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Abstract

This thesis concerns estimation of stochastic volatility models in finance, discrete
time models as well as continuous time models.
Returns of financial time series are investigated for characteristics that may be used
for volatility modelling. The well-known GARCH models as well as some related
models are investigated, and their abilities to capture the characteristics of finan-
cial returns are evaluated in a large estimation study where the traditional Maxi-
mum Likelihood estimation method as well as an alternative recursive estimation
method are used.
Parameters of bivariate continuous time stochastic volatility models are tradition-
ally very difficult to estimate. This thesis investigates an indirect estimation pro-
cedure, were the parameters of continuous time models are obtained from discrete
time model parameter estimates. A new discrete time stochastic volatility model,
SSSH-GARCH, is introduced.

Keywords

Stochastic volatility, discrete time GARCH models,SSSH-GARCH, augmented
GARCH, Maximum Likelihood, Recursive parameter estimation, continuous time
stochastic volatility models.
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Chapter 1

Introduction

1.1 Introduction

The concept of volatility is probably the single most investigated phenomenon in
modern day mathematical finance. The vast interest in volatility is motivated by
two related trends. The growing number of companies utilizing risk management
(one) and the huge amount of derivatives traded on todays exchange markets (two).

The fair price of an option is determined by a number of factors including the
volatility of the underlying asset. All these factors except the volatility are directly
observable from the market or specified by the option contract.

When a company through risk management wants to establish its exposure to finan-
cial risk, it has to know the volatility ofeach of the assets it possess. The volatility
is generally perceived to bethemeasure of risk.

Motivated by these facts, it is the purpose of this thesis to investigate a number of
models which can be used to quantify and forecast the volatility of stocks. The fo-
cus of the thesis is on the particular volatilitymodels known as ARCH and GARCH
models, originally proposed by (Engle 1982) and (Bollerslev 1986), respectively.
A large part of the thesis is devoted to the estimation of the parameters of these
models using historical data.

For quite some time, research in mathematical finance has been divided by a gap
between discrete and continuous time. The vast majority of theories of mathemat-
ical finance has been formulated in continuous time, mainly because continuous

13



14 CHAPTER 1. I NTRODUCTION

time is much easier to deal with theoretically than discrete time, but also, because
real life finance evolves in continuous time. In contrast, all data series appear in
discrete time, a fact that makes discrete time models the most adequate in modeling
real life data and parameters of continuous time models difficult to estimate.

Following the work of (Duan 1997) the thesis investigates an approach where pa-
rameters of continuous time stochastic volatility models are estimated using pa-
rameter estimates of discrete time models.

Throughout the thesis the estimation methods introduced and the properties de-
scribed are illustrated using real life data as well as simulated data. Four series of
stock closing prices have been selected as representatives of real life stocks.

The thesis may be seen as a continuation of the GARCH investigations initiated by
(Bisgaard 1998). It is, however, my hope that this thesis may stand alone as a study
of the estimation of parameters of discrete and continuous time stochastic volatility
models.

1.2 Scope

Financial time series comes in many forms and from different sources. Daily
quotes of the price of Hewlett-Packard stocks, annual observations of the US 30-
year treasure bond rate and semi-annual quotes of the price of gold are all examples
of financial time series.

Because the term “financial time series” encompasses time series from a vast num-
ber of different sources, financial time series have only very few common char-
acteristics. Because of this, no usable model fits every financial time series and
thus, only a subclass of financial time series is considered here. Stocks have been
chosen as stocks are known to possess a number of common characteristics, stocks
are volatile and options on stocks are common. Furthermore, this thesis considers
ARCH and GARCH models, and these models are traditionally applied to stocks
prices, though they have also proven to be applicable to other financial time series.
For a discussion of ARCH model applicability, see (Bera & Higgins 1993).

For practical purposes, four stock price series have been selected for study. These
are daily closing prices of the stocks of the Hewlett-Packard, Sony, Mobil and
Pepsi companies from October 20, 1992 through October 20, 1997, a total num-
ber of 1265 observations per share. Four series is of course too small a number
to constitute a representative selection of stock series. This means that any con-
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clusion obtained using the series should not be generalized unless the generality is
accounted for specifically.

Though stocks are the focus of attention, some of the characteristics described and
some of results obtained apply to other types of financial time series. Typically,
properties of stocks are also retained by stock indices and exchange rates but read-
ers merely interested in interest rates or commodities will not find much of interest
in this report.

Though volatilitymodels are traditionally used for risk management or option pric-
ing, none of these applications will be investigated here. The focus of this thesis is
on estimation of parameters of stochastic volatility models, not on applied option
pricing and risk management.

1.3 Notation

Throughout the thesis I have attempted to keep the number of abbreviations at a
minimum, an in the few places where abbreviations have been used, they are prop-
erly introduced. Thus, there should be no need to provide a list of abbreviations
here.

The mathematical notation used is in line with the notation used in mathematical
finance. Vectors are column vectors unless otherwise stated,X> is the row vector
whose elements are identical to those of the column vectorX .

1.4 Software

A large part of this thesis is devoted to investigations of the properties of various
methods used to estimate parameters of stochastic volatilitymodels like ARCH and
GARCH. When performing these investigations, I have been faced with the choice
whether to write the necessary computer programs my self or use standard software
like SAS or S-Plus that offers packages for estimation of GARCH parameters.

Because the standard software packages hide a lot of the elements of estimation
of stochastic volatility models to the user and because I have wanted to investigate
the influence of these elements on the obtained parameter estimates, I have chosen
to write the software myself as Matlab M-files. This means that I have been in full
control of the estimation procedures, but also that I have spent a lot of time writing
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the computer code. Appendix A provides a list of all the computer programs I have
written as part of my work on this thesis.

1.5 Outline of the thesis

The thesis is structured in the following way:

Chapter 2 reviews the statistical properties of stock price series and return series.
The statistical properties investigated includes the mean, variance and correlation
structure. A basic model for describing financial return series is discussed, and the
concept of volatility is formally defined.

Chapter 3 introduces the discrete time ARCH and GARCH models as well as mod-
els derived from these ones. The Augmented GARCH process is presented as a
model class that encompasses the standard ARCH and GARCH models as well as
derived models.

Chapter 4 is devoted to the estimation of ARCH and GARCH model parameters.
The traditional estimation methods such as Maximum Likelihood and Quasi Max-
imum Likelihood are evaluated, and the traditional estimation problems are em-
phasized. An alternative recursive estimation method is proposed and evaluated in
comparison with the traditional methods.

In Chapter 5 the continuous time Augmented GARCH process is derived from the
discrete time process. Special attention is put on the transition from discrete to
continuous time and two well-known continuous time stochastic volatility models
are estimated using parameter estimates of discrete time models.

Chapter 6 contains a summary of the results obtained in the thesis, proposes areas
for future research and concludes the thesis.



Chapter 2

Financial Time Series and
Volatility

The purpose of this chapter is to look at the characteristics of financial time series
relevant to volatility modeling and to introduce and define a number of concepts
essential to the subject of the thesis.

Section 2.1 deals with missing observations. Section 2.2 introduces returns and
return series and look at some common characteristics of returns. Section 2.3 for-
mally defines the concept of volatility.

2.1 Financial Time Series

2.1.1 Daily quotes

As mentioned earlier, four series of daily stock closing prices are used for illustra-
tion purposes. It should be noted that these “daily” closing prices are not literally
daily. Stock markets are closed on weekends and on holidays meaning that there
will be non trading days, i.e. days without official closing prices.

In this thesis non trading days will be disregarded in the sense that each of the four
series will be treated as series of equidistant observations. This must be kept in
mind when obtaining statistical conclusions using the four series.

17



18 CHAPTER 2. FINANCIAL TIME SERIES AND VOLATILITY

The non trading days have been disregarded as is not obvious how to treat these
“missing” observations. Studies (Burghardt & Hanweck Jr. 1993) indicate that
during weekends and holidays the volatility is different from the volatility of other
days, but it has not been possible to quantify this volatility in a way that allows it
to be incorporated into the generally used volatility models.

2.2 Return series

In general it is not very interesting to look at just the price of an investment, a stock
in this case. Seen from an investors point of view, the return of the investment
is much more interesting. Mainly because the investor has the relative gain of
his investment in focus, not the nominal price of the investment, but also because
the return interpreted as the relative price change allow for comparisons across
companies, stock markets and currencies1. In addition, the returns are stationary, a
property not possessed by the actual stock prices. Thus, for the rest of the thesis,
return series are the objects of consideration.

In the world of finance, the concept of return is not unambigiously defined. Let the
stock price (of some stock) at timet be denoted bySt. The return at timet may be
defined by

DEFINITION 2.1 (THE ARITHMETRIC RATE OF RETURN).

R1;t =
St � St�1
St�1

(2.2.1)

N

Another definition is

DEFINITION 2.2 (GEOMETRIC RATE OF RETURN).

R2;t = ln
St
St�1

: (2.2.2)

N

1Although, when dealing with different currencies, the exchange rate has to be taken into account.
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The geometric rate of return is also known as theCompound Return.

Throughout the thesis, the geometric return will be used. It will be denoted byRt

and it will be referred to as thereturn. The geometric return is chosen because it
is the most widely used, thus allowing for easy benchmarking of obtained results.
Also, as will become clear in a later chapter, the geometric rate of return makes it
possible to relate discrete and continuous time models.

In Figure 2.1 the geometric returns of Hewlett-Packard, Sony, Mobil and Pepsi are
plotted.
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Figure 2.1: Returns of Hewlett-Packard (upper left), Sony (upper right),
Mobil (lower left) and Pepsi (lower right).

2.2.1 Statistical properties of return series

By looking at various statistical properties of return series such as summary statis-
tics, autocorrelations and extreme observations (outliers) it often possible to have
a reasonable guess at the process driving the series.
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In the early days of mathematical finance, most theoretical models of return series
assumed that the returns could be considered as Gaussian White Noise2.

Today, it is generally known that this assumption is not correct. Return series
are known to possess a number of characteristics different from those of Gaussian
White Noise. The most prominent of these are

1. Excess kurtosis. Return series have excess kurtosis compared to Gaussian
White Noise. That is, return series are heavy-tailed.

2. Heteroskedasticity. The variance of the returns changes over time.

3. Autocorrelation . The returns exhibit only insignificant autocorrelation.
However, thesquaredreturns are autocorrelated at a significant level.

These characteristics are generally known as theStylized Facts. Stylized fact num-
ber 1 and 2 were described as early as 1963 by (Mandelbrot 1963)3, stylized fact
number 3 by (Engle 1982) if not before. A more in-depth description of fact num-
ber 3 is provided by (Taylor 1994), claiming that the autocorrelations of the squared
returns are positive, statistically significant, generally smaller as time-lag increases
and noticably larger than the respective autocorrelations of the ordinary returns.

Researchers in the field of mathematical finance mention a number of additional
characteristics. One of these is the so-calledleverage4 effectclaiming that the
future volatility is negatively correlated with the current return, an effect expressed
by a tendency of the volatility to fall in response to an increase and rise in response
to a descrease of the stock price with the magnitude of the change in volatility
depending on the sizeand the sign of the stock price change. The leverage effect
was described as early as (Black 1976). A lot of researchers claim that return
series exhibit a positive mean though insignificant and some evidence of skewness
(nonsymmetry) in the unconditional distribution of returns have been reported.

The deviations from Gaussian White Noise are interesting, not at least if, infor-
mally, Gaussian White Noise is regarded as data containing no information, that is,
noise. In this view, any deviation from Gaussian White Noise is an indication of
“presence” of information, information that may be used for modelling.

2Recall (Madsen 1995, Chapter 4) that a processf"tg is Gaussian White Noise iff"tg is a
sequence of uncorrelated Gaussian distributed variables with zero mean and constant variance.

3In his paper, Mandelbrot do not use the termheteroskedasticity. He just mentions that large
returns have a tendency to be followed by large returns (of either sign) and small returns have a
tendency to be followed by small returns (of either sign), a phenomenon known under the term
volatility persistence.

4Leverage (here): debt/equity ratio of a company.
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Stylized fact number 3 is of particular interest when it comes to volatility mod-
elling. According to this fact the past variance can be used to predict the future
variance. The fact also helps explaining why the focus is on the volatility, not on
the mean. The past does not reveal information about the future mean.

The tendency of the conditional variance of the returns to be non-constant has
together with the positive autocorrelation of the squared returns motivated the in-
troduction of the propertyvolatility persistence. The volatility persistence may
be heuristically defined as the length of time a shock persists in the conditional
variance of subsequent returns. If the volatility clusters involve many returns, the
volatilitypersistence is said to be high. If the volatility clusters tend to be of smaller
size, the volatility persistence is low.

2.2.2 Exemplifying the statistical properties

The return series characteristics may be verified using visual as well as formal
statistical methods.

2.2.2.1 Moments

In Figure 2.2 the returns of Hewlett-Packard is displayed next to Gaussian White
Noise. The Gaussian White Noise series has by construction the same variance as
the return series.
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Figure 2.2: Returns of Hewlett-Packard (left) and Gaussian White Noise
(right).

From the two plots it is obvious that Gaussian White Noise is not a suitable de-
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scription of the return series. The return series has a substantial number of outliers
compared to the Gaussian White Noise series, and in addition one may notice the
non-constant variance. For instance, the standard deviation of the subseries con-
sisting of the Hewlett-Packard returns number 500 through 550 is considerably less
than the standard deviation of the whole series. Similarly, the subseries consisting
of returns number 950 through 1100 has a relatively large standard deviation.

The mean of the return series appear to be close to zero.

From Figure 2.2 it appears like the return series of Hewlett-Packard contains a great
number of extreme observations, outliers, compared to Gaussian White Noise, and
thus it seems like the unconditional distribution of the Hewlett-Packard returns has
fat tails compared to the normal distribution. Because of this, it may beillustrative
to compute the sample values of the higher order moments of the return series
distribution.

NOTE 1 (SAMPLE MOMENTS ).
GivenT observationsut, t = 1; 2; : : : ; T of a stochastic variableU , the sample
skewness is computed by

E
h
(U � E(U))3

i
E
h
(U � E(U))2

i3=2 =
1
T

PT
t=1(ut � �̂)3�

1
T

PT
t=1(ut � �̂)2

�3=2 (2.2.3)

and the sample kurtosis by

E
h
(U � E(U))4

i
E
h
(U � E(U))2

i2 =
1
T

PT
t=1(ut � �̂)4�

1
T

P
t=1 T (ut � �̂)2

�2 (2.2.4)

where

�̂ =
1

T

TX
t=1

ut: (2.2.5)

The skewness is the third central moment divided by the standard deviation raised
to the power of three. The kurtosis is the fourth central moment divided by the
standard deviation raised to the power of four.
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Computing the sample mean, standard deviation, skewness and kurtosis of our four
return series yields the values displayed in Table 2.1.

Series HP Sony Mobil Pepsi
Mean(�104) 0:122 8:168 6:900 5:861

Standard deviation(�102) 2:112 1:606 1:147 1:529

Skewness 0:048 0:664 0:032 0:218

Kurtosis 6:089 7:725 4:040 7:601

Table 2.1: The computed values of the sample mean, variance, skewness
and kurtosis of the four return series.

The skewness and kurtosis of Gaussian White Noise is 0 and 3, respectively. The
table supports the assumption that distributions of return series exhibit excess kur-
tosis and thus that they have fatter tails than the normal distribution. The skewness
estimates conform to an assumption of non-symmetry, but an investigation of the
relevant literature reveals that the estimates obtained of Sony and Pepsi are unusu-
ally high, see (Bisgaard 1998), (Blair 1995, chapter 2) or (Engle & Ng 1993). It is
also just a coincidence that all the skewness estimates are positive.

The findings of Table 2.1 are perhaps best illustrated by visualizing the empir-
ical distributions of the return series. This has been done in Figure 2.3 where
also curves of normal distributions with means and standard deviations identical to
those of Table 2.1 are shown.

Looking at just the four series it may be tempting to conclude that the means of
stock return series are different from zero, but as suggested by various researchers,
the mean may not besignificantlydifferent from zero. Assessing the significance
is difficult as is it not at this point reasonable to assume that the returns follows a
particular distribution. Furthermore, the skewness estimates indicate that the return
series distributions may not be symmetric thus prohibiting the use of the Wilcoxon
signed rank statistic (Conradsen 1995) as would otherwise be the natural choice.
Instead the less powerful sign statistic may be computed to test the hypothesis of
zero mean.

NOTE 2 (THE SIGN TEST).
The binomial sign test (Conradsen 1995, Chapter 3) may be used to test the hy-
pothesis that the mean� of a stochastic variable is identical to a particular value
�0.

The sign test utilizes the fact that if observations equal to�0 are disregarded, the
number of observations less that�0 is binomial distributed, and the probability that
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Figure 2.3: Empirical distributions of Hewlett-Packard (upper left), Sony
(upper right), Mobil (lower left) and Pepsi (lower right). Notice the \out-
liers" corresponding to the heavy tails.

a randomly chosen observation is less than�0 is 1
2 . That is, the test statistic is

M = x� n=2 (2.2.6)

wherex is the number of observations greater than�0 andn is the number of
observations equal to�0. The probability of a greater absolute value ofM under
the null hypothesis is

2jM j
min(x;n�x)X

j=0

�
n

j

�
0:5n (2.2.7)

The test results are displayed in Table 2.2.
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Series HP Sony Mobil Pepsi
Test statistic 1812 17 3212 8

Probability 0:304 0:3224 0:0643 0:131

Table 2.2: The test statistics of the sign test.

As seen from Table 2.2 the hypothesis of zero mean is accepted for all series at all
levels below6:4%. Thus it is assumed that the return series exhibit no trend.

The existence or non-existence of heavy tails may also be assessed formally using
statistical methods. The Jarque-Bera test uses sample values of the skewness and
the kurtosis to test for Gaussianity.

NOTE 3 (JARQUE-BERA).
The Jarque-Bera test (Jarque & Bera 1980) uses sample estimates of skewness and
kurtosis to test for Gaussianity.

The test statistic for a series withT observationsut is

TT =

�
T

6
b21 +

T

24
(b2 � 3)2

�
(2.2.8)

whereb1 andb2 are the sample skewness and kurtosis computed by (2.2.3) and
(2.2.4), respectively.

TT is approximative�2(2)-distributed under the (null) hypothesis of the observa-
tionsut originating from a Gaussian distribution.

The test statistics obtained when applying the Jarque-Bera test to the four return
series are displayed in Table 2.3.

Series HP Sony Mobil Pepsi
Test statistic 5:029� 102 1:269� 103 5:714� 101 1:125� 103

Table 2.3: The Jarque-Bera test statistic.

Under the null the distribution of the test statistic is�2(2). For comparison the
�2(2)99% fractile is5:99. As seen from Table 2.3 the hypothesis of Gaussianity is
strongly rejected in all four cases.
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2.2.2.2 Heteroskedasticity

When looking for heteroskedasticity5 it is illustrative to divide the return series
into subseries and compare the standard deviation of the different subseries to one
another. Table 2.4 shows the sample standard deviation of each of 32 subseries.

Series HP Sony Mobil Pepsi
1 - 158 1.997 1.660 1.056 1.383
159 - 316 1.840 1.409 1.180 1.297
317 - 474 1.720 1.618 1.019 1.453
475 - 632 1.497 1.730 0.925 1.383
633 - 790 2.250 1.919 1.058 1.343
791 - 948 2.772 1.440 1.397 1.405
949 - 1106 2.418 1.074 1.055 1.899
1107 - 1264 2.157 1.837 1.409 1.924

Table 2.4: Standard deviation (�100) for 8 subseries per series. The num-
bers in the �rst column indicate which returns are included in the subseries.

Looking at the table it seems evident that none of the series has a constant variance,
all the return series exhibit heteroskedasticityover the sample period. The Hewlett-
Packard series is by far the most illustrative at this point. The subseries consisting
of returns number 791 through 948 has a standard deviation almost twice the size
of the standard deviation of the subseries 475 through 632.

It is difficult to formally test for heteroskedasticity when no distribution of the
returns is assumed. Had the returns followed a normal distribution, Bartlett’s test
had been a possibility, but with the results of Table 2.3 in mind, Gaussianity is a
highly incorrect assumption. Furthermore, test results obtained using Barlett’s test
would be difficult to interpret in cases where the hypothesis of homoskedasticity is
accepted. One would never know if a different choice of subclasses would lead to
a rejection of the hypothesis.

Because of the above mentioned difficulties, a formal test for heteroskedasticity is
deferred to a later chapter.

5In the literature the termheteroskedasticityseems to be ambigiously defined. In this thesis, a
time series is said to be heteroskedastic if it exhibits changing conditional variance over time.
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2.2.2.3 Autocorrelation

Autocorrelation is illustrated using plots of the empirical autocorrelation functions
as seen from Figure 2.4. The 95% level of significance is�2=p1264 = 0:0563.

Focusing on the autocorrelations of Mobil, it is readily seen that the autocorrelation
of the squared returns is significant differently from zero at lags 2, 5, 8, 10, 11,
13, 14, 15 and 25 whereas the autocorrelation function of the ordinary returns is
significantly different form zero at lags 2, 4 and 6.

Formal methods for addressing the presence of autocorrelation exist. A Ljung-Box
test uses the empirical values of the autocorrelation function to test for autocorrela-
tion in the returns, squared or not. If the squared returns are used the test is denoted
aPortmanteau Q-test.

NOTE 4 (LJUNG-BOX AND PORTMANTEAU ).
Given observationsut, t = 1; 2; : : : ; T the Ljung-Box test (McLeod & Li 1983)
uses the empirical estimates of the autocorrelation function to test for autocorrela-
tions in the observations. If the squared observations are used, the test is denoted
a Portmanteau Q-testand the test is then used to test for autocorrelation in the
squared returns. The test assumes that the observationsut are independent and
identically distributed with finite variance.

The Ljung-Box statistic is

Q(q) = N(N + 2)

qX
k=1

�̂2(k)

N � k
(2.2.9)

where the estimate of the autocorrelation function in the case of ordinary returns is

�̂(k) =

PT
t=k+1(ut � �̂)(ut�k � �̂)PT

t=1(ut � �̂)2
(2.2.10)

where�̂ is the sample mean,

�̂ =
1

N

TX
t=1

ut: (2.2.11)

In the case of squared returns,ut is replaced byu2t yielding

�̂(k) =

PT
t=k+1(u

2
t � �̂2)(u2t�k � �̂2)PT

t=1(u
2
t � �̂2)2

(2.2.12)
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Figure 2.4: Autocorrelations of ordinary returns (left column) and squared
returns (right column). The plots in the �rst row are from the Hewlett-
Packard return series, the second row is from Sony, the third row is Mobil
and the last row is Pepsi.
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where�̂2 is the sample second order moment

�̂2 =
1

N

TX
t=1

u2t : (2.2.13)

Under the hypothesis of no autocorrelations, the test statistic is asymptotically
�2(q) distributed.

The test indicates whether the observations exhibits autocorrelation for lags less
than or equal toq.

The results of carrying out the Ljung-Box and the Portmanteau Q-test on the four
return series are as follows: For all series, the squared returns exhibits autocorre-
lation at the 95% level. Mobil is the only series exhibiting autocorrelation in the
ordinary returns.

These findings corresponds to the description of stylized fact number 3 earlier in
this section, though it is a bit surprising that the autocorrelation function of the
ordinary returns of Mobil are significant. In line with the literature, this autocorre-
lation is disregarded.

In Table 2.5 the test results are presented in their entirety.

A warning
One should be careful when using autocorrelation function estimates on data that
exhibits non-linearity and heavy tails. Studies by (Davis & Resnick 1996) have
revealed that for this kind of data, autocorrelation function estimates based on
(2.2.10) or (2.2.12) have unknown asymptotical properties, i.e. the estimator of
the autocorrelation function may not converge to the true autocorrelation function.
Because of this, the validity of the autocorrelation function plots and the Ljung-
Box test applied to the return series is, strictly speaking, unknown. The reason for
using the autocorrelation function estimates anyway is that they seem to be widely
used in financial applications and there does not seem to exist a suitable alternative.

2.2.2.4 Leverage effect

The obvious way to look for indications of a leverage effect in a return series would
be to construct a series of the squared returns and then look for negative crosscor-
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Series HP Sony Mobil Pepsi
Return type Ord Sq Ord Sq Ord Sq Ord Sq
1 41.4 14.1 51.8 5.8 29.5 47.3 61.3 4.6
2 24.4 33.6 73.7 1.0 3.5 0.3 14.5 9.6
3 19.1 0.1 67.3 2.1 3.3 0.8 18.9 9.7
4 31.3 0.1 52.4 2.9 0.1 1.5 22.7 14.4
5 42.4 0.1 61.4 0.1 0.1 0.4 19.8 23.2
6 53.5 0.1 45.8 0.1 0.0 0.3 27.9 33.5
7 37.2 0.1 56.8 0.0 0.0 0.6 28.9 34.3
8 44.4 0.1 60.3 0.0 0.1 0.1 37.4 18.6
9 30.5 0.0 68.7 0.0 0.2 0.1 45.5 21.0
10 37.0 0.0 76.5 0.0 0.2 0.0 54.9 24.8
11 41.5 0.0 83.3 0.0 0.1 0.0 63.3 31.7
12 31.2 0.0 54.2 0.0 0.1 0.0 70.2 37.9
13 38.0 0.1 62.0 0.0 0.1 0.0 45.6 45.5
14 44.6 0.1 69.4 0.0 0.1 0.0 48.8 53.0
15 51.3 0.2 71.4 0.0 0.1 0.0 56.2 59.0
16 58.6 0.2 73.4 0.0 0.1 0.0 63.3 56.9
17 19.0 0.3 79.0 0.0 0.2 0.0 70.0 63.9
18 22.1 0.4 83.6 0.0 0.2 0.0 51.8 70.2
19 26.8 0.7 80.8 0.0 0.4 0.0 53.3 74.7
20 28.6 0.6 82.9 0.0 0.5 0.0 57.8 75.4
21 21.9 0.9 75.5 0.0 0.7 0.0 58.7 80.1
22 15.7 1.0 80.1 0.0 1.0 0.0 63.4 83.2
23 15.9 1.0 83.8 0.0 1.4 0.0 68.7 86.7
24 10.1 1.3 87.3 0.0 1.5 0.0 71.4 89.4
25 11.7 0.4 87.5 0.0 1.0 0.0 74.8 82.4
26 14.5 0.6 80.2 0.0 1.3 0.0 77.7 85.9
27 17.5 0.8 81.8 0.0 1.7 0.0 77.6 88.4
28 15.8 0.9 85.2 0.0 1.1 0.0 81.1 90.3
29 9.4 1.3 83.9 0.0 1.2 0.0 84.6 88.4
30 11.6 1.7 86.7 0.0 1.6 0.0 71.1 90.9

Table 2.5: The Ljung-Box and Portmanteau test results. The table does
not display the test statistics, only the probability (in percent) that a �2(n)-
distribution exceeds the test statistic, where n is the lag number. Column
headers of \Ord" indicate ordinary returns, \Sq" indicates squared returns.
Values signi�cant at the 95% level are printed in bold.
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relations for positive lags between the series of ordinary returns and the series of
squared returns.

However, doing so has not revealed any leverage effect in any of the four stocks.
The seriesdo (not surprisingly) exhibit crosscorrelations, but these are positive as
well as negative with no predominant sign. For instance, the estimates crosscorre-
lation function for ordinary and squared Hewlett-Packard returns is as displayed in
Figure 2.5.
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Figure 2.5: Empirical crosscorrelation function of ordinary and squared
Hewlett-Packard returns, lags and leaps from 0 to 15.

Another way to look for the leverage effect is to estimate the conditional variance
using non-parametric methods, c.f. (Madsen & Holst 1996, Chapter 2). Estimates
of the conditional varianceV (RtjRt�1) of the four return series computed using a
Gaussian kernel are plotted in Figure 2.6.

From the plot the leverage effect of Hewlett-Packard is evident. Comparing the
conditional variance of returns equal in size but with different signs yields that the
conditional variance of the negative return is larger. The other three return series
do not seem to exhibit the same degree of leverage effect thus suggesting that the
leverage is not present in all return series or that the effect is hidden by other more
dominant characteristics.
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Figure 2.6: Conditional variances estimated using a non-parametric method.
The estimates are from the series Hewlett-Packard (upper left), Sony (upper
right), Mobil (lower left) and Pepsi (lower right). All the variances are
conditional on the observation in lag one, and all have been estimated
using a Gaussian kernel. The kernel bandwiths are 0:175, in the cases of
Hewlett-Packard and Mobil and 0:185 for Sony and Pepsi.

2.2.2.5 Summary

In this section a number of return series characteristics have been presented. These
include excess kurtosis, heteroskedasticity, autocorrelation in the squared returns
as well as the leverage effect. It has been shown how to verify the presence of
these characteristics by means of visual inspection and by the use of statistical
tests. The techniques have been illustrated on four return series and the series have
been proven to exhibit all of the characteristics except the leverage effect.

In the next chapter models will be introduced that capture the aforementioned char-
acteristics. But before proceeding to model the return series characteristics, the
concept of volatility must be defined.
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2.3 Volatility

It is not obvious how to define the volatility of a return series. Traditionally, the
standard deviation of the returns has been used as a measure of volatility. This
measure is easy to estimate and to interpret as long as the volatility is constant.
Unfortunately, as previously revealed, standard deviations of stock returns are not
constant. Todays level of volatility may be different from yesterdays level, a fact
that suggests that what is needed is a measure of the instantaneous volatility.

Though it may be possible to talk about the standard deviation of a single return,
it is not at all obvious how to estimate this standard deviation. However, if it is
assumed in line with (Shephard 1996) that the returnsRt may be described by a
simple model, then concept of volatility may be defined.

DEFINITION 2.3 (DISCRETE TIME STOCHASTIC VOLATILITY ).
Assuming a return seriesRt can be represented by the model

Rt = �t + �t"t (2.3.1)

where�t describes the mean level of the return at timet, �t"t describes the vari-
ation about the mean and"t is a zero mean stationary identically independently
distributed random variable, the volatility ofRt is defined by�t. N

For the purpose of this thesis, the model (2.3.1) is perhaps too unrestrictive to
facilitate an easy-to-use definition. The main problem is that�t is allowed to be
stochastic thus leaving no clear indication of where to draw the line between�t and
�t"t of (2.3.1). Thus, in the rest of this thesis it will be assumed that�t is stochastic
but that�tj t�1 is deterministic, where t�1 is the information set available at time
t� 1.

It is of course a limitation that the definition of volatility depends on a model. Intu-
itively, one would perceive the concept of volatility to be a property of the underly-
ing process generating the returns and thus independent of the choice of describing
model. Unfortunately, there is no workaround as the instantanious volatility is not
observable. Looking at the bright side, the model (2.3.1) is very general.
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Chapter 3

Discrete time GARCH models

The previous chapter presented a lot of return series characteristics, characteristics
that are mostly related to the volatility of the returns.

This chapter presents a number of models that all can be used to model the return
series volatility. A lot of different ARCH and GARCH models are described with
emphasis on the abilities of the models to incorporate the return series characteris-
tics. Descriptions of the origins of the different models are included.

The chapter is sectionized as follows: Section 3.1 establishes the general frame-
work for ARCH and GARCH models. Section 3.2 deals with the ARCH process
by (Engle 1982). Section 3.3 introduces the GARCH process by (Bollerslev 1986)
and Section 3.4 is devoted to the EGARCH process proposed in (Nelson 1991).
Section 3.5 handles various processes derived from ARCH and GARCH and fi-
nally, Section 3.6 deals with the Augmented GARCH process by (Duan 1997).

3.1 The general framework

As mentioned above, a large number of different ARCH and GARCH models exist.
To keep things clear, this section establishes the framework common to all the
models to be described later.

35
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DEFINITION 3.1 (THE ARCH PROCESS).
Consider the stochastic processf"tg and the information set t�1 where

"t = zt�t (3.1.1)

with �t positive and measurable by t�1 and thezt’s identically independently
distributed with

E(zt) = 0; V (zt) = 1 (3.1.2)

andzt independent of�t for all t.

An Archprocess is defined as a processf"tg that can be written on the form (3.1.1)
and (3.1.2). N

In line with (Bera & Higgins 1993) and (Bollerslev, Chou & Kroner 1992) (3.1.1)
and (3.1.2) will be referred to by Arch (capital “A”, lower case “rch”), whereas spe-
cific models under this framework are given denotations in all capitals. Note that
what remains to be specified for the Arch model to be employable is the process
driving f�tg and the distribution ofzt. In most of the literature this distribution is
chosen to be normal, but alternative distributions are not rarely seen.

Often, f"tg are innovations in the mean for some other stochastic processfytg
where

yt = g(xt; b) + "t (3.1.3)

andxt is in the information set t�1 andb is a parameter vector. In most of the
cases discussed in this thesis, though,f"tg will be directly observable.

3.2 ARCH

3.2.1 Definition

The ARCH process was proposed by (Engle 1982) as the first successful attempt
to model conditional heteroskedasticity. In its most general form1, the ARCH(q)
process is defined by

1In his original paper, Engle assumedg(xt; b) = x>t b and thus consideredyt = x>t b+ "t.
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DEFINITION 3.2 (THE ARCH( Q) PROCESS).
An ARCH(q) process is an Arch process with

�t =
p
ht (3.2.1)

and

ht = �0 + �1"
2
t�1 + � � �+ �q"

2
t�q; (3.2.2)

wherezt is Gaussian distributed. N

An immediate consequence of Definition 3.2 is that the innovations"t of the AR-
CH(q) process are conditionally normal,

"tj t�1 2 N(0; ht): (3.2.3)

For the conditional variance of an ARCH(q) process to remain positive, the param-
eters are restricted to�0 > 0 and�i � 0; i = 1; : : : ; q.

The most interesting part of Definition 3.2 is the functionh. The definition en-
sures that the variance of"t, conditional on the realized values"t�1; : : :"t�q, is an
increasing function of the magnitude of the lagged"’s, irrespective of their signs.
Thus, large returns tend to be followed by large returns of either sign and small
returns tend to be followed by small returns of either sign. This behaviour is def-
initely in line with the previously mentioned observations by (Mandelbrot 1963).
The orderq of the process determines the volatility persistence and this persistence
increases with values ofq.

3.2.2 Properties

To illustrate the properties of ARCH(q) processes, an ARCH(4) process has been
simulated. The simulated data are plotted in Figure 3.1, and for comparison the
geometric returns of Hewlett-Packard are plotted along with Gaussian White Noise
in Figure 3.2.

From the figures it is obvious that the simulated ARCH(4) process have some char-
acteristics in common with the Hewlett-Packard returns, characteristics that Gaus-
sian White Noise do not possess. The first thing to notice is that the ARCH(4) data
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Figure 3.1: Simulated ARCH(4) data. ht = 10�4 + 0:3"2t�1 + 0:27"2t�2 +
0:18"2t�3 + 0:09"2t�4.

has a number of outliers. The next thing is that the ARCH data exhibits some of
the volatility clustering observable in the Hewlett-Packard returns.

The order and the parameters of the ARCH process in Figure 3.2 have been chosen
somewhat arbitrarily as the purpose of the plot is merely to illustrate what ARCH
processes are capable of. The in-depth analysis of the ability of ARCH to describe
the return series characteristics is deferred to the next chapter where also parameter
estimation techniques are described.

3.3 GARCH

3.3.1 Definition

AlthoughARCH models provide a good description of many return series, it suffers
from a practical problem. As one may or may not be able to see from Figure
3.1, the volatility persistence is not quite as high as is the case of the Hewlett-
Packard returns. This means that a large lagq is needed for the ARCH(q) process
to provide an adequate description of the returns, but, as an ARCH(q) process
hasq + 1 parameters, the immediate consequence of this is that a large number of
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Figure 3.2: Returns of Hewlett-Packard (left) and Gaussian White Noise
(right).

parameters have to be estimated, all subject to parameter restrictions. This imposes
a serious computational burden.

To circumvent this problem, Bollerslev proposed the GARCH process in (Bollerslev
1986). Formally, the GARCH(p, q) process only differs from the ARCH(q) process
in the way that the functionh is specified:

DEFINITION 3.3 (THE GARCH( P,Q) PROCESS).
A GARCH(p,q) process is an Arch process with

�t =
p
ht (3.3.1)

and

ht = �0 +

qX
i=1

�i"
2
t�i +

pX
j=1

�iht�i; (3.3.2)

wherezt is Gaussian distributed. N

The difference from ARCH to GARCH is that in the GARCH case the function
ht includes lagged values of itself. In applications, a GARCH process has fewer
parameters than an ARCH process as a GARCH(1,1) suffices in most situations.
Note that an ARCH(q) process is identical to a GARCH(0, q) process.

To ensure that the conditional variance remains positive, the following parameter
restrictions suffices:
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�0 > 0 (3.3.3a)

�i � 0; for i = 1; : : : ; q (3.3.3b)

�j � 0; for j = 1; : : : ; p: (3.3.3c)

Although the restrictions (3.3.3) are sufficient to ensure non-negativity of the con-
ditional variance, they are not necessary for higher order GARCH processes (p or
q greater than one) in which case weaker sufficient conditions may exist, see (Cao
& Nelson 1992). These conditions are, however, outside the scope of this thesis as
this thesis is primarily concerned with low order GARCH processes.

The motivation of the form ofh in (3.3.2) is perhaps more obvious if (3.3.2) is
rewritten:

ht = �0 + �(B)"2t + �(B)ht (3.3.4)

where�(B) =
Pq

i=1 �iB
i and�(B) =

Pp
j=1 �jB

j are polynomials in the back-
shift operatorB. If the roots of the polynomial1� �(L) lie outside the unit circle,
(3.3.2) may be expressed as

ht =
�0

1� �(1) +
�(B)

1� �(B)"
2
t = �0

0
@1�

pX
j=1

�j

1
A
�1

+
1X
i=1

�i"
2
t�i (3.3.5)

where�i is the coefficient ofBi in the Taylor expansion of�(B)[1 � �(B)]�1.
Hence, a GARCH(p, q) process may be looked upon as an infinite order ARCH
process.

3.3.2 Properties

At Figure 3.3 the plot of a simulated series of a GARCH(1,1) returns is shown.

From the plot the higher volatility persistence of the GARCH process compared
to the ARCH process (Figure 3.1) is obvious. The GARCH process also seems to
provide a better description of the Hewlett-Packard returns (Figure 3.2).

To give an idea of the GARCH process ability to incorporate the return series char-
acteristics, it is illustrative to consider the unconditional moments and the auto-
correlation structure of the process. Unfortunately, no analytical expression of the
unconditional distribution of the GARCH process exist.
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Figure 3.3: Simulated GARCH(1,1) data. ht = 2 � 10�5 + 1:0412 �
10�1"t�1 + 0:87ht�1.

3.3.2.1 Unconditional moments

Mean
Using the law of iterated expectations, the unconditional mean may be computed
by

E("t) = E[E("tj t�1)] (3.3.6)

and, refering to (3.2.3), E("tj t�1) is zero regardless of t�1 meaning thatE("t) =
0. Thus, GARCH processes have zero mean.

Variance
Since Ef"tg = 0, the unconditional variance is identical to the unconditional sec-
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ond order moment which may be computed using

E("2t ) = E
�
E("2t j t�1)

�
= E

�
E(z2t �

2
t j t�1)

�
= E(ht)

= �0 +

qX
i=1

�iE("
2
t�i) +

pX
j=1

�jE(ht�j)

= �0 +

qX
i=1

�iE("
2
t�i) +

pX
j=1

�jE("
2
t�j) (3.3.7)

which is a linear difference equation for the sequence of unconditional second or-
der moments. If it is assumed that the process began infinitely far in the past with
a finite initial second order moment, the sequence of second order moments con-
verges to

�2" = E("2t ) =
�0

1�Pq
i=1 �i �

Pp
j=1 �j

(3.3.8)

if

qX
i=1

�i +

pX
j=1

�j < 1: (3.3.9)

If this condition is satisfied, the variance of the GARCH(p, q) process is equal to
(3.3.8).

Skewness
Becausezt in (3.1.1) is normal and independent of�t, all the odd higher order
moments of"t are zero. Hence, the skewness of"t is also zero.

Kurtosis
Expressions for even higher order moments exist only for GARCH(1, 1) processes
and GARCH(0,1) (that is, ARCH(1)) processes. For an ARCH(1) process the forth
order moment exists if3�21 < 1 and in this case the kurtosis is

E("4t )
E("2t )2

= 3

�
1� �21
1� 3�21

�
(3.3.10)
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which is greater than three indicating that the ARCH(1) process has excess kurto-
sis.

For a GARCH(1,1) process the forth order moment exists if3�21+2�1�1+�
2
1 < 1

and is then given by

E["4t ] =
3�20(1 + �1 + �1)

(1� �1 � �1)(1� �21 � 2�1�1 � 3�21)
(3.3.11)

such that theexcesskurtosis is

E("4t )
E("2t )2

� 3 =
E["4t ]� 3E["2t ]

2

E["2t ]2
=

6�21
1� �21 � 2�1�1 � 3�21

(3.3.12)

which is greater than zero. Hence, every GARCH(1,1) process has excess kurtosis.

3.3.2.2 Autocorrelation structure

The autocovariance of a GARCH(p, q) process is forn � 1

E("t"t�n) = E(zt�tzt�n�t�n)
= E(ztzt�n)E(�t�t�n) = 0 (3.3.13)

as thezt’s are mutually independent and independent of�t. Thus, a GARCH(p, q)
process exhibits no autocorrelation.

The autocovariance off"2t g is not as easy to derive, but it is possible if the process
drivingf"2t g is first established.

Define the processfvtg by vt = "2t � ht (note thatvt has zero mean) and consider
again Equation 3.3.2:

ht = �0 +

qX
i=1

�i"
2
t�i +

pX
j=1

�iht�i: (3.3.14)
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Insertinght = "2t � vt yields

"2t � vt = �0 +

qX
i=1

�i"
2
t�i +

pX
j=1

�j("
2
t�j � vt�j),

"2t = �0 +

qX
i=1

�i"
2
t�1 +

pX
j=1

�j"
2
t�j �

pX
j=1

�jvt�j + vt: (3.3.15)

For ease of notation definem = max(p; q) and set�i � 0 for i > q and�j � 0
for j > p and write

"2t = �0 +
mX
i=1

(�i + �i)"
2
t�i �

pX
j=1

�jvt�j + vt; (3.3.16)

as the process driving"2t .

From Equation 3.3.16 the autocorrelation structure off"2tg may be derived. Recall
from (3.3.8) that the mean of"t is �2" = �0(1�

Pq
i=1 �i �

Pp
j=1 �j)

�1 meaning
that the parameter�0 may be written�0 = �2"(1�

Pq
i=1 �i�

Pp
j=1 �j). Inserting

this into (3.3.16) yields

"2t = �2"

"
1�

mX
i=1

(�i � �i)

#
+

mX
i=1

(�i + �i)"
2
t�i �

pX
j=1

�jvt�j + vt

= �2" +
mX
i=1

(�i + �i)("
2
t�i � �2")�

pX
j=1

�jvt�j + vt (3.3.17)

which is equivalent to

"2t � �2" =
mX
i=1

(�i + �i)("
2
t�i � �2")�

pX
j=1

�jvt�j + vt: (3.3.18)
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Multiplying both sides of this equation by("2t�n � �2") yields

("2t � �2")("
2
t�n � �2")

=
mX
i=1

(�i + �i)("
2
t�i � �2")("2t�n � �2")

�
pX

j=1

�jvt�j("2t�n � �2") + vt("
2
t�n � �2") (3.3.19)

and if expectations are taken on both sides:

E[("2t � �2")("2t�n � �2")] =

E

"
mX
i=1

(�i + �i)("
2
t�i � �2")("

2
t�n � �2")

#

�E

2
4 pX
j=1

�jvt�j("2t�n � �2" )
3
5+ E

�
vt("

2
t�n � �2" )

�
: (3.3.20)

The two terms in the last line are both zero as

E[vt("
2
t�n � �2")] = E

�
E[vt("

2
t�n � �2")j t�1]

	
= E

�
("2t�n � �2")E[vtj t�1]

	
= Ef0g = 0 (3.3.21)

and

E[vt�j("2t�n � �2")] = E
�

E[vt�j("2t�n � �2" )j t�n]
	

= E
�
("2t�n � �2" )E[vt�j j t�n]

	
= Ef0g = 0 (3.3.22)

for j < n where the fact thatvt has zero mean has been utilized. Thus the autoco-
variance of a GARCH(p, q) process may be written

Cov["2t ; "
2
t�n] = E[("2t � �2")("

2
t�n � �2")]

=
mX
i=1

(�i + �i)E
�
("2t � �2")("2t�n � �2")

�

=
mX
i=1

(�i + �i) Cov("
2
t ; "t�n+i): (3.3.23)
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Dividing both sides withV ["2t ] and denoting the autocorrelation function of"2t by
�n yields

�n =
mX
i=1

(�i + �i)�n�i; n > p (3.3.24)

which is actually the set of Yule-Walker equations for an ARMA(m, p) process,
see (Bollerslev 1988). Hence, the autocorrelation function off"2t g GARCH(p, q)
process is similar to that of an ARMA(m, p) process. This means that estimates of
�n may be used to identify the order of an observed GARCH process.

Equation 3.3.24 does not specify the values of the autocorrelation function when
n � p. It is very difficult to find analytical expressions for these autocorrelations,
but it has been done by (Bollerslev 1988) and (He & Ter¨asvirta 1999) for low order
Arch processes. For a GARCH(1,1) processCor("2t ; "

2
t�1) is

�1 =
�1(1� �1�1 � �21)

1� 2�1�1 � �21)
: (3.3.25)

In Figure 3.4 the autocorrelation function for lags 1 to 250 of the GARCH process
from Figure 3.3 is plotted. The geometrical decay is obvious.

From the above paragraphs it is readily seen that GARCH processes seem able
to model the stylized facts of returns. GARCH innovations have heavy tails, are
heteroskedastic and exhibit no autocorrelation in the ordinary innovations, but sig-
nificant autocorrelation in the squared innovations.

3.4 EGARCH

3.4.1 Definition

One of the most commonly known objections to the GARCH models is that though
they are able to model the stylized facts of return series they are not able to take the
leverage effect into account. This is due to the fact that GARCH models only deal
with the squared returns and thus are unable to discriminate positive and negative
returns.

To remedy this problem, (Nelson 1991) introduced the so-called EGARCH pro-
cess.
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Figure 3.4: Autocorrelation function of the squared GARCH(1,1) process
where ht = 2� 10�5 + 1:0412� 10�1"t�1 + 0:87ht�1.

DEFINITION 3.4.The EGARCH(p,q) process
An EGARCH(p,q) process is an Arch process with

�t = exp(
1

2
ht) (3.4.1)

and

ht = �0 +

qX
i=1

�if(zt�i) +
pX

j=1

�jht�j (3.4.2)

and

f(zt�i) = !zt�i + �(jzt�ij � Ejzt�ij) (3.4.3)

N

Again, t�1 is the information set available at timet�1. If zt is Gaussian, Ejztj =p
2=�. One of the parameters! and� is of cource redundant, but they are both
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included in the specification because they facilitate an easy interpretation of the
model as described below.

A side-effect of the specification is that unlike the case of ARCH and GARCH
processes, no parameter restrictions are needed in order to ensure positivity of�2t .

3.4.2 Properties

The properties of the EGARCH process are primarily determined by the function
f . The rôle off is to transform the innovationszt before “turning them over” toht.
Whenzti is positive, the derivative ofht with respect tozt�i is equal to�i(!+�).
Whenzt�i is negative, this derivative is�i(!��). Thus,ht is affected by both the
sign and the size ofzt�i and therefore the EGARCH process allows for negative
correlation between returns and conditional variances.

The leverage effect (negative correlation between current return andfuturecondi-
tional variance) is present when the parameter! is negative. Suppose that� = 0
and! < 0. Then a negativezt will causef(zt) to be positive thus increasing the
future variance.

The volatility clustering is produced by the second term inf . Suppose that! =
0 and� > 0. Whenever a shock occurs (zt > E(zt)), f(zt) is positive hence
increasing the future variance.

3.4.2.1 Moments

The unconditional mean of an EGARCH process is zero. This is straightforward
to prove using the exact same approach as for the GARCH process.

Expressions for higher order moments are quite difficult to compute, and have thus
been left out. The interested reader is referred to (Nelson 1991). It can be said,
however, that if a moment of the distribution ofzt is zero, then so is the same order
moment of the EGARCH process. Hence, all odd order moments of EGARCH are
zero if zt is Gaussian.

3.5 Alternative Arch models

Since ARCH models was first introduced in 1982, a vast number of models under
the Arch framework have been proposed by an equally vast number of researchers.
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It is outside the scope of this thesis to dive into all these models, but for the sake of
integrity this section provides an overview.

3.5.1 IGARCH

The IGARCH model (see (Bollerslev et al. 1992)) is motivated by the fact that not
all returns are best modelled by a stationary model. With the ARMA representa-
tion (3.3.16) of GARCH in mind, an ARIMA-style GARCH may be derived by
imposing the IGARCH parameter restriction

Pq
i=1 �i +

Pp
j=1 �i = 1 instead of

the traditional GARCH parameter restriction
Pq

i=1 �i+
Pp

j=1 �i < 1. The conse-
quence of moving from GARCH to IGARCH is that the unconditional variance no
longer exist (it is infinite) and that the process is no longer covariance stationary.

3.5.2 ARCH-M

The ARCH-M or ARCH-in-Mean model by (Engle, Lilien & Robins 1987) was
proposed to model a phenomenon known as therisk premia; an assumption that
investors are risk averse and thus demand excess profit in return for high risk. In
statistical terms, the risk premia surfaces through a positive correlation between
the current return and the conditional variance.

The ARCH-M model is derived from the Arch framework by setting

yt = g(xt�i; �2t ; b) + "t (3.5.1)

in (3.1.3). A positive risk premia is obtained by letting the partial derivative ofg
with respect to�2t be positive. Despite its name, the ARCH-M model allows for
GARCH specification of�2t .

Typically,g is chosen as a linear or logarithmic function of�2t or�t, see (Bollerslev
et al. 1992). The most common choice is�t =

p
ht like ARCH and GARCH, and

g = x>t b + �
p
ht where� is a parameter determining the magnitude of the risk

premia.

3.5.3 Non-normal conditional distributions

Although the unconditional distributions of ARCH and GARCH processes have
fat tails compared to the normal distribution, some researchers complain that the
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tails are not as fat as those of the empirical distributions. These researchers have
suggested the use of alternative distributions for thezt’s in (3.1.1). The some-
what obvious choice when looking for fatter tails, the student-t distribution, was
suggested as early 1987 in (Bollerslev 1987) who let the degrees of freedom be a
parameter to be estimated. Another distribution, the generalized error distribution,
was invented by (Nelson 1991) for this purpose. Both the generalized error dis-
tribution an the student-t distribution includes the normal distribution as a special
case.

The alternative distribution approach are at the conceptual level no more difficult
to deal with than the standardized normal distribution. However, the task of es-
timation is complicated by the fact that the above cited papers leave one or more
distribution parameters to be estimated, thereby often increasing the total number
of parameters to or beyond the capacity of the available estimation routines.

When introducing non-normal conditional densities it is important to keep (3.1.2)
of Definition 3.1 in mind, i.e. to make sure that the innovationsf"tg have zero
mean and�2t variance. For instance, the general t-distributiont(n; �; �) with pa-
rametersn, � and� has the distribution

f(x) =
�
�
n+1
2

�
�
�
n
2

�
�
p
n�

�
1 +

(x� �)2
n�2

��n+1
2

(3.5.2)

and forn > 2 the mean and variance is

E[X ] = �; V [X ] =
n

n� 2
�2: (3.5.3)

Thus, to obtain zero mean and variance�2 one have to impose the parameter re-
strictions

� = 0; � = �

r
n� 2

n
(3.5.4)

thereby casting the distribution as

f(x) =
�
�
n+1
2

�
�
�
n
2

�
�
q

n�2
n

p
n�

"
1 +

x2

nn�2
n �2

#�n+1
2

=
�
�
n+1
2

�
�
�
n
2

�
�
p
n � 2

p
�

�
1 +

x2

(n� 2)�2

��n+1
2

: (3.5.5)
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The well-known student-t distribution with� degrees of freedom is identical to
the t(�; 0; 1)-distribution meaning that an error is almost inevitably introduced if
student’s t-distribution is used.

3.5.4 Multivariate models

In order to take interactions between financial returns of different sources into ac-
count, multivariate ARCH and GARCH models have been proposed. The reader
is referred to (Engle, Granger & Kraft 1984), (Bollerslev et al. 1992) and (Bera &
Higgins 1993) for more in-depth description of these models.

3.5.5 Other models

The list of Arch family members is long. Other published models are the Multi-
plicative GARCH model (MGARCH) by (Geweke & Pantula 1986) which speci-
fied the conditional variance as

�t = exp

�
1

2
ht

�
(3.5.6a)

ht = �0 +

qX
i=1

�i ln("
2
t�i) +

pX
j=1

�jht�j (3.5.6b)

proposed to allow unconstrained estimation of its parameters, the GJR-GARCH
model by (Glosten, Jagannathan & Runkle 1993)

�t =
p
ht (3.5.7a)

ht = �0 +

qX
i=1

�
(1)
i "2t�i +

qX
i=1

�
(2)
i max(0;�"t�i) +

pX
j=1

�jht�j

(3.5.7b)

for �0 > 0, �(1)i � 0, �(1)i + �
(2)
i � 0 and�j � 0 and the NGARCH
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�t =
p
ht (3.5.8a)

ht = �0 +

qX
i=1

�iht�i(zt�i � c)2 +

pX
j=1

�jht�j (3.5.8b)

VGARCH

�t =
p
ht (3.5.9a)

ht = �0 +

qX
i=1

�i

 
"t�ip
ht�i

� c

!2

+

pX
j=1

�jht�j (3.5.9b)

models where�0 > 0, �i � 0 and�j � 0 by (Engle & Ng 1993) as alternative
ways of incorporating the leverage effect and the Threshold GARCH (TGARCH)
by (Zakoian 1994)

�t =
p
ht (3.5.10a)

p
ht = �0 +

qX
i=1

�
(1)
i j"t�ij+

qX
i=1

�
(2)
i max(0;�"t�i)

+

pX
j=1

�j
p
ht�j (3.5.10b)

where�0 > 0, �(1)i � 0, �(1)i + �
(2)
i � 0 and�j � 0, to allow for different

parameters depending on the sign of"t�1, just to name a few.

3.6 Augmented GARCH

The vast number of models under the Arch framework are despite their differences
very similar. Thus, it would be suitable to encompass all the models into one uni-
fied model. Especially, when continuous time Arch models are to be derived from
the discrete ones in a subsequent chapter, it would be desirable if the rigourious
derivations are to be carried out on one model only.
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Unfortunately, the Arch framework itself is not suitable as a unified model as the
framework leaves the processf�tg in (3.1.1) unspecified. As a suitable alterna-
tive, (Duan 1997) has proposed theAugmented GARCHprocess. The augmented
GARCH(p, q) process is defined by

DEFINITION 3.5.The Augmented GARCH(p,q) process
An augmented GARCH(p,q) process is an Arch process with

�t =

q
~ht; (3.6.1)

�t = 
0 +

pX
j=1



(j)
1 �t�j

+

qX
i=1

h


(i)
2 jzt�i � cj� + 


(i)
3 max(0; c� zt�i)�

i
�t�i

+

qX
i=1

h


(i)
4 f(jzt�i � cj; �) + 


(i)
5 f(max(0; c� zt�i); �)

i
(3.6.2)

and

~ht =

� j��t � � + 1j1=� if � 6= 0;
exp(�t � 1) if � = 0

(3.6.3)

wheref(s; �) = (s� � 1)=� for anys � 0. N

Note thatlim�!0 f(s; �) = ln s so thatf is actually a Box-Cox transformation.
The purpose the transformation is allow the augmented GARCH process to include
models like MGARCH and EGARCH (and models somewhere between EGARCH
and GARCH) where the conditional variance is updated using logaritms of lagged
residuals and/or variances.

Also note that~ht is actually a continuous function of� as

lim
�!0

j��t � � + 1j1=� = exp(�t � 1): (3.6.4)
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The function~ht have been marked with a tilde to distinguish it from theht func-
tions of ARCH, GARCH and EGARCH in cases where ambiguities would other-
wise be present.

One of the attractive features of the augmented GARCH model is that it separates
the specification of the time-series dynamic (�) and the functional form of the
transformation (~ht). The specification of~ht gives rise to a continuum of models
containing the aforementioned Arch models as special cases.

To verify that this is indeed the case, the choices of augmented GARCH parameters
leading to the ARCH, GARCH and EGARCH models are given below.

3.6.1 GARCH

THEOREM 3.1.
A GARCH( P,Q) PROCESS IS AN AUGMENTED GARCH( P,Q) PROCESS.

Proof.Setting� = 1, c = 0, � = 2 and
(i)3 = 

(i)
4 = 


(i)
5 = 0, i = 1; : : : ; q yields

�t = 
0 +

pX
j=1



(j)
1 �t�j +

qX
i=1



(i)
2 z2t�i�t�i

= 
0 +

pX
j=1



(j)
1 �t�j +

qX
i=1



(i)
2 "2t�i (3.6.5)

and

~ht = j�tj: (3.6.6)

Hence, the augmented GARCH(p,q) process is a GARCH(p,q) process or an I-
GARCH(p, q) process when
0 = �0, 


(j)
1 = �j , 


(j)
2 = �j and
0 > 0, 
j1 � 0

and
(i)2 � 0. The parameter restrictions ensures a non-negative�t meaning that
ht of (3.3.2) is identical to�t.

REMARK 3.1.The augmented GARCH(p,q) process is identical to an ARCH(q)
process whenp = 0 or 
(j)1 = 0, j = 1; : : : ; p. H
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3.6.2 EGARCH

THEOREM 3.2.
AN EGARCH( P,Q) PROCESS IS AN AUGMENTED GARCH( P,Q) PROCESS.

Proof. The EGARCH(p,q) process is obtained by setting� = 0, c = 0, � = 1,


(i)
2 = 


(i)
3 = 0, i = 1; : : : ; q. Incorporating these parameter restrictions into the

augmented GARCH process yields

�t = 
0 +

pX
j=1



(j)
1 �t�j +

qX
i�1

h


(i)
4 jzt�ij+ 


(i)
5 max(0;�zt�i)

i
(3.6.7)

and

~ht = exp(�t � 1): (3.6.8)

The last term of (3.6.7) may be rewritten using the facts that

zt = max(0; zt)�max(0;�zt) (3.6.9a)

jztj = max(0; zt) + max(0;�zt) (3.6.9b)

and thus by substracting (3.6.9) from (3.6.9)

jztj � zt = 2max(0;�zt) (3.6.10)

yielding

�t = 
0 +

pX
j=1



(j)
1 �t�j +

qX
i=1

�


(i)
4 jzt�ij+

1

2


(i)
5 (jzt�ij � zt�i)

�

= 
0 +

pX
j=1



(j)
1 �t�j

+

qX
i=1

��


(i)
4 +

1

2


(i)
5

�
jzt�ij � 1

2


(i)
5 zt�i

�
: (3.6.11)
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Comparing (3.6.8) and (3.6.1) to (3.4.2) it is clear thatht of (3.4.1) is equal to
�t � 1. Inserting this into the expression above yields

ht = �t � 1

= 
0 � 1 +

pX
j=1



(j)
1 (ht�j + 1)

+

qX
i=1

��


(i)
4 +

1

2


(i)
5

�
jzt�ij � 1

2


(i)
5 zt�i

�
(3.6.12)

and if the terms are appropriately grouped the following expression is obtained

ht = 
0 � 1 +

pX
j=1



(j)
1 +

pX
j=1



(j)
1 ht�j

+

qX
i=1

�


(i)
4 +

1

2


(i)
5

�
jzt�ij �

qX
i=1

1

2


(i)
5 zt�i: (3.6.13)

Recalling the EGARCH specification ofht from (3.4.2) and (3.4.3)

ht = �0 +

qX
i=1

�i [!zt�i + �(jzt�ij � Ejzt�ij)] +
pX

j=1

�jht�j (3.6.14)

which is grouped as

ht = �0 �
qX

i=1

�i�Ejzt�ij+
pX

j=1

�jht�j +
qX

i=1

�i�jzt�ij

+

qX
i=1

�i!zt�i (3.6.15)

the augmented GARCH parameters may be obtained from the EGARCH param-
eters by relating (3.6.15) to (3.6.13) thus achieving the following expressions for
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the augmented GARCH parameters:



(j)
1 = �j ; j = 1; : : : ; p



(i)
5 = �2�i!; i = 1; : : : ; q



(i)
4 = �i! � 1

2


(i)
5 ; i = 1; : : : ; q


0 = 1�
pX

j=1



(j)
1 + �0 �

qX
i=1

�i�Ejzt�ij

(3.6.16)

REMARK 3.2.
By inserting the expression for
(j)1 into the expression for
0 and the expression

for 
(i)5 into the expression for
(i)4 , 
0 and
(i)4 may expressed by


0 = 1+ �0 �
qX

i=1

�i�Ejzt�ij � sump
j=1


(j)
1 (3.6.17a)



(i)
4 = 2�i! (3.6.17b)

H

3.6.3 Properties

The augmented GARCH process should be looked upon merely as a simple way
of working with the various specific Arch models at the same time, not as a model
in itself.

The properties of the augmented GARCH are therefore only of interest, if they
facilitate an easy way of deriving the properties of the specific Arch models. This
is not the case when dealing with moments and autocorrelations, in which case it
is much easier to work with the specific models, but when stationarity conditions
for the various Arch processes are to be derived, the augmented GARCH is useful.

THEOREM 3.3.
STATIONARITY OF THE AUGMENTED GARCH(1,1) PROCESS
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A sufficient condition for strict stationarityof the augmented GARCH(1,1) process
is 
1 � 0, 
2 � 0 and
2 + 
3 � 0 and


1 + 
2E
h
jzt � cj�

i
+ 
3E

h
max(0; c� zt)�

i
� 1

if 
2 > 0 or 
3 6= 0

and


1 < 1 if 
2 = 
3 = 0 (3.6.18)

Proof.See appendix of (Duan 1997).

The moments of the second condition of Theorem 3.3 will be computed in a later
chapter. For now it suffices to mention that the theorem leads to the well known
constraints�1 � 0, �1 � 0 and�1+�1 � 1 for GARCH(1,1) / IGARCH(1,1) and
to the constraint0 � �1 < 1 for EGARCH(1,1).

3.7 Other stochastic volatility models

It should be noted that other discrete time stochastic volatility models than those
encompassed by the augmented GARCH process exist. For instance, (Taylor 1986)
have proposed the so-called Stochastic Variance model, a model that differs from
models under augmented GARCH because they allow the conditional variance to
be stochastic. That is, unlike for instance GARCH models, the variance of the
return at timet is not known at timet � 1. The Stochastic Variance models have
been less used than GARCH in applications because the parameters of the Stochas-
tic Variance models are more difficult to estimate than GARCH parameters.



Chapter 4

Estimation of Arch model
parameters

The previous chapter introduced a lot of models that all could be used to formally
explain the stylized facts of stock return series. In this chapter, some of these mod-
els are fitted to the data, and an attempt is made to decide which model performs
the best in explaining the return series characteristics captured in chapter 2.

Estimating Arch model parameters is a difficult task. The choice of estimation
routine and the various parameter restrictions are just a few of the things that com-
plicates the estimation procedure. At the same time, the literature on the subject is
very sparse. Researchers in the field seem to be more interested in proposing new
models than to take the existing models to work. This chapter takes a close look
on Arch parameter estimation. The traditional Maximum Likelihood parameter es-
timation technique is compared to a recursive estimation routine. The pitfalls of
both techniques are carefully described, and the estimation routines are evaluated
using real life stock return series as well as simulated data series.

Section 4.1 explain how to decide upon the model orders, a decision that has to be
made before the parameter estimation is commenced. Section 4.2 explains Max-
imum Likelihood estimation and Section 4.3 introduces a statistical test for hete-
roskedasticity close related to Maximum Likelihood. In Section 4.4 an alternative
and recursive parameter estimation routine is introduced. Section 4.5 discusses
how to validate the estimated models and Section 4.6 describes the estimation
results and compares the two estimation techniques to one another. Section 4.7
concludes.

59
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4.1 Choice of Arch model

When faced with the project of fitting an Arch model to data, the first choices to
make are the choices of model class and model order. One has to decide if one
wants to make use of an ARCH, a GARCH, an EGARCH or another model, and
the model order parametersq and/orp have to be decided on.

4.1.1 Model class

When faced with the choice of model class, the first thing to do is to look at the
empirical properties of the models at hand. The characteristics unique to specific
Arch models were carefully described in chapter 2. If the data shows strong evi-
dence of the leverage effect, one ought to consider the EGARCH model class, and
if risk premia is present, the GARCH-M model may be suitable. If no model class
specific characteristic seems to be present in the data, the choice is more difficult.
In this situation my suggestion would be to choose a model class with relatively
few parameters like GARCH, as least as the preliminary choice.

Seen from a theoretical point of view, one could decide upon the model class by
estimating the parameters in the augmented GARCH model, and choosing the Arch
model class corresponding to the set of non-zero augmented GARCH parameters.
Unfortunately, this approach is unsuitable as the number of augmented GARCH
parameters is too vast to allow for a reliable estimation.

The nested model approachis, however, suitable when it comes to ARCH and
GARCH models. When in doubt which of these model classes to apply, one could
start with the GARCH model class and then decide upon the ARCH class if the
GARCH-specific parameters appears to be insignificant.

In general, it is not possible to decide the model class in advance, so the most fruit-
ful approach is to estimate one model, valide it, estimate another model, validate
it, and then compare the two model validations to decide which model class is the
best.

4.1.2 Model order

When it comes to the choice of model order, the situation is not as difficult. The
empirical studies in the field of Arch reveals thatp = q = 1 is by far the most
common model orders for GARCH and EGARCH. A few studies have reported
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suitable GARCH(2,1) or GARCH(1,2) descriptions of data, but these choices of
model order are rare. Higher model orders areextremelyrare, and should it ever
occur that presented data is best described by a high order model, the large number
of parameters are so difficult to estimate that the resulting model would probably
not provide a suitable description of the data anyway.

Statistical methods to establish the model order exist. As previously mentioned
(section 3.3), the empirical autocorrelation function may be used to make prelimi-
nary assumptions regarding the model order, see (Bollerslev 1988) for a description
of this approach. One should know, however, that these methods probably are not
worth the effort. Firstly, as previously stated, becausep = q = 1 is by far the most
common choice, and second, because the statistical methods are not that precise
anyway. Recall from Chapter 2 that the asymptotical properties of the autocorrela-
tion function of squared Arch returns are unknown.

The lesson to learn from the above findings is that one should always start by
estimating a model withp = q = 1 and only use higher order models if the (1,1)
model is very poor in describing the data.

4.2 Maximum Likelihood Estimation

The log-likelihoods of various Arch models are easy to obtain from as the condi-
tional distributions are specified by the model framework.

GivenT observations, the log-likelihood for an Arch model with parameters� is
computed from the product of all the conditional densities of the"’s.

LT (�) =
TX
t=1

lt(�) (4.2.1)

where

lt(�) = ln fz("tj�t) (4.2.2)

andfz is the distribution ofzt from Equation 3.1.1.

If zt is Gaussian,

fz("tj�t) = 1p
2�

1

�
exp

�
�1

2

�"t
�

�2�
(4.2.3)
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and if the distribution ofzt is t with n degrees of freedom,n > 2,

fz("tj�t) =
�
�
n+1
2

�
�
�
n
2

�
�
p
n � 2

p
�

�
1 +

"2t
�(n� 2)

��n+1
2

: (4.2.4)

4.2.1 ARCH and GARCH

For models like ARCH and GARCH where�t =
p
ht, the Gaussian case (4.2.3) is

cast as

fz("tj�t) = 1p
2�

1p
ht

exp

�
�1

2

"2t
ht

�
(4.2.5)

and thus, (4.2.2) appears as

lt(�) = �1

2
ln(2�)� 1

2
ln ht � 1

2

"2t
ht
: (4.2.6)

If zt is t-distributed, (4.2.2) is equal to this rather unpleasant expression

lt(�) = �1

2
ln � + ln

�
�

�
n + 1

2

��
� ln

h
�
�n
2

�i
� 1

2
ln(n� 2)

�1

2
ln(ht)� n+ 1

2
ln

�
1 +

"2t
ht(n � 2)

�
: (4.2.7)

Taking into account that the degrees of freedom is to be estimated, the terms have
been grouped to display the constant term first.

4.2.1.1 Initial values

Maximum Likelihood estimation imposes a problem regarding the initial values of
ht. In order to maximize (4.2.1), one must be able to compute all values ofht,
t = 1; : : : ; T , but for a GARCH(p, q) process,ht depends on"t�1; : : : ; "t�q and
ht�1; : : : ; ht�p. If the first observation occurs at timet = 1, values of"0, "�1, : : : ,
"1�q andh0; h�1; : : : ; h1�p have to be stipulated before the recursive computations
of ht can be fullfilled.
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The numbers of values to be stipulated may be decreased by letting the first avail-
able observation arrive at timet = 1 � q. In this way, it is only the values of
h0; h�1; : : : ; h1�p, one has to come up with. The problem is still serious, how-
ever, and it is worsened by the fact that the initial values influates the calculation
of the standardized residuals (to be described in Section 4.5) that are to be used to
validate the estimation routines.

In his original GARCH paper, (Bollerslev 1986) suggests using an estimate of the
unconditional variance as initial values, but he does not argue for this choice. An-
other approach would be to include the initial values in the Maximum Likelihood
estimation. These approaches will both be used in the thesis, and the initial values
influence on the parameter estimates will be carefully measured.

4.2.2 EGARCH

For a model like EGARCH,�t is equal toexp(12ht) and when this is inserted into
the Gaussian density

fz("tj�t) = � 1p
2�

1p
�t

exp

�
�1

2

"2t
�t

�
; (4.2.8)

Equation 4.2.2 is cast as

lt(�) = �1

2
ln(2�)� 1

2
ht � 1

2
"2t exp(�ht): (4.2.9)

Whenzt is t-distributed,

lt(�) = �1

2
ln � � ln

�
�

�
n + 1

2

��
� ln

h
�
�n
2

�i
� 1

2
ln(n� 2)

�1

2
ht � n+ 1

2
ln

�
1 +

"2t
n� 2

exp

�
�1

2
ht

��
: (4.2.10)

4.2.2.1 Initial values

The initial value problems mentioned in connection with ARCH and GARCH
equally applies to EGARCH models.
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4.2.3 Parameter uncertainty

A usually great advantage of Maximum Likelihood estimates is that a consistent
estimate of the covariance matrix of the parameters may be obtained as the inverse
of the information matrix. This is because the variance of a Maximum Likelihood
estimator under certain conditions is known to be equal to the lower bound of
Cramer-Rao’s inequality.

The information matrixiT (�) may be computed using its definition

iT (�) = E

�
@LT (�)

@�

@LT (�)

@�>

�
(4.2.11)

or

iT (�) = �E

�
@2LT (�)

@�@�>

�
(4.2.12)

but the aforementioned problem of the initial values of the conditional variance has
an even greater impact when derivatives ofLT (�) is to be computed. Using (4.2.1)
and (4.2.6) expressions of the derivatives are in the GARCH-Gaussian case

@LT (�)

@�
=

TX
t=1

@lt(�)

@�
(4.2.13)

and

@lt(�)

@�
= �1

2
h�1t

@ht
@�

+
1

2
"2th

�2
t

@ht
@�

=
1

2
h�1t

@ht
@�

�
"2t
ht
� 1

�
(4.2.14)

and asht = �0 +
Pq

i=1 �i"
2
t�i +

Pp
j=1 �jht�j

@ht
@�

=

2
66666666664

1
"2t�1

...
"2t�q
ht�1

...
ht�p

3
77777777775
+

pX
i=1

�i
@ht�i
@�

: (4.2.15)
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Hence, to compute the information matrix using (4.2.11), values ofh0, h�1, : : : ,
h1�p as well as@h0=@�; @h�1=@�; : : : ; @h1�p=@� have to be stipulated, a total
number of2p values sort of taken out of the blue. As one can imagine, the problems
are even worse if (4.2.12) is used.

The values of the partial derivatives, though, need not be specified if the deriva-
tives of the log-likelihood are computed numerically. However, to estimate the
expections of (4.2.11) and (4.2.12) the derivatives ought to be computed for a vast
number of realizations of the stochastic partszt, t = 1; 2; : : : ; T of LT . As this is
definately intractable, a widely used approach is to estimateiT (�) by

iT (�) ' H (4.2.16)

whereH is the Hessian

H = � @2LT

@�@�>
(4.2.17)

computed using the obtained Maximum Likelihood estimate of� or, equivalently,
to approximate the expected value in (4.2.12) by the observed value of the second
order derivative. Equation 4.2.12 is used as (4.2.11) will not do since the observed
value of @LT@� if zero when� is maximizingLT . It is emphasized that the approxi-
mation is only valid if no parameter constraints are active.

In this thesis the covariance matrix is estimated by the inverse of the observed
Hessian computed numerically. Though the Hessianmaybe computed analytically,
it will not be done here as the total number of unknown initial values ofh, @h

@� and
@2h
@�2

is so great that an analytical computed value of the Hessian is considered
unreliable.

4.2.3.1 Numerical derivatives

In order to compute the above mentioned estimate of the Hessian, a numerical rou-
tine to approximate the second order derivatives is called for. General expressions
for numerical approximations to second order derivatives are infered below.

Consider a functionf of one variablex. The Taylor series expansion off(x0+ u)
aboutx0 wherex0 andu are some real numbers is

f(x0 + u) = f(x0) + u
@f

@x
(x0) +

1

2
u2
@2f

@x2
(x0) + O(u3): (4.2.18)
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Equally, the expansion off(x� u) is

f(x0 � u) = f(x0)� u
@f

@x
(x0) +

1

2
u2
@2f

@x2
(x0) + O(u3): (4.2.19)

Adding the two expressions to one another yields

f(x0 + u) + f(x0 � u) = 2f(x0) + u2
@2f

@x2
(x0) + O(u3) (4.2.20)

from where the second derivative may be isolated and approximated by

@2f

@x2
(x0) ' f(x0 + u) + f(x0 � u)� 2f(x0)

u2
(4.2.21)

and this expression is used to compute the diagonal elements of the Hessian. To
compute the off-diagonal elements, functions of two variables have to be consid-
ered.

Let g be a function of two variablesx and y. The Taylor series expansion of
g(x0 + u; y0 + u) about(x0; y0) is

g(x0+ u; y0 + u) =

g(x0; y0) + u
@g

@x
(x0; y0) + u

@g

@y
(x0; y0) +

1

2
u2
@2g

@x2
(x0; y0)

+u2
@2g

@x@y
(x0; y0) +

1

2
u2
@2g

@y2
(x0; y0) +O(u3) (4.2.22)

and equally,

g(x0+ u; y0 � u) =

g(x0; y0) + u
@g

@x
(x0; y0)� u@g

@y
(x0; y0) +

1

2
u2
@2g

@x2
(x0; y0)

�u2 @
2g

@x@y
(x0; y0) +

1

2
u2
@2g

@y2
(x0; y0) +O(u3) (4.2.23)
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and

g(x0� u; y0 � u) =

g(x0; y0)� u
@g

@x
(x0; y0)� u@g

@y
(x0; y0) +

1

2
u2
@2g

@x2
(x0; y0)

�u2 @
2g

@x@y
(x0; y0) +

1

2
u2
@2g

@y2
(x0; y0) +O(u3): (4.2.24)

Substractingg(x0+ u; y0 + u) from g(x0 + u; y0 � u) yields

g(x0+ u; y0 + u)� g(x0 + u; y0 � u) =

2u
@g

@y
(x0; y0) + 2u2

@2g

@x@y
(x0; y0) +O(u3) (4.2.25)

and similarly,

g(x0� u; y0 + u)� g(x0 � u; y0 � u) =

2u
@g

@y
(x0; y0)� 2u2

@2g

@x@y
(x0; y0) +O(u3): (4.2.26)

Hence, an approximation of@
2g

@x@y is readily available as

@2g

@x@y
(x0; y0) ' (4u2)�1 fg(x0+ u; y0 + u)� g(x0 + u; y0 � u)

� [g(x0 � u; y0 + u)� g(x0 � u; y0 � u)]g : (4.2.27)

What is left is to decide upon the uptimalu. The solution isnot to choose some
smallu without consideration. The binary approximation to small numbers used in
todays computers may lead to spurious results in this regard, c.f. (Press, Teukolsky,
Vetterling & Flannery 1992). Instead it is wise to use a value of

"
1=3
M x0 (4.2.28)

in the one-dimensional case, where"M is the relative floating point accuracy of the
computer used to perform the approximation. In the two-dimensional case, a value
of

"
1=3
M

p
x0y0 (4.2.29)

is used.
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4.2.4 Maximization routine

Applied Maximum Likelihood estimation includes a choice of maximization rou-
tine. This choice is of course unimportant as long as the chosen method is able
to locate the global maximum of the likelihood function, but, as shall later be re-
vealed, this is not always the case.

Conceptually, there is two different ways of maximizing the likelihood. One way is
to use a root-finding algorithm to locate the set of parameters that makes the derived
likelihood, the score, vanish. Another way is to use a maximization algorithm on
the likelihood function, either a routine that makes use of an explicit expression of
the derivative, or a routine that do not. Traditionally, a routine that uses an explicit
derivate expression needs less computations than a routine that do not.

In his original GARCH paper, (Bollerslev 1986) suggests using the root-finding
approach with the Berndt, Hall, Hall and Hausman algorithm which, according
to Bollerslev, is described in (Berndt, Hall, Hall & Hausman 1974). Few other
researchers deals with the subject, but the GARCH parameter estimation routine of
the SAS system allegedly uses a maximization routine that makes use of an explicit
expression of the derivative.

The choice of Bollerslev is disadvantious in the sence that it need an explicit ex-
pression of the derivative of the likelihood and, as described in Section 4.2.3, this
derivate depends on unknown pre-sample values. It is tempting to assume that
Bollerslev’s choice is motivated by the fact that maximization routines which do
not make use of explicit derivative expressions need a lot more computer power
than routines which do. Evidently, the computer power available in 1986 was very
small compared to today’s resources.

In this thesis the so-calleddownhill simplex method in multidimensionsdue to
Nelder and Mead is the numerical routine used. This routine do not use explicit
derivate expressions and so the results produced using this routine are not influ-
enced by poorly chosen initial derivative values. The routine is a minimization
routine and as suct it is used on a sign-changed version of the log-likelihood.

Though it is evidently of interest to measure the Arch-related performance of var-
ious maximization routines, it is outside the scope of this thesis. Thus, the subject
of maximization routines wil not be discussed any further.
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4.2.4.1 Parameter restrictions

The parameter constraints that applies to a lot of the various Arch models are not
easyly combined with the maximization routine due to the way it traverse the pa-
rameter space. Routines to perform constrained maximizationdo exist, but they
are often slow and thus unsuitable for the computer intensitive Arch estimation.

Instead, the parameter constraints are assured using a Lagrange multiplier ap-
proach. The parameter constraints are multiplied by a large integer and substracted
from the likelihood. For instance, when estimating GARCH(p,q) parameters to
which the constraints (3.3.3) and (3.3.9) apply, the minimization routine is put to
work on the function

~LT =
TX
t=1

�
ln ht +

"2t
ht

�
� 106min

0
@0; 1�

qX
i=1

�j �
pX

j=1

�j

1
A

�1012min(0; �1; : : : ; �q; �1; : : : ; �p): (4.2.30)

c.f. (4.2.1) and (4.2.6).

4.3 Lagrange multiplier test

In the context of Maximum Likelihood estimation, a statistical test for heteroske-
dasticity generally known asEngle’s Likelihood Multiplier Testdeserves a few
words. The test appears to be widely used in situations were hetoroskedasticity is
expected. It has been deferred to this section because some knowledge of Maxi-
mum Likelihood estimation of ARCH and GARCH models is needed in order to
understand the test principle.

The test was first described in (Engle 1982) in connection with the first description
of the ARCH model, but Engles description is a bit short. Because of this, a more
in-depth review is provided below.

Engles test was motivated by the need to test for presence of ARCH effects, i.e.
autocorrelations in the squared observations, before actually estimating the order
and the parameters of the ARCH model. As we shall see below, the test has other
more general applications, but the original focus is important to understand the test
principle. Using the Arch framework

"t = zt
p
ht (4.3.1)
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andzt Gaussian, Engle used a generalization of the ARCH process by specifying
ht as

ht = h(�0 + �1"t�1 + � � �+ �q"t�q) (4.3.2)

whereh is some differentiable function. The reason for generalizinght will be-
come clear later, for now it suffices to observe that (4.3.2) contains the ARCH case
(Definition 3.2) as a special case.

Engle set out to test the hypothesis

H0 : �1 = � � � = �q = 0 (4.3.3)

or, equivalentht = h(�0) = h0, against the general alternative

H1 : 9i : 1 � i � q ^ �i 6= 0: (4.3.4)

4.3.1 Test principle

In general, whether applied to a particular field like Arch or not, a Lagrange mul-
tiplier test uses the Lagrange multiplier principle known from operations research,
c.f. (Kotz 1983). In operations research, the maximum of a functionf(x) subject
to the constraintsg(x) = 0 may be found as the unconstrained maximum of the
Lagrangian

L(x; �) = f(x)� �>g(x) (4.3.5)

where the vector� contains the so-called Lagrange-multipliers.

Taking (4.3.5) to statistics it may be used in situations where the maximization of
the likelihood function of a statistical model is subject to constaints on the model
parameters. Replacingf of (4.3.5) by the log-likelihood, a test for the hypothesis

H0 : g(�) = 0 versus H1 : g(�) unrestricted (4.3.6)

where� is the model parameters, may be constructed as a test that rejectsH0 if �
is too large in some sence. This has been done by (Breusch & Pagan 1979) using
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the score and the information of the constrained model. LettingL be the likelihood
of the model, defining

d =
@ lnL

@�
(4.3.7)

and

I = �E

�
@2 lnL

@�@�>

�
(4.3.8)

using theunconstrainedmodel and evaluating these quantities at the maximum
likelihood estimator̂� of theconstrainedmodel asd̂ andŜ, the test statistic

LM = d̂>Î�1d̂ (4.3.9)

is asymptotically�2(s � r) distributed underH0, wheres is the dimension of
�, i.e. the number of parameters andr is the number of independent constraints
gi(�) = 0, i = 1; : : : ; r. Note that, as a great advantage in applications, the test
statistic is calculated using nothing but estimates of the null model.

4.3.2 Heteroskedasticity

Returning to Engle, the parameters of the unconstrained model are

�> =
�
�0 �1 � � � �q

�
(4.3.10)

and the likelihood is

LT (�) =
TX
t=1

lt(�) (4.3.11)

so that

d =
@ lnLT

@�
=

TX
t=1

@lt(�)

@�
(4.3.12)
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and by (4.2.14)

@lt(�)

@�
=

1

2
h�1t

@ht
@�

�
"2t
ht
� 1

�
: (4.3.13)

If the vectorsut, t = 0; 1; : : : ; T are introduced by

u>t =
�
1 "2t�1 � � � "2t�p

�
(4.3.14)

thenht may be writtenht = h
�
u>t �

�
and then

@ht
@�

= ut
@h

@�

����
u>
t
�

(4.3.15)

Note that asht is a scalar and� is a (p + 1 � 1) column vector,ht derived by�
must also be a(p+ 1� 1) column vector. Because of this, the last part of (4.3.15)
must be a scalar and if this scalar is denoted byh0 then (4.3.13) may be written as

@lt(�)

@�
=

h0

2ht
ut

�
"2t
ht
� 1

�
: (4.3.16)

Under the null we haveht = h(�0) = h0 andh0 = h00 which by insertion yields

@lt(�)

@�
=

h00

2h0
ut

�
"2t
h0
� 1

�
(4.3.17)

and hence, the score is

d̂ =
TX
t=1

h00

2h0
ut

�
"2t
h0
� 1

�

=
h00

2h0
U>f0 (4.3.18)

whereU is the(p+ 1 � T )-matrix defined byU> =
�
u1 u2 � � � uT

�
andf0 is

the(T � 1) column vector whose element numbert is

"2t
h0
� 1: (4.3.19)
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The information matrixI of the unconstrained model is

I = �E

�
@2 lnLT

@�@�>

�
= �

TX
t=1

E

�
@2lt
@�@�>

�
(4.3.20)

and using (4.3.13) it is straightforward to show that

@2lt
@�@�>

=
1

2ht

@ht
@�

��"2t
h2t

@ht
@�

�
+
@
h

1
2ht

@ht
@�

i
@�

�
"2t
ht
� 1

�
(4.3.21)

When taking the expected value with respect to the parameters of this expression
it should be noted that since the mean of"2t isht, the last term of (4.3.21) vanishes
and the last part of the first term is reduced. Hence,

I =
TX
t=1

E

�
1

2h2t

@ht
@�

@ht
@�>

�
=

1

2

TX
t=1

E

�
h02

h2t
u>t ut

�
: (4.3.22)

Under the null hypothesis this is cast as

Î =
1

2

TX
t=1

E

�
h002

h02
u>t ut

�
=

1

2

�
h00

h0

�2
U>U (4.3.23)

where E
�
U>U

�
have been replaced byU>U asU does not depend on the param-

eters.

Inserting the expressions of̂d andÎ into the expression of the Lagrange multiplier
test statistic (4.3.9) yields

LM = d̂>Î�1d̂

=
h00

2h0
f0>U

"
1

2

�
h00

h0

�2

U>U

#�1
h00

2h0
U>f0

=
1

2
f0>U

h
U>U

i�1
U>f0: (4.3.24)

The unconditional model hasq + 1 parameters and one constraint is active under
H0. Thus,s = q+ 1 andr = 1 andLM is asymptotically�2(q)-distributed under
H0.
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As pointed out by (Engle 1982), all references toh0 has disappeared and thus the
test is the same for anyh which is only a differentiable function ofut�. This fact is
at the same time the motivation for considering the general setup (4.3.2) instead of
just the ARCH(q) model. Had the alternativeH1 only consisted of the ARCH(q)
case, the use of the test would be limited to just testing for ARCH. The general
setup includes most of the heteroskedastic models in the literature, c.f. (Breusch &
Pagan 1979), and thus it can with more right be claimed that the test is actually a
test for heteroskedasticity.

Though the test statistic (4.3.24) is easy to compute compared to the task of esti-
matingq+1 ARCH parameters, an estimate ofh0 isneeded in order to compute the
elements off0. This estimation may be avoided by considering the elements off0.
"t=
p
h0 is by assumptionN(0; 1)-distributed under the null and so"2t =h

0 follows
a �2(1)-distribution. Knowing that the mean of a�2(1)-distributed variable is1,
the maximum likelihood estimate of the variance of the same�2(1)-distribution is

1

T

TX
t=1

�
"2t
h0
� 1

�2
=

1

T
f0>f0: (4.3.25)

The variance of a�2-distribution is known to be equal to2 and hence, the quantity

2T

f0>f0
(4.3.26)

must converge to1 in probability. Thus, a test statistic asymptotically equivalent
toLM would be

LM 0 = T
f0>U

�
U>U

��1
U>f0

f0>f0
: (4.3.27)

Focusing on the nominator, the term
�
U>U

��1
U>f0 is the OLS estimate of the

parameters of the regression off0 on U . Because of this, the fraction must be
identical to the squared multiple correlation coefficient of the regression off0 on
U . As adding a constant (one in this case) to the elements off0 and multiplying
by a scalar(h0) does not change the size of the multiple correlation coefficient, it
is possible to write

LM 0 = TR2 (4.3.28)
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whereR2 is the squared multiple correlation coefficient of the regression of"2t on�
1 "2t�1 � � � "2t�q

�
.

As the two test statistics (LM andLM 0) are asymptotically equivalent,LM 0 is
also asymptotically�2(q)-distributed underH0. In this thesis, theLM 0 statistic
will be the one used.

4.3.3 GARCH

The framework defined by (4.3.1) and (4.3.2) is formally not general enough to
include GARCH models. This is due to the fact that GARCH models allowht to
depend on lagged values of itself, a dependency prohibited by (4.3.2). The test
is, however, also able to detect the heteroskedasticity of GARCH data, because a
GARCH(p,q) model may be interpreted as an infinite order ARCH process, c.f.
Section 3.3.

4.3.4 Test results

When the Lagrange multiplier test for heteroskedasticity is applied to the four well-
known return series, the test results displayed in Table 4.1 are obtained. Test statis-
tics significant at the 5%-level are written in boldface.

The Lagrange multiplier tests indicate that heteroskedasticity is present in all of the
four series. In the case of Hewlett-Packard,H0 is rejected when theH1 contains
"’s with lags greater than 2. For Sony and Mobil,H0 is rejected for lags greater
than 1. All test results, including the somewhat peculiar results of pepsi, are in line
with the Ljung-Box test results (Table 2.5) of Section 2.2.2.3.

4.3.5 Application to augmented GARCH

Because the Likelihood Multiplier test statistic is computed using only parameter
estimates obtained from the model underH0, it may be used in connection with
the augmented GARCH process. Specific Arch models may be formulated as pa-
rameter constraints imposed on the augmented GARCH model and the Likelihood
Multiplier Test may then be used to find out which particular Arch model that best
fits the data at hand. This has been done in (Duan 1997), but the approach will
not be pursued here because this chapter only deals with GARCH and EGARCH
models and though the test statistic only needs estimates of the null model, expres-
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Series HP Sony Mobil Pepsi
LM T Prob T Prob T Prob T Prob
1 2.163 0.141 3.614 0.057 0.515 0.473 3.973 0.046
2 2.185 0.335 8.765 0.012 11.600 0.003 4.485 0.106
3 17.237 0.001 9.025 0.029 11.607 0.009 5.902 0.116
4 18.941 0.001 9.666 0.046 11.787 0.019 6.207 0.184
5 19.811 0.001 17.885 0.003 16.162 0.006 6.206 0.287
6 21.442 0.002 20.232 0.003 18.322 0.005 6.204 0.401
7 22.097 0.002 28.439 0.000 18.248 0.011 7.143 0.414
8 23.170 0.003 30.938 0.000 22.977 0.003 10.087 0.259
9 28.466 0.001 30.864 0.000 25.738 0.002 10.490 0.312
10 28.454 0.002 32.392 0.000 29.717 0.001 11.318 0.333
11 30.323 0.001 32.539 0.001 34.118 0.000 11.331 0.416
12 30.281 0.003 32.696 0.001 33.256 0.001 11.448 0.491
13 30.615 0.004 32.747 0.002 36.838 0.000 11.470 0.571
14 30.632 0.006 35.065 0.001 45.191 0.000 11.479 0.648
15 30.795 0.009 36.169 0.002 48.166 0.000 11.816 0.693

Table 4.1: The test statistics and associated probabilities of the Lagrange
multiplier test for heteroskedasticity for orders 1 to 15.

sions of the score and information of the alternative model still have to be derived,
a cumbersome task in the case of augmented GARCH.

4.4 Recursive parameter estimation

The difficulties associated with Maximum Likelihood estimation, in particular the
problems of the initial values and the dependency on a correct specification of the
conditional distribution, motivates a search for estimation procedures less sensitive
in these areas.

The search for such procedures has lead to the derivation of recursive versions of
the families of estimation methods known from time series analysis asPrediction
Error Methods(PEM) andPseudolinear Regressions(PLR). The corresponding
recursive versions are denoted RPEM and RPLR, respectively.

In this section, the two families RPEM and RPLR of recursive estimation methods
are derived. As the usability of the recursive estimation methods is not limited to
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Arch models, the Arch notation used in the previous chapters will be abandoned
for a while.

Among famous members of the two families areRecursive Maximum Likelihood
for ARMAX models (member of RPEM), Extended Least Squares for ARMAX
models (member of RPLR) andRecursive Least Squaresfor ARX models (member
of both families). See eq. (Ljung 1987) or (Ljung & S¨oderström 1983).

4.4.1 Nonrecursive versions

Consider the pseudolinear model

Ŷtjt�1 = X>
t (�̂)�̂; (4.4.1)

where the regressorX is allowed to depend on the parameter vector� and the
prediction error�t is

�t = Yt � Ŷtjt�1: (4.4.2)

The model (4.4.1) may be static or dynamic, i.e. the regressorX maycontain
lagged values ofY or �.

4.4.1.1 Prediction errors

Intuitively, we are interested in estimation methods that generate prediction errors
that are as small as possible in some sense. We would also like our methods to
extract as much information from the observations as possible, that is, ideally the
prediction errors should be uncorrelated with past observations. As these two crite-
ria do not generally coincide, one has to prefer one from the other. This preference
leads to either the PEM methods or the PLR methods.

A PEM seeks to minimize the sum of the squared prediction errors, i.e.

VT =
1

T

TX
t=1

1

2
�2t (�): (4.4.3)

is minimized with respect to�. See (Ljung 1987, Chapter 7).
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A PLR method seeks to compute its estimates such that the prediction errors are
uncorrelated with past data. As this is impossible to assure in practical applications,
one may confine oneself to demand the prediction errors to be uncorrelated with
the regressorsXt. This makes sense here asXt(�) is a function of relevant past
observations and�.

Formally, a PLR estimate is obtained as the solution to

1

T

TX
t=1

X>
t (�)�t(�) = 0: (4.4.4)

4.4.2 Prediction Error Methods (PEM)

As it is not possible to minimize the criterion (4.4.3) analytically, a numerical pro-
cedure is called for.VT is minimized by solving

@VT
@�

= 0; (4.4.5)

a task suitable for the Newton-Raphson procedure. The first derivative with respect
to � is

@VT
@�

=
1

T

TX
t=1

�t(�)
@�t(�)

@�
: (4.4.6)

By defining by

 t(�) =
@Ŷt
@�

= �@�t(�)
@�

; (4.4.7)

Equation 4.4.6 can be rewritten as

@VT
@�

= � 1

T

TX
t=1

�t(�) t(�): (4.4.8)

The second derivative (the Hessian) is

@2VT
@�2

=
1

T

TX
t=1

 t(�) 
>
t (�)�

1

T

TX
t=1

�t(�)
@ t(�)

@�
: (4.4.9)
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It may be quite difficult to compute the second derivative of� with respect to�
as needed in the last term of the Hessian. This is, however, not necessary as the
value of the last term is close to zero when� is close to the real parameters, and an
accurate value of the Hessian is only needed in the proximity of the minimum, see
(Ljung 1987, Chapter 10). Thus the last term of (4.4.9) may be discarded and the
parameter estimate can be computed iteratively, using the quasi Newton-Raphson
algorithm

�̂i = �̂i�1 +
�
@2VT
@�2i�1

��1
@VT
@�i�1

(4.4.10a)

' �̂i�1 +

 
TX
t=1

 t(�̂i�1) >t (�̂i�1)

!�1 TX
t=1

�t(�̂i�1) t(�̂i�1)

(4.4.10b)

wherei denotes the iteration number.

4.4.2.1 Recursive Prediction Error Methods (RPEM)

In the following a recursive version of PEM is derived, i.e. an estimation method
that can be used to compute a new parameter estimate each time a new observation
arrives without the need of a laborious recalculation of the summations in (4.4.10b).

To obtain such a version, consider again Equation 4.4.10b. Computing�̂T using
�̂T�1 and a single iteration yields

�̂T = �̂T�1+

 
TX
t=1

 t(�̂T�1) >t (�̂T�1)

!�1 TX
t=1

�t(�̂T�1) t(�̂T�1):(4.4.11)

In doing this, it is assumed that only one iteration is needed for�̂T to solve (4.4.5).
Nothing precludes the use of more than one iteration per observation, but the im-
provement in the accuracy of the estimate is insignificant in practical applications.
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The last summation in (4.4.11) may be written as

TX
t=1

�t(�̂T�1) t(�̂T�1)

= �T (�̂T�1) T(�̂T�1) +
T�1X
t=1

�t(�̂T�1) t(�̂T�1)

= �T (�̂T�1) T(�̂T�1)� T @VT�1
@�

����
�̂T�1

; (4.4.12)

where (4.4.8) is used. Assuming that�̂T�1 minimizesVT�1, the last term is zero.

The first summation in (4.4.11) can be written as

TX
t=1

 t(�̂T�1) >t (�̂T�1)

=  T (�̂T�1) >T (�̂T�1) +
T�1X
t=1

 t(�̂T�1) >t (�̂T�1); (4.4.13)

but this does not reduce the computations as both terms have to be recalculated
each time�̂ is updated. However, if we decline to update the last summation in
(4.4.13) and if we introduce

RT (�̂T�1) =
TX
t=1

 t(�̂T�1) >t (�̂T�1); (4.4.14)

Equation 4.4.11 can be rewritten as the RPEM updating scheme:

DEFINITION 4.1 (THE RECURSIVE PREDICTION ERROR SCHEME ).
Let YT be defined by (4.4.1), T by (4.4.7) andRT by (4.4.14). Then the RPEM
updating scheme is defined by

�T (�̂T�1) = YT �XT (�̂T�1)�̂T�1 (4.4.15a)

�̂T = �̂T�1 + R�1T (�̂T�1)�T (�̂T�1) T(�̂T�1) (4.4.15b)

RT (�̂T�1) = RT�1(�̂T�1) +  T (�̂T�1) >T (�̂T�1) (4.4.15c)
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N

For a description of the convergence properties see (Ljung & S¨oderström 1983).

Note that the expressionR�1T in (4.4.15b) may be computed without the use of
explicit matrix inversion. For a description of the Matrix Inversion Lemma see
(Ljung 1987, Chapter 11).

4.4.3 Pseudolinear Regressions (PLR)

In order to develop an iterative procedure for the family of pseudolinear regression
methods, the left hand side of Equation 4.4.4 is rewritten as

1

T

TX
t=1

Xt(�)�t(�) =
1

T

TX
t=1

Xt(�)(Yt �Xt(�)�)

=
1

T

TX
t=1

Xt(�)Yt �
 
1

T

TX
t=1

Xt(�)X
>
t (�)

!
�;

(4.4.16)

and hence

�̂ =

 
TX
t=1

Xt(�)X
>
t (�)

!�1 TX
t=1

Xt(�)Yt: (4.4.17)

Note that ifX is independent of�, this estimator is identical to the ordinary least
squares estimator.

Equation 4.4.17 may be used to find an estimate for� by iteration

�̂i =

 
TX
t=1

Xt(�̂i�1)X>
t (�̂i�1)

!�1 TX
t=1

Xt(�̂i�1)Yt: (4.4.18)



82 CHAPTER 4. ESTIMATION OF ARCH MODEL PARAMETERS

UsingYt = X>
t (�̂i�1)�̂i�1 + �t(�̂i�1) the last factor of (4.4.17) turns into

TX
t=1

Xt(�̂i�1)Yt

=
TX
t=1

Xt(�̂i�1)�t(�̂i�1) +
TX
t=1

Xt(�̂i�1)X>
t (�̂i�1)�̂i�1: (4.4.19)

Inserting this into (4.4.18) yields

�̂i = �̂i�1 +

 
TX
t=1

Xt(�̂i�1)X>
t (�̂i�1)

!�1 TX
t=1

Xt(�̂i�1)�t(�̂i�1): (4.4.20)

4.4.3.1 Recursive Pseudolinear Regressions (RPLR)

To obtain a recursive version of PLR a new observation is introduced each time an
iteration is performed in (4.4.20), that is

�̂T = �̂T�1+

 
TX
t=1

Xt(�̂T�1)X>
t (�̂T�1)

!�1 TX
t=1

Xt(�̂T�1)�t(�̂T�1):(4.4.21)

In line with the derivation of the RPEM method we split the last of the two sum-
mations into

TX
t=1

Xt(�̂T�1)�t(�̂T�1)

= XT (�̂T�1)�T (�̂T�1) +
T�1X
t=1

Xt(�̂T�1)�t(�̂T�1); (4.4.22)

and note that the last term is zero assuming that�̂T�1 solves (4.4.4) whenT is
substituted byT � 1. Similarly for Eq. 4.4.21

TX
t=1

Xt(�̂T�1)X>
t (�̂T�1)

= XT (�̂T�1)X>
T (�̂T�1) +

T�1X
t=1

Xt(�̂T�1)X>
t (�̂T�1): (4.4.23)
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Introducing

RT (�̂T�1) =
TX
t=1

Xt(�̂T�1)X>
t (�̂T�1) (4.4.24)

yields the RPLR updating scheme:

DEFINITION 4.2.
(THE RECURSIVE PSEUDOLINEAR REGRESSION SCHEME ).
LetYT be defined by (4.4.1) andRT by (4.4.24). Then the RPLR updating scheme
is defined by

�T (�̂T�1) = YT �XT (�̂T�1)�̂T�1 (4.4.25a)

�̂T = �̂T�1 + R�1T (�̂T�1)�T (�̂T�1)XT (�̂T�1) (4.4.25b)

RT (�̂T�1) = RT�1(�̂T�1) +XT (�̂T�1)X>
T (�̂T�1): (4.4.25c)

N

REMARK 4.1.Notice the close resemblance to the RPEM updating scheme. To
change RPLR to RPEM, just swapX with  . Also notice that RPLR is identical
to RPEM ifX is independent of�, since

 = �@�
@�

= �@(Y �X
>�)

@�
=
@(X>�)
@�

= X (4.4.26)

when@X=@� = 0. H

4.4.4 Parameter uncertainty

Unfortunately, there is no straightforward way to measure the uncertainty of pa-
rameter estimates obtained using RPLR and RPEM. It is not possible to use the
inverse Hessian approach from Maximum Likelihood here because this approach
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is only valid if the variance of the estimator is identical to the lower bound of
Cramer-Rao’s inequality, an this is not likely to be the case here. Because of this,
no estimates of the parameter uncertainty will be provided for RPEM and RPLR
estimates.

4.4.5 Application to Arch

In order to apply RPEM and RPLR methods to a particular application,Y ,X and
� must be given an interpretation that matches the particular application as well
as the requirements imposed onY , X and� by the recursive estimation methods.
The most obvious way to search for this interpretation would be to write down the
one-step predictor of the particular Arch model in focus, and thereby establish its
dependence of the parameters�.

This approach, however, leads nowhere since the expected value of an Arch-resi-
dual is always zero. Instead it is convenient to transform the residuals by settingYt
equal to some transformation of"t depending on the particular Arch model.

Note that the prediction error� is different from the Arch residual". � is the pre-
diction error referred to by the RPLR and RPEM methods whereas" is the residual
of the model (3.1.3).

4.4.5.1 GARCH

For GARCH models, the transformationYt = "2t = z2t �
2
t seems useful. For given

parameters, the one-step ahead prediction ofYt is

Ŷtjt�1 = E[z2tjt�1]E[�
2
tjt�1]

= �2t = ht

= �0 +

qX
i=1

�iYt�i +
pX

j=1

�jht�j

= X>
t � (4.4.27)

where

X>
t =

�
1 Yt�1 � � � Yt�q ht�1 � � � ht�p

�
(4.4.28)
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and

�> =
�
�0 �1 � � � �q �1 � � � �p

�
(4.4.29)

This choice ofX suggests the use of a RPLR method for estimation since a RPEM
method would require an expression for@Ytjt�1=@�. This expression would be
too cumbersome to compute due to its recursive nature caused by the fact that
Yt�1; : : : ; Yt�q of (4.4.28) depends on�.

4.4.5.2 ARCH

The choices ofY , X and� in the ARCH case follows directly from above, as an
ARCH(q) process is identical to a GARCH(0, q) process. AgainYt = "2t but this
time

Ŷtjt�1 = �0 +

qX
i=1

�iYt�i (4.4.30)

and

X>
t =

�
1 Yt�1 � � � Yt�q

�
(4.4.31)

and

�> =
�
�0 �1 � � � �q

�
(4.4.32)

meaning that the RPEM method is just as suitable as the RPLR method now that
Xt no longer depends on the parameters, c.f. Remark 4.1.

4.4.5.3 EGARCH

Finding interpretations ofY , X and� that allows an EGARCH model to be esti-
mated using RPEM or RPLR is a bit more difficult than what was the case with
ARCH and GARCH. The reason why is the more “exotic” relationship

�t = exp

�
1

2
ht

�
(4.4.33)



86 CHAPTER 4. ESTIMATION OF ARCH MODEL PARAMETERS

between�t andht that applies to EGARCH. However, there is a way out. If the
constantk is defined byk = E[ln z2t ] andY is chosen so thatYt = ln "2t � k then
it is possible to write

Ŷtjt�1 = E[ln "2tjt�1]� k
= E[ln z2tjt�1 + ln �2tjt�1]� k

= E[ln z2t ] + ln �2t � k
= ln �2t = ht

= �0 +

qX
i=1

�i [!zt�i + � (jzt�ij � Ejzt�ij)] +
pX

j=1

�jht�j

= �0 +

qX
i=1

�i!zt�i +
qX

i=1

�i� (jzt�ij � Ejzt�ij)

+

pX
j=1

�jht�j : (4.4.34)

The RPLR method applies ifXt and � is chosen to be the two (1 + 2q + p)-
dimensional vectors

Xt =

2
666666666666666666666664

1

zt�1
� � �
zt�q

jzt�1j �
q

2
�

� � �
jzt�qj �

q
2
�

ln �2t�1
� � �

ln �2t�p

3
777777777777777777777775

; � =

2
6666666666666666666664

�0

�1!

� � �
�q!

�1�
� � �
�q�

�1
� � �
�p

3
7777777777777777777775

: (4.4.35)

Note that, as described in Chapter 3, not all parameters are identifiable. Also note
that since the value

p
2=� has been added to the absolute innovations in theX-
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vector, the setup has been limited to cases wherez is Gaussian distributed1. It is of
course straightforward to choose another distribution, compute Ejzj and insert the
obtained value instead of2=� in X .

The setup (4.4.35) may not be suitable for model order parameters greater than
(1,1). The reason why is that for higher order EGARCH models, the setup does not
guarantee that

�
�1! � � � �q!

�
is proportional to

�
�1� � � � �q�

�
. Hence, when

estimating higher order EGARCH models one may want to consider an alternative
approach where one of the parameters! or � is fixed prior to estimation.

What remains is to computek. By its definition,

k = E[ln z2t ]

=

Z 1

�1

1p
2�

ln u2e�
u
2

2 du

= 2

Z 1

0

1p
2�

ln u2e�
u
2

2 du

= 2

Z 1

0

r
2

�
ln ue�

u
2

2 du

=
4p
�

Z 1

0

1p
2

�
ln

�
up
2

�
+ ln

p
2

�
e
�
�

up
2

�2
du

=
4p
�

"Z 1

0
ln t e�t

2
dt+

Z 1

0

ln
p
2p
2
e�

u
2

2 du

#

=
4p
�

"
�p�
4

(
 + 2 ln 2) +
ln
p
2p
2

+
1

2

p
2�

#

= �(
 + 2 ln 2) + ln 2 = �(
 + ln 2)

' �1:270362845 (4.4.36)

where
 is Euler’s constant.

4.5 Model validation

Now that the estimation procedures to be used are in place, it is time to estimate
the parameters of GARCH and EGARCH. Before the estimation procedures are

1Strictly speaking, the restriction is not to Gaussianity but to distributions ofz where Ejzj =p
2=�.
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applied, it may be illustrative to discuss how to validate parameter estimates of
Arch models.

As the motivation of Arch models is the return series characteristics captured in
chapter 2, the model validation should measure the abilities of the models to de-
scribe these characteristics.

This validation is obtained by observing Equation 3.1.1 of the Arch framework. As
"t = zt�t, the standardized residualsrt,

rt =
"t
�t

(4.5.1)

ought to have properties identical to those ofzt. That is,frtg should be white noise
with zero mean and unit variance. There also should be no autocorrelation infrtg
or in fr2t g, and the distribution ofrt should be identical to the distribution ofzt.
Thus, estimated models are validated by applying the investigations of Chapter 2
to the standardized residuals to see if all the relevant return series characteristics
have been accounted for.

In those cases where the parameters are estimated using simulated data, the true
parameter values are included in the validation process.

4.6 Estimation results

This section presents a number of parameter estimation results obtained by ap-
plying the Recursive Pseudolinear Regression (RPLR) method and the Maximum
Likelihood method to various GARCH and EGARCH models. As previously
stated, the main goals are to compare the two estimation methods to one another
and to find out which Arch model provides the best description of the data. The
subgoals are to measure the impact on the estimates of stipulated initial values.

The section is divided as folows: First, GARCH(1,1) with Gaussian innovations
is fitted to the four return series using Maximum Likelihood, and the obtained es-
timates are carefully analysed. Then, these estimations are repeated using RPLR,
thereby enabling a comparison of the performance of RPLR to Maximum Likeli-
hood. Afterwards, a GARCH(1,1) model with Gaussian innovations is estimated
from simulated data using Maximum Likelihood as well as RPLR to allow for
a comparison of the obtained estimates to the true parameters. Subsequently, a
GARCH(1,1) model with t-distributed innovations is fitted to real life return series
as well as simulated data in order to find out if the t-distribution is to be preferred
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to the normal distribution. The impact of different initial values on Maximum
Likelihood and RPLR is measured in the succeeding subsection, and a study of
GARCH(1,1) applied to small data series is provided thereafter. The section is
concluded by an estimation of EGARCH(1,1) applied to return series.

4.6.1 GARCH(1,1)

4.6.1.1 Return series – Maximum Likelihood

The first estimation results to be presented are those of a GARCH(1,1) model with
Gaussian innovations fitted to the four return series using Maximum Likelihood.
The parameter estimates are presented in Table 4.2 along with their standard errors
and the value of the log-likelihood. As previously stated, a GARCH(1,1) likelihood
needs a stipulated value ofh0 to be computed and for the estimates in Table 4.2h0
has been set to the unconditional variance, c.f. Equation 3.3.8.

Series HP Sony Mobil Pepsi
�0 7:3100� 10�5 3:2958� 10�6 4:8515� 10�6 2:9344� 10�5

(3:0331�10�5) (1:3138�10�6) (1:8363�10�6) (1:0580�10�5)
�1 1:0411� 10�1 6:0622� 10�2 4:7775� 10�2 7:7883� 10�2

(3:7029�10�2) (1:1253�10�2) (1:2551�10�2) (2:4485�10�2)
�1 7:3705� 10�1 9:2884� 10�1 9:1611� 10�1 8:0033� 10�1

(9:2735�10�2) (1:3554�10�2) (2:1343�10�2) (5:8673�10�2)
LT 3:0953� 103 3:4982� 103 3:8688� 103 3:5005� 103

Table 4.2: Maximum Likelihood parameter estimates of GARCH(1,1) ap-
plied to return series.

To validate these estimation results, each of the four series are examined in turn
along the lines suggested in Section 4.5. The estimates of Hewlett-Packard will
be thoroughly examined to fully illustrate the advantages and disadvantages of the
estimated GARCH model, the estimates of Sony, Mobil and Pepsi with less rigour
to avoid tiresome repetitions.

Hewlett-Packard
The estimate of�1 of Hewlett-Packard is0:737 with a standard error of0:0927.
The usual t-test statistic for a null hypothesis of�1 = 0 against the alternative2

2Recall from (3.3.3) that negative GARCH parameters are prohibited and from Section 4.2.4.1
that these constraints have been incorporated into the estimation procedure.
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�1 > 0 is7:948 and the99%-fractile of thet(1261)-distribution is2:3293meaning
that the estimate of�1 is significantly different from zero. The estimate of�1 is
0:104 with a standard error of0:0370, corresponding to a t-test statistic of2:8116
which means that�1 too is significantly different from zero. The same conclusion
applies to�0 estimated to a value of7:310�5 with a standard error of3:033�10�5

and a test statistic of2:4101. The significance of�0 is particular important as a
value of�0 = 0 means that the unconditional variance of the process is zero and
thus�0 = 0 is disallowed by the GARCH parameter constraints. In order to verify
that the process driving the Hewlett-Packard returns is not an IGARCH process, it
is noted that the value of�1 + �1 is 8:412 with a standard error of0:0999 causing
the test statistic of the hypothesis�1 + �1 = 1 against the alternative�1 + �1 < 1
to be�1:591 which is significant at all levels at or above5:6%. The estimated
model is therefore on the brink of being an IGARCH model.

In Figure 4.1 the 1264 geometric returns of Hewlett-Packard are plotted above
1264 realizations from a GARCH(1,1) process3 with parameters equal to those of
the estimates in the first column of Table 4.2.

The first thing to note about the simulation is that the simulated data is quite homo-
geneous. By a close look, however, the figure reveals that there is a small amount
of clustering in the data and there is also a small amount of volatility persistence
present. There are at most one significant outlier in the simulated data. When
comparing the plot of the simulated data to the plot of the actual Hewlett-Packard
returns it is seen that the clustering and volatility persistence features are quite sim-
ilar, but that the single outlier of the simulated data is clearly outnumbered by the
outliers of the actual returns. In this respect the similarities in the two data sets are
quite small, indicating that the conditional normality assumption may not be cor-
rect and that a more heavy-tailed conditional distribution may be more appropriate.

The standardized residuals of Hewlett-Packard are plotted in Figure 4.2. With
the goal of the standardized residuals being Gaussian White Noise in mind, it is
difficult to be impressed by looking at the plot. Discregarding the scale difference,
the plot of the standardized residuals is hard to distinguish from the plot of the
actual Hewlett-Packard returns at the upper part of Figure 4.1.

A formal investigation of the standardized residuals along the lines of Section 2.2.2
reveals that the kurtosis estimate is5:6503 and the Jarque-Bera test statistic is
374:8, a highly significant value. These numbers confirms that the estimated GAR-
CH(1,1) model fails to explain the heavy tails of the Hewlett-Packard returns. How-
ever, the kurtosis of the Hewlett-Packard return was in Chapter 2 estimated to6:089

3The simulation have been performed using the sameh0 as the log-likelihood.
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Figure 4.1: The geometric returns of Hewlett-Packard (top) and realiza-
tions from a GARCH(1,1) process using the parameter values of the second
column of Table 4.2 (bottom).
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Figure 4.2: The standardized residuals of Hewlett-Packard.

and the Jarque-Bera test statistic was502:9 indicating that the GARCH(1,1) model
has explainedsomepart of the heavy tails. The autocorrelation function estimates
of the standardized residuals and the squared standardized residuals are as plotted
in Figure 4.3.

The approximative95% critical region for the autocorrelation function estimates
is �2=p1264 = �0:0563 and as no value of the autocorrelation function of the
squared Hewlett-Packard returns exceeds this limit (the estimate of the autocorrela-
tion function of the squared standardized residuals at lag 25 is4:85), the estimated
GARCH(1,1) model has actually been able to explain this characteristic of the
Hewlett-Packard returns. The autocorrelation structure of the ordinary standard-
ized residuals is identical to the autocorrelation structure of the actual Hewlett-
Packard returns, c.f. Figure 2.4, as expected. These findings are confirmed by the
Ljung-Box test statistic which is35:644 for lag 30, insignificant at all levels at or
below 22% and the Portmanteau Q-test with a test statistic of14:227 at lag30,
insignificant at all levels at or below99%! The Lagrange multiplier test for hetero-
skedasticity has a test statistic of13:551 at lag 30 which is also insignificant at all
levels below99%.

To assess the ability of the GARCH(1,1) model to predict the conditional variance,
a plot of the squared Hewlett-Packard returns, the estimates of the conditional vari-
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Figure 4.3: Estimated autocorrelation functions of the standardized residu-
als of Hewlett-Packard (left) and the squared standardized residuals (right).

anceht using the estimated GARCH(1,1) parameters and the estimated uncondi-
tional variance is presented in Figure 4.4. To allow for a closer inspection, only
observations and associated estimates number201 through400 of the total number
of 1264 returns have been plotted.

From the plot it is readily seen that the estimated conditional variance does not
vary much from the unconditional variance and in periods of low volatility, e.g.
from observation number285 to 305 and345 to 355, the estimated conditional
variance is much larger than the data. Thus, the GARCH(1,1) volatility estimates
are upward biased during these periods. Moreover, as it may be visible from the
plot, the GARCH estimates exhibits some delay relative to the observations, i.e.
when the volatility of the data changes from high to low, it takes some time for the
GARCH model to adjust. When the volatility reverts from low to high, the delay
seems shorter. The delay is a of course an inherent property of a model based on
historical information, but in applications where a quick response is desired , one
might wish to look for other models. The delay may suggest that the volatility
persistence of the GARCH(1,1) model is actually too high compared to the return
series data. The estimated GARCH(1,1) model predicts the unconditional variance
to be4:6021� 10�4, the second order moment of the Hewlett-Packard returns is
4:4730 � 10�4 and the mean of the estimated conditional variances is4:5513 �
10�4. Thus, the estimated GARCH(1,1) model is upward biased with respect to
the uncondtional and conditional variances.

Sony
The estimate of�1 of Sony is0:929with a standard error of0:0135. As the param-
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Figure 4.4: Squared Hewlett-Packard returns (solid line), estimates of the
conditional volatility of the GARCH(1,1) model (dotted line) and the esti-
mated unconditional variance (dashed line).

eter estimate is larger than�1 of Hewlett-Packard and the standard error is smaller,
�1 of Sony is significant. The estimate of�1 is 0:0606 with a standard error of
0:0125 yielding a t-test statistic of5:3872 which is highly significant. The same
conclusion applies to�0 which is estimated to a value of3:296� 10�6, a standard
error of 1:3138 � 10�6 and a t-test statistic of2:5084 which is significant at all
levels below99%. The hypothesis of�1 + �1 = 1 has a test statistic of�57:63 so
an IGARCH(1,1) process is out of the question.

The geometric returns of Sony and realizations from a GARCH(1,1) process with
the estimated parameter values are plotted in Figure 4.5.

Again, the GARCH(1,1) model does not seem able to replicate the heavy tails of
the returns but the model do appear to capture the volatility structure. The kurtosis
of the standardized residuals is6:8585, a bit lower than the kurtosis of the actual
Sony returns which was estimated to a value of7:725. The Jarque-Bera test statistic
is 822:0, highly significant but lower than the value1269 of the actual returns. An
expection of the autocorrelation function estimates plotted in Figure 4.6 reveals
that the GARCH model has failed to remove the significant autocorrelation at lag
18, but that the autocorrelations at lags1, 2, 5, 6, 7, 8, 10, 14, 15 and26, c.f.
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Figure 4.5: The geometric returns of Sony (top) and realizations from a
GARCH(1,1) process using the parameter values of the third column of
Table 4.2 (bottom).
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Figure 2.4 have been captured. A preliminary assumption would be that the Sony
returns are actually a bit too heteroskedastic to GARCH(1,1), an assumption partly
backed by the fact that the Portmanteau test statistic of the residuals is24:808 at
lag 30, insignificant at all levels below26% and thus not as “elegant” as in the case
of Hewlett-Packard.
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Figure 4.6: Estimated autocorrelation function of the squared standardized
residuals of Sony.

The remarks regarding the ability of the GARCH(1,1) model fitted to the Sony
returns to predict the conditional variance are no different than those applying to
Hewlett-Packard.

Mobil
The t-test statistics of significance of the Mobil parameters are as presented in
Table 4.3 along with the probabilities of observing more extreme values of the test
statistics under theH0’s.

Hypothesis �1 = 0 �1 = 0 �0 = 0 �1 + �1 = 1

Test statistic 42:923 3:8065 2:6420 �1:4584
Probability 0 < 1% < 1% 7:25%

Table 4.3: Test statistics and associated probabilities of various hypothesis
regarding the estimated Mobil parameters.

As seen from the table, all parameter values are highly significant and, as was the
case of Hewlett-Packard, it is generally not possible to reject the hypothesis that
the underlying process driving the Mobil returns is actually an IGARCH(1,1).

With regard to the failure of GARCH(1,1) to explain the heavy tails of the Hewlett-
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Packard and Sony returns, one might hope that the heavy tails of Mobil can actually
be captured by GARCH as the tails of the Mobil returns are actually not that fat,
recall from Table 2.1 that the kurtosis of the Mobil returns is only4:040. However,
the kurtosis of the standardized Mobil returns is3:889 so, again, the GARCH(1,1)
model is only capable of reducing the heaviness of the tails. The Jarque-Bera
test applied to the standardized residuals yields a highly significant test statistic of
42:37, a bit lower than the statistic of the actual returns which in Chapter 2 was
estimated to a value of57:14.

The conclusions regarding the ability of the GARCH(1,1) model to capture the
heteroskedasticity and autocorrelation structure of the Mobil returns is no different
from the conclusions obtained in the previous paragraphs. Thus, there is no need
to repeat this analysis.

Pepsi
The resuls of testing the significance of the estimated Pepsi parameters are as dis-
played in Table 4.4. All three parameters are highly significant and an IGAR-
CH(1,1) model is definately inadequate.

Hypothesis �1 = 0 �1 = 0 �0 = 0 �1 + �1 = 1

Test statistic 13:6407 3:1808 2:7736 �17:645
Probability 0 < 1% < 1% 0

Table 4.4: Test statistics and associated probabilities of various hypothesis
regarding the estimated Pepsi parameters.

Recalling the Ljung-Box and Portmanteau test results from Chapter 2 and the Like-
lihood multiplier test results from Section 4.3 of this chapter, the Pepsi returns are
different from the returns of Hewlett-Packard, Sony and Mobil in the sence that the
squared returns do not exhibit significant autocorrelation for lags greater than one.

The standardized residuals of Pepsi are, however, no different from the previously
analysized standardized residuals, as the squared standardized residuals of Pepsi do
not exhibit autocorrelation at any lag. The fitted GARCH(1,1) model has reduced
the autocorrelation in the squared returns, significant or not. The Portmanteau test
statistics of the standardized residuals at lag one and lag30 are insignificant at all
levels below52% and88%, respectively.

The inability of GARCH(1,1) to capture the heavy tails of the returns equally ap-
plies to Pepsi.
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Summary
Fitting a GARCH(1,1) model to return series using Maximum Likelihood yields
models that are perfectly able to capture the heroskedasticity and autocorrela-
tion structure of the returns, thus satisfying the objective of Gaussiannity of the
standardized residuals residuals. GARCH(1,1) is, however, unable to replicate
the heavy tails of the return distributions. Furthermore, estimates of the condi-
tional variance of the returns obtained using the fitted GARCH models reveals that
GARCH(1,1) is a bit slow in adapting changes to the magnitude of the conditional
volatility, especially when the volatility changes from high to low.

4.6.1.2 Return series – Recursive Pseudolinear Regression

The parameter estimates obtained when a GARCH(1,1) model is fitted to the four
return series using the recursive pseudilinear regression method (RPLR) developed
in Section 4.4 are presented in Table 4.5.

Series HP Sony Mobil Pepsi
�0 2:2755� 10�5 6:9024� 10�6 6:5947� 10�7 7:9248� 10�5

�1 3:2087� 10�2 3:3573� 10�2 9:8273� 10�3 5:2765� 10�2

�1 9:1701� 10�1 9:3969� 10�1 9:8515� 10�1 6:0847� 10�1

Table 4.5: Recursive parameter estimates of GARCH(1,1) applied to return
series.

The RPLR parameter estimates are quite different from the Maximum Likelihood
estimates. Though the parameters of Table 4.5 are clearly of the same magnitude
as the Maximum Likelihood estimates, there are substantial differences. The val-
ues of�1 obtained using RPLR are for all series substantially smaller than the
Maximum Likelihood estimates. The ratio ranges from approximately1:5 (Pepsi)
to about4:9 (Sony). The pattern is reversed when the parameter estimates of�1
is considered, at least for the Hewlett-Packard, Sony and Mobil returns where the
parameter estimates obtained using RPLR are larger than the parameter estimates
obtained using Maximum Likelihood. Surpricingly, RPLR estimates�1 of Pepsi to
a value considerably smaller than the Maximum Likelihood procedure does. There
does not seem to be uniform relation between the RPLR and Maximum Likelihood
estimates of�0. No standard error of the parameter estimates is presented as the
RPLR method does not allow for an immediate computation of the parameter co-
variance matrix. When the standard errors are absent, no t-test for significance can
be performed.
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The problem when faced with two sets of parameter values is to decide which one
to rely on. This can be done only by performing an analysis similar to the one
performed in the context of Maximum Likelihood, but though this analysis may
answer the question of which estimation routine performes the best with regard to
the autocorrelation structure, it will not answer the question when it comes to the
heavy tails of the returns. The reason why is that the RPLR estimation procedure do
not assume a particular (conditional) distribution of the returns, nor does it specify
any distribution parameters.

Hewlett-Packard
The sum of the RPLR parameter estimates of�1 and�1 is 0:949 which is con-
siderably larger than the corresponding value of the Maximum Likelihood esti-
mates which is0:841. This means that the RPLR method estimates the process
driving the Hewlett-Packard returns to have a larger unconditional variance than
the Maximum Likelihood estimation procedure does. The parameter based esti-
mate of the unconditional variance (Formula 3.3.8) is4:4702� 10�4 in the RPLR
case and4:6021 � 10�4 in the Maximum Likelihood case. For comparison, the
second order moment of the Hewlett-Packard returns is4:4730 � 10�4 so, as
far as the unconditional variance is considered, RPLR outperforms the Maximum
Likelihood method. Moreover, the mean of the estimated conditional variances is
4:4730�10�4 (!) in the RPLR case and4:5513�10�4 in the Maximum Likelihood
case.

The standardized residuals of Hewlett-Packard obtained using the conditional stan-
dard deviation estimates of the RPLR fitted model have a kurtosis of6:0135which
is larger than the kurtosis of the standardized residuals obtained using Maximum
Likelihood (5:6503) and only slightly lower than the kurtosis of the actual Hewlett-
Packard returns (6:089). Thus, RPLR performs even worse than Maximum Likeli-
hood when it comes to the heavy tails. As there are no visible differences between
the standardized residuals obtained using Maximum Likelihood and the standard-
ized residuals obtained using RPLR, the latter are not shown. However, in Fig-
ure 4.7, the estimated autocorrelation function of the squared standardized residu-
als obtained using RPLR is presented.

By comparing this plot to the rightmost plot in Figure 4.3, it is observed that the
RPLR estimated GARCH(1,1) model has removed more of the largest “spikes”.
The spikes of lag 2, 9, 20 and 25 are smaller at the RPLR plot than at the Maximum
Likelihood plot, but the differences are too small to support a judgement as to
which method performs the best in explaining the autocorrelation in the squared
returns. Moreover, the Portmanteau Q-test at lag 30 has a test statistic of14:321,
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Figure 4.7: Estimated autocorrelation functions of the squared standardized
residuals of Hewlett-Packard.

0:94 higher than the corresponding figure of the Maximum Likelihood estimated
standardized residuals and the Likelihood multiplier test statistic is14:081 of the
RPLR residuals,0:530 higher than the test statistic of the Maximum Likelihood
returns. Thus, if a conclusion is to be drawn regarding heteroskedasticity it will be
that the two estimation routines performs equally well.

In order to measure the ability of the RPLR-estimated GARCH(1,1) model in pre-
dicting the conditional variance, a plot similar to the one in Figure 4.4 have been
constructed. It is presented in Figure 4.8.

When comparing the plot in Figure 4.8 to Figure 4.4, the higher volatility persis-
tence of the RPLR-estimated model is obvious. The RPLR-estimated model is
even more reluctant to follow the data than the Maximum Likelihood estimated
model. This is because the estimate of the parameter�1 is much higher in the
RPLR-estimated model than in the Maximum Likelihood estimated model, so one
should not use this observation to jump to the conclusion that the Maximum Like-
lihood estimated model is superior in this regard. After all, one could just choose
a set of model parameters with a relatively low value of�1, and this model would
then have a lower volatility persistence than the two estimated models, thus ad-
justing faster to changes in volatility. The speed of volatility adjustment should
only be used as a measure of the ability of GARCH(1,1) to explain return series
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Figure 4.8: Squared Hewlett-Packard returns (solid line), estimates of the
conditional volatility of the GARCH(1,1) model (dotted line) and the esti-
mated unconditional variance (dashed line).

characteristics, not to choose between Maximum Likelihood and RPLR.

The conditional variance estimates of the RPLR-estimated model are not biased
as opposed to the estimates of the Maximum Likelihood estimated model. The
sum of the squared differences between the squared returns and the conditional
variance estimates is1:2725� 10�3 in the RPLR case and1:2826� 10�3 in the
Maximum Likelihood case, indicating that the RPLR-estimed modeldo a better
job in estimating the conditional variance than does the Maximum Likelihood es-
timated model. But the price is as mentioned a slower responce to changes in the
conditional variance.

Sony
In the case of Sony, the sum of the parameters�1 and�1 is0:973 in the RPLR case
and0:989 in the Maximum Likelihood case. Thus, the situation is just the opposite
of Hewlett-Packard as RPLR estimates Sony to have a lower unconditional vari-
ance than does Maximum Likelihood. On the other hand, the second order moment
of the Sony returns is2:5845� 10�4, the RPLR parameter based estimate of the
unconditional variance is2:5817 � 10�4 and the Maximum Likelihood parame-
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ter based estimate is3:1281� 10�4. This means that (again) RPLR outperforms
Maximum Likelihood when it comes to estimating the unconditional variance.

The standardized residuals computed using the RPLR estimated parameters have a
kurtosis of6:9699 which, as was the case with Hewlett-Packard, is lower than the
kurtosis of the actual returns (7:7250) but higher than the kurtosis of the Maximum
Likelihood based standardized residuals (6:8585).

Unsimilar to the Hewlett-Packard situation, the ability of the RPLR estimated
model to capture the autocorrelation structure of the actual returns is not as good
as the Maximum Likelihood estimated model. This is observed by comparing the
estimated autocorrelation function of the squared standardized residuals of RPLR
in Figure 4.9 to the estimated autocorrelations of the squared standardized residu-
als of Maximum Likelihood in Figure 4.6. Several spikes are highest on the RPLR
plot, in particular the significant spike of lag 18.
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Figure 4.9: Estimated autocorrelation functions of the squared standardized
residuals of Sony.

The Portmanteau test statistic of the standardized residuals at lag 30 (43:411), in-
significant at all levels below5:39% and the Likelihood multiplier test for hetero-
skedasticity at lag 30 (42:247), insignificant at all levels below6:82% are in line
with this assumption. Considering the5% level, the RPLR-estimated model barely
manages to capture the heteroskedasticity of Sony.
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The sum of the squared differences between the squared returns of Sony and the
conditional variance estimates is5:6555� 10�4 in the RPLR case and5:6790�
10�4 in the Maximum Likelihood case.

Mobil
The sum of the�1 and�1 estimates is0:995 higher than the corresponding figure
of the Maximum Likelihood estimated model which is9:6389. Thus, the RPLR
estimated model is very close to IGARCH(1,1). The second order moment of the
mobil returns is1:3182� 10�4, the unconditional variance of the RPLR estimated
model is1:3133� 10�4 and the corresponding figure of the Maximum Likelihood
estimated model is1:3435� 10�4. Once again, the RPLR method is the best when
the second order moment is considered.

The usual pattern is, however,not recognized when the kurtosis estimates are con-
sidered. The kurtosis of the RPLR generated standardized residuals is3:393, the
kurtosis of the Maximum Likelihood generated standardized residuals is3:89 and
the kurtosis of the actual Mobil returns is4:040. Hence, when it comes to Mobil,
the RPLR method is the one that is best at explaining the heavy tails.

The ability of the RPLR estimated model to model the autocorrelation structure
of the mobil returns is indistinguishable from the ability of the Maximum Likeli-
hood estimated model. Thus, the autocorrelation function estimates as well as the
Portmanteau and Likelihood ratio test statistics have been left out. The sum of the
squared differences between the squared mobil returns and the conditional variance
predictions is6:6036 � 10�5 in the RPLR case and6:5473� 10�5 in the Maxi-
mum Likelihood case. Hence, in this regard the Maximum Likelihood estimated
model provides the best prediction of the conditional variances, but its predictions
are biased.

Pepsi
The RPLR parameter estimates of the Pepsi returns are, as previously stated, inter-
esting because Pepsi is the only one of the four series for which it is the case that the
estimate of�1 is lower than the corresponding Maximum Likelihood estimate. The
sum of�1 and�1 of the RPLR estimates is only0:6612, the corresponding value
of the Maximum Likelihood estimates is0:8782. The parameter based estimate of
the unconditional variance is2:3393� 10�4 in the RPLR case,2:4095� 10�4 in
the Maximum Likelihood case and the second order moment of the Pepsi returns is
2:3394� 10�4. Hence, in the Pepsi case as in the cases of Hewlett-Packard, Sony
and Mobil, the GARCH(1,1) model estimated using RPLR outperforms the model
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fitted by Maximum Likelihood when it comes to estimation of the unconditional
variance.

Similar to the situation of Mobil, the RPLR estimated model is best in explaining
the heavy tails of the returns. The kurtosis of the Pepsi returns is7:6009, the kur-
tosis of the standardized residuals obtained using RPLR is6:8301 and the kurtosis
of the residuals obtained using Maximum Likelihood is6:9054.

The ability of the RPLR estimated model to capture the autocorrelation structure
is (as usual) no different from the ability of the Maximum Likelihood estimated
model. The Portmanteau statistic of the standardized residuals at lag 30 is insignifi-
cant at all levels below96% better than the corresponding statistic of the Maximum
Likelihood estimated model which is insignificant at all levels below88%.

The sum of the squared differences between the squared Pepsi returns and the
predictions of the conditional variances is4:5744� 10�4 for RPLR and4:5797�
10�4 for Maximum Likelihood.

Summary
The parameter estimates obtained when fitting a GARCH(1,1) model to the four
return series are different from the estimates obtained using Maximum Likelihood
though the estimates are of the same scale. The models fitted using RPLR are much
better at estimating the unconditional variances of the return series and better at
predicting the conditional variances than the Maximum Likelihood fitted models
are.

The above analysis provide no straight answer to the question of which of the
RPLR and the Maximum Likelihood fitted models that are best at capturing the
heavy tails of the empirical return series distributions. The light tales of the esti-
mated GARCH(1,1) models is a property of the GARCH model not of the estima-
tion routines, and the two routines performs equally bad in this regard. Also, it has
not been possible to distinguish the two estimation routines by the way the fitted
models capture the autocorrelation structure of the return series.

If, upon the above findings, one estimation routine is to be preferred to another, it
must be the RPLR routine. This routine does not perform worse than Maximum
Likelihoodwhen it comes to the heavy tails, it performs equally well when it comes
to capture the autocorrelation structures, but it is better at estimating the variances,
in particular the unconditional ones. However, the performance of Maximum Like-
lihood may be badly affected by the normality assumption which, for all that the
findings of this subsection matters, is incorrect. In addition, the analysis is ob-
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scured by the fact that the “true” parameters are unknown. But, if the task at hand
is stricty limited to that of estimating a GARCH(1,1) with Gaussian innovations to
geometric returns of stocks, my recommendation is to use RPLR.

4.6.1.3 Simulated series - Gaussian innovations

To measure the performance of RPLR versus Maximum Likelihood, the two esti-
mation routines may be compared using simulated data. In this way, the assumed
conditional distribution is assured to be correct and the true parameter values are
available for comparison. However, before commencing the simulations, a num-
ber of choices have to made, choices that may effect the performance of the two
estimation routines.

First of all, one have to decide which parameter values to use for simulation. This
decision is difficult as one can not know in advance if one of the estimation routines
performes best for some parameter values and worst for others. Theoretically, one
could remedy this problem by exhausting the parameter space, but in practice this
is not possible within a reasonable amount of time. Instead, one could use a Monte-
Carlo approach by choosing a reasonable number of parameter vectors randomly
and then compare the two estimation routines using these vectors. To increase the
applicability of the conclusion obtained in this way, it is observed from Table 4.2
and Table 4.5 that GARCH(1,1) parameters of return series are not uniformly dis-
tributed in the space of allowed GARCH(1,1) parameters. The�0 parameter seems
to have values somewhere around10�5, the values of�1 seems to be near0:1 and
the value�1 is to be found around0:8 and0:9. In line with these findings, a sim-
ulation study have been carried out using 20 randomly chosen parameter vectors
from the parameter space

� = f(�0; �1; �1) j 6:2� 10�5 � �0 � 7:2� 10�5 ^
0:04 � �1 � 0:15^ 0:70 � �1 � 0:95^
�1 + �1 < 1g (4.6.1)

Each simulation contains 1264 “observations” just like the return series.

The parameter estimates obtained from the simulation study are presented in Ta-
ble 4.6.

Looking at the table it seems like Maximum Likelihood does the best in estimating
the parameters, though both estimation routines have serious difficulties obtaining
the correct values. Measured by the geometrical distance between the individual
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�0 � 105 �1 � 100 �1 � 10

Sim True ML RPLR True ML RPLR True ML RPLR
1 7.6 12.4 18.0 9.0 9.3 9.6 8.6 8.2 7.8
2 6.7 8.4 4.3 7.7 9.0 5.5 8.4 8.0 8.9
3 6.9 8.6 10.2 10.8 15.6 12.9 7.0 6.0 5.7
4 7.7 29.8 21.0 5.9 8.9 9.0 8.2 4.4 5.8
5 6.6 3.9 1.1 6.4 5.7 2.2 7.4 8.3 9.5
6 7.0 12.1 19.6 13.6 17.5 16.0 7.4 6.2 5.0
7 7.3 26.6 12.6 4.6 9.0 7.6 7.0 0.5 4.7
8 6.9 9.9 15.3 12.1 10.3 12.2 7.5 7.0 5.8
9 7.1 8.6 19.0 15.0 16.1 19.0 7.7 7.4 5.9
10 7.1 7.1 5.1 5.7 5.7 3.4 9.2 9.3 9.5
11 7.3 9.7 11.6 8.8 13.4 13.4 7.7 6.8 6.4
12 7.6 7.6 104.5 7.7 8.1 0.1 8.8 8.8 3.7
13 6.6 4.8 1.5 11.1 9.7 4.4 7.8 8.3 9.3
14 6.5 5.2 24.9 11.0 11.0 18.2 8.1 8.1 4.4
15 6.6 8.0 6.0 9.4 8.9 5.4 7.1 6.7 7.6
16 6.7 10.3 7.3 8.1 11.1 8.8 7.6 6.5 7.4
17 7.5 9.7 12.2 6.1 8.3 9.4 8.5 7.9 7.5
18 6.7 6.1 6.4 12.2 16.5 17.7 7.1 7.0 6.8
19 6.5 6.6 4.6 11.3 13.7 9.0 7.8 7.7 8.4
20 6.2 8.2 8.7 12.7 16.5 13.7 8.2 7.7 7.9

Table 4.6: True and estimated parameter values from 20 simulations of a
GARCH(1,1) process with Gaussian innovations.
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true parameter values and the estimated values, Maximum Likelihood outperforms
RPLR in simulations 1, 2, 5, 9, 11 through 14 and 17, a total number of 9 sim-
ulations (45%). RPLR outperforms Maximum Likelihood in simulations 7 and
16 (10%), and the remaining 9 simulations (45%) are undecided as no estimation
routine is closest to the true parameter values for all three parameters.

In order to compare the Maximum Likelihood and the RPLR estimation results of
Table 4.6 across simulations, one may suggest to compute the total distance from
the true parameter values to the estimated ones for each estimation method and use
these two measures to compare the methods. This approach, however, have been
abandoned because it is not possible to relate estimation errors of�0 to estimation
errors of�1 or�1. Is, for instance, the Maximum Likelihood estimate of simulation
number 15 to be preferred over the RPLR estimate of the same simulation? The
RPLR method gets the value of�0 about right but is completely wrong with respect
to �1, whereas Maximum Likelihood fails to catch�0 but is not far from correct
with its estimate of�1. Instead, the unconditional variances as estimated using
Formula 3.3.8 are compared because the the unconditional variance is a functional
of all three parameters and the results of this comparison is available in Table 4.7.

From the table it seems like RPLR does the best job in estimating the parameters
of the simulated series. However, the general picture is heavily distorted my the
near IGARCH model of isimulations number 10. If simulation number 10 were to
be discregarded, the mean of the Maximum Likelihood errors would have a value
around2�10�4 lower than the value displayed in the table, whereas the mean of the
RPLR errors would be around2� 10�5 lower, thus making Maximum Likelihood
the best performing method. Anyway, the average of the RPLR estimatesis closest
to the average of the true values and RPLRdo have the lowest sum af squared
differences.

The results of simulation number 10 perfectly illustrates the problem of comparing
the two estimation methods. Maximum Likelihood actually does a very good job
in estimating the parameters, its estimates of�0 and�1 are identical to the true
values,�1 is just0:2 above the true value whereas RPLR grossly underestimates
the values of�0 and�1 and slightly overestimates�1. But because the true model
is close to IGARCH and Maximum Likelihood overestimates�0 + �1 just a little
bit, its estimate of the unconditional variance is far above the true value.

The preliminary conclusion must be that Maximum Likelihood is the preferred
estimation routine when simulated GARCH(1,1) series are to be estimated, at least
hwen the true model is not very close to being unstationary.
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True ML jTrue-MLj RPLR jTrue-RPLRj
Sim (�104) (�104) (�106) (�104) (�106)
1 14.9 14.3 60.9 14.3 60.2
2 7.8 8.0 12.9 7.9 7.4
3 3.7 3.5 20.7 3.4 24.3
4 6.2 6.3 4.6 6.3 5.0
5 3.4 3.6 20.1 3.6 17.4
6 5.8 5.9 13.0 5.8 5.5
7 2.9 3.1 22.1 2.8 12.7
8 5.1 5.1 6.5 5.1 5.4
9 9.1 9.1 6.6 8.7 48.1
10 31.3 70.2 3891.2 36.9 560.3
11 5.3 5.2 10.1 5.2 12.6
12 20.1 22.0 196.6 16.7 340.0
13 6.2 6.4 23.4 6.4 19.9
14 7.8 6.6 119.6 6.5 129.1
15 3.4 3.3 11.9 3.3 13.2
16 4.3 4.3 0.6 4.3 0.0
17 8.1 7.9 26.7 7.9 25.9
18 3.9 4.4 52.9 4.4 55.8
19 6.3 7.2 86.7 7.1 74.6
20 12.5 12.3 19.1 12.0 50.4
Mean (�105) 23.031 7.3390
Stdev (�104) 9.7719 1.5890

Table 4.7: Estimated unconditional variances using Maximum Likelihood
and RPLR. Column 4 and 6 display the di�erence between the true param-
eter values and the Maximum Likelihood and RPLR estimates, respectively.
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4.6.1.4 Simulated series - t-distributed innovations

When the Maximum Likelihood and the RPLR estimation routines was applied to
the return series, an assumption was made that the relative poor performance of
the Maximum Likelihood method is due to the fact that the empirical distributions
has fatter tails than the assumed Gaussian distribution. To test this assumption, a
simulation study have been carried out, estimating the parameters of 20 simulated
GARCH(1,1) processes with innovations drawn from a standardized t-distribution4

with four degrees of freedom. The Maximum Likelihood routine still “assumes”
that the innovationsare Gaussian. The simulation results are presented in Table 4.8.

The results in the table seems to give some support to the assumption. Here, Maxi-
mum Likelihoodoutperforms RPLR in simulations number 1, 2, 7, 11, 14 and 19, a
total number of 6 simulations (30%) whereas RPLR outperforms Maximum Like-
lihood in simulations number 3, 5 and 18 (15%) with the remaining 11 simulations
(55%) left undecided. Hence, it seems like RPLR has gained some performance
relative to Maximum Likelihood, but, using this measure, Maximum Likelihood is
still the best. However, with 55% of the simulations undecided more analysis is
required before a conclusion is obtained.

The estimated unconditional variances are as displayed in Table 4.9.

This table supports the preliminary conclusion based on Table 4.8, the Maximum
Likelihood routine seems to be performing a better job. Counting the number of
simulations where Maximum Likelihood outperforms RPLR and vice versa yields
12 � 8 in favor of Maximum Likelihood, meaning that it is not just the tendency
of RPLR to be really wrong when its wrong as in simulation 7 that makes RPLR
perform worse than Maximum Likelihood. The results of Table 4.9 are especially
interesting as they seem to reject the preliminary assumption that the RPLR esti-
mates are to be preferred when the conditional distribution of the returns has heavy
tails. This rejection makes it difficult to explain why RPLR is better at predict-
ing the conditional and unconditional variances of the real return series. Maybe it
is just because the above simulation studies gives a wrong picture of the perfor-
mance of RPLR, maybe it is because the t-distribution of the above simulations is
not a suitable approximation of the heavy tails of the real returns or maybe there
is something else about the return series than just the heavy tails that impede the
performance of Maximum Likelihood. In a later subsection, the sensitivities of the
estimation routines to initial values of parameters, conditional variance e.t.c. are
analysed.

4Standardized (here): Unit variance and zero mean. Recall from Section 3.5 that is itnot the
student-t distribution.
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Param �0 � 105 �1 � 100 �1 � 10

Sim True ML RPLR True ML RPLR True ML RPLR
1 7.0 6.4 47.3 11.8 14.9 33.9 8.3 7.9 2.0
2 6.6 13.3 28.6 6.5 7.2 12.6 8.8 8.2 6.4
3 6.4 1.0 9.4 4.2 0.9 1.0 7.3 9.5 6.5
4 7.4 4.7 4.2 10.9 7.8 8.8 7.1 8.0 8.0
5 6.6 16.0 9.8 6.6 13.6 3.9 7.8 5.1 7.4
6 7.2 10.3 4.9 13.8 13.2 6.4 8.0 7.3 8.7
7 6.7 6.7 27.3 8.2 8.2 7.5 9.0 9.0 8.9
8 7.2 14.8 11.3 6.5 6.6 3.9 7.1 5.2 6.4
9 7.5 10.5 35.4 8.5 5.5 5.7 8.4 8.1 5.0
10 6.9 8.2 8.1 7.4 9.4 0.1 7.1 6.3 7.3
11 6.5 11.6 23.2 4.4 3.4 0.2 8.4 7.8 6.3
12 7.3 10.1 20.3 14.5 19.1 18.4 7.5 6.5 4.8
13 7.5 20.1 62.6 7.7 6.1 7.6 8.5 7.2 2.3
14 7.3 4.5 1.1 11.9 13.5 2.1 7.3 7.8 9.6
15 7.0 3.9 4.2 13.6 13.0 6.8 7.8 8.1 8.6
16 6.5 6.4 7.3 11.6 10.0 7.9 7.1 7.2 7.1
17 6.3 2.3 3.9 12.4 6.3 6.2 7.3 8.8 8.3
18 7.4 12.9 2.9 13.3 24.9 5.1 7.7 5.9 9.1
19 7.4 11.7 2.3 12.2 12.5 3.5 8.0 7.6 9.4
20 7.4 2.3 32.8 6.8 3.7 9.1 8.1 9.3 3.9

Table 4.8: True and estimated parameter values from 20 simulations of a
GARCH(1,1) process with t-distributed innovations.
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True ML jTrue-MLj RPLR jTrue-RPLRj
Sim (�104) (�104) (�106) (�104) (�106)
1 12:6 10:5 212:6 10:1 249:1

2 12:2 12:2 0:4 12:4 19:6

3 2:8 2:8 2:4 2:8 2:5

4 4:0 3:8 18:4 3:9 11:5

5 4:3 4:5 20:4 4:4 5:2

6 10:8 7:4 338:0 7:1 364:0

7 40:6 40:6 0:0 81:5 4088:9

8 3:3 3:5 24:4 3:5 23:3

9 9:6 8:0 155:1 7:9 162:9

10 3:2 3:0 25:3 3:0 24:4

11 5:5 6:4 85:4 6:4 82:5

12 6:7 6:2 49:5 6:0 64:1

13 10:0 9:0 100:1 9:0 98:3

14 4:9 5:1 24:7 4:7 19:6

15 8:5 6:9 158:7 6:2 230:7

16 3:8 3:6 19:7 3:5 24:9

17 4:3 3:8 47:5 3:7 57:0

18 7:7 8:0 25:7 7:1 62:4

19 9:9 9:9 8:3 10:2 33:8

20 6:0 6:6 56:0 6:3 30:3

Mean (�105) 6.8637 28.275
Stdev (�105) 8.6868 90.109

Table 4.9: Estimated unconditional variances using Maximum Likelihood
and RPLR. Column 4 and 6 display the di�erences between the true param-
eter values and the Maximum Likelihood and RPLR estimates, respectively.
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4.6.1.5 Return series – t-distributed innovations

Now, in the context of t-distributed innovations, it is illustrative to measure the per-
formance of Maximum Likelihood relative to RPLR when Maximum Likelihood is
implemented using the log-likelihood function corresponding to the t-distribution,
i.e. the log-likelihood from Equation 4.2.7. The Maximum Likelihood estimates
of GARCH(1,1) with t-distributed innovations are as displayed in Table 4.10. The
row labeleddf is the estimates degrees of freedom.

Series HP Sony Mobil Pepsi
�0 1:1572� 10�6 5:9043� 10�6 4:4666� 10�6 1:5819� 10�5

8:8560�10�7 3:0074�10�6 2:1789�10�6 8:1411�10�6
�1 1:3189� 10�2 8:6821� 10�2 4:8135� 10�2 3:7531� 10�2

4:0361�10�3 2:2953�10�2 1:4552�10�2 1:6496�10�2
�1 9:8434� 10�1 8:9713� 10�1 9:1875� 10�1 8:9250� 10�1

4:4285�10�3 2:7851�10�2 2:5870�10�2 4:6918�10�2
df 6:1946 4:1533 9:9503 5:8196

9:3981�10�1 4:6334�10�1 2:4899 8:5450�10�1
LT 3:1458� 103 3:5792� 103 3:8842� 103 3:5592� 103

Table 4.10: Maximum Likelihood parameter estimates of GARCH(1,1) with
t-distributed innovations applied to return series.

By comparing the results of Table 4.10 to the ones of Table 4.2, it is observed that
the parameter estimates are actually quite different. Recall that the lower degree
of freedom, the heavier the tails of the t-distribution and compare thedf -estimates
of Table 4.10 to the kurtosis values of the return series in Table 2.1. The higher
the kurtosis, the lower the degrees of freedom. Also note that the lower degree of
freedom, the closer are the estimates of Table 4.10 to the estimates of Table 4.2. For
instance, there is almost no difference between the Mobil estimates of t-distributed
innovations and the Mobil estimates of Gaussian distributed innovations.

In order to establish wheather the t-distributed innovations have enabled the GAR-
CH(1,1) model to capture the heavy tails of the return series distribution, 1264
realizations from a GARCH(1,1) process with t-distributed innovations and with
the exact same parameter values as those of Hewlett-Packard in Table 4.10 is plot-
ted in Figure 4.10.

If Figure 4.10 is compared to the two plots in Figure 4.1, it might be possible
to observe that the GARCH(1,1) model with t-distributed innovations is better at
capturing the heavy tails of the empirical distributions than the GARCH(1,1) model
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Figure 4.10: Realizations from a GARCH(1,1) process with t-distributed
innovations using the parameter values of the second column of Table 4.10.

with Gaussian innovations. The kurtosis of the realizations from the t-GARCH
model is4:94, whereas the kurtosis of the Hewlett-Packard returns is6:09 and the
kurtosis of the realizations of the Gaussian-GARCH model is3:11, numbers which
indicate that the GARCH(1,1) model with t-distributed innovations is far better
in capturing the heavy tails of the returns than the GARCH(1,1) with Gaussian
innovations is. The kurtosis estimates also indicate, however, that exchanging the
Gaussian distribution with a t-distribution may not be sufficient if the objective is
to construct a model that produces distribution tails as heavy as the tails of the real
life returns.

In Figure 4.11, the conditional variance estimates of Hewlett-Packard produced
by the GARCH(1,1) model with t-distributed innovations are plotted above the
conditional variance estimates produced by the GARCH(1,1) model with Gaussian
innovations.

From the two plots in Figure 4.11 it is observed that the GARCH(1,1) model with
t-distributed innovations is less affected by outliers, a clearly desirable property.
The subject of influence of outliers on the conditional variance estimates will be
further discussed in a later subsection when the EGARCH(1,1) process has been
estimated. For now it suffices to say that the reason for the conditional variance
estimates of the t-GARCH to appear more “calm” is that the heavier tails of the
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Figure 4.11: Estimated conditional variances of Hewlett-Packard by
GARCH(1,1) with t-distributed innovations (top) and by GARCH(1,1) with
Gaussian innovations (bottom).
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t-distribution compared to the normal distributions allow the GARCH(1,1) model
to explain outliers, outliers that could otherwise only beaccounted for by drastic
adjustments of the conditional variance.

4.6.2 RPLR – Initial values

To find out why RPLR seems to be behaving better than Maximum Likelihood on
return series, but poor in the simulation studies, a closer look at the RPLR method
is needed.

Recall that the RPLR method finds its parameter estimates by iterating over the
RPLR updating scheme of Definition 4.2:

�T (�̂T�1) = YT �XT (�̂T�1)�̂T�1 (4.6.2a)

�̂T = �̂T�1 + R�1T (�̂T�1)�T (�̂T�1)XT (�̂T�1) (4.6.2b)

RT (�̂T�1) = RT�1(�̂T�1) +XT (�̂T�1)X>
T (�̂T�1): (4.6.2c)

and in the GARCH(1,1) case,YT = "2T , X>
T =

�
1 "2T�1 hT�1

�
and �> =�

�0 �1 �1
�
. With this choice ofX , all the elements ofX will be nonnegative

at all times. This means that the elements ofR will increase each time an iteration
is performed and because of this, the difference between�T and�T�1 will decrease
when the number of performed iterations gets high.

4.6.2.1 Initial value of R

To start up the iteration, initial values ofR, h and� are needed. Theoretically this
means that the RPLR method needs a total number of 12 initial values, far more
than Maximum Likelihood. In practice,R may be chosen to be proportional to
the identity matrix,R0 = kI meaning that the total number of initial values to be
stipulated is 5. Still, however, the choice ofR0, that isk, is important. Because
of the steady increase ofR and the decrease ofj�T � �T�1j, k will have to be
assigned a small value if the parameter guess�0 is far from the true parameters. At
the same time,k will have be larger if the initial parameter vector is close to the
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true parameters, because otherwise the termR�1T (�̂T�1)�T (�̂T�1)XT (�̂T�1) of the
�T updating equation (4.6.2c) is likely to “divert”�T by choosing a value of�T far
from �T�1.

To illustrate how RPLR behave for different choices of the initial values, let us
consider the parameter trajectory of the RPLR estimation of Hewlett-Packard, i.e.
the estimation of the second column of Table 4.5. The initial values of this es-
timation arek = 10�4, h0 = 4:473 � 10�4 (the second order moment of the
Hewlett-Packard returns),�0 = 10�5, �1 = 0:1 and�1 = 0:9.

Because the trajectories of the three parameters are very similar to each other (apart
from the parameter value), it suffices to consider the trajectory of one parameter.
The trajectory of�1 of the first 50000 iterations is presented as the upper plot in
Figure 4.12. Because the 1264 observations of the return series is too small a num-
ber for the RPLR estimation routine to converge, the iteration has been restarted a
number of times, i.e. the values ofR, � andh have been preserved, but the rou-
tine has started over with return number 1. This explains the small spikes of the
trajectory, spikes that occur each time the iteration restarts and moves from return
number 1264 to return number 1. The large number of iterations may lead one to
believe that the RPLR routine takes a long time to compute its estimates, but this is
not the case. In fact it takes less time for RPLR to compute 100000 iterations than
it takes the Maximum Likelihood routine to find the its estimate, even with the true
parameters as starting values.

As seen from the plot, the first part of the trajectory is very turbulent whereas the
trajectory is more predictable for higher iteration numbers. This corresponds to the
above findings, where the differencej�T � �T�1j was predicted to decrease as the
number of performed iterations increases.

The lower plot in Figure 4.12 shows the same trajectory for the same number of
iterations, but wherek has been set to the value0:1. As it is readily seen, the RPLR
method not just barely changes the value of the parameter from one iteration to the
next, it is also moving away from the true value.

Note that the situation ofk = 0:1 not only illustrates the behaviour of the RPLR
method when the initial value ofk is too high. It also illustrates a situation where
the monotonously increasing elements of theR matrix gets too high before the
parameter value� has converged. It is actually quite possible that this is what has
happened to some of the estimations of the previously described estimation studies,
but because of lack of storage space, it was not possible to save the parameter
trajectories of the estimations, only the final values, and because of this it is not
possible to find out exactly what went wrong.
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Figure 4.12: The trajectory of �1 estimates for Hewlett-Packard. The upper
plot shows the trajectory when k = 10�4, the lower plot shows the trajectory
when k = 0:1.
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To show that a too high value of the matrixR is not the only thing that may cause
the RPLR method to produce spurious parameter estimates, an estimation similar to
the two estimations above but withk = 10�12 have been performed. The resulting
parameter estimate is�0 = 7:3�10�4,�1 = 4:37�10�2 and�1 = �6:98�10�1.
What has happened is that the initial part of the trajectories have been so turbulent
that it has pushed the final value of�1 so far away from the initial value that it
has become negative. To show that the estimation have actually converged, the
trajectory of�1 is displayed in Figure 4.13.
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Figure 4.13: The trajectory of �1 estimates for Hewlett-Packard, k = 10�12.

The above analysis explains why it is so difficult to measure the performance of
RPLR. There is no general optimal value ofR0, the optimal choice depends on the
(unknown) distance between the true parameter values and�0. Furthermore, as the
plot in Figure 4.13 illustrates, RPLR may in some cases converge to a wrong set of
parameters. If this results in parameter values that violates the GARCH constraints,
one may have an idea that something is wrong, but if no constraints are violated it
may be very difficult to assess the validity of the obtained estimates. This is unlike
Maximum Likelihood where, as shall later be described in detail, the validity of
the obtained estimates may be asserted by e.g. an estimate of the Hessian because
valid Maximum Likelihood estimates are known to maximize the log-likelihood.

The problems associated with the choice of the initial value ofR naturally also



4.6. ESTIMATION RESULTS 119

applies to simulation studies. Shall one pretend to have no prior knowlegde about
the parameters and start the iteration with a low valuek, or shall one use ones
knowledge about the true parameter values and start the estimation close to the
true parameter values with a higher value ofk? In the previously described esti-
mation studies, the first approach have been taken andk has been set to�10�4
as it is clearly unnatural in a real life situation to know the parameter values prior
to estimation, but this choice ofk may be responsible for some of the poor RPLR
estimation results of Table 4.6 and Table 4.8.

4.6.2.2 Initial values of GARCH(1,1) parameters

An analysis of the influence of the choice of initial parameter values�0 on the
performance of the RPLR method is, as described above, difficult to perform be-
cause of the interaction betweenR0, �0 and the true parameters. However, to give
some kind of illustration of what the RPLR method is capable of, the parameters of
Hewlett-Packard have been estimated using initial parameter values of�0 = 0:01,
�1 = 0:4 and�1 = 0:5, values which are actually quite far from the previously
estimated values. The values ofk andh0 are10�4 and4:473 � 10�4 as above.
The obtained parameter estimates of this study are, after about one million itera-
tions, identical to those of Table 4.5 and the parameter trajectory of�1 is plotted in
Figure 4.14.

As it is readily seen from the plot, the RPLR routine have no problems finding
the correct estimates, even with initial parameter values far from the true ones.
If the Maximum Likelihood procedure is started with these values of the initial
parameters, it fails to find the maximum of the log-likelihood.

4.6.2.3 Initial value of h

To measure the sentivity of the RPLR method to the choice ofh0, a number of es-
timations (not shown) have been performed on the Hewlett-Packard return series.
The conclusion of this estimation study is that extremely high values ofh0 like
h0 = 1 or h0 = 0:1 will push the RPLR procedure “off the track”, thus yielding
obscure estimation results, but “sensible” values ofh0 not far from the uncondi-
tional variance (evenh0 = 0) will always yield a proper estimation provided that
R0 and �0 are not poorly chosen. Hence, the RPLR method can be said to be
insensitive to the choice ofh0.
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Figure 4.14: The trajectory of �1 estimates for Hewlett-Packard, initial
parameter values far from the true ones.

4.6.3 Maximum Likelihood – Initial values

The Maximum Likelihood routine needs values of the parameter vector� and a
value ofh0 for startup.

4.6.3.1 Initial value of h

To measure the influence of the initial value ofh on the ability of Maximum Likeli-
hood to obtain correct parameter estimates, an estimation study has been performed
where the value ofh0 have been included in the Maximum Likelihood setup as a
parameter. In this way, the Maximum Likelihood routine is allowed to change the
value ofh0 if the stipulated value is suboptimal. The estimation results obtained
from this estimation study are presented in Table 4.11.

Comparing the results of Table 4.11 to the results of Table 4.2 whereh0 was iden-
tical to the unconditional variance,h0 = �0=(1� �1 � �1), it is observed that the
two sets of parameter estimates are slightly different. The largest change in param-
eter values seems to have occured for Sony where quite a lot of “parameter mass”
have moved from�0 to �1. It is also observed that with�1 of Sony as the only
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Series HP Sony Mobil Pepsi
�0 7:2395� 10�5 3:0587� 10�6 4:8343� 10�6 2:7275� 10�5

2:8286�10�5 1:2833�10�6 1:7576�10�6 1:0241�10�5
�1 1:0362� 10�1 6:4384� 10�2 4:7505� 10�2 7:3205� 10�2

3:5513�10�2 1:1953�10�2 1:2506�10�2 2:4132�10�2
�1 7:3949� 10�1 9:2883� 10�1 9:1589� 10�1 8:1422� 10�1

8:6578�10�2 1:3266�10�2 2:0729�10�2 5:7720�10�2
h0 2:2030� 10�4 1:2166� 10�4 2:0981� 10�4 3:3467� 10�5

3:5059�10�4 9:4419�10�5 1:1716�10�4 7:8642�10�5
LT 3:0954� 103 3:4994� 103 3:8691� 103 3:5015� 103

Table 4.11: Maximum Likelihood parameter estimates of GARCH(1,1) ap-
plied to return series with h0 part of the estimation.

exception, all standard errors have been reduced. This is, however, not surpricing
as some of the uncertainty is now constributed toh0.

One of the main problems of the estimates of Table 4.2 was that the estimates were
biased in the sence of the unconditional variance. To see if this is also the case
of the estimates in Table 4.11, estimates of the unconditional variance for the two
tables are presented in Table 4.12 along with the RPLR estimates and the second
order moments of the four return series.

HP Sony Mobil Pepsi
Maximum Likelihood, estimatedh0 4:6144 4:5085 1:3206 2:4229

Maximum Likelihood, fixedh0 4:6021 3:1281 1:3435 2:4095

RPLR 4:4702 2:5817 1:3133 2:3393

Empirical second order moment 4:4730 2:5845 1:3182 2:3394

Table 4.12: Estimates of the unconditional variance based on Maximum
Likelihood estimation with h0 included in the estimation (�rst row), Max-
imum Likelihood estimation with h0 �xed (second row), RPLR estimation
(third row) and the empirical second order moment of the return series
(forth row). All estimates have been multiplied by 104 before they have
been inserted into the table.

From the table it does not seems like includingh0 in the estimation improves the
ability of Maximum Likelihood to estimate the unconditional variance. The un-
conditional variance estimate of Mobil is slightly better for an estimatedh0 than
for a fixedh0, but the estimates of Hewlett-Packard and Pepsi are slightly wors-
ened whenh0 is included in the estimation and clearly, the unconditional variance
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estimate of Sony is seriously negatively affected. Hence, the remarks made pre-
viously regarding the distraction of the Maximum Likelihood estimation routine
by heavy tailed empirical distributions seem to apply also to Maximum Likelihood
estimation includingh0.

An estimation study (not shown) where the very same2� 20 simulated series that
were used in Table 4.6 and Table 4.8 have been estimated using Maximum Like-
lihood estimation with an estimatedh0 reveals that includingh0 in the estimation
improves the performance measured in terms of the distance between estimated
and true parameter values, but that the performance measured in terms of the es-
timates of the unconditional variance are slighty impeded when the parameters of
GARCH(1,1) simulations with t-distributed innovations are estimated. These find-
ings indicate that maybeh0 should not be included in the estimation procedure if
special weight is put upon a correct estimate of the unconditional variance.

An alternative to the two above approaches of includingh0 in the estimation or
fixing h0 at the unconditional variance is to fixh0 at a value different from the
unconditional variance. To measure the influence of the choice ofh0 in this case,
a study have been performed where the GARCH(1,1) parameters of the Hewlett-
Packard returns have been estimated using 7 different values ofh0. The parameter
estimates obtained in this way are presented in Table 4.13.

h0 �0 �1 �1
0 8:2563� 10�5 1:1474� 10�1 7:0747� 10�1

1� 10�4 7:4798� 10�5 1:0627� 10�1 7:3194� 10�1

2� 10�4 7:2555� 10�5 1:0379� 10�1 7:3900� 10�1

4� 10�4 7:2729� 10�5 1:0403� 10�1 7:3825� 10�1

1� 10�3 7:8459� 10�5 1:1024� 10�1 7:1978� 10�1

1� 10�2 1:1721� 10�4 1:4522� 10�1 6:0286� 10�1

1� 10�1 1:8080� 10�4 1:7973� 10�1 4:3324� 10�1

Table 4.13: Maximum Likelihood parameter estimates of GARCH(1,1) ap-
plied to Hewlett-Packard for di�erent choices of h0.

Based on these estimates it is without much doubt concluded that the choice of
h0 has a serious impact on the parameter estimates. Because of this it is recom-
mended thath0 is included in the estimation procedure unless the value of the fixed
h0 has been especially accounted for. The table illustrates that fixingh0 at the un-
conditional variance (compare with Table 4.12) is not optimal, though not highly
inappropriate.
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4.6.3.2 Initial value of GARCH(1,1) parameters

The Nelder-Mead simplex routine that is used to maximize the log-likelihood func-
tion needs a guess at the parameters for startup. When the algorithm terminates is
has either located a global maximum, located a local maximum or it has been un-
able to locate a maximum. All but the first one of these situations are of course
unwanted.

Because termination of the Nelder-Mead simplex routine does not itself guarantee
that a global maximum has been located, it is important to be able to establish
which one of the above three situations that are present.

Whether it is the last one, i.e. no maximum located, or one of the first ones, i.e. a
global or a local maximum located, may established by computing e.g. an estimate
of the Hessian. If the computed parameter vector is a maximum, all elements of
the Hessian must be positive. Often it is sufficient to compute two values of the
log-likelihood, one using the obtained parameter vector and one using the obtained
parameter vector mutiplied by a scalar close, but not equal, to one. If the obtained
parameter vector does not maximize the log-likelihood, the latter of the two values
of the log-likelihood will ofteb be larger than the first.

If the parameter estimate at hand appears to be maximizing the log-likelihood, it
is important to assess whether the maximum is local or global, but this is difficult
in a large space of possible parameter values. It is therefore interesting to know
whether the log-likelihood surface contains local maxima or not.

To answer this question, one may start by examining the literature in the field of
GARCH Maximum Likelihood estimation, but, at previously mentioned, the lit-
erature in this field is very sparse, though some researchers claim that the log-
likelihood surface has multiple local maxima, c.f. (Bisgaard 1998). Another
approach is to consider the derived log-likelihood@LT=@� and analyse whether
there is more than one solution to the equation@LT=@� = 0. This aproach leads
nowhere because the equation contains several unknown quantities such as@h0=@�
and the like. Remaining is the conceptually simple but laborious method of scan-
ning the entire parameter space for log-likelihood maxima.

Using the last of these methods, an extremely careful investigation of the log-
likelihood surface of Hewlett-Packard withh0 fixed at the unconditional variance
have been performed. Values of the log-likelihood have been computed for each
combination of�0, �1 and�1 where�0 have been equal to each of the 42 equidis-
tant values between6:2� 10�5 and7:84� 10�5, alpha1 have been equal to each
of the 226 equidistant values between0:06 and0:15 and where�1 have been equal
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to each of the 626 equidistrant values between0:7 and 0:95, a total number of
5941992 different parameter vectors.

This huge estimation study discovered no local minima. This means that either the
log-likelihood has no local maxima are present, that the maxima are so local that
they where not captured or that local maxima do exist, but outside the investigated
part of the parameter space.

To illustrate the appearance of the log-likelihood surface, the pseudo likelihood
surface around the Maximum Likelihood estimate in the (~L, �1, �1) space with�0
fixed at the value of the minimum is plotted in Figure 4.15. Recall that Nelder-
Mead is actually a minimization routine and that the parameter estimates are thus
found at the minimum of the pseudo log-likelihood surface.
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Figure 4.15: The surface of the pseudo log-likelihood around the global
minimum in the (~L, �1, �1) space.

From the plot it is observed that the pseudo log-likelihood surface is actually quite
steep in the�1 + �1 direction, whereas it is quite flat in the�1 � � � 1 direction.
This corresponds to a correlation in the parameter space as estimated by the inverse
of the Hessian in the case of Hewlett-Pavkard which yields a correlation matrix of

R =

2
4 1:0000 0:5269 �0:9463

0:5269 1:0000 �0:7478
�0:9463 �0:7478 1:0000

3
5 (4.6.3)
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where the parameter order is�0, �1, �1.

It is likely to believe that it is this substantial correlation that causes estimation
problems rather than local maxima of the log-likelihood function.

The estimation study have been repeated with a likehood function corresponding
to t-distributed innovations, again applied to the Hewlett-Packard returns. This
estimation confirms that there are no local maxima (except the global one) in the
investigated part of the parameter space.

That there does not seem to be more than one local maximum of the log-likelihood
does not mean that Maximum Likelihood estimation always occurs without prob-
lems. Many times, the minimization procedure takes a long time to find the min-
imum or terminates at a point that is not a minimum. For instance, when the
GARCH(1,1) parameters of the four return series were estimated withh0 as part
of the estimation (Table 4.11), the Nelder-Mead simplex routine only succeeded in
finding the correct minima of Hewlett-Packard and Mobil given starting values of
�0 = 0:001, �1 = 0:3, �1 = 0:3 andh0 equal to the standard deviation of the re-
turn series in focus. The parameter estimates of Sony and Pepsi were only obtained
after the numerical routine had been given the Mobil estimates as starting values,
i.e. starting values much closer to correct parameters. Estimating the parameters
of a GARCH(1,1) model with t-distributed innovations fitted to return series data
is very difficult. The numerical routine barely manages to find the maximum, ven
when the starting values of the parameters are very close to the final ones.

4.6.3.3 Number of available observations

The 1264 observations that has been available for the studies described in this
thesis corresponds to five yearls of daily observations. This is quite a lot, and
maybe it is incorrect to assume that the GARCH parameters are unchanged for
such a long period. To investigate the validity of this assumption, each of the four
return series have been divided, first in two parts and then in four parts each, and
a GARCH(1,1) model have been fitted to each of these subseries. The parameter
estimates obtained in this way are presented in Table 4.14. For brevity, the standard
errors of the estimates have been left out.

As it is immediately observed, all four return series exhibits substantial differences
from one subseries to another, but it is difficult to know whether these differences
are caused by “true” changes in the parameters or if they occur because of subopti-
malities. For instance, by looking at Figure 2.1 it is observed that the returns series
contains a number of extreme observations. The tendency of a GARCH model to
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SubseriesParameter HP Sony Mobil Pepsi
�0 – 2:14� 10�5 8:28� 10�6 3:83� 10�5

1-632 �1 – 8:70� 10�2 4:78� 10�2 8:57� 10�2

�1 – 8:31� 10�1 8:78� 10�1 7:18� 10�1

�0 1:57� 10�4 1:04� 10�6 3:55� 10�6 3:07� 10�5

633-1264 �1 1:12� 10�1 5:42� 10�2 4:00� 10�2 5:81� 10�2

�1 6:22� 10�1 9:43� 10�1 9:38� 10�1 8:34� 10�1

�0 8:88� 10�5 3:01� 10�5 1:73� 10�5 2:97� 10�5

1-316 �1 2:69� 10�2 1:64� 10�1 4:82� 10�2 6:02� 10�2

�1 7:32� 10�1 7:10� 10�1 8:15� 10�1 7:75� 10�1

�0 – 5:72� 10�6 5:27� 10�6 4:11� 10�5

317-632 �1 – 6:52� 10�2 3:34� 10�2 1:12� 10�1

�1 – 9:26� 10�1 9:10� 10�1 6:95� 10�1

�0 1:37� 10�4 – 3:84� 10�6 6:34� 10�5

633-948 �1 8:00� 10�2 – 3:37� 10�2 2:08� 10�1

�1 7:08� 10�1 – 9:42� 10�1 4:82� 10�1

�0 – 1:63� 10�6 3:44� 10�6 –
949-1264 �1 – 7:47� 10�2 4:45� 10�2 –

�1 – 9:16� 10�1 9:33� 10�1 –

Table 4.14: Maximum Likelihood parameter estimates of GARCH(1,1) ap-
plied to subseries of the returns. Table cells containing { corresponds to
unconverged estimations.

produce extreme observations depends on its parameters and vice versa, so if the
estimation routine observe no or only a few outliers in the subseries it considers,
it may “believe” that the subseries it actually generated by another GARCH model
than the true one, even if the real reason for absence of outliers is that the probabil-
ity of the true model generating an outlier within the observations of the subseries
is less than 1.

The results in Table 4.14 shows that one should be careful when using financial
time series and GARCH. It is likely that the model parameters changes from one
year to the next or that a large number of observations are needed to obtain a
reliable parameter estimate.

Parameters that changes over time calls for a recursive estimation routine. Unfor-
tunately, RPLR adapts too slow to parameter changes because of its low speed of
convergence. To increase this speed, it may be suggested to apply forgetting and
gain to the RPLR method, as described in (Ljung 1987, chapter 11). Unfortunately,
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forgetting and gain leads nowhere when the RPLR method is applied to GARCH.
It appears to be impossible to choose a forgetting factor that is not either so high
that it prohibits fast adaptation, or so low that the RPLR method do not converge.

4.6.4 EGARCH(1,1)

The last estimation results to be presented are those of EGARCH(1,1) applied to
the four return series. In the sections above it has already been demonstrated how
to analyse obtained estimates and because of this the analysis of the EGARCH
parameter estimates will be brief.

The estimation results obtained when fitting an EGARCH(1,1) model to the four
return series are presented in Table 4.15 along with the associated standard errors.
Taught by experience, the estimation procedure have been designed so that the
initial valueh0 of the conditional variance has been included in the estimation.

Recall from Chapter 3 that not all parameters of EGARCH are identifiable and be-
cause of this, row number two and three of the table contain estimates of parameter
products instead of sole parameters.

HP Sony Mobil Pepsi
�0 �8:6871� 10�2 �9:6209� 10�2 �4:0000� 10�1 �8:8182� 10�1

6:9589�10�4 6:6728�10�4 7:0449�10�4 2:7105�10�3
�1! �3:5310� 10�2 �1:1248� 10�2 �4:0552� 10�2 �1:2725� 10�2

1:1097�10�2 9:5178�10�3 1:8028�10�2 1:2215�10�2
�1� 5:0479� 10�2 1:2546� 10�1 1:1714� 10�1 1:8584� 10�1

1:2660�10�2 2:3452�10�2 2:4935�10�2 3:5396�10�2
�1 9:8828� 10�1 9:8697� 10�1 9:5485� 10�1 8:9354� 10�1

6:5798�10�5 2:6703�10�4 7:6948�10�5 2:4223�10�4
h0 �7:7540 �9:0733 �8:4785 �9:6049

3:7075�10�1 7:7434�10�1 6:6615�10�1 8:3648�10�1
LT 3:1086� 103 3:4995� 103 3:8720� 103 3:5092� 103

Table 4.15: Maximum Likelihood parameter estimates of EGARCH(1,1)
applied to return series.

By comparing the last row of Table 4.15 to the last row of Table 4.11 it is noted
how close the values of the log-likelihood of EGARCH(1,1) are to the values of
the log-likelihood of GARCH(1,1).

The RPLR estimates of EGARCH(1,1) applied to the four return series are actually
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quite different from the GARCH(1,1) estimates. The RPLR estimates are presented
in Table 4.16.

HP Sony Mobil Pepsi
�0 �7:3347� 10�1 �1:0194 �4:2214� 10�1 �8:6764� 10�1

�1! �1:1195� 10�1 2:2286� 10�2 �1:2547� 10�2 2:8303� 10�2

�1� 1:7426� 10�1 3:5814� 10�1 1:3179� 10�1 2:0117� 10�1

�1 9:0573� 10�1 8:7900� 10�1 9:5255� 10�1 8:9246� 10�1

Table 4.16: RPLR parameter estimates of EGARCH(1,1) applied to return
series.

When the two sets of parameter estimates are so far from each other, it is im-
portant to find out which one is correct, if any. For the GARCH(1,1) parameter
estimates earlier described, a part of this validation was a comparison of the un-
conditional variance estimates. Unfortunately, no explicit expression for the un-
conditional variance of an EGARCH process has been derived, but it is possible to
use the mean of the conditional variances instead. These measures are presented in
Table 4.17

HP Sony Mobil Pepsi
Maximum Likelihood 4:464 2:621 1:320 2:348

RPLR 40:200 31:052 51:295 32:486

Empirical second order moment 4:473 2:585 1:318 2:339

Table 4.17: Estimates of the unconditional variance based on mean of the
conditional variance estimates of Maximum Likelihood (�rst row), mean of
the conditional variance estimates of RPLR (second row) and the empirical
second order moment of the return series (third row). All estimates have
been multiplied by 104 before they have been inserted into the table.

From the table it seems evident that RPLR has got the parameter estimates com-
pletely wrong. Investigations of the RPLR parameter trajectories (not shown) con-
firms this impression, the RPLR is not able to converge, even for a substantial
number of iterations. Hence, the RPLR estimates will be disregarded.

The Maximum Likelihood based estimates of the unconditional variance are more
precise than the corresponding estimates of GARCH(1,1), c.f. Table 4.12. This
may indicate that the EGARCH(1,1) model is easier to estimate and/or that the
EGARCH(1,1) model provides a better description of the return series data than
GARCH(1,1) does. To investigate the behaviour of the estimated EGARCH(1,1)
process, the conditional variance estimates of Hewlett-Packard are presented as the
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upper plot in Figure 4.16 and for comparison, the corresponding estimates from
GARCH(1,1) are plotted below.

From the two plots it seems like the trajectory of the EGARCH estimates of the
conditional variances is a smoothed version of the trajectory of the GARCH esti-
mates. Whether to rely on the GARCH or EGARCH estimates may be a matter
of preferences, but one should take into account that the apparant higher adaptiv-
ity of the GARCH(1,1) has costs. The large spike in the trajectory of GARCH
at number 942 occurs because the Hewlett-Packard returns have a large spike at
number 941, not because GARCH(1,1) possess a divined capability of predicting
outliers. Because of this, the higher ability of GARCH to follow changes in the
returns compared to EGARCH makes GARCH easy to disturb by single extreme
observations.

The upper plot in Figure 4.16 does not look very different from the plot of condi-
tional variance estimates of a GARCH(1,1) model with t-distributed innovations in
Figure 4.11. This resemblance leads one to believe that EGARCH is less sensitive
to the choice of the conditional distribution than GARCH is.

Recalling Chapter 2, the EGARCH process was motivated by the so-called leverage
effect and so, it may be interesting to see if EGARCH has been able to capture
the leverage effect of the returns. Since it was only possible to see signs of the
leverage effect in the returns of Hewlett-Packard, these returns will be the only one
considered here.

As the leverage effect includes a tendency of the conditional variance to fall in
responce to an increase and fall in response to a decrease of the stock price, the
ability of a volatility model to capture the leverage effect may be measured by
comparing conditional variance estimates folowing positive returns to conditional
variance estimates following negative returns. If leverage effect is present in the
returns, the latter of the two conditional variance estimates should be larger. The
mean of the conditional variance estimates of the Maximum Likelihood estimated
EGARCH(1,1) model is4:3636 � 10�4 for conditional variance estimates fol-
lowing positive returns and4:5619 � 10�4 for estimates following negative re-
turns. The corresponding means for the RPLR estimated GARCH(1,1) model5 is
4:4777 � 10�4 and4:4546 � 10�4, respectively. Based on these numbers it is
tempting to conclude that EGARCHhasbeen able to capture the leverage effect
of Hewlett-Packard. It should be noted, however, that the material supporting this
conclusion is of low quality. First of all, the presence of the leverage effect in the

5The RPLR estimated GARCH(1,1) model has been considered because the Maximum Likeli-
hood estimated model is biased with respect to the conditional variance estimates.
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Figure 4.16: Estimated conditional variances of Hewlett-Packard by
EGARCH(1,1) (top) and GARCH(1,1) (bottom).
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Hewlett-Packard returns was difficult to assess in the first place, and the two above
stated means of the EGARCH conditional variance estimates may not be signif-
icantly different from each other. In addition, only one return series have been
investigated, a very sparse data material.

4.7 Summary

The above section presented a number of estimation results, results obtained using
a lot of different models, estimation methods and initial values. Because the results
where produced under very different conditions, a summary may be needed.

4.7.1 Estimation procedure

The performance of the Maximum Likelihood estimation procedure versus RPLR
has been measured using the four return series as well as simulated data.

4.7.1.1 Maximum Likelihood

The Maximum Likelihood estimation procedure appears to be a reliable estimation
procedure, valid for GARCH as well as EGARCH. It is easy to verify that pa-
rameter estimates obtained using the Maximum Likelihood procedure are indeed
maximizing the log-likelihood function, and standard errors of the obtained esti-
mates are readily available. Parameter constraints are easily incorporated into the
Maximum Likelihood estimation procedure.

The Maximum Likelihood procedure seems to get into problems, if the conditional
distribution of returns is different from the one assumed by the estimation pro-
cedure. If this is the case, Maximum Likelihood is likely to produce parameter
estimates that results in a biased estimate of the conditional variance.

The Maximum Likelihood precedure is very sensitive to the stipulated value of the
initial conditional variance. Because of this, it is recommended that the initial con-
ditional variance is included in the estimation procedure, though this may increase
the sensitivity of the estimation procedure to the choice of the initial parameter
values.
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4.7.1.2 RPLR

The RPLR estimation procedure is difficult to manage. Unless the RPLR routine is
started with a carefully chosen initial value of the matrixR, the estimation proce-
dure may very well converge to wrong parameter estimates. This is a problem as it
is difficult to assess the validity of parameter estimates obtained using RPLR. The
RPLR procedure does not provide standard errors of the obtained estimates, and it
is not possible to incorporate parameter constraints into the estimation procedure.
The RPLR procedure does not seem to be able to estimate the parameters of an
EGARCH(1,1) model.

In order for the RPLR estimation to converge, quite a few iterations are needed.
This is not a problem with todays amount of available computer resources, but is
a problem with regard to the recursive nature of the RPLR procedure. Often, a
recursive estimation procedure has the advantage of its ability to adjust to changes
in the model parameters, changes that occur over time. But, because the RPLR
procedure need so many observations to converge, it will take an awful lot of time
before the procedure has adjusted to a parameter change.

The RPLR may have two advantages compared to Maximum Likelihood. First,
RPLR does not assume a particular return series distribution and because of this
it does not suffer from the problems related to a wrongly specified distribution.
Second, it seems like RPLR, carefully nursed, is better than Maximum Likelihood
in estimating the parameter of GARCH if the initial guess on the parameter values
is far from the true parameter values.

The RPLR method is insensitive to the stipulated value of the initial conditional
variance.

4.7.2 Arch models

In the previous section, three different Arch models were fitted to return series and
simulated data. The estimated models were GARCH(1,1) with Gaussian innova-
tions, GARCH(1,1) with t-distributed innovations and EGARCH(1,1) with Gaus-
sian innovations.
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4.7.2.1 GARCH(1,1)

The GARCH(1,1) model is, regardless of the type of the conditional distribution, a
good choice when the autocorrelation structure of return series is to be described.
When it comes to the heavy tails of the return series distribution, the hoice is less
obvious. A GARCH(1,1) model with Gaussian innovations is clearly unable to
cope with the heavy tails, the heavy tails causes the estimate of the unconditional
and conditional variances to be biased and the conditional variance estimates to be
heavily disturbed by extreme returns. The problems associated with the heavy tails
do not seem to apply to the GARCH(1,1) model with t-distributed innovations,
not in the same degree at least. Unfortunately, the latter model is very difficult
to estimate and because of this, it is not possible to recommend one model at the
expence of another. If, however, it is possible to fit a GARCH(1,1) model with
t-distributed innovations to the data at hand, this model is to be preferred.

4.7.2.2 EGARCH(1,1)

The EGARCH(1,1) model has not been as closely examined as the GARCH(1,1)
model. However, the EGARCH(1,1) model appears to be less sensitive to the
choice of conditional distribution. Some evidence of an ability to capture the lever-
age effect have been discovered, but the data material supporting this assumption
is sparse.

4.7.3 Future work

Because estimation studies takes a very long time to perform, it has only been
possible to investigate a subset of the many adjustable elements of Arch models
and the RPLR and Maximum Likelihood estimation procedures. A few examples
of what I would have investigated if more time had been available is provided
below.

1. Even the t-distribution was not able to capture the heavy tails of the return
series distribution and thus it would be interesting to look for other con-
ditional distribution candidates, e.g. the Generalized Error Distribution of
(Nelson 1991).

2. The RPLR method had the benefit of being able to estimate GARCH(1,1)
parameters without assuming a conditional distribution, but this means that
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the method was not able to estimate any distribution parameters. It would
be interesting to try to combine the RPLR method with a method to estimate
distribution parameters to see if these two methods in cooperation provides
better estimates than Maximum Likelihood.

3. Stochastic volatility models are often used for option pricing. In a financial
market where even a small deviation from the fair price allows for arbitrage
trading, it would be interesting to investigate the impact of parameter stan-
dard errors on the option price estimate.

4. Two recursive methods were derived, RPLR and RPEM. RPEM does not
fit to GARCH and EGARCH, but it would be interesting to analyse its be-
haviour when applied to ARCH.

5. Only GARCH(1,1) and EGARCH(1,1) were investigated. Though higher
order models are difficult to estimate, it might be interesting to see if mod-
els like GARCH(1,2) or GARCH(2,1) possess properties that more closely
resembles those of return series.



Chapter 5

From discrete to continuous
time

As mentioned in the introduction to this thesis, continuous time volatility models
are preferred to discrete time models in situations where the models have to be
dealt with and/or justified theoretically. For instance, relatively complicated tasks
like finding the (theoretical) fair price of an option are best performed using a
continuous time volatility model. This again means that when the problem at hand
is to find the fair option price, fitting a discrete time volatility model to the stock
price observations may not provide the solution.

Continuous time models, however, are often difficult to estimate, partly because
observations occur in discrete time, not continuous time.

Quite a few researchers have tried to remove this trade-off between the two model
kinds by bridging the gap between discrete and continuous time. These attempts
include theindirect inferenceapproach by (Gourieroux, Monfort & Renault 1993),
the temporal aggregation approach by (Drost & Nijman 1993) and (Drost & Werker
1996) and the approximating augmented GARCH process by (Duan 1997). These
different approaches all use a fitted discrete time model like Arch to infer or deduce
an underlying continuous time stochastic volatility model.

The indirect inference approach seeks to find a continuous time stochastic volatil-
ity model that, observed at discrete time instants, yields the same discrete time
model parameter estimates as the real data at hand. The indirect inference ap-
proach requires a lot of potential continuous time stochastic volatility models to be

135
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simulated, and is thus very time consuming.

The temporal aggregation approach seeks to establish an algebraic relationship be-
tween discrete time GARCH parameters and continuous time stochastic volatility
model parameters, thus allowing the continuous time stochastic volatility model
parameter estimates to be computed as soon as discrete time model parameter esti-
mates are available.

The approximating augmented GARCH approach by Duan seeks, like the tempo-
ral aggregation approach, to establish an algebraic relationship between the pa-
rameters of the two model kinds. Themodus operandiof Duan is, however, very
different from the approach taken in temporal aggregation.

The first two of the above mentioned approaches have been carefully studied by
(Bisgaard 1998). Thus, this thesis only deals with the approximating augmented
GARCH approach by Duan. Before diving into his approach, though, a brief intro-
duction to continuous time volatility models is provided.

5.1 Continuous time volatility models

This section requires some basic knowledge of stochastic calculus. For an intro-
duction to the subject, see (Madsen, Nielsen & Baadsgaard 1998, chapter 7).

5.1.1 Definition

In their famous paper (Black & Scholes 1973), Black and Scholes suggested to
model the price process of a stock by the diffusion process

dSt = �Stdt + �StdWt (5.1.1)

where� and� are parameters andWt is a standard Wiener process. The parameter
� defines the volatility of the stock.

As previously stated, the model (5:1:1) soon turned out to be a too simple descrip-
tion of the stock price process, in particular because of its assumption of constant
volatility. Because of this, the Black-Scholes model is often enlarged by allowing
the volatility to varyaccording to its own diffusion process, hence introducing the
continuous time stochastic volatility model.
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dSt = �(St; �)dt+ �tdW1;t (5.1.2a)

d'(�t) = a(�t; St; �)dt+ b(�t; St; �)dW2;t (5.1.2b)

where' is some mapping of�t andW1;t andW2;t are correlated Wiener processes
with correlation coefficient� and� is a parameter vector. The function� describe
the drift of the stock price, the functionsa andb describe the instantaneous condi-
tional mean and standard deviation of the volatility process�. The model (5.1.2)
constitutes the basis of the definition of continuous time stochastic volatility, which
is defined as�t of (5.1.2). In applications, a less general setup than (5.1.2) is often
considered, namely

dSt = �Stdt + �tStdW1;t (5.1.3a)

d'(�t) = a(�t; St; �)dt+ b(�t; St; �)dW2;t (5.1.3b)

where� is a constant parameter.

5.1.2 Common models

The literature describes a number of different models fitting into (5.1.3). Some of
the more prominent of these are

5.1.2.1 The Hull - White model

In a paper that discussed the pricing of options under stochastic volatility, (Hull &
White 1987) proposed the model

dSt = �Stdt+ �tStdW1;t (5.1.4a)

d�2t = a�2t dt+ b�2t dW2;t (5.1.4b)

where�, a andb are constants.

5.1.2.2 The model of Scott, Stein & Stein and Heston

In (Scott 1987), (Stein & Stein 1991) and (Heston 1993) first Scott, then Stein and
Stein and finally Heston considered the model
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dSt = �Stdt+ �tStdW1;t (5.1.5a)

d�t = �(� � �t)dt+ �dW2;t: (5.1.5b)

The model incorporates a mean-reverting tendency into the behaviour of�t. � is
the stationary value of�t and� is denoted thespeed of adjustmentparameter.

5.1.2.3 The Black, Scholes and Courtadon model

dSt = �Stdt+ �tStdW1;t (5.1.6a)

d�t = �(� � �t)dt+ ��tdW2;t (5.1.6b)

a slight extension of the Scott, Stein & Stein and Heston model.

5.1.2.4 Correlation

The two Wiener processes of the above listed models are correlated with corre-
lation �. It should be noted that the models may be defined using only uncorre-
lated Wiener processes. Let~W1;t and ~W2;t be two standard uncorrelated Wiener
processes. If the Wiener increments above are defined bydW1;t = d ~W1;t and
dW2;t = �d ~W1;t +

p
1� �2d ~W2;t then the above models may be written using

only d ~W1;t andd ~W2;t. For instance, the Black, Scholes and Courtadon model has
the following structure when only uncorrelated Wiener processes are used:

dSt = �Stdt+ �tStd ~W1;t (5.1.7a)

d�t = �(� � �t)dt+ ���td ~W1;t +
p
1� �2��td ~W2;t (5.1.7b)

5.1.3 Discretization

When working with stochastic differential equations and continuous time stochas-
tic volatility models it is often convenient to use a discrete time approximation.
For instance, as there is no way to simulate a process in continuous time, a discrete
time approximation is needed for this purpose.
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A number of different ways to discretize the solution to a stochastic differential
equation exist. Here, only the so-called Euler discretization scheme shall be con-
sidered, as it is the most simple and easy-to-use discretization scheme. Other, more
precise discretization schemes exist, but the Euler scheme suffices for the purposes
of this thesis. For an in-depth description of discretization schemes, see (Kloeden
& Platen 1995) or (Madsen et al. 1998).

5.1.3.1 The Euler scheme

When presenting the Euler scheme, we consider the solutionXt to the continuous
time stochastic volatility model

Xt = X0 +
dX

j=1

Z t

0
aj(s;Xs)ds+

mX
j=1

bj(s;Xs)dW
j
s (5.1.8)

wherem is dimension of the Wiener process (that is, the number of independent
standard Wiener processes) andd is the dimension of the drift. The discretizised
approximation toX is denotedY .

In the one-dimensional case the Euler scheme takes the form

Yn+1 = Yn + a(n; Yn)��n + b(n; Yn)�Wn (5.1.9)

where��n = �n+1 � �n is the length of the time discretization, and�Wn =
W�n+1 �W�n is theN(0;��n) increments of the Wiener processW on the time
interval[�n+1; �n].

In the multi-dimensional case thek’th component of the discretization vector is

Y k
n+1 = Y k

n + ak(n; Yn)��n +
mX
j=1

bk;j�W j
�n : (5.1.10)

As an example, consider again the Black, Scholes and Courtadon model (5.1.7).
The discrete time approximation using the Euler scheme at equidistant discretiza-
tion timest = 1; 2; 3; : : : is

St+1 = St + �St + �tSt�W1;t (5.1.11a)

�t+1 = �t + �(� � �t) + ���t�W1;t +
p
1� �2�t�W2;t (5.1.11b)
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where

�
W1;t

W2;t

�
2 N

��
0
0

�
;

�
1 0
0 1

��
:

(5.1.12)

5.1.3.2 Convergence

In the context of discretization it might be useful to introduce the concept of conver-
gence of an approximation to a stochastic differential equation. Traditionally, one
distinguishes between strong and weak convergence, c.f. (Kloeden & Platen 1995,
chapter 3).

DEFINITION 5.1 (STRONG CONVERGENCE ).
A general discrete time approximationY �t(t) with maximum step size�t con-
verges strongly toX at timeT if

lim
�t!0

E
���X(T )� Y �t(T )

��� = 0; (5.1.13)

and if there exist positive constantsC and� independent of�t and a finite�0 > 0
such that

E
���X(T )� Y �t(T )

��� � C(�t)� (5.1.14)

for each0 � �t � �0 thenY �t is said to converge strongly with order�. N

DEFINITION 5.2 (WEAK CONVERGENCE ).
A general discrete time approximationY �t(t) with maximum step size�t con-

verges weakly toX at timeT with respect to a classC of test functionsg if

lim
�t!0

��Efg(X(T ))g� E
�
g(Y �t(T ))

	�� = 0 (5.1.15)

for all g 2 C and if there for eachpolynomialG exist positive constantsC and�
independent of�t and a finite�0 > 0 such that

jEfG(X(T ))g� EfG(Y (T ))gj � C(�t)� (5.1.16)

for each0 � �t � �0. N
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In connection with the two convergence definitions it should be noted that strong
convergence is also denoted pathwise convergence as its definition regards the dis-
tance between the path ofX and the path ofY . It should also be noted that if
the classC of Definition 5.2 contains all polynomials, weak convergence implies
convergence of all moments.

EXAMPLE 5.1.The Euler approximation (5.1.10) (usually) converges weakly with
order� = 1 and strongly with order� = 1=2. �

5.2 From discrete to continuous time

As previously suggested, the purpose of relating discrete time models to contin-
uous time models is to obtain the parameters of the continuous models using the
parameter estimates from the discrete time models.

One apparant plausible way to bridge the gap between discrete and continuous time
stochastic volatilitymodels is to look at the continuous time models as discrete time
models sampled using very small sampling intervals. In this light, one could seek to
bridge the gap by allowing the sampling interval of the discrete time models to get
arbitrarily small and then choose the continuous time model that arises in the limit.
Strictly speaking, one considers a sequence of modelsMs, wheres is the size of the
sampling interval and investigates the modelM in the limit,M = lims!0Ms. The
process of changing the size of the sampling interval is called temporal aggregation.

Unfortunately, as showed by (Drost & Nijman 1993), Arch models are not closed
under temporal aggregation. This means that if observations sampled, say, daily
follow an Arch process, then observations sampled, say, every other day will in
general not follow an Arch process. In fact, the innovationszt from (3.1.1) of the
every-other day model will not be independently distributed, hence violating the
Arch definition1.

That Arch models fail to be closed under temporal aggregation raises a serious
question when one wants to change the size of the sample interval. Shall one insist
that the model at hand must be closed under temporal aggregation, or shall one
accept that the model is only valid for a particular choice of the sample interval
size? The first approach is taken in (Drost & Nijman 1993). The authors set out to
find a “core”, a collection of properties that GARCH processes possess and which

1Strictly speaking, Drost and Nijman investigate GARCH models, not Arch models. But, since
they show that thezt’s fail to be i.i.d., their conclusion must apply to the whole class of Arch models.
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is preserved under temporal aggregation. They succeed in doing so and they denote
the preserved coreweak GARCH. Unfortunately, weak GARCH does not specify
the conditional distribution ofzt, thus leaving an incompletely specified sequence
fMsg of models.

The alternative approach is pursued by (Duan 1997). Duan accepts that Arch mod-
els are not closed under temporal aggregation, but instead of removing those part
of the Arch specification that prohibits the aggregation, he accepts the fact that at
most one element of the sequence of modelsfMsg is correct, and decides that the
other elements are merely approximations. Thus, if one take the limiting modelM

to be the correct one (as one does if one uses this model to price options), then all
the other models are merely approximations.

To see how Duan derived the diffusion limit of the augmented GARCH process,
consider the augmented GARCH(1,1) process, now written in a way slightly dif-
ferent from (3.6.1) and (3.6.2). The definition is taylored to the application to price
processes, so the geometric returns of Equation 2.2.2 are considered.

DEFINITION 5.3 (THE AUGMENTED GARCH(1,1) PROCESS).
Let fztg be a sequence of indepent identical distributed stochastic variables with

zero mean and unit variance. The returnsRt of a stock price process is said to
follow an augmented GARCH(1,1) process if

Rt = !(~ht) + zt

q
~ht (5.2.1a)

�t = 
0 +
�

1 + 
2Z

(2)
t�1 + 
3Z

(3)
t�1
�
�t�1 + Z

(4)
t�1 (5.2.1b)

~ht =

� j��t � � + 1j1=� if � > 0;
exp(�t � 1) if � = 0

(5.2.1c)

where

Z
(2)
k = jzk � cj� (5.2.2a)

Z
(3)
k = max(0; c� zk)

� (5.2.2b)

Z
(4)
k = 
4f(jzk � cj; �) + 
5f(max(0; c� zk); �); (5.2.2c)

f(x; �) = (x� � 1)=� where! some well-behaved function of~ht. N
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Note that the function! of Definition 5.3 should not be confused with the param-
eters!i of the augmented GARCH process.

Compared to the definition of the general augmented GARCH process (Defini-
tion 3.5), the functional form ofRt have been restricted. The reason for this and
the reason for introducing theZ’s will become clear later. Negative values of�
have been disallowed in order to rule out the possibility of explosion.

Note that if it is recalled thatRt = ln St�ln St�1, Equation 5.2.1a in Definition 5.3
may also be written

lnSt = !(~ht) + ln St�1 + zt

q
~ht (5.2.3)

5.2.1 Approximating augmented GARCH

From its definition it is clear that the augmented GARCH(1,1) process does not
facilitate an investigation of its behaviour when the size of the sample interval is
changed. To allow for different sample interval sizes, (Duan 1997) introducedthe
approximating augmented GARCH process. He considered the finite time interval
[0; T ] and divided it intonT subintervals each of lengths = 1=n. By introducing

q2 = E
�
Z
(2)
k

�
(5.2.4a)

q3 = E
�
Z
(3)
k

�
(5.2.4b)

q4 = E
�
Z
(4)
k

�
(5.2.4c)

and properly restricting the distributionofzk so that these moments exist (assuming
zk normal will do) he defined it in the following way
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DEFINITION 5.4.
THE APPROXIMATING AUGMENTED GARCH(1,1) PROCESS.

lnS
(n)
ks = !(~h

(n)
ks )s+ ln S

(n)
(k�1)s +

q
~h
(n)
ks zk

p
s (5.2.5a)

�
(n)
(k+1)s

= (
0 + q4)s+ �
(n)
ks [1 + (
1 + 
2q2 + 
3q3 � 1)s]

+�
(n)
ks

h

2(Z

(2)
k � q2) + 
3(Z

(3)
k � q3)

ip
s

+(Z
(4)
k � q4)

p
s; (5.2.5b)

~h
(n)
ks =

(
j��(n)ks � � + 1j1=� if � > 0;

exp(�
(n)
ks � 1) if � = 0

(5.2.5c)

N

The approximating augmented GARCH process may seem a bit odd, not at least
from a first look. Unfortunately, Duan does not reveal much about the relation be-
tween the approximating augmented GARCH process and the augmented GARCH
process, so some clarifying remarks are provided below.

THEOREM 5.1.
The approximating augmented GARCH process withs = 1 is an augmented
GARCH process.

Proof. ~h andlnS of Definition 5.4 is readily seen to be identical to their counter-
parts in definition 5.3 whens = 1.

Consider� of Definition 5.4. Settings = 1 andk = t yields

�t+1 = 
0 + q4 + �t(1 + 
1 + 
2q2 + 
3q3 � 1)

+�t

h

2

�
Z
(2)
t � q2

�
+ 
3

�
Z
(3)
t � q3

�i
+ Z

(4)
t � q4

= 
0 + �t(
1 + 
2Z
(2)
t + 
3Z

(3)
t ) + Z

(4)
t (5.2.6)

which is the same updating equation as in Definition 5.3.
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The definition of the approximating augmented GARCH model for values ofs,
0 < s < 1 is perhaps best justified by the following remarks.

The goal is to find the limiting modelM , M = lims!0Ms, a continuous time
stochastic volatility model. It is assumed that this model may be written as

d�t = ��tdt+ �t�tdWt (5.2.7)

where� is a constant specifying the drift and�t specifies the diffusion of�, �t
being a deterministic function of�t. Using the Euler discretization scheme (5.1.9)
and a discretization step of�t, (5.2.7) may be discretized like

�t+�t = �t + ��t�t + �t�t�Wt (5.2.8)

where�Wt 2 N(0;�t). Preferring the standard normal distribution,�Wt may
be written�Wt =

p
�t�Nt where�Nt 2 N(0; 1). The� and the� of (5.2.7)

are unknown, but if Equation 5.2.1b of the augmented GARCH(1,1) process (Def-
inition 5.3) is taken to be the discrete time approximation to (5.2.7) when the size
of the discretization step is 1, then one may proceed as follows.

Inserting�t = 1 into (5.2.8) and substracting�t from both sides yields

�t+1 � �t = ��t + �t�t�Nt (5.2.9)

Taking the expected value conditional on�t on both sides, the following expression
for E[�t+1j�t] is obtained:

E[�t+1 � �tj�t] = E[��tj�t] + E[�t�t�Ntj�t] (5.2.10)

and as the last term is zero,

E[�t+1 � �tj�t] = E[��tj�t] = ��t (5.2.11)

that is, the drift may be expressed as the expected one-step increment. Inserting
this into (5.2.9) and isolating the diffusion term yields

�t�t�Nt = �t+1 � �t � E[�t+1 � �tj�t]: (5.2.12)
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The two expressions (5.2.11) and (5.2.12) for the drift and diffusion of�, respec-
tively, are what constitutes the� updating equation of the approximating aug-
mented GARCH process. If the two expressions are inserted into (5.2.8), the fol-
lowing updating equation for� is obtained

�t+�t = �t + E[�t+1 � �tj�t]�t
+ (�t+1 � �t � E[�t+1 � �tj�t])

p
�t�Nt: (5.2.13)

Using Equation 5.2.1b of the definition of the augmented GARCH(1,1) process, it
is seen that

E[�t+1 � �tj�t]
= E[�t+1j�t]� �t

= E
h

0 + �t

�

1 + 
2Z

(2)
t + 
3Z

(3)
t

�
+ Z

(4)
t

����ti � �t
= 
0 + 
1�t + 
2q2�t + 
3q3�t + q4 � �t
= 
0 + q4 + (
1 + 
2q2 + 
3q3 � 1)�t (5.2.14)

and that

�t+1 � �t � E[�t+1 � �tj�t]
= 
0 + �t

�

1 + 
2Z

(2)
t + 
3Z

(3)
t

�
+ Z

(4)
t � �t

�(
0 + q4 + (
1 + 
2q2 + 
3q3 � 1)�t)

=
h

2

�
Z
(2)
t � q2

�
+ 
3

�
Z
(3)
t � q3

�i
�t +

�
Z
(4)
t � q4

�
: (5.2.15)

Together with (5.2.13) this means that

�t+�t = �t + (
0 + q4)�t+ (
1 + 
2q2 + 
3q3 � 1)�t�t

+
h

2

�
Z
(2)
t � q2

�
+ 
3

�
Z
(3)
t � q3

�i
�t
p
�t

+
�
Z
(4)
t � q4

�p
�t (5.2.16)

or, with the notation of Definition 5.4:

�
(n)
(k+1)s = (
0 + q4)s+ �

(n)
ks [1 + (
1 + 
2q2 + 
3q3 � 1)s]

+�
(n)
ks

h

2(Z

(2)
k � q2) + 
3(Z

(3)
k � q3)

ip
s

+(Z
(4)
k � q4)

p
s (5.2.17)
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which is exactly the updating equation of� in the approximating augmented GARCH
process.

Equation 5.2.3 of Definition 5.4 is obtained along the same lines. Assuming that
(5.2.3) is the one-step Euler approximation to the solution of a stochastic differen-
tial equation, it is readily seen thatln S of Definition 5.4 is the discretization with
step sizes.

5.2.2 Diffusion limit of approximating augmented GARCH

Using the approximating augmented GARCH process, an investigation of the limit
of the augmented GARCH process is possible.

Define the covariance matrix

VZ = V
�
zk ; Z

(2)
k ; Z

(3)
k ; Z

(4)
k

�
=

2
664

1 �12 �13 �14
�21 �22 �23 �24
�31 �32 �23 �34
�41 �42 �43 �24

3
775 (5.2.18)

where all the elements by definition are constants, i.e. independent ofk.

THEOREM 5.2.The approximating augmented GARCH(1,1) process converges
weakly to the unique strong solution of the following diffusion model

d lnSt = !(~ht)dt+

q
~htd ~W1;t (5.2.19a)

d�t = [
0 + q4 + (
1 + 
2q2 + 
3q3 � 1)�t]dt

+vt�td ~W1;t + vt

q
1� �2td

~W2;t (5.2.19b)

~ht =

� j��t � � + 1j1=� if � > 0;
exp(�t � 1) if � = 0

(5.2.19c)

where

vt =
q
�24 + 2(
2�24 + 
3�34)�t + (
22�

2
2 + 
23�

2
3 + 2
2
3�23)�2t

�t = v�1t [�14 + �t(
2�12 + 
3�13)]
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and ~W1;t and ~W2;t are standard uncorrelated Wiener processes.

Proof.See (Duan 1997).

The proof of Theorem 5.2 in (Duan 1997) is very rigorous and therefore difficult
to comprehend. As such, it has been left out. However, an understanding of the
theorem may be achieved through a less rigorous, more heuristical analysis.

It is not difficult to see that the updating equation (5.2.19a) ofln S is the diffusion
limit of (5.2.5a). Nor is it difficult to comprehend Equation (5.2.19c) ofh as it is
identical to (5.2.5c). Remaining is the expression ofd�t.

The drift of �t is most easily recognized by relating the equations (5.2.11) and
(5.2.14) to one another hence obtaining

��t = 
0 + q4 + (
1 + 
2q2 + 
3q3 � 1)�t; (5.2.20)

the drift of (5.2.19b).

The difficult part is the diffusion of�t. Reconsider Equation 5.2.12:

�t�t�Nt = �t+1 � �t � E[�t+1 � �tj�t] (5.2.21)

and apply the conditional variance operator on both sides

V (�t�t�Ntj�t) = V (�t+1 � �t � E[�t+1 � �tj�t]j�t) : (5.2.22)

Conditioning on�t, only�Nt of the left hand side and�t+1 of the right hand side
are stochastic. That is,

�2t �
2
tV (�Ntj�t) = V (�t+1j�t): (5.2.23)

and, as�Nt 2 N(0; 1),

p
V (�t+1j�t) = �t�t: (5.2.24)

Inserting (5.2.20) and (5.2.24) into (5.2.7) yields

d�t = 
0 + q4 + (
1 + 
2q2 + 
3q3 � 1)�t +
p
V (�t+1j�t)dWt: (5.2.25)
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Now focus on the Wiener processdWt driving �t. Refering to Definition 5.3,
�t is not driven by its “own” innovations, but byzt throughZ(2)

t , Z(3)
t andZ(4)

t .
This means that�t+1j�t must be correlated withzt. Recalling Section 5.1.2.4, this
correlation may be incorporated into (5.2.25) like

d�t = 
0 + q4 + (
1 + 
2q2 + 
3q3 � 1)�t

+
p
V (�t+1j�t)Cor(zt; �t+1j�t)d ~W1;t

+
p
V (�t+1j�t)

q
1� Cor2(zt; �t+1j�t)d ~W2;t (5.2.26)

where ~W1;t and ~W2;t are two standard uncorrelated Wiener processes, and~W1;t is
the Wiener process drivingln S, c.f. Theorem 5.2.

Explicit expressions forV (�t+1j�t) andCor(zt; �t+1j�t) may be derived using
the augmented GARCH(1,1) process of Definition 5.3:

V (�t+1j�t) = V
h

0 +

�

1 + 
2Z

(2)
t + 
3Z

(3)
t

�
�t + Z

(4)
t

����ti
= V

h�

1 + 
2Z

(2)
t + 
3Z

(3)
t

�
�t

����ti
+V

h
Z
(4)
t

����ti
+2Cov

h�

1 + 
2Z

(2)
t + 
3Z

(3)
t

�
�t; Z

(4)
t

����ti : (5.2.27)

With (5.2.18) in mind, explicit expressions of the three parts of this summation
may be obtained according to

V
h�

1 + 
2Z

(2)
t + 
3Z

(3)
t

�
�t

����ti
= �2tV

h

1 + 
2Z

(2)
t + 
3Z

(3)
t

����ti
= �2tV

h

2Z

(2)
t + 
3Z

(3)
t

����ti
= �2t

�

22�

2
2 + 
23�

2
3 + 2
2
3�23

�
(5.2.28)

and

V
h
Z
(4)
t

����ti = �24 (5.2.29)
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and

Cov
h�

1 + 
2Z

(2)
t + 
3Z

(3)
t

�
�t; Z

(4)
t

����ti
= �tCov

h�

1 + 
2Z

(2)
t + 
3Z

(3)
t

�
; Z

(4)
t

����ti
= �t (
2�24 + 
3�34) : (5.2.30)

Inserting these expressions into (5.2.27) yields

V (�t+1j�t) = �2t
�

22�

2
2 + 
23�

2
3 + 2
2
3�23

�
+�24 + 2�t (
2�24 + 
3�34) (5.2.31)

so that the diffusion
p
V (�t+1j�t) is actuallyvt of Theorem 5.2.

Applying the same technique to the correlationCor(zt; �t+1j�t) yields

Cor(zt; �t+1j�t) = Cov(zt; �t+1j�t)p
V (ztj�t)

p
V (�t+1j�t)

(5.2.32)

where
p
V (ztj�t) = 1,

p
V (�t+1j�t) = vt and

Cov(zt; �t+1j�t)
= Cov

h
zt; 
0+

�

1 + 
2Z

(2)
t + 
3Z

(3)
t

�
�t + Z

(4)
t

����ti
= Cov

h
zt;
�

1 + 
2Z

(2)
t + 
3Z

(3)
t

�
�t

����ti + Cov
h
zt; Z

(4)
t

����ti
= �t

h

2Cov

�
zt; Z

(2)
t

����t�+ 
3Cov
�
zt; Z

(3)
t j�t

�i
+Cov

�
zt; Z

(4)
t j�t

�
= �t(
2�12 + 
3�13) + �14: (5.2.33)

Hence

Cor(zt; �t+1j�t) = �t(
2�12 + 
3�13) + �14
vt

(5.2.34)

which is identical to�t of Theorem 5.2.
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When the achieved expressions forV (�t+1j�t) andCor(zt:�t+1j�t) are inserted
into (5.2.26),d�t emerge as

d�t = 
0 + q4 + (
1 + 
2q2 + 
3q3 � 1)�t

+vt�td ~W1;t + vt

q
1� �2td ~W2;t (5.2.35)

which is (5.2.19b) of Theorem 5.2. The heuristical analysis of the diffusion limit
of the augmented GARCH process is hereby concluded.

5.3 Parameter relationships

Now that the diffusion limit of the augmented GARCH process is in place, it is
possible to derive algebraic parameter relationships between models fitting into
the augmented GARCH(1,1) process and their corresponding diffusion limits. In
the same way it is possible to find the discrete time models corresponding to the
commonly used continuous time stochastic volatility models of Section 5.1.2.

This section is devoted to the derivation of the continuous time stochastic volatility
models corresponding to the GARCH(1,1) and EGARCH(1,1) processes and to
the deduction of the discrete time stochastic volatility models corresponding to the
Hull-White model of Section 5.1.2.1, the Scott, Stein & Stein and Heston model of
Section 5.1.2.2 and the Black, Scholes and Courtadon model of Section 5.1.2.3.

The derivation of the continuous time stochastic volatility model corresponding to
the GARCH(1,1) process is included in the thesis as an example of how to derive
the continuous time stochastic volatility model that corresponds to a given Arch
model, and is thus carefully described. In the same way, a careful description of
the deduction of the Arch model that corresponds to the continuous time stochastic
volatility model of Black, Scholes and Courtadon is included to exemplify the de-
duction of the Arch model that corresponds to a given continuous time stochastic
volatility model. To save space, the examples of EGARCH(1,1), Hull-White and
Scott, Stein & Stein and Heston are treated with less rigour.

Before commencing these derivations and deductions, a minor difficulty has to be
circumvented.
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5.3.1 The It ô formula

As the reader may or may not have noticed, the models of section 5.1.2 deals with
the evolution of the stock priceS whereas the diffusion limit of the approximating
augmented GARCH process deals withln S. To change the models of Section 5.1.2
so that they they focus onlnS instead ofS, the Itô formula is needed.

THEOREM 5.3 (THE I TÔ FORMULA ).
LetX(t) be a solution to

dXt = �(Xt)dt+ �(Xt)dWt; X0 = x0 (5.3.1)

and let� : < 7! < be a two times differentiable function applied toXt

Yt = �(Xt): (5.3.2)

Then the following chain rule applies

dYt =

�
�(Xt)

@�

@Xt
+

1

2
�2(Xt)

@2�

@X2
t

�
dt+ �(Xt)

@�

@Xt
dWt (5.3.3)

For a more general version of Itˆo’s formula, see (Madsen et al. 1998). The version
of Theorem 5.3 suffices for the purposes of this thesis.

Reconsidering (5.1.3) and applying�(St) = lnSt yields

d lnSt =

�
�St

1

St
+

1

2
�2tS

2
t

�1
S2t

�
dt+ �tSt

1

St
dW1;t

=

�
�� 1

2
�2t

�
dt+ �tdW1;t (5.3.4)

whereas the expression ofdm(�t) of (5.1.3) remains unchanged.

Using (5.3.4), the diffusion models of Section 5.1.2 are easily transformed to the
form of the diffusion limit of the approximating augmented GARCH process.

5.3.2 From GARCH(1,1) to diffusion

Recall from Section 3.6.1 that a GARCH(1,1) process is an augmented GARCH(1,1)
process with the parameter values listed in Table 5.1
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augmented GARCH � c � 
0 
1 
2 
3 
4 
5
Value 1 0 2 �0 �1 �1 0 0 0

Table 5.1: Augmented GARCH(1,1) parameter values yielding a
GARCH(1,1) process.

5.3.2.1 Augmented GARCH

Merging the setup of Table 5.1 into the augmented GARCH process of Defini-
tion 5.3, the model

lnSt = !(~ht) + lnSt�1 + zt

q
~ht (5.3.5a)

�t = �0 +
�
�1 + �1Z

(2)
t�1
�
�t�1 + Z

(4)
t�1 (5.3.5b)

~ht = j�tj (5.3.5c)

is obtained. It is noted thatZ(3)
t�1 is not part of the model. The rest of the Z’s are

(compare with (5.2.2))

Z
(2)
t = jztj2 = z2t (5.3.6a)

Z
(4)
t = 0: (5.3.6b)

meaning that whenzt is standard normal distributed then, according to (5.2.4),

q2 = E(z2t ) = 1 (5.3.7a)

q4 = E
�
Z
(4)
t

�
= 0 (5.3.7b)

5.3.2.2 Approximating augmented GARCH

The approximating GARCH(1,1) process is
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lnS
(n)
ks = !(~h

(n)
ks )s+ ln S

(n)
(k�1)s +

q
~h
(n)
ks zk

p
s (5.3.8a)

�
(n)
(k+1)s = �0s+ �

(n)
ks [1 + (�1 + �1 � 1)s]

+�
(n)
ks �1(z

2
k � 1)

p
s (5.3.8b)

~h
(n)
ks = j�(n)ks j (5.3.8c)

and its diffusion limit is

d lnSt = !(~ht)dt+

q
~htd ~W1;t (5.3.9a)

d�t = [�0 + (�1 + �1 � 1)�t]dt

+vt�td ~W1;t + vt

q
1� �2td

~W2;t (5.3.9b)

~ht = j�tj (5.3.9c)

where

vt =
q
�24 + 2�1�24�t + �21�

2
2�

2
t (5.3.10a)

�t = v�1t [�14 + �t�1�12]: (5.3.10b)

Before the diffusion limit is fully specified, explicit expressions for�12, �14, �22,

�24 and�24 have to be computed. AsZ(4)
k = 0 expressions involvingZ(4)

k are all
equal to zero. The computation of the remaining expressions goes like this

�12 = Cov(zk; z
2
k)

= E
�
(zk � E(zk))(z

2
k � E(z2k))

�
= E

�
zk(z

2
k � 1)

�
= E(z3k � zk) = E(z3k)� E(zk) = 0 (5.3.11a)

�22 = V(z2k) = 2 (5.3.11b)
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where the factz2k is�2(1)distributed have been utilized. Inserting the�-expressions
into (5.3.10) yields

vt =
q
2�21�

2
t =

p
2�1j�tj (5.3.12a)

�t = 0 (5.3.12b)

and inserting these expressions into (5.3.9b) and (5.3.9c) yields

d�t = [�0 + (�1 + �1 � 1)�t]dt+
p
2�1j�tjd ~W2;t (5.3.13a)

~ht = j�tj; (5.3.13b)

but if the approximating GARCH(1,1) process (5.3.8) is considered along with the
GARCH(1,1) parameter restrictions0 � �1 + �1 < 1 and the fact thats < 1 it
is observed that�t cannot take on negative values. Hence, the resulting diffusion
model is as specified in Corollary 5.1

COROLLARY 5.1 (DIFFUSION LIMIT OF GARCH(1,1)).
The augmented GARCH(1,1) process that coincide with the GARCH(1,1) process
whens = 1 converges weakly to the following diffusion model

d lnSt = !(~ht)dt+

q
~htd ~W1;t (5.3.14a)

d~ht = [�0 + (�1 + �1 � 1)~ht]dt+
p
2�1~htd ~W2;t (5.3.14b)

The result of Corollary 5.1 has an interesting implication.

THEOREM 5.4 (HULL -WHITE ).
The diffusion model of Corollary 5.1 is, apart from the parameter�0, identical to
a Hull - White model.

Proof. Recall from Section 5.1.2.1 and Theorem 5.3 that an uncorrelated Hull-
White diffusion model may be cast as

d lnSt =

�
�� 1

2
�2t

�
dt+ �td ~W1;t (5.3.15a)

d�2t = a�2t dt+ b�2t d
~W2;t: (5.3.15b)
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If in the model of Corollary 5.1, the following identities are incorporated

!(~ht) = �� 1

2
~ht (5.3.16a)

~ht = �2t (5.3.16b)

�0 = 0 (5.3.16c)

�1 + �1 � 1 = a (5.3.16d)p
2�1 = b (5.3.16e)

then a Hull-White model is obtained.

REMARK 5.1.Note that a value of 0 of�0 is not permitted by the GARCH(1,1)
parameter constraints. In the proof of Theorem 5.4, the only purpose of the con-
straint�0 = 0 is to show that the only thing that distinguishes the diffusion limit
of the GARCH(1,1) process from the Hull-White model is�0. If one insists on the
constraint�0 = 0, the NGARCH(1,1) process (Equation 3.5.8) has a correlated
Hull-White model as its diffusion limit, c.f. (Duan 1997). H

5.3.3 From EGARCH(1,1) to diffusion

An EGARCH(1,1) process is an augmented GARCH(1,1) process if the parameters
of the augmented GARCH(1,1) process are constrained according to Table 5.2.

Par. � c � 
0 
1 
2 
3 
4 
5
Value 0 0 1 1 + �0 � �1 � �1�Ejzj �1 0 0 2�1! �2�1!
Table 5.2: Augmented GARCH(1,1) parameter values yielding an
EGARCH(1,1) process.

5.3.3.1 Approximating augmented EGARCH

The procedure when deriving the diffusion limit of the augmented GARCH(1,1)
process coinciding with an EGARCH(1,1) process is similar to the related proce-
dure of GARCH(1,1) described in the previous section. Thus, there is no need
to present the elaborations here. Instead, the diffusion limit is presented, and the
reader is referred to (Duan 1997) for a proof.
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COROLLARY 5.2 (DIFFUSION LIMIT OF EGARCH(1,1)).
The augmented GARCH(1,1) process that coincide with the EGARCH(1,1) pro-
cess whens = 1 converges weakly to the following diffusion model

d lnSt = !(~ht)dt+

q
~htd ~W1;t (5.3.17a)

d ln ~ht =

"
�0 � �1�Ejzj+

r
2

�
�1! + (�1 � 1) ln ht

#
dt

��1!d ~W1;t + j�1!j
r
� � 2

�
d ~W2;t (5.3.17b)

Proof.Using augmented GARCH parameters, the diffusion limit ofln ~ht is

d ln ~ht

=

"

0 +

r
2

�

�

4 +


5
2

�
� 
4 � 
5 + 
1 � 1 + (
1 � 1) ln ~ht

#
dt

�
5
2
d ~W1;t +

���
4 + 
5
2

���
r
� � 2

�
d ~W2;t (5.3.18)

Incorporating the parameter constraints of Table 5.2 into Equation 5.3.18, the result
of Corollary 5.2 is readily obtained. For a proof of (5.3.18), see (Duan 1996) and
(Duan 1997).

5.3.4 From diffusion to augmented GARCH

The process of deducing the particular augmented GARCH process that has a given
diffusion model as its weak limit is far more difficult than the opposite process. The
main sources of difficulty are the facts that�, � andc are unknown thus prohibiting
one from knowing the relation between� and~h and the exact expressions of the
Z’s. When deducing the augmented GARCH processes of the Scott, Stein & Stein
and Heston model and the Black, Scholes and Courtadon model, one may proceed
along the following lines, though.

When reconsidering the diffusion models of sections 5.1.2.2 and 5.1.2.3 it is ob-
served that the diffusion model of� is specified by an expression ofd� and not,
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for instance, by an expression ofd�2 as was the case with the model of Hull and
White. This means that in the diffusion limit of the augmented GARCH process

(Theorem 5.2),
p
~h must be a linear function of�. This leads one to suggest1=2

as the value of�, which again leads to

~ht =

����12�t � 1

2
+ 1

����2 =
�����t + 1

2

����2 =
�
�t + 1

2

�2

: (5.3.19)

The parametersc and� regard the correlation between the Wiener processes driving
lnSt and�, respectively. A simple guess isc = 0 and� = 1 which, whenzk is
standard normal distributed, yields

Z
(2)
k = jzkj (5.3.20a)

Z
(3)
k = max(0;�zk) = 1

2
(jzkj � zk) (5.3.20b)

Z
(4)
k = 
4(jzkj � 1) + 
5[max(0;�zk)� 1]

= 
4jzkj � 
4 + 
5

�
1

2
(jzkj � zk)� 1

�

=

�

4 +

1

2

5

�
jzkj � 1

2

5zk � (
4 + 
5): (5.3.20c)

The expected values of theZ’s are

q2 = Ejzkj =
Z 0

�1

�up
2�
e�

1
2u

2
du+

Z 1

0

up
2�
e�

1
2u

2
du

= 2

Z 1

0

up
2�
e�

1
2 u

2
du =

r
2

�
(5.3.21a)

q3 = E

�
1

2
(jzkj � zk)

�
=

1

2

r
2

�
=

1p
2�

(5.3.21b)

q4 = E

��

4 +

1

2

5

�
jzkj � 1

2

5zk � (
4 + 
5)

�

=

�

4 +

1

2

5

�r
2

�
� (
4 + 
5) (5.3.21c)
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and the elements of the covariance matrixVZ of (5.2.18) are

�12 = Cov(zk; jzkj) = 0 (5.3.22)

�13 = Cov

�
zk;

1

2
(jzkj � zk)

�

=
1

2
Cov(zk ; jzkj)� 1

2
V(zk) = �1

2
(5.3.23)

�14 = Cov

�
zk;

�

4 +

1

2

5

�
jzkj � 1

2

5zk � (
4 + 
5)

�

= �1

2

5V(zk) = �1

2

5 (5.3.24)

�22 = V jzkj = E
�jzkj2�� [Ejzkj]2

= E
�
z2k
�� q22

= 1� 2

�
=
� � 2

�
(5.3.25)

�23 = Cov

�
jzkj; 1

2
(jzkj � zk)

�

=
1

2
V jzkj = 1

2

� � 2

�
=
� � 2

2�
(5.3.26)

�24 = Cov

�
jzkj;

�

4 +

1

2

5

�
jzkj � 1

2

5zk � (
4 + 
5)

�

=

�

4 +

1

2

5

�
V jzkj =

�

4 +

1

2

5

�
� � 2

�
(5.3.27)

�23 = V

�
1

2
(jzkj+ zk)

�

=
1

4
[V jzk j � V(zk)] =

1

4

�
� � 2

�
+ 1

�
(5.3.28)
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�34 = Cov

�
1

2
jzkj � 1

2
zk ;�


4 +
1

2

5

�
jzkj � 1

2

5zk � (
4 + 
5)

�

=
1

2

�

4 +

1

2

5

�
V jzkj+ 1

4

5V(zk)

=

�

4 +

1

2

5

�
� � 2

2�
+

1

4

5 (5.3.29)

�24 = V

��

4 +

1

2

5

�
jzkj � 1

2

5zk � (
4 + 
5)

�

=

�

4 +

1

2

5

�2

V jzk j+ 1

4

25 V(zk)

=

�

4 +

1

2

5

�2 � � 2

�
+

1

4

25 (5.3.30)

The above findings leads to the following expression ofd�t:

d�t =

"

0 +

�

4 +


5
2

�r 2

�
� (
4 + 
5)

+

 

1 + 
2

r
2

�
+


3p
2�

� 1

!
�t

#
dt

+vt�td ~W1;t + vt

q
1� �2td ~W2;t (5.3.31)

where
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vt =

��

4 +


5
2

�2 � � 2

�
+

25
4

+2

�

2

�

4 +


5
2

� � � 2

�

+
3

��

4 +


5
2

� � � 2

2�
+

5
4

��
�t

+

�

22
� � 2

�
+

23
4

�
� � 2

�
+ 1

�
+ 2
2
3

� � 2

2�

�
�2t

� 1
2

(5.3.32a)

�t = v�1t

�
�
5

2
� �t


3
2

�
=
�
5 � 
3�t

2vt
: (5.3.32b)

This is a far as one can get when working withboth the model of Black, Scholes
and Courtadon and the Scott, Stein & Stein and Heston model.

5.3.4.1 Black, Scholes and Courtadon

Deferring the Scott, Stein & Stein and Heston model to a later subsection, the
parameters leading to the Black, Scholes and Courtadon model may be identified
by comparing (5.3.31) and (5.3.32) to the correlated Black, Scholes and Courtadon
model from (5.1.6) which is restated here for the sake of simplicity:

d lnSt =

�
�� 1

2
�2t

�
dt+ �td ~W1;t (5.3.33a)

d�t = �(� � �t)dt+ ���td ~W1;t +
p
1� �2��td ~W2;t: (5.3.33b)

Unfortunately, the comparison is inhibited by Equation 5.3.19 by the way it trans-
forms� before it is used as a diffusion. To remedy this difficulty,� is transformed
using the transformation

��t =
�t + 1

2
, �t = 2��t � 1 (5.3.34)

which enables one to write

~ht = ��2t (5.3.35)
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and as
p
~ht is the diffusion ofln St, then so is��t if it is required that��t > 0. It is

readily seen that

d��t
d�t

=
1

2
, d��t =

d�t
2

(5.3.36)

as the diffusion dependent part of the drift of the Itˆo formula (Theorem 5.3) van-

ishes sinced
2��

t

d�2t
= 0. Inserting (5.3.34) and (5.3.36) into (5.3.31) yields the fol-

lowing expression ford��t :

d��t =

"

0
2

+
2
4 + 
5

4

r
2

�
� 
4 + 
5

2

+

 

1 + 
2

r
2

�
+


3p
2�

� 1

!�
��t �

1

2

�#
dt

+
vt�t
2
d ~W1;t +

vt
p
1� �2t
2

d ~W2;t

=

"

0
2

+
2
4 + 
5

4

r
2

�
� 
4 + 
5

2
� 
1

2
� 
2p

2�
� 
3

2
p
2�

+
1

2

+

 

1 + 
2

r
2

�
+


3p
2�

� 1

!
��t

#
dt

+
vt�t
2
d ~W1;t +

vt
p
1� �2t
2

d ~W2;t (5.3.37)

By comparing this huge expression to (5.3.33b) it is observed that1
2vt�t = ���t,

i.e. that12vt�t must be proportional to�t. Using (5.3.32),

vt�t
2

= �
5 + 
3�t
4

= �
5 + 
3(2��t � 1)

4
= �
5 � 
3 + 2
3��t

4
(5.3.38)

and from here it is obvious that if this expression is to be proportional to�t, the
restriction
5 = 
3 have to be imposed.

By implementing this restriction and by using an approach identical to the one

above, the fact that
vt
p
1��2

t

2 must proportional to�t introduces yet another param-
eter restriction. This is recognized as

vt
p
1� �2t
2

/ �t , v2t � v2t �2t
4

/ ��2t ; (5.3.39)
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v2t �
2
t = 
23�

�2
t (5.3.40)

and, by using (5.3.32)

v2t =
�

4 +


3
2

�2 � � 2

�
+

23
4

+2

�

2

�

4 +


3
2

� � � 2

�

+ 
3

��

4 +


3
2

� � � 2

2�
+

3
4

��
(2��t � 1)

+

�

22
� � 2

�
+

23
4

�
� � 2

�
+ 1

�
+ 2
2
3

� � 2

2�

�
(2��t � 1)2

(5.3.41)

and by grouping the expressions as

v2t � v2t �2t
=

�

4 +


3
2

�2 � � 2

�
+

23
4

�2
�

2

�

4 +


3
2

� � � 2

�
+ 
3

��

4 +


3
2

� � � 2

2�
+

3
4

��

+
22
� � 2

�
+

23
4

�
� � 2

�
+ 1

�
+ 2
2
3

� � 2

2�

+4

�

2

�

4 +


3
2

� � � 2

�
+ 
3

��

4 +


3
2

� � � 2

2�
+

3
4

�

� 
22
� � 2

�
� 
23

4

�
� � 2

�
+ 1

�
� 2
2
3

� � 2

2�

�
��t

+

�
4

�

22
� � 2

�
+

23
4

�
� � 2

�
+ 1

�
+ 2
2
3

� � 2

2�

�
� 
23

�
��2t :

(5.3.42)

If this is to be proportional to��2t , the constant and the��t -factor must evaluate to
zero. Focusing on the��t -factor this means that


2

�

4 +


3
2

� � � 2

�
+ 
3

��

4 +


3
2

� � � 2

2�
+

3
4

�

= 
22
� � 2

�
+

23
4

�
� � 2

�
+ 1

�
+ 2
2
3

� � 2

2�
(5.3.43)
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which is equivalent to


2
4
� � 2

�
+ 
2
3

� � 2

2�
+ 
3
4

� � 2

2�
+

23
4

� � 2

�
+

23
4

= 
22
� � 2

�
+

23
4

� � 2

�
+

23
4

+ 
2
3
� � 2

�
(5.3.44)

which again is equivalent to


2
4
� � 2

�
+ 
2
3

� � 2

2�
+ 
3
4

� � 2

2�

= 
22
� � 2

�
+ 
2
3

� � 2

�
(5.3.45)

and


2
4 +

2
3
2

+

3
4
2

= 
22 + 
2
3

m

4

�

2 +


3
2

�
= 
2

�

2 +


3
2

�
(5.3.46)

The least restrictive way to assure this identity is to impose the restriction
4 = 
2.

When this restriction is combined with the constant part of (5.3.42), as in


22
� � 2

�
+ 
2
3

� � 2

�
+

23
4

� � 2

�
+

23
4

�2
�

22
� � 2

�
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� � 2

2�
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2
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� � 2

2�
+

23
4

� � 2

�
+

23
4

�

+
22
� � 2

�
+

23
4

� � 2

�
+

23
4

+ 
2
3
� � 2

�
(5.3.47)

it is noted that the restriction causes the constant to vanish.
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The remains ofv2t � v2t �2t are

v2t � v2t �2t
=

�
4

�

22
� � 2

�
+

23
4

� � 2

�
+

23
4

+ 
2
3
� � 2

�

�
� 
23

�
��2t

= 4
� � 2

�

�

22 +


23
4

+ 
2
3

�
��2t

=
� � 2

�

�
4
22 + 
23 + 4
2
3

�
��2t

=
� � 2

�
(2
2 + 
3)

2 ��2t (5.3.48)

which is the same as

vt

q
1� �2t =

r
� � 2

�
j2
2 + 
3j��2t : (5.3.49)

The stationarity conditions from Theorem 3.3 (
2 � 0 and
2 + 
3 � 0) implies
that2
2 + 
3 � 0 which means that

vt

q
1� �2t =

r
� � 2

�
(2
2 + 
3)�

�2
t : (5.3.50)

Finally, it is possible to write down an expression ford��t that matches the expres-
sion ford�t from the Black, Scholes and Courtadon model:

d��t =

"

0
2

+
2
2 + 
3

4

r
2
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2
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+
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2
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3 + 1

2
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�
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2
2 + 
3p
2�

� 1

�
��t

�
dt

�
3
2
��td ~W1;t +

2
2 + 
3
2

r
� � 2

�
��td ~W2;t (5.3.51)
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When this expression is compared to the diffusion part of the Black, Scholes and
Courtadon model

d�t = �(� � �t) + ���td ~W1;t +
p
1� �2��td ~W2;t; (5.3.52)

it is observed that the two diffusion processes are identical. If in the approximating
augmented GARCH model!(~ht) = �� 1

2ht is inserted, the expression ford lnSt
is

d lnSt =

�
�� 1

2
~ht

�
dt+

q
~htd ~W1;t; (5.3.53)

which is identical to

d lnSt =

�
�� 1

2
�2t

�
dt+ �td ~W1;t (5.3.54)

of the Black, Scholes and Courtadon model as
p
~ht = ��t = �t.

The above findings constitutes the proof of

THEOREM 5.5 (BLACK , SCHOLES AND COURTADON).
The diffusion limit of the approximating GARCH(1,1) process with� = 1=2, c =
0, � = 1, 
5 = 
3, 
4 = 
2, !(~ht) = � � 1

2
~ht and
1 � 0, 
2 � 0, 
2 + 
3 � 0

and
0 > 
1 + 
2 + 
3 � 1 is a Black, Scholes and Courtadon model.

REMARK 5.2.The inequality constraints imposed on the parameters are to ensure
stationarity and non-negativity of��. H

Though (5.3.51) suffices for most purposes, it is sometimes necessary to know the
exact relationship between augmented GARCH model parameters and the param-
eters of the Black, Scholes and Courtadon model:

dSt = �Stdt+ �tStd ~W1;t (5.3.55a)

d�t = �(� � �t)dt+ ���td ~W1;t +
p
1� �2��td ~W2;t (5.3.55b)

This relation is provided in Theorem 5.6.
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THEOREM 5.6 (BLACK , SCHOLES AND COURTADON PARAMETERS ).
The relationship between augmented GARCH(1,1) and Black, Scholes and Cour-
tadon parameters,

� = 1� 
1 � 2
2 + 
3p
2�

(5.3.56a)

� =

0 � 
1 � 
2 � 
3 + 1

2
�
1� 
1 � 2
2+
3p

2�

� (5.3.56b)

� =
�
3

2

r

23
4 +

�
2
2+
3

2

�2
��2
�

(5.3.56c)

� =

s

23
4

+

�
2
2 + 
3

2

�2 � � 2

�
(5.3.56d)

Proof.The proof is based on a comparison of (5.3.51) to (5.3.52).

�. By comparison,

�� = 
1 +
2
2 + 
3p

2�
� 1: (5.3.57)

�. By comparison,

�� =

0 � 
1 � 
2 � 
3 + 1

2
: (5.3.58)

Isolating� from this equation and inserting the expression for� yields the desired
result.

� and�. By comparison,

�� =
�
3
2

(5.3.59)

and

p
1� �2� = 2
2 + 
3

2

r
� � 2

�
: (5.3.60)
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Note that by the second equation it may be deduced that� > 0 as2
2+ 
3 � 0 by
the stationarity conditions. Isolating� from the first equation yields

� =
�
3
2�

(5.3.61)

and inserting into the second equation yields

p
1� �2� =

r
1� 
23

4�2
� =

r
�2 � 
23

4
(5.3.62)

and by comparison,

r
�2 � 
23

4
=

2
2 + 
3
2

r
� � 2

�
(5.3.63)

or

�2 =
(2
2 + 
3)2

4

� � 2

�
+

23
4
: (5.3.64)

The� value of Theorem 5.6 follows from this expression and the fact that� > 0.
The value of� is obtained by inserting the value of� into (5.3.61).

Discrete time counterpart
To find out which Arch process that matches the parameter constraints of Theo-
rem 5.5, the constraints are incorporated into the augmented GARCH(1,1) process
of Definition 5.3. This maneuver results in the following expression of�t:

�t = 
0 + [
1 + 
2jzt�1j+ 
3max(0;�zt�1)]�t�1
+
2(jzt�1 � 1) + 
3 [max(0; zt�1)� 1] (5.3.65)
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Incorporation the transformation of Equation 5.3.34 into this expression, one can
write

��t =

0 + 1

2
+ [
1 + 
2jzt�1j+ 
3max(0;�zt�1)]

�
��t�1 �

1

2

�

+

2
2
(jzt�1j � 1) +


3
2
[max(0;�zt�1)� 1]

=

0 + 1

2
� 
1

2
� 
2

2
jzt�1j � 
3

2
max(0; zt�1)

+

2
2
jzt�1j � 
2

2
+

3
2
max(0;�zt�1)� 
3

2
+ [
1 + 
2jzt�1j+ 
3max(0; zt�1)]��t�1

=

0 � 
1 � 
2 � 
3 + 1

2
+ 
1�

�
t�1 + 
2jzt�1j��t�1

+
3max(0;�zt�1)��t�1: (5.3.66)

Since��t =
p
~ht, this is the same as

q
~ht =


0 � 
1 � 
2 � 
3 + 1

2
+ 
1

q
~ht�1 + 
2

q
~ht�1jzt�1j

+
3

q
~ht�1max(0;�zt�1); (5.3.67)

which is identical to the TGARCH(1,1) process of (3.5.10)

p
ht = �0 + �

(1)
1 j"t�1j+ �

(2)
1 max(0;�"t�1) + �1

p
ht�1; (5.3.68)

if the following parameter relationships are introduced:

�0 =

0 � 
1 � 
2 � 
3 + 1

2
(5.3.69a)

�
(1)
1 = 
2 (5.3.69b)

�
(2)
1 = 
3 (5.3.69c)

�1 = 
1: (5.3.69d)

It is also noted that inequality constraints of the TGARCH parameters of Sec-
tion 3.5.5 are matching the inequality constraints of Theorem 5.5.

Thus we have
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THEOREM 5.7 (TGARCH AND BLACK , SCHOLES AND COURTADON ).
The augmented GARCH(1,1) process that coincide with the TGARCH(1,1) pro-
cess whens = 1 converges weakly to the Black, Scholes and Courtadon diffusion
process.

From Black, Scholes and Courtadon to TGARCH(1,1)
It is, of course, also possible to establish a direct relationship between the param-
eters of the Black, Scholes and Courtadon model and the TGARCH(1,1) param-
eters, without the diversion via the augmented GARCH(1,1) parameters. From
Equation 5.3.58 we have

�� =

0 � 
1 � 
2 � 
3 + 1

2
(5.3.70)

which is exactly�0 of TGARCH. From Equation 5.3.59 the relationship

�� =
�
3
2

(5.3.71)

is obtained, and since�(2)1 of TGARCH is equal to
3 of augmented GARCH, it is
readily seen that

�
(2)
1 = �2��: (5.3.72)

It is a bit more difficult to deduce an expression for�(1)1 of TGARCH which is
equal to
2 of augmented GARCH, but, by Equation 5.3.60,

p
1� �2� = 2
2 + 
3

2

r
� � 2

�
; (5.3.73)

and since it is established that�
3=2 = ��, one can write

�
(1)
1 = �� +

r
�

� � 2

p
1� �2�: (5.3.74)
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Finally, an expression for�1 = 
1 is deduced from Equation 5.3.57:

�1 = 1� �+
2
2 + 
3p

2�

= 1� �+
1p
2�

2

r
�

� � 2

p
1� �2�

= 1� �+

r
2

� � 2

p
1� �2�: (5.3.75)

Observe that since� and�1 are non-negative,� is non-positive.

From TGARCH(1,1) to Black, Scholes and Courtadon
The above formulae (5.3.70), (5.3.72), (5.3.74) and (5.3.75) make it possible to
compute the corresponding values of the TGARCH(1,1) parameters from the Black,
Scholes and Courtadon parameters. This may be useful in some situations, model
comparisons for example, but the purpose of relating discrete time Arch models to
continuous time stochastic volatility models is to be able to compute the parame-
ters of the continuous time model from the discrete time model parameters. Thus,
it is important to have formulas for this purpose. Fortunately, these formulas are
very easy to obtain. Just merge (5.3.69) and (5.3.56) to obtain

� = 1� �1 � 2�
(1)
1 + �

(2)
1p

2�
(5.3.76a)

� =
�0

1� �1 � 2�
(1)
1 +�

(2)
1p

2�

(5.3.76b)

� =
��(2)1r

�
(2)2
1 +

�
2�

(1)
1 + �

(2)
1

�2
��2
�

(5.3.76c)

� =

vuut�
(2)2
1

4
+

 
2�

(1)
1 + �

(2)
1

2

!2
� � 2

�
(5.3.76d)
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5.3.4.2 Scott, Stein & Stein and Heston

The model of Scott, Stein & Stein and Heston stated by use of only uncorrelated
Wiener processes is

d lnSt =

�
�� 1

2
�2t

�
+ �td ~W1;t (5.3.77a)

d�t = �(� � �t)dt+ ��d ~W1;t +
p
1� �2�d ~W2;t: (5.3.77b)

As previously announced, the deduction of the discrete time Arch model corre-
sponding to the continuous time stochastic volatility model of Scott, Stein & Stein
and Heston will be treated with less rigour than the deduction of the Arch model
corresponding to the Black, Scholes and Courtadon model of the last subsection,
because the general idea should be clear by now. In this subsection, the augmented
GARCH parameter restrictions leading to the Scott, Stein & Stein and Heston
model will be stated instead of deduced.

THEOREM 5.8 (SCOTT, STEIN & STEIN AND HESTON).
The diffusion limit of the approximating augmented GARCH process with� =
1=2, c = 0, � = 1 and
2 = 
3 = 0,!(~ht) = �� 1

2
~ht is a Scott, Stein & Stein and

Heston model.

Proof.The parameter constraints imposed on�, c and� are identical to those of the
Black, Scholes and Courtadon model. Thus, the values of theZ’s of (5.3.20), the
q’s of (5.3.21) andVZ of (5.2.18) may be used here as well as the auxiliary variable
��t of (5.3.34).

Incorporating the parameter constraints into the diffusion limit of the approximat-
ing augmented GARCH process of Theorem 5.2 yields

vt =
q
�24 + 2(
2�24 + 
3�34)�t + (
22�

2
2 + 
23�

2
3 + 2
2
3�23)�2t

=
q
�24 =

r�

4 +


5
2

�2 � � 2

�
+

25
4

(5.3.78)

and

�t = v�1t [�14 + �t(
2�12 + 
3�13)]

= v�1t �14 = �
5
2
v�1t : (5.3.79)
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so that

�tvt = �
5
2

(5.3.80)

and

vt

q
1� �2t =

q
v2t � �2tv2t =

r�

4 +


5
2

�2 � � 2

�
+

25
4
� 
25

4

=

����2
4 + 
5
2

����
r
� � 2

�
: (5.3.81)

Using these expressions, an explicit expression ford�t is available as

d�t = [
0 + q4 + (
1 + 
2q2 + 
3q3 � 1)�t]dt

+vt�td ~W1;t + vt

q
1� �2td ~W2;t

=

"

0 +

�

4 +


5
2

�r 2

�
� (
4 + 
4) + (
1 � 1)�t

#
dt

�
5
2
d ~W1;t +

����2
4 + 
5
2

����
r
� � 2

�
d ~W2;t (5.3.82)

and if this is expressed using�� instead of� it appears as

d��t =

2
4
0 � 
1 +

�

4 +


5
2

�q
2
� � 
4 � 
5 + 1

2
+ (
1 � 1)��t

3
5 dt

�
5
4
d ~W1;t +

j2
4 + 
5j
4

r
� � 2

�
d ~W2;t: (5.3.83)

Since
p
~ht = ��t = �t if ��t is non-negative, it is by the expression ford��t seen

that for correctly chosen parameter values,d��t is identical tod�t of the Scott, Stein
& Stein and Heston model. This concludes the proof of Theorem 5.8.

The relationship between the parameters of the Scott, Stein & Stein and Heston
process and the parameters of the approximating augmented GARCH(1,1) process
is obtained by relating the expression ofd��t to the expression ofd�t in (5.3.77).
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THEOREM 5.9 (SCOTT, STEIN & STEIN AND HESTON PARAMETERS).
The relationship between augmented GARCH(1,1) and Scott, Stein & Stein and
Heston parameters is

� = 1� 
1 (5.3.84a)

� =

0 � 
1 +

�

4 +


5
2

�q
2
� � 
4 � 
5 + 1

2(1� 
1)
(5.3.84b)

� =
�
5r�

2
4+
5
2

�2
��2
� +


25
4

(5.3.84c)

� =

s�
2
4 + 
5

4

�2 � � 2

�
+

25
16

(5.3.84d)

Proof.

�. By comparison, it is readily seen that

�� = 
1 � 1 (5.3.85)

and by isolating� from this equation, the results of the theorem is obtained.

�. The constant part of the drifts of the Scott, Stein & Stein and Heston model and
��t is

�� =

0 � 
1 +

�

4 +


5
2

�q
2
� � 
4 � 
5 + 1

2
(5.3.86)

and by isolating� and inserting the expression of�, the result of the theorem is
available.

� and�. The coefficients of the Wiener processes are

�� = �
5
4

(5.3.87)

and

p
1� �2� =

p
�2 � �2�2 = j2
4 + 
5j

4

r
� � 2

�
; (5.3.88)
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from where it is readily seen that� > 0. Combining the to expressions,

r
�2 � 
25

16
=

j2
5 + 
5j
4

r
� � 2

�
,

�2 � 
25
16

=

�
2
4 + 
5

4

�2 � � 2

�
,

�2 =

�
2
4 + 
5

4

�2 � � 2

�
+

25
16

,

� =

s�
2
4 + 
5

4

�2 � � 2

�
+

25
16

(5.3.89)

which proofs the theorem for�. By inserting the�-expression in the expression for
��, the proof of Theorem 5.9 is completed.

REMARK 5.3.Note that it has been assumed that��t is non-negative, but that the
non-negativity has not been accounted for. However, since the obtained diffusion
model is identical to the model of Scott, Stein & Stein and Heston, the properties of
the two models are also identical. Thus, if�t of the Scott, Stein & Stein and Heston
model is assured to be non-negative, then so is��t , and if not, the framework of
approximating augmented GARCH and its diffusion limit will surely not add to
the lack of mathematical rigour. H

Discrete time counterpart
To find out which discrete time Arch model that matches the augmented GARCH(1,1)
process of Definition 5.3 with the parameter constraints of Theorem 5.8, the con-
straints are imposed on the augmented GARCH process. Doing this, the following
expression for�t is obtained

�t = 
0 + 
1�t�1 + 
4jzt�1j+ 
5max(0;�zt�1)� (
4 + 
5): (5.3.90)
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Transforming this equation to an equation of�� instead of� yields

��t =

0 + 1

2
+ 
1

�
��t�1 �

1

2

�
+

4
2
jzt�1j+ 
5

2
max(0;�zt�1)

�
4 + 
5
2

=

0 � 
1 � 
4 � 
5 + 1

2
+

4
2
jzt�1j+ 
5

2
max(0;�zt�1)

+
1�
�
t�1;

(5.3.91)

and since��t =
p
~ht, this is the same as

q
~ht = �0 + �

(1)
1 jzt�1j+ �

(2)
2 max(0;�zt�1) + �1

q
~ht�1; (5.3.92)

when the�’s and the� are chosen to be

�0 =

0 � 
1 � 
4 � 
5 + 1

2
(5.3.93a)

�
(1)
1 =


4
2

(5.3.93b)

�
(2)
1 =


5
2

(5.3.93c)

�1 = 
1: (5.3.93d)

This model is not recognized as an existing Arch model!

None the less, it fits under the Arch framework in the subclass of models where
�t =

p
ht. Using the initials of the corresponding continuous time stochastic

volatility model, it will be referred to bySSSH-GARCH for the rest of this thesis.

Note that to assure strict stationarity of the SSSH-GARCH process, the constraint

�1 � 1 has to be imposed, c.f. Theorem 3.3 and to assure positivity of
p
~h, the

constraints�0 > 0, �(1)1 � 0, �(1)1 + �
(2)
1 � 0 and�1 � 0 are needed.
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From SSSH-G ARCH to Scott, Stein & Stein and Heston
As with the Black, Scholes and Courtadon model, it is useful to know how to
compute the values of the Scott, Stein & Stein and Heston parameters directly from
SSSH-GARCH parameter estimates. These relations are obtained by combining
(5.3.93) with (5.3.84) to obtain

� = 1� �1 (5.3.94a)

� =
�0 +

2�
(1)
1 +�

(2)
1p

2�

1� �1 (5.3.94b)

� =
��(2)1r�

2�
(1)
1 + �

(2)
1

�2
��2
� + �

(2)2
1

(5.3.94c)

� =

vuut �(1)1 +
�
(2)
1

2

!2
� � 2

�
+
�
(2)2
1

4
(5.3.94d)

The formulas for the reverse computations, from Scott, Stein & Stein and Heston
parameters to SSSH-GARCH parameters, will not be derived, as they are of no
use in this thesis. It should be said, however, that the problem has more than one
solution due to the squared subexpressions of� and� of (5.3.84).

5.4 Estimation study

As examples of the idea of estimating continuous time stochastic volatility model
parameters using discrete time Arch model parameter estimates, this section esti-
mates the parameters of the Black, Scholes and Courtadon and the Scott, Stein
& Stein and Heston continuous time stochastic volatility models by fitting the
TGARCH and SSSH-GARCH models to the four well-known return series of
Hewlett-Packard, Sony, Mobil and Pepsi.

5.4.1 TGARCH and Black, Scholes and Courtadon

The discrete time Arch model to estimate is
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Rt = � � 1

2
ht + "t (5.4.1a)p

ht = �0 + �
(1)
1 j"t�1j+ �

(2)
1 max(0;�"t�1) + �1

p
ht�1 (5.4.1b)

where�0 > 0, �(1)1 � 0, �(1)1 + �
(2)
1 � 0 and�1 � 0, and where"t is Gaussian

distributed with zero mean and varianceht.

Because of the wayht enters the drift ofRt, the model (5.4.1) does not allow for
RPLR estimation. This is because the RPLR method requires that the model can
be formulated aŝYtjt�1 = X>

t � in such a way that the observationsY does not
depend on the parameters, and clearly, this is not possible for (5.4.1).

The Maximum Likelihood method, however, is perfectly suitable for estimating
the model parameters. Recalling Section 4.2.1, the log-likelihood of (5.4.1) is

LT =
TX
t=1

lt(�) (5.4.2)

where the conditional log-likelihood is

lt(�) = �1

2
ln(2�)� 1

2
ln(ht)� 1

2

"2t
ht

(5.4.3)

whereht is computed by (5.4.1b) and where"t is computed from the observed
returnRt by (5.4.1a).

The Maximum Likelihood estimates of the TGARCH model are presented in Ta-
ble 5.3 along with their standard deviations and the estimated value of

p
h0. In line

with the findings in Chapter 4, the Maximum Likelihood estimation have includedp
h0 in order to avoid estimation bias caused by an incorrectly specifiedh0.

Using the transformation formulas of (5.3.76), the Black, Scholes and Courtadon
model parameter values of Table 5.4 are obtained.

The standard errors of the Black, Scholes and Courtadon model parameters are not
available. Theoretically, the standard errors of the Black, Scholes and Courtadon
parameter estimates can be computed from the standard error of the TGARCH pa-
rameter estimates, but the transformation formulas of (5.3.76) are highly unlinear,
a fact that make the computations cumbersome, and because of this it has not been
possible to include the formulas in this thesis.
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HP Sony Mobil Pepsi
� 1:4216� 10�3 8:0462� 10�4 6:4095� 10�4 4:4597� 10�4

5:2342�10�4 3:5592�10�4 2:7983�10�4 3:3645�10�4
�0 1:9743� 10�4 1:6284� 10�4 4:8634� 10�4 1:5471� 10�3

9:2116�10�5 7:6166�10�5 1:6416�10�4 5:4702�10�4

�
(1)
1 1:0112� 10�2 5:9884� 10�2 4:4708� 10�2 9:9291� 10�2

6:9158�10�3 1:0093�10�2 1:4855�10�2 2:3982�10�2

�
(2)
1 3:1797� 10�2 6:1106� 10�3 3:2260� 10�2 3:8616� 10�3

1:2252�10�2 5:9542�10�3 1:7725�10�2 6:0415�10�3
�1 9:7082� 10�1 9:4541� 10�1 9:1007� 10�1 8:2336� 10�1

8:0634�10�3 9:8076�10�3 2:0585�10�2 4:7349�10�2p
h0 2:0185� 10�2 1:1175� 10�2 1:4878� 10�2 8:0363� 10�3

3:7397�10�3 3:2751�10�3 4:6981�10�3 4:2191�10�3

Table 5.3: Maximum Likelihood parameter estimates of TGARCH(1,1) ap-
plied to return series.

HP Sony Mobil Pepsi
� 1:4216� 10�3 8:0462� 10�4 6:4095� 10�4 4:4597� 10�4

� 8:4270� 10�3 4:3735� 10�3 4:1391� 10�2 9:5874� 10�2

� 2:3428� 10�2 3:7234� 10�2 1:1750� 10�2 1:6137� 10�2

� �7:1200� 10�1 �8:0269� 10�2 �4:0261� 10�1 �3:1627� 10�2

� 2:2330� 10�2 3:8063� 10�2 4:0064� 10�2 6:1048� 10�2

Table 5.4: Parameter estimates of the Black, Scholes and Courtadon model
computed from the TGARCH(1,1) parameter estimates.

5.4.1.1 Validation

In order to decide how the above estimation procedure performs relative to tra-
ditional continuous time stochastic volatility model estimation procedures, some
way of validating the obtained parameter estimates is needed. The literature in the
field of continuous time stochastic volatility models often suggest(i) to measure
the ability of the estimated model to describe the return series characteristics,(ii)
to compute the fair price of some option on the stocks that were used to estimate
the parameters and then compare the obtained option price to prices obtained using
other well-known estimation procedures or(iii) to measure to ability of the proce-
dure to estimate parameters of simulated data series. Unfortunately, none of these
measures are suitable here.
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The first one requires the estimated model to be discretized and simulated before
the standardized residuals can be computed and investigated for presence of return
series characteristics such as autocorrelation. But when the estimated model is dis-
cretized, it is converted from continuous time to discrete time, and because of this,
the only model validated using this measure is the discrete time model originally
estimated, not the continuous time model in focus.

The second measure is perhaps more suitable, but option pricing formulas are out-
side the scope of this thesis and besides, this measure requires that alternative es-
timation procedures are applied to the exact same stock series. In addition, it will
be very difficult to decide which estimation procedure to rely on in case the proce-
dures disagree on the option price and difficult to conclude if the two procedures
agree. In the latter case, though, ones preference may be decided by other matters
such as the amount of required computer resources.

The last measure suffers from the same problem as measure number one. In order
to simulate a continuous time stochastic volatility model it has to be discretizised,
and then the only thing being measured is the discrete time model.

Because of the above mentioned problems related to model validation, the ob-
tained continuous time stochastic volatility model parameter estimates will not be
validated. Instead, the parameter estimates are presented, perhaps to be validated
at a later time when a suitable validation procedure has been developed.

5.4.2 SSSH-GARCH and Scott, Stein & Stein and Heston

In the case of Scott, Stein & Stein and Heston, the discrete time Arch model to
estimate is

Rt = � � 1

2
ht + "t (5.4.4a)p

ht = �0 + �
(1)
1 jzt�1j+ �

(2)
1 max(0;�zt�1) + �1

p
ht�1 (5.4.4b)

where�0 > 0, �(1)1 � 0, �(1)1 + �
(2)
1 � 0 and�1 � 0, wherezt is Gaussian

distributed with zero mean and variance1 and where"t = zt
p
ht.

As in the case of TGARCH, this model can not be estimated by RPLR, only by
Maximum Likelihood. The log-likelihood of the model is again as defined by
(5.4.2) and (5.4.3).
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Though theSSSH-GARCH model above may look very similar to the TGARCH
model of (5.4.1), the two models are in fact very different due to the fact the

p
ht is

driven byzt�1 in the SSSH-GARCH case and"t�1 in the TGARCH case. Recall
from Chapter 4 that the conditional variances are in the neighborhood of10�4

such thatepst has a mean of zero and a variance10�4 where aszt has a mean
of zero and variance1, 10000 times larger than"t. Because of this, the estimated
values of�(1)1 and�(2)1 of SSSH-GARCH are expected to be a lot smaller that
the corresponding values of TGARCH. This assumption is confirmed by Table 5.5
where the estimation results are presented.

HP Sony Mobil Pepsi
� 1:4144� 10�3 7:8771� 10�4 6:5215� 10�4 4:5712� 10�4

�0 �1:6656� 10�4 �4:0912� 10�4 �2:1848� 10�5 5:5258� 10�4

�
(1)
1 1:6292� 10�4 8:2776� 10�4 5:2024� 10�4 1:3976� 10�3

�
(2)
1 6:6642� 10�4 1:3927� 10�4 3:2823� 10�4 8:7237� 10�5

�1 9:8996� 10�1 9:8577� 10�1 9:5515� 10�1 8:9319� 10�1p
h0 2:0239� 10�2 1:0019� 10�2 6:3095� 10�4 9:2947� 10�3

Table 5.5: Maximum Likelihood parameter estimates of SSSH-GARCH ap-
plied to return series.

Note that the parameter estimates of Hewlett-Packard, Sony and Mobil violates the
constraint�0 > 0. This fact makes it theoretically possible that

p
h may become

non-positive, but investigations of the trajectories of
p
ht (not shown) reveals that

this does not happen. The negative values of�0 should not be taken as indications
of incorrect parameter estimates, recall that the Scott, Stein & Stein and Heston
model does not ensure positivity of�t.

Constraint maxization(�0 > 0) of the log-likelihood is not possible because the
maximum of the constraint likelihood is on the boundary� = 0.

Unfortunately, standard errors of the SSSH-GARCH parameter estimates are not
available as it has not been possible to obtain a reliable of the Hessian.

Because the TGARCH and the SSSH-GARCH models have essentially the same
likelihood function, the log likelihood of the two models are comparable. These
are as displayed in Table 5.6.

As seen from the table, the two models fits equally well, expect perhaps for Sony
where the SSSH-GARCH model provides the best description of the returns. This
suggests that the returns of Sony are best modelled by the Scott, Stein & Stein and
Heston model. While comparing the two models, it should be said that the param-
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HP Sony Mobil Pepsi
TGARCH 3:111 3:099 3:874 3:510

SSSH-GARCH 3:111 3:501 3:874 3:510

Table 5.6: Values of the log-likelihood (�10�3) of the TGARCH and SSSH-
GARCH models applied to the four return series..

eters of the SSSH-GARCH model are much easier to estimate than the parameter
of the TGARCH model. The numerical routine used to maximize the likelihood
converges much faster in the SSSH-GARCH case.

The Scott, Stein & Stein and Heston parameter values corresponding to theSSSH-
GARCH parameter estimates are presented in Table 5.7.

HP Sony Mobil Pepsi
� 1:4144� 10�3 7:8771� 10�4 6:5215� 10�4 4:5712� 10�4

� 1:0035� 10�2 1:4232� 10�2 4:4854� 10�2 1:0681� 10�1

� 2:2849� 10�2 2:1564� 10�2 1:1687� 10�2 1:5940� 10�2

� �4:9595� 10�4 �1:7781� 10�5 �1:2133� 10�4 �4:3745� 10�6

� 4:4775� 10�4 5:4542� 10�4 4:4398� 10�4 8:6986� 10�4

Table 5.7: Parameter estimates of the Scott, Stein & Stein and Heston
model computed from the SSSH-GARCH(1,1) parameter estimates.

Note that the estimates of� of Table 5.7 are close the the corresponding estimates
in Table 5.4 as expected.

5.5 Summary

This chapter has illustrated an alternative way of estimating parameters of contin-
uous time stochastic volatility models using estimated parameter values of discrete
time Arch models. This is interesting as it is much easier to estimate parameters
of discrete time models than parameters of bivariate continuous time stochastic
volatility models.

Deducing the discrete time model corresponding to a given continuous time stochas-
tic volatility model is only possible through a lot of elaborations and computations.
Fortunately, the elaborations only have to be done once for each model.

This chapter has estimated the parameters of the Black, Scholes and Courtadon
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model and Scott, Stein & Stein and Heston model using parameter estimates from
discrete time Arch model, but it has not validated the obtained parameter estimates.
Because of this, a formal evaluation of the estimation procedure is needed before
it can be applied in practical applications. Such an evaluation is hereby suggested
as an idea for a future research project.

Ideas for future research projects also include investigations of the diffusion lim-
its of Arch models with non-Gaussian (e.g. t-distributed) innovations as well the
deductions of the discrete time models corresponding to more of often used the
continuous time stochastic volatility models.
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Chapter 6

Conclusions

This final chapter provides a summary of the thesis, some concluding remarks
about financial time series and the discrete time stochastic volatility models that
has been investigated and suggestions for further research.

Returns of financial time series possess a number of well-documented characteris-
tics different from those of Gaussian White Noise. The distributionof the returns is
fat tailed, and the returns are linearly uncorrelated, though the returns are not inde-
pendent as the squared returns are significantly correlated. Most important for the
use of volatility models is that the returns exhibit changing variance, or volatility,
over time, that is they are heteroskedastic.

The stochastic volatility models investigated in this thesis are developed to capture
the characteristics of the return series. An in-depth analysis of the particular models
known as GARCH and EGARCH have revealed that these models are perfectly
able to capture the autocorrelations of the squared returns, but that the models need
some adjustment before they are able to capture the heavy tails of the return series
distributions.

The task of estimating the parameters of GARCH and EGARCH models is a dif-
ficult task and yet it has not received much attention in theliterature of mathemat-
ical finance. In Chapter 4 an in-depth investigation of the properties of Maximum
Likelihood estimation of GARCH and EGARCH models was presented, and an
alternative recursive estimation procedure was proposed, analysed and compared
to Maximum Likelihood. The analysis of Chapter 4 have established that the pa-
rameter estimates, regardless of estimation method, are influenced by a number of
factors, factors whose influence it is not always possible to assess and control.
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Traditionally, the models used for option pricing are continuous time stochastic
volatility models, not discrete time models. The parameters of continuous time
stochastic volatility models are, however, very difficult to estimate and because
of this, a number of researchers have proposed to use estimates of discrete time
model parameters in the process of estimating the parameters of continuous time
stochastic volatility models. In Chapter 5, an approach where algebraic relation-
ships between parameters of discrete and continuous time models are established
by considering the discrete time models as discretized versions of the continuous
time models was analysed. Continuous time models corresponding to the discrete
time GARCH and EGARCH models were derived, and discrete time models cor-
responding to three well-known continuous time stochastic volatility models were
deduced, a process that resulted in the discovery of a new GARCH model, a model
that was named SSSH-GARCH.

For lists of ideas for further research, see the last pages of Chapter 4 and Chapter 5.



Appendix A

Software

As mentioned in the introduction, all estimations, simulations and computations
in general have been performed using MatLab, and all needed computer programs
not available as integrated parts of MatLab have been written by myself.

It would clearly be impossible to include all computer code in the thesis, but to
give an idea of what has been implemented, the tables below provides an overview.

Function name Purpose
ARX Simulation of ARX process
ARMA Simulation of ARMA process
tgsim Simulation of TGARCH process
gsim Simulation of GARCH process with zero mean
garchstate Simulation of GARCH state-model with zero mean
gtsim Simulation of GARCH process (t-distributed innovations)

with zero mean
egsim Simulation of EGARCH process with zero mean
bscgsim Simulation of SSSH-GARCH process
eghsim Simulation of EGARCH process with mean zero
Eulerbsc Simulates Black, Scholes & Courtadon SDE

using Euler scheme

Table A.1: Functions for simulation purposes.

187



188 CHAPTER A. SOFTWARE

Function name Purpose
tdist Calculates value of t-distribution with zero mean,

variance sigma and n degrees of freedom in x
tford Calculates value of cumulated t-distribution with zero mean,

variance sigma and n degrees of freedom in x
trand Returns random number drawn from a t-distribution with

zero mean and variance sigma

Table A.2: Functions dealing with probability distributions.

Function name Purpose
l Computes value of pseudo-likelihood for GARCH series
lh Computes value of pseudo-likelihood for GARCH series,

h0 included in estimation
liket Computes value of pseudo-likelihood for GARCH series,

t-distributed innovations
liketh Computes value of pseudo-likelihood for GARCH series,

t-distributed innovations,h0 included in estimation
lsssh Computes value of pseudo-likelihood forSSSH-GARCH

series
ltrue garch Calculates true value of GARCH-likelihood
legarch Computes value of pseudo-likelihood for EGARCH series
lhegarch Computes value of pseudo-likelihood for EGARCH series,

h0 included in estimation
legarch2 Computes value of pseudo-likelihood for EGARCH series,

only identifiable parameters
lhegarch2 Computes value of pseudo-likelihood for EGARCH series,

h0 included in estimation, only identifiable parameters

Table A.3: Likelihood functions.



189

Function name Purpose
rplr garch Estimates GARCH(p,q) parameters using RPLR algorithm
rplr garchstate Estimates GARCH-state model parameters using

RPLR algorithm
rplr egarch Estimates EGARCH(p,q) parameters using RPLR algorithm
rplr garchgain Estimates GARCH(p,q) parameters using

RPLR algorithm with gain
Autocorr Estimates autocorrelation function of time series
Kernel Non-parametric estimation of conditional variance
Kernelfunc Gaussian kernel

Table A.4: Functions for estimation purposes.

Function name Purpose
jarquebera Calculates jarque-bera normality test
Ljung-Box Calculates Ljung-Box test statistic
lmtest Calculates test statistic of Lagrange Multiplier Test

for heteroskedasticity

Table A.5: Test statistics

Function name Purpose
dldthetahat Approximates first derivative of pseudo log-likelihood
garchautocorr Calculates autocorrelation of squared returns

for a GARCH(p,q) model
Hessian Approximates Hessian matrix
bscdisc Discretizised version of Black, Scholes, Courtadon model

Table A.6: Numerical approximations.
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Function name Purpose
garchsqe Calculates GARCH(p,q) squared errors
Spawn Makes n copies of vector for use with RPLR
dldtheta Computes the first derivative of pseudo log-likelihood
tgarch2bsc Computes Black-Scholes-Courtadon model parameters

from TGARCH parameters
sssh2sssh Computes Scott, Stein & Stein and Heston model

parameters from SSSH-GARCH parameters
m2tex Converts MATLAB matrix to tex table
Testmin Verified maximum of likelihood
bsc2tgarch Computes TGARCH parameters from continuous time

Black, Scholes and Courtadon parameters
Showmin Plots likelihood in the proximity of the maximum
Showmin2 Plots likelihood in the proximity of the maximum,

one dimension only
lambdafunc Calculates forgetting factor and gain for observation

at time t
arith Transforms data series according to the definition of

the arithmetic rate of return
geometric Transforms data series according to the definition of

the geometric rate of return
Garchstatepars Calculates dual GARCH-state and GARCH(2,2) parameters
G22tostate Computes GARCH-state parameters from GARCH(2,2)

parameters

Table A.7: Auxiliary functions.
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Eksamensprojekter for˚ar 2000 ved IMM.

1. Ebbe Sørensen Automated seamless mosaicking of retinal
fundus images.
(Ikke mangfoldiggjort).

2. Torben Christiansen Clustering positron emission tomography
time series.

3. Kim Spetzler Petersen Signalseparation med uafhængig komponent
analyse (ICA).

4. Niels Wotetmann Andersen Acoustic echoreduction.

5. Anders Jensen Slotted waveguides.

6. Sverrir Gúdmundsson Crustal deformation mapped by combined
GPS and InSAR.

7. Kåre Lynge Jensen Image analysis on knitted textiles.

8. Jesper Leedgaard
Kim Herholdt Mortensen

Optimering af mandskabsplanægning i
detail-branchen.

9. Denis Fjeld Jakobsen Automatisk differentiation til løsning af
DAE.

10. Per Hove Nielsen Unit commitment i kraft-varme produktion.

11. Erik Engstr¨om Business integration strategies. - Analysis
for B2B e-commerce.
(Ikke mangfoldiggjort).

12. Ágústa Haflidad´ottir Estimation of IPP parameters based on
counts.

13. Brian Kallehauge Lagrange dualitet og ikke-differentiabel opti-
mering. - Anvendt i rutelægning.

14. Jacob Lemming Multi-period portfolio management.

15. Lars Jensen Estimating functions for stochastic pro-
cesses.

16. Jon Kierkegaard Estimation of nonlinear stochastic processes.


