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Abstract

This thesis deals with linear ill-posed problems related to compact op-
erators, and iterative Krylov subspace methods for solving discretized
versions of these.

Linear compact operators in infinite dimensional Hilbert spaces
will be investigated and several results on the singular values and
eigenvalues for such will be presented. A large subset of linear com-
pact operators consists of integral operators and many results will be
based on the kernel of such operators.

Finite dimensional approximations to these operators will be con-
sidered by using Galerkin discretization. Several results will be shown
stating how singular values and eigenvalues (and corresponding vec-
tors) of infinite dimensional operators and their finite dimensional ap-
proximations are related.

Krylov subspace methods, with focus on GMRES, will be inves-
tigated in relation to discrete ill-posed problems, that is, linear finite
dimensional systems of equations that originate from ill-posed prob-
lems. By using the spectral decomposition of the coefficient matrix,
results on the convergence of GMRES are derived.

Keywords: Compact linear operator, Krylov subspace method, eigenvalues,
singular values.
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Resumé

Denne afhandling omhandler lineære “ill-posed” problemer relateret
til kompakte operatorer, og iterative Krylov underrums metoder til at
løse diskretiserede udgaver af disse.

Lineære kompakte operatorer i Hilbert rum af uendelig dimension
vil blive undersøgt og flere resultater vedrørende singulære værdier
og egenværdier af sådanne vil blive præsenteret. En stor delmængde
af lineære kompakte operatorer udgøres af integraloperatorer og man-
ge resultater vil blive baseret på kernen af sådanne operatorer.

Endelig-dimensionale tilnærmelser til disse operatorer vil blive be-
tragtet ved brug af Galerkin diskretisering. Adskellige resultater vil
blive vist omhandlende hvorledes singulære værdier og egenværdier
(og tilhørende vektorer) af uendelig-dimensionale operatorer and de-
res endelig-dimensionale tilnærmelser er relaterede.

Krylov underrums metoder, med fokus på GMRES, vil blive un-
dersøgt i relation til diskrete ill-posed problemer, dvs. linære endeligt-
dimensionale ligningssystemer der kommer fra ill-posed problemer.
Ved at benytte diagonalisering af koefficientmatricen vil resultater om-
kring GMRES’ konvergens blive udledt.

Nøgleord: Kompakte lineære operatorer, Krylov underrums metoder, egen-
værdier, singulære værdier.
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Notation

If not explicitly stated otherwise, the following symbols and notation
will be used throughout the thesis.

Boldface and upper case letters will be used for matrices, such as
A or X. Matrices with an integer subscript represents a column of the
matrix, e.g. A4 means the 4th column of A. A specific element of a
matrix is represented by a double integer subscript, e.g. A2,5 means
the element at row 2 and column 5 of A.

Vectors (finite dimensional coordinate vectors) will also be shown
in boldface but with lower case letters. An element of a vector will be
referenced by an integer subscript indicating the element number such
as v2. A subvector can be extracted by using va:b = [va,va+1, . . . ,vb]T .
Note that vectors always are column vectors such that Av and vT A
make sense while AvT and vA do not.

Symbols with an integer superscript in parentheses will be used as
enumeration, e.g. f (2), v(3) or A(4). They will be used for symbols with
commen properties, typically in connection with iterative methods.

Expressions such as x? = argminx F (x) means that the quantity x?

fulfills F (x?) = minx F (x).
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from V intoW
Sec. 2.3 14

C(I) The set of continuous functions on I - 46
diag(x) Diagonal matrix with the vector x along

the diagonal
Eq. (6.6) 78

dim(V) The dimension of the vector space V Sec. 7.3 96
D(K) The domain of K Eq. (4.2) 38
AH The Hermitian (or conjugate transposed)

of A
– 77

H Hilbert space Sec. 2.4 15
I Identity operator Eq. (3.1) 26
I Real interval Sec. 4.1 37
I Identity matrix Eq. (7.2) 93
k(s, t) Integral kernel, k ∈ L2(I × J) Eq. (4.1) 37
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ũn Eigenfunction of K̃NK̃
∗
N Th. 6.5 81

vn Eigenfunction of K∗K Th. 3.5 29
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C H A P T E R 1

Introduction

introduction, the act of introducing, or bringing to notice
— WEBSTER’S REVISED UNABRIDGED DICTIONARY

Many mathematical problems in all kinds of sciences lead to lin-
ear systems of equations, and there exists a lot of methods for solving
them numerically. But when efficiency and accuracy is important, the
best method to choose is heavily dependent on the problem at hand.

1.1 Linear Inversion

Many physical systems can be described using a linear model. An
abstract way to view such a system is illustrated in Figure 1.1. Given
some input and a linear model, the output can be calculated. For the

Input × Model → Output

Figure 1.1: An abstract way to view an input/output system governed by a
model.
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models we will be looking at, this will be quite easy. The situation
changes, however, when the output is given and either the input or the
model is unknown. This is known as a linear inverse problem.

To link this to actual real life examples, let us consider some exam-
ples:1

Geological Prospecting. The general problem of geological prospect-
ing is to determine the location, shape and constitution of sub-
terranean bodies from measurements at the surface of the earth.
A concrete example of this could be that a magnetic material is
located at some depth below the earth’s surface. A model can
now be set up that describes how strong the magnetism is at
each position at the surface. The inverse problem is now: Given
this model and magnetic measurements at the surface, what is
the shape of the body underground?

Tomography. Assume an object is illuminated with radiation of known
intensity. To some extent, the beam is absorbed inside the object,
and the final intensity of the beam can be measured on the far
side of the object. If this object is a part of the human body, e.g.
the brain, this is known as tomography. Here, the input will be
known (the incoming intensity) and the output will be known
(the out-coming intensity). The inverse problem is here to deter-
mine the model, that is, the object.

Image reconstruction. Suppose a picture of some stars is taken from
the earth and digitized. Stars that should be small isolated dots
will typically be “smudged” to some extent because of the light’s
passage through the atmosphere. A model can now be derived
that describes how each point is being smudged or blurred. The
inverse problem is now clear: Given a blurred digitized image
and a model of the blurring, reconstruct the true, unblurred im-
age.

1These examples, and a lot of others, can be found in [Gro93].
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All of the above problems can be described mathematically by

Kf = g,

where f represents the input, g the output and K the model. So the
challenge here is to “just” calculate g = K−1f . But the matter is com-
plicated by two important factors: K typically operates on infinite di-
mensional spaces and K turns out to be represented by integral opera-
tors, which have the unfortunate property of being compact. These two
factors ensure that the inverse operator, K−1, will be discontinuous. So
small perturbations of f can lead to arbitrarily large perturbations in
g. In heat conduction, for instance, this property of the inverse re-
flects the fact that heat conduction is an irreversible physical process
(see [Kre99] page 267). These kinds of problems are called ill-posed
and this is exactly where the difficulties/challenges lie.

Now suppose that such an ill-posed inverse problem is given and
that we wish to solve it using a computer. As mentioned, K is most of-
ten infinite dimensional and that is impossible to represent on a com-
puter. So we have to discretize the problem, that is, project the infinite
dimensional problem onto a finite dimensional problem. There are
many ways to do this, but they all end up with an innocent looking
linear system of equations:

Ax = b.

But the system is not innocent at all and these systems are often
termed discrete ill-posed problems. Although the problem is finite di-
mensional and A may be (mathematically) invertible, it is far from
easy to solve. The discontinuity of K−1 is reflected in this system by
A being “nearly singular”, that is, having a very large condition num-
ber. This is quite unfortunate since b is often affected by noise or mea-
suring errors and computers only have finite floating point precision.
When solving the system, the noise and rounding errors can disturb
more and more, and the solution can easily end up being completely
useless.

This thesis deals with one class of methods to solve such systems
in order to arrive at a usable solution. But before we dive into this, let
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Ax = b

Direct

Factorization Decomposition

Iterative

Stationary Krylov Multigrid

Figure 1.2: Classification of methods to solve linear systems of equations.

us put some perspective on things by giving a quick survey on how to
solve linear systems of equations in general.

1.2 Solving Linear Systems of Equations, a Quick
Survey

The number of methods available to solve a linear system of equations
is enormous. Let us for ease of reference have the concrete system
Ax = b in mind where A denotes the coefficient matrix, b the right-
hand side and x the solution.2 To present classes that each known
method fits into is an impossible task. Still, Figure 1.2 tries to do just
this, but on a very broad scale.

The topmost division distinguishes between direct and iterative me-
thods. As the adjective direct indicates, these methods require a direct
access to all elements of the coefficient matrix A. The amount of work
needed to arrive at the solution is (almost always) known beforehand
and the solution is exact if the effect of rounding errors are neglected.

Direct methods can be further divided into factorization and decom-
position methods. Factorization methods factorizes A into the prod-
uct of a number of matrices that each make a system easier to solve,
given a right-hand side. Such matrices can be triangular, diagonal

2Note however, that a linear system of equations need not explicitly be expressed
this way.
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or orthogonal and the methods include LU-, QR- and Cholesky fac-
torization. Decomposition methods are also a form of factorization,
but they simultaneously extract important information relating to e.g.
rank, null-space, singular values and so on. The cost is that they typi-
cally require more work than factorization methods. Popular methods
include Rank Revealing QR, eigenvalue decomposition (diagonaliza-
tion) and Singular Value Decomposition, SVD.

Instead of direct methods one can turn to iterative methods—the
rightmost branch in the tree shown in the figure. These typically start
out with a starting guess (possibly the zero vector) and then iterate by
repeating identical or similar operations. The hope is now that this
process produces a sequence of vectors that converges to the solution.
Note that the solutions found by direct methods almost inevitably will
be influenced by rounding-errors, and iterative methods may arrive
at an equally accurate solution with much less work. However, the
amount of work needed is not known beforehand and the produced
sequence of vectors may not converge at all.

Stationary methods is one class of iterative methods. They all stem
from the idea of splitting the coefficient matrix like A = M−N. Each
iteration is now expressed like Mx(k+1) = Nx(k) + b, where M is
nonsingular and easy to invert. Stationary methods include Jacobi,
Gauss–Seidel and SOR.

Another class of iterative methods is Krylov subspace methods. A
broad definition of these could be that the only way the (square) co-
efficient matrix is involved, is via the matrix-vector products Az and
AHz for arbitrary vectors.3 In a way, these methods are totally oppo-
site the direct methods in that they require no access to the elements of
A, only the way that vectors are mapped is used. This can be quite use-
ful since A need not be represented explicitly and efficient subroutines
can be tailor-made to perform the multiplications. The name Krylov
subspace method comes from the fact that a vector space spanned by
z,Az, . . . ,Ak−1z is called a Krylov subspace. Popular Krylov sub-
space methods include Conjugate Gradients and GMRES.

3The notation AH means the Hermitian of A, which is equivalent to the conjugate
transposed of A. For real matrices, we have AH = AT .
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The last class to mention is that of multigrid methods. The last part
of the word, “grid”, suggests that these methods often work on two-
or three-dimensional grids that have some geometrical relation to the
physical problem being solved. The first part of the word, “multi”,
means that these methods work on multiple grid levels, that is, dif-
ferent grid sizes. By using interpolation and restriction, information
on one level can be transferred to other levels. This is sometimes very
useful and can lead to superior rates of convergence.

Multigrid methods, however, are mostly used together with e.g.
stationary methods, and the distinction between different classes is
seldom clear. So-called hybrid methods that combine ideas from the
different classes are often used.

Important to note is also that some methods only work for prob-
lems of a certain kind. This is most often requirements on A like pos-
itive definiteness or symmetry. Other methods again may work in
general, but can be tailor-made to work especially well e.g. for sparse
or structured coefficient matrices.

1.3 Regularization

The above survey mentioned methods for solving linear systems of
equations in general. When discrete ill-posed problems must be sol-
ved, special care has to be taken. An integral operator K will always
have a smoothing effect, that is, high-frequency components in the in-
put will be mapped over to vectors that contain high-frequency com-
ponents with very low amplitude.4 This can be shown to be mimicked
by the finite dimension approximation A so the following holds: If b
contains high-frequency components, x must contain high-frequency
components with very high amplitude.

If b is influenced by noise, as it often is, this statement will apply
and the solution will be highly influenced by high-frequency compo-

4Since K is linear and continuous, the input can be split into a sum of components,
map them each using K and add them together again. Such a superpositional principle
viewpoint can be used.
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nents stemming from the noise. This leads to the concept of regular-
ization which is a way to arrive at a solution which is useful but not
necessarily the true solution. It is typically done by demanding certain
things of the solution. This could be that the solution may only consist
of low-frequency components or that the solution must be piecewise
constant.

Not all the methods mentioned in the previous section can be used
directly on discrete ill-posed problem. Some can, however, if the prob-
lem is altered in a certain way, and others again can be made to have
a regularizing effect in themselves. These lastly mentioned methods
are for instance QR-factorization (rank-revealing QR), SVD (truncated
SVD) and some iterative methods (by using the iteration step as regu-
larization parameter).

The direct methods work very well but need a lot of computing
power and memory for large problems. Iterative methods however,
are very well suited for large-scale problems and it is thus interesting
to investigate their ability to regularize.

1.4 Motivation for this Project

The Krylov subspace method called conjugate gradients (CG) has pro-
ved a very useful iterative method, also for discrete ill-posed prob-
lems. It has the restriction, though, that it only works for symmetric,
positive definite coefficient matrices. So for general A it can not be
used. This can be remedied by using the method on the normal equa-
tions instead, but without explicitly forming AHA and AHb. This
method is often called CGLS. However, matrix–vector multiplications
involving both A and AH must be calculated in each iteration.

Another popular Krylov subspace method is called GMRES. This
method works for general A and in each iteration only multiplication
with A is required. The rate of convergence of this method is quite
well understood, but only for well-posed problems. This leads us to
the question that kicked off this project: “How well does GMRES work
for discrete ill-posed problems?” This is largely what the present the-
sis is all about.
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Other interesting aspects quickly became very relevant. Since the
method only has powers of A to “work with”, the eigenvalues of A
are very important. So to know how these are distributed is essen-
tial. Since discrete ill-posed problems most often come from infinite
dimensional integral operators, what can we learn from these? At the
same time the ill-posedness of the linear equations is due to the fact
that (almost all) integral operators are compact. This lead to some very
important questions:

• Is it possible to generalize the properties of integral operators to
a more abstract setting of compact operators?

• Is there a connection between the eigenvalues of a compact op-
erator and those of a matrix approximation? This is quite well
understood for singular values and -vectors, but the just posed
question is not fully explored.

• Which operators have only a finite number of eigenvalues or
none at all?

Note that GMRES should only be used for non-Hermitian A, oth-
erwise more efficient methods are available. So most focus will be put
on operators that are not assumed to be symmetric (self-adjoint).

As mentioned earlier, it is well understood how well GMRES works
for well-posed problems. This type of analysis typically only looks at
key properties of A and deals with convergence for arbitrary right-
hand sides. When dealing with discrete ill-posed problems it turns out
that the rate of convergence is very sensitive to the right-hand side. So
this is another subject that this thesis will explore.

1.5 Outline

We start off by providing a theoretical foundation. The remaining
chapters will use a lot of basic, but important, functional analysis, and
most of it will be presented in this second chapter.

Chapter 3 will present the quantities eigenvalues and singular val-
ues. These turn out to be very important, not only in this thesis, but
also when dealing with ill-posed problems in general.
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Chapter 4 looks at compact operators with certain characteristics.
The largest part of the chapter will deal with integral operators and
the kernels of these. Using the properties of the operators and kernels,
they are investigated with especially the behavior of the eigenvalues
and singular values in focus.

Chapter 5 will give some precise definitions of ill-posedness and
regularization. This will make it clearer what the problem/challenge
is and what we are aiming for. The chapter is deliberately postponed
to here because some of the theory of the previous chapters are needed.

Chapter 6 will address discretization, or more specifically, Galerkin
discretization. To computationally deal with these problems, they have
to be made finite dimensional. But how well do these finite dimen-
sional operators approximate the original operator? Special focus will
be put on the eigenvalues and singular vectors (and corresponding
vectors).

Chapter 7 turns to look at Krylov subspaces and a class of methods,
whose solutions lie in these subspaces. A theoretical investigation will
be made in order to find out when solutions can be found at all, the
maximal number of iterations and related subjects. In particular the
method GMRES will be looked upon concerning convergence analy-
sis and finally, related methods such as MINRES and CG will be men-
tioned.

Chapter 8 looks at how to actually implement GMRES. By refor-
mulating the original problem, a quite simple and efficient algorithm
can be produced. A number of related algorithms and implementation
issues will also be discussed.

Chapter 9 finally attempts to collect all the threads and summarize
the most important results. A list of subjects for further study will be
included.

The appendix contains a number of sections. Most are referenced
to from appropriate places in the thesis, but one is of special impor-
tance, namely the “Examples” section, which provides a number of
concrete examples that illustrate many important aspects of the the-
ory presented throughout this thesis.
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Theory of Linear
Operators

theory, a scheme of the relations subsisting
between the parts of a systematic whole

— WEBSTER’S REVISED UNABRIDGED DICTIONARY

operator, one who, or that which, operates or produces an effect
— WEBSTER’S REVISED UNABRIDGED DICTIONARY

This chapter will provide the theoretic foundation for the rest of
the thesis. Most of the contents is basic functional analysis, and very
few proofs will be provided (see e.g. [Ped00] or [Kre99] for proofs and
additional information). At the same time, much of the used notation
will also be introduced here.

2.1 Metric Spaces

One of the goals in this section is to continuously apply structure to a
vector space until it has all properties necessary for our later use.

We will start of by requiring that a vector space V is equipped with
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a metric. Such a vector space is called a metric space. A metric is a map-
ping d : V × V 7→ [0,∞[ that fulfills symmetry, the triangle inequality
and d(x, y) = 0⇔ x = y for all element pairs.

A set M ⊂ V is termed open if for every x0 ∈ M there exists an
r > 0 such that {x ∈ V | d(x0, x) < r} ⊂ M . A set is defined to
be closed if its complement is open. The closure M of a set M is the
smallest closed set containing M .

Convergence of a sequence (xn) ⊂ V is definable using the metric.
If d(xn, x)→ 0 for some x ∈ V when n→∞we say that (xn) converges
to x and write xn → x for n → ∞. A looser notion of a sequence
possibly approaching a limit is that of a Cauchy sequence, which just
requires that d(xn, xm)→ 0 for n,m→∞. When it happens that every
Cauchy sequence is actually convergent, the space is called complete.

Another important concept is denseness. Let V be a metric space
with metric d and let A,B ⊂ V . If for all b ∈ B and ε > 0 there exists
an a ∈ A such that d(a, b) < ε, we say that A is dense in B.

Assume two metric spaces V andW are given with metrics dV and
dW respectively. If there exists a bijective map T : V 7→ W such that
dW (Tx, T y) = dV(x, y) for all x, y ∈ V we say that V andW are isomet-
ric. This finally leads us to the notion of completion:

Theorem 2.1 Let V be a metric space with metric dV . Then there is a com-
plete metric space W with metric dW and a dense set W̃ ⊂ W such that V
and W̃ are isometric.

The spaceW is denoted the completion of V .

2.2 Normed Vector Spaces

A normed space is a vector space V equipped with a norm. A norm is
a mapping ‖ · ‖ : V 7→ [0,∞[ which fulfills

‖x+ y‖ ≤ ‖x‖+ ‖y‖ (2.1a)
‖αx‖ = |α|‖x‖ (2.1b)

‖x‖ = 0 ⇒ x = 0 (2.1c)
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for all x, y ∈ V and α ∈ C.
Given a normed vector space, a metric can be induced in a natural

way simply by defining d(x, y) = ‖x − y‖. We can now have a more
structured vector space:

Definition 2.2 A normed vector space that is complete in the metric induced
by the norm is called a Banach space.

The support of a function f : Ω 7→ C, Ω ⊂ Rk, is the closure of the
set {x ∈ Ω | f(x) 6= 0}. The space C0(Ω) is the space of continuous
functions with bounded support. This space can be equipped with the
so-called p-norms. These are maps ‖ ·‖p : C0(Ω) 7→ [0,∞[, p ≥ 1, given
by

‖f‖p =
(∫

Ω

|f(x)|pdx
) 1

p

. (2.2)

It may not be obvious that these in fact are norms, but it can be
proved straightforwardly. We can now define some very important
vector spaces:

Definition 2.3 The vector space Lp(Ω), Ω ⊂ Rk where p ≥ 1, is the com-
pletion of C0(Ω) in the metric induced by the p-norm.

Especially L2 will be used extensively throughout this thesis. In
connection with this function space and the norms just introduced,
we have the following important inequality.

Theorem 2.4 (Cauchy-Schwartz’ inequality) For f, g ∈ L2(Ω) we have

‖fg‖1 ≤ ‖f‖2‖g‖2.
Spaces of sequences can be defined in the following way:

Definition 2.5 The space of sequences (real or complex) lp, p ≥ 1, consists
of sequences (xn) satisfying

∞∑
n=1

|xn|p <∞.
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The norm in lp is

‖(xn)‖p =

( ∞∑
n=1

|xn|p
) 1

p

.

As we shall later see, there is a tight connection between L2 and l2.

2.3 Bounded Linear Operators

An operator in its most abstract form is a mapping between two nor-
med spaces. Consider an operator T : V 7→ W . Important properties
that T can have are:

• T is linear if

∀x, y∈V ∀α, β∈C T (αx+ βy) = αT (x) + βT (y).

• T is continuous at a point x ∈ V if

∀ε>0 ∃δ>0 ∀y∈V ‖x− y‖ < δ ⇒ ‖Tx− Ty‖ < ε.

• T is continuous if T is continuous at all points x ∈ V .

• T is bounded if

∃M>0 ∀x∈V ‖Tx‖ ≤M‖x‖.

When an operator is linear, the three last properties are actually
equivalent.

The set of linear and bounded operators from V into W will be
denoted B(V ,W) (when V = W we write B(V)). It is a vector space
and can be equipped with a norm, the operator norm:

‖T ‖ = sup {‖Tx‖ | ‖x‖ ≤ 1} . (2.3)

Note that ‖x‖ refers to the norm defined in V and ‖Tx‖ refers to
the norm defined inW .

When V is a normed space andW is a Banach space, then B(V ,W)
is itself a Banach space.
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2.4 Hilbert Spaces

We continue to apply structure by introducing inner products. This
enables us, among other things, to define when vectors are orthogonal.

Definition 2.6 Let V be a vector space. An inner product is a mapping
(·, ·) : V × V 7→ C satisfying

(x, y) = (y, x) (2.4a)
(αx1 + βx2, y) = α(x1, y) + β(x2, y) (2.4b)

(x, y) ≥ 0 , (x, x) = 0⇔ x = 0 (2.4c)

for all x1, x2, x, y ∈ V and α, β ∈ C.

In L2(R) we have the inner product

(f, g) =
∫

R

f(x)g(x)dx. (2.5)

An inner product also gives rise to an induced norm, defined by

‖x‖ = (x, x)
1
2 (2.6)

which is well-defined for any vector space equipped with a norm. For
L2(R) the induced norm becomes

‖f‖ = (f, f)
1
2 =

(∫
R

f(x)f(x)dx
) 1

2

=
(∫

R

|f(x)|2dx
) 1

2

(2.7)

which is exactly the 2-norm defined for C0(R) functions in Equation
(2.2).

The ground has now been laid to define a Hilbert space:

Definition 2.7 A vector space, with an inner product, that is a Banach space
with respect to the induced norm is called a Hilbert space.
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The Banach space L2(R) is also a Hilbert space. It has an inner
product defined by (2.5), which in turn defines a norm, which in turn
defines a metric. And by construction, L2(R) is a Banach space since
every element of L2(R) is the limit function of a Cauchy sequence
consisting of C0(R) functions. By introducing inner products similar
to that in Equation (2.5), the spaces L2(Ω) where Ω ⊂ Rn can also be
shown to be Hilbert spaces.

For l2, the space of square summable sequences, the inner product
is defined as

((xn), (yn)) =
∞∑

k=1

xkyk. (2.8)

For finite dimensional (coordinate) vectors, this sum becomes finite
and is similar to the well known inner product in linear algebra,

(x,y) =
n∑

k=1

xkyk = yHx, for x,y ∈ Cn. (2.9)

From linear algebra it is also well known that every vector of a
given (finite dimensional) vector space can be uniquely identified in
terms of its coordinates with respect to some orthonormal basis. This
can be extended to general Hilbert spaces by the following theorem.

Theorem 2.8 Let H be a Hilbert space. Then H is isometric isomorphic to
l2.

Two normed vector spaces are isometric isomorphic when there ex-
ists bijective, linear and isometric operators mapping one to the other.

So considering abstract vectors from a Hilbert space or their coor-
dinates with respect to some basis is “the same”. This is furthermore
supported by the following proposition.

Proposition 2.9 An orthonormal sequence (xk) in a Hilbert space H is an
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orthonormal basis if and only if one of the following conditions hold:1

(x, y) =
∞∑

k=1

(x, xk)(xk, y) for all x, y ∈ H (2.10a)

‖x‖2 =
∞∑

k=1

|(x, xk)|2 for all x ∈ H (2.10b)

∀k (x, xk) = 0 ⇔ x = 0. (2.10c)

Apart from the fact that an inner product can induce a norm, it
can also indicate when vectors are orthogonal: The (non-zero) vectors
x, y ∈ H are orthogonal exactly when (x, y) = 0. The notion of orthog-
onality can be extended to subsets in the following way.

Definition 2.10 Let M and N be nonempty subsets of a Hilbert space H.
We say thatM and N are orthogonal and writeM ⊥ N if (x, y) = 0 for
all x ∈M and y ∈ N .

For a nonempty subsetM ofH, we define the orthogonal complement
toM, denotedM⊥, by

M⊥ = {y ∈ H | (x, y) = 0 for all x ∈M} .
Notice that since an inner product is linear in the first variable,M⊥

is obviously closed.
LetM and N be closed subspaces of a Hilbert space H andM ⊥

N . We define the orthogonal sum ofM andN , denotedM⊕N , by

M⊕N = {z ∈ H | z = x+ y, x ∈M, y ∈ N} .
The next theorem states that every Hilbert space can be seperated

into two subsets orthogonal to each other: A closed subset and “the
rest”.

Theorem 2.11 (Projection Theorem) If M is a closed subspace of a Hil-
bert spaceH, thenH =M⊕M⊥.

1Equation (2.10b) is known as Parsevals equation.
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We also introduce the concept of a projection operator. An operator
Π ∈ B(X ) is a projection operator if and only if Π 2 = Π. Let X be
spanned by the orthonormal basis (φn). We can now project orthog-
onally onto the space XN = span{φ1, φ2, . . . , φN} with the following
projection operator

ΠXNx =
N∑

n=1

(x, φn)φn. (2.11)

Since ΠXNφ1 = φ1 it is easy to see that ‖ΠXN‖ = 1.

2.5 Operators on Hilbert Spaces

We will now look at bounded linear operators fromX into Y , whereX
and Y are Hilbert spaces. First, the adjoint operator must be defined.

Theorem 2.12 Let T ∈ B(X ,Y) where X and Y are Hilbert spaces. Then
there is a unique operator T ∗ ∈ B(Y,X ) satisfying

(Tx, y) = (x, T ∗y) for all x, y ∈ X × Y ,

and we have ‖T ‖ = ‖T ∗‖. The operator T ∗ is called the adjoint of T .

The adjoint is a generalization of the Hermitian (or conjugate trans-
pose) of a matrix. When an operator T is represented by a finite matrix
A, its adjoint T ∗ is represented by AH . This will be proved more for-
mally later.

An operator T can have two very important properties relating to
its adjoint. If T = T ∗ we call T self-adjoint and if T ∗T = TT ∗ we call T
normal. Note that self-adjoint operators are also normal.

Consider now an operator T ∈ B(X ,Y) where X and Y are Hilbert
spaces. We now wish to use the projection theorem to split up Y into
the range, R(T ), and the rest. But R(T ) is not necessarily closed, so
the best we can do is to write

Y = R(T )⊕R(T )⊥.
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This can be rewritten. Let y ∈ R(T )⊥, which means that (Tx, y) =
0 for all x ∈ X . By using the definition of the adjoint, this is equivalent
to (x, T ∗y) = 0 for all x ∈ X . But this means that T ∗y = 0 so y ∈
N (T ∗). Now have this formulation

Y = R(T )⊕N (T ∗). (2.12)

Before defining one of the most important concepts of this thesis,
compact operators, we must define what a compact set is.

Definition 2.13 A set S in a normed space V is called compact if every
sequence in S has a subsequence that converges to an element of S.

A compact set is closed and bounded and in finite dimensions we
furthermore have that a closed and bounded set is compact, i.e. they
are equivalent. We can now define a compact operator:

Definition 2.14 Let V andW be normed spaces. An operatorK ∈ B(V ,W)
is termed a compact operator if K(A) is compact inW for all bounded sets
A ⊂ V .

If the dimension of K(V ) is finite we say that K has finite rank.
Consider such an operator and a bounded subsetA ⊂ V . The setK(A)
is closed by construction and it is also bounded since K is bounded.
Hence, K(A) is compact and so is the operator K . In other words:
Every bounded linear operator of finite rank is compact.

We now state the following important theorem.

Theorem 2.15 Let X , Y be Hilbert spaces and assume that (Kn) is a se-
quence of compact operators in B(X ,Y) converging to an operator K (in the
operator norm). Then K is compact.

This theorem shows that the set of compact operators in B(X ,Y) is
closed. It also follows that if a given operator K can be approximated
arbitrarily well using operators of finite rank, it must be compact.

One can show that an operator is compact if and only if its adjoint
is compact. Furthermore, any product, both from left and right, of a
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compact operator and a bounded linear operator is compact (see pages
485–486 in [DS64]).

We now introduce the concept of weak convergence, which turns
out to have special special properties for compact operators.

A sequence (xn) ⊂ H is said to converge weakly to x if (xn, y) →
(x, y) for all y ∈ H. The choice of the adjective weak is not accidental.
Assume that xn → x, that is, ‖xn − x‖ → 0. Then we have from
Cauchy-Schwartz’ inequality

|(xn, y)− (x, y)| = |(xn − x, y)| ≤ ‖xn − x‖‖y‖ → 0,

so (usual) convergence implies weak convergence.
We can now prove the following theorem.

Theorem 2.16 LetH be a Hilbert space and let (xn) be a weakly convergent
sequence with (weak) limit x. IfK ∈ B(H) is compact then (Kxn) converges
in norm to Kx.

Proof: The assumption of weak convergence implies for all y ∈ H that

(Kxn, y) = (xn,K
∗y)→ (x,K∗y) = (Kx, y) for n→∞,

so (Kxn) converges weakly to Kx. Since usual convergence implies
weak convergence,Kx is the only possible limit. So assume that (Kxn)
does not converge to Kx. Then it is possible to extract a subsequence
(Kxnk

) of (Kxn) such that

‖Kxnk
−Kx‖ > δ for all k ∈ N

and some δ > 0. But since (xn) is bounded and K is compact, we can
find a subsequence (Kxnkl

) of (Kxnk
) that is (usually) convergent to

a y ∈ H, but since (Kxnkl
) converges weakly to Kxwe must have that

y = Kx. This is not possible according to the inequality above, hence
Kxn → Kx. �

Note that in a Hilbert space H with arbitrary orthonormal basis
(en) we have x =

∑
n(x, en)en for all x ∈ H. This means that en con-

verges weakly to 0 as n → ∞. From the theorem above, this implies
that Ken → 0 for compact K .
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The following theorem provides a result that shows exactly when
an operator is bounded and when it is compact.

Theorem 2.17 Let T : X 7→ Y be an operator with orthonormal sequence
(vn) ⊂ X and orthonormal basis (un) ⊂ Y . Let furthermore (µn) be a
sequence of complex numbers. Define T by

Tx =
∞∑

n=1

µn(x, vn)un.

Then T is bounded if and only if (µn) is bounded, and T is compact if
and only if µn → 0.

Proof: Assume that (µn) is bounded. That means that a C exists such
that µn ≤ C for all n. Then from Parsevals equality, Equation (2.10b),
we get

‖Tx‖2 =
∞∑

n=1

|µn|2|(x, vn)|2 ≤ C2
∞∑

n=1

|(x, vn)|2 ≤ C2‖x‖2

which means that T is bounded. On the other hand, if T is bounded, a
C exists such that ‖Tx‖ ≤ C‖x‖ for all x ∈ X and from the inequality
above, we see that (µn) must then be bounded.

Assume now that µn → 0 and define the sequence of operators
(Tk) by

Tkx =
k∑

n=1

µn(x, vn)un.

Since Tk has finite rank for every k, all Tk’s are compact, and since

‖Tx− Tkx‖2 =
∞∑

n=k+1

|µn|2|(x, vn)|2 ≤ C2
k‖x‖2

where Ck = supn>k{|µn|} we see that

‖T − Tk‖ ≤ Ck → 0,
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implying that Tk → T , so T is compact.
Assume instead that µn 9 0. Then there is a subsequence (µnk

)
of (µn) and an ε > 0 such that |µnk

| > ε for all k. Consider the cor-
responding subsequences (vnk

) of (vn) and (unk
) of (un). They are

orthonormal and since

‖Tvni − Tvnj‖2 = ‖µniuni − µnjunj‖2 = |µni |2 + |µnj |2 > 2ε2

for all i 6= j, (Tvn) can have no subsequences that are Cauchy, hence
(Tvnk

) does not converge to 0, and T is not compact (cf. the remark
following Theorem 2.16). �
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C H A P T E R 3

Eigenvalues and Singular
Values

singular, being the only one of a kind; unique
— THE AMERICAN HERITAGE DICTIONARY OF THE ENGLISH LANGUAGE

This chapter contains a general view of eigenvalues and singular
values for compact linear operators. We will look at how these values
behave for concrete classes of operators in the next chapter.

3.1 Eigenvalues

Given a linear operator T : H 7→ H, then if

Tx = λx

has non-trivial solutions for some λ ∈ C we call λ an eigenvalue of
T . The corresponding x’s that satisfy the equation, are called eigen-
vectors. Note that, because of the linearity of T , the eigenvectors will
form a vector space called the eigenspace corresponding to λ.
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3.1.1 The Spectrum

The set of eigenvalues is a subset of the spectrum of T . The spectrum
can be introduced by defining the resolvent of T ,

Rλ(T ) = (T − λI)−1 (3.1)

which is defined for those λ ∈ C for which (T − λI) is injective. We
now have the following definition.

Definition 3.1 The resolvent set for T , ρ(T ), is the set of λ ∈ C for which
Rλ(T ) exists as a densely defined and bounded operator on H. The comple-
ment σ(T ) = C \ ρ(T ) is called the spectrum for T .

The spectrum can be divided into three disjoint subsets. If Rλ(T )
does not exist it means that (T − λI) is not injective. This implies
that we have (T − λI)x = (T − λI)y for some x, y ∈ H were x 6= y.
So (T − λI)(x − y) = 0 which means that λ is an eigenvalue with
corresponding eigenvector x − y (6= 0). The subset of σ(T ) consisting
of all eigenvalues is called the point spectrum of T .

The set of λ’s for which Rλ(T ) exists and is densely defined but
unbounded, is called the continuous spectrum for T .

Finally, the set of λ’s for which Rλ(T ) exists but is not densely de-
fined is called the residual spectrum for T .

3.1.2 Eigenvalues of Compact Operators

If a compact operator K ∈ B(X ) is defined on a finite N -dimensional
space, we know from linear algebra that the spectrum of K consist
of exactly N eigenvalues (counting with multiplicity). The interesting
case is when X is infinite dimensional:

Theorem 3.2 Let K ∈ B(X ) be a compact operator on an infinite dimen-
sional normed space X . Then λ = 0 belongs to the spectrum σ(K) and
σ(K) \ {0} consists of at most a countable set of eigenvalues with no point
of accumulation except, possibly, λ = 0.
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Furthermore, the eigenspace of every non-zero eigenvalues will be finite
dimensional.

Proof: See Theorem 3.9 in [Kre99]. �

Note that if K is defined on an infinite dimensional space, λ = 0
will always belong to the spectrum. It can belong to any part of the
spectrum though, and if λ = 0 is an eigenvalue, the corresponding
eigenspace may be infinite dimensional.

We now turn to the case of a compact and self-adjoint operator.
Such an operator has some especially nice properties, very similar to
those of a symmetric matrix in linear algebra. The following spectral
theorem summarizes these properties.

Theorem 3.3 (Spectral Theorem for Compact Self-Adjoint Operators)
Let T be a compact and self-adjoint operator on a Hilbert space H. Then H
has an orthonormal basis (en) consisting of eigenvectors for T . If H is in-
finite dimensional, the corresponding eigenvalues, different from 0, (λn) are
real and can be arranged in a non-increasing sequence |λ1| ≥ |λ2| ≥ · · ·
where λn → 0 for n→∞. Every vector x can be written as

x =
∑
n∈L

(x, ϕn)ϕn +Qx,

where Q : H 7→ N (T ) projects onto the null-space of T and in this case the
mapping becomes

Tx =
∑
n∈L

λn(x, ϕn)ϕn.

If the range of T has dimension N we have L = {1, 2, . . . , N}. Is the range
infinite dimensional we have L = N.

Although the proof has been omitted, some aspects of it are impor-
tant to mention, since it tells us how to pick out the eigenvalues one
by one, in non-increasing order. It relies on the fact that for a compact
and self-adjoint operator T , defined on a Hilbert space H, we always
have (see e.g. [Ped00])

|λ1| = ‖T ‖ = max {|(Tϕ, ϕ)| | ϕ ∈ H, ‖ϕ‖ = 1}
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where λ1 is an eigenvalue of T and obviously the largest one in magni-
tude. Let a corresponding eigenfunction be denoted ϕ1. By construct-
ing Q1 = {ϕ1}⊥ we find that T can now be considered as an operator
on this new Hilbert spaceQ1. And so there must exist a largest eigen-
value in this space. In general:

|λn| = ‖T ‖ = max {|(Tϕ, ϕ)| | ϕ ∈ Qn−1, ‖ϕ‖ = 1} ,
Qn = span{ϕ1, ϕ2, . . . , ϕn}⊥ (3.2)

If H is finite dimensional this process will stop when H has been
spanned by the eigenvectors—otherwise it will continue infinitely while
|λn| → 0.

We note that when an operator is normal, T ∗T = TT ∗, the prop-
erties in the spectral theorem for compact self-adjoint operators still
hold except that the eigenvalues can now also be complex (Corollary
X.4.5 in [DS63]).

When an operator T is non-negative ((Tx, x) ≥ 0 for all x ∈ H), it is
self-adjoint and can only have non-negative eigenvalues. In this case,
a minimax principle can be utilized to obtain a formulation equivalent
to the expression (3.2):

λ1 = sup
‖ϕ‖=1

(Tϕ, ϕ) (3.3a)

λn+1 = inf
z1,...,zn∈H

sup
ϕ⊥z1,...,zn

‖ϕ‖=1

(Tϕ, ϕ) (3.3b)

This result is due to Weyl and Courant (see [Kre99, p. 276] for a
proof).

3.2 Singular Values

Singular values have proved a very useful tool in analyzing compact
operators. They rely on the simple fact that the operator K∗K is self-
adjoint and non-negative for every compact K .
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Definition 3.4 Let X and Y be Hilbert spaces andK ∈ B(X ,Y) a compact
operator. The (non-negative) square roots of the eigenvalues of K∗K : X →
X , (µn), are called the singular values of K .

The null-spaces of K and K∗K are identical. If x ∈ N (K) then
clearly x ∈ N (K∗K). Assume x ∈ N (K∗K). Then 0 = (K∗Kx, x) =
(Kx,Kx) = ‖Kx‖2 ⇒ Kx = 0⇔ x ∈ N (K). From this follows that

N (K) = N (K∗K). (3.4)

More insight can be obtained by introducing singular vectors. They
have some very nice properties, similar to those from the spectral the-
orem for self-adjoint operators.

Theorem 3.5 Let µn, n ∈ L, denote the sequence of non-zero singular val-
ues of the compact operator K ∈ B(X ,Y) repeated according to their mul-
tiplicity. Then there exists orthonormal sequences (vn) ⊂ X and (un) ⊂ Y
such that

Kvn = µnun (3.5)
K∗un = µnvn (3.6)

for all n ∈ L. For each f ∈ X we have

f =
∑
n∈L

(f, vn)vn +Qf (3.7)

where Q : X 7→ N (K) projects onto the null-space of K and the mapping
can be written as

Kf =
∑
n∈L

µn(f, vn)un. (3.8)

Proof: Let L denote the set of indices of all non-zero singular values of
K . Let (vn) be an orthonormal sequence consisting of eigenvectors for
K∗K so that K∗Kvn = µ2

nvn for all n ∈ L. Define a second sequence
by

un =
1
µn
Kvn, n ∈ L.
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This sequence is orthonormal since

(ui, uj) =
(

1
µi
Kvi,

1
µj
Kvj

)
=

1
µiµj

(K∗Kvi, vj) =
µi

µj
(vi, vj) = δij ,

(3.9)
and (3.5) and (3.6) are obviously fulfilled. To prove (3.8) we observe
that an arbitrary f ∈ X can be written

f =
∑
n∈L

(f, vn)vn +Qf,

where Q : X 7→ N (K∗K) = N (K) projects onto the null-space of K
(see (3.4) for the null-space equality). From this follows

Kf =
∑
n∈L

(f, vn)Kvn +KQf =
∑
n∈L

µn(f, vn)un.

�

Equation (3.8) is often termed the Singular Value Expansion (or
Decomposition).

Note that the set L was introduced for simplicity. Later on, sum-
mations of the form

∑∞
n=1 will be used. When only a finite number

of non-zero singular values exists, the sum should be understood as
finite.

Notice the relation to Theorem 2.17 (page 21) which states exactly
when an operator, defined as in Equation (3.8), is bounded and when
it is compact. The above theorem has now shown that whenever an
operator is compact, the mapping can be expressed like in (3.8).

Since K∗K is an obvious non-negative operator, the expressions
in (3.3) for the eigenvalues of such an operator can appropriately be
transferred to this setting. Since the singular values are the square
roots of the eigenvalues ofK∗K and by using that (K∗Kx, x) = ‖Kx‖2
we get

µ1 = max
‖x‖=1

‖Kx‖ (3.10a)

µn+1 = min
z1,...,zn∈X

max
x⊥z1,...,zn

‖x‖=1

‖Kx‖. (3.10b)
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Note that the right-hand side of (3.10a) is precisely the definition
of the operator norm of K , so µ1 = ‖K‖.

By using these relations we can prove the following.

Theorem 3.6 The singular values of compact operators K1 and K2 satisfy

µn+m+1(K1 +K2) ≤ µn+1(K1) + µm+1(K2)

Proof:

µn+m+1(K1 +K2) = min
z1,...,zn+m∈X

max
x⊥z1,...,zn+m

‖x‖=1

‖(K1 +K2)x‖

≤ min
z1,...,zn+m∈X

max
x⊥z1,...,zn

‖x‖=1

‖K1x‖

+ min
z1,...,zn+m∈X

max
x⊥zn+1,...,zn+m

‖x‖=1

‖K2x‖

≤ min
z1,...,zn∈X

max
x⊥z1,...,zn

‖x‖=1

‖K1x‖

+ min
zn+1,...,zm+n∈X

max
x⊥zn+1,...,zn+m

‖x‖=1

‖K2x‖

≤ µn+1(K1) + µm+1(K2)

�

If the inverse operator K−1 exists and is compact, we must have
that K has a finite dimension N (otherwise the inverse is unbounded)
and we must have that the null-space is trivial, i.e. that all singular
values are non-zero. In this case, it is straightforward to show that the
inverse has the following appearance

K−1g =
N∑

n=1

1
µn

(g, un)vn.

We can now introduce the condition number of an operator as

κ(K) = ‖K‖‖K−1‖ = µ1
1
µN

=
µ1

µN
, (3.11)
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since µ−1
N must be the largest singular value of K−1. The condition

number is often used in numerical linear algebra to illustrate the “ill-
posedness” of certain problems. More on this in Chapter 5, “Ill-posed
Problems and Regularization”.

What is the adjoint operator in terms of the singular values and
-vectors? Let the singular value expansion of K : X 7→ Y be

Kf =
∞∑

n=1

µn(f, vn)un

and let

f =
∞∑

n=1

(f, vn)un +Qf,

where Q projects onto the null-space of K and let

g =
∞∑

m=1

(g, um)um + Pg,

where P projects onto {u1, u2, . . .}⊥. We now get

(Kf, g) =

( ∞∑
n=1

µn(f, vn)un,
∞∑

m=1

(g, um)um + Pg

)

=
∞∑

n=1

µn(f, vn)
[
(g, un) + (un, P g)

]
=

∞∑
n=1

µn(g, un) [(f, vn) + (Qf, vn)]

=

( ∞∑
n=1

(f, vn)vn +Qf,

∞∑
m=1

µm(g, um)vm

)
= (f,K∗g)

We have here used that (un, P g) = 0 from the definition of P and
that (Qf, vn) =

(
Qf, 1

µn
K∗un

)
= 1

µn
(KQf, un) = 0. From this we see
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that

K∗g =
∞∑

n=1

µn(g, un)vn.

3.3 Relating Eigenvalues and Singular Values

Given a normal operator K , there is a straightforward relation be-
tween the singular values and the eigenvalues. This is seen by rewrit-
ing the spectral decomposition for a normal operator

Kf =
∞∑

n=1

λn(f, ϕn)ϕn =
∞∑

n=1

|λn|(f, ϕn)
(
λn

|λn|ϕn

)
,

and noticing that this last expression is on singular value expansion
form. So for normal (and self-adjoint) operators, we have µn = |λn|
for all n.

The next theorem provides us with some inequalities relating sin-
gular values and eigenvalues.

Theorem 3.7 Let K be a compact linear operator, let (λn) denote the eigen-
values and (µn) the singular values, ordered such that

|λ1| ≥ |λ2| ≥ · · · and µ1 ≥ µ2 ≥ · · · .
Then

m∏
n=1

|λn| ≤
m∏

n=1

µn (3.12)

and
m∑

n=1

|λn|α ≤
m∑

n=1

µα
n ,

∞∑
n=1

|λn|α ≤
∞∑

n=1

µα
n (3.13)

for any constant α > 0 and all m ∈ N.

This theorem was proved by Hermann Weyl [Wey49] for finite
dimensional mappings, but states that the proof can be extended to
“completely continuous linear operators”, another word for compact
linear operators.
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Theorem 3.8 If there are an infinite number of non-zero eigenvalues we have

µn = O(n−p) ⇒ |λn| = O(n−p) (3.14)

for positive p.

Proof: Assume µn = O(n−p), that is, there exists a c > 0 such that
µn ≤ cn−p for all n. We now get from the relation (3.12),

m∏
n=1

|λn| ≤
m∏

n=1

µn ≤
m∏

n=1

cn−p ≤ cm(m!)−p.

When inserting the Stirling approximation of the factorial function1

m! =
√

2πme−mmmΘ(m), Θ(m) = 1 +O
(

1
m

)
,

we get the following inequality

m∏
n=1

|λn| ≤ (2πm)−
p
2
(
ce−p

)m (
m−p

)m Θ(m)−p.

By setting c′ = ce−p we get

m∏
n=1

|λn|
c′m−p

≤ (2πm)−
p
2 Θ(m)−p → 0,

as m → ∞. From this we see that we must have |λm| ≤ c′m−p for
m→∞. �

1See [Knu97] page 115 for more information on this approximation.
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C H A P T E R 4

Operator Classes

class, to arrange, group, or rate according
to qualities or characteristics

— THE AMERICAN HERITAGE DICTIONARY OF THE ENGLISH LANGUAGE

The majority of this chapter will address the question: Which oper-
ators have eigenvalues and if so, how do they asymptotically behave?
An attempt will be made to classify operators that have similar prop-
erties with respect to this question.

4.1 Integral Operators

A large part of compact operators can be expressed as integral opera-
tors and special focus will be put these.

An integral operator K is generically of the form

Kf(s) =
∫

J

k(s, t)f(t)dt, s ∈ I. (4.1)

The functional k : I × J 7→ C is called the kernel and we say
that K is the integral operator induced by k. In the following, un-
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less stated otherwise, we assume that I and J are intervals of the form
[a, b], [a,∞[, R or product spaces of such.

In order to look at operators mapping L2(J) into L2(I), the kernel
can be quite unrestricted. However, the domain of K , D(K), has to
specified in order to make the integral in (4.1) make sense. This is
done by the following definition

D(K) =
{
f ∈ L2(J) |k(s, ·)f ∈ L1(J) for almost every s ∈ I

and g(s) =
∫

J

k(s, t)f(t)dt ⇒ g ∈ L2(I)
}
.

(4.2)

We define the range of K asR(K) = K(D(K)).
This class of integral operators is big and we will, for one, only look

at those operators which are closed and bounded. This is ensured by
requiring that D(K) = L2(J) (Theorem 3.10 in [HS78]).

The key property of the operators in this thesis is their compact-
ness, and a large class of compact operators are integral operators. But
there are integral operators that are not compact and there are compact
operators that are not integral. See Appendix B for examples of both
kinds.

4.2 Hilbert–Schmidt Operators

Hilbert–Schmidt operators represent a class of operators that turn out
to be both integral and compact.

Definition 4.1 An operator T ∈ B(V ,W) is said to be a Hilbert–Schmidt
operator if

∞∑
n=1

‖Ten‖2 <∞ (4.3)

for some orthonormal basis (en) ⊂ V .
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Given two orthonormal bases in V , (en) and (ẽn) we get

∞∑
n=1

‖Ten‖2 =
∞∑

n=1

∞∑
m=1

|(Ten, ẽm)|2 =
∞∑

m=1

∞∑
n=1

|(en, T
∗ẽm)|2

=
∞∑

m=1

‖T ∗ẽm‖2

which shows that
∞∑

n=1

‖Ten‖2 =
∞∑

n=1

‖T ∗en‖2 =
∞∑

n=1

‖T ẽn‖2.

This means that when the inequality (4.3) is fulfilled, it is so for every
possible basis and we define

‖T ‖2 =

( ∞∑
n=1

‖Ten‖2
) 1

2

(4.4)

for an arbitrary basis (en). This 2-norm is also called the Hilbert–
Schmidt norm.

We now consider the case were T ∈ B(L2(J), L2(I)). Let (eJ
n) and

(eI
m) be an orthonormal basis for L2(J) and L2(I) respectively. The

sequence (eI
m ⊗ eJ

n) will now be an orthonormal basis for L2(I × J),
see Section A.5 in the appendix. Using Parsevals equality we see from

‖TeJ
n‖2 =

∞∑
m=1

|(TeJ
n, e

I
m)|2 <∞

that the integral kernel k defined as

k =
∞∑

m=1

∞∑
n=1

(TeJ
n, e

I
m)eI

m ⊗ eJ
n (4.5)

lies in L2(I × J). Let K be the integral operator induced by k. We
wish to show that this is a bounded operator. By using the Cauchy-
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Schwartz inequality we get1

|Kf(s)| =
∣∣∣∣∫

J

k(s, t)f(t)dt
∣∣∣∣ ≤ ‖k(s, ·)‖‖f‖,

leading to the bound

‖Kf‖2 =
∫

I

|Kf(s)|2ds ≤
∫

I

‖k(s, ·)‖2‖f‖2ds

=
∫

I

∫
J

|k(s, t)|2dtds‖f‖2 = ‖k‖2‖f‖2,

which shows thatK is bounded and ‖K‖ ≤ ‖k‖. Notice that the kernel
norm and operator norm are not, in general, equal.

Now we get

(KeJ
n, e

I
m) =

(∫
J

∞∑
m′=1

∞∑
n′=1

(TeJ
n′ , eI

m′)eI
m′(·)eJ

n′(t)eJ
n(t)dt, eI

m

)

=
∞∑

m′=1

∞∑
n′=1

(TeJ
n′ , eI

m′)
(
eI

m′ ⊗ eJ
n′ , e

I
m ⊗ eJ

n

)
= (TeJ

n, e
I
m).

(4.6)

This obviously implies that KeJn = TeJ
n for all n, which shows for

arbitrary x ∈ L2(J)

Kx = K

( ∞∑
n=1

(x, eJ
n)eJ

n

)
=

∞∑
n=1

(x, eJ
n)KeJ

n =
∞∑

n=1

(x, eJ
n)TeJ

n = Tx,

because of the continuity of both T and K (they are linear and boun-
ded), so T = K . This means that every Hilbert–Schmidt operator is an
integral operator.

1From the Fubini Theorem (see [Rud66]) we have that k ∈ L2(I × J) implies that the
function t → |k(s, t)|2 lies in L1(J). This means that

R
J |k(s, t)|2dt < ∞ ⇔ k(s, ·) ∈

L2(J).
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We now define an integral operator K̃MN with kernel

k̃MN =
M∑

m=1

N∑
n=1

(TeJ
n, e

I
m)eI

m ⊗ eJ
n.

The operator K̃MN has finite rank for every M and N , and clearly
k̃MN → k as M,N → ∞. Because k − k̃MN induces a well-defined
(Hilbert–Schmidt) integral operator we have ‖K−K̃MN‖ ≤ ‖k−k̃MN‖
and so K̃MN → K in the operator norm. This shows thatK , and hence
T , is compact (see Theorem 2.15).

In connection with defining the 2-norm above, see Equation (4.4),
it was shown that the norm was invariant with respect to the basis. If
we now use the (vn)-basis from the singular value expansion we get

‖K‖2 =

( ∞∑
n=1

‖Kvn‖2
) 1

2

=

( ∞∑
n=1

‖µnun‖2
) 1

2

=

( ∞∑
n=1

µ2
n

) 1
2

.

We shall later see how this way of defining a norm can be generalized.
What does the adjoint of a (Hilbert–Schmidt) integral operator look

like? Let k ∈ L2(I × J) be the kernel of K , f ∈ L2(J) and g ∈ L2(I).
We now get

(Kf, g) =
∫

I

(Kf)(s)g(s)ds

=
∫

I

(∫
J

k(s, t)f(t)dt
)
g(s)ds

=
∫

J

f(y)
(∫

I

k(s, t)g(s)ds
)
dt

=
∫

J

f(y)
(∫

I

k(s, t)g(s)ds
)
dt = (f,K∗g)

(4.7)

So the kernel of the adjoint operatorK∗ is the conjugate transposed
kernel, k(t, s). Such a kernel is called Hermitian.
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Now if two integral operators K1 and K2 are given, what is the
kernel of K1K2? Let k1 ∈ L2(I0 × I1) be the kernel for K1 and k2 ∈
L2(I1 × I2) the kernel for K2. Then we get

(K1K2f)(s) =
∫

I1

k1(s, z)
∫

I2

k2(z, t)f(t)dtdz

=
∫

I2

[∫
I1

k1(s, z)k2(z, t)dz
]
f(t)dt

=
∫

I2

k1,2(s, t)f(t)dt.

(4.8)

SoK1K2 is just another integral operator with kernel k1,2 ∈ L2(I0×
I2).

Let us now consider Kn with associated kernel kn ∈ L2(I × I).
Using the above calculations recursively we get

k1 = k, kn(s, t) =
∫

I

k(s, z)kn−1(z, t)dz. (4.9)

The kernels kn are called the iterated kernels.
We shall also define the trace of an integral operator K with kernel

k ∈ L2(I × I) as:

tr(K) =
∫

I

k(t, t)dt,

whenever it makes sense. The traces of Kn will be called the higher
order traces.

4.3 Operators Without Surprises

The word “surprise” refers to the eigenvalues. As already seen, self-
adjoint operators behave very nicely when it comes to spectral decom-
position. The eigenvalues are real and the eigenvectors are mutually
orthogonal and form a basis of the range of the operator. But other
operators are similarly nice. This section will present some.
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4.3.1 Normal Operators

Normal operators possess a full spectral decomposition like self-adjo-
int operators do. The only difference lies in the fact that the eigenval-
ues can be complex. Furthermore, as shown in Section 3.3, the absolute
value of the eigenvalues are equal to the singular values.

When K is an integral operator with kernel k ∈ L2(I × I) we get
by using Equation (4.8):∫

I

k(z, s)k(z, t)dz =
∫

I

k(s, z)k(t, z)dz, for almost all (s, t) ∈ I2,

as the condition for an integral operator to be normal. We shall later
see a class of integral operators that are normal.

4.3.2 Rotated Self-Adjoint Operators

Consider an operator that fulfills the relation

K∗ = αK,

where α ∈ C and |α| = 1. We call such an operator a rotated Hermitian
operator.2 Because of

K = (K∗)∗ = (αK)∗ = αK∗ = |α|2K,

we see the need for demanding |α| = 1. When α = 1 the operator
is self-adjoint by definition and when α = −1 the operator is called
anti-Hermitian. By observing

K∗K = αK2 and KK∗ = K(αK) = αK2,

we see that K is normal. Let now H =
√
αK and we have from

H∗ = (
√
αK)∗ =

√
αK∗ =

√
ααK = |α|√αK = H,

2This term is an invention of the author since the generalization from anti-Hermitian
operators with α = −1 is straightforward.
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that H is self-adjoint. Assume that λ is an eigenvalue of H so Hϕ =
λϕ. This implies

√
αKϕ = λϕ ⇔ Kϕ =

λ√
α
ϕ.

So all spectral properties that hold for self-adjoint operators are
inherited by rotated Hermitian operators, except that the eigenvalues
all lie on the line 1√

α
t, t ∈ R, in the complex plane instead of on the

real axis.

4.3.3 Degenerate Kernels

A degenerate kernel is of the generic form

k(s, t) =
N∑

n=1

an(s)bn(t), (s, t) ∈ I × J. (4.10)

The sequences (an)N
n=1 and (bn)N

n=1 are each assumed to be linearly
independent. If they are not, the expression (4.10) can easily be rewrit-
ten so that they are linearly independent (resulting in a smaller value
of N ).

Let now an orthonormal basis for span{a1, a2, . . . , aN , b1, b2, . . . , bN}
be (en)N ′

n=1 where N ≤ N ′ ≤ 2N . There then exists matrices A,B ∈
CN ′×N such that

an =
N ′∑

k=1

Ak,nek and bn =
N ′∑

k=1

Bk,nek. (4.11)

LetK be the integral operator induced by k and consider the eigen-
value problem Kϕ = λϕ:

Kϕ = K

 N ′∑
j=1

(ϕ, ej)ej

 =
N ′∑
j=1

(ϕ, ej)Kej = λϕ ⇔

N ′∑
j=1

(ϕ, ej)(Kej, ei) = λ(ϕ, ei) for all i = 1, 2, . . . , N ′.
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This shows that the original eigenvalue problem is equivalent to
the following matrix eigenvalue problem:

Wx = λx,

where Wi,j = (Kej , ei) and xi = (ϕ, ei), W ∈ CN ′×N ′
and x ∈ CN ′

.
Using the expressions in (4.11) for an and bn we get

(Kej, ei) =

(∫
J

N∑
n=1

an(·)bn(t)ej(t)dt, ei

)
=

N∑
n=1

((ej , bn)an, ei)

=
N∑

n=1

Bj,nAi,n ⇒ W = ABH .

So the eigenvalues of the operator K and the matrix W are iden-
tical. Because of the dimensions of A and B the matrix W, and K ,
can have at most N eigenvalues different from zero. Note also that the
infinite number of vectors orthogonal to e1, e2, . . . , eN ′ are all eigen-
vectors associated with the eigenvalue λ = 0, i.e. lies in the null-space
of K .

See Section D.6 in the appendix for an example of a degenerate
operator.

4.4 The Existence of Eigenvalues of Integral
Operators

Does an integral operator always have eigenvalues? The answer is
no. As we have just seen in the previous sections, some operators are
“well-behaved” and we can foresee the existence of eigenvalues. But
when an operator is infinite dimensional and non-normal, it becomes
less obvious.

This section will provide some classes of operators that have zero,
at least one, or a finite number of eigenvalues. Note however, that
the presented results are not exhaustive, that is, do not cover every
possible integral operator.
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4.4.1 Volterra Operators

A Volterra operator is characterized by the fact that its kernel k ∈
L2(I × I) fulfills k(s, t) = 0 for all t > s. This means that, if I = [a, b],
it is representable in the form

Kf(s) =
∫ s

a

k(s, t)f(t)dt, a ≤ s ≤ b.

Regarding the existence of eigenvalues, we have the following im-
portant theorem.

Theorem 4.2 The only possible eigenvalue for a Volterra operator is 0.

Proof: The proof will be limited to the case where k ∈ L2([a, b]2) with
−∞ < a < b < ∞. Since C([a, b]2) is dense in L2([a, b]2) it is sufficient
to look at the case∫ s

a

k(s, t)ϕ(t)dt = λϕ(s), s ∈ [a, b] (4.12)

with k ∈ C([a, b]2) and ϕ ∈ L2([a, b]). Since k is continuous and its
domain is a closed and bounded set, there exists an M > 0 such that
|k(s, t)| ≤M for all (s, t) ∈ [a, b]2.

Assume that λ 6= 0 is an eigenvalue with corresponding eigenvec-
tor ϕ. We now have

‖ϕ‖1 =
∫ b

a

|ϕ(t)| · 1dt ≤ ‖ϕ‖2‖1‖2 =
√
b− a‖ϕ‖2 <∞ (4.13)

according to Cauchy-Schwartz’ inequality, since 1[a,b] ∈ L2([a, b]).
We now wish to show that

|ϕ(s)| ≤ |µ|nMn‖ϕ‖1 (s− a)n−1

(n− 1)!
for all s ∈ [a, b], (4.14)

where µ = 1
λ , holds for all n ∈ N. This can be done by induction. Since

|ϕ(s)| ≤ |µ|
∫ s

a

|k(s, t)||ϕ(t)|dt ≤ |µ|M‖ϕ‖1
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the inequality (4.14) is shown for n = 1. Assume now that (4.14) holds
for n = k − 1. We now get

|ϕ(s)| ≤ |µ|
∫ s

a

|k(s, t)||ϕ(t)|dt

≤ |µ|
∫ s

a

|k(s, t)||µ|k−1Mk−1‖ϕ‖1 (t− a)k−2

(k − 2)!
dt

≤ |µ|kMk‖ϕ‖1
∫ s

a

(t− a)k−2

(k − 2)!
dt = |µ|kMk‖ϕ‖1 (s− a)k−1

(k − 1)!
.

Since (4.14) now holds for all n ∈ N, we can make the right-hand
side arbitrarily small. This implies that ϕ(s) = 0 for all s ∈ [a, b].

So no non-trivial solutions can exist for non-zero eigenvalues. �

4.4.2 Positive and Symmetrizable Kernels

Some theorems now follow that tell when an integral operator will
have at least one eigenvalue.

In [Hoc73], we have the following theorem.

Theorem 4.3 Let K be an integral operator with kernel k ∈ C(I2) where I
is closed and bounded. Then K has at least one eigenvalue if and only if

tr(Kn) 6= 0.

for some n ≥ 2.

A kernel k ∈ L2(I × J) is denoted positive if, not surprisingly,
k(s, t) > 0 for all (s, t) ∈ I × J . Note that this concept should not
be confused with positive operators.3 The above theorem can then be
used to show the following theorem.

Theorem 4.4 Let K be an integral operator with kernel k ∈ C(I2) where I
is closed and bounded. If k is positive then K has at least one eigenvalue.

3An operator T is positive if (Tx, x) > 0 for all x 6= 0.
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Proof: Consider the operator K2, whose kernel is given by Equation
(4.9),

k2(s, t) =
∫

I

k(s, z)k(z, t)dz.

This kernel is positive which means that the trace, tr(K2), is also pos-
itive. By Theorem 4.3 at least one eigenvalues must now exist. �

Results related to positive kernels can also be found in [Coc72]. In
this book it is further proved that symmetrizable operators have at least
one eigenvalue. Such an operator is defined in the following way.

Definition 4.5 An operator K is (left) symmetrizable if there exists a se-
midefinite self-adjoint operatorH such thatHK is both self-adjoint and non-
null.

The usefulness of this class is unclear, since no example could be
found of a symmetrizable operator that was non-normal and non-
degenerate.

4.4.3 On Operators with only a Finite Number of Eigen-
values

Identifying integral operators with only a finite number of eigenvalues
can be very relevant. This has been the subject of some papers. In
[Swa71], the following curious theorem can be found.

Theorem 4.6 An operator K with kernel k ∈ L2 possesses precisely q non-
zero eigenvalues if and only if the higher order traces k(n) = tr(Kn), n ≥ 2,
satisfy a recurrence relation of the form

k(q+n) + a1k
(q+n−1) + · · ·+ aq−1k

(n+1) + aqk
(n) = 0, for all n ≥ 2

where a ∈ Cq is vector with aq 6= 0.



4.4 The Existence of Eigenvalues of Integral Operators 49

The result, in the words of the author, seems to be “of more theoret-
ical than practical interest.” But it seems to suggest that characterizing
operators that only possess a finite number of eigenvalues is not a sim-
ple subject.

The above theorem deals only with the (higher order) traces of an
integral operator. What if the trace is not well-defined because of some
discontinuity along the diagonal? In [Swa71] the author states that
an arbitrary L2 kernel can be modified and redefined on the diagonal
without changing the essence of the integral equation, in particular
without changing the eigenvalues.

An article by Samuel Karlin [Kar64] also focuses on the existence of
eigenvalues for integral operators. One of the results is very interest-
ing. He introduces the kernel class extended totally positive, abbreviated
ETP. A kernel k ∈ C∞([a, b]2) is said to be ETP if

det

([
∂i+jk(s, t)
∂si∂tj

]n

i,j=0

)
> 0

for all n = 0, 1, 2, . . . and all (s, t) ∈ [a, b]2. He now proves

Theorem 4.7 Let a kernel k ∈ C∞([a, b]2) be of class ETP. Then the in-
duced integral operator K possesses a countable set of simple positive eigen-
values

λ1 > λ2 > λ3 > · · ·
decreasing to zero. Let ϕn denote the corresponding eigenfunctions. Then

det
(
[ϕi(xj)]

n−1,n
i=0,j=1

)
> 0 (< 0) (4.15)

for all choices of n ∈ N and a ≤ x1 < x2 < · · · < xn ≤ b.

The Equation (4.15) may seem a bit strange, but Karlin states that
it implies that ϕn has precisely n zeros and zeros of successive eigen-
functions strictly interlace. This is a very strong characterization of
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the eigenfunctions that shows how they become more and more oscil-
latory.4

The ETP kernel class may seem somewhat abstract. A concrete
class of kernels that lie in ETP are mentioned to be

k(s, t) =
∞∑

n=0

an [x(s)]n [y(t)]n

where an ≥ 0 for all n ∈ N and strictly positive for infinitely many n.

4.5 Singular Values and Eigenvalues of Inte-
gral Operators

The journal Acta Mathematica published in 1931 an article by E. Hille
and J. D. Tamarkin entitled “On the Characteristic Values of Linear In-
tegral Equations” (see [HT31]). The main question was, in the words
of themselves: “What can be said about the distribution of the characteris-
tic values of the Fredholm integral equation [...] on the basis of the general
analytic properties of the kernel [...] such as integrability, continuity, differ-
entiability, analyticity and the like?”

The article included a table in which their results were summa-
rized. This table is re-created in Appendix C on page 141.

Their work lay a solid foundation that is still referenced to today.
Some of the results were later improved by various people, and espe-
cially bounds for singular values, which the Hille and Tamarkin article
did not cover, have emerged.

The following sections will summarize some of the bounds that
can be found in the literature.

4This is very important when talking regularization, since regularized solution often
are assembled from eigenvectors (singular vectors) corresponding to the largest eigen-
values (singular values).
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4.5.1 Analytic Kernels

A function is said to be analytic if it is locally representable as a conver-
gent power series. It is a strong property that is stronger than being in-
finitely many times continuously differentiable (see [MH87, page 205]
for more information).

The eigenvalues of operators with analytic kernels will decay ex-
ponentially. Hille and Tamarkin showed that the asymptotic decay
was

|λn| = O(R− 1
4n)

where the constantR is related to how big an area the kernel is analytic
in (see the exact result in Appendix C). For Hermitian kernels, this
result was improved by Little and Reade [LR84] toO(R−n), where the
constant R was defined as in the case above.

The behavior is much the same for singular values. The following
theorem is from [Kre99], that actually builds upon the result by Little
and Reade.

Theorem 4.8 Let K : L2(I) 7→ L2(I), where I is a finite interval, be an
integral operator with analytic kernel on I × I . Then the singular values of
K decay at least exponentially µn(A) = O(R−n) for some constant R > 1.
Furthermore, the estimate cannot be improved toO(R−(1+ε)n) for any ε > 0.

Proof: We will only outline the proof, see [Kre99] for details. First, by
proper scaling, it is sufficient to consider the interval I = [−1, 1]. Let
the kernel of K be denoted k and define the kernel of the operator Kn

as

kn(s, t) =
1
2
T0(s)a0(t) +

n∑
m=1

Tm(s)am(t)

where Tm(cos θ) = cos(mθ) is themth Chebyshev polynomial and am :
R 7→ C are coefficient functions. We have Kn → K for n → ∞ and it
can be proven that ‖K −Kn‖ = O(R−n) for some R > 1. Now we get
from Theorem 3.6 that

µn+2(K) ≤ µ1(K −Kn) + µn+2(Kn) = ‖K −Kn‖ = O(R−n),
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where µn+2(Kn) = 0 because the dimension of the range of Kn is at
most n + 1 and therefore Kn has no more than n + 1 singular values
different from zero. �

A subset of analytic functions are the entire functions, which are
analytic in the entire complex plane. For such kernels, the decay of
the eigenvalues is even faster. Some kernels will actually lead to an
asymptotic decay of |λn| = O(n−αn), see Section D.2 in the appendix
for an example.

4.5.2 Discontinuous Derivatives

It turns out that it is a discontinuity in some partial derivative of the
kernel with respect to s that is important. For simpler expressions,
let us introduce the notation ∂n

s k = ∂n

∂sn k as the nth partial derivative
of k with respect to s. Whereas analytic kernels lead to exponential
decay of the eigenvalues, the decay is only polynomial when ∂n

s k is
discontinuous for some n.

A special case of the result for kernels in the class Υb (see Appendix
C for the definition of this class) is the following.5

Theorem 4.9 Let an integral kernel k ∈ L2([a, b]2) and let the partial deri-
vatives ∂n

s k(s, t) be continuous for n = 1, 2, . . . , v − 1, v ≥ 0. Let further-
more the vth partial derivative fulfill

∂v
sk(s, t) =

∫ s

a

g(z, t)dz + C(t),

for some function C and where

∫ b

a

[∫ b

a

|g(s, t)|pds
] 1

p−1

dt <∞

5This special case is also mentioned in [Coc72].
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for 1 < p ≤ 2. Then the eigenvalues of the induced integral operator behave
asymptotically as

|λn| = O
(
n−(v+2− 1

p )
)
.

Let us look at the class that Hille and Tamarkin called Lip3(v) where
v ≥ 1. A kernel k ∈ L2([0, 2π]2) lies in this class if the partial derivati-
ves

∂n
s k(s, t), n = 1, 2, . . . , v − 1

all exist and are continuous in s for fixed t. Furthermore, the function
∂v

sk(s, t), considered as a periodic function of s outside the interval
[0, 2π], must satisfy the condition∫ 2π

0

|∂v
sk(s+ ε, t)− ∂v

sk(s, t)| ds < g(t),

where g ∈ L∞, i.e. is bounded, and where ε > 0 is sufficiently small.
Since∫ 2π

0

|∂v
s k(s+ ε, t)− ∂v

s k(s, t)| ds

≤
∫ 2π

0

|∂v
sk(s+ ε, t)| ds+

∫ 2π

0

|∂v
sk(s, t)| ds

= 2
∫ 2π

0

|∂v
sk(s, t)| ds = 2‖∂v

sk(·, t)‖1,

we see that if ‖∂v
sk(·, t)‖1 is bounded for all t, then k ∈ Lip3(v). So

now we can formulate a simpler theorem concerning kernels that have
a discontinuous partial derivative.

Theorem 4.10 Let an integral kernel k ∈ L2([0, 2π]2) and let the partial
derivatives ∂n

s k(s, t) be continuous for n = 1, 2, . . . , v − 1, v ≥ 0. If fur-
thermore the vth partial derivative fulfills that ‖∂v

sk(·, t)‖1 is bounded for all
t, then the eigenvalues of the induced integral operator behave asymptotically
as

|λn| = O
(
n−v(logn)v+ 1

2

)
.
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In the article by Hille and Tamarkin, they are not satisfied with
the presence of the logarithms in the expressions for the Lip-classes,
rows 6, 9 and 10 in the table. They write: “It is very probable, however,
that the presence of the logarithmic factors in the estimates [...] is due to
the imperfection of the method used, and that actually these factors should be
removed or even replaced by logarithmic factors with exponents of opposite
signs.”

Practical use of both Theorem 4.9 and 4.10
can be seen in the appendix, Section D.4.
When it comes to singular values, Smithies [Smi37] proved in 1937

the following theorem.

Theorem 4.11 Let the integral operator K have a kernel k ∈ L2([0, π]2)
and let the partial derivatives ∂n

s k(s, t) be absolutely continuous for n =
1, 2, . . . , v − 1, v ≥ 0. Let furthermore ∂v

sk(·, t) ∈ Lp([0, π]) for almost all t
and for 1 < p ≤ 2. If we also have∫ π

0

[∫ π

0

|∂n
s k(s+ ε, t)− ∂n

s k(s− ε, t)|p ds
] 2

p

dt ≤ A|ε|2α

for some A and for all sufficiently small ε, where either r > 0, α > 0 or
r = 0, α > 1

p − 1
2 , then the eigenvalues of the operator K fulfills

µn = O
(
n−v+α+1− 1

p

)
.

4.5.3 Class Cp operators.

A slightly different approach to the asymptotic decay of eigenvalues
and singular values can be made by introducing special operator norms.
These can be defined for an operator K in terms of its singular values
as

‖K‖p =

( ∞∑
n=1

µp
n

) 1
p

, (4.16)

for all p ≥ 1. Note that for p = 2 this norm is equivalent to the Hilbert–
Schmidt norm defined in Equation (4.3).
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Using this, we see that ‖K‖∞ = supn∈N |µn| = µ1 = ‖K‖ (for the
last equality, see Equation (3.10) and the comment that follows).

We now define Cp as the set of compact operators K for which
‖K‖p <∞. Note that C2 is equivalent to the Hilbert–Schmidt class in-
troduced earlier. An operator of the class C1 is also sometimes termed
a trace class or nuclear operator.

It can be shown that Cp ⊂ Cq whenever p ≤ q. This means that
every integral operator with a kernel in L2 lies in Cp for some p ≤ 2.

Because of inequality (3.13), concerning sums of eigenvalues re-
lated to sums of singular values, we see that for a compact operator
K ∈ Cp with eigenvalues ordered as usual, we have

∞∑
n=1

|λn|p <
∞∑

n=1

µp
n <∞. (4.17)

When considering composite operators, the following theorem can
prove useful.

Theorem 4.12 If K1 ∈ Cp and K2 ∈ Cq we have K1K2 ∈ Cr where 1
r =

1
p + 1

q .

An application of this theorem could be: Given two Hilbert–Schmidt
operators, K1,K2 ∈ C2, we have that K = K1K2 ∈ C1 which in turn
means that the eigenvalues of K will fulfill the inequality in Equation
(4.17) with p = 1. Note that this result is also included in the Hille and
Tamarkin table.

See [DS63] or [Coc72] for proofs and more information.

4.6 Other Operators

Whereas the previous results have covered very broad classes of op-
erators and kernels, more can often be said when focusing on smaller
classes. The following sections will discuss two such classes.
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4.6.1 Polar Kernels

Consider an integral operator K : L2(I) → L2(I) with a kernel of the
type

k(s, t) = A(s)g(s, t)B(t),

where k, g ∈ L2(I × I), A and B are real and positive functions and
the kernel g is Hermitian. IfA(s) = 1 everywhere the kernel k is called
polar, see [Han76, page 235] or [Coc72, page 272].

Consider the eigenvalue problem∫
I

k(s, t)ϕ(t)dt =
∫

I

A(s)g(s, t)B(t)ϕ(t)dt = λϕ(s), s ∈ I,

and set

h(s, t) =
√
A(s)B(s)g(s, t)

√
A(t)B(t) and θ(t) =

√
B(t)
A(t)

ϕ(t).

(4.18)
Now we get ∫

I

h(s, t)θ(t)dt = λθ(s) ⇔∫
I

√
A(s)B(s)g(s, t)

√
A(t)B(t)

√
B(t)
A(t)

ϕ(t)dt = λ

√
B(s)
A(s)

ϕ(s) ⇔∫
I

A(s)g(s, t)B(t)ϕ(t)dt = λϕ(s).

So the eigenvalues of K are identical to those of the integral opera-
tor H induced by the kernel h. Since h is an obvious Hermitian kernel,
the operator H is self-adjoint and the spectral theorem for compact
self-adjoint operators applies. This, for one, ensures that there exists
a sequence of orthonormal eigenfunctions that spans the range of H .
Notice that these eigenfunctions of H , when transformed appropri-
ately (see Equation (4.18)), are also eigenfunctions of K . They are not
guaranteed to be orthonormal, though.
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4.6.2 Periodic Difference Kernels

Consider the integral operator

Kf(s) =
∫ π

−π

k(s− t)f(t)dt, (4.19)

where k ∈ L2([−π, π]) is 2π-periodic. Using the following orthonor-
mal basis for L2([−π, π]),

en(t) =
1√
2π
eint,

we have

k =
∞∑

n=−∞
(k, en)en.

Consider the following mapping using this representation,

Ken(s) =
∫ π

−π

( ∞∑
m=−∞

(k, em)em(s− t)
)
en(t)dt

=
∞∑

m=−∞
(k, em)em(s)

∫ π

−π

e−m(t)en(t)dt

=
∞∑

m=−∞
(k, em)em(s)(en, em) = (k, en)en(s).

Here we have used that em(s − t) = em(s)e−m(t) and that en(t) =
e−n(t).

So every operator with a 2π-periodic difference kernel has en, n ∈
Z, as eigenvectors and (k, en) as the corresponding eigenvalues. This
means that K can be written as

Kx =
∞∑

n=−∞
(k, en)(x, en)en,

so K is actually normal.
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Note that the above conclusions can easily be generalized to oper-
ators with kernels k ∈ L2([a, b]) that are (b − a)-periodic.

As a side-remark let us note that similar properties hold for cir-
culant matrices. For instance, a H ∈ C4×4 circulant matrix has the
structure

H =


h0 h3 h2 h1

h1 h0 h3 h2

h2 h1 h0 h3

h3 h2 h1 h0


for some vector h ∈ C4. The mapping y = Hx can now be seen as
a discrete periodic convolution. Properties with respect to eigenval-
ues and other quantities are similar to the continuous case mentioned
above, see e.g. [Loa92, Section 4.2].
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C H A P T E R 5

Ill-Posed Problems and
Regularization

ill, not favorable
— THE AMERICAN HERITAGE DICTIONARY OF THE ENGLISH LANGUAGE

regular, agreeable to an established
rule, law, principle, or type

— WEBSTER’S REVISED UNABRIDGED DICTIONARY

This chapter will present precise definitions of ill-posedness and
regularization. This will make it clearer as to why some problems are
so “ill”.

5.1 Ill-Posed Problems

Ill-posedness can be defined for operators in general:

Definition 5.1 Let T : X 7→ Y be an operator. Then the equation

Tx = y (5.1)
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with y ∈ Y is called well-posed if T is bijective and the inverse operator
T−1 : Y 7→ X is continuous. Otherwise the equation is called ill-posed.

The requirement y ∈ Y may seem redundant since the equation
is meaningless otherwise. It has been included to stress that well-
posedness does not depend only on the operator T but also on the
right-hand side y.

So one of the following three factors will make an equation ill-
posed:

• T is not surjective. If y /∈ T (X ), Equation (5.1) may not have a
solution (nonexistence).

• T is not injective. Equation (5.1) may have more than one solu-
tion (nonuniqueness).

• T is bijective but T−1 is discontinuous. Then the solution does
not depend continuously on the right-hand side (instability).

Let us consider the case where X and Y are finite dimensional Hil-
bert spaces and where T ∈ B(X ,Y). From Equation (2.12) we know
that

Y = R(T )⊕R(T )⊥ = R(T )⊕N (T ∗).

SinceY is finite dimensional, the range of T is always closed soR(T ) =
R(T ). Now given an equation Tx = ywe can write the right-hand side
as y = yR + yR⊥ where yR ∈ R(T ) and yR⊥ ∈ R(T )⊥. If yR⊥ 6= 0 a
solution does not exist (it is ill-posed). Instead, we can seek to find a
least squares solution

min
x∈X
‖y − Tx‖2. (5.2)

By definition there exists an x ∈ X such that Tx = yR and this is obvi-
ously a solution to the least squares problem. Since such a solution x
fulfills y − Tx = yR⊥ ∈ R(T )⊥, we have that x solves (5.2) if and only
if y − Tx ∈ R(T )⊥. This is equivalent, sinceR(T )⊥ = N (T ∗), to

T ∗(y − Tx) = 0 ⇔ T ∗Tx = T ∗y.
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This new equation is called the normal equation associated with
Tx = y. The solution may not be unique, however, since several so-
lutions may exist that solves Tx = yR. But the solution that has the
smallest norm is.1 This way of choosing a least squares solution to
Tx = y is often written x = T †y where T † is called the Moore–Penrose
generalized inverse of T .

Although the definition of ill-posedness was for operators in gen-
eral, we will limit ourselves to only look at compact linear operators.

We already know that linear mappings between finite dimensional
vector spaces, hence (finite) matrices, are compact. So when are ma-
trix equations well-posed? Obviously square and regular matrices are
bijective, and regular matrices always have bounded inverses. Any
other case, when the matrix is singular or non-square, will result in
a mapping that is not bijective. So only square and regular matrices
induce well-posed equations.

But what about infinite dimensional compact operators? This is
answered by the following proposition.

Proposition 5.2 Let H be an infinite dimensional Hilbert space. If K ∈
B(H) is compact and K−1 exists, then K−1 is unbounded.

Proof: Let (en) be an orthonormal sequence in H. Then Ken → 0 (see
the remarks following Theorem 2.16) but ‖K−1(Ken)‖ = ‖en‖ = 1 for
all n, so K−1 is not continuous. �

Given an infinite dimensional compact operator, every equation in-
volving it will be ill-posed. Either the operator is not bijective or the
inverse is discontinuous.

1The set of solutions to Tx = yR can be written as S = {xp + x0 | x0 ∈ N (T )}
where xp is a particular solution, Txp = yR. Since N (T ) is a subspace it is convex, and
translating the convex set N (T ) by xp does not change the convexity. So S is nonempty,
closed and convex and this implies that it contains a unique element of smallest norm
(Theorem 4.10 in [Rud66]).



64 Ill-Posed Problems and Regularization

5.2 Operator Smoothing and the Picard Con-
dition

One of the implications of Theorem 2.16 was that Ken → 0 for com-
pact K and orthonormal (en). If K is an integral operator with real
kernel k ∈ L2([0, π] × [0, π]) and we consider the usual sine basis, we
get ∫ π

0

k(·, t) sin(nt)dt→ 0, for n→∞,

with convergence in the L2 sense. This is also known as the Riemann-
Lebesgue lemma. This clearly shows how high-frequency components
are damped by K .

Theorem 5.3 (The Picard Condition) Let K ∈ B(X ,Y) be a compact
linear operator with singular values (µn) and corresponding singular vec-
tors (vn) ⊂ X and (un) ⊂ Y . The equation

Kf = g (5.3)

is solvable if and only if g ∈ R(K) and

∞∑
n=1

|(g, vn)|2
µ2

n

<∞. (5.4)

A solution is then given by

f =
∞∑

n=1

(g, vn)
µn

un. (5.5)

Proof: See [Kre99, page 279]. �

Note that the inequality in (5.4) can easily be fulfilled even if g has
components in the null-space of K . This is why the condition g ∈
R(K) is needed.

Consider now a model problemKf = g involving a compact oper-
ator K . Figure 5.1(a) shows the key quantities in the Picard condition,
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(a) A possible Picard plot in infinite precision.
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(b) The way the Picard plot above could look on a finite
precision machine and with a noisy right-hand side eg.

Figure 5.1: An example of a Picard plot.
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µn, |(g, vn)| and µ−1
n |(g, vn)|, and we now assume that we wish to com-

pute the solution using expression (5.5).
The singular values µn are seen to decrease approximately expo-

nentially. The right-hand side Fourier coefficients, |(g, vn)|, decrease
similarly but quicker, so that the quantities µ−1

n |(g, vn)| also decrease
exponentially. This means, assuming they continue to decrease, that
the solution will fulfill Equation (5.4) and so a solution will exist and
be computable (in theory).

Consider now the plot in Figure 5.1(b). The equation is supposed
to be the same as before, but we now have several “noise sources”.
We now work on a finite precision machine and noise has been added
to the right-hand side producing g̃ = g + e where e is some noise
vector. Furthermore, the operator has been approximated by a 32× 32
matrix and the right-hand side has similarly been approximated by a
32 element vector.

This introduces some problems. Firstly, the singular values2 stop
to decrease around 10−14 because of rounding errors on the machine
that computed these values. Secondly, the right-hand side Fourier co-
efficients decrease as before, but level out around 10−8 due to noise in
the right-hand side.

This means that the summation formula expressing the solution,
see Equation (5.5), can be seperated into two parts. When n ≤ 7, all
quantities are influenced by relatively little noise. When n > 7, noise
influences either |(g̃, vn)| or µn and each term becomes unreliable.

All in all, the solution will be dominated by noise. Note that the
noisy model problem was finite dimensional and all singular values
were non-zero. This means the the Picard condition is trivially ful-
filled. But finite precision and noise in the data makes the solution
useless. For information on a so-called discrete Picard Condition and
on dealing with noisy right-hand sides, see e.g. [Han98a].

The above example illustrates some of the problems when dealing
with ill-posed problems. Even if we do not try to solve the problem

2In this discussion, the differences between the singular values of the 32 × 32 ma-
trix and the 32 largest eigenvalues of the operator K are assumed negligible. The next
chapter provides more accurate results on these approximation errors.
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using Formula (5.5), solution methods typically have the fact in com-
mon, that even if the problem is finite dimensional and the inverse
K−1 exists, there are two main problems:

• We are not interested in K−1g̃ but K−1g, that is, we want the
true solution and not the one influenced by noise.

• Rounding errors tend to blow up somewhere in the solution pro-
cess.

5.3 Regularization

A typical way to handle these problems is called regularization. Reg-
ularization can be defined in a general way as follows.

Definition 5.4 Let X and Y be normed spaces and let T : X 7→ Y be an
injective bounded linear operator. Then a family of bounded linear operators
T#

α : Y 7→ X , α > 0, with the property of pointwise convergence

lim
α→0

T#
α Tx = x, x ∈ X , (5.6)

is called a regularization scheme for the operator T . The parameter α is
called the regularization parameter.

Note that the limit in Equation (5.6) could just as well be for α→∞
or with α always integer etc. This would not change the meaning of
the definition or the following discussion.

Now assume we wish to solve Tx = y but all we have available is
an perturbed right-hand side yδ such that

‖yδ − y‖ ≤ δ

for some error level δ. As mentioned earlier, we are not interested
in T−1yδ (if the inverse exists), but T−1y. The hope is to find an ap-
propriate regularization scheme such that for some α > 0 we have
T#

α y
δ ' T−1y.
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For a fixed α, let the regularized solution be xδ
α = T#

α y
δ. The ap-

proximation error is then

xδ
α − x = T#

α y
δ − T#

α (y − Tx)− x = T#
α (yδ − y) + T#

α Tx− x,
and by using the triangle inequality we get

‖xδ
α − x‖ ≤ δ‖T#

α ‖+ ‖T#
α Tx− x‖.

We would now like to make both ‖T#
α ‖ small and T#

α T ' I . Unfor-
tunately, when dealing with infinite dimensional compact operators,
the following can be shown ([Kre99, p. 269]):

• The operators T#
α cannot be uniformly bounded with respect to

α, that is, a constant C so that ‖T#
α ‖ ≤ C for all α > 0 does not

exist.

• The operators T#
α T do not converge in norm to the identity as

α→ 0.3

A popular way of putting this: For ill-posed problems in general
the perfect regularization scheme and -parameter does not exist.

One possible regularization scheme is to use the solution expressed
by (5.5) but using only the first k terms of the sum. This way k becomes
the regularization parameter and the method is called Truncated SVD.

Another possible scheme is

xα = arginf
x∈X

{‖y − Tx‖+ α2‖x‖2} .
This is called Tikhonov regularization and the regularization pa-

rameter clearly controls the balance between minimizing the norm of
the residual and the size of the solution. The regularized inverse T#

α

can be expressed explicitly by:

T#
α = (α2I + T ∗T )−1T ∗.

A thorough survey of regularization schemes and ways to find the
optimal regularization parameter can be found in [Han98a].

3This fact in itself is not necessarily a bad thing since one can easily have pointwise
convergence without operator norm convergence.
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5.4 Iterative Methods

Another way of regularizing is by using iterative methods. Here the
hope is that the iteration number itself acts as a regularization parame-
ter. Before digging more into this, let us introduce some key quantities
and notation.

Let the exact solution be x? and let x(0) denote a starting guess
(often the zero vector). Similarly we let x(k), k = 1, 2, . . ., denote the
solution found by the iterative method after iteration k.

We furthermore define the important quantities

Residual: r(x) = b−Ax and r(k) = r(x(k)) (5.7)

Error: e(x) = x? − x and e(k) = e(x(k)) (5.8)

for each iteration k ≥ 0. Notice that only the residual and not the error
will be computable by an iterative method. Important to note is then

Ae(k) = Ax? − Ax(k) = b−Ax(k) = r(k).

Let us consider this equality when A is represented by a (finite)
square matrix. If A does not have an inverse then A has a non-trivial
null-space and r(k) = 0 will not imply e(k) = 0. If A does have an
inverse we get

‖r(k)‖2 = ‖A−1e(k)‖2 ≤ ‖A−1‖2‖e(k)‖2.

This means that ‖e(k)‖2 → 0 implies ‖r(k)‖2 → 0, but since ‖A−1‖2
is typically very large for ill-posed problems (reflecting the unbound-
edness of the inverse of a compact operator), we must be careful not
to deduce that the error norm is small just because the residual norm
is.

A good example of this is shown in Section D.3 in the appendix,
where the iterative method GMRES is used. For this particular ex-
ample, the residual norm decreases fast while the error norm remains
almost constant.
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5.4.1 Rate of Convergence

Consider the quantity

γk =
(‖e(k)‖2
‖e(0)‖2

) 1
k

, (5.9)

which can be considered the average reduction factor of the error norm
per iteration. Using this, we define

Rk = − log10(γk)

as the average rate of convergence. In some cases, this quantity is closely
related to the minimum number of iterations required to obtain a cer-
tain accuracy (see also [You71]).

Important to note is that sometimes, as is the case in this thesis, it
is only possible to estimate γk from Equation (5.9) using the residual
norms and not the error norms. As previously mentioned, this will not
always reveal the true behavior of the method.

5.4.2 Semiconvergence

Let us now return to the subject of using iterative methods as regu-
larization schemes. As noted earlier, when dealing with a discrete ill-
posed problem and a noisy right-hand side bδ, we are not interested in
the exact solution x?

δ = A−1bδ. Instead, we are interested in the solu-
tion computed in infinite precision from the noiseless right-hand side
x? = A−1b. Obtaining this solution is of course a little too optimistic,
but we can hope to come close at some iteration step.

Consider the plot in Figure 5.2. Here, the residual and error norms
are shown for each iteration. Note however, that it is not the error
compared to the true solution x?

δ , but compared to the solution com-
puted from a noiseless right-hand side x?. Although the residual norm
continuously decreases, the shown error norm first decreases, but then
starts to diverge from the wanted solution. This can often be explained
by the fact that the wanted solution typically is very smooth, and that
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Figure 5.2: An illustration of semiconvergence. Note that the error is calcu-
lated using the true, noiseless solution.

the smooth components of the solution often are obtained in the first
iteration steps. In later steps, the noise of the right-hand side begins to
influence the solution and the divergence sets in. This phenomenon is
often termed semiconvergence.4

4The term semiconvergence is used by [Han98a], who has adopted it from F. Nat-
terer.





C H A P T E R 6

Approximating in Finite
Dimensions

approximate, to come close to; be nearly the same as
— THE AMERICAN HERITAGE DICTIONARY OF THE ENGLISH LANGUAGE

finite, limited in quantity, degree, or capacity
— WEBSTER’S REVISED UNABRIDGED DICTIONARY

What happens to the behavior of operators, eigenvalues, singular
values and such when approximating an operator by a finite dimen-
sional mapping? This is a very important topic, since all infinite prob-
lems that can not be solved analytically, need to be solved approxi-
mately on computer. And since a computer can not represent infinite
amounts of data, we have to settle with finite dimension computa-
tions.

6.1 The Galerkin Method

Consider the equation Kf = g where K ∈ B(X ,Y) is a compact oper-
ator. Let XN ⊂ X and YM ⊂ Y be subspaces with dimensions N and
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M respectively. If a function fN ∈ XN satisfies

(KfN , y) = (g, y) for all y ∈ YM , (6.1)

we call fN a solution to the Galerkin equation.
Let now (φj) be an orthonormal basis for XN and let (ψj) be an

orthonormal basis for YM . Then we can write any fN ∈ XN as fN =∑N
j=1 xjφj and if we set yi = (g, ψi) the Galerkin Equation (6.1) be-

comes (
K
(∑N

j=1 xjφj

)
, ψi

)
= (g, ψi) ⇔

N∑
j=1

xj(Kφj , ψi) = yi for all i = 1, 2, . . . ,M.

By introducing a matrix A ∈ CM×N with entries Ai,j = (Kφj , ψi)
we see that this corresponds to a simple matrix equation

Ax = y. (6.2)

So given an equation of the form Kf = g, an approximate solution
can be found by computing yi = (g, ψi) and Ai,j = (Kφj , ψi), solving
Equation (6.2) for x and finally computing f̃ =

∑N
j=1 xjφj . Note that

this requires computing:

• One integral for each i to compute y.

• Two integrals for each i and j to compute A (if K is an integral
operator).

Most often in practise, these integrals have to be approximated us-
ing e.g. collocation or quadrature methods, see [Bak77] or others. Note
that these approximation and round-off errors connected herewith will
be ignored in this thesis.

An example of discretizing an operator K : L2(I × I) → L2(I ×
I), represented by a double integral, can be seen in Section D.5 in the
appendix. Here, a simple quadrature formula is used to approximate
an integral.
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It is easy to see that the matrix A represents the mapping K̃MN :
X → Y defined as

K̃MNx = ΠYMKΠXNx =
M∑
i=1

N∑
j=1

(Kφj , ψi)(x, φj)ψi, (6.3)

where ΠXN and ΠYM are orthogonal projections onto XN and YM re-
spectively (see Equation (2.11) on page 18).

We will now show that K̃MN → K in the operator norm asM,N →
∞. First, we need some preliminaries. Let L ∈ B(X ,Y) be an arbitrary
compact operator and let ΠN : Y → Y be a projection onto an N -
dimensional subspace. One can show that

sup
x∈M
‖ΠNx− x‖ → 0, (6.4)

for any subset M ⊂ Y for which M is compact (see Lemma 4.3.7 in
[Hac95]). Consider now the set B = {Lx | ‖x‖ ≤ 1}. Since L is
compact, B is compact by definition. The above result now yields

‖ΠNL− L‖ = sup
‖x‖≤1

‖ΠNLx− Lx‖ = sup
y∈B
‖ΠNy − y‖ → 0,

as N → ∞. So ΠNL → L in the operator norm. We also have LΠN →
L. This is seen by

LΠN = ((LΠN )∗)∗ = (ΠNL
∗)∗ → (L∗)∗ = L

where we have used that Π ∗
N = ΠN and that the adjoint of a compact

operator also is compact.
The convergence of K̃MN to K can now be seen by

‖K̃MN −K‖ = ‖ΠYMKΠXN −K‖
≤ ‖ΠYMKΠXN −ΠYMK‖+ ‖ΠYMK −K‖ → 0.

Since a projection is bounded, ΠYMK is a compact operator which
means that (ΠYMK)ΠXN → ΠYMK from the results just shown above.
Hence, the above limit.
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So K̃MN converges toK in the operator norm. This is a very strong
result which of course implies pointwise convergence. That a dis-
cretization scheme converges pointwise is sometimes called consistent.

The choice of basis and how quickly K̃MN actually converges to
K is obviously of great importance and relevance. No results in this
thesis will be related to this, however. A lot of literature covers this
and it was decided, in relation to this thesis, that other areas were of
greater importance. See [Bak77], [Hac95], [Kre99] or others for results
on operator approximations.

We shall in a short while use the concept collectively compact. This
is defined as follows.

Definition 6.1 A set {Tn}n∈N of operators Tn ∈ B(X ,Y) is called collec-
tively compact, if the set

{Tnx | x ∈ X , ‖x‖ ≤ 1, n ∈ N}

is compact.

It can be shown that if each operator Tn is compact and Tn con-
verges in the operator norm, then {Tn} is collectively compact (page
134 in [Hac95]). Since each K̃MN is finite dimensional it is compact,
and as just seen, K̃MN converges in norm to K . So {K̃MN} is collec-
tively compact. Later, it will become clear why this property is impor-
tant.

We now return to look at possible relations between K̃MN and its
matrix representation A. The singular values of A are identical to
those of K̃MN : Assume that Av = µu and consider

Av = µu ⇔
N∑

j=1

(Kφj , ψi)(v, φj) = µ(u, ψi), i = 1, . . . ,M ⇔
M∑
i=1

N∑
j=1

(Kφj , ψi)(v, φj)ψi = µ

M∑
i=1

(u, ψi)ψi ⇔ K̃MNv = µu,

(6.5)
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where

v =
N∑

j=1

vjφj and u =
M∑
i=1

uiψi.

These expression show at the same time the correspondence between
the singular vectors of A and K̃MN .

What about eigenvalues and -vectors? If the eigenvalue problem
has to make sense for A we must have M = N . And if eigenvectors
of A has to correspond to eigenvectors of K̃MN we must have X = Y
and that the bases used inX and Y are identical (see also Section 4.3.3).
So when assuming M = N and ψi = φi for i = 1, 2, . . . , N we have,
analogous to Equation (6.5):

Aϕ = λϕ ⇔ K̃MNϕ = λϕ,

where ϕ =
N∑

i=1

ϕiφi.

Since we are converting to the world of (finite) matrices, we will
now formally introduce the adjoint of a matrix mapping. Consider an
operator T : CN → CN represented by a matrix T. For x, y ∈ CN ,
represented by the vectors x and y respectively, we have

(Tx, y) =
N∑

i=1

(Tx)iyi =
N∑

i=1

 N∑
j=1

Ti,jxj

yi =
N∑

j=1

xj

(
N∑

i=1

Ti,jyi

)

=
N∑

i=1

xi

N∑
j=1

Tj,iyj = (x, T ∗y),

which means that (T ∗y)i =
∑N

j=1 Tj,iyj . From this follows that the
adjoint operator T ∗ is represented by a matrix with entries (Tj,i), the
conjugate transpose or Hermitian of T, written TH .
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6.2 Singular Value Decomposition

Let N ′ denote the number of non-zero singular values of K̃MN , N ′ ≤
min(M,N). This means we have

K̃MNf =
N ′∑

n=1

σn(f, ṽn)ũn.

Let A be the matrix representing this mapping with respect to the
bases (φn) ⊂ X and (ψn) ⊂ Y . Let the matrices V ∈ CN×N ′

and
U ∈ CM×N ′

be defined as

Vi,j = (ṽj , φi) and Ui,j = (ũj , ψi),

for all relevant indices. They now represent the singular vectors with
respect to the chosen bases. Consider an entry of A:

Ai,j = (Kφj , ψi) =

 N ′∑
n=1

σn(φj , ṽn)ũn, ψi

 =
N ′∑

n=1

σn(φj , ṽn)(ũn, ψi)

=
N ′∑

n=1

σnVj,nUi,n =
N ′∑

n=1

Ui,nσn

(
VH

)
n,j

=
(
UΣVH

)
i,j

(6.6)

where Σ = diag(σ1, σ2, . . . , σN ′). So the singular value decomposition
for matrices becomes

A = UΣVH .

Results will now be derived that show how well singular values
and singular vectors are approximated by a finite dimensional opera-
tor. The results are almost identical to those in [Han88] but the presen-
tation is somewhat different.

The notation K̃N will be used for an approximating operator de-
fined as in Equation 6.3 with M = N . Introducing the N -dimensional
spaces XN = span{φ1, φ2, . . . , φN} and YN = span{ψ1, ψ2, . . . , ψN}
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we have K̃N : XN → YN . We will use the notation σN
i for the ith

singular vector of the operator K̃N .
We can now state the following very important theorems.

Theorem 6.2 The singular values of an approximating operator K̃N ap-
proaches the singular values of K from below. More precisely:

σN
i ≤ σN+1

i ≤ µi, for all i = 1, 2, . . . , N. (6.7)

Proof: From the expressions in (3.10) we have:

σN
1 = sup

x∈XN

‖x‖=1

‖K̃Nx‖ and

σN
i+1 = inf

z1,z2,...,zi∈XN

sup
x∈XN

‖x‖=1
x⊥z1,z2,...,zi

‖K̃Nx‖. (6.8)

Since we always have x ∈ XN we get

‖K̃Nx‖2 = (K̃Nx, K̃Nx) = sup
y∈YN

|(K̃Nx, y)|

= sup
y∈YN

|(Kx, y)| =
(

sup
y∈YN ,‖y‖=1

|(Kx, y)|
)2

.

The second equality sign stems from the fact that K̃NXN ⊂ YN and
that for fixed x, the quantity |(K̃Nx, y)| attains its maximum exactly
when y = K̃Nx.

So now the expressions in (6.8) can be rewritten to

σN
1 = sup

x∈XN , y∈YN

‖x‖=1,‖y‖=1

|(Kx, y)| and

σN
i+1 = inf

z1,z2,...,zi∈XN

sup
x∈XN , y∈YN

x⊥z1,z2,...,zi

‖x‖=1,‖y‖=1

|(Kx, y)| .
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Now consider these expressions for σN
i and σN+1

i . These are iden-
tical except that the sets from which the x’s and y’s are chosen, are
larger in the expression for σN+1

i . Hence, σN
i ≤ σN+1

i .
When letting N → ∞ we get K̃N → K and this leads to σN+1

i ≤
σN+2

i ≤ · · · ≤ µi. �

The quantity δN , defined as

δ2N = ‖K‖22 − ‖K̃N‖22 =
∞∑

i=1

µ2
i −

N∑
i=1

(
σN

i

)2
,

turns out to be important in the following estimations. Note that the
above theorem ensures that the right-hand side is positive.

The next theorem shows how much the total difference between
the true and approximate singular values can be.

Theorem 6.3 The errors of the approximate singular values fulfill the in-
equality

N∑
i=1

(
µi − σN

i

)2 ≤ δ2N . (6.9)

Proof: By using µi ≤ σN
i we get by straightforward calculation:

N∑
i=1

(
µi − σN

i

)2
=

N∑
i=1

µ2
i +

N∑
i=1

(
σN

i

)2 − 2
N∑

i=1

µiσ
N
i

≤
N∑

i=1

µ2
i +

N∑
i=1

(
σN

i

)2 − 2
N∑

i=1

(
σN

i

)2
≤

∞∑
i=1

µ2
i −

N∑
i=1

(
σN

i

)2
= δ2N .

�

An approximate singular value lies in a small interval below the
true singular value, more precisely:
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Theorem 6.4 The approximate singular values are bounded by the true ones
in the following way:

µ2
i − δ2N ≤

(
σN

i

)2 ≤ µ2
i , for all i = 1, 2, . . . , N . (6.10)

Proof: The inequalities in (6.7) says that σN
i ≤ µi for all i = 1, 2, . . . , N .

This leads to the rightmost inequality. It also leads, for a fixed i, to:

N∑
k=1

(
σN

k

)2 − (σN
i

)2 ≤
N∑

k=1

µ2
k − µ2

i ⇔

µ2
i −

(
σN

i

)2 ≤
N∑

k=1

µ2
k −

N∑
k=1

(
σN

k

)2
≤

∞∑
k=1

µ2
k −

N∑
k=1

(
σN

k

)2
= δ2N .

�

We will in the following leave out the superscript on the approx-
imate singular values and just use σi since only a fixed value of N is
considered.

Theorem 6.5 When a smallest integer m exists such that i ≤ m < N and
µm+1 < µi then the error of the approximate singular vectors are bounded
by

max {‖ṽi − vi‖, ‖ũi − ui‖} ≤

√√√√√√
2

µi − σi +
m∑

k=1,k 6=i

µk|(ũi, uk)||(ṽi, vk)|

µi − µi+1
.

(6.11)

Proof: Assume there exists a smallest integer i ≤ m < N such that
µm+1 < µi. Let αk = (ũi, uk) and γk = (ṽi, uk) for k = 1, 2, . . . ,m.
Define the residual vectors

u0 = ũi −
m∑

k=1

αkuk, v0 = ṽi −
m∑

k=1

γkvk.
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The norms of these are

‖u0‖2 = (u0, u0) = 1−
m∑

k=1

|αk|2, and ‖v0‖2 = 1−
m∑

k=1

|γk|2.

We now get

(Kv0, u0) = (Kṽi, ũi)−
m∑

k=1

αk(Kṽi, uk)−
m∑

k=1

γk(Kvk, ũi)

+
m∑

j=1

m∑
k=1

γjαk(Kvj , uk) = σi −
m∑

k=1

µkαkγk.

(6.12)

Here it has been used that (Kṽi, uk) = (ṽi,K
∗uk) = (ṽi, µkvk) =

µkγk.
Since u0 by construction is perpendicular to u1, u2, . . . , um and ana-

logous for v0 we have

|(Kv0, u0)| ≤ µm+1‖v0‖‖u0‖.

By inserting the expression (6.12) on the left hand side we get

∣∣∣∣∣σi −
m∑

k=1

µkαkγk

∣∣∣∣∣ ≤ µm+1

√√√√1−
m∑

k=1

|αk|2
√√√√1−

m∑
k=1

|γk|2 ⇔

σi −
m∑

k=1

µk|αk||γk| ≤ µm+1(1 − |αk||γk|

since (1 − x2)(1 − y2) ≤ (1− xy)2 for all x, y ∈ R.
By appropriately rearranging we obtain

1− |αi||γi| ≤
µi − σi +

m∑
k=1,k 6=i

µk|αk||γk|

µi − µi+1
. (6.13)



6.3 Eigenvalue Bounds 83

We now seek to express the errors of the singular vectors in terms
of the quantities found above. We find

‖ũi − ui‖2 = 2− (αi + αi) ≤ 2(1− |αi|) and ‖ṽi − vi‖2 ≤ 2(1− |γi|).

Using this we get

max
{‖ṽi − vi‖2, ‖ũi − ui‖2

} ≤ 2 max {1− |αi|, 1− |γi|} ≤ 2(1−|αi||γi|)

which leads to the desired result by inserting (6.13). �

By using the bounds µi − σN
i ≤ δN and

|(ṽi, vk)| = |(ṽi, ṽk + vk − ṽk)| = |(ṽi, ṽk)|+ |(ṽi, vk − ṽk)| ≤ ‖vk − ṽk‖,

and similarly for |(ũi, uk)|, the bound in (6.11) becomes looser but a bit
more practically useful.

6.3 Eigenvalue Bounds

We will now look at approximation errors of eigenvalues and -vec-
tors. The results are mainly from [Hac95], but some similar results
also appear in [Ans71].

Theorem 6.6 Let (K̃n) be collectively compact and consistent with the com-
pact operator K ∈ B(X ). Let furthermore (λn) be a sequence of eigenvalues
fulfilling K̃nϕn = λnϕn and ‖ϕn‖ = 1 for all n ∈ N.

Then there exists a subsequence (λnk
) either converging to zero or to an

eigenvalue λ of K . If λ = limk→∞ λnk
is non-zero, the subsequence can be

chosen so that (ϕnk
) converge to an eigenfunction ϕ of K corresponding to

λ.

Proof: Consider the set B = {K̃nϕn | n ∈ N}. Because of the collective
compactness and since ‖ϕn‖ = 1, we have that B is compact so C =
sup{‖x‖ | x ∈ B} exists. We now have |λn| = |λn|‖ϕn‖ = ‖K̃nϕn‖ ≤ C
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which shows that {λn} lies in a compact set. Since B was compact, we
can choose indices such that both

λni → λ and K̃niϕni → x

are fulfilled.
Assume that λ 6= 0. Then ϕni = λ−1

ni
K̃nϕn converges to ϕ = λ−1x.

Consider now

K̃niϕni = K̃ni(ϕni − ϕ) + (K̃ni −K)ϕ+Kϕ.

The first term on the right-hand side tends to zero because of the con-
tinuity of K̃ni . The second term tends to zero because of pointwise
convergence (consistency). So we have K̃niϕni → Kϕ. Since ‖ϕ‖ =
limi→∞ ‖ϕni‖ = 1 we see that ϕ 6= 0 and since K̃niϕni = λniϕni → λϕ
we have Kϕ = λϕ. �

So given a sequence of eigenvalues (λn), each corresponding to the
approximate operator K̃n, and λn converges to a non-null element λ,
then λ will be an eigenvalue of K . In Section D.1 in the appendix,
there is an example of a discretization where every eigenvalue of K̃n

converges to zero as n→∞.
As the following theorem will show, the converse of Theorem 6.6

is also true.

Theorem 6.7 Let (K̃n) be a sequence of compact operators, consistent with
the compact operator K ∈ B(X ). Then for any eigenvalue λ 6= 0 of K there
exists is a sequence (λn), where λn is an eigenvalue of Kn for all n, such that
λn → λ.

Proof: See Theorem 4.8.16 in [Hac95]. �

We now turn to look at how much the approximate eigenvalues
and -vectors can differ from the true ones.

Theorem 6.8 Let (K̃n) be a sequence of compact operators, consistent with
the compact operator K ∈ B(X ) and assume

‖K − K̃n‖ = O(n−p), p > 1.
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Let λ 6= 0 be a simple eigenvalue of K with corresponding eigenfunction
ϕ and let ϕ∗ satisfy K∗ϕ∗ = λϕ∗. The dual operators K̃∗

n must satisfy
K̃∗

nϕ
∗ → K∗ϕ∗. Let (λn) be a sequence of eigenvalues satisfying λn → λ

and K̃nϕn = λnϕn for each n. Let furthermore the eigenfunctions be scaled
by (ϕ∗, ϕ) = 1 and (ϕ∗, ϕn) = 1.

Then the following asymptotic bounds hold:

|λ− λn| = O(n−p) and ‖ϕ− ϕn‖ = O(n−p). (6.14)

Proof: Observe the following identity

λn(ϕn − ϕ) = K̃n(ϕn − ϕ) + dn (6.15)

where
dn = λ−1

[
λn(K̃n −K)ϕ+ (λ− λn)K̃nϕ

]
.

This last quantity can be bounded by

‖dn‖ ≤ |λ|−1
[
|λn|‖K̃n −K‖‖ϕ‖+ |λ− λn|‖K̃nϕ‖

]
≤ O(n−p) + c1|λ− λn|.

Because of Equation (6.15) and the assumption (ϕ∗, ϕ) = (ϕ∗, ϕn) =
1 we see that the matrix equation[

λnI − K̃n ϕ
ϕ∗ 0

] [
ϕn − ϕ

0

]
=
[
dn

0

]
is fulfilled. This means that given the above right-hand side, the equa-
tion can be solved. But is the inverse of the operator matrix on the
left-hand side bounded? Yes it is, since the inverse can be written ex-
plicitly: [

λnI − K̃n ϕ
ϕ∗ 0

] [
0 ϕ

ϕ∗ K̃n − λnI

]
=
[
I 0
0 1

]
and similarly if multiplied from the right.
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This yields

‖ϕn − ϕ‖ =
∥∥∥∥[ϕn − ϕ

0

]∥∥∥∥ ≤∥∥∥∥[ 0 ϕ

ϕ∗ K̃n − λnI

]∥∥∥∥ ∥∥∥∥[dn

0

]∥∥∥∥
= c2‖dn‖ = O(n−p) + c3|λ− λn|.

(6.16)

Consider now the identity

(λI −K)(ϕ− ϕn) = (λn − λ)ϕn − (K̃n −K)ϕ− (K̃n −K)(ϕn − ϕ).

We now wish apply the functional (ϕ∗, ·) to each side of this expres-
sion. The left-hand side becomes

(ϕ∗, (λI −K)(ϕ− ϕn)) = ((λI −K∗)ϕ∗, ϕ− ϕn) = 0.

The right-hand side:(
ϕ∗, (λn − λ)ϕn − (K̃n −K)ϕ− (K̃n −K)(ϕn − ϕ)

)
= λn − λ−

(
ϕ∗, (K̃n −K)ϕ− (K̃n −K)(ϕn − ϕ)

)
.

Combining the two sides and by using the Cauchy-Schwartz inequal-
ity we get

|λn − λ| =
∣∣∣(ϕ∗, (K̃n −K)ϕ− (K̃n −K)(ϕn − ϕ)

)∣∣∣
≤ ‖ϕ∗‖

∥∥∥(K̃n −K)ϕ− (K̃n −K)(ϕn − ϕ)
∥∥∥

= c4
(O(n−p)c5 +O(n−p)‖ϕn − ϕ‖

)
.

Since ϕn → ϕ we have ‖ϕn − ϕ‖ ≤ c6 for all n ∈ N for some c6 ∈ R so
|λn − λ| = O(n−p). Inserting this bound into Equation (6.16) gives us
|ϕn − ϕ| = O(n−p). �

When Galerkin discretization is used, Hackbusch [Hac95] has shown
that the eigenvalues actually converge as |λ− λn| = O(n−2p).
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6.4 Relating Singular Values and Eigenvalues

The results for relating singular values and eigenvalues for general
compact operators obviously still hold in finite dimensions (see Sec-
tion 3.3). But can more be said? Yes, a little. Assume that K ∈ B(X )
and that X is of dimension N . Assume furthermore that K is has no
zero eigenvalues, or equivalently, no zero singular values (K andK∗K
have identical null-spaces). Then K can be represented both as

Kx =
N∑

n=1

λn(x, ϕn)ϕn and Kx =
N∑

n=1

µn(x, vn)un.

From Theorem 3.7 we have the following inequality,

N∏
n=1

|λn| ≤
N∏

n=1

µn. (6.17)

Since λn 6= 0 and µn 6= 0 for all n = 1, 2, . . . , N , the inverse K−1

exists with the obvious representations

K−1x =
N∑

n=1

1
λn

(x, ϕn)ϕn and K−1x =
N∑

n=1

1
µn

(x, un)vn.

So the singular values and eigenvalues are just the reciprocal of
before. This means that we also have the inequality

N∏
n=1

1
|λn| ≤

N∏
n=1

1
µn

⇔
N∏

n=1

µn ≤
N∏

n=1

|λn|. (6.18)

So, combined with the inequality in (6.17), we have for finite di-
mensional, invertible operators:

N∏
n=1

|λn| =
N∏

n=1

µn.

This equality also holds when K is not invertible. In that case, each
side of the above expression is just zero.
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Krylov Subspace Methods

method, the procedures and techniques characteristic
of a particular discipline or field of knowledge

— THE AMERICAN HERITAGE DICTIONARY OF THE ENGLISH LANGUAGE

We now turn the focus to Krylov subspace methods. The corner-
stone of these is not surprisingly Krylov subspaces.

Definition 7.1 The Krylov subspace Kk(A, r) is defined as

Kk(A, r) = span{r, Ar, . . . , Ak−1r}.
Given an equation, Ax = b, the goal of these methods is now to as-

semble a best solution, in some sense, from Kk(A, r) for each iteration
step k. The vector r is typically the right-hand side r = b.

But how good a subspace is it to get solutions from? This is the
main subject of the first part of this chapter.

7.1 Operator Smoothing

As discussed in Section 5.2, an integral operator tends to smoothen
the input. But will the image always be continuous? No. Consider the
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kernel k ∈ L2([0, 1]2) defined as

k(s, t) =

{
1, for 0 ≤ s ≤ 1

2 and 0 ≤ t ≤ 1
0, otherwise.

Then we have for f = 1:∫ 1

0

k(s, t)f(t)dt = 1[0, 1
2 ],

which is obviously not continuous.
Let us consider an arbitrary kernel k ∈ L2(I × J) and input f ∈

L2(J). For g(s) = Kf(s) to be continuous, we must have: For all
s0 ∈ I and all ε > 0 there must exist a δ > 0 such that for all s ∈ I ,

|s− s0| < δ ⇒ |g(s)− g(s0)| < ε,

which in this setting corresponds to

|s− s0| < δ ⇒
∣∣∣∣∫

J

(k(s, t)− k(s0, t))f(t)dt
∣∣∣∣ < ε

If k(s, ·) → k(s0, ·) when s → s0 for all s0 ∈ I , the image g is guar-
anteed to be continuous because of the Cauchy-Schwartz inequality.
Another way of saying this: If g is not continuous then there must ex-
ist an s0 ∈ I such that k(s, ·) does not converge to k(s0, ·) when s→ s0.

The discontinuity of Volterra kernels are mostly along the diago-
nal, and so the image will still be continuous. No integral kernel from
“real life problems” known to the author contains such a discontinu-
ity. This means that every Krylov subspace will be spanned only by
continuous vectors, with the possible exception of the starting vector
(r in Definition 7.1). In turn, this means that the solutions are bound
to become smooth.

Note that this also means that eigenvectors will always be smooth
(unless the kernel has that special discontinuity).
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7.2 The Existence of Solutions

Given an equation Ax = b, does the solution x lie in Kk(A, b) for some
k? What if A is not invertible? In the following we will answer these
questions for Ax = b, the finite dimensional (matrix) case.1

A useful tool here is the Jordan decomposition. If A ∈ Cn×n then
there exists a factorization X−1AX = diag(J(1),J(2), . . . ,J(r)) where
X ∈ Cn×n is nonsingular and

J(i) =



λi 1 · · · 0

0 λi
. . .

...
. . . . . . . . .

...
. . . . . . 1

0 · · · 0 λi


∈ Cni×ni

where n1 + n2 + · · · + nr = n. Note that this decomposition is well-
defined for all matrices and that it is a generalization of diagonaliza-
tion.2

7.2.1 The Minimal Polynomial

As we shall see, Krylov subspace methods are intimately tied to the
minimal polynomial. The minimal polynomial q of A is defined as the
unique monic polynomial of minimal degree such that q(A) = 0.

Given the Jordan decomposition, as defined above, we actually
have an explicit expression for the minimal polynomial. Let the dis-
tinct eigenvalues of A be λ̂1, λ̂2, . . . , λ̂d and let λ̂i have index mi. The
index of an eigenvalue λ̂i is defined as the largest Jordan block associ-

1See [IM98] for related results.
2See e.g. [GvL96] for additional information on Jordan decomposition.
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ated with λ̂i. The minimal polynomial can now be expressed as3

q(λ) =
d∏

j=1

(λ− λ̂j)mj . (7.1)

We also define m as the degree of the minimal polynomial, m =∑d
j=1mj . Since A can have at most n distinct eigenvalues we have

m ≤ n. Consider for instance the matrix

A =



2 1
2

3
3

2 1
2 1

2


,

which is already on Jordan form, consisting of 4 blocks. It has an eigen-
value 2 with index 3 and an eigenvalue 3 with index 1. The minimal
polynomial in this case is q(λ) = (λ− 2)3(λ− 3).

In general when A is diagonalizable, m is equal to the number of
distinct eigenvalues.

From Equation (7.1) we get the alternative expression

q(λ) =
m∑

j=0

αjλ
j ,

where αm = 1 (it is monic) and α0 =
∏d

j=1(−λ̂j)kj . So A is nonsingu-
lar if and only if α0 6= 0.

A direct consequence of the definition of the minimal polynomial
is that q(A)b =

∑m
j=0 αjAjb = 0 for all b. This clearly shows

Theorem 7.2 The vectors b,Ab, . . . ,Amb, where m is the degree of the
minimal polynomial, are linearly dependent for all b.

This fact will come in handy later on.
3That the shown polynomial q(λ) is monic and fulfills q(A) = 0 is straightforward.

See Section 2.8 in [Nev93] for a proof that q is actually minimal.
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7.2.2 The Nonsingular Case

Assume that A is nonsingular, so α0 6= 0. We now get

0 = q(A) = α0I + α1A + · · ·+ αmAm ⇔
I = − 1

α0

(
α1I + · · ·+ αmAm−1

)
A ⇔

A−1 = − 1
α0

m−1∑
j=0

αj+1Aj .

(7.2)

So the inverse of every nonsingular matrix A can be written as a
polynomial in A itself. Furthermore,

x = A−1b = − 1
α0

m−1∑
j=0

αj+1Ajb ∈ Km(A,b),

or written in words: For every equation Ax = b with nonsingular A,
the solution x lies in Km(A,b).

7.2.3 The Singular Case

Let us now consider the singular case. Assume the Jordan decompo-
sition is given as A = XJX−1. We now transform into the basis given
by X,

Ax = b ⇔ XJX−1x = b ⇔ Jξ = β, (7.3)

where ξ = X−1x and β = X−1b.
Since A is singular we can split J so that

J =
[
C 0
0 N

]
,

where all the zero eigenvalues are contained in N (is always possible
by appropriately exchanging columns in X). From this follows that
C is regular and that N is nilpotent. Nilpotent means that there ex-
ists an integer i, called the index, such that Ni = 0 while Ni−1 6= 0.
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Fortunately, the nilpotent index coincides with the index of the zero
eigenvalue.

Suppose that a Krylov solution exists, that is for some p we have

x =
p∑

j=0

αjAjb ⇔ ξ =
p∑

j=0

αjJjβ =
p∑

j=0

αj

[
Cj 0
0 Nj

]
β. (7.4)

If we now let ξ =
[
ξC

ξN

]
and β =

[
βC

βN

]
, where the splitting follows

that of J we get

ξC =
p∑

j=0

αjCjβC and ξN =
p∑

j=0

αjNjβN .

Since Jξ = β we also have NξN = βN so

N

 p∑
j=0

αjNjβN

 = βN ⇔
I−

p∑
j=0

αjNj+1

βN = 0.

The matrices Nj , j ≥ 2, are upper triangular and have only ze-
ros along the diagonal. This implies that the matrix in the right-most
parenthesis above will be regular. So if a Krylov solution exists we
must have βN = 0. Another way of saying this is that we must have

β ∈ R
([

C
0

])
= R

([
Ci

N i

])
= R (Ji

)
,

whereR(C) = R(Ci) is valid because C is regular.
Let us consider the converse case and assume β ∈ R(Ji), that is,

β =
[
βC

0

]
which implies ξ =

[
C−1βC

0

]
.

The matrix C is regular and its minimal polynomial has degree
m−i. This means that there exists a polynomial q(C) of degreem−i−1
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such that q(C) = C−1. Then we get

ξ =
[
C−1βC

0

]
=
[
q(C) 0
0 0

] [
βC

0

]
=
[
q(C) 0
0 q(N)

]
β

= q(J)β ∈ Km−i(J,β).

What we have now is that a Krylov solution exists for the system
Jξ = β if and only if β ∈ R(Ji), where i is the index of the zero
eigenvalue. But the existence of a Krylov solution to Jξ = β and
Ax = b is equivalent, cf. (7.4), and furthermore R(Ji) = R(Ai) since
X is regular.

7.2.4 In Summation

The above statements lead to this important theorem:

Theorem 7.3 A Krylov solution to Ax = b exists if and only if b ∈
R(Ai), where i is the index of the zero eigenvalue of A.

Notice that this statement is equally valid when A is nonsingular
since we here have i = 0.

We have furthermore shown, for general A, that

Theorem 7.4 When a Krylov solution to Ax = b exists we have

x ∈ Km−i(A,b),

wherem is the degree of the minimal polynomial and i is the index of the zero
eigenvalue.

When A is diagonalizable these theorems can be simplified. The
degree of the minimal polynomial becomes the number of distinct
eigenvalues, and i = 1 if A is singular and i = 0 otherwise. From
this follows for diagonalizable A:

• A Krylov solution exists if and only if b ∈ R(A).

• When a Krylov solution exists we have x ∈ Kd0(A,b) where d0

is the number of distinct eigenvalues different from 0.
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7.3 Detection of a Solution

If some method iteratively creates Krylov subspaces of larger and lar-
ger dimension, how does one know when to stop? When is the sub-
space large enough to assemble a solution, and can it be detected that
no Krylov solution exists at all?

Before answering these question, we prove an elementary, but im-
portant, fact about Krylov subspaces.

Theorem 7.5 If Akb ∈ Kk(A,b), then Ajb ∈ Kk(A,b) for all j ≥ k.

Proof: From the assumptions we have

Akb = α1b + α2Ab + · · ·+ αkAk−1b ∈ Kk(A,b).

Then we have

Ak+1b = A(Akb) = A(α1b + α2Ab + · · ·+ αkAk−1b)

= α1Ab + α2A2b + · · ·+ αkAkb ∈ Kk(A,b).

From induction the result follows. �

If dim(Kk(A,b)) = k and dim(Kk+1(A,b)) < k + 1 then it follows
from this theorem that we must have dim(Kj(A,b)) = k for all j > k.

Assume now that a Krylov solution has been found, x ∈ Kk(A,b),
where the Krylov subspace has dimension k. Written explicitly,

x = α1b + α2Ab + · · ·+ αkAk−1b,

where αk 6= 0. Then we have

0 = b−Ax = b− α1Ab− α2A2b− · · · − αkAkb.

So the vectors b,Ab, ...,Akb are linearly dependent, or equivalently,
dim(Kk+1(A,b)) = k. This implies that the only linear combination of
the vectors b,Ab, ...,Akb that gives the zero vector is the combination
shown above (when fixing the coefficient to b).

We have now proved the following theorem.
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Theorem 7.6 If a Krylov solution x ∈ Kk(A,b) exists where the Krylov
subspace has dimension k, then dim(Kk+1(A,b)) = k. Furthermore, if

α0b + α1Ab + α2A2b + · · ·+ αkAkb = 0

where not all αi are zero, we have that both α0 and αk are non-zero.

This theorem states exactly when we should stop to look for a solu-
tion. If dim(Kk(A,b)) = k and dim(Kk+1(A,b)) < k + 1 the solution,
if it exists, lies in Kk(A,b).

But what about the existence? The following theorem has a result
on that.

Theorem 7.7 Assume that a non-zero vector w ∈ Kk(A,b) exists such
that Aw = 0 and dim(Kk(A,b)) = k. Then A is singular and no Krylov
solution exists.

Proof: That A is singular is straightforward. Let

w = β1b + β2Ab + · · ·+ βkAk−1b,

where βk 6= 0, which implies

Aw = β1Ab + β2A2b + · · ·+ βkAkb = 0. (7.5)

Assume that a Krylov solution in Kj(A,b) exists where the dimension
of Kj(A,b) is j. According to Theorem 7.6 we have

b + α1Ab + · · ·+ αjAjb = 0, (7.6)

for some constants αi, i = 1, 2, . . . , j, where αj 6= 0. Because of this
linear dependency and since dim(Kk(A,b)) = k we must have j ≥ k.
Because of Equation (7.5) and dim(Kj(A,b)) = j we also have j ≤
k. Hence j = k. If we now subtract αk/βk times (7.5) from (7.6) we
see that we have a non-trivial linear dependency among the vectors
b,Ab, . . . ,Ak−1b which is a contradiction. So the assumption that a
Krylov solution existed was false. �

The usability of this theorem may not be obvious, but we shall see
in the next chapter how an implementation of GMRES can use this
result.
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7.4 GMRES

Let us now look at GMRES using the notation introduced for iterative
methods in Section 5.4. At each iteration k, the approximate solution
x(k) found by GMRES fulfills:

x(k) = argmin
x∈x(0)+Kk(A,r(0))

‖r(x)‖2, (7.7)

where x(0) is some starting vector (this means that we actually have to
solve Az = r(0) instead and then compute x = z + x(0)).

Since K1(A, r(0)) ⊂ K2(A, r(0)) ⊂ · · · , it is clear that the residual
norm can only decrease from one iteration to the next.

7.4.1 Convergence Analysis

The notation x ∈ x(0)+Kk(A, r(0)) should be understood as x = x(0)+
z where z ∈ Kk(A, r(0)). So each possible x can be expressed as

x = x(0) +
k−1∑
i=0

c(k)
i+1A

ir(0),

for some vector c(k) ∈ Ck. The residual vector becomes:

r(x) = b−Ax = b−Ax(0) −A
k−1∑
i=0

c(k)
i+1A

ir(0)

= r(0) −
k∑

i=1

c(k)
i Air(0) =

(
I−

k∑
i=1

c(k)
i Ai

)
r(0) = pk(A)r(0),

(7.8)

where pk is a polynomial of maximal degree k and for which pk(0) = 1.
Let Pk denote the set of all such polynomials. Note that pk and c(k) are
implicitly related by

pk(λ) = 1− c(k)
1 λ− c(k)

2 λ2 − · · · − c(k)
k λk

= 1− [λ λ2 · · · λk
]
c(k).

(7.9)
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So for every x ∈ x(0) + Kk(A, r(0)) we have r(x) = pk(A)r(0) for
some pk ∈ Pk. This means that

‖r(k)‖2 = ‖r(x(k))‖2 ≤ ‖pk(A)r(0)‖2 for all pk ∈ Pk, (7.10)

since GMRES in each iteration finds the optimal solution expressed by
(7.7). The polynomial corresponding to the optimal solution will be
denoted popt

k ,

‖r(k)‖2 = ‖popt
k (A)r(0)‖2 = min

pk∈Pk

‖pk(A)r(0)‖2.

A typical way to provide an upper bound for ‖r(k)‖2 is to use
the inequality ‖pk(A)r(0)‖2 ≤ ‖pk(A)‖2‖r(0)‖2 and then investigate
how small ‖pk(A)‖2 can be. This has lead to some very good conver-
gence bounds for GMRES, but it clearly neglects all information about
the right-hand side. This is unfortunate since we have seen earlier
that solving discrete ill-posed problems can be extremely sensitive to
the right-hand side. So we will try to look at the whole expression,
‖pk(A)r(0)‖2, instead.

Using the Spectral Decomposition

In order to be able to proceed we will make the assumption that A is
diagonalizable, that is, there exists a regular matrix X ∈ Cn×n such
that

A = XΛX−1, Λ = diag(λ1, λ2, . . . , λn),

where |λ1| ≥ |λ2| ≥ · · · ≥ |λn|. Note that no loss of generality is suf-
fered by requiring the eigenvalues must be sorted in the given order.

Since Ai = XΛiX−1 we get from the decomposition,

r(x) = pk(A)r(0) = Xpk(Λ)X−1r(0).

We now introduce β = X−1r(0), diag(Li) = Λi and diag(e) = I. If
we furthermore use the obvious equality,

diag(v)w =
[
v1w1 v1w1 · · · vnwn

]T = diag(w)v,
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we rewrite as follows

Xpk(Λ)X−1r(0) = X

(
I−

k∑
i=1

c(k)
i Λi

)
β

= Xdiag

(
e−

k∑
i=1

c(k)
i Li

)
β = Xdiag(β)

(
e− Lc(k)

)
. (7.11)

So the bound in Equation (7.10) can be expressed as

‖r(k)‖2 ≤ ‖X‖2
∥∥∥diag(β)

(
e− Lc(k)

)∥∥∥
2

= ‖X‖2

∥∥∥∥∥∥∥∥∥


β1

β2

. . .
βn




1
1
...
1

−

λ1 λ

2
1 · · · λk

1

λ2 λ
2
2 · · · λk

2
...

...
. . .

...
λn λ

2
n · · · λk

n

 c(k)


∥∥∥∥∥∥∥∥∥

2

(7.12)

for all c(k) ∈ Ck.

The matrix L is seen to be similar to a transposed Vandermonde
matrix, often used for polynomial interpolation.4

Minimizing the norm in Equation (7.12) is frequently called a we-
ighted least squares problem. If βi = 1 for all i it is seen to be a usual least
squares problem, but weighting the ith row/equation with a large βi

makes it more important to fulfill this particular equation.

4Given elements v0, v1, . . . , vn, a Vandermonde matrix V has entries Vi+1,j+1 = vi
j

for i, j = 0, 1, . . . , n. See more in e.g. [GvL96] page 183.
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Interpretation in Terms of Polynomials

Inequality (7.12) can also be written using the relation (7.9), obtaining
the equivalent

‖r(k)‖22 ≤‖X‖22
n∑

i=1

|βi|2
∣∣∣1− [λi λ

2
i · · · λk

i

]
c(k)

∣∣∣2
= ‖X‖22

n∑
i=1

|βi|2|pk(λi)|2
(7.13)

for all pk ∈ Pk. Note that this bound depends only on the absolute value
of each element βi and the magnitude of pk in each eigenvalue λi. We
introduce the function

w(λ) =
∑
λi=λ

|βi|2.

The inequality in (7.13) can now be written as

‖r(k)‖22 ≤‖X‖22
d∑

i=1

w(λ̂i)
∣∣pk(λ̂i)

∣∣2
= ‖X‖22

(
w(0) +

d0∑
i=1

w(λ̂i)
∣∣pk(λ̂i)

∣∣2) (7.14)

where |λ̂1| > |λ̂2| > · · · > |λ̂d0 | > 0 are the distinct eigenvalues differ-
ent from zero.

This expression indicates that when the right-hand side has com-
ponents in the null-space of A we get w(0) 6= 0 and the residual can
never vanish.

We now wish to bound the term
d0∑

i=1

w(λ̂i)
∣∣pk(λ̂i)

∣∣2,
remembering that every choice of pk ∈ Pk will provide us with a valid
bound. We get the inspiration from Figure 7.1. Here, a model problem
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with real eigenvalues has been created and iteration 1, 2, 3, 4 of GM-
RES is represented. In each plot, the optimal polynomial popt

k is shown
together with the polynomial pmax

k that interpolates the k largest (in
absolute value) eigenvalues. This can be written explicitly as

pmax
k (λ) =

k∏
i=1

(
1− λ

λ̂i

)
, (7.15)

for k = 1, 2, . . . , d0. By inserting this expression into the bound in
Equation (7.14) we have a valid, and hopefully useful, upper bound
on the residual.

Approximating the Convergence Rate

We will now make the assumption that the eigenvalues of A are all
non-zero and distinct. Then the residual bound becomes

‖r(k)‖22 ≤ ‖X‖22
n∑

i=k+1

|βi|2
k∏

j=1

∣∣∣∣1− λi

λj

∣∣∣∣2 .
To make any convergence approximations using this expression,

we must know both the eigenvalues λi and β = X−1r(0). To simplify
things, we use the approximation pmax

k (λ) ' 1 for all λ. This can be
justified because we have pmax

k (λ) → 1 as λ → 0 and we only need
values of pmax

k (λ) for very small λ. Now the bound has become

‖r(k)‖22 . ‖X‖22
n∑

i=k+1

|βi|2 . (7.16)

We now assume that the right-hand side has eigenvector compo-
nents decreasing exponentially as |βi| = d·q−i, and consider the quan-
tity

(s(k))2 =
n∑

i=k+1

|βi|2 = d2
n∑

i=k+1

q−2i.
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1

1
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1
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1

1
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Figure 7.1: The polynomial popt
k (solid line) corresponding to the optimal

solution for iterations k = 1, 2, 3, 4 of GMRES. The dotted lines show the
polynomials that interpolates the k largest (in absolute value) eigenvalues.
The first coordinate of the dots represents the eigenvalues.
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By calculating

(s(k))2(1− q−2) = d2
(
q−2(k+1) − q−2(n+1)

)
= d2q−2(k+1)

(
1− q−2(n−k)

)
,

we see that

(s(k))2 = d2q−2(k+1) 1− q−2(n−k)

1− q2 .

To see how this quantity changes from one iteration to the next, we
calculate

(s(k+1))2

(s(k))2
=
q−2(k+2)(1− q−2(n−k−1))
q−2(k+1)(1− q−2(n−k))

= q−2 1− q−2(n−k−1)

1− q−2(n−k)
< q−2.

Note that although this expression provides an upper bound, when
k � n, we have “'”. If we now, compared to the approximate bound
in Equation (7.16), assume that

‖r(k)‖2 ' ‖X‖2s(k),

we get an expression telling how the residual norm is reduced from
one iteration to the next,

‖r(k+1)‖2
‖r(k)‖2 ' q−1, and hence

(‖r(k)‖2
‖r(0)‖2

) 1
k

' q−1,

for k � n.
Let us shortly return to the assumption concerning the asymptotic

behavior of the βi’s. Is it realistic to know anything about them? Set
b = Ax + e where e is some noise vector. We now get

β = X−1b = X−1Ax + X−1e = ΛX−1x + X−1e

Consider the term ΛX−1x. If the eigenvector components of the
solution, X−1x, are of equal magnitude, the elements of ΛX−1x will
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decrease asymptotically like the eigenvalues. Assuming that the eigen-
vectors corresponding to large eigenvalues are slowly oscillating and
that the solution is smooth, the elements of X−1x will decrease and
the elements of ΛX−1x will decrease even faster than the eigenvalues.

The term X−1e represents the influence of the noise. Assuming
that the noise in e is white, i.e. contains (in principle) all wave fre-
quencies with the same amplitude, the elements of X−1e will be ap-
proximately at the same level.

This means that the elements of β typically will decay at least as
quickly as the eigenvalues, until they hit a certain error level.5

7.5 MINRES and CG

The Krylov subspace method MINRES is identical to GMRES in its
mathematical formulation. The only difference lies in the implemen-
tation of the method, since it is an optimized version of GMRES that
only works for symmetric coefficient matrices. So naturally, the con-
vergence results above also apply to this method.

The Conjugate Gradients method, CG, is also a Krylov subspace
method but for symmetric and positive definite6 (SPD) coefficient ma-
trices. It has a slightly different mathematical formulation than GM-
RES and MINRES. In [Gre97] it is proven for CG that the A-norm of
the error vector e(k) is smallest among all vectors in the space

e(0) + span{Ae(0),A2e(0), . . . ,Ake(0)}.

The A-norm is defined as ‖v‖A = (Av,v) = vHAv and it can be
proven well-defined since A is assumed to be SPD.

Let us denote the exact solution x? so we have e(k) = x?−x(k) and
we remember that Ae(k) = r(k). Then we get the following identical

5This resembles the behavior of the right-hand side Fourier coefficients shown in
the Picard plot on page 65. Here, the coefficients were with respect to singular vectors,
though.

6A matrix A is positive definite if (Av, v) = vHAv > 0 for all non-null v.
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statement: In iteration k the A-norm of the error x? − x is minimal
among all vectors x in the space

x(0) + span{r(0),Ar(0), . . . ,Ak−1r(0)}.
So the vector space that the solution is chosen from, is identical to
that of GMRES (and MINRES). But how is the “best” solution in each
iteration chosen? Since A is SPD it has no zero eigenvalues and is
hence invertible. We then get from the minimization property of CG:

‖e(k)‖A = (Ae(k), e(k)) = (e(k), r(k)) = (A−1r(k), r(k)) = ‖r(k)‖A−1 ,

so it is equivalent to minimizing the A−1-norm of the residual instead!
This brings us to a mathematical formulation of CG that is closely re-
lated to that of GMRES,

x(k) = argmin
x∈x(0)+Kk(A,r(0))

‖r(x)‖A−1 .

To proceed with the relation to the convergence analysis of GM-
RES, we first observe that A is symmetric so it has a decomposition
of the form A = XΛXT where X is orthogonal. Since it is also posi-
tive definite, it has positive eigenvalues and A−1 = XΛ−1XT is well-
defined. We also observe that for an arbitrary vector v we have

‖v‖A−1 = vT XΛ−1XTv = ‖
√

Λ−1XT v‖2.
Now we can write expressions analogous to those in (7.11), (7.12)

and (7.13):

‖e(k)‖A = ‖r(k)‖A−1 = ‖Xpk(Λ)XT r(0)‖A−1 = ‖
√

Λ−1pk(Λ)β‖2

=

∥∥∥∥∥∥∥∥∥


β1/λ1

β2/λ2

. . .
βn/λn




1
1
...
1

−

λ1 λ

2
1 · · · λk

1

λ2 λ
2
2 · · · λk

2
...

...
. . .

...
λn λ

2
n · · · λk

n

 c(k)


∥∥∥∥∥∥∥∥∥

2

=
n∑

i=1

|βi/λi|2|pk(λi)|2

(7.17)
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So the convergence results for GMRES still hold for CG, but ev-
erywhere βi/λi has to be substituted for βi. Note that this makes the
weighing of the rows in Equation (7.17) decrease less than for GM-
RES. CG will probably still try to satisfy the rows corresponding to
the largest eigenvalues, though. Remember that if a polynomial in-
terpolates values close to the origin, it will have huge slopes far from
the origin. This means that the polynomial would attain large values
for the largest eigenvalues, which in turn would lead to a very large
residual norm.
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Implementation Issues

implement, to put into practical effect; carry out
— THE AMERICAN HERITAGE DICTIONARY OF THE ENGLISH LANGUAGE

A particular method is not worth much unless it can be imple-
mented efficiently and GMRES is no exception. The creators of GM-
RES, Saad and Schultz, showed in 1986 how to do it both elegantly
and efficiently [SS86]. This chapter provides implementation details
which uses many of their original ideas. In Appendix E.1 it is shown
how GMRES can be implemented in MATLAB.

8.1 Implementation of GMRES

Let A ∈ Cn×n and b ∈ Cn. The approximate solution computed by
GMRES after the kth iteration is then

x(k) = argmin
x∈x(0)+Kk(A,r(0))

‖b−Ax‖2. (8.1)

The idea behind GMRES is to represent the Krylov subspace in
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terms of orthogonal vectors so that

Kk(A, r(0)) = R(K(k)) = R(V(k)), (8.2)

for all k ≥ 1 where

K(k) =
[
r(0) Ar(0) · · · Ak−1r(0)

]
,

and the matrix
V(k) =

[
v(1) v(2) · · · v(k)

]
has orthonormal columns with v(1) = r(0)/‖r(0)‖2.

We will assume that the columns of K(k) are linearly independent
so that V(k) exists and can be produced by simple (modified) Gram–
Schmidt orthonormalization. We now get

Av(k) = AK(k)c(k) =
[

r(0) AK(k)
] [ 0

c(k)

]
= K(k+1)

[
0

c(k)

]
= V(k+1)y(k),

for some vectors c(k) ∈ Ck and y(k) ∈ Ck+1. An equivalent way of
writing this is

Av(k) =
k+1∑
i=1

v(i)hi,k. (8.3)

Now assume that v(i) is known for i = 1, 2, . . . , k. Because of the
orthonormality of these vectors we have

hi,k = (Av(k),v(i))

for all 1 ≤ i ≤ k. Isolating the last term in the summation in Equation
(8.3) yields

v(k+1)hk+1,k = Av(k) −
k∑

i=1

v(i)hi,k = s(k), (8.4)
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which implies that v(k+1) = s(k)/hk+1,k where hk+1,k = ‖s(k)‖2.
This way of producing an orthonormal sequence that spans a cor-

responding Krylov space is called the Arnoldi process. The relation can
also be written in matrix form as

AV(k) = V(k+1)H(k), (8.5)

where1

H(k) =



h1,1 h1,2 · · · · · · h1,k

h2,1 h2,2 · · · · · · h2,k

0
. . .

. . .
...

...
. . . . . .

...
0 · · · · · · hk,k−1 hk,k

0 · · · · · · 0 hk+1,k


∈ Ck+1×k. (8.6)

8.1.1 The Algorithm

Let us consider iteration k of GMRES and the residual b−Ax. As seen
earlier, x must be of the form x ∈ x(0) + Kk(A, r(0)), or equivalently
x = x(0) + V(k)y for some y ∈ Ck. Using this last expression for x the
residual becomes

b−Ax = b−A
(
x(0) + V(k)y

)
= r(0) −AV(k)y

= ρv(1) −V(k+1)H(k)y = V(k+1)
(
ρI1 −H(k)y

)
,

where we have used the relation (8.5) and the fact that r(0) = ρv(1)

with ρ = ‖r(0)‖2.
Since pre-multiplying with a matrix containing orthonormal col-

umns does not change a 2-norm,2 we get

min
x∈x(0)+Kk(A,r(0))

‖b−Ax‖2 = min
y∈Ck

∥∥∥ρI1 −H(k)y
∥∥∥

2
. (8.7)

1We use hi,j as the entries of H(k) instead of the usual H
(k)
i,j since it makes the fol-

lowing algorithm and expressions simpler and more readable. Furthermore, the entries
at i, j of H(k) and H(k+1) will be identical.

2When QHQ = I we have ‖Qw‖2
2 = wHQHQw = wHw = ‖w‖2

2.
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Algorithm 1 Generalized Minimum Residual (GMRES)

1: r(0) ← b−Ax(0)

2: h1,0 ← ‖r(0)‖2
3: k ← 0
4: while hk+1,k > 0 do
5: k ← k + 1
6: v(k) ← r(k−1)/hk,k−1

7: r(k) ← Av(k)

8: for i = 1 to k do
9: hi,k ← (r(k),v(i))

10: r(k) ← r(k) − hi,kv(i)

11: end for
12: hk+1,k ← ‖r(k)‖2
13: y(k) ← argminy

∥∥h1,0I1 −H(k)y
∥∥

14: x(k) ← x(0) + V(k)y(k)

15: end while

This is a simplified formulation of the original least-squares prob-
lem (8.1) and the Arnoldi process can finally be combined into the
GMRES algorithm, seen as Algorithm 1. For each k the relation (8.6)
holds and we have set h1,0 = ρ = ‖r(0)‖2.

8.1.2 In Case of Breakdown

Assume that we encounter hk+1,k = 0 for the first time. This is often
called breakdown of the algorithm. But it is not necessarily a bad thing.
It means that

AV(k) = V(k)Ĥ(k), (8.8)

where Ĥ(k) ∈ Ck×k is equal to H(k) (see Equation (8.6)) with the last
row removed. The structure of Ĥ(k) is called upper Hessenberg. From
the above relation follows that

Av(k) =
k∑

i=1

v(i)hi,k,
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and since v(i) is a linear combination of r(0),Ar(0), . . . ,Ak−1r(0) for all
i (cf. Equation (8.2)) we have that

α0r(0) + α1Ar(0) + · · ·+ αkAkr(0) = 0 (8.9)

for some αi, that is, the vectors are linearly dependent. Note further-
more that we must have αk 6= 0 since we otherwise would have had
an algorithm breakdown earlier (see Equation (8.4)).

But linear dependency is exactly what we would like. In Section
7.3 we saw that linear dependency in the Krylov subspace was a nec-
essary condition for a Krylov solution to exist.

If α0 = 0 in Equation (8.9) we see that

A
(
α1r(0) + α2Ar(0) + · · ·+ αkAk−1r(0)

)
= Aw = 0.

Since w ∈ Kk(A, r(0)) we have from Theorem 7.7 that A is singular
and no Krylov solution exists.

If we have α0 6= 0 we get

r(0) = A
[
− 1
α0

(
α1r(0) + α2Ar(0) + · · ·+ αkAk−1r(0)

)]
= A(x(k) − x(0))

so a solution does exists. Notice that since α0 = 0 implied that A is
singular, we must have that a regular A implies α0 6= 0. This means:
When a Krylov method stops because of linearly dependency and A
is regular, a solution will be found.

Notice that linearly dependency, or equivalently hk+1,k = 0, will
happen for k = m at the latest, where m is the degree of the minimal
polynomial, see Theorem 7.2.

8.1.3 Rewriting the Least-Squares Problem

How should the least-squares problem, stated in (8.7) and in line 13 of
the algorithm, be solved efficiently? A good way to do this is to split
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H(k) into the product of an orthogonal matrix and an upper triangular
matrix:3

H(k) = Q(k)T(k). (8.10)

Since H(k) ∈ C(k+1)×k we have that Q(k) ∈ C(k+1)×(k+1) and T(k) ∈
C(k+1)×k . From iteration k − 1 to the next, a zero row and a column
must be appended to H(k−1) in order to form H(k), so we would like
to be able to exploit the factorization already obtained. Let the last

column of H(k) be
[
h
η

]
and consider

H(k) =
[
H(k−1) h

0H η

]
=
[
Q(k−1)T(k−1) h

0H η

]
=
[
Q(k−1) 0

0H 1

] [
T(k−1) Q(k−1)H

h
0H η

]

=
([

Q(k−1) 0
0H 1

]
G
)(

GH

[
T(k−1) Q(k−1)H

h
0H η

]) (8.11)

which is valid whenever GGH = I.
Now if G = I, we see that H(k) is written as the product of two

matrices where the first is orthogonal and the second is nearly upper
triangular, only η, the element at (k+1, k), spoils this. If we can choose
an orthogonal G so that the last factor becomes upper triangular, we
have a new valid factorization. This is obtained by using a Givens
rotation. In this case, the matrix must be

G =

I c s
−s c

 ∈ C(k+1)×(k+1),

3This factorization is typically called QR-factorization, where Q represents the or-
thogonal matrix and R the triangular matrix. To avoid confusion with residual vectors,
we use the letter T for the triangular matrix.
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where c = cos(θ) and s = sin(θ) for the same θ, which ensures that G
is orthogonal. We wish to find c and s so that

GH

[
Q(k−1)H

h
η

]
=

I c −s
s c

[Q(k−1)H
h

η

]
=
[
k
0

]

If the bottom element of Q(k−1)H
h is denoted γ, straightforward

calculations show that4

s =
1√

1 + |γ/η|2 and c = − γ/η√
1 + |γ/η|2 .

With this G, the two set of parentheses in Equation (8.11) will rep-
resent Q(k) and T(k) respectively.

The norm in Equation (8.7) can now be rewritten as∥∥∥ρI1 −H(k)y
∥∥∥

2
=
∥∥∥ρI1 −Q(k)T(k)y

∥∥∥
2

=
∥∥∥ρQ(k)H

I1 −T(k)y
∥∥∥

2
.

(8.12)
Note, however, that the last row of T(k) ∈ C(k+1)×k is always zero.

This makes it impossible to fulfill the last row in the least-squares
problem.

Let T̂(k) represent T(k) without the last row and likewise for ̂Q(k)HI1.

If T̂(k) has non-negative elements along the diagonal, the inverse ex-
ists and the minimum of the norm in (8.12) can be found explicitly.
This means that

y(k) = argmin
y

∥∥∥∥ρ̂Q(k)HI1 − T̂(k)y
∥∥∥∥

2

= ρT̂(k)
−1 ̂Q(k)HI1

and the solution can be expressed as:

x(k) = x(0) + V(k)y(k) = x(0) + ρV(k)T̂(k)
−1 ̂Q(k)HI1.

4If η = 0 we just choose G = I.
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Notice that this implies that all rows in Equation (8.12) will be fulfilled
except for the last. So the residual norm is known explicitly to be the
absolute value of the bottom element of ρQ(k)H

I1. This means that
one knows the residual norm in each iteration at no extra cost, without
having to compute ‖b−Ax(k)‖2.

Assume that the newly found element at (k, k) of T(k) is zero. Then

T̂(k) is singular and the above formula cannot be used. It is easily
shown that the absolute value of this corner element is

√|η|2 + |γ|2,
so T(k)

k,k = 0 implies η = γ = 0. But when η = hk+1,k = 0 we have
linearly dependency in the Krylov subspace, and equations (8.8) and
(8.10) yield

AV(k) = V(k)Ĥ(k) = V(k)Q(k)T̂(k).

Since T̂(k) is singular we can find a vector y such that T̂(k)y = 0.
That makes the right-hand side of the above expression equal to zero,
so we also have AV(k)y = 0. Since V(k)y ∈ Kk(A, r(0)) we have from
Theorem 7.7 that A is singular and no Krylov solution exists. So this
way of implementing GMRES can actually detect when a solution can
not be found.

Now assume that the (k, k)–element of T̂(k) is nonzero, which me-
ans that it is invertible. We introduce the auxiliary matrix,

W(k) =
[
w(1) w(2) · · · w(k)

]
= V(k)T̂(k)

−1

,

for all k. From this follows that5

v(k) = W(k)t(k) =
[
W(k−1) w(k)

] [t(k)
1:k−1

t(k)
k

]
= W(k−1)t(k)

1:k−1 + w(k)t(k)
k ⇒

w(k) =
(
v(k) −W(k−1)t(k)

1:k−1

)
/t(k)

k

for k > 1. When k = 1 we just have w(1) = v(1)/t(1)
1 .

5Here, we also use[T(k) =
�
t(1) t(2) · · · t(k)

�
.
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By updating W(k) in this fashion, the approximate solution at each
step can be found as

x(k) = x(0) + ρV(k)T̂(k)
−1 ̂Q(k)HI1 = x(0) + ρW(k) ̂Q(k)HI1.

In Appendix E.1, MATLAB code can be found illustrating all the
implementation aspects of the GMRES method mentioned in this sec-
tion.

Note that MATLAB 6.0’s own implementation of GMRES does not

take special actions when the corner element of T̂(k) becomes zero.
This means that in some cases, their algorithm outputs an ugly di-
vide by zero warning, although it warns the user that no solution
has been found. See Section D.6 for an example of this.

8.2 Related Algorithms and Practical Consid-
erations

The fact that full orthonormalization has to be done in each step of
GMRES makes the work per iteration, and overall storage require-
ments, increase. To get around this, the algorithm restarted GMRES
is often used instead. Given a starting guess, GMRES is run for k it-
erations. Then the approximate solution found is used as a starting
guess to start up GMRES once again. And so forth. Since GMRES this
way is restarted every k iterations, it is also called GMRES(k). Con-
vergence analysis of this algorithm becomes much harder. Important
is it to note however, that when it comes to discrete ill-posed prob-
lems, GMRES has a tendency to converge very quickly or not at all.
So restarted GMRES may not be a relevant method for these kinds of
problems.

Another thing that is important for practical use is stopping cri-
teria. We know that the residual always is non-increasing, but semi-
convergence, which is often present for discrete ill-posed problems,
shows that one should not always choose the solution with the small-
est residual norm. A concept introduced by P. C. Hansen (see [Han98a])
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is the L-curve. This is a way of choosing the best regularization pa-
rameter (which for iterative methods typically is the iteration step) by
considering the two quantities ‖x(k)‖2 and ‖b − Ax(k)‖2. The resid-
ual norm will typically decrease quickly in the beginning, then level
off and then accelerate the decrease once again. The solution norm
typically increases in the beginning, then levels off and then increases
rapidly as noise begins to influence the solution. This phenomenon is
often seen as a big “L” when plotting log ‖x(k)‖2 and log ‖b−Ax(k)‖2
against each other, hence the name. The trick is now to pick the solu-
tion that corresponds to the corner of the L, since this can be shown
to be a good choice of regularization parameter in many cases. The
down-side to this scheme, in relation to GMRES, is that the solution
norm has to be computed in each iteration step, which is not needed
in the traditional implementation.

A related, but different approach, is taken in the article [CLR00].
Here, they look at L-curves made by the quantities ‖κ(k)‖2 and ‖b −
Ax(k)‖2, where κ(k) is the condition number of the matrix H(k) (see
equations (3.11) and (8.7)) used to solve the smaller, reduced linear
system. They show how this method often is a better approach than
the traditional L-curve.

There is no shortage of Krylov subspace methods. Over 20 of them
popped up when counting loosely in the literature. Methods like GCR
(Generalized Minimal Residual), ORTHOMIN, GENCR and ORTHO-
DIR are all mathematically equivalent to GMRES, but differ in the im-
plementation. As already mentioned, MINRES is also mathematically
equivalent to GMRES, but is tailor-made for symmetric coefficient ma-
trices.

Quasi-optimal Krylov subspace methods are methods that gener-
ate non-optimal solutions. A number of Quasi GMRES-related me-
thods include Bi-CG, QMR (Quasi Minimal Residual), CG-S, Bi-CG-
STAB, restarted GMRES and hybrid GMRES. See [Gre97] or [SvdV93]
for a description for most of these algorithms.

Why make two different methods that are mathematically equiv-
alent? There are at least two reasons for this: To improve efficiency
and/or accuracy. Efficiency is basically the time it takes for the method
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to find a satisfactory solution. Memory usage is also an important fac-
tor here.

Practical implementations are always done on finite precision com-
puters, and the effect of round-off errors is a delicate matter. Methods,
such as GMRES, that rely on orthogonalizing the Krylov subspaces,
can exhibit unwanted behavior if orthogonality is not exactly fulfilled
due to rounding errors. Both [Kar91] or [Gre97] touch upon these sub-
jects.
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Conclusion

conclusion, the result or outcome of an act or process
— THE AMERICAN HERITAGE DICTIONARY OF THE ENGLISH LANGUAGE

The question that set off this project was: “How well does GMRES
work for discrete linear ill-posed problems?” It was decided to attack this
question from an abstract point of view, trying to generalize conclu-
sions/properties as much as possible before diving into specifics. And
instead of attacking the question posed above head-on we would go
back and see where discrete ill-posed problems come from and what
can be learned from these. Note that this was not necessary in order
to answer the above question, but it was an interesting area that fitted
well into the spirit of generalizing.

The adjective ill-posed can be used for a huge number of mathemat-
ical problems. If a unique solution to a certain problem always exists
and the solution process is stable the problem is called well-posed,
otherwise ill-posed. In this project the class of problems considered
where narrowed down to Kf = g where K was a compact linear op-
erator. This class was very relevant since it includes all finite matrix
mappings and nearly all integral operators.

In order to analyze GMRES, it quickly became clear that the eigen-
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values of the coefficient matrix were an essential factor. So the strategy
was to analyze the behavior of the eigenvalues (-vectors) of compact
linear operators, to find out how these quantities carried over to the
finite dimensional matrix approximations, and finally to analyze GM-
RES using the acquired knowledge.

In the analysis of compact linear operators, focus was put on both
eigenvalues and singular values of such. Singular values are a pop-
ular tool for analyzing linear ill-posed problems and any knowledge
of these could maybe lead to increased understanding of the eigenval-
ues.

Singular values are generally much more well-behaved than eigen-
values since they are eigenvalues of self-adjoint, non-negative definite
operators of the form K∗K . This means that the singular values are
always non-negative and that orthonormal vectors always exist that
span the range of the operator. For eigenvalues, in general, this is not
so. The number of eigenvalues may be none, finite or infinite and the
corresponding eigenvectors need not be orthonormal. But eigenval-
ues are always denumerable and when there are an infinite number,
they tend towards zero.

The existence of eigenvalues is a subtle matter. For instance, Vol-
terra integral operators can only have zero as eigenvalues, if any at
all. When an operator is normal (K∗K = KK∗) eigenvalues always
exist such that the corresponding eigenvectors are orthonormal and
span the range of the operator. In this case, the absolute value of the
eigenvalues and the singular values are identical. When an operator is
degenerate, i.e. a finite sum of one-dimensional mappings, the num-
ber of non-zero eigenvalues will be equal to or less than the dimension
of the range.

The asymptotic behavior of eigenvalues and singular values was
important to investigate in this project. A comprehensive article on
the eigenvalues of integral operators was published by Hille and Ta-
markin in 1931. In it, they derived a number of theorems related to
different integral kernel properties. In the years thereafter some of the
bounds were improved, but this article still seems like one of the most
important contributions to this area. To roughly summarize the re-
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sults: When an integral kernel is analytic (a subset of C∞) the decay of
the eigenvalues will be at least exponential. When the kernel is only
a finite number of times continuously differentiable, the decay will be
polynomial.

The discretization technique considered in this thesis was Galerkin
discretization. This was done by projecting vectors in the domain and
range onto finite dimensional subspaces spanned by orthogonal sets
of vectors. For singular values and -vectors, it was found that these
quantities always converge to the true ones as the discretization size
increased. Furthermore, error bounds were derived.

The results were similar for approximate eigenvalues and -vectors.
The most important difference however, was that given a sequence of
approximate eigenvalues converging to some element, the limit would
be either zero or an eigenvalue of the operator, which we were trying
to approximate.

The focus could now be put on GMRES or, in the extent possible,
on Krylov subspace methods in general. Krylov subspace methods
could be defined as methods where the solution in iteration k was
found in a Krylov subspace, the span of Ai, i = 0, 1, . . . , k − 1 applied
to some (constant) vector.

The solution to Ax = b would always lie in such a Krylov sub-
space, unless for some cases when zero was an eigenvalue of A with
index larger than 1 (these cases were possible to detect easily in an
implementation of GMRES). Furthermore the solution, if it existed,
would always be found in a maximum of n iterations (A ∈ Cn×n).

When A was assumed diagonalizable it was possible to do a con-
vergence analysis for GMRES. Assuming that the eigenvector com-
ponents of the right-hand side decayed sufficiently fast in roughly
the same order as the eigenvalues decayed, it was possible to de-
rive a good approximate bound for the residual norm. The strategy
of GMRES in the kth iteration seemed to be to build the approxi-
mate solutions from (roughly) the k eigenvectors corresponding to the
largest eigenvalues. If the right-hand side eigenvector components
from some point on stopped decaying fast, e.g. due to noise, the bound
would still be valid although somewhat pessimistic.
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Now returning to the initial question of how well GMRES works
for discrete ill-posed problems. An easy answer: It can work very well.
As can be seen from the examples in the appendix, it can go either way.
It would require thorough comparison to other algorithms to be able
to comment on how good this algorithm is.

Some conditions must be met in order for GMRES to be successful.
The eigenvector components of the right-hand side must decrease at
least as quickly as the eigenvalues. If they do not, GMRES will tend
to construct a solution from the eigenvectors corresponding to small
eigenvalues. This is unfortunate since these eigenvectors often are
highly oscillatory1 and can lead to unwanted looking solutions. This
condition can be seen as a kind of Picard condition for the eigenvalues,
although it needs to be more precisely defined for practical use.

If the right-hand side eigenvector components decrease sufficiently
fast but level out from some point, then this suggests that the right-
hand side is influenced by noise. Furthermore, GMRES should be
stopped after a number of iterations corresponding to where the right-
hand side eigenvector components begin to level out. Unfortunately,
the quantities needed to make such a decision are not known in prac-
tise. Instead one could turn to L-curve stopping criteria that detects
when the solution begins to “explode” due to noise.

Even if the right-hand side eigenvector components decrease suffi-
ciently fast, one must still be cautious. This just implies that the resid-
ual norm will decrease approximately equally quickly. But there is no
guarantee for the error norm. Only if the eigenvectors appear to be
able to assemble a satisfactory solution will it be likely that GMRES
will succeed.

Some remarks can be said about the regularization properties of
Krylov subspace methods in general. Since the image of integral oper-
ators (almost) always will be smooth, a matrix discretization will have
similar properties. This means that every Krylov subspace, apart from
possibly the starting vector, will be spanned by smooth vectors. Since

1That the eigenvectors become more and more oscillatory as the corresponding
eigenvalues decrease is merely an empirical result. It can be shown for the ETP class,
though, see Section 4.4.3.
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the solutions always lie in such a Krylov subspace, the solutions will
be similarly smooth.

9.1 The Need for Further Investigation

Some areas still need to be investigated in order to more fully under-
stand the behavior of GMRES for discrete ill-posed problems. Some of
these areas are listed below.

• The effects of finite precision and noisy data. All results in this
thesis were derived assuming infinite precision. More experi-
ments concerning noisy right-hand sides need to be made, and
theoretical (statistical) models of such problems can perhaps pro-
vide better convergence results.

• Comparison to other methods. When asked how well GMRES
works for certain problems, one ideally needs to compare to the
best available algorithm to this exact kind of problem (the “good-
ness” of approximate solutions can seldom be globally measured,
though). Since many algorithms are made to solve similar kinds
of problems, comparisons need to be made to reveal the strengths
and weaknesses of each.

• Eigenvectors of integral operators and their discretized versions.
The oscillatory properties of eigenvectors are very relevant con-
cerning regularization properties. Furthermore, since Krylov sub-
space methods tend to build their solutions from eigenvectors,
any knowledge of their appearance is relevant.

• More can be learned from the derivation and physical meaning
of the operator. Only focusing on analytical properties of ker-
nels may hide important information. For instance, the physical
“translation” of a given eigenvalue problem may provide insight
not obtainable otherwise.

• The choice of basis. How crucial is the choice of basis used for
Galerkin discretization concerning operator approximation and
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the convergence of e.g. GMRES? Can a basis be chosen that
makes the eigenvectors of A more fit to “build” a good solution?

• Results regarding other discretization schemes. In this thesis,
only Galerkin discretization has been considered. Results on
eigenvalue/-vector approximation is needed when discretizing
differently.

• The starting guess for GMRES. How much does the starting
guess influence the convergence of GMRES? Answering this
may also provide insight into the convergence of restarted GM-
RES.
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appendix ( epen’diks), n. (pl. -dixes, -dices (-sēz))
something appended; an adjunct or concomi-
tant; a supplement to a book or document con-
taining useful material; a small process arising
from, or the prolongation of, any organ, esp. the
vermiform appendix of the intestine.



A P P E N D I X A

Orthonormal Bases in L2

We will here present orthogonal bases1 for L2([a, b]), L2([0,∞[) and
L2(R).

The bases presented on bounded intervals [a, b] will have fixed
values of a and b, but proper translation and scaling can easily pro-
vide a basis for another interval. For instance let an orthogonal ba-
sis (en) ⊂ L2([a, b]) be given. If one wishes a basis (ẽn) ⊂ L2([c, d])
straightforward calculation yields:

ẽn(t) =

√
b − a
d− cen

(
(x− a)d− c

b − a + c

)
.

Similar transformations can be made for unbounded intervals. Un-
less stated otherwise, the bases presented will be for real functions
only.

1Some will only be orthogonal sequences.
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1

√
10

e10,5(t)

t

Figure A.1: An orthonormal box function sequence.

A.1 Box Functions

An orthonormal sequence of N box functions in L2([0, 1]) is simply

eN,i(t) =

{√
N for i−1

N ≤ t ≤ i
N

0 otherwise
, i = 1, 2, . . . , N.

If discretizing an integral operator K with kernel k ∈ L2([0, 1]2),
the needed computation becomes

Ai,j = (Kej , ei) =
∫ 1

0

∫ 1

0

k(s, t)ej(t)ei(s)dtds

=
√
MN

∫ i
N

i−1
N

∫ j
M

j−1
M

k(s, t)dtds.
(A.1)

A.2 Polynomials

We will first look at a basis for L2(I) consisting of polynomials on a
closed and bounded interval I . The functions 1, t, t2, . . . form a basis
for the set of polynomials on I . Since polynomials are dense in C(I)
(by Weierstrass’ approximation theorem), and since C(I) is dense in
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1−1

1

−1

t

Figure A.2: The (normalized) Legendre polynomials P1, P2, . . . , P8.

L2(I) by definition, these functions span L2(I). But the are not orthog-
onal. This can be accomplished by using the Gram–Schmidt orthonor-
malization technique, which leads to the following basis:

en(t) =

√
2n+ 1

2
Pn(t), n = 0, 1, 2, . . . ,

where Pn are the Legendre polynomials. Some of these polynomials
can be seen in Figure A.2.

When polynomials are orthogonal, a three-recursive formula can
always be set up to define their coefficients (Theorem 3.2.1 in [Sze67]).
For Legendre polynomials it is

P0(t) = 1, P1(t) = t,

(n+ 1)Pn+1(t) = (2n+ 1)tPn(t)− nPn−1(t), n = 1, 2, . . . .

We will now turn to a basis, based on polynomials, for L2([0,∞[).
Since the Laguerre polynomials (Ln) are orthogonal with respect to a
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10

1

t

Figure A.3: Orthonormal functions on L2([0,∞[), based on Laguerre poly-
nomials.

different inner product than usual, namely∫ ∞

0

e−tLi(t)Lj(t)dt = δij ,

we see that we can obtain an orthonormal basis by using the functions

en(t) = e−
t
2Ln(t), n = 0, 1, 2, . . . .

A plot of some of these functions can be seen in Figure A.3. A
three-recursive formula can also be set up for Ln in this case:

L0(t) = 1, L1(t) = 1− t,
(n+ 1)Ln+1(t) = (2n+ 1− t)Ln(t)− nLn−1(t), n = 1, 2, . . . .

Finally we seek functions, based on polynomials, that are orthonor-
mal in L2(R). Here the Hermite polynomials can be used. They have
the following orthogonality:∫

R

e−t2Hi(t)Hj(t)dt = δij
√
π2nn!.

This leads to the following functions which are orthonormal with
respect to the usual L2 inner product:

en(t) =
e−

t2
2√√

π2nn!
Hn(t), n = 0, 1, 2, . . . .
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5−5

1

t

Figure A.4: Orthonormal functions on L2(R), based on Hermite polynomi-
als.

Some of these are plotted in Figure A.4. The three-recursive for-
mula here is:

H0(t) = 1, H1(t) = 2t,
Hn+1(t) = 2tHn(t)− 2nHn−1(t), n = 1, 2, . . .

For more information on these polynomials and orthogonal poly-
nomials in general, see [Ped00, p. 42] or [Sze67].

A.3 Trigonometric Basis Functions

We will here restrict ourselves to the interval [0, π]. A basis using co-
sine functions is

e0(t) =
1√
π
, en(t) =

√
2
π

cos(nt), n = 1, 2, . . . .

A plot of some of these functions can be seen in Figure A.5. Sine func-
tions can also be used:

en(t) =

√
2
π

sin(nt), n = 1, 2, . . . .
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1

π t

Figure A.5: An orthonormal cosine sequence.

Finally, to obtain a basis for the complex L2([−π, π]) we can use

en(t) =
1√
2π
eint, n ∈ Z.

A.4 A Simple Wavelet Basis

The perhaps simplest wavelet basis possible on L2([0, 1]) is the so-
called Haar basis. This is easily defined using double indices. Let
h1

0 = 1 and

hj
n(x) =


√

2n, if x ∈
]

j−1
2n ,

j− 1
2

2n

]
−√2n, if x ∈

]
j− 1

2
2n , j

2n

]
0, otherwise,

for n = 0, 1, 2, . . . and j = 1, 2, . . . , 2n.

A.5 Orthonormal Bases in L2(I × J)

Let (eI
m) and (eJ

n) be an orthonormal basis for L2(I) and L2(J) respec-
tively. We now wish to construct an orthonormal basis for L2(I × J)
using these two bases.
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Before proceeding, we must introduce the tensor product. Given
f ∈ L2(I) and g ∈ L2(J) we define the function f ⊗ g by

f ⊗ g(x, y) = f(x)g(y) for all (x, y) ∈ I × J. (A.2)

Since ∫
I

∫
J

|f ⊗ g(x, y)|2 dydx =
∫

I

|f(x)|2dx
∫

J

|g(y)|2dy <∞,

we have that f ⊗ g ∈ L2(I ×J). Consider now the sequence (eI
m⊗ eJ

n).
This sequence is orthonormal since(

eI
m ⊗ eJ

n, e
I
m′ ⊗ eJ

n′

)
=
∫

I

∫
J

eI
m(s)eJ

n(t)eI
m′(s)eJ

n′(t)dtds

=
∫

I

eI
m(s)eI

m′(s)ds
∫

J

eJ
n′(t)eJ

n(t)dt

=
(
eI

m, e
I
m′
) (
eJ

n′ , eJ
n

)
= δmm′δn′n.

To show it is a basis let k ∈ L2(I × J) and assume

(k, eI
m ⊗ eJ

n) = 0 for all n,m.

Then, for all n and m we have

0 =
∫

I

∫
J

k(s, t)eI
m(s)eJ

n(t)dtds

=
∫

I

(∫
J

k(s, t)eJ
n(t)dt

)
eI

m(s)ds = (KeJ
n, e

I
m),

where K is the integral operator induced by the kernel k. Since the
above expression holds for all m we must have KeJ

n = 0 for all n,
which in turn implies K = 0. Since an integral operator is uniquely
determined by its kernel we have k = 0 which shows that the sequence
(eI

m ⊗ eJ
n) is total, and hence is an orthonormal basis.



136 Orthonormal Bases in L2
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Special Operators

As mentioned in Section 4.1, a large part of integral operators are com-
pact. But the set of compact operators is not a subset of integral oper-
ators and vice versa. The following two examples will illustrate this
fact.1

B.1 A Compact Operator not Integral

First we prove a necessary condition for an operator to be integral.

Theorem B.1 Set I = [0, 1] and let K : L2(I) → L2(I) be an integral
operator with kernel k : I × I → C. Then there exists a function M : I →
[0,∞[ such that

f ∈ L∞(I) ⇒ |Kf(s)| ≤ ‖f‖∞M(s) almost everywhere.

Proof: Since 1I ∈ L2(I) we have (from the definition of the domain, see
Definition (4.2))

M(s) =
∫

I

|k(s, t) 1|dt <∞,
1The examples are adapted from [HS78].
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which at the same time defines M explicitly. Now we have for f ∈
L∞(I),

|Kf(s)| =
∣∣∣∣∫

I

k(s, t)f(t)dt
∣∣∣∣ ≤ ‖f‖∞ ∫

I

|k(s, t)|dt < ‖f‖∞M(s).

�

Now consider the cosine basis on I , denote it (en), and the Haar
basis on I , denote it (hn). Note that single index is used for the Haar
basis. This can easily be done by ordering the functions as

(h0
0;h

0
1, h

1
1;h

0
2, h

1
2, h

2
2, h

3
2; . . .).

Define now an operator L by

Lx =
∑
n∈N

µn(x, en)hn

where µn = 1/
√‖hn‖∞. L is obviously linear. Since the sequence

(µn) is bounded and µn → 0 for n → ∞ the operator is bounded and
compact (see Theorem 2.17). We have en ∈ L∞(I) and consider

|Len(s)| = |µnhn(s)|,
which can be made arbitrarily large for almost all s ∈ I . This means
that a function M can not be found so

|Len(s)| ≤ ‖en‖∞M(s)

almost everywhere. Hence, L can not be an integral operator.

B.2 An Integral Operator not Compact

Let I = J = [0,∞[ and define the kernel of the integral operator K as

k(s, t) =

{
1 if n− 1 ≤ s, t ≤ n for some n ∈ N

0 otherwise
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This kernel does obviously not lie in L2([0,∞[2). That is a neces-
sary condition for a kernel, in order to make the induced integral op-
erator not compact (if k ∈ L2([0,∞[2) then K was a Hilbert–Schmidt
operator which are always compact, see Section 4.2).

An equivalent way to define K is

Kf =
∑
n∈N

(f, 1[n−1,n])1[n−1,n].

Since (1[n−1,n]) is an orthonormal basis for the range of K , we see
from Theorem 2.17 that K is bounded but not compact.
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A P P E N D I X C

On the Eigenvalues of
Integral Operators

This chapter contains an excerpt from the article “On the Characteristic
Values of Linear Integral Equations” by Hille and Tamarkin, 1931 (see
[HT31]). This 76 pages long article contains a summary table which is
presented in the following.

The notation has been changed a little in order to agree with the no-
tation of this thesis. In the article, they let rn be the absolute value of
a characteristic value which corresponds to the reciprocal of an eigen-
value λn. Therefore, expressions like

rnn
−σ →∞ and rn > R

1−ε
4 n,

are replaced here by

|λn| = O(n−σ) and |λn| < R
ε−1
4 n,

respectively.
Although they talk of general L2 kernels, it seems like every kernel

must be defined on a closed and bounded region, [a, b] × [a, b] where
a and b are finite. The article makes no remarks on the existence of
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eigenvalues. So only when assuming there is an infinite sequence of
eigenvalues does the results make sense.

The logarithms used in the table, log, are natural logarithms. Fur-
thermore, expressions like logk, k = 1, 2, . . ., should be interpreted as

log2(x) = log(log(x)), log3(x) = log(log(log(x))), . . . .

In the last four rows in the table, no constant or O-notation ap-
pears. This seems strange since a simple scaling of a given kernel will
make it fit into the same class but the eigenvalues will be scaled ac-
cordingly.

The table will now be introduced. Let K , K1 and K2 be integral
operators with kernels k, k1, k2 ∈ L2([a, b]2) respectively. Unless stated
otherwise, we use a = 0 and b = 2π. The sequence (λn) denotes the
eigenvalues ofK , repeated according to multiplicity and ordered such
that |λ1| ≥ |λ2| ≥ · · · .

The quantity ε denotes an arbitrarily small fixed positive quantity,
not necessarily the same in all formulas.

The table refers at some places to certain kernel classes. These will
be defined in the following.

The class Υa(β, q)

Let (φn) be an orthonormal basis for L2(I) and set rn(t) = (k(·, t), φn),
n ∈ N.

For β > 0 and q ≥ 2 we have that a kernel k ∈ Υa(β, q) if there
exists an n0 ∈ N such that the series

∞∑
n=n0

nβ |rn(t)|q = Ω(t),

converges for almost all t ∈ J and its sum Ω(t) is integrable.
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The class Υb (v, α, p1, p2)

We must have v ≥ 0 is integer and that α, p1, p2 ∈ R with 0 < α ≤ 1
and p1, p2 > 1. If k ∈ Υb (v, α, p1, p2) then the partial derivatives

∂sk(s, t), . . . , ∂v
sk(s, t)

must exist for almost all t. In case v > 0 the functions

∂n
s k(s, t), n = 0, 1, . . . , v − 1

must be continuous in s on 0 ≤ s ≤ 2π for almost all t, and ∂v
s k(s, t)

must be representable in the form

∂v
sk(s, t) =

{
1

2πΓ(α)

∫ 2π

0
g(z, t)Ψα(s− z)dz, α < 1,∫ s

0
g(z, t)dz + C(t), α = 1,

where G fulfills that ∫ 2π

0

(∫ 2π

0

|g(s, t)|p1

)p2

dt

exists. The function Ψα has the form

Ψα(x) =

2π lim
k→∞

[ ∞∑
n=0

(x+ 2πn)α−1 − 1
α

(2π)α−1kα

]
, 0 < α < 1,

π − x, α = 1,

and is 2π-periodic, Ψα(x+ 2π) = Ψα(x).

The class Lip (v, α, p, q)

We must have v ≥ 0 integer, 0 < α < 1 and 1 < p ≤ 2 ≤ q. A kernel
k ∈ Lip (v, α, p, q) if, for almost all t, the partial derivatives

∂n
s k(s, t), n = 1, 2, . . . , v
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exist and, in case v ≥ 1, the functions

∂n
s k(s, t), n = 1, 2, . . . , v − 1

are continuous in s for fixed t. Furthermore, the derivative ∂v
s k(s, t),

considered as a periodic function of s outside the interval (0, 2π) sat-
isfies the condition∫ 2π

0

|∂v
sk(s+ ε, t)− ∂v

sk(s, t)|p ds < g(t)εαp,

where g ∈ Lq and ε ≥ 0 is sufficiently small.

The class Lip1(v, p)

If k ∈ Lip1(v, p) then k ∈ Lip
(
v, 0, p, 1

p−1

)
with v > 0 and 1 < p ≤ 2.

The class Lip2(v, p)

If k ∈ Lip2(v, p) then k ∈ Lip
(
v, 1, p, 1

p−1

)
with v ≥ 0 and 1 < p ≤ 2.

The class Lip3(v)

If k ∈ Lip3(v) then k ∈ Lip (v, 0, 1,∞) with v > 0.

The class Lip4(v)

If k ∈ Lip4(v) then k ∈ Lip (v, 1, 1,∞) with v ≥ 0.

The class Υc(v, l, α)

Let v and l be non-negative integers and 0 ≤ α ≤ 1. A kernel k ∈
Υc(v, l, α) if, for almost all t, the partial derivatives

∂n
s k(s, t), n = 1, 2, . . . , v
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exist and, in case v > 0, the derivatives

∂n
s k(s, t), n = 1, 2, . . . , v − 1

are continuous in s for t fixed. The derivative

∂v
sk(s, t) = G(s, t)

must satisfy G ∈ L2 and when setting

g0(s, t, z) = G(s+ 2z, t) +G(s− 2z, t)− 2G(s, t),

gi(s, t, z) =
∫ z

0

gi−1(s, t, w)dw, i = 1, 2, . . . , l,

Gi(s, t, z) = i!z−igi(s, t, z),

we have for almost all s, t,∫ τ

0

|Gl(s, t, z)|dz < γτ (s, t)τ1+α, 0 ≤ α ≤ 1,

where γτ ∈ L2 for τ > 0 and ‖γτ‖ is bounded as τ → 0.

The class Υd(R)

The kernel k ∈ Υd(R) if k(s, t) is analytic in s for almost all t in the in-
terior of an ellipse in the complex s-plane, whose foci are at the points
±1 and whose sum of semi-axis is R, and that for all such values of s
we have

|k(s, t)| ≤M(t), M ∈ L2.

The table now follows. For shorter expressions, we introduce the
auxiliary quantity

σ = v + α+ 1− 1
p
.
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Classification Behaviour of eigenvalues

1 k ∈ L2

∞∑
n=1

|λn|2 <∞

2 K = K1K2

∞∑
n=1

|λn| <∞

3 k ∈ L1 ∩ L2 is Hermitian semi-
definite

∞∑
n=1

|λn| <∞

4 k ∈ Υa(β, q) |λn| = O
(
n− β+1

q

)
5 k ∈ Υb

(
v, α, p, 1

p−1

)
|λn| = O

(
n−σ

)
6 k ∈ Lip

(
v, α, p, 1

p−1

)
|λn| = O

(
n−σ(logn)v+α

)
7 k ∈ Lip1(v, p) |λn| = O

(
n
−(v+1− 1

p )
)

8 k ∈ Lip2(v, p) |λn| = O
(
n
−(v+2− 1

p )
)

9 k ∈ Lip3(v) |λn| = O
(
n−v(logn)v+ 1

2

)
10 k ∈ Lip4(v) |λn| = O

(
n−v−1(logn)v+ 1

2

)
11 k ∈ Υc(v, l, α), 0 ≤ α < 1 |λn| = O

(
n−v−α− 1

2 (logn)v+α
)

α = 1 |λn| = O
(
n−v− 3

2 (logn)v+2
)

12 k ∈ Υd(R) |λn| < R
ε−1
4 n

13
k(s, t) =

∞∑
n=1

snκn(t), γ ∈ L2,

|κn(t)| < γ(t)e−( n
τ+ε logk n)

|λn| < e(
ε−1
4τ n logk n),

k = 1, 2, . . .

14
k(s, t) =

∞∑
n=1

snκn(t), γ ∈ L2,

|κn(t)| < γ(t) exp
[
−n1+ 1

τ+ε

] |λn| < exp
[
−τ0n( τ+1

τ −ε)
]
,

τ0 = τ(τ + 1)
τ+1

τ (2τ + 1)−
2τ+1

τ

15

k(s, t) =
∞∑

n=1

snκn(t), γ ∈ L2,

|κn(t)| < γ(t) exp

−ne
�

n
1

τ+ε

�

k−1

 |λn| < e

�
−n

1
τ

−ε
�

k ,
k = 2, 3, . . .
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A P P E N D I X D

Examples

This chapter will exemplify different aspects of the theory presented
in this thesis.

D.1 A simple Volterra Operator — Integration

Possibly one of the simplest non self-adjoint operators is the following
Volterra operator:

(Kf)(s) =
∫ s

0

f(t)dt, 0 ≤ s ≤ 1.

The kernel is thus k(s, t) = 1 for 0 ≤ t ≤ s ≤ 1 and 0 otherwise. The
adjoint operator is easily obtained by using the conjugate transposed
kernel k∗(s, t) = k(t, s):

(K∗f)(s) =
∫ 1

0

k∗(s, t)f(t)dt =
∫ 1

s

f(t)dt, 0 ≤ s ≤ 1.
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The Singular Value Expansion

To find the singular value expansion, we must calculate K∗K :

(K∗Kf)(s) =
∫ 1

s

∫ z

0

f(t)dtdz.

The singular values are now obtained by solving the eigenvalue
problem K∗Kv = µ2v, which is equivalent to solving the ordinary
differential equation

µ2v′′ + v = 0

with boundary conditions v(1) = v′(0) = 0 (see [Kre99, p. 280]). The
nontrivial solutions are given by

µn =
2

(2n− 1)π
, vn(t) =

√
2 cos

(
(2n− 1)πt

2

)
, n ∈ N.

The singular value expansion is completed by calculating

un(s) =
1
µn

(Kvn)(s) =
√

2 sin
(

(2n− 1)πs
2

)
.

Discretization

Assume we wish to discretize this operator using box functions, lead-
ing to an A ∈ RN×N matrix. As seen in Section A.1, this can be done
in the following way:

Ai,j = N

∫ i
N

i−1
N

∫ j
N

j−1
N

k(s, t)dtds.

When j > i the kernel will be zero in the integration interval. If
j < i the kernel will be constantly 1, obtaining Aij = 1

N . When i = j
the integration square is divided along the diagonal, one part with
k(s, t) = 1 and one with k(s, t) = 0. This leads to Aij = 1

2N .
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All in all we arrive at a matrix looking like this:

A =
1

2N


1
2 1
2 2 1
...

...
. . . . . .

 ∈ RN×N .

Notice that all N eigenvalues of this matrix are λ = 1
2N . So for

increasing N every eigenvalue of A converges to zero. This is what
could be expected since K is a Volterra operator that has no eigen-
values at all (λ = 0 is not an eigenvalue since K only has the trivial
null-space).

Let us instead try to discretize with respect to a basis consisting of
the singular vectors (vn) and (un):

Bi,j =(Kvj, ui) = (µjuj, ui) = µjδij = diag(µ1, µ2, . . . , µN )

where µi =
2

(2n− 1)π
.

So the non self-adjoint compact operator has lead to a simple diag-
onal matrix! The eigenvalues here are clearly just λi = µi.
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0 60
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0.4

Figure D.1: Plots of the solution x (left) and the right-hand side b (right)
from the baart test problem (both are discretized versions).

D.2 baart — convergence plots

The test problem used here is called baart in the REGULARIZATION
TOOLBOX, see [Han98b]. The integration kernel is

k(s, t) = es cos t, (s, t) ∈ [0, π
2 ]× [0, π],

where a solution with corresponding right-hand side are given by

f(t) = sin t and g(s) = 2
sin s
s
,

respectively. Discretized versions of these can be seen in Figure D.1.
The discretization used was Galerkin discretization with box basis
functions.

Eigenvalues

Important to note is the fact that the domain and range are different
for K : L2([0, π]) → L2([0, π

2 ]). It therefore makes no sense to talk
about eigenvalues of K . But when discretizing using N basis func-
tions in each space, we arrive at a square matrix A for which it makes
perfect sense to talk of eigenvalues. Let now (φn)N

n=1 and (ψn)N
n=1 be

sequences of orthonormal box functions in L2([0, π]) and L2([0, π
2 ]) re-

spectively. Note that ψn(t) = φn(2t) for 0 ≤ t ≤ π
2 . Assume now that
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A has an eigenvalue λ with corresponding eigenvector ϕ. This means
that

N∑
j=1

Ai,jϕj = λϕi, for i = 1, 2, . . . , N.

Let now K̃N be the approximation to K given by A and let ϕ =∑N
j=1 ϕjφj (see Section 6.1). We now get

K̃Nϕ(s) =
N∑

i=1

N∑
j=1

(Kφj , ψi)(ϕ, φj)ψi(s) =
N∑

i=1

N∑
j=1

Ai,jϕjψi(s)

= λ

N∑
i=1

ϕiψi(s) = λ

N∑
i=1

(ϕ, φi)φi(2s) = λϕ(2s)

(D.1)

So the operator K̃N does not, of course, have eigenvectors, but a
similar property that also scales the output vector. In general, we have∫

J

k(s, t)ϕ(t)dt = λϕ(2s) ⇔
∫

J

k(1
2s, t)ϕ(t)dt = λϕ(s).

This means that the eigenvector from Equation (D.1) actually is an ap-
proximate eigenvector to the integral operator with kernel

k(s, t) = e
1
2 s cos t, (s, t) ∈ [0, π

2 ]2 (D.2)

instead. Notice that a similar “trick” can be used whenever the basis
functions used are identical except for translation and/or scaling.

Running GMRES

We now wish to run GMRES on the discretized version of the problem
introduced in the beginning. Before proceeding, we compute some
important quantities relating to this problem.

Figure D.2 shows the singular values and the eigenvalues of the co-
efficient matrix, A ∈ R64×64. Notice how both decay (approximately)
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Figure D.2: Singular values and eigenvalues of the baart test problem.
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Figure D.3: The eigenvector components of the right-hand sides b and bδ . X
denotes a matrix such that X−1AX = diag(λ1, λ2, . . . , λn) where |λ1| ≥
|λ2| > · · · .
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Figure D.4: Convergence of baart using GMRES. The error norm increases
from around iteration 8.

exponentially until they hit a level around 10−15 due to noise in the co-
efficient matrix and floating point rounding errors. Figure D.3 shows
the eigenvector components of the right-hand side b.

Figure D.4 shows the result of running GMRES on this problem.
For each iteration, the relative residual norm and relative error norm
are shown. Note that the error is measured against the true solution
shown earlier (which is extraordinarily known). From the figure it can
also be seen that the decay rate of the residual norm is approximately
exponential. Important to note is also that the error norm does not
decay as fast as the residual norm and that it begins to grow at some
point. A good rule of thumb seems to be that the number correspond-
ing to when the right-hand side eigenvector components hit machine
precision (or a larger error level) dictates the maximal number of iter-
ations that should be used.

A convergence plot is also shown in Figure D.5. The problem is the
same as above except that the right-hand side used is

bδ = b + 10−5‖b‖2e,

where e is a vector of normally distributed noise with mean value 0
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Figure D.5: Convergence of baart using GMRES. Notice the semiconver-
gence: The error norm (from the true solution) increases from around itera-
tion 4.

and standard deviation 1. The right-hand side eigenvector compo-
nents are also seen in Figure D.3.

In the convergence plot we have again that the error norm is mea-
sured against the true solution x and not the solution corresponding
to bδ . A clear example of semiconvergence can be seen. From around
iteration 4 the solution vector starts to approach A−1bδ together with
other unwanted inaccuracies. Note that this corresponds to where the
right-hand side eigenvector components began to level out.

Theory and Practise

We will now look at the asymptotic behavior of the eigenvalues of the
integral operator induced by the kernel in Equation (D.2). Using the
well-known Taylor expansion of ex, we get

k(s, t) =e
1
2 s cos t =

∞∑
n=1

1
n!
(

1
2s cos t

)n =
∞∑

n=1

snκn(t),

where κn(t) = 1
n!

1
2n cosn t.
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Aiming to use the bound in row 13 of the table on page 145, we recall
the Stirling formula for the factorial function:

n! >
√

2πnnne−n.

Although these quantities are very close, the inequality actually holds
(see [Knu97, page 115]). We now get

|κn(t)| < 1√
2πnnne−n

1
2n

=
1√
2π
e−

1
2 ln(n)−n ln(n)+n−ln(2)n

<
1√
2π
e−n(ln(n)−1+ln(2)) . γe−n ln(n)

for a constant γ and from some value of n. According to the table, the
eigenvalues should now be bounded by

|λn| < e−
1
4n ln(n).

The computed eigenvalues and this bound are plotted in Figure
D.6. The bound is seen to be quite pessimistic, although the shape of
the curve seems correct. Also in the figure is plotted

e−n ln(n),

which is seen to fit very well. So for this example, the factor in the
exponent was too pessimistic. Note that the computed eigenvalues
level out due to lack of floating point precision.

We will now apply the residual norm bounds derived in Section
7.4.1 to the convergence curve seen in Figure D.4. By computing the
eigenvalues and β (= X−1b, the eigenvector components of the right-
hand side), we can explicitly calculate the polynomial pmax

k (see Equa-
tion (7.15)) and compute the bound for each k. This lead to one of the
bounds seen in Figure D.7. Also shown in the figure is the approxi-
mate bound computed using only β (since pk = 1), see Equation (7.16)
page 102. This bound is seen to be almost identical to the previous.
Apart from a constant factor, both bounds are seen to follow the shape
of the convergence curve very tightly.
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Figure D.6: Expected behavior of the eigenvalues for the baart test problem.
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Figure D.7: Expected convergence for the baart test problem, no noise.



D.2 baart — convergence plots 159
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Figure D.8: Expected convergence for the baart test problem, with noise.

The results of trying out these bounds on the problem influenced
by noise can be seen in Figure D.8. Here the bounds are still good,
but especially in the beginning. As soon as the βi’s do not decay fast
enough, the bounds become more pessimistic.
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Figure D.9: Plots of f and g from the wing test problem.

D.3 wing — when GMRES fails

This test problem is also from the REGULARIZATION TOOLBOX. The
integral kernel has the form

k(s, t) = t e−st2 , (s, t) ∈ [0, 1]2.

A solution and right-hand side are given by

f(t) =

{
1, if t1 ≤ t ≤ t2
0, otherwise

and g(s) =
e−st21 − e−st22

2s
,

respectively. For this example we use t1 = 1
3 and t2 = 2

3 and the goal
here is clearly to attempt restoring the discontinuities of f , given the
right-hand side g. A plot of f and g can be seen in Figure D.9.

Discretization

A 64× 64 coefficient matrix was computed using box basis functions.1

Figure D.10 shows the eigenvalues and singular values of the coeffi-
cient matrix. Note that these values level off at about 10−8, somewhat
higher than the machine precision. This is probably due to noise in the
coefficient matrix, caused by the numerical discretization.

1See Chapter F in the appendix for information on the software used for numerical
integration.
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Figure D.10: Singular values and eigenvalues of the wing test problem.

Running GMRES

GMRES was run on this problem. Figure D.11 shows the first 5 approx-
imate solution vectors. They all fail to come close to the true solution
and the fifth vector is seen to be influenced by noise. This means that
there is very little hope that a better solution will be found.

Also in the figure are 5 eigenvectors corresponding to the 5 largest
eigenvalues. Although GMRES assembles its solutions from Krylov
subspaces, we know from the convergence analysis of GMRES (see
Section 7.4.1) that the approximate solutions are built (mostly) from
the eigenvectors corresponding to the largest eigenvalues. This is clearly
seen from the (visual) resemblance between the approximate solutions
and the eigenvectors.

The poor convergence is also made clear in Figure D.12. Here, the
residual norm and error norm are shown for each iteration. The rel-
ative error norm actually never manages to come below 1! This is
clearly because the vectors of the Krylov subspaces, from which the
approximate solutions are built, are totally unfit to assemble the dis-
continuous solution.

Figure D.13 shows a similar convergence plot, but here the dis-
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Figure D.11: The left column shows iteration vectors x(1) to x(5), the true
solution is shown in gray. The column on the right shows 5 eigenvectors
corresponding to the 5 largest eigenvalues.
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cretization was computed using cosine basis function.2 The problems
are seen to be the same. The error norm is actually seen to increase
instead of decrease.

2The coefficient matrix is only 16×16 since accurate numerical integration with high
frequency cosine functions proved very difficult.
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Figure D.12: Convergence of wing using GMRES. Discretization was done
using box basis functions.
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Figure D.13: Convergence of wing using GMRES. Discretization was done
using cosine basis functions.
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D.4 deriv2 — Discontinuous derivative

Consider the self-adjoint operator K : L2([0, 1])→ L2([0, 1]) with ker-
nel

k(s, t) =

{
t(s− 1), t ≤ s
s(t− 1), t > s.

(D.3)

This is the so-called Green’s function to the boundary value problem
for the ordinary differential equation3

g′′(s) = f(s), 0 ≤ s ≤ 1,

with boundary condition g(0) = g(1) = 0. It can be shown that for
each function f ∈ C([0, 1]) a unique solution g ∈ C2([0, 1]) to this
problem is given by g = Kf .

The eigenvalue problem Kϕ = λϕ is equivalent to the differential
equation

λϕ′′(t)− ϕ(t) = 0, 0 ≤ x ≤ 1,

with boundary condition ϕ(0) = ϕ(1) = 0. The nontrivial solutions to
this problem are

λn = − 1
π2n2

, ϕn(t) =
√

2 sin(nπt).

We will now try, from the kernel (D.3) in alone, to predict the
asymptotic decay of the eigenvalues. The kernel itself is obviously
continuous and the first partial derivative with respect to s is

∂sk(s, t) =

{
t, t ≤ s
t− 1, t > s.

Since obviously ‖∂sk(·, t)‖1 < ∞ for all t, all the requirements of
Theorem 4.10 are fulfilled and we have

|λn| = O
(
n−1(logn)

3
2

)
. (D.4)

3A closely related example is discussed in [Kre99] page 275.
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But that is not a very tight bound. So let us try with the class
Lip1(1, 2) instead. Since p = 2 we see that the condition∫ 1

0

∣∣∂sk(s+ ε, t)− ∂sk(s, t)
∣∣2ds < g(t) (D.5)

must be satisfied with g ∈ L1([0, 1]) and ε > 0 sufficiently small. Be-
cause ∂sk(s, t) shall be considered as a periodic function of s outside
the interval [0, 1], we have

∂sk(s+ ε, t)− ∂sk(s, t) =


0, for s < t− ε
1, for t− ε ≤ s < t

0, for t ≤ s
which leads to∫ 1

0

∣∣∂sk(s+ ε, t)− ∂sk(s, t)
∣∣2ds =

∫ t

t−ε

1ds = ε,

for every ε > 0.
So the requirement in Equation (D.5) is satisfied with g a constant

function. This provides us with the bound

|λn| = O
(
n−(1+1− 1

2 )
)

= O
(
n− 3

2

)
.

This bound is better than the previous in (D.4), but it is not the tightest
possible.

Let us turn to the class Lip2(1, 2). Our kernel is doomed to not
satisfy the conditions because it would lead to a O(n− 5

2
)

bound, but
let us see what goes wrong. The condition here becomes∫ 1

0

∣∣∣∣∂sk(s+ ε, t)− ∂sk(s, t)
ε

∣∣∣∣2 ds < g(t), (D.6)

for some g ∈ L1([0, 1]). Evaluating the left-hand side we get∫ 1

0

∣∣∣∣∂sk(s+ ε, t)− ∂sk(s, t)
ε

∣∣∣∣2 ds =
∫ t

t−ε

∣∣∣∣1ε
∣∣∣∣2 ds =

1
ε
,
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for every ε > 0. This clearly shows that no function g ∈ L1 exists such
that 1/ε < g(t) for all t ∈ [0, 1] and all ε. So, as expected, the kernel k
does not lie in the Lip2(1, 2) class.

Before giving up trying to find a tighter bound, let us try with the
class Υb(v, 1, p, 1

1−p ). The requirements for this class are expressed in
Theorem 4.9, saying that we must find functions g and C that fulfill

∂sk(s, t) =
∫ s

0

g(z, t)dz + C(t). (D.7)

Focusing on the region t < s we now wish to differentiate the above
expression on both sides with respect to s. If G(s, t) is a function that
fulfills ∂

∂sG(s, t) = g(s, t) then we get

0 =
∂

∂s
(G(s, t)−G(0, t) + C(t)) = g(s, t),

for t < s. Considering the region t > s we see that it leads to an
analogous conclusion, g(s, t) = 0 for t > s. This also makes sense,
since ∂sk(s, t) is constant in the s-direction on each triangular region.
Since the added function C(t) can not represent the jump in the s-
direction along the diagonal, it must be handled by g(s, t). But this
requires using distribution theory and the Dirac delta-function,

g(s, t) = −δ(t− s),
such that ∫ s

0

g(z, t)dt = −
∫ s

0

δ(t− z)dz =

{
0, for t ≤ s
−1, for t > s

.

This would, with C(t) = t, fulfill Equation (D.7). But g, being such a
delta-function, does not fulfill the requirement that for some 1 < p ≤ 2
we must have ∫ 1

0

(∫ 1

0

|g(s, t)|p
) 1

p−1

dt <∞

So in conclusion: The kernel k does not lie in the class Υb, either.
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D.5 Image Deblurring — 2D Domain and Range

This example models atmospheric turbulence blurring of images. Gi-
ven an (original) image, f ∈ L2([0, 1]2), the following expression com-
putes the blurred image, g ∈ L2([0, 1]2):

g(x, y) =
∫ 1

0

∫ 1

0

k(x−x′, y−y′)f(x′, y′)dx′dy′, (x, y) ∈ [0, 1]2, (D.8)

where

k(x, y) =
1√
2πσ

e

�
− x2+y2

2σ2

�
=

1√
2πσ

e−
1
2 ( x

σ )2

e−
1
2 ( y

σ )2

= Ckx(x)ky(y)

is a Gaussian point-spread function.
Note how both the domain and the range are two-dimensional,

leading to a double integral.

Discretizing

Discretizing is not much different from the one-dimensional problems,
though. We want to use box functions as basis functions, leading to
N × N discrete images. The matrix entries (or more correctly, tensor
entries) become, cf. Equation (A.1):

A′
ix,iy ,jx,jy =

(
K(ejx ⊗ ejy ), eix ⊗ eiy

)
=
∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

k(x− x′, y − y′)ejx(x)ejy (y)eix(x′)eiy(y′)dx′dy′dxdy

= CN2

∫ jx
N

jx−1
N

∫ ix
N

ix−1
N

kx(x− x′)dx′dx
∫ jy

N

jy−1
N

∫ iy
N

iy−1
N

ky(y − y′)dy′dy.
(D.9)

Since we thus have to compute integrals of the form
∫ b

a
e−x2

dx,
which are hard to handle analytically, we assume thatN is large enough
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to use the approximation∫ b

a

h(x)dx ' (b − a)h
(
a+ b

2

)
.

This leads to the following expression

A′
ix,iy ,jx,jy '

C

N2
kx

(
jx − ix
N

)
ky

(
jy − iy
N

)
=

C

N2
Bix,jxBiy,jy

(D.10)
since kx = ky and where

Bi,j = e−
1
2 ( j−i

σN )2

.

Since B has constant entries along the main- and each off-diagonal,
it is called a Toeplitz matrix. Since it is furthermore symmetric, it is
called a Hankel matrix.

We can now formulate Equation (D.8) in our discrete notation. As-
sume the original and blurred image are represented as

f̃ =
N∑

iy=1

N∑
ix=1

Fiy ,ixeix ⊗ eiy , and g̃ =
N∑

jy=1

N∑
jx=1

Gjy ,jxejx ⊗ ejy ,

respectively, then we have

Gjy ,jx =
N∑

iy=1

N∑
ix=1

A′
ix,iy ,jx,jyFiy ,ix (D.11)

Because of the double sum, this cannot be expressed as a matrix
equation. However, by “stacking” F and G into

x(ix−1)N+iy
= Fiy,ix and b(jx−1)N+jy

= Gjy,jx ,

and similarly for the A′-tensor,

A(ix−1)N+iy,(jx−1)N+jy
= A′

ix,iy,jx,jy , (D.12)
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we get the well-known
b = Ax. (D.13)

If Equation (D.12) is combined with (D.10), we get

A(ix−1)N+iy,(jx−1)N+jy
=

C

N2
Bix,jxBiy,jy ⇔

A =
C

N2


B1,1B B1,2B · · · B1,NB
B2,1B B2,2B · · · B2,NB

...
...

. . .
...

BN,1B BN,2B · · · BN,NB

 =
C

N2
B⊗B

where the symbol ⊗, when connected with matrices, is called a Kro-
necker product.

Important to note

The transformation from Equation (D.11) into Equation (D.13) is al-
ways possible for “2D integral equations”, i.e. when the domain and
range are two-dimensional. The special structure of the kernel made
it possible to separate the variables as in (D.9), which in turn made
it possible to use the short Kronecker product notation. The special
Toeplitz structure of the B-matrices was due to the convolution type
kernel.

The REGULARIZATION TOOLBOX also has a test problem, blur, that
models this kind of image blurring. Using this, the Figure D.14 was
created to illustrate image blurring.



D.5 Image Deblurring — 2D Domain and Range 171

(a) Original image (b) Blurred image

Figure D.14: An example of image blurring (the image is from a Calvin and
Hobbes comic strip).
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D.6 Degenerate Kernel — no Krylov solution

Consider the integral operator K : L2([0, π]) → L2([0, π]) with the
following degenerate kernel

k(s, t) =
4
π

cos(s) cos(t) +
4
π

cos(2s) cos(2t) +
2
π

cos(4s) cos(3t)

=
3∑

n=1

an(s)bn(t),

where

a1(s) =
4
π

cos(s), a2(s) =
4
π

cos(2s), a3(s) =
2
π

cos(4s),

b1(t) = cos(t), b2(t) = cos(2s), b3(t) = cos(3t).

Eigenvalues and eigenfunctions

We now wish to find the eigenvalues and -functions of K by consider-
ing a matrix eigenvalue problem instead, see Section 4.3.3. An obvious
basis that spans all of the above a- and b-functions is

en(t) =

√
2
π

cos(nt), n = 1, 2, 3, 4.

We now form a matrix W ∈ R4×4 by calculating the entries Wi,j =
(Kej , ei):

W =


2

2
0
1 0

 .
This matrix has an eigenvalue λ = 2 with multiplicity 2 and index

1. The corresponding eigenspace is spanned by [ 1 0 0 0 ]T and
[ 0 1 0 0 ]T . It also has the eigenvalue λ = 0 with multiplicity
2 and index 2. The null-space is thus spanned by only one vector:
[ 0 0 0 1 ]T .
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As shown in Section 4.3.3, the eigenvalues of the operator K are
identical to those of W. The eigenspace associated with λ = 2 is now
spanned by e1 and e2 instead, and the eigenspace associated with λ =
0 is spanned by e4. But since the operator K was considered defined
on the infinite dimensional space L2([0, π]) then we have λ = 0 is also
an eigenvalue with multiplicity ∞. The corresponding eigenspace is
clearly spanned by all vectors orthogonal to e1, e2, e3, e4.

Using GMRES

Since zero was an eigenvalue with index > 1 of the matrix W shown
above, what happens if we run GMRES on the following system

2
2

0
1 0

x =


2
2
0
1

 (D.14)

with obvious solution [ 1 1 1 1 ]T ?
According to Theorem 7.3, a Krylov solution only exists if and only

if the right-hand side lies in the range of W2, since λ = 0 has index 2.
This means that the right-hand side must be of the form [c1 c2 0 0]T for
some constants c1, c2 ∈ R.

The minimal polynomial is seen to be q(λ) = λ2(λ − 2), so it has
degree 3. According to Theorem 7.4, when a solution exists, it will lie
in K3−2(W,b) = span{b}.

So there is no Krylov solution to the system shown in Equation
(D.14) and GMRES also answers with the message4

Matrix singular - no Krylov solution exists
ans =

1.0000
1.0000

0
0.5000

4The algorithm used is the one tailored by the author, see Section E.1 (the next sec-
tion).
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The solution returned was the best the algorithm could come up
with, given the Krylov subspace available.

Note that if MATLAB 6.0’s own gmres algorithm is used on this
exact problem, we get the following output:

Warning: Divide by zero.
> In /appl/matlabr12/toolbox/matlab/sparfun/gmres.m at line 270
Warning: Divide by zero.
> In /appl/matlabr12/toolbox/matlab/sparfun/gmres.m at line 302
Warning: Matrix is singular to working precision.
> In /appl/matlabr12/toolbox/matlab/sparfun/gmres.m at line 317
gmres(4) stopped at iteration 1(4) without converging to the
desired tolerance 1e-06 because the maximum number of iterations
was reached.
The iterate returned (number 1(1)) has relative residual 0.33
ans =

1.0000
1.0000

0
0.5000

The approximate solution is the same as before, but the algorithm
clearly divides with a number that is zero without hesitation. It finds
out, though, after running the maximal number of iterations, that the
solution found is not very good.
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Source Code

This chapter will provide source code for a MATLAB implementation
of GMRES. It should be seen in connection with Section 8.1 that deals
with general implementation details of GMRES.

E.1 GMRES in MATLAB

function [x,res,X] = gmr(A,b,maxit,x0,tol)

%GMRES Generalized Minimum Residual
%
% [x,res,X] = gmr(A,b,maxit,x0,tol)
%
% Input: A Square matrix
% b Right-hand side
% maxit Maximum number of iterations (default: matrix
% order)
% x0 Starting guess
% tol Tolerance limit for the relative residual
% Output: x (Approximate) solution
% res Vector of residuals at each iteration (found
% implicitly, can be subject to rounding errors)
% X The approximate solution found after each iteration
% is stored in each column

% Jan Marthedal Rasmussen, October 2000
% Revised January 2001
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% Check input arguments
[m,n] = size(A);
if m ˜= n, error(’A must be square’); end;
if size(b) ˜= [n,1], error(’b has wrong dimensions’); end;
if nargin < 2, error(’Too few input arguments’); end;
if nargin < 3 | isempty(maxit), maxit = n; end;
if nargin < 4 | isempty(x0), x0 = zeros(size(b)); end;
if nargin < 5 | isempty(tol), tol = 2*eps; end;
maxit = min([n maxit]);

% Allocate space
res = zeros(1+maxit,1); % Residual vector
X = zeros(n,1+maxit); % Matrix of solutions
V = zeros(n,maxit); % Orthon. vectors spanning the Krylov space
h = zeros(maxit,1); % New column of the upper Hessenberg
Q = zeros(maxit+1); % H = Q*T, Q orthogonal
T = zeros(maxit); % T upper triangular
W = zeros(n,maxit); % W = V*inv(T)

% Initialize variables
r = b - A*x0;
eta = norm(r);
Q(1,1) = 1;
res(1) = eta;
x = x0;
X(:,1) = x;

% Begin iterations
for k=1:maxit

if eta <= tol*res(1), k=k-1; break; end;

V(:,k) = r/eta;
r = A*V(:,k);

% Mod. Gram-Schmidt on the new vector
for i=1:k

h(i) = V(:,i)’*r;
r = r - V(:,i)*h(i);

end
eta = norm(r);

% Apply previous rotations to h
T(1:k,k) = Q(1:k,1:k)’*h(1:k);

% Compute Givens rotation parameters
rc = T(k,k);

if eta == 0
c=1; s=0;

elseif abs(eta) > abs(rc)
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tau = -rc/eta;
s = 1 / sqrt(1 + abs(tau)ˆ2);
c = s*tau;

else
tau = -eta/rc;
c = 1 / sqrt(1 + abs(tau)ˆ2);
s = c*tau;

end

% Apply Givens rotations
T(k,k) = c’*rc - s’*eta;
Q(1:k,[k k+1]) = Q(1:k,k)*[c s];
Q(k+1,[k k+1]) = [-s c];

if abs(T(k,k)) <= eps
disp(’Matrix (numerically) singular - no Krylov solution exists’);
k=k-1; break;

end

% Update W = V*inv(T)
W(:,k) = (V(:,k) - W(:,1:k-1)*T(1:k-1,k))/T(k,k);

% Update solution
x = x + res(1)*Q(1,k)*W(:,k);

% Update output variables
res(k+1) = res(1)*abs(Q(1,k+1));
X(:,k+1) = x;

end

% Cut of output variables if stopped prematurely
res = res(1:k+1);
X = X(:,1:k+1);
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Thesis Notes

For all experiments with GMRES, MATLAB version 6.0 was used. For
all numerical experiments in general, the computers used double pre-
cision (64 bit floating point numbers) with unit roundoff u ' 1.1 ·
10−16.

Numerical integration, as required by some of the examples in
the appendix, was done by a C++ package called Cubpack++ , see
[CLP97]. To obtain the manual or to download the source code, see
the URL http://www.cs.kuleuven.ac.be/ ∼ronald/ .

The kernels visualized on pages 36 and 72 were rendered using
POV-Ray 3.1g for Windows, see http://www.povray.org . Setting
up the scenes visually was done using Moray V3.2 For Windows, see
http://www.stmuc.com/moray .

All the plots shown were made by producing data files using MAT-
LAB and then using the LATEX package PSTricks for the visual presen-
tation.

To contact the author, e-mail at jmr@imm.dtu.dk . See also the
homepage http://www.imm.dtu.dk/ ∼jmr for other information
that may be of relevance.
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