
Car Simulation for Neurofeedback
Research

Bilal Arslan & Patrick Jørgensen

Advisor: Jakob Andreas Baerentzen

Kongens Lyngby 2012

IMM-B.Sc.-2012-28

Technical University of Denmark

Informatics and Mathematical Modelling

Building 321, DK-2800 Kongens Lyngby, Denmark

Phone +45 45253351, Fax +45 45882673

reception@imm.dtu.dk

www.imm.dtu.dk IMM-B.Sc.-2012-28

Summary (English)

The goal of the thesis is to create a car-simulation game, with the objective of
being the tool used to conduct experiments for a research project in neurology.
This thesis describes the steps we have made to transform a relatively simple
document, into an accurate environment, and later into a fully working car
game. We describe the steps the program takes, �rst to create the environment.
Then we explain how we made a car game, able to drive all the scenes created,
and react the way it should be.

When the simulation was ready to be presented, Hvidovre Hospital tested our
game. The software lived up to their expectations and the results were very
satisfactory. All in all, the researchers at the hospital were pleased with our
work, thus we had ful�lled our goal.

ii

Summary (Danish)

Målet ved projektet er at skabe et bil simuleringsspil, med henblik på at være
redskabet bag eksperimenter for et forskningsprojekt i neurologi. Denne rapport
beskriver de skridt vi har taget for at forvandle et forholdsvis simpelt dokument,
til en præcis verden, og senere til et fuldkomment bil spil. Vi beskriver de skridt
som programmet tager til at skabe miljøet. Dernæst forklarer vi hvordan vi har
lavet et bil spil, som er i stand til at køre alle scenerne igennem, og reagerer som
det skal.

Når simulering var klar til at blive præsenteret, testede Hvidovre Hospital vo-
res spil. Softwaret levede op til deres forventninger og resultaterne var meget
tilfredsstillende. Alt i alt var forskerne på hospitalet glade for vores arbejde, og
derfor har vi opfyldt vores mål.

iv

Preface

This thesis was prepared at the department of Informatics and Mathematical
Modelling at the Technical University of Denmark in ful�lment of the require-
ments for acquiring an B.Sc. in Informatics.

The thesis deals with procedural modelling of a scene in a car-simulation game
and how we can generate an environment out from simple input parameters.
Furthermore, the thesis also deals with game development and how we can
integrate the environment in it.

The thesis consists of di�erent techniques and algorithms used to ful�l such a
task. Moreover, the thesis suggests further extensions to improve the quality of
the game.

Lyngby, 17-July-2012

Bilal Arslan & Patrick Jørgensen

vi

Acknowledgements

We would like to thank our advisor, Jakob Andreas Bærentzen for presenting
this wonderful project to us, as it was our wish to be able to visualize and create
an interactive game. Furthermore, we would like to thank him for helping us
throughout the project with issues and guiding us through them.

We would like to thank the graphics group (Graphics Spring 2012) for many
good suggestions to improve our project and the feedback from the main and
other advisor's of the group.

We would like to thank the project group, Konrad Stanek and Ste�en Angst-
mann, at the Research Center in Hvidovre Hospital for their great teamwork
and understanding of the project and for the meetings throughout the project
period.

viii

Contents

Summary (English) i

Summary (Danish) iii

Preface v

Acknowledgements vii

1 Introduction 1

2 Analysis 3
2.1 Overview . 3
2.2 Requirements . 4

2.2.1 Game Logic . 4
2.2.2 Graphics . 4
2.2.3 Project Plan . 5
2.2.4 Related Work . 6

3 Method 9
3.1 Overview . 9
3.2 Game development . 10

3.2.1 Object �le . 11
3.2.2 Unity . 11
3.2.3 Car tutorial and the car 12
3.2.4 Terrain and road creation 12
3.2.5 Integration with object �les 12
3.2.6 XML parsing . 13
3.2.7 Light and Shading . 14
3.2.8 Procedural Modelling . 14

x CONTENTS

3.3 Bézier . 15

3.3.1 Theory . 15

3.3.2 Practice . 15

3.4 Terrain . 17

3.4.1 Height . 17

3.5 Road . 18

3.6 Tunnel . 19

3.6.1 The arch . 21

3.6.2 The road and the tunnel 21

3.7 Mountain . 22

3.7.1 Integration with terrain 22

3.8 Car control . 23

3.8.1 Way points . 23

3.8.2 Fog . 25

3.8.3 Follow-track Mode . 27

3.8.4 Transition between scenes 28

3.8.5 Input and decision . 30

3.9 Logging . 32

4 Implementation 33

4.1 Terrain . 33

4.2 Road . 36

4.2.1 Vertices . 36

4.2.2 Texture . 36

4.3 Tunnel . 38

4.3.1 Vertices . 38

4.3.2 Texture . 38

4.3.3 Integration . 39

4.4 Mountain . 40

4.4.1 Vertices . 40

4.4.2 Textures . 42

4.4.3 Entrance . 43

4.4.4 Intergration . 43

4.5 Simple Checking Program . 44

4.6 Car control . 46

4.6.1 Way points . 46

4.6.2 Follow-track mode . 49

4.6.3 Teleport . 51

4.6.4 Camera . 54

4.6.5 Logging and Follow Track 54

4.6.6 Input and decision . 56

4.7 Logging . 57

CONTENTS xi

5 Results 59
5.1 C++ and OpenGL . 59
5.2 Unity . 60
5.3 Hvidovre hospital - Experiments 61

6 Discussion 65
6.1 Project discussion . 65
6.2 Limitations . 66
6.3 Extensions . 66

6.3.1 The Environment . 66
6.3.2 The game . 70

6.4 Credits . 70
6.4.1 Distribution of work . 70
6.4.2 What is NOT done by us 71

7 Conclusion 73

A Cubic Bézier curves 75

B VRE with EEG 79

C How-to guide 89

Bibliography 97

xii CONTENTS

Chapter 1

Introduction

The Danish Research Center for Magnetic Resonance in Hvidovre Hospital is
trying to �nd a correlation between the neurofeedback and actions and deci-
sions taken. To do this, they needed a simple car game, with an easily editable
environment to use in their experiments. The game was needed to allow its
subjects to take decisions such as whether or not they should turn and when
they should turn and change direction of the car; in order to register their brain
activity when they these decisions are made. Optimally, they want to predict
the decisions of the subject, before he/she actually makes them.

This project involves creating the car game itself, which they will use to carry
out their experiments. We have received speci�c requirements as to what the
program should be able to do, and the most important of these requirements,
is that everything is to be based on an XML �le they generate. Therefore this
report explains how we go from a simple XML �le, to a full working car game,
complete with an environment, with special regard to keeping the design and
the program as �exible and extendible as possible.

We have implemented a program that automatically generates a complete envi-
ronment including roads, tunnels and mountains, all of this, with requirements
given by an XML �le. As this is a Bachelor Project, limited time was available.
We have therefore made our program following software engineering principles,
making it as extendible and �exible as possible, so future work is not only

2 Introduction

possible but also relatively simple. The most relevant and signi�cant moment of
the experiment is the one just before the subject is about to make a decision. At
this point the user decides which action to perform, and then the measurements
from an EEG (Electroencephalography, which is a measurement 'device' for
brain activity) are recorded and a correlation is then searched for.

The report is divided into several chapters. First, we analyse the problem, de�ne
the requirements and relate to other work in the analysis section. Thereby, we
explain how we designed the environment out from the analysis and the method
of solving these di�erent problems. Then we attempt to clarify how we actu-
ally did it, by explaining the algorithmic details of our solutions. Throughout
the report, we present tests and their results, followed by a discussion of the
project, where we among other things, explain many possible extensions of our
program. Finally, we will hopefully be able to conclude that the work we have
produced can indeed be used for future research experiments in the research of
the neurologic �eld.

Chapter 2

Analysis

2.1 Overview

First and foremost, this project's goal is to assist the research project of IMM
Cognitive Systems and Danish Research Center for Magnetic Resonance. Their
request is an interactive virtual environment which goal is to help conducting
experiments related to BCI (brain-machine interfacing) and real-time neuro-
feedback.

What is Neurofeedback? Neurofeedback is basically the signals sent from the
user's brain scanned by the EEG (Electroencephalography) system. The exper-
iments are done on the user, who is interacting on the virtual environment. The
most important data that the experiments should reveal is the decision taking
of the user. Their goal is to recognize and capture the phase of action, when the
user takes the decision before it is executed. If it is possible to capture such a
signal, then the ultimate goal would be to actually control the interactions done
on the virtual environment.

The suggested simplest way of capturing such signals to experiment on an virtual
environment is when the user interacts on a 3D car game. There are very
few decisions to take and it is easy to di�erentiate between them (turning left,
turning right, decelerate, stop etc.). The environment is also highly con�gurable

4 Analysis

in terms of complexity. To increase complexity, one could add objects into the
environment, distractions on the side of the road where the car is driving, or
adding signs and warnings for the user.

2.2 Requirements

There are speci�c requirements from the research project, which the game should
ful�ll. We can separate the requirements into two categories. One being the
game logic and control of the car. The other being the graphical part of the
game, that is to say the generation of the environment and making it look good.

2.2.1 Game Logic

There are several things that the game should be able to handle. The game
should be able to have an external control by an XML �le. This includes

• Modifying parameters to set the details of the environment. This could
be visibility (fog), shape of the track, light source, speed of car and other
extensions.

• Control of the car (this is done through the XML �le for our project)

� input via keyboard.

� Control of the car input via neurofeedback.

• Data logging. A �nite dataset that logs various information such as car
position, driving direction, distance to decision point etc.

2.2.2 Graphics

The hospital's main interest doesn't lie in the graphics of the game. This doesn't
mean that graphics are not important. In fact ignoring them does ruin the
experience of the game. Therefore regarding graphics, we had to live up to our
own expectations:

• Textures. The texture coordinates need to be correctly set, so the objects
in the environment resemble the real objects.

2.2 Requirements 5

• Simple shaders. This means that we need appropriate normals on the
vertices that shades di�erently according to the contribution from the light
source and other factors as well.

• Visibility. Visibility is essential when the user needs to take the decision,
and the hospital wants to be in control over it. They want to control how
much the subject can see, without a�ecting the coherence with the rest of
the environment.

2.2.3 Project Plan

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Intro to Unity3D

Game development

Environment Gen.

Integration

Track Mode

Data logging

External Control

Dynamic control

Extensions

Report

6 Analysis

2.2.4 Related Work

There has been done a lot of other games before and especially car games. Since
our project's essence is to create a car game, we can refer to many car games
existing for PC, consoles and arcade games as well. To name a few examples:
Grand Turismo [Dig97], a very successful car game created by Polyphony Digital
to the game platform, Sony Playstation. Another successful car game released
on the gaming platform, Microsoft's X-box, namely Forza Motorsport [TS05].
Other popular titles that comes up to mind: Need for Speed, Colin McRally,
Formula One etc.

Although, all these titles are made for entertainment purposes and commonly
are racing games. Our car simulation has a whole di�erent purpose: to assist
in Neurofeedback research. Similar works done with EEG by "Serious" games
[QWN10] show that an increasing need of games in medical applications and
how we can design them to help medical research. Furthermore, for monitoring
pain managements, "serious" games were used to help doctor's understanding
the anesthesiology and psychology aspects of patients. [SO11]

There are some involving algorithm's for solving the di�erent problems in our
project worth mentioning. One of these is a method for creating roads on the
terrain. A project group working with Unity called SixTimesNothing ([Mor12]
has created a Road and path tool, which creates a road given a terrain �eld and
some path (spline) coordinates, de�ned by a few mouse clicks on the scene.

Figure 2.1: Road and Path tool by SixTimesNothing [Mor12]

Unity development team and company has also published a tutorial for a car

2.2 Requirements 7

game, which helps other Unity game developers to get started with creating car
games in unity. It is freely available for download in their homepage. From this
one we have taken the 3D car model, and edited the scripts attached to it.

Figure 2.2: Car tutorial for Unity

Unity has also been used to create an arti�cial virtual environment to people
with psychological condition like depression. [MHDB11]. In fact, there is a
company working with developing serious games for EEG purposes.

8 Analysis

Chapter 3

Method

3.1 Overview

As mentioned in the previous chapter, the game is to be used to conduct exper-
iments at a hospital using an EEG to read the signals sent out from the user's
brain. The user interacts with the game by using an input device. To start
with, this input device is a simple joystick/keyboard but on a longer perspec-
tive, when the experiments have proven successful, the idea is to send the input
signal to the game using the user's brain signals. This signal is analysed and
converted into an input to the car game (all of this is done by the hospital).

All of the input and output from and to the car game is controlled by XML �les
and text �les. We have three di�erent of these.

Environment.xml This �le is used when we are generating the scene from a
set of spline coordinates for the road and the tunnels.

Logging.txt This �le is used to log speci�c information about the environment
and the location of the car.

Input.txt This �le is read from the game to get the input variables to control
the car's behaviour.

10 Method

Figure 3.1: Overall design scheme (picture taken from Konrad Stanek's pre-
sentation)

3.2 Game development

The initial idea of the project was to generate the environment in OpenGL
and C++ code and then, somehow, integrate this environment with the game
development engine, Unity. Unity is a wide-known tool used to create decent,
sophisticated games and is able export games as playable on PC as well as
modern consoles today (Nintendo Wii, Xbox 360 and Playstation 3). [Uni12j]

When we needed to design our environment in a C++ environment, there were
several things that needed to be taken care of. First, we had to think about,
how we were going to translate the work done in C++ into a format Unity
can understand. Secondly, it was not enough to just translate the work from
C++ to Unity, it also needed to be user-friendly as the project group from the
hospital is going to use our program for their experiments, and is not supposed
to to meddle with any code. Thirdly, we needed to think about performance
and esthetics.

After some research, we found an interesting �le format that ful�lled all of our
requirements for the translation of the environment from OpenGL C++ code
to Unity, namely the Object (.obj) �le format. This one suited us, as it was
easy to make (a plain text �le with a .obj �le extension), and Unity is able to

3.2 Game development 11

read them.

3.2.1 Object �le

When di�erent models are designed in computer graphics, they are represented
by a set of vertices, normals, faces and other information. The .obj �le format
is exactly used for this reason, to represent the polygonal data in pure ASCII
form. [Fil12]

The �le is organized in such a way that only pure vertex data can be written and
the elements (usually a face) choose their vertices, by designating the numbers
of the vertices, de�ned in the �le, they need. For example, say we have 4 vertices
de�ned in the .obj �le by 4 lines, namely

v 0 .0 0 .0 0 .0
v 0 .0 1 .0 0 .0
v 1 .0 0 .0 0 .0
v 1 .0 1 .0 0 .0

Then we can specify a face by de�ning 3 vertices (a triangle) with the numbers
of which they appear in the �le. Using the example above, a triangle face can be
de�ned by f 1 2 3, which means that vertex (0,0,0), (0,1,0) and (1,0,0) is taken
to form a triangle. If it was f 1 4 3, a triangle would be formed by vertices
(0,0,0), (1,1,0) and (1,0,0).

Faces can hold more than just vertex information. They can hold normals and
texture coordinates for every vertex as well. There are other interesting ele-
ments, groupings and other rendering attributes, which can be found on [Fil12],
but in this project, we stick to only using simple vertex data and texture coor-
dinates, and have faces as elements.

3.2.2 Unity

It is not enough to build an entire environment, we need to build a game out of
it as well. This is what we use Unity for. It helps, and makes it easier and faster
for us to make the game look nice. In Unity, most of the things for rendering
the objects are done automatically such as rendering settings, shading, ambient
occlusion, light-mapping, keyboard control, camera view, normals calculation
and much more. The interactivity and the game mechanics can be controlled

12 Method

by simple JavaScript and C# scripts. These, we have revised and modi�ed, in
order to suit our game best.

3.2.3 Car tutorial and the car

To start with, we had an empty environment and as a starting point, we decided
to take some inspiration from other car games. Luckily, the Unity company is
sharing tutorials regarding game development and how to get started and even
more luckyly, they had a car game tutorial. After throughout investigation of
the tutorial and analysing the in-depth code and how the game was working,
we noticed that making an object (the car) and making it move accordingly to
the laws of physics as it would in real-life requires insight in many things.

Our project is about creating environments and to make a game which is suitable
for experiments. Given the time restriction of our project and the amount of
details that the game should include, it was decided to take the car model asset
from the Unity tutorial and 'borrow' it for our game, as it was also suggested
in the tutorial notes by the Unity company.

3.2.4 Terrain and road creation

Having the car, allowed us direct movement towards environment creation. We
started by creating a simple environment, using Unity's Terrain function, which
was an easy and fast way to create an environment. Next easy step was to create
a road, and we used a road creation tool to get inspired by other people's work.
[Mor12] This was the �rst step in leading us to the idea for road creation (see
section 3.5 and �gure 2.1).

3.2.5 Integration with object �les

When we had created the road and the environment using OpenGL and C++,
using our algorithm's for road creation and terrain creation (3.4), we integrated
this with the object �le format. All the vertices we have created and combined in
OpenGL, we have added to the object �les. Unity has the ability to load object
�les and it does so dynamically too, which means that if you make changes to
the object �le outside Unity, it appends the change in Unity as well. This meant
great �exibility for the combination of our OpenGL code and Unity environment.

3.2 Game development 13

Unity also has the ability to add mesh colliders to the surface as part of its import
settings, so that every other object in motion will collide with the environment.
On top of that it also calculates the normals, if asked to by the import settings.
In our case, this makes the car possible to drive on the surface, where it would
fall through the mesh otherwise. All that was needed to be given was the object
�le.

3.2.6 XML parsing

All the parameters and spline coordinates for the road and terrain are generated
through XML, which is why we need XML parsing, in order to read the data. We
were advised to use the GEL library by IMM and our advisor [Bæ12] as an easy
and simple way to read from XML �les. Javascript also contains an XML parser,
namely Microsoft's System.xml Namespace. [Mic12] This namespace contains
an XmlReader, which we can use to easily read the data in javascript as well,
since this is the main scripting language that Unity makes use of. Another
alternative is C#.

The hospital's XML �le consist �rst of some parameters for general environment
purposes such as fog, size etc, followed by the road map, consisting of roads,
side roads and segments. Generally, we have the following structure.

<parameters>
<car_view>outside</car_view><!−−i n s i d e | back | top−−>
<car_default_speed>50</ car_default_speed><!−−0−100−−>
. . .

</parameters>
<road_map>

<scene id="1" pid="0">
<road id="1" pid="0">

<segment id="1" type=" tunnel ">
<x1>52.654</x1>
<y1>4.6569</y1>
. . .

</segment>
</road>

</ scene>
</road_map>

Because of the simplistic structure, we can easily read from the XML by just
parsing through the DOM elements and read its body.

14 Method

3.2.7 Light and Shading

Without some light contribution to the scene, everything is dark and nothing
can be seen. This is why the game also needed some light sources, which would
be to simulate a sun. When making an environment a sun is essential game.
This one would typically be modeled as a directional light, where the position
of the sun is far away from the scene.

With some light, there needs to be some light contribution for each object on the
�eld as well. Since every object in the environment is separated, one could shade
every object di�erently according to the material. One material could have more
ambient contribution and another could have more specular etc. Unity has many
built-in simple shaders, which mainly consists of the di�use term.

3.2.8 Procedural Modelling

The idea of procedural modelling is to model objects by a set of rules, rather
than design each object in a game manually. In fact, for standard objects, such
as trees, buildings and in our case terrains, it is acceptable, and in many cases,
favourable not to design those by hand, but rather have algorithms take care of
generation. This not only spares one of a lot of time modelling each object, it
also saves memory, as one is not to store huge �les of 3D objects, but rather rules
that de�ne them, and the algorithm that de�nes them. From the point of view
of a company, it is also very interesting having procedural generated objects in
a game, as it saves oneself from paying an artist to model a detail, which is not
trivial to the gaming experience, and often simple enough to be looking just as
well, if generated procedurally. In fact [PM01] creates entire cities procedurally
from statistical and geographical input data. And this project is about creating
an environment, and in fact a complete self driving game, from an XML �le, so
we think it classi�es as a procedural modelling project, where a lot of work has
previously been done.

However unlike many games, ours has not the goal of being fun, but rather to
be able to play itself. So we do not procedurally generate just the environment,
but also the driving itself, which has to adapt according to the terrains created.

3.3 Bézier 15

3.3 Bézier

3.3.1 Theory

A bézier curve is a polynomial curve formed by using few spline coordinates for
which it 'aligns' to. These coordinates are more commonly referred to as control
points.

More speci�cally, we have used cubic bézier curves. These are only de�ned by
4 control points and the ends of the curve are joined with the start and the
end points, respectively. To give a formal description of how the bézier curve is
formed, the formula is given below:

P (t) = (1− t)3P0 + 3(1− t)2tP1 + 3(1− t)t2P2 + t3P3, t ∈ [0, 1]

where P0, P1, P2, P3 are the control points. The coe�cients are related to the
Bernstein polynomials, which is polynomials in Bernstein's form and is an im-
portant mathematical step and the building blocks of a bezier curve. See [Joy00]
for further explanation of Bernstein. Below you will �nd some examples of bézier
curves.

P0

P2P1

P3

Q0 Q1

Q2

Q3

Figure 3.2: Examples of bézier curves.

3.3.2 Practice

We are using the bézier curves in two places, namely the road creation and the
tunnel creation. A straight lined road would look dull in a scene and it not
common to have only straight roads in real life as well. Therefore, the road

16 Method

needs to be curved and these can be controlled by the control points, de�ned
by the xml �le.

Figure 3.3: Bezier segments. Many road segments are joined together as the
control points of the end and start are the same.

A tunnel on the other hand can be straight and in some cases, this is true in
real life as well however, the tunnel's functionality is to obscure the user's view
so he/she cannot see the end of the tunnel. Therefore, it might be convenient if
the tunnel is curved so the end of the tunnel cannot be seen (this is assuming
that we have no fog in the scene).

Figure 3.4: Obscured tunnel. To the left, straight tunnel where the end is
visible. To the right, we have curved tunnel to hide the end of the
tunnel.

Apart from the environment creation, bézier curves are also used to control the
car by way points. Way points are explained in 3.8.1.

3.4 Terrain 17

3.4 Terrain

At the very beginning of the environment creation, we start by creating a terrain
which is �at to begin with. The terrain itself is constructed by a set of vertices
and where the faces of the triangles are set. A face is basically constructed
by a set of 3 vertices and additional information, such as normals and texture
coordinates. More formally, the relation between the vertices, edges and faces
of triangle meshes, are given by the Euler-Poincaré formula [TAM08a], which is
given by

v − e+ f + 2g = 2

where v is the number of vertices on the mesh, e the number of edges, f the
number of faces and �nally, g the genus (a genus is basically a hole in the mesh).

3.4.1 Height

To make the terrain look more realistic, we need to add heights to it in di�er-
ent �elds. For this purpose, we have used a noise-based procedurally generated
heights. [TAM08b] [DSEW02] This noise function is a pseudo-random genera-
tion of the height, meaning that heights are calculated randomly, but the same
random value is produced for every execution of the noise function.

For calculating the noise, we use Sum-of-Sines where we for each randomly
generated point in plane, greater and smaller than some de�ned thresholds,
create a vector from the center of the vertex to the points, which is the frequency
vectors. With these frequency vectors, we take the sum of the sines of the
vector's dot product with the current vertex. Formally, the equation is given as
follows.

∑
sin(v · f)

where v is the vertex we are looking at and f the calculated frequency vector.

A noise texture is sent out from the function and we combine this function
with another function, called turbulence, which gives an irregular smoothing
out of the terrain, which contributes in making the scene look more realistic.
For every vertex, the e�ects of these two functions are combined and used to
give the terrain a nice and realistic look. The turbulence function is given by
the following formula.

18 Method

Threshold 2

Threshold 1

Figure 3.5: Noise frequencies. Black dot is the vertex we are looking at, red
dots are the randomly calculated values, which are in between the
two de�ned thresholds. The random values outside the threshold
are omitted.

∑
i

| 1
2i
noise(2ix)|

3.5 Road

Once the terrain is set, we need a road on which the car can drive upon. The
road has a di�erent shape and texture than the terrain. Also, the road is not
linear but instead is shaped along a curve - a bézier curve to be exact (further
explained in 3.3).

Once we have the curve de�ning the road, we need to actually create the mesh.
There were di�erent ideas for the mesh generation. One of the �rst ideas was
simply to translate the curve with the half road width to both sides and produce
a triangle strip along these vertices. Although, we noticed quickly that the idea
did not hold for several cases. For example, if we had a very curved areas,
the width of the road would not maintain the same along the road. Another
idea was to introduce half circles along the curved areas and scale them to have

3.6 Tunnel 19

di�erent radius. This way, we would have the same road width along the curved
areas, although this required partitioning of the road into smaller segments and
seemed rather complicated.

Road width

Road translated left

Road translated right

Road middle

Road width

Road scaled up

Road scaled down

Road middle

Figure 3.6: To the left, initial idea with translating. As we can see, the road
width's are not the same along the road. To the right, scaled
half circles to maintain the road width, but too complicated as it
requires segment splitting and not so �exible.

The solution we use is quite di�erent. By simply knowing the vertices along the
curve, we can create vectors, which is directed toward the next vertex on the
curve. By having this information stored, we produce vectors and from each
vector start point, we create two new vertices going on the vertexes left and
right side, by half the road width. These two vertices, we later use to produce
our triangle strip along the road. See illustration in �gure 3.7.

3.6 Tunnel

To create tunnels in our program, we had to build on the work we had already
done on the roads, seeing as the tunnels are covering the roads, and those are
de�ned by bezier points. The idea of the tunnel, is having some sort of transition
between scenes, where the player does not notice that the environment outside
changes 3.8.4.

The challenging part of this is to make the arch touch exactly the road, so there
is no gap between the road and the arch of the tunnel. Therefore we needed to
have a function, which starts and ends in the vertices that de�ne the road.

20 Method

Figure 3.7: Road creation. For every vertex, we �nd the direction vector and
take half the width out from each side, perpendicular to the direc-
tion vector.

Figure 3.8: Example of tunnel.

3.6 Tunnel 21

3.6.1 The arch

As shown in 3.8 and 3.9, we have decided to make our arch round. However
we could have made the tunnel arch be squared, all that would need, would be
to raise the two road vertices to a higher height, and then you would have a
tunnel. In fact this would simplify the implementation of the tunnel a lot, and
it would strongly reduce the amount of vertices used for the tunnel. However
we found that, not many tunnels are squared, and to increse realism, we would
make them round. We could also combine both solutions, so raising a little,
then �nishing o� with a rounded arch. This might look more realistic, however
we found that the round arch looked su�ciently realistic, and in fact, there is
not too many extra vertices.

3.6.2 The road and the tunnel

There was discussion, as to whether or not the tunnel should be united with the
road, as to whether they should share vertices. We did not think of it as a good
idea, as it increased complicity of the implementation, and lowered �exibility in
case one was interested in editting the implementation of the tunnel.

Figure 3.9: Example of tunnel with road in game

22 Method

3.7 Mountain

After having created the tunnels, we needed them to make sense. Therefore
we needed to make mountains over each tunnel. We have de�ned it, so the
mountain has a certain width. However this one remains small, as we want it to
have relation with the road width, so we can multiply this value with the width
of the road, in order to keep it bigger than the wider than the road at all times.

3.7.1 Integration with terrain

There was discussion, seeing as we enter a tunnel, and the road reaches the
border of the tunnel, whether or not the mountains should just be the terrain
with a raised height. We would then have to make sure, that at places where
there is a tunnel, we would add new vertices.

We would like to add mountain vertices at the entrance and exit of the tunnel,
to make sure there is no gap between the tunnel and the mountain, so it looks
as if the tunnel has been created by drilling the mountain. At all other places,
we would just like to add additional height to the terrain so it shoots up in the
air.

However we found that adding extra vertices in the terrain, will complicate the
creation of the terrain. Therefore, decided to make mountains independable of
the terrain, but based on the implementation of the tunnel.

The idea is making a carpet over the tunnel, that connects to both the tunnel
and the terrain. This means, we would like to make the same as described
above, only as an independent object.

3.8 Car control 23

3.8 Car control

In this section, we will talk about how the various controls and behaviours of
the car are designed. First, we will talk about way points, which plays an
essential role in follow-track mode of the car and many other things as well.
Then we will talk about the follow-track mode in detail and what it actually is.
Furthermore, we will talk about how fog is involved in our scene and how it is
handled. Moreover, we will talk about how the car is translated between scenes
and after, we will discuss how the input and output from the car is handled and
how we control the car, when a decision needs to be taken at a certain point.
Lastly, logging is explained.

3.8.1 Way points

We have made way points, to guide the car through the scenes. However they
are not necessary, as a lot of calculations could have made the car drive by itself.
However making way points spares a lot of calculations, that are only needed to
be done once, upon startup, and therefore sparing the car for many calculations,
and thereby speeding up the game.

3.8.1.1 Basic

A way point in general can represent many things in many di�erent concepts,
sometimes used in GPS systems to indicate crossroads and turns, but in our
case, a way point is simply a position/location on the road, which helps us to
indicate and decide di�erent events when such a way point is reached. The way
point does not have to be represented in any polygonal mesh, but a simple set
of coordinates or a point (dot).

The way points are placed on the road and generated through the same bézier
curve as the road. Thereby, we ensure that the way points lie in the same place
as the road (see Figure 3.10).

The general usefulness of way points in our project is to control the car's be-
haviour according to its speed and steering. What we mainly want to achieve
is to make the car follow the aligned way points on the road and thereby guide
the car throughout the scene. This is the method we use to implement follow-
track mode, which is the mode where the car follows the way points and thereby
drives automatically.

24 Method

The other great usefulness of way points is to trigger special events when their
location is reached. This can help us to take a decision regarding the car move-
ment and it's destination. This can further be explained in the section for
decision taking. 3.8.5.

Figure 3.10: Way points on road. In this scene, they are simply formed as
spheres, but no mesh is drawn to hide their existence to the user.

3.8.1.2 Extended use of way points

Now that we have �xed points in the environment, we have an easy way to send
any information to the car. As the way points are used to make the car drive,
each way point can have a big amount of information, that the car doesn't need
to calculate. It can hold a lot of information that the environment has, and
the car wishes to retrieve. The way points can hold information about where
they are, which scene has created them, how far there is to the next segment,
whether or not the car should turn, which mode the car should be on (follow-
track or free-ride) and a lot more. Mostly the way points hold the information
mentioned above, which the car uses for its logging. So it contains information
about which road we are on, which scene it is and where the car is in local scene
space.

All in all, the way points is a good way to pass information from the world, the
scene, and the way point to the car. In fact it is the direct connection between
the car and the xml �le. The way points help in many ways, and according to
new needs in the game, one could use the way points to solve a lot of problems.

3.8 Car control 25

3.8.2 Fog

We also use the way points to control the fog. When the car reaches speci�c way
points, information is passed to the car, that the fog can change. The hospital
needs to blur the exit of the tunnel, so the player cannot see outside of the
tunnel, when being inside. By testing we found that having greyish whitish fog,
gave the "light inside the tunnel" sensation 3.11. So we decided to use the built
in Unity fog [Uni12c], and simply control the density, and the color. However,
the idea 3.8.4, is that the player does not notice changes of scenes. Therefore we
have a demand that the tunnel, have a minimum length (around 200 meters),
as if it is shorter, the fog would not cover the environment outside the tunnel.

Figure 3.11: Fog inside the tunnel Figure 3.12: Fog on the environ-
ment

When on the environment, we wanted a feint, blueish fog 3.12, that one barely
notices (the ozone's scattering of light). Seeing as we are editing the density
and the color, we need a transition in between, for it not to be too noticeable.
To control this color and density, we could have had the car decide how far it is
from the tunnels, and from exiting the tunnels (when inside). However seeing
as we already decided to control the car's follow-track from the way points, we
decided to make them give the message for the car to make a transition. In
fact there was question as to when the message should be passed. As one could
decide to do it according to distance, segment or time until the car reaches the
tunnel (likewise when exiting).

However seeing as each segment knows and reaches the last spline coordinate
3.3, we decided just to use the way points on the last segment to send messages
to the car about changing the fog. One could just let the way points change the
fog density and color, however as the way points are not equally distanced, nor
do the segments the same length, fog transitions would never be the same. Also
if the way points de�ned the fog settings directly, the fog would jump form one
value to another, and it would not be smooth. One could also have �xed small
values, that one adds, for every update. This would indeed make it smooth,
however we wish the fog to �nish settings upon reaching the tunnel at a certain
point. Also if one adds a �xed value to the fog density, one also depends on
the frame rate of the computer, as the settings are set in Unity's overridable

26 Method

function Update() which is called for every frame [Uni12f]. One could instead
use Unity's overridable function FixedUpdate(). As this one is called at a �xed
time, the fog would be the same for every computer, however one would have
a lot of unnecessary calculations (or not enough, depending on how performant
the computer is).

We decided though to use Update(). We make the fog come increasingly accord-
ing to how far the car is from the last way point of the segment before entering
the tunnel. Thereby we can easily control when the fog starts to change, and
how fast the transition happens. This also make most of our fog transitions look
the same. However not all, as if the straight line distance from the car to the
last way point on the last segment, is shorter than the distance set, we have the
fog suddenly appearing.

On the way out of the tunnel however, we are not speci�cally interested in
having a distance in which the fog changes, but we still wish it to be the same,
no matter the computer we are working on. Therefore the car looks for when it
is reaching the last way point of the tunnel, and we de�ne a �xed time, in which
the car should have changed from tunnel settings to environment settings.

3.8 Car control 27

3.8.3 Follow-track Mode

A very special feature of the program is the follow track mode. The main focus
of the experiment performed by the hospital is the decision taking (whether or
not I should turn or not), and not so much the driving. Therefore the car should
be able to drive by itself and follow the road created by the spline coordinates
given by the XML �le. Therefore we use the XML once more to generate the
way points, and those are used to make the car drive, using the information
stored by the way points to guide the car.

The car could also not use the waypoints to drive, in fact it could just read the
XML �le itself, and calculate its track from that. However we decided that the
way points should hold the information about the path, because it saves a lot
of calculations (as it is only made once on startup), and allows us to partition
each segment into several points, that the car has to reach, allowing more or
less smooth driving.

28 Method

3.8.4 Transition between scenes

In order to maximize �exibility of the program, and to maximize use of the
spline coordinates, the hospital have created small scenes, that the car should
traverse. This enquire new design questions, as to how make the transition in
the best possible way.

The problem has been divided into several steps:

1. How should we import the scenes, created by our C++ program?

2. Upon start-up, when should each scene be loaded, and where, and thereby
how should the car go from one scene to another?

The �rst problem is one we have invested a lot time into. We tried to �nd out
how Unity can load an entire folder independently of how many �les are inside,
and also load them into the game. However we found that Unity loads the folder
correctly, but it wasn't obvious how to make dynamical import from a script.
Therefore we ended up deciding to make a �xed number of 150 scenes from
our C++ program, and load all of them into Unity, and into the game every
time, which is done by Unity's import settings. However in the case (most of
the cases), where the XML �le contains less scenes than 150, the C++ program
create all the scenes necessary, and the rest are just empty. Making it this way,
the empty scenes do not eat up computation nor memory, so we found it an
easy and good solution.

The second problem is less trivial. It all depends on the way one wishes to
interpret the problem. In order to make the transition more smooth, the hospital
have made it so, that the �rst segment of every scene, and the last segment (no
matter the decision) is a tunnel. So the player will not notice a shock when
changing from one scene to another, especially seeing as we have created fog to
blur the exit of each tunnel 4.6.1.2.

A more or less easy, however not very e�cient solution (in terms of calculations
and memory), could be to duplicate the next scenes into each exit of every
previous scene. However very fast, one would get a lot of unnecessary scenes,
seeing as one would have:

un = kn−1 + un−1 scenes

where u0 = 0, where n is the number of scenes and k is the �xed number of
exits per scene. On the other hand one could also dynamically delete the scenes

3.8 Car control 29

that are unreachable. However this would mean that we should have another
way of checking each decision the car takes, and delete all the scenes that are
unreachable, or have the car do it, thereby adding extra computation to the car
upon decision making.

Another solution to this problem could be just to keep one prefab1, of each
scene, and just move it, according to the decision taken by the car. This would
help the unnecessary calculations on start-up, however the game would still
have to move the scene to the exact right location, so a script would have to
run and control this. Also a problem could be, as we have squared terrains (for
simplicity), if a tunnel is not at the border of a terrain, part of the previous
terrain, could a�ect the next scene, so one should also delete the previous scene,
when entering the next.

Both solutions are dependent on having the exit tunnels of one scene, being
identical to the entrance tunnel of the next scene. In fact the solution we chose
3.13, is also dependent on this. We decided to simply translate each scene (on
start-up) to be at the width of the mountain2 plus 50 away from the end of
the previous scene in the z-coordinate. However this means, that we need to
'teleport' the car from one scene to another.

Figure 3.13: Illustration of the car's teleportation

1Prefab are an instance of an object inside the project [Uni12g]
2width of the mountain is de�ned by mountain_width multiplied by the road width 3.7

30 Method

3.8.5 Input and decision

In the beginning, we need to control the car by some input from the keyboard
and later on extend this input to be from reading a simple text �le. To start
with, the Car asset3 has got prede�ned keyboard control for steering the car
and for acceleration and braking of the car. This, we need to edit to our own
way of controlling the car.

The simple design is that the hospital has got a program for writing input to a
text �le. This input is done by a scales of milliseconds, so it is important that
our program reads this input fast as well. We simply need to read this input
and use it to control the car's behaviour.

The problem here arises when we need to be careful with the sharing violations
with the �le. One process, which is the hospitals program, needs to only write to
the �le and our process in Unity script only reads from the �le. More detailed,
our program keeps this �le open at all time and when input is received, this
input is read immediately and removed from the �le and await for the next
input.

Hospital's program
write (ms) read

wait for input

Figure 3.14: Input and read/write scheme. Hospital's program sends input to
a text-�le and the car game waits for the input and then reads
the input from the text �le.

We can have �ve di�erent input

• start to start the game.

• left to turn left.

• right to turn right.

• up to accelerate.

• down to brake.

3Car and the car control is developed by Unity

3.8 Car control 31

When the input is read, we have to possibilities depending on the mode we are
driving.

1. If we are driving in free-mode, we take any input directly from the text
�le and the action is made.

2. If we are driving in follow-track mode, we only need to take the decision
at the cross roads or where there is a possibility of turning in a direction.
In this case, we simply accept input from only a certain time-interval from
the actual turning point. This can for example be to accept input only
from the start of the segment road and 5 seconds onward. If the input is
received after 5 seconds has passed from the start of segment, we reject
the input and use the last input received before 5 seconds, if any.

Furthermore, in the follow-track mode, the decisions are controlled by the way
points. At every cross-road, we create a special way point which triggers the
event of checking the input. If no input has been given, we simply continue.

32 Method

3.9 Logging

When doing such time sensitive experimenting, logging of the game's state, car
position and other information is quite important when the hospital backtracks
the events at certain times. This is also very important in the decision taking
phase, to see a correlation between the brain signals and the log data. Therefore,
careful and precise logging is essential to the experiments.

Unity engine contains a very nice solution for this time sensitivity. It is called
fixedUpdate(). [Uni12b] What fixedUpdate() does is that it runs a certain
portion of the script in a �xed time step interval, meaning that we can log at any
time frequency as the user wants. For the hospital, every milliseconds counts,
and therefore this functionality prooves to be very useful.

The format of the log is provided to be as the following:

id gt st sid rid spid posx posy orien speed

0 497 0 1 0 1 51 .77 6 .72 (−1.0 , 0 . 0 , −0.1) 0
1 768 15 1 0 1 51 .77 6 .72 (−0.2 , 0 . 0 , 1 . 0) 0 .0588622
2 1008 30 1 0 1 51 .77 6 .72 (−0.2 , 0 . 0 , 1 . 0) 0 .1632052
3 1008 44 1 0 1 51 .77 6 .73 (−0.2 , 0 . 0 , 1 . 0) 0 .1632052
4 1008 60 1 0 1 51 .77 6 .73 (−0.2 , 0 . 0 , 1 . 0) 0 .1632052
5 1008 74 1 0 1 51 .77 6 .73 (−0.2 , 0 . 0 , 1 . 0) 0 .1632052
6 1009 89 1 0 1 51 .77 6 .73 (−0.2 , 0 . 0 , 1 . 0) 0 .1632052

To describe the columns, id is log id, gt is the global time in milliseconds(ms),
st is the scene time in ms (reset every teleport), sid the scene id, rid the road
id, spid the spline or segment id, posx and posy is the position of the car in
x and y coordinates, respectively, orien the orientation in normalized vector
form and lastly speed the speed of the car.

Chapter 4

Implementation

In the implementation chapter, we will thoroughly explain how we actually
implemented and created our environment with additional information about
the game development in Unity game engine. We will go though how we applied
the bézier algorithm to create the road, tunnels, mountain and we will explain
how we generated the terrain. Furthermore, we will explain how we implemented
arti�cial intelligence to our car (follow-track mode) and how we made logging
along with input and output to take decision of the car's behaviour.

4.1 Terrain

The implementation of the terrain is pretty straightforward, with the exception
of the height. Without the height, it is just a matter of running a double for-
loop with the width and height of the terrain, respectively and creating vertices
with these coordinates. The number of steps you take can be adjusted with how
detailed the terrain is drawn.

For the height, as mentioned in the design section 3.4, we use a combined noise
and turbulence function. In the noise function, we create an array of frequen-
cies within a threshold, by using a random function in the GEL library called

34 Implementation

gel_rand 1 [Bæ12] and we create a vector out from random values. Then, if
the length of the vector is greater than the threshold (0.5 in our case), we add
this vector to the frequency vectors, else we discard it and try again. When the
frequencies are generated, we simply sum up the results, using the Sum-of-Sines
formula. For turbulence, we simply call this noise function a number of times
to generate turbulence.

Figure 4.1: Example of the generated terrain using noise and turbulence.

However, as shown on �gures 4.3 and 4.2, we want the road to be on level y = 0.
Therefore, upon making the random height of the terrain, we need to check
whether there is a road or not. In fact instead of calling the random function
directly, we have made a function which not only sets the height, but also checks
if there is a road on the terrain. The way it does that, is as follows: While calling
our bezier function, we set values to an array, initialized (with 0 in all �elds) to
have the terrain width multiplied by the terrain height divided by the terrain
step as size.

init =
terrainw · terrainh

terranstep

In that way, we have a �eld in the array for each of the vertices in the terrain.
When creating the roads, the bezier function sets the accurate �elds in the
array to having value −1. Also on the sides of the road, we want a transition
(as shown on 4.2), meaning we want the terrain to reduce the ampli�cation �nal
height of the terrain on the sides of the road. Therefore, in our array we set the
surrounding �elds of the array to have values ∈ [0 : 1]. Eventually, when calling
the terrain height function, it will retrieve values from the array. If the value is

1The function is not developed by us, but by our advisor Jakob Andreas Bærentzen. The
reason we used this function in this particular noise function is in connection with the course
Real-Time Graphics, where we also used this particular random generator to generate heights
in the terrain.

4.1 Terrain 35

−1 it will not edit the height, setting it to 0. Else it will use the array's values
(other than 0) to multiply on the height returned by the turbulence function,
thereby making it smaller.

Figure 4.2: Example of the generated terrain using noise and turbulence.

36 Implementation

4.2 Road

As mentioned in the design section, we use the last mentioned idea for imple-
menting the road. [3.7] The road is created by the global function we have called
bezier(). As the bezier formula given to us by A, the curve is created by using a
variable t ∈ [0; 1]. Therefore only approximations can be used in our program.
In fact we cut up our bezier curve in a certain amount (named bezier_steps)
of pieces. For each step we create two new coordinates nP0x and nP0y. Next, we
create next set of coordinates by taking the next step. Those we name nP1x and
nP1y. Now, these two set of coordinates are used to create a directing vector
from P0 to P1 called vec.

What we want to do is to create triangle strips, where we combine vertices
translated with the road width, so to have the road width contribution to the
mesh we want to create, we create a new vector with the road width contribution
by the following (where rw = road width)

vecrw =
vec

‖vec‖
∗ rw

4.2.1 Vertices

When we create the vertex for the road, we simply translate with vec_rw from
x and z position (in our case, z because Unity uses xz-plane, instead of the
xy-plane) respectively. So the new vertices are given as

v1 =

nP0x− vecrw.x0
nP0y + vecrw.y

 v2 =

nP0x+ vecrw.x
0

nP0y − vecrw.y

The y vertex is 0 because the hospital wants the car to drive at the plane where
z = 0, which is y = 0 in our case.

4.2.2 Texture

Mapping the texture on the road was not trivial, as simply taking constants was
not su�cient. In fact as all segments are not the same length, we would not have
the same size of texture as we move along the road. Therefore we have de�ned a

4.2 Road 37

tex_index for each x -coordinate, on which we add the distance between P0 and
P1 divided by a constant. The y-coordinate of the texture mapping however
was a lot simpler, as we just needed used the index 0 on one side of P0 and 1
on the other side.

Figure 4.3: Road vertices and texture mapping.

38 Implementation

4.3 Tunnel

We have implemented the tunnels by using the road vertices implementation
nP0x and nP0y, along with the cross vector, to give it the same width as the
road. Therefore we added the implementation of the tunnel to the bezier()
function. So for each pair of road vertices, we have an arch on top.

4.3.1 Vertices

As the roads are always on the xz-plane we just have to change the y coordinate
of the tunnel to give it correct height over the road. We have decided to use a
simple sine function to make the arch of the tunnel. However we should use a
cosine function on the x and z coordinate of the cross vector, of the road vertex
we are looking on, then substracting this one from nP0x and adding it to nP0y,
as we do in the road implementation. This will allow us to progressively go from
one side of the road, till the other. So we get a formula looking like this, with
θ ∈ [0;π], and X and Y being the x and y coordinate of the cross vector at
position (nP0x, nP0y):

x = nP0x−Xcos(θ)

y = sin(x)

z = nP0y + Y cos(θ)

Seeing as we manually have to decide, how many vertices we will use to de�ne
the tunnel we created a for-loop wrapping around this. This one starts on 0
and ends on the density chosen (here 20). Therefore we now identify θ as:
θ = φ/density · π where φ ∈ [0; density]

4.3.2 Texture

Now that the vertices are created correctly, we are looking into mapping the
texture correctly onto the vertices. On the x-coordinate of the mapping, we will
simply use the same variable as used for the roads, seeing as we traverse the
same distance. On the y-coordinate we just use φ/density, so φ/density ∈ [0; 1].

4.3 Tunnel 39

4.3.3 Integration

Now having the vertices, and their respective texture coordinates, we have to,
once more, add this to the object �le. The way it is done, is we add all the
vertices, and the textures created from the bezier() function. When that is
done, we have to create the faces, as shown on �gure 4.4. However we have
complications, seeing as we have both the roads and the tunnels in our array.
However we know that for two road vertices, we have 21 (seeing as we have a
density of 20, and our loop goes from 0 to 20 included) tunnel vertices. Moreover
we need 3 vertices to make a face, so to make the road, we need the three road
vertices. Also, to better di�erentiate, we make a group every time we create a
pair of faces, thereby di�erentiating between a road and a tunnel. However in
our data structure, we have 2 road vertices at a time, so we have tunnel vertices
in between, so we have to skip them (using a variable adding 2 with the density
of the tunnel plus 1). Regarding the tunnel we do the same, however we need
to skip the two �rst vertices (seeing as they are road vertices), and also the last
one, as we connect with the next vertices (and if we didn't we would have tunnel
vertices connecting to road vertices).

Figure 4.4: Final product of tunnel

40 Implementation

4.4 Mountain

We based our implementation of the mountain, on the one of the tunnels. We
integrate this one with the for-loop of the tunnel. This means that we have
as many vertices on the mountains as the tunnels. However we found that the
texture had problems working correctly. In fact, around the entrance of the
tunnel, the texture got stretched, and made it look bad. So we had to partition
the implementation of the mountain into an entrance and the actual mountain.

Figure 4.5: Final product of mountain

4.4.1 Vertices

Just like the tunnel, we have to de�ne the height of the mountain. We use almost
the same formula as the tunnel to make the mountain. We use (nP0x, nP0y)
again, however now we want a linear function de�ning the mountain, as shown
on �gure section 4.6.

Therefore we will �nd formulas for the x and z coordinates. We will use the
variable φ, density and vecrw as the ones described in 4.3.1, and mw being the
mountain width.

x = nP0x− (vecrwmw(1− (φ · 2)/density))

z = nP0y − (vecrwmw(1− (φ · 2)/density))

4.4 Mountain 41

We see that (1 − (φ · 2)/density) ∈ [−1; 1], as φ ∈ [0; density]. Thereby we we
will have mw(1− (φ ·2)/density) ∈ [−mw;mw], and by multiplying on the cross
vector (which is normalized), we get the wanted vertices. Next we will look into
the y coordinate. However in order to make the mountains a little more realistic
we have a varying width. To do this we subtract a small decreasing fraction of
mw from mw given by:

mw −
mw

(i+ 3)

Where i ∈ [0; steps/2], where steps is the total amount of steps we take for the
bezier function.

As shown on �gure 4.6, we have made a linear height for our mountain. There-
fore to make it look real, we need to control the max height of the mountain on
the segment that contains a mountain, as well as the height on the side.

To determine the max height we have made two functions, depending on how
far on the bezier segment we are. We have i ∈ [0; bs], bs being the amount of
steps in our bezier function, mh being the height of the mountain, and th being
the height of the tunnel.

peak1 =
3i ·mh

bs
+ th

peak2 = mh −
3(i− 2bs/3)mh

bs
+ th

Looking at the �rst function, we have 3i ·mh/bs ∈ [0; 3mh], and the second func-
tion mh−3(i−2bs/3)mh/bs ∈ [0; 3mh], however the �rst function is increasing,
and the second function is decreasing (the �rst one starting at 0 �nishing in
3*mh, the second one starting in 3*mh and �nishing in 0). Moreover we add th,
so the mountain does not cover the tunnel at any time. In the end, we have our
actual peak which is found by taking the minimum of: peak1, peak2 and mh,
thereby ensuring the height stays maximally by the value of mh, and having the
�rst third of the mountain growing, the second third stable, and the last third
decreasing (as shown on �gure 4.6).

Now that we have the peak, being the maximal height when advancing in the
bezier, we will now make the actual height on the sides of the mountain. We
identify two functions for this:

42 Implementation

y1 = peak − φ · peak/density

y2 = φ · peak/density

We can see the �rst function peak−φ · peak/density ∈ [0; peak] and the second
function φ · peak/density ∈ [0; peak], as φ ∈ [0; density]. One more time, we
made the �rst function decrease, and the second increase, and determine the
actual height by taking the minimum of both. All this gives us a mountain
looking like �gure 4.6.

Figure 4.6: Basic mountain

However, �gure 4.6 is just the basis of the mountain. For making it look more
natural, and not mathematically generated, we applied the same random func-
tion as the one used for the terrains. Then we end up having a mountain that
looks a lot nicer, shown on �gure 4.5.

4.4.2 Textures

We decided to make the texture coordinate for the mountain very simple, and
depending on the amount of vertices that de�ne it. Therefore in the x-coordinate
we use a modulo 2, for each vertex, and likewise in the y-coordinate. Thereby
we will have either 1 or 0, and the texture will look correct. However we notice
that the mountain will have more detailed textures the more vertices there is to
de�ne it.

4.4 Mountain 43

4.4.3 Entrance

Implementing the entrance is about combining the tunnel and the mountain.
We have made the mountain touch the �oor, in all sides, however leaving a hole
for the tunnel to run through. So what we want is to take the vertices where
the mountain raises itself above the tunnel, and store them so we can combine
them with the vertices of the tunnel. Therefore we are only interested in the
�rst and last set of vertices of the tunnel and the mountain. The idea is that
the vertices on the left and right side of the tunnel, should connect to a vertex
having the same height, but �xed x and z coordinate being on the left and right
of the tunnel respectively.

When that is done we give those points texture coordinates. In order to make
it work, we use the cosine values for the tunnel vertices multiplied by the road
width divided by the distance between two mountain points. We chose those
values, as this gives us a direct relation between the distance to the vertex on the
side, and how far the bottom point is from it. Therefore as long as the vertices
on the side are further away from the tunnel's center, we will have a texture
coordinate for the vertex on the side of 1, and [0; 1] for the texture coordinates
of the tunnel.

4.4.4 Intergration

Now that all vertices and texture coordinates have been implemented, we now
make sure that they are written correctly to the .obj �le. This time we have a
separate data structure for both the entrance, and the mountain. To start with
we write the entrance to the �le as triangle strips. This means, that when we do
not want to connect two consecutive vertices, we take both these vertices, and
add them again in between. So for writing the faces, we have no special cases,
we just write them as a triangle strip, and when we have two times the same
vertex, it will not make a face. In the end we make sure we increase the o�set
for both the vertices and the textures.

After having made the entrance, we focus on the actual mountain. This one
is written the same way as the tunnel 4.3.3. However we do not have a road
interfering with the array, so we just have to be careful not to make a face, when
reaching the last vertex of each row.

44 Implementation

4.5 Simple Checking Program

As a little extension to our C++ code, we implemented a small OpenGL program
(see �gure 4.7), so the hospital can check each scene. The idea is that by arrow
presses one can check every scene, making sure that tunnels and roads are placed
correctly, and in agreement to what the hospital expected.

Figure 4.7: Our OpenGL output to check the scenes

After having generated all the scenes, we compute one scene once more. By
having an index that we increment and decrement for every key press, we know
which scene to compute. Each of our functions: road, tunnel and mountain,
receive a �le as input. When we want to write to the screen, we give a null �le
as input. In fact what we do, is we make the same calculations as we have done
before, except that we do not write to a �le, but to the screen.

We therefore make a check in each method whether or not the �le is null. If it

4.5 Simple Checking Program 45

is, in the road and the tunnel functions, we draw a triangle strip. In fact what
both the tunnel and the road functions do, is make vertices that draw a road.
Therefore in our bezier() function we make vertices and texture coordinates
every time. Only when gl_begin(GL_TRIANGLE_STRIP) is called, then those
are used to draw to the screen. However to tell the di�erence between a road
and a tunnel on the OpenGL program, we have coloured the tunnels blue (see
�gure 4.7).

46 Implementation

4.6 Car control

In this section, we will talk about how we implemented the way points, the
follow-track mode using these way points, teleportation, how input is handled
through �le sharing and logging.

4.6.1 Way points

4.6.1.1 Basic

Way points are generated on every segment of road and follows the same bezier
curve as the road. Way points are not visible, which is why they are modelled
in Unity instead of the environment in OpenGL (although it may have been
possible, but that would give us less �exibility in terms of control in Unity).

A way point is modelled as a whole new class with its own script in Unity.
Most basic, it contains most of the information about the environment. Most
importantly for the follow-track mode, it contains the position of the next and
last way point in the segment. Because way point is modelled as a class, it has
many get and set functions.

Way points are modelled as spheres in the game, but the form does not matter
much, because it is invisible and used trigger events and hold information. The
reason to model them as spheres is simply to avoid rotating them throughout
the scene, because the road curves, and we wish them to cover the entire width
of the road. When running through the bézier function (this time in Unity), we
create the way point at the current position of the function. Each segment of
bézier points, the same number of way points are generated.

4.6.1.2 Extended use of way points

Now that we have implemented way points, we use it to pass a lot more infor-
mation to the car. As mentioned in section 3.8.1.2, we use the way points to
pass fog and logging information to the car.

Upon creation, the way points get information from the scene, as which type
of road the way point is on (tunnel or regular road), which scene it is on, and
what the local coordinate (relative to the scenes) of the car is. The car script
then processes the information and sets the di�erent values that need to be set.

4.6 Car control 47

As the road identi�er is not changed until the car is turning, and seeing as the
turn is decided on a way point, the road identi�er can be passed from every way
point to the car, and the logging information will remain correct. Also when
teleporting from one scene to another, it is decided by the way point, so there
is no problem having the scene identi�er designated by the way points as well.

4.6.1.3 Fog

We implemented fog2 in our game, and we have the way points to control it. The
way points check if the segment is a regular road, and the next one is a tunnel,
and vice versa. If it is, it sends information to the car, as to, how many way
points until reaching the end of the segment, and thereby the new fog settings.

Entering the Tunnel

As mentioned in 3.8.2, upon entering the tunnel, we use a �xed distance (set
to 250m in our case) to decide our transition. In fact, when the car gets told
by the way points that it is the last segment before a tunnel, the car starts
checking, if the straight line distance to the last way point (found by taking
the length of the vector between the car and the last way point) is less than
the �xed distance. If it is, we compare the two, and use this percentage for
our fog density. We use the di�erence between the environment fog density and
the tunnel fog density, to know how much we should add to the environment
density in order to eventually get the tunnel fog density. Also seeing as we have
the percentage, as to how far we are from the last way point, we multiply this
number to the di�erence, and we get a smooth transition, which gets updated
by how far the car is from the tunnel.

Exiting the Tunnel

When exiting the tunnel, we weren't too interested in having a �xed distance
by which the fog should have changed. But instead we de�ned a �xed time, by
which the fog should change. We decided that the transition should start, when
reaching the last way point, when still completely in the tunnel, and one second
later (value which we have tested) the density should have changed to the new
environment fog.

2The one that can be found under Render Settings in Unity

48 Implementation

Figure 4.8: Fog transition from environment to tunnel

The way we make sure this happens, is by taking the time when reaching the last
way point in the tunnel. Then we take the subtraction between the recorded
time plus one second and the actual time. Then by using Unity's function
Lerp()3 [Uni12e] on the tunnel fog density and the environment fog density, and
using the previously calculated di�erence to interpolate, we get the transition
we wanted.

3Function which interpolates between two values

4.6 Car control 49

4.6.2 Follow-track mode

As mentioned we use the way points to orient the car, and tell it at which speed
it should drive. However all the way points just hold information about its own
location, and the location of the next way point. The next thing to do though, is
to process this information according to the car's own location and orientation,
which is varying. We have made a function, that calculates the car's orientation
and speed. This one of course replaces the function that receives input and
drives the car from that.

The function starts by calculating the direction of the car, which is the vector
from the car position to the next way point position. Therefore the direction
vector of the car is found by taking the next way point's position minus the
car's position4. After that we calculate the car's orientation. As the car always
drives on 0 height (y = 0 refvertexRoad), the orientation is found by taking
the angle of rotation by the y axis (the one going up). This one is found by
using Unity's variable eulerAngles [Uni12i], where the y coordinate hands out
this value directly. Afterwards we can �nd the orientation of the car with the
following vector:

orientation =

sin(θ)0
cos(θ)

Now having the orientation of the car, and the vector that should orient it, we
need the angle between them to know how much the car should turn. To �nd
this angle we use the Unity function AngleBetween [Uni12k]. However, Unity's
function returns a value between [0;π], no matter if the angle is positive or
negative.

Therefore we made function to get an angle with a sign. The way we do that,
is that we take the perpendicular of one of the two vectors, and take the dot
product with the other vector, using Unity's Dot [Uni12k]. Using this we now
get values between [−π;π].

Now having the angle between the orientation of the car, and the direction to
the next way point, we want to de�ne the angle by which the car should turn.
If we made the car turn it all at once, it wouldn't look natural or �owing, so
we need to take it bit by bit. We found that the turning angle, per frame,
should not only depend on the total angle needed, but also by how far there
is to reach it. In fact when meeting the way point, we calculate the distance,
from the car's position to the next way point, and use this value, until it is
updated, when meeting the next way point. We then divided the degrees the

4Using Unity's transform component which has an up to date vector as a variable [Uni12i]

50 Implementation

distance. However by testing, we found that dividing the degrees by the half of
the distance, makes the car reach the wanted way point in time.

Now that we have the degrees per update, we want to regulate the speed. For
that we use a value, called maximal speed, that we use to compare with the
actual speed the car has. If the actual car speed is more than 5% greater than
maximal speed, the car should brake (throttle5 = -1), likewise if the actual speed
is less than 5% than the maximal speed, the car should accelerate (throttle =
1). We wish to regulate the speed according to the degrees that still remain
to be turned. We have calculated a percentage of 45 degrees and the degrees
we have. We chose 45 degrees, as we estimated that, when exceeding that, the
car would need to slow down in order to turn correctly. When we have that
percentage, we de�ne the maximal speed as the multiplication of that and the
default speed set by the XML �le.

5variable taken from the tutorial 3.2.3

4.6 Car control 51

4.6.3 Teleport

As we have decided to make the car teleport from one scene to another, we had
to �nd a way to make it look smooth. Once more we had to use the way points
to control this, and to tell the car where to go. As mentioned in section 3.8.4
we need to have the segment of one exit tunnel of a scene, be the same segment
as the �rst tunnel of the next scene.

Therefore we need to identify which way points are way points that are teleporter
way points, and where they are teleporting to. As we asked the hospital to make
the identical tunnels (as explained above) but also that the tunnels should have
a minimum length of 250m6, we de�ned from the third way point in that tunnel,
the car should teleport to the third way point of the entrance tunnel in the next
scene. We decided to take the third way point, as we did not want the car to see
any part of the mountain when teleporting. And as we have a minimum length,
we are ensured that the third way point (of 10), is more or less one third of the
segment of the tunnel.

4.6.3.1 Translate

In order to make the teleportation work correctly we had to identify where
the car touches the way point (which is round), and place it on the equivalent
location on the new way point. In fact each way point has a direction vector,
being the vector pointing to the next way point.

To start with, we want to �nd vector from the center of the way point to the
location where the car hits the way point:

location = Carxyz −WayPointxyz

Afterwards we take the angle between this one, and the vector from the center
of the way point, to the next way point (using the angle function created for the
follow-track 4.6.2). The next step is to put the car in the right location, using a
rotation matrix [Wei12]. Seeing as we only drive in the xz plane, then we only
need to perform a rotation on the x and z coordinates.

6We need them to have a certain length as the driver should not be able to see out from
the tunnel 3.6.2

52 Implementation

P0 = newWayPointxyz

P1 = newWayPointxyz.norm · rw + newWayPointxyz

x = cos(θ)(P1x − P0x)− sin(θ)(P1z − P0z) + P0x

z = sin(θ)(P1x − P0x) + cos(θ)(P1z − P0z) + P0z

What we do is we take the orientation vector of the new way point, and use it
to place a reference point P1 on the border of the new way point (as the way
points have the radius of the road's width). Then we use P0 to de�ne the center
of the rotation of P1. In fact if we have the rotation matrix given by:

R =

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]

Now we apply the rotation matrix to the point that is placed on the border
of the way point. However if we want to make a correct rotation, we have to
translate this one back to the origin, which we can �nd by substracting P0 to
P1. So we will rotate the point P given by:

P =

P1x − P0x

0
P1z − P0z

Applying R on P we now have:

x = cos(θ)Px − sin(θ)Pz

z = sin(θ)Px + cos(θ)Pz

Now that the rotation is done, we want to translate it back to where it was
before in the world space. So we add the coordinates from P0 back to the x and
z coordinates calculated and we get the previously mentioned equation:

4.6 Car control 53

x = cos(θ)Px − sin(θ)Pz + P0x

z = sin(θ)Px + cos(θ)Pz + P0z

car

c
a
r

Figure 4.9: Translation in teleportation. Note that the car has not yet been
rotated to have the right orientation, which is explained in the
next subsection.

4.6.3.2 Rotate

Now that the car is placed correctly, we want it to have the correct orientation
after being translated. To do that we simply �nd the angle between orientation
vector of the teleporting way point, and the orientation vector of the way point
the car gets teleported to. Applying turning the car by that angle, will be
oriented correctly. The way we do that is we use once more the eulerAngles

from the Unity's transform component [Uni12i], on the y coordinate seeing as
we only rotate around this one. Also the car's velocity should also have the
correct orientation. This one is retrieved by using taking the velocity variable
from Unity's rigidbody component [Uni12h]. However this one is given as a
vector, so we need to transform the angle into a vector.

orientation =

sin(θ)0
cos(θ)

rigidbodyvelocity = orientation · v

54 Implementation

where v is the velocity of the car. The way we do that is by taking the sine of the
angle on the x coordinate, and the cosine of the angle on the z coordinate, and
normalizing the vector. We also take take the length of the velocity vector,
which gives us the speed of the car as a number. Eventually we just multiply
the speed on the vector found before, and the car's speed will have the right
orientation.

Figure 4.10: Orientation of the car. Waypoints (a) and their direction vectors,
and the angle between v1 and v2 (b). The rotation is applied to
the car (d) with the rotation shown (c).

4.6.4 Camera

Now that we have moved and rotated the car, we want the car to be oriented
correctly. In fact, when the camera view is outside of the car, it has smooth
movements between old and new positions. However, as we do not want the
player to notice that the car has moved, we want the camera's location to be
updated just as the car teleports. Therefore we made a new function in the
camera class7 that we called reset(). All this function does, is set the velocity
of the camera to be exactly the same as the car, and updates its previous velocity,
which it uses to make smooth transitions in other cases.

4.6.5 Logging and Follow Track

The last thing we need to do, is to update the logging variables and the follow
track mode. In fact, the hospital are interested in the time since start-up, and

7Taken from the car tutorial [Uni12a]

4.6 Car control 55

the time since the car enters the current scene. Also the hospital is interested in
the local coordinates on the scene (seeing as the world coordinates are subjective
3.8.4), and seeing as we are moving each terrain in the z direction, we just need
to update one variable with how much we have translated the scene. Thereby
subtracting this from the car's z coordinate we get the local coordinate of the
scene.

Also, we found that we needed to disable the follow-track mode when teleport-
ing, so the car does not try to drive somewhere where it shouldn't, as it might
try to drive to a way point on the old scene when teleported. Therefore we
decided to stop all driving actions when we teleport, and enable them again,
when we meet a new way point which is not teleporting.

56 Implementation

4.6.6 Input and decision

Unity has its own way of dealing with the control of the car. They simply make
use of the left and right arrows of the keyboard, which in Unity changes the
values of horizontal and vertical axis of a keyboard value I, where I ∈ [−1, 1].
In the horizontal case, when the left key stroke is held down, it reaches the value
-1 whereas 1 means that the right key stroke is held down.

As we were not able to use Unity's function getAxis() [Uni12d], seeing as it
reads directly from the keyboard, and interpolates values between −1 and 1,
we had to make it our selves. We therefore based our implementation on the
one, Unity has documented on [Uni12d], both for throttling and steering, where
inputs left, right, up and down from the text �le, are transformed into −1, 1,
−1 and 1 respectively.

But to set these values, we have to read from the input �le and make changes at
the same time. In Unity, reading and popping a line was not as straightforward
as we hoped and therefore, we came up with another solution. We read the
�rst line of the �le with File.ReadLine() and then we read the rest using
File.ReadToEnd(). After we write the rest to the �le, replacing what is already
there. However, this is not the optimal solution and it may raise some problems
with the sharing violations of the �le.

The input we receive is pushed into an array. In follow-track mode, if the way
point happens to be a decision way point (checked by calling getIsDecision()

contained in the way point class), we simply check the last contained value in
the array. If the last input is left, the car turns left, otherwise right. To take the
decision, we de�ne an angle theta, which is the angle between the overlying way
points' direction vector. However the way we choose if it is the reference way
point (the one that directs the car on the same road as the one it was previously
driving on), is by checking if it has the same road_id as the car. If θ < 0, then
the way point is on the left side of the car where as θ > 0 means the way point
is on the right side of the car. See �gure 4.11.

If the car is in free-mode, the horizontal and vertical axis of the keyboard entries
remain their appertaining values.

4.7 Logging 57

decision

waypoint

Figure 4.11: Decision taking.

4.7 Logging

Logging depends much on the File handling in Javascript, where logging takes
place, and we use System.IO for this purpose. This namespace has most of
the �le handling functions needed and the ones mostly used in the program are
CreateText() and AppendText(), whose names are self explanatory.

Basically, we keep the logging �le open, and we append text to the �le dynami-
cally. The data needed is shown in 3.9. They want the global time and the scene
time. The global time, is the time since the game started, whereas the scene
time is reseted for every scene, which means that at every teleporting point (see
Follow-track 4.6.2) we reset the scene time to 0.

We also need to update the z-coordinate of the car. As explained in section
4.6.3.1, we move each scene in the z-axis. Therefore, we need to know, by how
much the current scene has been translated. This one is updated as explained
in section 4.6.1.2. Removing this from the car's z-coordinate, we get the local
coordinate of the car on the scene.

All the other variables are accurate, and can directly be appended to the logging
�le.

58 Implementation

Chapter 5

Results

In this section, we will present the various tests conducted and the results of
these tests. Most of the tests for the environment and the game creation, has
mostly been done throughout development. Some tests were done by simple
debugging, by using the built-in debug tools in the IDE's.

5.1 C++ and OpenGL

The initial tests were done in the C++ environment, where we simply rendered
the environment in OpenGL. These tests grew rapidly into tests that were Ob-
ject �le (.obj) related and we needed to integrate with unity, meaning that
we could no longer take a glimpse at the environment without looking at the
contents of the object �le.

In the integration process, we used Unity to test the environment as we loaded
the object �les. Even to test the object �le and how it was working, Unity was
used. The process was simply a matter of drag and drop of the object �le from
the C++ environment to the Unity import folders and thanks to Unity's auto
detect and import feature, this made testing much easier.

The whole environment was created this way. Vertices, texture coordinates and

60 Results

normals are calculated in OpenGL and the object �le are generated and tested
in Unity.

5.2 Unity

Apart from the object �le generation, we use Unity to tests the gaming be-
haviours itself, meaning the car control, way points generation and other render
settings in the Unity environment. To be able to test our environment on the
car, we add mesh colliders to prevent it from falling through the environment.
Way points normally have their mesh renderer turned o�, because we want the
way points to be invisible in the �nal product, but for testing and debugging, it
was convenient to have the way points rendered so we could actually test when
the car was hitting the way point and thereby triggering a certain e�ect that
we wanted triggered. See �gure 5.1.

Figure 5.1: Testing of way points. The mesh renderer of the way points are
turned on to make it easier to debug, when the car reaches the
way point to trigger a certain event.

When working with scripts in Unity, it is very easy to debug certain variables
by use of the debug tool in Unity. One can simply write Debug.Log(var) and
the variable is shown in the console log. Also, some global variables can be set
to public, so when running the program, the Unity's inspector window shows
many variables which update frequently as the game is running.

5.3 Hvidovre hospital - Experiments 61

Figure 5.2: Unity development interface. On the right, you can see the inspec-
tor window, showing all the variables such as directing vector, type
of way point, fog density etc. The game is paused, but when it is
not, the variables are changed at every frame. Below the inspector
view, console can be used to print out additional information in
the code.

5.3 Hvidovre hospital - Experiments

At the closing of our project and the thesis, we departed to Hvidovre hospital
to start with the testing of our car-simulation game.

The day started o� with discussing what the computer in their department
required to run our game. The pre-installation requirements are listed below.

1. OpenGL, glut and glu dll �les.

2. Microsoft Visual C++ 2010 Redistributable package

3. Included �les such as texture in the folder

4. Unity game engine

The �rst three mentioned is to run the C++ program. To build the game as a
whole, unity game engine is required. It took some time to install, import the
scenes and build it all, so in the meantime, we discovered some errors in their
spline coordinates such as the side roads being too close to one another, which

62 Results

made the mountain coat the other side road. After some minor bug �xes to the
XML �le, we generated the whole scene.

We had prepared a simple guide, C for them to follow when compiling and
building it up. They were quite happy with the simplicity of the process. Konrad
Stanek had prepared a python program to run simultaneously with our program
in the background to input to and output from the text �le. We tested his and
our program together. It worked �uently in follow-track mode. However, in
free-mode, it seemed to yield some problems to the control because of sharing
violations of writing to the same �le.

But this did not matter too much for their experiments, because they, to begin
with, are mostly interested in the follow-track mode. Therefore, we decided to
conduct a real experiment with the EEG set up.

Figure 5.3: EEG on the subject.

As shown on the picture, the subject is equipped with the EEG. The set-up
was done in an isolated room, where no magnetic noise was interfering with the
signals from the EEG. Therefore, all the electric devices and cables were turned
o�.

When the subject started playing with the game, the decisions at the turning
points seemed to work naturally for the subject. He had no problems in doing
so, and the track was completed successfully with no major errors. The mi-
nor problems encountered was the car, trying to stabilize its orientation after
teleportation. Other than that, every scenes was run, and the experiment was
successful.

5.3 Hvidovre hospital - Experiments 63

The research group recorded the data sent from the EEG while the subject
was playing the game. Later, they will try to investigate the brain signals and
the logging �le and see if they can �nd any correlation, between the subject's
decision taking and his brain signals.

Overall, the tests were successful and they were quite happy with our product.
More information and screen shots about the experiments can be found in their
brief in Appendix B.

64 Results

Chapter 6

Discussion

6.1 Project discussion

Throughout the project, we have tried to keep track of our progression, by
looking at our project plan, which we have created in the start of this project.
We have been more or less on track the whole time, and we were too much
behind on schedule.

From the start of our development of the environment, we tried to be as �exible
as possible. This meant that we had variables for almost everything and not
much was hard-coded. Also we made the algorithms in such a way, that they
are extendible. At the beginning, we did not have any XML to read from so it
was a little hard to keep the values from being hard coded. When we �nally had
the XML, we set it all up and read its values and it was working as intended.
From our experience, this rarely happens and it is thanks to our �exible coding
style, that the transition from hard coded variables to those read from the XML
was smooth.

What we can be proud to say is that we have a �nal game up and running,
which is therefore ready to be used in experiments. The hospital is very pleased
with our car simulation program and the tests were conducted successfully, as
explained in the results chapter.

66 Discussion

6.2 Limitations

When the hospital is running the experiments, there are certain things that need
attention when modeling the environment. The �rst thing is the mountains.
Mountains have a certain width, that is con�gurable in the XML. However,
if the width of the mountain is bigger than the distance between two roads
(meaning two side roads are too close to each other), the one mountain may
cover some areas of the other side road. This can be �xed by either reducing
the mountain's width, or by separating the side roads furtherer away from each
other.

The car is meant to drive on way points, so driving outside them won't trigger
certain events such as fog. If the car is driving outside of the road in free-mode,
the fog won't adjust correctly, because the way points control the fog. One
possible way of �xing this problem could be to check the position of the car
from each tunnel. Also, if the roads in the XML are too short, way points might
be overlapping, which may cause problems when driving in follow-track mode.

Many variables such as speed of the car, steering, fog and mode (follow-track
or free) are preset in the script. Most of these variables are made public, so it
is easy to change them in Unity's inspector. Some of these variables may not
exceed limits, as that may cause trouble. The maximum speed of the car can
be set to over 100, but this does not have any e�ect on the car, seeing as it can
only reach a maximum speed of around 70-80, because of the physics done by
Unity.

6.3 Extensions

As this is a Bachelor project, and therefore limited time was available to make
the program, there is many areas one could improve.

6.3.1 The Environment

There are countless details one could make, or improve in our environment to
increase reality.

6.3 Extensions 67

Bezier

1. Unnecessary vertices
If one decided to make vertices according to distance instead of splines,
one could spare a lot of unnecessary vertices (and way points) 6.1.

Figure 6.1: Example of areas with more vertices than needed.

Terrain

The terrain has countless areas in which it could be made better, as it the main
thing the player sees when playing.

1. Hills
Even though the hills on the terrain, which helps a lot against uniformity,
the terrain remains very uniform. One could have made a shader, which
changes the color of the terrain, according to what the altitude is.

2. Shadows
Unfortunately we did not have Unity Pro, so if we wanted shadows in our
game, we had to make them ourselves, using shaders.

3. Vegetation
One could add trees and other kinds of vegetation, or boulders to the
terrain, making it look a lot better.

4. Human created objects
One could also add Human created objects, like road signs, tra�c lights,
or buildings to the environment.

5. Obstacles
One could make obstacles like the ones mentioned above, on the road.

68 Discussion

6. Water
Water on low heights of the terrain, would look nice.

7. Levels of Detail
It could be interesting to have varying levels of detail, according to vari-
ation on the terrain, for example one is more interested in having more
vertices on the hills, and less on the �at terrains.

8. Hilled roads
Even though it was a design speci�cation, that the car roads should always
be on level y = 0, one could make the roads hilly.

9. Anomalies
We notice on places 6.2 (also related to the level of detail of the terrain)
that we have steps on the terrain, because of the way we de�ne the terrain
height.

Figure 6.2: Example of terrain anomaly.

Mountains

We have found some small issues with the mountain, so one could also improve
there.

1. Mountains check road
We have made the mountains all with �xed size, and therefore at some
points 6.3, the mountain could end up covering the road. One could check
if a mountain vertex is covering the road at a certain location on the
terrain, and edit its height accordingly.

6.3 Extensions 69

2. Varying heights and width
One could have varying widths and heights on the mountains, that would
help credibility.

3. Closing gaps between mountain and terrain
We have made our mountain, on the borders, have height y = 0, this
means, if the terrain doesn't have height y = 0, there will be a gap between
the mountain and the terrain, and one could �x it, by giving it the same
height as the terrain.

4. Level of detail
Right now, the mountain depends on the amount of vertices of the tunnel.
However even though sharp and rough edges look nice on a mountain, the
mountain need more vertices than the tunnels, and one could do with a
lot less vertices for the tunnels.

5. Shading of mountain
It would be nice to shade mountains, as they would have di�erent color
than the terrain, and one could make give them a white peak, making
them more real.

Figure 6.3: Example of a mountain covering a road.

Tunnels

There are also a few things one could improve in the tunnels.

1. Lights on the ceiling
By adding lights on the ceiling of the tunnels, one would make the game
more credible, as it is not completely dark, and the player might long for
a source.

70 Discussion

2. Flash when exiting the tunnel
One could make a �ashing e�ect, when exiting the tunnel rather than use
only the fog.

6.3.2 The game

In the actual game, there are a lot of things that can be improved.

The Car

1. Physics
The car is taken from a tutorial. This one has made some rough estima-
tions about how the car should drive. If one were to improve the game,
one should revisit most of those functions, and �nd new values, or solely
change them.

2. Di�erent cars
If the game is to be interesting, one could make several di�erent cars that
the player could use.

3. Advanced follow-track
In the case where the game would have hilly roads, the car should also
adjust its speed according to slope.

6.4 Credits

In this section, we will structurally describe in which parts of the Car Game
we take credit for and which parts is not developed by us. We feel that it is a
great important to distinguish our work and from other's and with respect to
the DTU's rules for the Bachelor thesis.

6.4.1 Distribution of work

All of the work and decisions have been discussed and implemented jointly. In
the report, there were parts in which we delegated the responsibility of work.

6.4 Credits 71

• Group work
Summary, Introduction and Conclusion was done in a group.

• Bilal Arslan (s093268)

� Analysis

� Method - Overview, Game development, Bézier, Terrain, Road, Way
points (Basic), Input and decision, Logging.

� Implementation - Terrain, Road, Way points (Basic), Input and de-
cision, Logging.

� Results

� Discussion - Project discussion, Limitations, Credits.

• Patrick Jørgensen (s093298)

� Method - Tunnel, Mountain, Way points (Extended), Fog, Follow-
track Mode, Transition between scenes.

� Implementation - Tunnel, Mountain, Simple Checking Program, Way
points (Extended), Follow-track Mode, Teleport, Camera, Logging
and Follow-track.

� Discussion - Extensions.

Everything but what is mentioned below, has been done by us. In the case where
something is found, that has not been mentioned below and not been made by
us, we strongly apologize, as it has not been our intention to take credit for it.

6.4.2 What is NOT done by us

1. Car
The car itself is taken from Unity's Car Tutorial. [Uni12a] This includes
the car chassis, body, wheels, lights etc.

2. General car behaviour and control
Steering, throttling and many other physics simulation of the car is done
by the Car script, developed by Unity. This could be done by us, but
unfortunately, this was not the primary goal of the project and therefore,
we made use of it and then decided to go back to this and try to make it
on our own, if time enabled us.

3. Car camera
The camera following the car is again done by Unity. Although, we have
made small changes to make the camera follow the car from an inside view,
to simulate a real driver driving the car.

72 Discussion

4. Unity
Many in-built functions and run-time rendering is done by Unity and many
things are given free. If our program based entirely on OpenGL, then it
would not be possible for us to make it this far into the project. It is
thanks to Unity that we have made it this far.

5. Shading
The shading is done by using Unity's standard shaders, which are available
and is set as default when important certain objects. Even though, we
could have done this by using GLSL (because we are experienced in that
shading language) in Unity, which is possible.

6. Fog
The rendering of fog is done by the Unity language and the only thing
that we take credit for is adjusting of it, depending on the car's position
on the road and the distance from the tunnel

7. Skybox
The skybox is a built-in function in Unity, which is rendered to the camera.
Thus, we do not take credit for having skybox in our game.

8. Random generator, gel_rand() This random generator is taken from
the GEL library, developed by our advisor, Jakob Andreas Bærentzen.

Chapter 7

Conclusion

What can we conclude from all this? Most of our work has been based on
the hospitals demands and what they prioritised. They started by not expect-
ing too much from our game: a simple car-simulation game. They were not
disappointed, in fact it was a little more advanced than they expected.

All of their requirements are ful�lled. Our game is able to successfully read the
environment data from an XML �le, create a whole environment with multiple
scenes, integrate this environment into the game environment in Unity, and
�nally we can simulate the game using the entire environment. We have made
the car able to drive in two di�erent modes, namely the free-ride mode and
follow-track mode, both of which are controlled by a simple text �le. How this
�le is created, whether it is by neurofeedback, or just by keyboard presses, is
not our task.

To keep track of their experiments, the hospital also asked us to create simple
data logging within a time scale (a matter of milliseconds), which has also been
made con�gurable.

As for the graphics of the game, the hospital people were more than satis�ed.
They did not expect much. The complications were to meet our own expec-
tations, taking into consideration the tools and the time available, which we
have.

74 Conclusion

The programs have been delivered to the hospital and it seems they do, what
they are supposed to. They have acknowledged and complimented our work,
meaning our work is very likely to be used for future in future neurological
experiments, which pleases us. Even so, there are a lot of improvements and
extensions, we would have enjoyed making 6.3, however this is but a Bachelor
project, and if those are to be brought to life, is in the hands of another project.
The hospital is now ready to get started with their experiments, they just need
subjects. This concludes that our work has been accepted and our �nal goal
has been reached.

Appendix A

Cubic Bézier curves

This appendix includes the documentation of the cubic bezier points used in
our project. The paper is from Ste�en Angstmann, one of the Ph.d. students
at the hospital who is going to use our program for experiments.

� �������	��
 � �� �����

��������� ����	� � �	 �	� "!#�	$
�%�'& !#�	 "! � �)(

*,+-/.102-/35416"3�78-19�:;3<-=:?>@-BADC"EGFHE;IJF"-/9<0LK8M"02MNKPOQE8RTSUMNE8>@02:;RN4/6"3V7;-W9V-1K8>,-1MXA<9%YZC"-/M
S;E86[Y\:;MXA]ADE^41E8MXA<3<E8R5ADC"-/023?9<C":;O_-@02M[:;M[-1:;9VS`Y�:aS;b *,+-1.10L-13c416"3�78-19]>d:;ef-d9V-1M"9V-
IgE835:fMhSiF"-1K83V-1-fjUk"6UA%Y#-;lmR2R�4/E8M"4/-1MXAD3<:fAD-=E8M,416"k"0L4ZE8M"-19/jXADC"-=>@E;9VA502>,OQE83VAD:;MXAn4a:;9V-;bo/p *,+-1./02-/3<q@r p * :sSt.1-1-c:aSGq"bvu

w E�9<OQ-1410TIxSi:W416"k"0L4 *,+-/.102-/3�4/6"3V7;-;jXS8E86'K;0L78-#IgE86"3�OQE80LMhA<91j841:;R2RL-1Fzy|{~}����D{~�~��{~�x}��x�Bb
w C"-c��3<9�A�:;M"F�R2:;9VA�:;3V-]E8M�A<C"-i4/6"3V7;-;�JADCN-]>,02F"F"RL-PA�Y#E�>@:sSzMNE;A�kQ-;b���CN-1M�S8E;6
4|C�:fM"K8-@A<C"-d4/E8MXAD3VE8R#OQE80LMhA<91j�ADC"-@9<C�:;OQ-dEfI�ADC"-@416"3�78-t4|C":;M"K8-/91b���Ac029cC"-1RLONIg6"RnADE
0LM"F"0241:fAD-'A<C"-@4/E8MXAD3VE8R5O_E80LMXAD9?kXS�4/E8M"M"-/4/A<02M"K�ADC"-/>�YZ0TADC`R20LM"-'9<-/K8>@-/MXAD9cA<E^IgE83V>
A<C"- p 41E8MXAD3VE8R	O_E;RLSGK8E8M"q o :fRLADCNE86"K8CzADC"0L9Z029=M"E;AW:@OQE8RLSGK8E;M^0LM�A<C"-]6"9V6�:;R	9<-/M"9<-fjJ:;9
0TA�029�M"EfAW4/R2E89V-1F�u�b%�UE8>,-?-B�N:;>,O"R2-/9Z:;3<-?9<CNE�YZM^02Mz��0LK86"3V-'�8b

��02K86"3V-i�8�#�UE8>,- *,+-/.102-/3�416"3�78-/9
��AWF"EU-/9�M"EfAW>@:fAVAD-13ZYZC"0L4|C�-1MNF�S8E86^41E8MN9<02FN-13WA<E@kQ-cA<C"-?��3<9�A�:;M"F�YZC"024|C�ADC"-

R2:;9VA1�;S8E86HK8-BA�A<C"-�9D:f>@-�OQE80LMhA<9�IgE83�ADC"-�4/6"3V7;-�-10TADC"-/3�Y\:sS;b% �k"9<-/3V78-�A<C�:fA¡A<C"-�4/6"3V7;-
0L9�A|:;M"K;-1MXAZADE'ADC"-���3V9VAW:;M"F�R¢:f9VA p RL-1K89Vq'E;I�A<C"-?41E8MXA<3<E8R)OQE8RLSGK8E;MJb

** �

����� � �"� ��� $
w C"- *,+-1./02-/3,4/6"3V7;-^0L9��V6"9VA@:�O�:;3�AD0L416"R2:;3iR20LM"-a:f3i41E8>]k"02M�:~AD02E;M E;IWA<C"-z41E8MXA<3<E8R

OQE802MXA<95YZ0TADCHAD0L>@-���7f:;3VSG0LM"K�41EG-	�,410L-1MXAD9/b5��I ADCN-W4/E8MXAD3<E;RQOQE80LMhA<9%:;3<-�
��aj
��|j
��sj�
��sj
A<C"-1MzADC"-?4/6"3V7;-c0L9�K80L7;-1M�khS

 o�� unr o ��� � u �
������ o ��� � u � �
������ o ��� � u � �
���� � �
��aj"IgE83�� � � � �;b
��CXS�ADCN-19<-H4/EU-!�@4/02-/MhA<9#" w C"-/S�:;3<0L9<-'02M�:�Y\:aS�3<-/R¢:fA<-1F�A<E�k"02M"E;>@02:;R	-B�UO�:;M�

9V02E8M"9/b�$=-/4a:;RLR_A<C�:fA o&% � � u � r % � �'� % � � �'� %(� � � � � b�)=E�Y 41E;M"9<0LF"-13�A<C"-19V-?A<-13V>@9
0LM"F"0L7G0LF"6�:;RLRLSH3D:~ADC"-/3ZA<C�:;M^:;F"F"-/F�A<E8K8-BADC"-/31j�:;M"FzO"6UA o ��� � u#IgE83 % b+*%E;6�K;-/AZIgE86"3
Ig6"MN4/AD0LE8M"9�E;I � j�4a:fR2R2-/F�ADC"--,/.B��}N�B�0.B�x}@��{~�21f} {43'�65;� �Bb w C"-19V-]:;3V-

7 �98 � o�� u�r o �:� � u � r � o �:� � u � � �
7 �98;� o�� u�r � o �:� � u � � r � o �:� � u � � �
7 �98 � o�� u�r � o �:� � u � � r � o �:� � u � � �
7 �98 � o�� u�r � � r � o �:� � u � � �

w Ch6"9ZIgE83Z: *,+-1./02-/3=4/6"3V7;-;j

 o�� unr 7 �98 � o�� u<
��=� 7 �98;� o>� u<
��?� 7 �98 � o�� u�
���� 7 �98 � o>� u<
��ab
@ 9=S8E86^YZ02R2R)9V-1-fj_ADCN- * -/3<M"9�AD-10LM�OQE8RLSGM"E8>,0¢:fR29�C�:a7;-iM"024/-cON3<E8OQ-13�AD02-/9=A<C�:fA�:;3<-

3V-	A�-/4/AD-/F'02MPADC"-�ON3<E8OQ-13�AD02-/9�E;I *@+-1./02-13�416"3�78-/91b * -/3<M"9�AD-10LM'O_E;RLSGM"E8>,0¢:;RL9):;M"F *@+-1./02-13
4/6"3V7;-19i41:;M[kQ-@FN-/��M"-/F[IgE83P:;MXS`F"-1K;3<-1-CB kXS 6"9V02M"K�ADC"-,-B�UO�:fM"9<0LE8M[E;I oD% � � u0E"j
k"6UA?R2-/A1l 9�4/E8MXAD0LMG6N-HA<Ez41E8M"4/-1MXAD3<:fAD-HE8M�A<C"-H4a:;9V-,EfI#FN-1K83V-1-C�Nj)9<0LM"41-iA<C�:fA?4a:f9<-H029
>,E89VA�Ig3V-GFh6"-/MhA<RLS�6N9<-1F b

��

��

��

��

��02K86"3V-�HU��I��N:;>@ONR2-
JLK 5M3��Q�N.GO%�U6"O"OQE89<-?ADCN-P4/E8MXAD3VE8R)O_E;RLSGK8E8M�C�:f9

���r o HP#�8uBj�
��nr o �QP�R8u�j
���r o �P�SP(�TH8uBjU:;M"FU
��\r o HPa��u�jU:f9%0LMd��02K86"3V-�HUb w C"-/M

 o�� unr 7 �98 � o�� u�
���� 7 �98;� o>� u<
+��� 7 �98 � o>� u<
��L� 7 �98 � o�� u�
��
r o ��� � u � o HP#�Xu���� o �:� � u � �/o �P�R8u���� o �:� � u � � o �c�MP(�/H;u�� � � o H�Pa��u
r o H/�'V � ��� � � ��� � � P#����V � �'HSW � � ���(X � � u

** H

78 Cubic Bézier curves

Appendix B

VRE with EEG

Here we present the brief done by Konrad Stanek and Ste�en Angstmann at
Hvidovre Hospital.

Application	 of	 Virtual	 Environment	 to	 cognitive	

science	research	at	DTU/DRCMR.	

Background
The virtual environment (VRE) will be actively used in the series of experiments aiming at elucidating the

neuroanatomical and physiological correlates of human decisions. During simulated car driving, the fast

electroencephalographic data (EEG) will be acquired to map neural activity of participants with their

actions, with purpose of inferring decisions before the actual performance. The goal of the research is to

contribute to the state-of-art technology in the field of brain-computer interfacing (BCI) and to better

understanding of the decision processes in humans.

Paradigms used so far for investigating voluntary actions mostly employed very abstract stimuli as letters or

pictograms (e.g. (Krieghoff, Brass et al.2009), prompting one specific decision. Inherent in doing so is a lack

in external validity (Haggard 2008) and, moreover, they are prone to random sequence generation behavior

(Jahanshahi and Dirnberger 1999; Lau, Rogers et al. 2006), which is a strong confounding factor in brain

signals. A virtual reality environment (VRE), on the other hand, will provide a more natural platform similar

to real life condition. At the same time, however, it will enable the experimenters to carefully control and

manipulate the environmental parameters, participants’ degree of freedom, inclusion of various types of

decisions; hence making it possible to analyze different aspects of voluntary action. In particular, decisions

can be investigated with regards to three different dimensions (tasks, according to (Brass and Haggard

2008)): “whether” to perform an action (whether to take a side road or not), “what” type of action to

perform (left or right side road) and “when” to perform an action (which side road to take).

Requirements
Several specific requirements must have been imposed on a virtual environment to make it applicable to

the aforementioned research. First, it must be flexible and highly configurable, allowing the researcher to

define exact road coordinates, visibility, terrain shape and size, etc. Second, it must implement a follow-

track mode of steering, where the car follows the direction of the road and participant’s degree of freedom

is reduced to selection of the side roads. Third, it must provide a sensitive logging mechanism (millisecond

precision), in order to synchronize acquired brain data with in-simulation events. Finally, it must implement

a flexible input mechanism, so that any EEG/fMRI-specific input devices may be used in place of standard

keyboard. None of the existing of-the-shelf games meets the stated requirements, and hence dedicated

virtual environment, being subject of this thesis, has been developed.

Deployment and test experiment
The final version of the virtual environment has been deployed and thoroughly tested in DRCMR (Danish

Research Center for Magnetic Resonance, Hvidovre Hospital). Three blocks of twelve trials were performed

with simultaneous EEG data acquisition from one healthy subject. One trial corresponds here to one

tunnel-to-tunnel road stretch, with decision being freely taken by the participant at each crossroad. The

events corresponding to keyboard press are forwarded through parallel port to mark the time points on

continues EEG data stream. The hardware setup consisted of BioSemi ActiveTwo system (128 active scalp

electrodes, amplifier, optical box); VRE computer running the game and sending synchronization triggers to

optical box; recording computer running ActiView acquisition software. Figures 1, 2, 3 and 4 illustrate the

experimental setup.

Fig.5 shows the brain signals recorded while the participants navigated through the environment. The

signals were acquired from 128 active electrodes covering entire scalp, digitized with 2kHz sampling rate,

high-pass filtered at 0.16Hz, and low-pass filtered at 100Hz.

The acquired EEG data is stored for subsequent analysis. The type and extent of the analysis will depend on

the paradigm and experimental design, and data from multiple participants will be usually combined to

account for statistically significant population effects. In case of this particular experiment, our purpose was

to validate the VRE/EEG setup rather than to test any specific hypothesis. The number of recorded trials

would need to be significantly higher to observe cognitive effects. We restrain therefore here to only few

exemplary views on the acquired data, all related to right-turn decision trials. Scalp distributions of

electrical activity are shown by Fig.6, example of event related potential by Fig.7, and distribution of

spectral power is illustrated by Fig.8.

References

Brass, M., P. Haggard (2008). "The what, when, whether model of intentional action.", Neuroscientist 14(4): 319-325.

Haggard, P. (2008). "Human volition: towards a neuroscience of will." Nat Rev Neurosci 9(12): 934-946.

Jahanshahi, M., G. Dirnberger (1999). "The left dorsolateral prefrontal cortex and random generation of responses:

studies with transcranial magnetic stimulation." Neuropsychologia 37(2): 181-190.

Krieghoff, V., M. Brass, et al. (2009). "Dissociating what and when of intentional actions." Front Hum Neurosci 3: 3.

Lau, H., R. D. Rogers, et al. (2006). "Dissociating response selection and conflict in the medial frontal surface.",

Neuroimage 29(2): 446-451.

Fig 1: Experimental setup – subject prompted to press left/right arrow keys with left/right index finger to

decide on driving direction. Computer and LCD screen positioned in relative distance to reduce 50/60Hz

noise.

Fig 2: Experimental setup – recording computer placed at adjacent room. The optical box receives EEG data

through optical fiber cable (orange cord) and synchronizing trigger signals through parallel port (white cord)

from the computer running VRE.

Fig 3: BioSemi ActiveTwo system used for EEG recordings. 128 active electrodes, distributed evenly across

subject’s scalp, capture miniature potential differences corresponding to cognitive and motor neural activity

(microvolts scale).

Fig 4: BioSemi amplifier and AD converter box. The amplified, digitized signal from here is sent via optical

fiber cable to the optical box and further to the recording computer.

Fig 5: Exemplary screenshots from ActiView EEG acquisition software. Subset of 32 posterior electrodes is

shown. Note the two large waves at the bottom figure, corresponding to eye blink and saccadic eye

movement respectively.

Fig.6: Scalp distribution of electrical activity corresponding to right-turn events (averaged over 12 available

trials).

Fig.7: Event related potential (bottom), resulting from averaging through 12 trials (top), time-locked to

right-turn decision (black, vertical line). Recorded at medial centro-parietal electrode (CPz).

Fig.8: Spectral power distribution, measured at the interval of 1500ms preceding right-turn decision.

Appendix C

How-to guide

Below is the guide used to guide the research group at Hvidovre Hospital on
how to compile, build and set up the program by use of their environment XML
�le.

How to use create environments?

1. Add the ’environment.xml’, in the same directory as the C++ program, named
‘CarEnvironment.exe’.

2. Open the ‘CarEnvironment.exe’ program. This one will generate 150 ‘.obj’ files, named
‘xmlemXXX.obj’, and store these in the ‘Assets/Objects’ folder. The XXX is the number of
the scene (ranged from 000 to 150), according to the information given by the xml file.

3. Verify the shapes of the terrains, shown by the C++ program (like picture below). Press
the right and left arrow keys, to go from one terrain to another.

4. Close the program.
5. Locate the ‘Scene.unity’ file inside the ‘Assets’ folder.
6. Open the ‘Scene.unity’ file (It will take a little while for Unity to import all scenes).
7. When it is done importing, Unity should show something like this.

a. If you wish to check whether the environment, as it will look when running, press
the Play sign and the Pause sign (designated by the arrows on the picture)

b. If everything works, the environment should look something like this

8. Under the menu “File” press on “Build Settings”

9. A window will appear (picture below)

10. Verify theat “Scene.unity” is checked
11. Verify that under “Target Platforms” it says “Windows”
12. Verify that “Development Build” is unchecked
13. Press Build

14. Give it the name you want, and put it in the directory you want
15. Press Save

How to use the Program?

1. Locate saved unity “exe” file generated

2. Make sure you have a file with the name “input.txt” in the same directory

3. Open the unity “exe” file

4. A black screen will appear. The game waits for a “start” command from the text file to
start

5. Once the game is started you will be able to control the car with 4 different commands
(please note that you can combine several commands per line):

a. “left”

b. “right”

c. “up”

d. “down”

6. According to car mode you can use the commands:

a. If the car is on follow-track mode, the left and right commands are used to decide
if the car should turn at a crossing.

b. If the car is free-ride mode, then all commands are free to be used.

7. When done with the program, you will find the “logging.txt” file inside the directory
where the unity “exe” file is

8. If you wish to edit things that have nothing to do with the environment (car view,
default speed, car mode, fog density), you can just do so in the xml file, and the game
will have those specifications upon next startup

96 How-to guide

Bibliography

[Bæ12] Jakob Andreas Bærentzen. Gel library. http://www2.imm.dtu.dk/
projects/GEL/GEL-docs/index.html, 2012.

[Dig97] Polyphony Digital. Grand turismo. http://www.gran-turismo.

com/, 1997.

[DSEW02] Darwyn Peachey Ken Perlin David S. Ebert, F. Kenton Musgrave
and Steve Worley. Texturing and Modeling, Third Edition: A Pro-
cedural Approach. Morgan Kaufmann, 2002.

[Fil12] FileFormat.info. Wavefront obj �le format. http://www.

fileformat.info/format/wavefrontobj/egff.htm, 2012.

[Joy00] Kenneth I. Joy. Bernstein polynomials. http://idav.ucdavis.

edu/education/CAGDNotes/Bernstein-Polynomials.pdf, 2000.

[MHDB11] R. J. Stone M. H. Depledge and W. J. Bird. Can natural and
virtual environments be used to promote improved human health
and wellbeing? 2011.

[Mic12] Microsoft. System.xml. http://msdn.microsoft.com/en-us/

library/system.xml(v=vs.71).aspx, 2012.

[Mor12] Chris Morris. Road and path tool. http://sixtimesnothing.com/
road-path-tool/, 2012.

[PM01] Yoav I H Parish and Pascal Müller. Ciyengine. http:

//www.vision.ee.ethz.ch/~pmueller/documents/procedural_

modeling_of_cities__siggraph2001.pdf, 2001.

http://www2.imm.dtu.dk/projects/GEL/GEL-docs/index.html
http://www2.imm.dtu.dk/projects/GEL/GEL-docs/index.html
http://www.gran-turismo.com/
http://www.gran-turismo.com/
http://www.fileformat.info/format/wavefrontobj/egff.htm
http://www.fileformat.info/format/wavefrontobj/egff.htm
http://idav.ucdavis.edu/education/CAGDNotes/Bernstein-Polynomials.pdf
http://idav.ucdavis.edu/education/CAGDNotes/Bernstein-Polynomials.pdf
http://msdn.microsoft.com/en-us/library/system.xml(v=vs.71).aspx
http://msdn.microsoft.com/en-us/library/system.xml(v=vs.71).aspx
http://sixtimesnothing.com/road-path-tool/
http://sixtimesnothing.com/road-path-tool/
http://www.vision.ee.ethz.ch/~pmueller/documents/procedural_modeling_of_cities__siggraph2001.pdf
http://www.vision.ee.ethz.ch/~pmueller/documents/procedural_modeling_of_cities__siggraph2001.pdf
http://www.vision.ee.ethz.ch/~pmueller/documents/procedural_modeling_of_cities__siggraph2001.pdf

98 BIBLIOGRAPHY

[QWN10] Olga Sourina Qiang Wang and Minh Khoa Nguyen. Eeg-based �se-
rious� games design for medical applications. 2010.

[SO11] Nguyen MK. Sourina O, Wang Q. Eeg-based "serious" games and
monitoring tools for pain management. 2011.

[TAM08a] Naty Ho�man Tomas Akenine-Möller, Eric Haines. 12.4.4 triangle
meshes. In Real-Time Rendering. 2008.

[TAM08b] Naty Ho�man Tomas Akenine-Möller, Eric Haines. 6.3 procedural-
texturing. In Real-Time Rendering. 2008.

[TS05] Playground games Turn 10 Studios. Forza motorsport. http://

forzamotorsport.net/, 2005.

[Uni12a] Unity. Car tutorial. http://unity3d.com/support/resources/

tutorials/car-tutorial, 2012.

[Uni12b] Unity. Fixed update. http://docs.unity3d.com/Documentation/
ScriptReference/MonoBehaviour.FixedUpdate.html, 2012.

[Uni12c] Unity. Fog. http://docs.unity3d.com/Documentation/

Components/class-RenderSettings.html, 2012.

[Uni12d] Unity. Input. http://docs.unity3d.com/Documentation/

ScriptReference/Input.html, 2012.

[Uni12e] Unity. Mathf. http://docs.unity3d.com/Documentation/

ScriptReference/Mathf.html, 2012.

[Uni12f] Unity. Monobehaviour. http://docs.unity3d.com/

Documentation/ScriptReference/MonoBehaviour.html, 2012.

[Uni12g] Unity. Prefabs. http://docs.unity3d.com/Documentation/

Manual/Prefabs.html, 2012.

[Uni12h] Unity. Rigidbody. http://docs.unity3d.com/Documentation/

Components/class-Rigidbody.html, 2012.

[Uni12i] Unity. Transform. http://docs.unity3d.com/Documentation/

ScriptReference/Transform.html, 2012.

[Uni12j] Unity. Unity publishing. http://unity3d.com/unity/

publishing/, 2012.

[Uni12k] Unity. Vector3. http://docs.unity3d.com/Documentation/

ScriptReference/Vector3.html, 2012.

[Wei12] Eric W. Weisstein. Rotation matrix. http://mathworld.wolfram.
com/RotationMatrix.html, 2012.

http://forzamotorsport.net/
http://forzamotorsport.net/
http://unity3d.com/support/resources/tutorials/car-tutorial
http://unity3d.com/support/resources/tutorials/car-tutorial
http://docs.unity3d.com/Documentation/ScriptReference/MonoBehaviour.FixedUpdate.html
http://docs.unity3d.com/Documentation/ScriptReference/MonoBehaviour.FixedUpdate.html
http://docs.unity3d.com/Documentation/Components/class-RenderSettings.html
http://docs.unity3d.com/Documentation/Components/class-RenderSettings.html
http://docs.unity3d.com/Documentation/ScriptReference/Input.html
http://docs.unity3d.com/Documentation/ScriptReference/Input.html
http://docs.unity3d.com/Documentation/ScriptReference/Mathf.html
http://docs.unity3d.com/Documentation/ScriptReference/Mathf.html
http://docs.unity3d.com/Documentation/ScriptReference/MonoBehaviour.html
http://docs.unity3d.com/Documentation/ScriptReference/MonoBehaviour.html
http://docs.unity3d.com/Documentation/Manual/Prefabs.html
http://docs.unity3d.com/Documentation/Manual/Prefabs.html
http://docs.unity3d.com/Documentation/Components/class-Rigidbody.html
http://docs.unity3d.com/Documentation/Components/class-Rigidbody.html
http://docs.unity3d.com/Documentation/ScriptReference/Transform.html
http://docs.unity3d.com/Documentation/ScriptReference/Transform.html
http://unity3d.com/unity/publishing/
http://unity3d.com/unity/publishing/
http://docs.unity3d.com/Documentation/ScriptReference/Vector3.html
http://docs.unity3d.com/Documentation/ScriptReference/Vector3.html
http://mathworld.wolfram.com/RotationMatrix.html
http://mathworld.wolfram.com/RotationMatrix.html

