
22 1 1 yes
23 6 - -
24 1 2 no
25 2 2 yes
26 2 2 yes
27 4 4 yes
28 2 2 yes
29 1 - -
30 2 2 yes
31 4 4 yes
32 2 2 yes
33 1 1 yes
34 6 6 yes
35 6 5 no
36 2 2 yes
37 1 - -
38 4 - -
39 2 - -
40 3 6 no
41 6 5 no
42 1 1 yes
43 4 6 no
44 2 - -
45 4 6 no

Table B.8: Subjective evaluation and algorithm result for the validation im-
ages
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Image number Subjective evaluation Algorithm Comparison
46 2 - -
47 3 3 yes
48 1 5 no
49 6 2 no
50 2 2 yes
51 6 4 no
52 5 2 no
53 1 2 no
54 1 1 yes
55 4 6 no
56 2 2 yes
57 1 - -
58 2 2 yes
59 1 - -
60 1 - -
61 1 2 no
62 6 6 yes
63 2 - -
64 3 4 no
65 4 3 no
66 1 - -
67 1 1 yes
68 6 - -
69 2 6 no
70 1 5 no
71 2 2 yes
72 2 - -
73 2 5 no
74 4 - -
75 2 2 yes
76 6 6 yes
77 1 - -
78 2 2 yes
79 2 2 yes
80 2 2 yes
81 2 2 yes
82 3 3 yes
83 1 1 yes
84 2 - -
85 6 6 yes
86 1 2 no
87 2 - -
88 4 4 yes
89 1 - -
90 3 4 no
91 2 2 yes
92 2 - -
93 2 - -
94 1 1 yes
95 1 1 yes
96 3 6 no
97 1 2 no
98 2 - -
99 6 - -

Table B.9: Subjective evaluation and algorithm result for the validation im-
ages
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Image number Subjective evaluation Algorithm Comparison
100 2 6 no
101 5 2 no
102 1 1 yes
103 1 1 yes
104 2 2 yes
105 5 5 yes
106 2 2 yes
107 2 2 yes
108 1 1 yes
109 6 3 no
110 1 - -
111 2 2 yes
112 4 - -

Table B.10: Subjective evaluation and algorithm result for the validation im-
ages

Dimensionality reduction considerations The results from the classi�er
should be used in correlation with DNA information, as described in Section
4.3. Therefore the classi�er has been run on the histograms generated from the
six principal components, see Section 4.4. The result from running the classi�er
on the back transformed histograms is shown in Table B.11. It is seen that the
percentage of correctly detected images is 60.2%, which is lower than for the
results using the original histograms.
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Run 1

k 2
Error 30
Correct 53
Correct (%) 63.9

Run 2

Error 34
Correct 49
Correct (%) 59.0

Run 3

Error 35
Correct 48
Correct (%) 57.8

Run 4

Error 34
Correct 49
Correct (%) 59.0

Run 5

Error 31
Correct 52
Correct (%) 62.7

Run 6

Error 36
Correct 47
Correct (%) 56.6

Run 7

Error 35
Correct 48
Correct (%) 57.8

Run 8

Error 31
Correct 52
Correct (%) 62.7

Run 9

Error 33
Correct 50
Correct (%) 60.2

Run 10

Error 31
Correct 52
Correct (%) 62.7

Average

Error 33
Correct 50
Correct (%) 60.2

Table B.11: Testing the Final method based on RGB space histograms with
dimensionality reduction on 10 runs to obtain an average perfor-
mance for each k
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Appendix C

Blue vs Brown Ratio

A selection of the results from the pixel classi�cation using MRF is seen in
Figure C.1 and C.2. The two classes are brown and blue.

Figure C.1: Results from the brown vs blue pixel classi�cation using MRF
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Figure C.2: Results from the brown vs blue pixel classi�cation using MRF



Appendix D

Image Clustering

The result for the structure based image clustering is seen in Figure D.1 to D.5
in colour.

Figure D.1: Validation images clustered based on structure - group 1
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Figure D.2: Validation images clustered based on structure - group 1
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Figure D.3: Validation images clustered based on structure - group 1

Figure D.4: Validation images clustered based on structure - group 2
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Figure D.5: Validation images clustered based on structure - group 3



Appendix E

CD-ROM Content

In this Appendix a short overview of the CD-ROM content i presented. Fur-
thermore, a copy of the thesis is also included.

Figure E.1: Contents of the CD-ROM provided with this thesis
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Acronyms

Acronym Explanation
CIELAB Commision Internationale de L'Eclairage, L∗a∗b∗ colour representation
DNA Deoxyribonucleic acid
DPP Digital Photo Professional
EVC External visible characteristics
GUI Graphical user interface
HSV Hue, Saturation, Value colour representation
IPE Iris pigmentation epithelium
MRF Markov Random Field
PCA Principal Component Analysis
PNG Portable Network Graphics
RGB Red, Green, Blue colour representation
SIFT Scale Invariant Feature Transform

Table E.1: List of Acronyms
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Project Poster
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